

Linux System
Programming
Techniques

Become a proficient Linux system programmer using
expert recipes and techniques

Jack-Benny Persson

BIRMINGHAM—MUMBAI

Linux System Programming Techniques
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Sankalp Khattri
Senior Editor: Shazeen Iqbal
Content Development Editor: Romy Dias
Technical Editor: Shruthi Shetty
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shankar Kalbhor

First published: April 2021

Production reference: 2150621

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-128-8

www.packt.com

http://www.packt.com

Contributors

About the author
Jack-Benny Persson is a consultant and author based in Sweden. He has written several
books about Linux and programming. His passion for Linux and other Unix-like
systems started as a hobby more than 20 years ago. Since then, he has spent most of his
spare time reading about Linux, tinkering with Linux servers, and writing about Linux
administration. Today he has his own IT and media company in Sweden that focuses
on Linux.

Jack-Benny holds an Advanced Higher Vocational Education Diploma as a Linux system
specialist. He has also studied electronics, networking, and security.

I want to send a special thank you to the technical reviewer of this
book—Ramon Fried. Without him, several coding errors would have

slipped through. He has also pointed me toward more modern functions
and system calls whenever I have leaned upon the old way of doing things.
I also want to thank the team at Packt who has helped me with this book
from start to finish: Sankalp Khattri, Shazeen Iqbal, Ronn Kurien, Romy

Dias, and Neil D'mello.

About the reviewer
Ramon Fried holds a BSc. in computer science. He has worked with Linux for the
past 15 years both as a system developer and as a kernel developer. His day-to-day job
mostly revolves around embedded devices, device drivers, and bootloaders. He regularly
contributes to the Linux kernel and is a network subsystem maintainer for the U-Boot
project. Outside of work, he has an extensive list of hobbies that is forever growing.
He is a musician, playing both the piano and guitar, a woodworker, and a welder.

I'd like to thank my wife, Hadas, and our three children, Uri, Anat, and
Ayala, for their love and support.

Preface

1
Getting the Necessary Tools and Writing Our First Linux
Programs

Technical requirements 2
Installing Git to download the code
repository 3

Installing GCC and GNU Make 3
Getting ready 3
How to do it… 4
How it works… 6

Installing GDB and Valgrind 7
Getting ready 7
How to do it… 7
How it works… 8

Writing a simple C program for
Linux 9
Getting ready 9
How to do it… 9
How it works… 11
There's more… 13

Writing a program that parses
command-line options 13
Getting ready 13
How to do it… 14
How it works… 16

Looking up information in the
built-in manual page 18
Getting ready 18
How to do it… 18
How it works… 19
There's more… 19

Searching the manual for
information 20
Getting ready 20
How to do it… 20
How it works… 21
There's more… 21

Table of Contents

2
Making Your Programs Easy to Script

Technical requirements 24
Return values and how to read
them 24
Getting ready 25
How to do it… 25
How it works… 27
There's more… 28
See also 29

Exiting a program with a
relevant return value 29
Getting ready 29
How to do it… 29
How it works… 33
There's more… 34

Redirecting stdin, stdout, and
stderr 34
Getting ready 34
How to do it… 35
How it works… 37
There's more… 38

Connecting programs using pipes 38
Getting ready 38
How to do it… 38
How it works… 39
There's more… 40

See also 41

Writing to stdout and stderr 41
How to do it… 41
How it works… 43
There's more… 43

Reading from stdin 44
Getting ready 44
How to do it… 44
How it works… 46
There's more… 47

Writing a pipe-friendly program 48
Getting ready 48
How to do it… 48
How it works… 51
There's more… 52

Redirecting the result to a file 52
Getting ready 53
How to do it… 53
How it works… 58
There's more… 59

Reading environment variables 59
Getting ready 60
How to do it… 60
How it works… 62

3
Diving Deep into C in Linux

Technical requirements 66
Linking against libraries using
GCC 66
Getting ready 66

How to do it… 67
How it works… 72
There's more… 73

Changing C standards 73
Getting ready 74
How to do it… 74
How it works… 76
There's more… 77

Using system calls – and when
not to use them 78
Getting ready 79
How to do it… 79
How it works… 82
There's more… 83

Getting information about
Linux- and
Unix-specific header files 83
Getting ready 83
How to do it… 84
How it works… 85
There's more… 86

Defining feature test macros 86
Getting ready 87
How to do it… 87
How it works… 91
There's more… 93

Looking at the four stages of
compilation 93
Getting ready 93
How to do it… 94
How it works… 98

Compiling with Make 99
Getting ready 99
How to do it… 100
How it works… 101

Writing a generic Makefile with
GCC options 102
Getting ready 102
How to do it… 102
How it works… 103
There's more… 103

Writing a simple Makefile 103
Getting ready 104
How to do it… 104
How it works… 105

Writing a more advanced
Makefile 106
Getting ready 106
How to do it… 107
How it works… 112

4
Handling Errors in Your Programs

Technical requirements 116
Why error handling is
important in system
programming 116
Getting ready 116
How to do it… 117
How it works… 119

Handling some common errors 120
Getting ready 120
How to do it… 120
How it works… 124

Error handling and errno 124
Getting ready 125
How to do it… 125
How it works… 126

Handling more errno macros 127
Getting ready 127
How to do it… 127
How it works… 129
There's more… 129

Using errno with strerror() 129
Getting ready 130
How to do it… 130
There's more… 132

Using errno with perror() 132
Getting ready 132
How to do it… 132
There's more… 133

Returning an error value 134
Getting ready 134
How to do it… 134
How it works… 135
There's more… 136

5
Working with File I/O and Filesystem Operations

Technical requirements 138
Reading inode information and
learning the filesystem 139
Getting ready 139
How to do it… 139
How it works… 141

Creating soft links and hard
links 142
Getting ready 143
How to do it… 143
How it works… 147
There's more… 148

Creating files and updating the
timestamp 148
Getting ready 148
How to do it… 149
How it works… 151
There's more… 151

Deleting files 151
Getting ready 152
How to do it… 152
How it works… 153

Getting access rights and
ownership 153
Getting ready 154
How to do it… 154
How it works… 156

Setting access rights and
ownership 160
Getting ready 160
How to do it… 160
How it works… 166
There's more… 167

Writing to files with file
descriptors 167
Getting ready 167
How to do it… 167
How it works… 169
There's more… 170

Reading from files with file
descriptors 170
Getting ready 170
How to do it… 171
How it works… 173
There's more… 173

Writing to files with streams 174
Getting ready 174
How to do it… 174
How it works… 176
See also 176

Reading from files with streams 177
Getting ready 177
How to do it… 177
How it works… 178
There's more… 179

Reading and writing binary data
with streams 179
Getting ready 179

How to do it… 179
How it works… 181
There's more… 182

Moving around inside a file with
lseek() 182
Getting ready 182
How to do it… 183
How it works… 185

Moving around inside a file with
fseek() 186
Getting ready 186
How to do it… 186
How it works… 188
There's more… 188

6
Spawning Processes and Using Job Control

Technical requirements 190
Exploring how processes are
created 190
Getting ready 191
How to do it… 191
How it works… 193
There's more… 194

Using job control in Bash 194
Getting ready 194
How to do it… 194
How it works… 196

Controlling and terminating
processes using signals 196
Getting ready 197
How to do it… 197
How it works… 201
See also 202

Replacing the program in a
process with execl() 202
Getting ready 202
How to do it… 203
How it works… 204
See also 204

Forking a process 204
Getting ready 205
How to do it… 205
How it works… 207
There's more… 207

Executing a new program in a
forked process 207
Getting ready 207
How to do it… 208
How it works… 210

Starting a new process with
system() 210
Getting ready 211
How to do it… 211
How it works… 212

Creating a zombie process 212
Getting ready 212
How to do it… 213
How it works… 216
There's more… 217

Learning about what orphans
are 217
Getting ready 217

How to do it… 217
How it works… 219
See also 220

Creating a daemon 220
Getting ready 221
How to do it… 221
How it works… 225
There's more… 226

Implementing a signal handler 226
Getting ready 227
How to do it… 227
How it works… 231
There's more… 232

7
Using systemd to Handle Your Daemons

Technical requirements 234
Getting to know systemd 234
Getting ready 235
How it works... 235
There's more... 236
See also 236

Writing a unit file for a daemon 236
Getting ready 236
How to do it... 237
How it works... 238
There's more... 238
See also 239

Enabling and disabling a service
– and starting and stopping it 239
Getting ready 239
How to do it... 239
How it works... 242

Creating a more modern
daemon for systemd 242
Getting ready 243
How to do it... 243
How it works... 245
See also 245

Making the new daemon a
systemd service 245
Getting ready 246
How to do it... 246
How it works... 247

Reading the journal 247
Getting ready 247
How to do it... 248
How it works... 250
See also 250

 8
Creating Shared Libraries

Technical requirements 252
The what and why of libraries 252
Getting ready 253
How to do it… 253
How it works… 255
There's more… 255

Creating a static library 255
Getting ready 256
How to do it… 256
How it works… 257
See also 257

Using a static library 257
Getting ready 258
How to do it… 258
How it works… 260

Creating a dynamic library 261
Getting ready 261
How to do it… 261

How it works… 262
There's more… 263
See also 263

Installing the dynamic library
on the system 263
Getting ready 264
How to do it… 264
How it works… 265

Using the dynamic library in a
program 266
Getting ready 266
How to do it… 266
How it works… 267
See also 268

Compiling a statically linked
program 268
Getting ready 268
How to do it… 269
How it works… 270

9
Terminal I/O and Changing Terminal Behavior

Technical requirements 272
Viewing terminal information 272
Getting ready 272
How to do it… 273
How it works… 274
See also 274

Changing terminal settings with
stty 275
Getting ready 275
How to do it… 275

How it works… 276

Investigating TTYs and PTYs and
writing to them 276
How to do it… 277
How it works… 279
There's more… 279
See also 279

Checking if it's a TTY 279
Getting ready 280

How to do it… 280
How it works… 282
See also 282

Creating a PTY 282
Getting ready 282
How to do it… 283
How it works… 285
See also 286

Disabling echo for password
prompts 286

Getting ready 286
How to do it… 286
How it works… 288
There's more… 289

Reading the terminal size 289
Getting ready 289
How to do it… 290
How it works… 291
There's more… 291
See also 292

10
Using Different Kinds of IPC

Technical requirements 294
Using signals for IPC – building
a client for the daemon 294
Getting ready 295
How to do it… 295
How it works… 299
See also 299

Communicating with a pipe 300
Getting ready 300
How to do it… 300
How it works… 302
See also 302

FIFO – using it in the shell 302
Getting ready 303
How to do it… 303
How it works… 304
See also 305

FIFO – building the sender 305
Getting ready 305
How to do it… 305
How it works… 309

See also 309

FIFO – building the receiver 309
Getting ready 310
How to do it… 310
How it works… 311
See also 311

Message queues – creating the
sender 311
Getting ready 311
How to do it… 312
How it works… 314
See also 314

Message queues – creating the
receiver 314
Getting ready 314
How to do it… 315
How it works… 317
See also 318

Communicating between
child and parent with shared
memory 319

Getting ready 319
How to do it… 319
How it works… 322
See also 322

Using shared memory between
unrelated processes 323
Getting ready 323
How to do it… 323
How it works… 327
See also 328

Unix socket – creating the
server 328
Getting ready 328
How to do it… 328
How it works… 333
See also 333

Unix socket – creating the client 333
Getting ready 334
How to do it… 334
How it works… 337
See also 337

11
Using Threads in Your Programs

Technical requirements 340
Writing your first threaded
program 340
Getting ready 340
How to do it… 341
How it works… 345
There's more… 345
See also 346

Reading return values from
threads 346
Getting ready 346
How to do it… 347
How it works… 350

Causing a race condition 351
Getting ready 351
How to do it… 351

How it works… 353

Avoiding race conditions with
mutexes 354
Getting ready 355
How to do it… 355
How it works.. 358
See also 359

Making the mutex program
more efficient 359
Getting ready 359
How to do it… 360
How it works… 361

Using condition variables 361
Getting ready 362
How it works… 367
See also 367

12
Debugging Your Programs

Technical requirements 370
Starting GDB 370
Getting ready 370
How to do it… 371
How it works… 375
There's more… 375

Stepping inside a function with
GDB 375
Getting ready 376
How to do it… 376
How it works… 379

Investigating memory with GDB 379
Getting ready 379
How to do it… 379
How it works… 381
There's more... 381
See also 381

Modifying variables during
runtime 381
Getting ready 381
How to do it… 382
How it works… 383

Using GDB on a program that
forks 383

Getting ready 384
How to do it… 384
How it works… 388
There's more… 388

Debugging programs with
multiple threads 388
Getting ready 388
How to do it… 389
How it works… 392
There's more… 392
See also 392

Finding a simple memory leak
with Valgrind 392
Getting started 392
How to do it… 393
How it works… 395
See also 395

Finding buffer overflows with
Valgrind 395

395
396
397
397

Getting ready How
to do it… How it
works… There's

more...

Other Books You May Enjoy
Index

Preface
Linux system programming is all about developing system programs for the Linux
operating system. Linux is the world's most popular open-source operating system and
runs on everything from big servers to small Internet of Things (IoT) devices. Knowing
how to write system programs for Linux will enable you to extend the operating system
and connect it with other programs and systems.

We'll start by learning how to make our programs easy to script and easy to interact with
other programs. When we write system programs for Linux, we should always strive to
make them small and do one thing only—and do it well. This is one of the key concepts in
Linux: to create small programs that can exchange data with each other in simple ways.

As we move ahead, we'll take a deep dive into C and look at how the compiler works, what
the linker does, how to write Makefiles, and much more.

Then, we'll learn all about forking and daemons. We'll also create our own daemon. We
will then put our daemon under systemd's control. This will enable us to start, stop, and
restart the daemon using built-in Linux tools.

We will also learn how to make our processes exchange information using different kinds
of Inter-Process Communication (IPC). We'll also take a look at how to write threaded
programs.

At the end of this book, we'll cover how to debug our programs using the GNU Debugger
(GDB) and Valgrind.

By the end of this book, you'll be able to write a wide variety of system programs for
Linux—everything from filters to daemons.

Who this book is for
This book is intended for anyone who wants to develop system programs for Linux and
wants to have a deep understanding of the Linux system. Anyone facing any issues related
to a particular part of Linux system programming and looking for some specific recipes
or solutions can take advantage of this book.

xvi Preface

What this book covers
Chapter 1, Getting the Necessary Tools and Writing Our First Linux Programs, shows you
how to install the tools we need throughout this book. We also write our first program in
this chapter.

Chapter 2, Making Your Programs Easy to Script, covers how—and why—we should make
our programs easy to script and easy to be used by other programs on the system.

Chapter 3, Diving Deep into C in Linux, takes us on a journey into the inner workings
of C programming in Linux. We learn how to use system calls, how the compiler works,
how to use the Make tool, how to specify different C standards, and so on.

Chapter 4, Handling Errors in Your Programs, teaches us how to handle errors gracefully.

Chapter 5, Working with File I/O and Filesystem Operations, covers how to read and write
to files, using both file descriptors and streams. This chapter also covers how to create and
delete files and read file permissions using system calls.

Chapter 6, Spawning Processes and Using Job Control, covers how forking works, how
to create a daemon, what parent processes are, and how to send jobs to the background
and foreground.

Chapter 7, Using systemd to Handle Your Daemons, shows us how to put our daemon
from the previous chapter under the control of systemd. This chapter also teaches us
how to write logs to systemd's journal and how to read those logs.

Chapter 8, Creating Shared Libraries, teaches us what shared libraries are, why they're
important, and how to make our own shared libraries.

Chapter 9, Terminal I/O and Changing Terminal Behavior, covers how to modify the
terminal in different ways—for example, how to disable echoing for a password prompt.

Chapter 10, Using Different Kinds of IPC, is all about IPC—that is, how to make processes
communicate with each other on the system. This chapter covers FIFO, Unix sockets,
message queues, pipes, and shared memory.

Chapter 11, Using Threads in Your Programs, explains what threads are, how to write
threaded programs, how to avoid race conditions, and how to optimize threaded
programs.

Chapter 12, Debugging Your Programs, covers debugging using GDB and Valgrind.

Preface xvii

To get the most out of this book
To get the most out of this book, you'll need a basic understanding of Linux, some basic
commands, be familiar with moving around the filesystem, and installing new programs.
It would help if you also have a basic understanding of programming, preferably the C
language.

You will need a Linux computer with root access—either via su or sudo—to complete all
the recipes. You'll also need to install the GCC compiler, the Make tool, GDB, Valgrind,
and some other smaller tools. The particular Linux distribution doesn't matter that much.
There are installation instructions in the book for these programs for Debian, Ubuntu,
CentOS, Fedora, and Red Hat.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Linux-System-Programming-Techniques.
In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/39ovGd6.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781789951288_ColorImages.pdf.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques
https://github.com/PacktPublishing/Linux-System-Programming-Techniques
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789951288_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789951288_ColorImages.pdf

xviii Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, directories, filenames, file extensions,
pathnames, dummy URLs, user input, and so on. Here is an example: "Copy the
libprime.so.1 file to /usr/local/lib."

A block of code is set as follows:

#include <stdio.h>
int main(void)
{
 printf("Hello, world!\n");
 return 0;
}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

#include <stdio.h>
int main(void)
{
 printf("Hello, world!\n");
 return 0;
}

Any command-line input or output is written as follows:

$> mkdir cube
$> cd cube

In numbered listings, command-line input is set in bold. The $> characters indicate the
prompt and aren't something you should write.

1. This is an example of a numbered listing:

$> ./a.out
Hello, world!

Preface xix

Long command lines that don't fit on a single line are broken up using the \ character.
This is the same character as you use to break long lines in the Linux shell. The line under
it has a > character to indicate that the line is a continuation of the previous line. The >
character is not something you should write; the Linux shell will automatically put this
character on a new line where the last line was broken up with a \ character. For example:

$> ./exist.sh /asdf &> /dev/null; \
> if [$? -eq 3]; then echo "That doesn't exist"; fi
That doesn't exist

Key combinations are written in italics. Here is an example: "Press Ctrl + C to exit the
program."

Bold: Indicates a new term, an important word, or words that you see onscreen.

Tips or important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready,
How to do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

xx Preface

There's more…
This section consists of additional information about the recipe in order to make you
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

1
Getting the

Necessary Tools
and Writing

Our First Linux
Programs

In this chapter, we'll install the necessary tools on our Linux system, such as GCC, GNU
Make, GDB, and Valgrind. We'll also try them out and see how they work. Knowing how
to use these tools is the key to being a fast and efficient developer. We'll then write our
first programs—Linux style. By understanding the different parts of a C program, you
can easily interact with the rest of the system in a best practice manner. After that, we'll
learn how to use the built-in manual pages (man pages for short) to look up commands,
libraries, and system calls—a skill that we'll need a lot throughout this book. Knowing
how to look up things in the relevant built-in manual page is often much faster—and more
precise—than searching the internet for answers.

2 Getting the Necessary Tools and Writing Our First Linux Programs

In this chapter, we are going to cover the following recipes:

• Installing GCC and GNU Make

• Installing GDB and Valgrind

• Writing a simple C program for Linux

• Writing a program that parses command-line options

• Looking up information in the built-in manual pages

• Searching the manual for information

Let's get started!

Technical requirements
For this chapter, you will need a computer with Linux already set up. It doesn't matter
if it's a local machine or a remote machine. The particular distribution you use doesn't
matter much either. We'll look at how to install the necessary programs in Debian-based
distributions, as well as Fedora-based distributions. Most of the major Linux distributions
are either Debian-based or Fedora-based.

You'll also be using a text editor a lot. Which one you choose is a matter of taste. The two
most common are vi and nano, and they are available pretty much everywhere. We won't
cover how to use a text editor in this book, though.

The C files for this chapter can be downloaded from https://github.com/
PacktPublishing/Linux-System-Programming-Techniques/tree/
master/ch1. The filenames on GitHub correspond to the filenames in this book.

You can also clone the entire repository to your computer. The files for this chapter are in
the ch1 Directory. You clone the repository with the following command:

$> git clone https://github.com/PacktPublishing/Linux-System-
Programming-Techniques.git

If you don't have Git installed on your computer, you will need to follow some installation
instructions, depending on your distribution.

Check out the following link to see the Code in Action video:
https://bit.ly/3wdEoV6

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch1
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch1
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch1
https://bit.ly/3wdEoV6

Installing GCC and GNU Make 3

Installing Git to download the code repository
Installing Git is only necessary if you want to clone (download) the entire code repository
for this book to your computer. The steps listed here assume that your user has sudo
privileges. If this isn't the case, you can run su first to switch to the root user and skip
sudo (assuming you know the root password).

Debian-based distributions
These instructions work for most Debian-based distributions, such as Ubuntu:

1. First, update the repository cache:

$> sudo apt update

2. Then, install Git using apt:

$> sudo apt install git

Fedora-based distributions
This instruction work for all newer Fedora-based distributions, such as CentOS and Red
Hat (if you are using an old version, you might need to replace dnf with yum):

• Install the Git package using dnf:

$> sudo dnf install git

Installing GCC and GNU Make
In this section, we will install the essential tools that we'll need throughout this book;
namely, GCC, the compiler. It's the compiler that turns the C source code into a binary
program that we can run on the system. All the C code that we write will need to be
compiled.

We'll also install GNU Make, a tool that we'll be using later on to automate how projects
containing more than one source file are compiled.

Getting ready
Since we are installing software on the system, we'll need to be using either the root
user or a user with sudo privileges. I will be using sudo in this recipe, but if you are
on a system without sudo, you can switch to the root user with su before entering the
commands (and then leave out sudo).

4 Getting the Necessary Tools and Writing Our First Linux Programs

How to do it…
We will be installing what is called a meta-package or a group, a package that contains
a collection of other packages. This meta-package includes both GCC, GNU Make,
several manual pages, and other programs and libraries, which are nice to have when
we're developing.

Debian-based systems
These steps work for all Debian-based systems, such as Debian, Ubuntu, and Linux Mint:

1. Update the repository cache to get the latest version in the next step:

$> sudo apt-get update

2. Install the build-essential package, and answer y when prompted:

$> sudo apt-get install build-essential

Fedora-based systems
This works for all Fedora-based systems, such as Fedora, CentOS, and Red Hat:

• Install a software group called Development Tools:

$> sudo dnf group install 'Development Tools'

Verify the installation (both Debian and Fedora)
These steps are the same for both Debian and Fedora:

1. Verify the installation by listing the versions installed. Note that the exact versions
will differ from system to system; this is normal:

$> gcc --version
gcc (Debian 8.3.0-6) 8.3.0
Copyright (C) 2018 Free Software Foundation, Inc.
This is free software; see the source for copying
conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
$> make --version
GNU Make 4.2.1
Built for x86_64-pc-linux-gnu
Copyright (C) 1988-2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later http://gnu.

Installing GCC and GNU Make 5

org/licenses/gpl.html
This is free software: you are free to change and
redistribute it. There is NO WARRANTY, to the extent
permitted by law.

2. Now, it's time to try out the GCC compiler by compiling a minimal C program.
Please type the source code into an editor and save it as first-example.c.
The program will print the text "Hello, world!" on the Terminal:

#include <stdio.h>
int main(void)
{
 printf("Hello, world!\n");
 return 0;
}

3. Now, compile it using GCC. This command produces a file called a.out:

$> gcc first-example.c

4. Now, let's try to run the program. To run a program in Linux that isn't in the usual
directories for binaries (/bin, /sbin, /usr/bin, and so on), you need to type
the special./ sequence before the filename. This executes the program from the
current path:

$> ./a.out
Hello, world!

5. Now, recompile the program. This time, we will specify a name for the program
with the -o option (-o for output). This time, the program file will have the name
first-example:

$> gcc first-example.c -o first-example

6. Let's rerun the program, this time with the new name, first-example:

$> ./first-example
Hello world!

7. Now, let's try to compile it using Make instead:

$> rm first-example
$> make first-example
cc first-example.c -o first-example

6 Getting the Necessary Tools and Writing Our First Linux Programs

8. Finally, rerun the program:

$> ./first-example
Hello, world!

How it works…
Installing software on the system always requires root privileges, either via a regular root
user or via sudo. Ubuntu, for example, uses sudo and has the regular root user disabled.
Debian, on the other hand, doesn't use sudo at all in the default installation. To use it,
you have to set it up yourself.

Debian and Ubuntu use the apt package manager to install software on the system. To get
the latest version that is available in the repository, you need to update the cache. That's
why we ran the apt-get update command before installing the packages.

Fedora-based systems use the Red Hat Package Manager (RPM) system to install the
software. The program we use to install the package is dnf on newer versions. If you are
using an older version, you might need to replace dnf with yum.

In both cases, we installed a group of packages that contain the utilities, manual pages,
and compilers that we'll need throughout this book.

After the installation was complete, before trying to compile anything, we listed the GCC
version and Make version.

Finally, we compiled a straightforward C program, first using GCC directly and then using
Make. The first example with GCC produced a program with the name a.out, which
stands for assembler output. That name has a long history and goes back to the first edition
of Unix in 1971. Even though the file format, a.out, isn't used anymore, the name still
lives on today.

Then, we specified a program name with the -o option, where -o stands for output.
This produces a program with a name of our choosing. We gave the program the name
first-example.

When we used Make, we didn't need to type in the filename of the source code. We only
wrote the name we wanted for the binary program produced by the compiler. The Make
program is smart enough to figure out that the source code has the same filename but that
it ends with .c.

When we executed the program, we ran it as ./first-example. The ./ sequence
tells the shell that we want to run the program from the current directory. If we leave
out ./, it won't execute. By default, the shell only executes programs that are in the
$PATH variable—usually /bin, /usr/bin, /sbin, and /usr/sbin.

Installing GDB and Valgrind 7

Installing GDB and Valgrind
GDB and Valgrind are two useful debugging tools that we'll use later on in this book.

GDB is the GNU debugger, a tool that we can use to step through a program and see
what's happening inside it. We can watch over variables, see how they change during
runtime, set breakpoints where we want the program to pause, and even change variables.
Bugs are inevitable, but with GDB, we can find these bugs.

Valgrind is also a tool we can use to find bugs, though it was made explicitly for finding
memory leaks. Memory leaks can be challenging to find without a program such as
Valgrind. Your program might work as expected for weeks, but then suddenly, things
may start to go wrong. That's probably a memory leak.

Knowing how to use these tools will make you a better developer and your programs
more secure.

Getting ready
Since we will be installing software here as well, we'll need to execute these commands
with root privileges. If our system has a traditional root user, we can use that by switching
to root with su. If we are on a system with sudo, and our regular user has administrative
rights, you can use sudo to execute the commands instead. Here, I'll be using sudo.

How to do it…
If you are using Debian or Ubuntu, you'll need to use the apt-get tool. If you, on the
other hand, are using a Fedora-based distribution, you'll need to use the dnf tool.

Debian-based systems
These steps are for Debian, Ubuntu, and Linux Mint:

1. Update the repository cache before installing the packages:

$> sudo apt-get update

2. Install both GDB and Valgrind using apt-get. Answer y when prompted:

$> sudo apt-get install gdb valgrind

8 Getting the Necessary Tools and Writing Our First Linux Programs

Fedora-based systems
This step is for all Fedora-based systems, such as CentOS and Red Hat. If you are using
an older system, you might need to replace dnf with yum:

• Install both GDB and Valgrind using dnf. Answer y when prompted:

$> sudo dnf install gdb valgrind

Verifying the installation
This step is the same for both Debian-based and Fedora-based systems:

• Verify the installation of GDB and Valgrind:

$> gdb --version
GNU gdb (Debian 8.2.1-2+b3) 8.2.1
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later http://gnu.
org/licenses/gpl.html
This is free software: you are free to change and
redistribute it.
There is NO WARRANTY, to the extent permitted by law.
$> valgrind --version
valgrind-3.14.0

How it works…
GDB and Valgrind are two debugging tools that are not included in the group packages
we installed in the previous recipe. That's why we need to install them as separate steps.
The tool for installing software on Debian-based distributions is apt-get, while for
Fedora, it's dnf. Since we are installing software on the system, we need to execute these
commands with root privileges. That's why we needed to use sudo. Remember that if
your user—or system—doesn't use sudo, you can use su to become root.

Finally, we verified the installations by listing the versions that were installed. The exact
version can differ from system to system, though.

The reason why the versions differ is that every Linux distribution has its own software
repository, and every Linux distribution maintains its own software versions as "latest".
This means that the latest version of a program in a particular Linux distribution isn't
necessarily the newest version of the program.

Writing a simple C program for Linux 9

Writing a simple C program for Linux
In this recipe, we will be building a small C program that sums up the values that are
passed to the program as arguments. The C program will contain some essential elements
we need to know about when programming for Linux. These elements are return values,
arguments, and help texts. As we progress through this book, these elements will show up,
time and time again, along with some new ones that we'll learn about along the way.

Mastering these elements is the first step to writing great software for Linux.

Getting ready
The only thing you'll need for this recipe is the C source code, sum.c, and the GCC
compiler. You can choose to type the code in yourself or download it from GitHub.
Typing it in yourself gives you the benefit of learning how to write it.

How to do it…
Follow these steps to write your first program in Linux:

1. Open a text editor and type in the following code, naming the file sum.c. The
program will sum up all the numbers that are entered as arguments into the
program. The arguments to the program are contained in the argv array. To
convert the arguments into integers, we can use the atoi() function:

#include <stdio.h>
#include <stdlib.h>
void printhelp(char progname[]);

int main(int argc, char *argv[])
{
 int i;
 int sum = 0;

 /* Simple sanity check */
 if (argc == 1)
 {
 printhelp(argv[0]);
 return 1;
 }

 for (i=1; i<argc; i++)
 {

10 Getting the Necessary Tools and Writing Our First Linux Programs

 sum = sum + atoi(argv[i]);
 }
 printf("Total sum: %i\n", sum);
 return 0;
}

void printhelp(char progname[])
{
 printf("%s integer ...\n", progname);
 printf("This program takes any number of "
 "integer values and sums them up\n");
}

2. Now, it's time to compile the source code using GCC:

$> gcc sum.c -o sum

3. Run the program. Don't forget./ before the filename:

$> ./sum
./sum integer …
This program takes any number of integer values and sums
them up

4. Now, let's check the exit code from the program before we do anything else:

$> echo $?
1

5. Let's rerun the program, this time with some integers that the program can sum
up for us:

$> ./sum 45 55 12
Total sum: 112

6. Once again, we check the exit code from the program:

$> echo $?
0

Writing a simple C program for Linux 11

How it works…
Let's begin by exploring the basics of the code so that we understand what the different
parts do and why they matter.

The source code
First of all, we've included a header file called stdio.h. This file is needed for
printf(). The name stdio stands for standard input-output. Since printf() prints
characters on the screen, it's classed as a stdio function.

The other header file we included is stdlib.h, which stands for standard library. The
standard library contains a long range of functions, including the atoi() function,
which we can use to convert strings or characters into integers.

After that, we have a function prototype for our function called printhelp().
There is nothing particular to say about this; it's good C practice to keep the function
bodies below main(), and the function prototypes at the very beginning. The function
prototype tells the rest of the program which argument the function takes, as well as what
type of value it returns.

Then, we declared the main() function. To be able to parse arguments to the program,
which is common in Linux, we declare it as int main(int argc, char *argv[]).

The two variables, argc and argv, have special meanings. The first, argc, is an integer
and contains the number of arguments that were passed to the program. It will always be
at least 1, even if no arguments are passed to the program; the very first argument is the
name of the program itself.

The next variable—or array, to be more precise—is argv, which contains all the
arguments that were passed to the program at the command line. As we just mentioned,
the very first argument, argv[0], holds the name of the program—that is, the command
line by which the program was executed. If the program was executed as ./sum, then
argv[0] contains the string ./sum. If the program was executed as /home/jack/sum,
then argv[0] contains the string /home/jack/sum.

It is this argument—or rather the program name—that we pass to the printhelp()
function so that it prints the name of the program, along with the help text. It's good
practice to do this is Linux and Unix environments.

12 Getting the Necessary Tools and Writing Our First Linux Programs

After that, we performed a simple sanity check. This checks if the number of arguments
given is precisely one; if it is, then the user hasn't typed any arguments into the program,
which is considered an error here. Therefore, we print an error message to the screen
using the printhelp() function that we built. Directly after that, we return from
main() with the code 1, indicating to the shell and other programs that something went
wrong. Anytime we return from main() using return, that code is sent to the shell
and the program exits. These codes have special meanings, which we'll explore in more
depth later in this book. Simply put, 0 indicates that everything is alright, while anything
other than 0 is an error code. Using return values in Linux is a must; that's how other
programs—and the shell—get notified of how the execution went.

A bit further down, we have the for() loop. Here, we used the number of arguments
from argc to walk through the list of arguments. We started at 1 with i=1. We can't
begin with 0 here, since index 0 in the argv[] array is the program name. Index 1 is the
first argument; that is, the integer that we can pass to the program.

Inside the for() loop, we have sum = sum + atoi(argv[i]);. The important part
we'll focus on here is atoi(argv[i]). All the arguments that we give to the program
via the command line are passed on as strings. To be able to do calculations on them, we
need to convert them into integers, which the atoi() function does for us. The name
atoi() stands for to integer.

Once the result has been printed on the screen with printf(), we return from main
with 0, indicating everything is okay. When we return from main(), we return from the
entire process to the shell; in other words, the parent process.

Execution and return values
When we are executing programs outside the directories mentioned in the $PATH
environment variable, we need to prepend the name of the file with ./.

When the program finishes, it gives the return value to the shell, which, in turn, saves it
to a variable called ?. When another program ends, the variable is overwritten by the
latest return value from that program. We print the value of the environment variable
with echo, a small utility that prints text and variables on the screen directly from the
shell. To print environment variables, we need to put a $ sign in front of the variable
name, such as $?.

Writing a program that parses command-line options 13

There's more…
There are three other similar functions to atoi(), called atol(), atoll(), and
atof(). The following are short descriptions for them:

• atoi() converts a string into an integer.

• atol() converts a string into a long integer.

• atoll() converts a string into a long long integer.

• atof() converts a string into a floating-point number (of type double).

If you want to explore the return values of other programs, you can execute programs such
as ls with a directory that exists and print the variable with echo $?. Then, you can try
to list a directory with ls that doesn't exist and print the value of $? again.

Tip
We've touched on the subject of the $PATH environment variable a couple of
times in this chapter. If you want to know what that variable contains, you can
print it with echo $PATH. If you want to add a new directory to the $PATH
variable temporarily, let's say /home/jack/bin, you can execute the
PATH=${PATH}:/home/jack/bin command.

Writing a program that parses command-line
options
In this recipe, we will create a more advanced program—one that parses
command-line options. In the previous recipe, we wrote a program that parsed
arguments using argc and argv. We will use those variables here as well, but for
options. Options are the hyphenated letters, such as -a or -v.

This program is similar to the previous one, with the difference that this program can both
this; -s for "sum" and -m for "multiply."

Almost all programs in Linux take different options. Knowing how to parse options to the
programs you create is a must; that is how the user changes the behavior of your program.

Getting ready
All you need is a text editor, the GCC compiler, and Make.

14 Getting the Necessary Tools and Writing Our First Linux Programs

How to do it…
Since this source code will be a bit longer, it will be broken up into three pieces. The
entire code goes into the same file, though. The complete program can be downloaded
from GitHub at https://github.com/PacktPublishing/Linux-System-
Programming-Techniques/blob/master/ch1/new-sum.c. Let's get started:

1. Open a text editor, type in the following code, and name it new-sum.c. This first
bit is pretty similar to the previous recipe, except for some extra variables and a
macro at the top:

#define _XOPEN_SOURCE 500
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
void printhelp(char progname[]);

int main(int argc, char *argv[])
{
 int i, opt, sum;

 /* Simple sanity check */
 if (argc == 1)
 {
 printhelp(argv[0]);
 return 1;
 }

2. Now, continue typing in the same file. This part is for actually parsing the
command-line options, the calculations, and printing the result. We parse the
options using getopt() and a switch statement. Notice that this time, we can
also multiply the numbers:

 /* Parse command-line options */
 while ((opt = getopt(argc, argv, "smh")) != -1)
 {
 switch (opt)
 {
 case 's': /* sum the integers */
 sum = 0;
 for (i=2; i<argc; i++)
 sum = sum + atoi(argv[i]);

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch1/new-sum.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch1/new-sum.c

Writing a program that parses command-line options 15

 break;
 case 'm': /* multiply the integers */
 sum = 1;
 for (i=2; i<argc; i++)
 sum = sum * atoi(argv[i]);
 break;
 case 'h': /* -h for help */
 printhelp(argv[0]);
 return 0;
 default: /* in case of invalid options*/
 printhelp(argv[0]);
 return 1;
 }
 }
 printf("Total: %i\n", sum);
 return 0;
}

3. Finally, continuing in the same file, add the printhelp() function at the bottom.
This function prints a help message, sometimes called a usage message. This
message is displayed either when the user uses the -h option or some form of error
occurs, for example, when no arguments are given:

void printhelp(char progname[])
{
 printf("%s [-s] [-m] integer ...\n", progname);
 printf("-s sums all the integers\n"
 "-m multiplies all the integers\n"
 "This program takes any number of integer "
 "values and either add or multiply them.\n"
 "For example: %s -m 5 5 5\n", progname);
}

4. Save and close the file.

5. Now, it's time to compile the program. This time, we'll try using Make instead:

$> make new-sum
cc new-sum.c -o new-sum

6. Test the program:

$> ./new-sum
./new-sum [-s] [-m] integer ...

16 Getting the Necessary Tools and Writing Our First Linux Programs

-s sums all the integers
-m multiplies all the integers
This program takes any number of integer values and
either add or multiply them.
For example: ./new-sum -m 5 5 5
$> ./new-sum -s 5 5 5
Total: 15
$> ./new-sum -m 5 5 5
Total: 125

How it works…
The first bit is pretty similar to the previous recipe, except we have some more variables
we declare. We also included another header file, unistd.h, which is required for the
getopt() function, which we use to parse options to the program.

There is also another new weird-looking part; that is, the first line:

#define _XOPEN_SOURCE 500

We will cover this in great detail later on in this book. But for now, just know that it's
a feature macro we use to adhere to the XOPEN standard. It isn't necessary to include
this line; it will still work under Linux. But if we were to compile the program and display
all warning messages (something we will learn how to do later on) and set a specific C
standard, we would see a warning about the implicit declaration of function getopt if we
didn't include it. It's good practice to include it, even if it works without it. And how do
I know this, you might ask? It's in the manual page of getopt(), something we will
cover in detail in the next recipe.

The getopt() function
The next step in this recipe—step two—is the exciting part. It is here that we parse the
options using the getopt() function—which stands for get options.

The way to use getopt() is to loop through the arguments in a while loop and using
a switch statement to catch the options. Let's take a closer look at the while loop and
break it down into smaller pieces:

while ((opt = getopt(argc, argv, "smh")) != -1)

The getopt() function returns the actual letter of the option it parses. This means that
the first bit, opt = getopt, saves the option to the opt variable, but only the actual
letter. So, for example, -h is saved as h.

Writing a program that parses command-line options 17

Then, we have the arguments that we must pass to the getopt() function, which is
argc (the argument count), argv (the actual arguments), and, finally, the options that
should be accepted (here smh, which is translated into -s, -m, and -h).

The last bit, != -1, is for the while loop. When getopt() has no more options to
return, it returns -1, indicating that it's done parsing options. That's when the while loop
should end.

Inside the while loop
Inside the loop, we use a switch statement to perform specific actions for each option.
Under each case, we perform the calculation and break out of that case when we're
done. Just as in the previous recipe, we use atoi() to convert the argument strings into
integers.

Under the h case (the -h option, for help), we print the help message and return with
code 0. We asked for help, and hence it isn't an error. But below that, we have the default
case, a case that is caught if no other option matches; that is, the user typed in an option
that isn't accepted. This is indeed an error, so here, we return with code 1 instead,
indicating an error.

The help message function
A help message should show the various options a program takes, its arguments, and
a simple usage example.

With printf(), we can split long lines into multiple smaller lines in our code, just like
we did here. The unique character sequence, \n, is a newline character. The line will break
wherever this character is placed.

Compiling and running the program
In this recipe, we compiled the program using Make instead. The Make utility, in turn,
uses cc, which is just a symbolic link to gcc. Later in this book, we'll learn how to change
the behavior of Make by writing rules in Makefiles.

We then tried the program. First, we ran it without any options or arguments, causing the
program to exit with the help text (and a return value of 1).

We then tried two options: -s to summarize all the integers and -m to multiply all the
integers.

18 Getting the Necessary Tools and Writing Our First Linux Programs

Looking up information in the built-in manual
page
In this recipe, we will learn how to look up information in the built-in manual pages. We
will learn how we can look up everything from commands, system calls, and standard
library functions. The manual pages are mighty once you get used to using them. Instead
of searching the internet for answers, it's often quicker—and more accurate—to take
a look in the manual.

Getting ready
Some of the manual pages (library calls and system calls) are installed as part of the build-
essential package for Debian and Ubuntu. In Fedora-based distributions such as CentOS,
these are often already installed in the base system as part of a package called man pages.
If you are missing some manual pages, make sure you have installed these packages. Take
a look at the very first recipe in this chapter, on how to install packages, to learn more.

If you are on a minimal or slim installation, the man command might not be installed. If
that is the case, you need to install two packages with the distribution package manager.
The package names are man-db for the man command (same on nearly all distributions)
and manpages (in Debian-based systems), or man-pages (in Fedora-based systems) for the
actual manual pages. On Debian-based systems, you also need to install the build-essential
package.

How to do it…
Let's explore the manual pages, step by step, as follows:

1. Type man ls into a console. You'll see the manual page for the ls command.

2. Scroll up and down the manual page, one line at a time, using either the arrow keys
or the Enter key.

3. Scroll down a full page (window) at a time by pressing the spacebar.

4. Scroll up a full page by pressing the letter b. Keep pressing b until you reach the top.

5. Now, press / to open a search prompt.

6. Type human-readable into the search prompt and press Enter. The manual page
is now automatically scrolled forward to the first occurrence of that word.

7. You can now press n to jump to the next occurrence of the word – if there is one.

8. Quit the manual by pressing q.

Looking up information in the built-in manual page 19

Investigating the different sections
Sometimes, there are multiple manual pages with the same name but in different sections.
Here, we will investigate those sections and learn how to specify which section we are
interested in:

1. Type man printf into the command prompt. What you will see is the manual
page for the printf command, not the C function of the same name.

2. Quit the manual by pressing q.

3. Now, type man 3 printf into the console. This is the manual page of the
printf() C function. 3 indicates section 3 of the manual. Look at the header
of the manual page, and you'll see which section you are in right now. It should
say PRINTF(3) at this very moment.

4. Let's list all the sections. Quit the manual page you are looking at and type man
man into the console. Scroll down a bit until you find the table that lists all the
sections. There, you will also find a short description of each section. As you can
see, section 3 is for library calls, which is what printf() is.

5. Look up the manual for the unlink() system call by typing man 2 unlink into
the console.

6. Quit the manual page and type man unlink into the console. This time, you will
see the manual for the unlink command.

How it works…
The manual always starts at section 1 and opens the first manual it finds. That's why you
are getting the printf and unlink commands, instead of the C function and system
call when we leave out the section number. It's always a good idea to take a look at the
header of the manual page that opens up to verify that you are reading the correct one.

There's more…
Remember from the previous recipe that I "just knew" that getopt() returns -1 when
there are no more options to parse? I didn't; it's all in the manual. Open up the manual
for getopt() by typing in man 3 getopt. Scroll down to the Return value header.
There, you can read all about what getopt() returns. Almost all manual pages that
cover library functions and system calls have the following headings: Name, Synopsis,
Description, Return value, Environment, Attributes, Conforming to, Notes, Example,
and See also.

20 Getting the Necessary Tools and Writing Our First Linux Programs

The Synopsis heading lists the header files we need to include for the particular function.
This is really useful since we can't remember every function and its corresponding
header file.

Tip
There is a lot of useful information in the manual about the manual
itself – man man – so at least skim through it. We will be using the
manual pages a lot to look up information about library functions and
system calls in this book.

Searching the manual for information
If we don't know the exact name of a particular command, function, or system call, we can
search all the manuals in the system for the correct one. In this recipe, we will learn how
to use the apropos command to search the manual pages.

Getting ready
The same requirements apply here that applied for the previous recipe.

How to do it…
Let's search the manual for different words, narrowing our result for each step:

1. Type in apropos directory. A long list of manual pages will present itself.
After each manual, there is a number inside parentheses. This number is the section
that the manual page is located in.

2. To narrow the search down to only section 3 (library calls), type in apropos -s
3 directory.

3. Let's narrow down the search ever further. Type in apropos -s 3 -a remove
directory. The -a option stands for and.

Searching the manual for information 21

How it works…
The apropos command searches the manual pages descriptions and keywords. When
we narrowed down the search with apropos -s 3 -a remove directory, the
-a option stands for and, indicating that both remove and directory must be present. If we
leave out the -a option, it searches for both keywords instead, regardless of whether one
or both of them is present.

There is more information about how apropos works in the manual page for it
(man apropos).

There's more…
If we just want to know what a particular command or function does, we can look up
a short description of it using the whatis command, like so:

$> whatis getopt
getopt (1) - parse command options (enhanced)
getopt (3) - Parse command-line options
$> whatis creat
creat (2) - open and possibly create a file
$> whatis opendir
opendir (3) - open a directory

2
Making Your

Programs Easy to
Script

Linux and other Unix systems have strong scripting support. The whole idea of Unix,
from the very beginning, was to make a system easy to develop on. One of these features
is to take the output of one program and make it the input of another program—hence
building new tools with existing programs. We should always keep this in mind when
creating programs for Linux. The Unix philosophy is to make small programs that do one
thing only—and do it well. By having many small programs that do only one thing, we
can freely choose how to combine them. And by combining small programs, we can write
shell scripts—a common task in Unix and Linux.

This chapter will teach us how to make programs that are easy to script and easy to
interact with other programs. That way, other people will find them much more useful.
It's even likely they will find new ways of using our programs that we haven't even thought
of, making the programs more popular and easier to use.

In this chapter, we will cover the following recipes:

• Return values and how to read them

• Exiting a program with a relevant return value

24 Making Your Programs Easy to Script

• Redirecting stdin, stdout, and stderr

• Connecting programs using pipes

• Writing to stdout and stderr

• Reading from stdin

• Writing a pipe-friendly program

• Redirecting the result to file

• Reading environment variables

Let's get started!

Technical requirements
All you need for this chapter is a Linux computer with GCC and Make installed,
preferably via one of the meta-packages or group installs mentioned in Chapter 1, Getting
the Necessary Tools and Writing Our First Linux Programs. It's also preferable if you use
the Bash shell for optimal compatibility. Most of the examples will work with other shells
as well, but there's no guarantee that everything will work the same way on every possible
shell out there. You can check which shell you are using by running echo $SHELL in
your terminal. If you are using Bash, it will say /bin/bash.

You can download all the code for this chapter from https://github.com/
PacktPublishing/Linux-System-Programming-Techniques/tree/
master/ch2.

Check out the following link to see the Code in Action video:
https://bit.ly/3u5VItw

Return values and how to read them
Return values are a big deal in Linux and other Unix and Unix-like systems. They are
a big deal in C programming as well. Most functions in C return some value with
return. It's that same return statement we use to return a value from main() to
the shell. The original Unix operating system and the C programming language came
around at the same time and from the same place. As soon as the C language was
completed in the early 1970s, Unix was rewritten in C. Previously, it was written in
assembler only. And hence, C and Unix fit together tightly.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch2
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch2
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch2
https://bit.ly/3u5VItw

Return values and how to read them 25

The reason why return values are so crucial in Linux is that we can build shell scripts.
Those shell scripts use other programs and, hopefully, our programs, as its parts. For the
shell script to be able to check whether a program has succeeded or not, it reads the return
value of that program.

In this recipe, we will write a program that tells the user if a file or directory exists or not.

Getting ready
It's recommended that you use Bash for this recipe. I can't guarantee compatibility with
other shells.

How to do it…
In this recipe, we will write a small shell script that demonstrates the purpose of the
return values, how to read them, and how to interpret them. Let's get started:

1. Before we write the code, we must investigate what return values the program uses
that we will use in our script. Execute the following commands, and make a note
of the return values we get. The test command is a small utility that tests certain
conditions. In this example, we'll use it to determine if a file or directory exists.
The -e option stands for exists. The test command doesn't give us any output;
it just exits with a return value:

$> test -e /
$> echo $?
0
$> test -e /asdfasdf
$> echo $?
1

2. Now that we know what return values the test program gives us (0 when the
file or directory exists, otherwise 1), we can move on and write our script. Write
the following code in a file and save it as exist.sh. You can also download
it from https://github.com/PacktPublishing/Linux-System-
Programming-Techniques/blob/master/ch2/exist.sh. The shell script
uses the test command to determine whether the specified file or directory exists:

#!/bin/bash

Check if the user supplied exactly one argument
if ["$#" -ne 1]; then
 echo "You must supply exactly one argument."

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/exist.sh
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/exist.sh

26 Making Your Programs Easy to Script

 echo "Example: $0 /etc"
 exit 1 # Return with value 1
fi

Check if the file/directory exists
test -e "$1" # Perform the actual test
if ["$?" -eq 0]; then
 echo "File or directory exists"
elif ["$?" -eq 1]; then
 echo "File or directory does not exist"
 exit 3 # Return with a special code so other
 # programs can use the value to see if a
 # file dosen't exist
else
 echo "Unknown return value from test..."
 exit 1 # Unknown error occured, so exit with 1
fi
exit 0 # If the file or directory exists, we exit
 # with

3. Then, you need to make it executable with the following command:

$> chmod +x exist.sh

4. Now, it's time to try out our script. We try it with directories that do exist and with
those that don't. We also check the exit code after each run:

$> ./exist.sh
You must supply exactly one argument.
Example: ./exist.sh /etc
$> echo $?
1
$> ./exist.sh /etc
File or directory exists
$> echo $?
0
$> ./exist.sh /asdfasdf
File or directory does not exist
$> echo $?
3

Return values and how to read them 27

5. Now that we know that it's working and leaving the correct exit codes, we can write
one-liners to use our script together with, for example, echo to print a text stating
whether the file or directory exists:

$> ./exist.sh / && echo "Nice, that one exists"
File or directory exists
Nice, that one exists
$> ./exist.sh /asdf && echo "Nice, that one exists"
File or directory does not exist

6. We can also write a more complicated one-liner—one that takes advantage of the
unique error code 3 we assigned to "file not found" in our script. Note that you
shouldn't type > at the start of the second line. This character is automatically
inserted by the shell when you end the first line with a backslash to indicate the
continuation of a long line:

$> ./exist.sh /asdf &> /dev/null; \
> if [$? -eq 3]; then echo "That doesn't exist"; fi
That doesn't exist

How it works…
The test program is a small utility designed to test files and directories, compare
values, and so on. In our case, we used it to test if the specified file or directory exists
(-e for exist).

The test program doesn't print anything; it just exits in silence. It does, however, leave
a return value. It is that return value that we check with the $? variable. It's also the very
same variable we check in the script's if statements.

There are some other special variables in the script that we used. The first one was $#,
which contains the number of arguments passed to the script. It works like argc in C. At
the very start of the script, we compared if $# is not equal to 1 (-ne stands for not equal).
If $# is not equal to 1, an error message is printed and the script aborts with code 1.

The reason for putting $# inside quotes is just a safety mechanism. If, in some unforeseen
event, $# were to contain spaces, we still want the content to be evaluated as a single
value, not two. The same thing goes for the quotes around the other variables in the script.

The next special variable is $0. This variable contains argument 0, which is the name of
the program, just as with argv[0] in C, as we saw in Chapter 1, Getting the Necessary
Tools and Writing Our First Linux Programs.

28 Making Your Programs Easy to Script

The first argument to the program is stored in $1, as shown in the test case. The first
argument in our case is the supplied filename or directory that we want to test.

Like our C programs, we want our scripts to exit with a relevant return value (or exit
code, as it is also called). We use exit to leave the script and set a return value. In case
the user doesn't supply precisely one argument, we exit with code 1, a general error code.
And if the script is executed as it should, and the file or directory exists, we exit with code
0. If the script is executed as it should, but the file or directory doesn't exist, we exit with
code 3, which isn't reserved for a particular use, but still indicates an error (all non-zero
codes are error codes). This way, other scripts can fetch the return value of our script and
act upon it.

In Step 5, we did just that—act upon the exit code from our script with the following
command:

$> ./exist.sh / && echo "Nice, that one exists"

&& means "and". We can read the whole line as an if statement. If exist.sh is
true—that is, exit code 0—then execute the echo command. If the exit code is
anything other than 0, then the echo command is never executed.

In Step 6, we redirected all the output from the script to /dev/null and then used
a complete if statement to check for error code 3. If error code 3 is encountered, we
print a message with echo.

There's more…
There are a lot more tests and comparisons we can do with the test program. They are
all listed in the manual; that is, man 1 test.

If you are unfamiliar with Bash and shell scripting, there is a lot of useful information in
the manual page, man 1 bash.

The opposite of && is || and is pronounced "or." So, the opposite of what we did in this
recipe would be as follows:

$> ./exist.sh / || echo "That doesn't exist"
File or directory exists
$> ./exist.sh /asdf || echo "That doesn't exist"
File or directory does not exist
That doesn't exist

Exiting a program with a relevant return value 29

See also
If you want to dig deep into the world of Bash and shell scripting, there is an excellent
guide at The Linux Documentation Project: https://tldp.org/LDP/Bash-
Beginners-Guide/html/index.html.

Exiting a program with a relevant return value
In this recipe, we'll learn how to exit a C program with a relevant return value. We
will look at two different ways to exit a program with a return value and how return
fits together with the system from a broader perspective. We will also learn what some
common return values mean.

Getting ready
For this recipe, we only need the GCC compiler and the Make tool.

How to do it…
We will write two different versions of a program here to show you two different methods
of exiting. Let's get started:

1. We'll start by writing the first version using return, which we have seen
previously. But this time, we will use it to return from functions, all the way back
to main() and eventually the parent process, which is the shell. Save the following
program in a file called functions_ver1.c. All the return statements are
highlighted in the following code:

#include <stdio.h>
int func1(void);
int func2(void);

int main(int argc, char *argv[])
{
 printf("Inside main\n");
 printf("Calling function one\n");
 if (func1())
 {
 printf("Everything ok from function one\n");
 printf("Return with 0 from main - all ok\n");
 return 0;
 }

30 Making Your Programs Easy to Script

 else
 {
 printf("Caught an error from function one\n");
 printf("Return with 1 from main - error\n");
 return 1;
 }
 return 0; /* We shouldn't reach this, but
 just in case */
}

int func1(void)
{
 printf("Inside function one\n");
 printf("Calling function two\n");
 if (func2())
 {
 printf("Everything ok from function two\n");
 return 1;
 }
 else
 {
 printf("Caught an error from function two\n");
 return 0;
 }
}

int func2(void)
{
 printf("Inside function two\n");
 printf("Returning with 0 (error) from "
 "function two\n");
 return 0;
}

2. Now, compile it:

$> gcc functions_ver1.c -o functions_ver1

3. Then, run it. Try to follow along and see which functions call and return to which
other functions:

$> ./functions-ver1
Inside main

Exiting a program with a relevant return value 31

Calling function one
Inside function one
Calling function two
Inside function two
Returning with 0 (error) from function two
Caught an error from function two
Caught an error from function one
Return with 1 from main – error

4. Check the return value:

$> echo $?
1

5. Now, we rewrite the preceding program to use exit() inside the functions
instead. What will happen then is that as soon as exit() is called, the program
will exit with the specified value. If exit() is called inside another function, that
function will not return to main() first. Save the following program in a new file as
functions_ver2.c. All the return and exit statements are highlighted in the
following code:

#include <stdio.h>
#include <stdlib.h>
int func1(void);
int func2(void);

int main(int argc, char *argv[])
{
 printf("Inside main\n");
 printf("Calling function one\n");
 if (func1())
 {
 printf("Everything ok from function one\n");
 printf("Return with 0 from main - all ok\n");
 return 0;
 }
 else
 {
 printf("Caught an error from funtcion one\n");
 printf("Return with 1 from main - error\n");
 return 1;
 }
 return 0; /* We shouldn't reach this, but just

32 Making Your Programs Easy to Script

 in case */
}

int func1(void)
{
 printf("Inside function one\n");
 printf("Calling function two\n");
 if (func2())
 {
 printf("Everything ok from function two\n");
 exit(0);
 }
 else
 {
 printf("Caught an error from function two\n");
 exit(1);
 }
}

6. Now, compile this version:

$> gcc functions_ver2.c -o functions_ver2

7. Then, run it and see what happens (and compare the output from the previous
program):

$> ./functions_ver2
Inside main
Calling function one
Inside function one
Calling function two
Inside function two
Returning with (error) from function two

8. Finally, check the return value:

$> echo $?
1

Exiting a program with a relevant return value 33

How it works…
Notice that in C, 0 is regarded as false or error, while anything else is considered to be
true (or correct). This is the opposite of the return values to the shell. This can be a bit
confusing at first. However, as far as the shell is concerned, 0 is "all ok," while anything
else indicates an error.

The difference between the two versions is how the functions and the entire program
returns. In the first version, each function returns to the calling function—in the order
they were called. In the second version, each function exits with the exit() function.
This means that the program will exit directly and return the specified value to the shell.
The second version isn't good practice; it's much better to return to the calling function.
If someone else were to use your function in another program, and it suddenly exits the
entire program, that would be a big surprise. That's not usually how we do it. However,
I wanted to demonstrate the difference between exit() and return here.

I also wanted to demonstrate another point. Just as a function returns to its calling
function with return, a program returns to its parent process (usually the shell) in the
same way. So, in a way, programs in Linux are treated as functions in a program.

The following diagram shows how Bash calls the program (the upper arrow), which then
starts in main(), which then calls the next function (the arrows to the right), and so on.
The arrows returning on the left show how each function returns to the calling function,
and then finally to Bash:

Figure 2.1 – Calling and returning

34 Making Your Programs Easy to Script

There's more…
There are a lot more return codes we can use. The most common ones are the ones we've
seen here; 0 for ok and 1 for error. However, all other codes except 0 mean some form of
error. Code 1 is a general error, while the other error codes are more specific. There isn't
exactly a standard, but there are some commonly used codes. Some of the most common
codes are as follows:

Figure 2.2 – Common error codes in Linux and other UNIX-like systems

Except for these codes, there are some additional ones listed at the end of /usr/
include/sysexit.h. The codes listed in that file range from 64 to 78 and address
errors such as data format error, service unavailable, I/O errors, and more.

Redirecting stdin, stdout, and stderr
In this recipe, we will learn how to redirect standard input, standard output, and standard
error to and from files. Redirecting data to and from files is one of the basic principles of
Linux and other Unix systems.

stdin is the shorthand word for standard input. stdout and stderr are the shorthand
words for standard output and standard error, respectively.

Getting ready
It's best if we use the Bash shell for this recipe for compatibility purposes.

Redirecting stdin, stdout, and stderr 35

How to do it…
To get the hang of redirections, we will be performing a bunch of experiments here. We
are really going to twist and turn the redirections and see stdout, stderr, and stdin operate
in all kinds of ways. Let's get started:

1. Let's start by saving a list of the files and directories in the top root directory.
We can do this by redirecting standard output (stdout) from the ls command
into a file:

$> cd
$> ls / > root-directory.txt

2. Now, take a look at the file with cat:

$> cat root-directory.txt

3. Now, let's try the wc command to count lines, words, and characters. Remember
to press Ctrl + D when you have finished typing in the message:

$> wc
hello,
how are you?
Ctrl+D
 2 4 20

4. Now that we know how wc works, we can redirect its input to come from a file
instead—the file we created with the file listing:

$> wc < root-directory.txt
29 29 177

5. What about standard error? Standard error is its own output stream, separated from
standard output. If we redirect standard output and generate an error, we will still
see the error message on the screen. Let's try it out:

$> ls /asdfasdf > non-existent.txt
ls: cannot access '/asdfasdf': No such file or directory

6. Just like standard output, we can redirect standard error. Notice that we don't get
any error message here:

$> ls /asdfasdf 2> errors.txt

36 Making Your Programs Easy to Script

7. The error messages are saved in errors.txt:

$> cat errors.txt
ls: cannot access '/asdfasdf': No such file or directory

8. We can even redirect standard output and standard error at the same time, to
different files:

$> ls /asdfasdf > root-directory.txt 2> errors.txt

9. We can also redirect standard output and error into the same file for convenience:

$> ls /asdfasdf &> all-output.txt

10. We can even redirect all three (stdin, stdout, and stderr) at the same time:

$> wc < all-output.txt > wc-output.txt 2> \
> wc-errors.txt

11. We can also write to standard error from the shell to write error messages of our
own:

$> echo hello > /dev/stderr
hello

12. Another way of printing a message to stderr from Bash is like this:

$> echo hello 1>&2
hello

13. However, this doesn't prove that our hello message got printed to standard error.
We can prove this by redirecting the standard output to a file. If we still see the error
message, then it's printed on standard error. When we do this, we need to wrap the
first statement in parenthesis to separate it from the last redirect:

$> (echo hello > /dev/stderr) > hello.txt
hello
$> (echo hello 1>&2) > hello.txt
hello

14. Stdin, stdout, and stderr are represented by files in the /dev directory. This
means we can even redirect stdin from a file. This experiment doesn't do anything
useful—we could have just typed wc, but it proves a point:

$> wc < /dev/stdin
hello, world!

Redirecting stdin, stdout, and stderr 37

Ctrl+D
 1 2 14

15. All of this means that we can even redirect a standard error message back to
standard output:

$> (ls /asdfasdf 2> /dev/stdout) > \
> error-msg-from-stdout.txt
$> cat error-msg-from-stdout.txt
ls: cannot access '/asdfasdf': No such file or directory

How it works…
Standard output, or stdout, is where all the normal output from programs gets printed.
Stdout is also referred to as file descriptor 1.

Standard error, or stderr, is where all error messages get printed. Stderr is also referred
to as file descriptor 2. That is why we used 2> when we redirected stderr to a file. If we
wanted to, for clarity, we could have redirected stdout as 1> instead of just >. But the
default redirection with > is stdout, so there is no need to do this.

When we redirected both stdout and stderr in Step 9, we used an & sign. This reads as
"stdout and stderr".

Standard input, or stdin, is where all input data is read from. Stdin is also referred to as file
descriptor 0. Stdin redirects with a <, but just as with stdout and stderr, we can also write
it as 0<.

The reason for separating the two outputs, stdout and stderr, is so that when we redirect
the output from a program to a file, we should still be able to see the error message on the
screen. We also don't want the file to be cluttered with error messages.

Having separate outputs also makes it possible to have one file for the actual output, and
another one as a log file for error messages. This is especially handy in scripts.

You might have heard the phrase "Everything in Linux is either a file or a process".
That saying is true. There is no other thing in Linux, except for files or processes. Our
experiments with /dev/stdout, /dev/stderr, and /dev/stdin proved this. Files
represent even the input and output of programs.

In Step 11, we redirected the output to the /dev/stderr file, which is standard error.
The message, therefore, got printed on standard error.

In Step 12, we pretty much did the same thing but without using the actual device file. The
funny-looking 1>&2 redirection reads as "send standard output to standard error".

38 Making Your Programs Easy to Script

There's more…
Instead of using /dev/stderr, for example, we could have used /dev/fd/2, where
fd stands for file descriptor. The same goes for stdout, which is /dev/fd/1, and stdin,
which is /dev/fd/0. So, for example, the following will print the list to stderr:

$> ls / > /dev/fd/2

Just like we can send standard output to standard error with 1>&2, we can do the opposite
with 2>&1, which means we can send standard error to standard output.

Connecting programs using pipes
In this recipe, we'll learn how to use pipes to connect programs. When we write our
C programs, we always want to strive to make them easy to pipe together with other
programs. That way, our programs will be much more useful. Sometimes, programs that
are connected with pipes are called filters. The reason for this is that, often, when we
connect programs with pipes, it is to filter or transform some data.

Getting ready
Just as in the previous recipe, it's recommended that we use the Bash shell.

How to do it…
Follow these steps to explore pipes in Linux:

1. We are already familiar with wc and ls from the previous recipe. Here, we will use
them together with a pipe to count the number of files and directories in the root
directory of the system. The pipe is the vertical line symbol:

$> ls / | wc -l
29

2. Let's make things a bit more interesting. This time, we want to list only symbolic
links in the root directory (by using two programs with a pipe). The result will differ
from system to system:

$> ls -l / | grep lrwx
lrwxrwxrwx 1 root root 31 okt 21 06:53 initrd.img ->
boot/initrd.img-4.19.0-12-amd64
lrwxrwxrwx 1 root root 31 okt 21 06:53 initrd.img.
old -> boot/initrd.img-4.19.0-11-amd64
lrwxrwxrwx 1 root root 28 okt 21 06:53 vmlinuz ->

Connecting programs using pipes 39

boot/vmlinuz-4.19.0-12-amd64
lrwxrwxrwx 1 root root 28 okt 21 06:53 vmlinuz.old
-> boot/vmlinuz-4.19.0-11-amd64

3. Now, we only want the actual filenames, not the information about them. So, this
time, we will add another program at the end called awk. In this example, we are
telling awk to print the ninth field. One or more whitespaces separate each field:

$> ls -l / | grep lrwx | awk '{ print $9 }'
initrd.img
initrd.img.old
vmlinuz
vmlinuz.old

4. We can add another "filter", one that adds some text in front of every link. This can
be accomplished using sed – s means substitute. Then, we can tell sed that we
want to substitute the start of the line (^) with the text This is a link::

$> ls -l / | grep lrwx | awk '{ print $9 }' \
> | sed 's/^/This is a link: /'
This is a link: initrd.img
This is a link: initrd.img.old
This is a link: vmlinuz
This is a link: vmlinuz.old

How it works…
A lot of things are going on here, but don't feel discouraged if you don't get it all. The
importance of this recipe is to demonstrate how to use a pipe (the vertical line symbol, |).

In the very first step, we counted the number of files and directories in the root of the
filesystem using wc. When we run ls interactively, we get a nice-looking list that spans
the width of our terminal. The output is also most likely color-coded. But when we run ls
by redirecting its output through a pipe, ls doesn't have a real terminal to output to, so it
falls back to outputting the text one file or directory per line, without any colors. You can
try this yourself if you like by running the following:

$> ls / | cat

Since ls it outputting one file or directory per line, we can count the number of lines with
wc (the -l option).

40 Making Your Programs Easy to Script

In the next step (Step 2), we used grep to only list links from the output of ls -l. Links
in the output from ls -l start with the letter l at the start of the line. After that is the
access rights, which for links is rwx for everyone. This is what we search for with lrwx
with grep.

Then, we only wanted the actual filenames, so we added a program called awk. The awk
tool lets us single out a particular column or field in the output. We singled out the ninth
column ($9), which is the filename.

By running the output from ls through two other tools, we created a list of only the links
in the root directory.

In Step 3, we added another tool, or filter as it sometimes called. This tool is sed, a stream
editor. With this program, we can make changes to the text. In this case, we added the
text This is a link: in front of every link. The following is a short explanation of
the line:

sed 's/^/This is a link: /'

s means "substitute"; that is, we wish to modify some text. Inside the two first slashes (/)
is the text or expressions that should match what we want to modify. Here, we have the
beginning of the line, ^. Then, after the second slash, we have the text that we want to
replace the matched text with, up until the final slash. Here, we have the text This is
a link:.

There's more…
Beware of unnecessary piping; it's easy to get caught up in endless piping. One silly—but
instructive—example is this:

$> ls / | cat | grep tmp
tmp

We could leave out cat and still get the same result:

$> ls / | grep tmp
tmp

The same goes for this one (which I am guilty of myself from time to time):

$> cat /etc/passwd | grep root
root:x:0:0:root:/root:/bin/bash

Writing to stdout and stderr 41

There is no reason to pipe the previous example at all. The grep utility can take a filename
argument, like so:

$> grep root /etc/passwd
root:x:0:0:root:/root:/bin/bash

See also
For anyone interested in the history of Unix and how far back pipes go, there is an exciting
video from 1982 on YouTube, uploaded by AT&T: https://www.youtube.com/
watch?v=tc4ROCJYbm0.

Writing to stdout and stderr
In this recipe, we'll learn how to print text to both stdout and stderr in a C program. In the
two previous recipes, we learned what stdout and stderr are, why they exist, and how to
redirect them. Now, it's our turn to write correct programs that output error messages on
standard error, and regular messages on standard output.

How to do it…
Follow these steps to learn how to write output to both stdout and stderr in a C program:

1. Write the following code in a file called output.c and save it. In this program,
we will write output using three different functions: printf(), fprintf(), and
dprintf(). With fprintf(), we can specify a file stream such as stdout or
stderr, while with dprintf(), we can specify the file descriptor (1 for stdout and 2
for stderr, just as we have seen previously):

#define _POSIX_C_SOURCE 200809L
#include <stdio.h>

int main(void)
{
 printf("A regular message on stdout\n");

 /* Using streams with fprintf() */
 fprintf(stdout, "Also a regular message on "
 "stdout\n");
 fprintf(stderr, "An error message on stderr\n");

 /* Using file descriptors with dprintf().

https://www.youtube.com/watch?v=tc4ROCJYbm0
https://www.youtube.com/watch?v=tc4ROCJYbm0

42 Making Your Programs Easy to Script

 * This requires _POSIX_C_SOURCE 200809L
 * (man 3 dprintf)*/
 dprintf(1, "A regular message, printed to "
 "fd 1\n");
 dprintf(2, "An error message, printed to "
 "fd 2\n");
 return 0;
}

2. Compile the program:

$> gcc output.c -o output

3. Run the program like you usually would:

$> ./output
A regular message on stdout
Also a regular message on stdout
An error message on stderr
A regular message, printed to fd 1
An error message, printed to fd 2

4. To prove that the regular messages are printed to stdout, we can send the error
messages to /dev/null, a black hole in the Linux system. Doing this will only
display the messages printed to stdout:

$> ./output 2> /dev/null
A regular message on stdout
Also a regular message on stdout
A regular message, printed to fd 1

5. Now, we will do the reverse; we will send the messages printed to stdout to /dev/
null, showing only the error messages that are printed to stderr:

$> ./output > /dev/null
An error message on stderr
An error message, printed to fd 2

6. Finally, let's send all messages, from both stdout and stderr, to /dev/null. This
will display nothing:

$> ./output &> /dev/null

Writing to stdout and stderr 43

How it works…
The first example, where we used printf(), doesn't contain anything new or unique.
All output printed with the regular printf() function is printed to stdout.

Then, we saw some new examples, including the two lines where we use fprintf().
That function, fprintf(), allows us to specify a file stream to print the text to. We
will cover what a stream is later on in this book. But in short, a file stream is what we
usually open when we want to read or write to a file in C using the standard library. And
remember, everything is either a file or a process in Linux. When a program opens in
Linux, three file streams are automatically opened—stdin, stdout, and stderr (assuming
the program has included stdio.h).

Then, we looked at some examples of using dprintf(). This function allows us to
specify a file descriptor to print to. We covered file descriptors in the previous recipes
of this chapter, but we will discuss them in more depth later in this book. Three file
descriptors are always open—0 (stdin), 1 (stdout), and 2 (stderr)—in every program
we write on Linux. Here, we printed the regular message to file descriptor (fd for short) 1,
and the error message to file descriptor 2.

To be correct in our code, we need to include the very first line (the #define line) for
the sake of dprintf(). We can read all about it in the manual page (man 3 dprintf),
under Feature Test Macro Requirements. The macro we define, _POSIX_C_SOURCE, is for
POSIX standards and compatibility. We will cover this in more depth later in this book.

When we tested the program, we verified that the regular messages got printed to standard
output by redirecting the error messages to a file called /dev/null, showing only the
messages printed to standard output. Then, we did the reverse to verify that the error
messages got printed to standard error.

The special file, /dev/null, acts as a black hole in Linux and other Unix systems.
Everything we send to that file simply disappears. Try it out with ls / &> /dev/null,
for example. No output will be displayed since everything is redirected to the black hole.

There's more…
I mentioned that three file streams are opened in a program, assuming it includes
stdio.h, as well as three file descriptors. These three file descriptors are always opened,
even if stdio.h is not included. If we were to include unistd.h, we could also use
macro names for the three file descriptors.

44 Making Your Programs Easy to Script

The following table shows these file descriptors, their macro names, and file streams,
which are handy for future reference:

Figure 2.3 – File descriptors and file streams in Linux

Reading from stdin
In this recipe, we'll learn how to write a program in C that reads from standard input.
Doing so enables your programs to take input from other programs via a pipe, making
them easier to use as a filter, thus making them more useful in the long run.

Getting ready
You'll need the GCC compiler and preferably the Bash shell for this recipe, although it
should work with any shell.

To fully understand the program that we are about to write, you should look at an ASCII
table, an example of which can be found at the following URL: https://github.
com/PacktPublishing/Linux-System-Programming-Techniques/blob/
master/ch2/ascii-table.md.

How to do it…
In this recipe, we will write a program that takes single words as input, converts their cases
(uppercase into lower and lowercase into upper), and prints the result to standard output.
Let's get started:

1. Write the following code into a file and save it as case-changer.c. In this
program, we use fgets() to read characters from stdin. We then use a for loop
to loop over the input, character by character. Before we start the next loop with the
next line of input, we must zero out the arrays using memset():

#include <stdio.h>
#include <string.h>

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/ascii-table.md
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/ascii-table.md
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/ascii-table.md

Reading from stdin 45

int main(void)
{
 char c[20] = { 0 };
 char newcase[20] = { 0 };
 int i;
 while(fgets(c, sizeof(c), stdin) != NULL)
 {
 for(i=0; i<=sizeof(c); i++)
 {
 /* Upper case to lower case */
 if ((c[i] >= 65) && (c[i] <= 90))
 {
 newcase[i] = c[i] + 32;
 }
 /* Lower case to upper case */
 if ((c[i] >= 97 && c[i] <= 122))
 {
 newcase[i] = c[i] - 32;
 }
 }
 printf("%s\n", newcase);
 /* zero out the arrays so there are no
 left-overs in the next run */
 memset(c, 0, sizeof(c));
 memset(newcase, 0, sizeof(newcase));
 }
 return 0;
}

2. Compile the program:

$> gcc case-changer.c -o case-changer

3. Try it out by typing some words in it. Quit the program by pressing Ctrl + D:

$> ./case-changer
hello
HELLO
AbCdEf
aBcDeF

46 Making Your Programs Easy to Script

4. Now, try to pipe some input to it, for example, the first five lines from ls:

$> ls / | head -n 5 | ./case-changer
BIN
BOOT
DEV
ETC
HOME

5. Let's try to pipe some uppercase words into it from a manual page:

$> man ls | egrep '^[A-Z]+$' | ./case-changer
name
synopsis
description
author
copyrigh

How it works…
First, we created two character arrays of 20 bytes each and initialize them to 0.

Then, we used fgets(), wrapped in a while loop, to read characters from standard
input. The fgets() function reads characters until it reaches a newline character or
an End Of File (EOF). The characters that are read are stored in the c array, and also
returned.

To read more input—that is, more than one word—we continue reading input with the
help of the while loop. The while loop won't finish until we either press Ctrl + D or the
input stream is empty.

The fgets() function returns the character read on success and NULL on error or when
an EOF occurs while no characters have been read (that is, no more input). Let's break
down the fgets() function so that we can understand it better:

fgets(c, sizeof(c), stdin)

The first argument, c, is where we store the data. In this case, it's our character array.

The second argument, sizeof(c), is the maximum size we want to read. The fgets()
function is safe here; it reads one less than the size we specify. In our case, it will only read
19 characters, leaving room for the null character.

The final and third argument, stdin, is the stream we want to read from—in our case,
standard input.

Reading from stdin 47

Inside the while loop is where the case conversions are happening, character by
character in the for loop. In the first if statement, we check if the current character
is an uppercase one. If it is, then we add 32 to the character. For example, if the character
is A, then it's represented by 65 in the ASCII table. When we add 32, we get 97, which
is a. The same goes for the entire alphabet. It's always 32 characters apart between the
uppercase and lowercase versions.

The next if statement does the reverse. If the character is a lowercase one, we subtract
32 and get the uppercase version.

Since we are only checking characters between 65 and 90, and 97 and 122, all other
characters are ignored.

Once we printed the result on the screen, we reset the character arrays to all zeros with
memset(). If we don't do this, we will have leftover characters in the next run.

Using the program
We tried the program by running it interactively and typing words into it. Each time
we hit the Enter key, the word is transformed; the uppercase letters will become lowercase
and vice versa.

Then, we piped data to it from the ls command. That output got converted into
uppercase letters.

Then, we tried to pipe it uppercase words from the manual page (the headings). All the
headings in a manual page are uppercase and start at the beginning of the line. This is
what we "grep" for with egrep, and then pipe to our case-changer program.

There's more…
For more information about fgets(), see the manual page, man 3 fgets.

You can write a small program to print a minimum ASCII table for the letters a-z and A-Z.
This small program also demonstrates that each character is represented by a number:

ascii-table.c
#include <stdio.h>

int main(void)
{
 char c;
 for (c = 65; c<=90; c++)

48 Making Your Programs Easy to Script

 {
 printf("%c = %d ", c, c); /* upper case */
 printf("%c = %d\n", c+32, c+32); /* lower case */
 }
 return 0;
}

Writing a pipe-friendly program
In this recipe, we will learn how to write a program that is pipe-friendly. It will take input
from standard input and output the result on standard output. Any error messages are
going to be printed on standard error.

Getting ready
We'll need the GCC compiler, GNU Make, and preferably the Bash shell for this recipe.

How to do it…
In this recipe, we are going to write a program that converts miles per hour into
kilometers per hour. As a test, we are going to pipe data to it from a text file that contains
measurements from a car trial run with average speeds. The text file is in miles per hour
(mph), but we want them in kilometers per hour (kph) instead. Let's get started:

1. Start by creating the following text file or download it from GitHub from
https://github.com/PacktPublishing/Linux-System-
Programming-Techniques/blob/master/ch2/avg.txt. If you are
creating it yourself, name it avg.txt. This text will be used as the input for a
program we will write. The text simulates measurement values from a car trial run:

10-minute average: 61 mph
30-minute average: 55 mph
45-minute average: 54 mph
60-minute average: 52 mph
90-minute average: 52 mph
99-minute average: nn mph

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/avg.txt
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/avg.txt

Writing a pipe-friendly program 49

2. Now, create the actual program. Type in the following code and save it as
mph-to-kph.c, or download it from GitHub from https://github.com/
PacktPublishing/Linux-System-Programming-Techniques/blob/
master/ch2/mph-to-kph.c. This program will convert miles per hour into
kilometers per hour. This conversion is performed in the printf() statement:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 char mph[10] = { 0 };

 while(fgets(mph, sizeof(mph), stdin) != NULL)
 {
 /* Check if mph is numeric
 * (and do conversion) */
 if(strspn(mph, "0123456789.-\n") ==
 strlen(mph))
 {
 printf("%.1f\n", (atof(mph)*1.60934));
 }
 /* If mph is NOT numeric, print error
 * and return */
 else
 {
 fprintf(stderr, "Found non-numeric"
 " value\n");
 return 1;
 }
 }
 return 0;
}

3. Compile the program:

$> gcc mph-to-kph.c -o mph-to-kph

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/mph-to-kph.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/mph-to-kph.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/mph-to-kph.c

50 Making Your Programs Easy to Script

4. Test the program by running it interactively. Type in some miles per hour values
and hit Enter after each value. The program will print out the corresponding value
in kilometers per hour:

$> ./mph-to-kph
50
80.5
60
96.6
100
160.9
hello
Found non-numeric value
$> echo $?
1
$> ./mph-to-kph
50
80.5
Ctrl+D
$> echo $?
0

5. Now, it's time to use our program as a filter to transform the table containing miles
per hour into kilometers per hour. But first, we must filter out only the mph values.
We can do this with awk:

$> cat avg.txt | awk '{ print $3 }'
61
55
54
52
52
nn

6. Now that we have a list of the numbers only, we can add our mph-to-kph program
at the end to convert the values:

$> cat avg.txt | awk '{ print $3 }' | ./mph-to-kph
98.2
88.5
86.9
83.7

Writing a pipe-friendly program 51

83.7
Found non-numeric value

7. Since the last value is nn, a non-numeric value, which is an error in the
measurement, we don't want to show the error message in the output. Therefore,
we redirect stderr to /dev/null. Note the parenthesis around the expression,
before the redirect:

$> (cat avg.txt | awk '{ print $3 }' | \
> ./mph-to-kph) 2> /dev/null
98.2
88.5
86.9
83.7
83.7

8. This is much prettier! However, we also want to add km/h at the end of every line
to know what the value is. We can use sed to accomplish this:

$> (cat avg.txt | awk '{ print $3 }' | \
> ./mph-to-kph) 2> /dev/null | sed 's/$/ km\/h/'
98.2 km/h
88.5 km/h
86.9 km/h
83.7 km/h
83.7 km/h

How it works…
This program is similar to the one from the previous recipe. The features we added here
check if the input data is numeric or not, and if it isn't, the program aborts with an error
message that is printed to stderr. The regular output is still printed to stdout, as far as it
goes without an error.

The program is only printing the numeric values, no other information. This makes it
better as a filter, since the km/h text can be added by the user with other programs. That
way, the program can be useful for many more scenarios that we haven't thought about.

The line where we check for numeric input might require some explanation:

if(strspn(mph, "0123456789.-\n") == strlen(mph))

52 Making Your Programs Easy to Script

The strspn() function only reads the characters that we specified in the second
argument to the function and then returns the number of read characters. We can then
compare the number of characters read by strspn() with the entire length of the string,
which we get with strlen(). If those match, we know that every character is either
numeric, a dot, a minus, or a newline. If they don't match, this means an illegal character
was found in the string.

For strspn() and strlen() to work, we included string.h. For atof() to work,
we included stdlib.h.

Piping data to the program
In Step 5, we selected only the third field—the mph value—using the awk program. The
awk $3 variable means field number 3. Each field is a new word, separated by a space.

In Step 6, we redirected the output from the awk program—the mph values—into our
mph-to-kph program. As a result, our program printed the km/h values on the screen.

In Step 7, we redirected the error messages to /dev/null so that the output from the
program is clean.

Finally, in Step 8, we added the text km/h after the kph values in the output. We did this by
using the sed program. The sed program can look a bit cryptic, so let's break it down:

sed 's/$/ km\/h/'

This sed script is similar to the previous ones we have seen. But this time, we substituted
the end of the line with a $ sign instead of the beginning with ^. So, what we did here is
substitute the end of the line with the text "km/h". Note, though, that we needed to escape
the slash in "km/h" with a backslash.

There's more…
There's a lot of useful information about strlen() and strspn() in the respective
manual pages. You can read them with man 3 strlen and man 3 strspn.

Redirecting the result to a file
In this recipe, we will learn how to redirect the output of a program to two different files.
We are also going to learn some best practices when writing a filter, a program specifically
made to be connected with other programs with a pipe.

Redirecting the result to a file 53

The program we will build in this recipe is a new version of the program from the
previous recipe. The mph-to-kph program in the previous recipe had one drawback:
it always stopped when it found a non-numeric character. Often, when we run filters on
long input data, we want the program to continue running, even if it has detected some
erroneous data. This is what we are going to fix in this version.

We will keep the default behavior just as it was previously; that is, it will abort the program
when it encounters a non-numeric value. However, we will add an option (-c) so that it
can continue running the program even if a non-numeric value was detected. Then, it's up
to the end user to decide how he or she wants to run it.

Getting ready
All the requirements listed in the Technical requirements section of this chapter apply here
(the GCC compiler, the Make tool, and the Bash shell).

How to do it…
This program will be a bit longer, but if you like, you can download it from GitHub at
https://github.com/PacktPublishing/Linux-System-Programming-
Techniques/blob/master/ch2/mph-to-kph_v2.c. Since the code is a bit longer,
I will be splitting it up into several steps. However, all of the code still goes into a single file
called mph-to-kph_v2.c. Let's get started:

1. Let's start with the feature macro and the required header files. Since we are going
to use getopt(), we need the _XOPEN_SOURCE macro, as well as the unistd.h
header file:

#define _XOPEN_SOURCE 500
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h

2. Next, we will add the function prototype for the help function. We will also start
writing the main() function body:

void printHelp(FILE *stream, char progname[]);

int main(int argc, char *argv[])
{
 char mph[10] = { 0 };

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/mph-to-kph_v2.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/mph-to-kph_v2.c

54 Making Your Programs Easy to Script

 int opt;
 int cont = 0;

3. Then, we will add the getopt() function inside a while loop. This is similar
to the Writing a program that parses command-line options recipe from Chapter 1,
Getting the Necessary Tools and Writing Our First Linux Programs:

/* Parse command-line options */
 while ((opt = getopt(argc, argv, "ch")) != -1)
 {
 switch(opt)
 {
 case 'h':
 printHelp(stdout, argv[0]);
 return 0;
 case 'c':
 cont = 1;
 break;
 default:
 printHelp(stderr, argv[0]);
 return 1;
 }
 }

4. Then, we must create another while loop, where we will fetch data from stdin with
fgets():

while(fgets(mph, sizeof(mph), stdin) != NULL)
 {
 /* Check if mph is numeric
 * (and do conversion) */
 if(strspn(mph, "0123456789.-\n") ==
 strlen(mph))
 {
 printf("%.1f\n", (atof(mph)*1.60934));
 }
 /* If mph is NOT numeric, print error
 * and return */
 else
 {
 fprintf(stderr, "Found non-numeric "
 "value\n");
 if (cont == 1) /* Check if -c is set */

Redirecting the result to a file 55

 {
 continue; /* Skip and continue if
 * -c is set */
 }
 else
 {
 return 1; /* Abort if -c is not set */
 }
 }
 }
 return 0;
}

5. Finally, we must write the function body for the help function:

void printHelp(FILE *stream, char progname[])
{
 fprintf(stream, "%s [-c] [-h]\n", progname);
 fprintf(stream, " -c continues even though a non"
 "-numeric value was detected in the input\n"
 " -h print help\n");
}

6. Compile the program using Make:

$> make mph-to-kph_v2
cc mph-to-kph_v2.c -o mph-to-kph_v2

7. Let's try it out, without any options, by giving it some numeric values and
a non-numeric value. The result should be the same as what we received previously:

$> ./mph-to-kph_v2
60
96.6
40
64.4
hello
Found non-numeric value

56 Making Your Programs Easy to Script

8. Now, let's try it out using the -c option so that we can continue running the
program even though a non-numeric value has been detected. Type some numeric
and non-numeric values into the program:

$> ./mph-to-kph_v2 -c
50
80.5
90
144.8
hello
Found non-numeric value
10
16.1
20
32.2

9. That worked just fine! Now, let's add some more data to the avg.txt file and
save it as avg-with-garbage.txt. This time, there will be more lines with
non-numeric values. You can also download the file from https://github.
com/PacktPublishing/Linux-System-Programming-Techniques/
blob/master/ch2/avg-with-garbage.txt:

10-minute average: 61 mph
30-minute average: 55 mph
45-minute average: 54 mph
60-minute average: 52 mph
90-minute average: 52 mph
99-minute average: nn mph
120-minute average: 49 mph
160-minute average: 47 mph
180-minute average: nn mph
error reading data from interface
200-minute average: 43 mph

10. Now, let's run awk on that file again to see only the values:

$> cat avg-with-garbage.txt | awk '{ print $3 }'
61
55
54
52
52
nn

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/avg-with-garbage.txt
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/avg-with-garbage.txt
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/avg-with-garbage.txt

Redirecting the result to a file 57

49
47
nn
data
43

11. Now comes the moment of truth. Let's add the mph-to-kph_v2 program at the
end with the -c option. This should convert all the mph values into kph values and
continue running, even though non-numeric values will be found:

$> cat avg-with-garbage.txt | awk '{ print $3 }' \
> | ./mph-to-kph_v2 -c
98.2
88.5
86.9
83.7
83.7
Found non-numeric value
78.9
75.6
Found non-numeric value
Found non-numeric value
69.2

12. That worked! The program continued, even though there were non-numeric values.
Since the error messages are printed to stderr and the values are printed to stdout,
we can redirect the output to two different files. That leaves us with a clean output
file and a separate error file:

$> (cat avg-with-garbage.txt | awk '{ print $3 }' \
> | ./mph-to-kph_v2 -c) 2> errors.txt 1> output.txt

13. Let's take a look at the two files:

$> cat output.txt
98.2
88.5
86.9
83.7
83.7
78.9
75.6
69.2

58 Making Your Programs Easy to Script

$> cat errors.txt
Found non-numeric value
Found non-numeric value
Found non-numeric value

How it works…
The code itself is similar to what we had in the previous recipe, except for the added
getopt() and the help function. We covered getopt() in detail in Chapter 1, Getting
the Necessary Tools and Writing Our First Linux Programs, so there's no need to cover it
again here.

To continue reading data from stdin when a non-numeric value is found (while using
the -c option), we use continue to skip one iteration of the loop. Instead of aborting
the program, we print an error message to stderr and then move on to the next iteration,
leaving the program running.

Also, note that we passed two arguments to the printHelp() function. The first
argument is a FILE pointer. We use this to pass stderr or stdout to the function. Stdout
and stderr are streams, which can be reached via their FILE pointer. This way, we can
choose if the help message should be printed to stdout (in case the user asked for the help)
or to stderr (in case there was an error).

The second argument is the name of the program, as we have seen already.

We then compiled and tested the program. Without the -c option, it works just as it did
previously.

After that, we tried the program with data from a file that contains some garbage.
That's usually how data looks; it's often not "perfect". That's why we added the option to
continue, even though non-numeric values were found.

Just like in the previous recipe, we used awk to select only the third field (print $3)
from the file.

The exciting part is Step 12, where we redirected both stderr and stdout. We separated the
two outputs into two different files. That way, we have a clean output file with only the
km/h values. We can then use that file for further processing since it doesn't contain any
error messages.

Reading environment variables 59

We could have written the program to do all the steps for us, such as filter out the values
from the text file, do the conversions, and then write the result to a new file. But that's an
anti-pattern in Linux and Unix. Instead, we want to write small tools that do one thing
only—and do it well. That way, the program can be used on other files with a different
structure, or for a completely different purpose. We could even grab the data straight from
a device or modem if we wanted to and pipe it into our program. The tools for extracting
the correct fields from the file (or device) have already been created; there's no need to
reinvent the wheel.

Notice that we needed to enclose the entire command, with pipes and all, before
redirecting the output and error messages.

There's more…
Eric S. Raymond has written some excellent rules to stick to when developing software
for Linux and Unix. They can all be found in his book, The Art of Unix Programming.
Two of the rules that apply to us in this recipe include the Rule of Modularity, which says
that we should write simple parts that are connected with clean interfaces. The other rule
that applies to us is the Rule of Composition, which says to write programs that will be
connected to other programs.

His book is available for free online at http://www.catb.org/~esr/writings/
taoup/html/.

Reading environment variables
Another way to communicate with the shell—and to configure a program—is via
environment variables. By default, there are a lot of environment variables already set.
These variables contain information on just about anything regarding your user and your
settings. Some examples include the username, which type of terminal you are using, the
path variable we discussed in previous recipes, your preferred editor, your preferred locale
and language, and more.

Knowing how to read these variables will make it much easier for you to adapt your
programs to the user's environment.

In this recipe, we will write a program that reads environment variables, adapts its output,
and prints some information about the user and the session.

http://www.catb.org/~esr/writings/taoup/html/
http://www.catb.org/~esr/writings/taoup/html/

60 Making Your Programs Easy to Script

Getting ready
For this recipe, we can use just about any shell. Other than a shell, we'll need the GCC
compiler.

How to do it…
Follow these steps to write a program that reads environment variables:

1. Save the following code into a file called env-var.c. You can also download the
whole program from https://github.com/PacktPublishing/Linux-
System-Programming-Techniques/blob/master/ch2/env-var.c.
This program will read some common environment variables from your shell using
the getenv() function. The strange-looking number sequences (\033[0;31) are
used to color the output:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 /* Using getenv() to fetch env. variables */
 printf("Your username is %s\n", getenv("USER"));
 printf("Your home directory is %s\n",
 getenv("HOME"));
 printf("Your preferred editor is %s\n",
 getenv("EDITOR"));
 printf("Your shell is %s\n", getenv("SHELL"));

 /* Check if the current terminal support colors*/
 if (strstr(getenv("TERM"), "256color"))
 {
 /* Color the output with \033 + colorcode */
 printf("\033[0;31mYour \033[0;32mterminal "
 "\033[0;35msupport "
 "\033[0;33mcolors\033[0m\n");
 }
 else
 {
 printf("Your terminal doesn't support"
 " colors\n");
 }

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/env-var.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch2/env-var.c

Reading environment variables 61

 return 0;
}

2. Compile the program using GCC:

$> gcc env-var.c -o env-var

3. Run the program. The information that will be printed for you will differ from
mine. The last line will also be in color if your terminal supports it. If it doesn't,
it will tell you that your terminal doesn't support colors:

$> ./env-var
Your username is jake
Your home directory is /home/jake
Your preferred editor is vim
Your shell is /bin/bash
Your terminal support colors

4. Let's investigate the environment variables we used by using echo. Make a note of
the $TERM variable. The dollar sign ($) tells the shell that we want to print the TERM
variable, not the word TERM:

$> echo $USER
jake
$> echo $HOME
/home/jake
$> echo $EDITOR
vim
$> echo $SHELL
/bin/bash
$> echo $TERM
screen-256color

5. If we were to change the $TERM variable to a regular xterm, without color support,
we would get a different output from the program:

$> export TERM=xterm
$> ./env-var
Your username is jake
Your home directory is /home/jake
Your preferred editor is vim
Your shell is /bin/bash
Your terminal doesn't support colors

62 Making Your Programs Easy to Script

6. Before moving on, we should reset our terminal to the value it was before we
changed it. This will probably be something else on your computer:

$> export TERM=screen-256color

7. It's also possible to set an environment variable temporarily for the duration of the
program. We can do this by setting the variable and executing the program on the
same line. Notice that when the program ends, the variable is still the same as it was
previously. We just override the variable when the program executes:

$> echo $TERM
xterm-256color
$> TERM=xterm ./env-var
Your username is jake
Your home directory is /home/jake
Your preferred editor is vim
Your shell is /bin/bash
Your terminal doesn't support colors
$> echo $TERM
xterm-256colo

8. We can also print a complete list of all the environment variables using the env
command. The list will probably be several pages long. All of these variables can be
accessed using the getenv() C function:

$> env

How it works…
We use the getenv() function to get the values from the shell's environment variables.
We print these variables to the screen.

Then, at the end of the program, we check if the current terminal has color support.
This is usually denoted by something such as xterm-256color, screen-256color,
and so on. We then use the strstr() function (from string.h) to check if the $TERM
variable contains the 256color substring. If it does, the terminal has color support,
and we print a colorized message on the screen. If it doesn't, however, we print that the
terminal doesn't have color support, without using any colors.

Reading environment variables 63

All of these variables are the shell's environment variables and can be printed with the
echo command; for example, echo $TERM. We can also set our own environment
variables in the shell; for instance, export FULLNAME=Jack-Benny. Likewise,
we can change existing ones by overwriting them, just as we did with the $TERM variable.
We can also override them by setting them at runtime, like we did with TERM=xterm
./env-var.

Regular variables set with the FULLNAME=Jack-Benny syntax are only available to
the current shell and are hence called local variables. When we set variables using the
export command, they become global variables or environment variables, a more
common name, available to both subshells and child processes.

There's more…
We can also change environment variables and create new ones in a C program by using
the setenv() function. However, when we do so, those variables won't be available in
the shell that started the program. The program we run is a child process of the shell,
and hence it can't change the shell's variable; that is, its parent process. But any other
programs started from inside our own program will be able to see those variables. We will
discuss parent and child processes in more depth later in this book.

Here is a short example of how to use setenv(). The 1 in the third argument to
setenv() means that we want to overwrite the variable if it already exists. If we change
it to a 0, it prevents overwriting:

env-var-set.c
#define _POSIX_C_SOURCE 200112L
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 setenv("FULLNAME", "Jack-Benny", 1);
 printf("Your full name is %s\n", getenv("FULLNAME"));
 return 0;
}

64 Making Your Programs Easy to Script

If we compile and run the program and then try to read $FULLNAME from the shell, we'll
notice that it doesn't exist:

$> gcc env-var-set.c -o env-var-set
$> ./env-var-set
Your full name is Jack-Benny
$> echo $FULLNAME

3
Diving Deep into

C in Linux
It's time to take an in-depth look at C programming in Linux. Here, we will learn more
about the compiler, the four stages from source code to binary program, how to use the
Make tool, and differences between system calls and standard library functions. We will
also take a look at some essential header files when it comes to Linux, and look at some
C and Portable Operating System Interface (POSIX) standards. C is tightly integrated
with Linux, and mastering C will help you understand Linux.

In this chapter, we will develop both programs and libraries for Linux. We will also write
both a generic Makefile and more advanced ones for more significant projects. While
doing this, we will also learn about the different C standards, why they matter, and how
they affect your programs.

This chapter will cover the following recipes:

• Linking against libraries using the GNU Compiler Collection (GCC)

• Changing C standards

• Using system calls

• sand when not to use them

66 Diving Deep into C in Linux

• Getting information about Linux- and Unix-specific header files

• Defining feature test macros

• Looking at the four stages of compilation

• Compiling with Make

• Writing a generic Makefile with GCC options

• Writing a simple Makefile

• Writing a more advanced Makefile

Technical requirements
In this chapter, you will need the Make tool and the GCC compiler, preferably installed via
the meta-package or group install mentioned in Chapter 1, Getting the Necessary Tools and
Writing Our First Linux Programs.

All source code for this chapter is available at https://github.com/
PacktPublishing/Linux-System-Programming-Techniques/tree/
master/ch3.

Check out the following link to see the Code in Action video:
https://bit.ly/3zrbi6s

Linking against libraries using GCC
In this recipe, we will learn how to link a program to an external library, both one that's
installed system-wide and one that resides in our home directory. Before we can link to
a library, however, we need to create it. This is also something that we are going to cover
in this recipe. Knowing how to link against libraries will enable you to make use of a wide
variety of ready-to-use functions. Instead of writing everything by yourself, you can use
libraries that are already available. Often, there is no need to reinvent the wheel, thus
saving you a lot of time.

Getting ready
For this recipe, you'll only need what's listed under the Technical requirements section
of this chapter.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3
https://bit.ly/3zrbi6s

Linking against libraries using GCC 67

How to do it…
Here, we will learn how to link against both a shared library installed on your system
and a library from your home directory. We will begin with a library already on your
system: the math library.

Linking against the math library
Here, we will make a small program that calculates the compound interest on a bank
account. For this, we need the pow() function, which is included in the math library.

1. Write the following code and save it in a file called interest.c. Note that we
include math.h at the top. The pow() function's first argument is the base; the
second argument is the exponent:

#include <stdio.h>
#include <math.h>

int main(void)
{
 int years = 15; /* The number of years you will
 * keep the money in the bank
 * account */
 int savings = 99000; /* The inital amount */
 float interest = 1.5; /* The interest in % */

 printf("The total savings after %d years "
 "is %.2f\n", years,
 savings * pow(1+(interest/100), years));
 return 0;
}

2. Now, compile and link the program. The option to link against a library is -l,
and the name of the library is m (see the man 3 pow manual page for more
information):

$> gcc interest.c -o interest -lm

3. And finally, let's try the program:

$> ./interest
The total savings after 15 years is 123772.95

68 Diving Deep into C in Linux

Creating our own library
Here, we'll create our very own shared library. In the next section of this recipe, we'll link
a program to this library. The library we are creating here is used to find out if a number
is a prime number or not.

1. Let's start with creating a simple header file. This file will only contain a single
line—the function prototype. Write the following content in a file and name it
prime.h:

int isprime(long int number);

2. Now, it's time to write the actual function that will be included in the library. Write
the following code in a file and save it as primc.c:

int isprime(long int number)
{
 long int j;
 int prime = 1;

 /* Test if the number is divisible, starting
 * from 2 */
 for(j=2; j<number; j++)
 {
 /* Use the modulo operator to test if the
 * number is evenly divisible, i.e., a
 * prime number */
 if(number%j == 0)
 {
 prime = 0;
 }
 }
 if(prime == 1)
 {
 return 1;
 }
 else
 {
 return 0;
 }
}

Linking against libraries using GCC 69

3. We need to convert this to a library somehow. The first step is to compile it into
something that's called an object file. We also need to parse some extra arguments
to the compiler to make it work in a library. More specifically, we need to make it
Position-Independent Code, or PIC for short. The following compiler command
produces a file called prime.o, which we'll see with the ls -l command. We'll
learn more about object files later in this chapter:

$> gcc -Wall -Wextra -pedantic -fPIC -c prime.c
$> ls -l prime.o
-rw-r--r-- 1 jake jake 1296 nov 28 19:18 prime.o

4. Now, we must package the object file as a library. In the following command,
the -shared option is just what it sounds like: it creates a shared library. The
-Wl,-soname,libprime.so options are for the linker. This tells the linker that
the shared library name (soname) will be libprime.so. The -o option specifies
the output filename, which is libprime.so. This is a standard naming convention
for dynamically linked libraries. The so ending stands for shared object. When the
library is to be used system-wide, a number is often added to indicate the version.
At the very end of the command, we have the prime.o object file that is included
in this library:

$> gcc -shared -Wl,-soname,libprime.so -o \
> libprime.so prime.o

Linking against a library in your home directory
Sometimes, you have a shared library you want to link against in your home directory
(or some other directory). Maybe it's a library you downloaded from the internet or
a library you have built yourself, as in this case. We will learn more about making our
own libraries in a later chapter of this book. Here, we use the small sample library we've
just made, called libprime.so.

1. Write the following source code in a file and name it is-it-a-prime.c. This
program will use the library we just downloaded. We must also include the header
file we created, prime.h. Note the different syntax for including a local header file
(not a system-wide header file):

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "prime.h"

70 Diving Deep into C in Linux

int main(int argc, char *argv[])
{
 long int num;
 /* Only one argument is accepted */
 if (argc != 2)
 {
 fprintf(stderr, "Usage: %s number\n",
 argv[0]);
 return 1;
 }
 /* Only numbers 0-9 are accepted */
 if (strspn(argv[1], "0123456789") !=
 strlen(argv[1]))
 {
 fprintf(stderr, "Only numeric values are "
 "accepted\n");
 return 1;
 }
 num = atol(argv[1]); /* String to long */
 if (isprime(num)) /* Check if num is a prime */
 {
 printf("%ld is a prime\n", num);
 }
 else
 {
 printf("%ld is not a prime\n", num);
 }

 return 0;
}

2. Now, compile it and link it to libprime.so. Since the library resides in our home
directory, we need to specify the path to it:

$> gcc -L${PWD} is-it-a-prime.c \
> -o is-it-a-prime -lprime

Linking against libraries using GCC 71

3. We need to set the $LD_LIBRARY_PATH environment variable to our current
directory (where the library resides) before we can run the program. The reason
for this is that the library is dynamically linked and is not on the usual system path
for libraries:

$> export LD_LIBRARY_PATH=${PWD}:${LD_LIBRARY_PATH}

4. And now, we can finally run the program. Test it with some different numbers to
find out if they are prime numbers or not:

$> ./is-it-a-prime 11
11 is a prime
$> ./is-it-a-prime 13
13 is a prime
$> ./is-it-a-prime 15
15 is not a prime
$> ./is-it-a-prime 1000024073
1000024073 is a prime
$> ./is-it-a-prime 1000024075
1000024075 is not a prime

We can see which libraries a program is depending upon with the ldd program.
If we examine the is-it-a-prime program, we'll see that it depends upon our
libprime.so library. There are also other dependencies, such as libc.so.6,
which is the standard C library:

$> ldd is-it-a-prime
 linux-vdso.so.1 (0x00007ffc3c9f2000)
 libprime.so => /home/jake/libprime.so
(0x00007fd8b1e48000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6
(0x00007fd8b1c4c000)
 /lib64/ld-linux-x86-64.so.2 (0x00007fd8b1e54000)

72 Diving Deep into C in Linux

How it works…
The pow() function we used in the Linking against the math library section requires us
to link against the math library, libm.so. You can find this file in one of the system's
library locations, often in /usr/lib or /usr/lib64. On Debian and Ubuntu, it's often
/usr/lib/x86_64-linux-gnu (for 64-bit systems). Since the file is in the system's
default library location, we can include it using only the -l option. The full name of the
library file is libm.so, but when we specify the library to link against, we only specify
the m part (that is, we remove the lib part and the .so extension). There shouldn't be
any space between -l and the m part, so to link against it, we type -lm.

The reason we need to link against the library to use the pow() function is that the
math library is separate from the standard C library, libc.so. All the functions we
have used previously have been part of the standard library, which is the libc.so file.
This library is linked by default, so there's no need to specify it. If we really wanted to
specify the linkage to libc.so when compiling, we could do so with gcc some-
program.c -o some-program -lc.

The pow() function takes two arguments, x, and y, such as pow(x,y). The function then
returns the value of x raised to the power of y. For example, pow(2,8) will return 256.
The returned value is a double float, and both x and y are double floats.

The formula for calculating compound interest is shown here:

Here, P is the starting capital you put in the account, r is the interest rate in percent,
and y is the number of years that the money should stay untouched in the account.

Linking against a library in your home directory
In the is-it-a-prime.c C program, we needed to include the prime.h header
file. The header file only contains one line: the function prototype for the isprime()
function. The actual isprime() function is included in the libprime.so library we
created from prime.o, which we created from prime.c. A .so file is a shared library
or shared object file. A shared library contains compiled object files for functions. We will
cover what object files are later in this chapter.

When we want to link against a library that we have downloaded or created ourselves,
and that is not installed in the system's default location for libraries, things get a bit more
complicated.

𝑃𝑃 × (1 + 𝑟𝑟
100)

𝑦𝑦

Changing C standards 73

First, we need to specify the library's name and the path where the library is located. The
path is specified with the -L option. Here, we set the path to the current directory where
we created the library. ${PWD} is a shell environment variable that contains the full path
to the current directory. You can try it with echo ${PWD}.

But then, to be able to run the program, we need to set an environment variable called
$LD_LIBRARY_PATH to our current directory (and whatever it already contains).
The reason for this is that the program is dynamically linked against the library,
meaning that the library isn't included within the program; it's outside the program.
For the program to find the library, we need to tell it where to look, and this is what we
do with $LD_LIBRARY_PATH. We also don't want to overwrite what's already in the
$LD_LIBRARY_PATH variable; that's why we also include the variable's content. If we
hadn't set that environment variable, we would get an error message when executing the
program, saying "error while loading shared libraries: libprime.so". When we listed the
dependencies with ldd, we saw that libprime.so is located in a home directory, not
in the system's library locations.

There's more…
If you are interested in reading more about the standard C library, you can read man
libc. To read more about the pow() function, you can read man 3 pow.

I also encourage you to read the manual page for ldd with man ldd. Also, check out
some program's dependencies with ldd—for example, the interest program we wrote
in this recipe. While doing so, you'll see libm.so and its location in the system. You can
also try ldd on system binaries, such as /bin/ls.

Changing C standards
In this recipe, we will be learning and exploring different C standards, what they are,
why they matter, and how they affect our programs. We will also learn how to set the
C standard at compile time.

The most commonly used C standards today are C89, C99, and C11 (C89 for 1989,
C11 for 2011, and so on). Many compilers still default to using C89 because it's the most
compatible, widespread, and complete implementation. However, C99 is a more flexible
and modern implementation. Often, under newer versions of Linux, the default is C18,
together with some POSIX standards.

We will write two programs and compile them with both C89 and C99, and see their
differences.

74 Diving Deep into C in Linux

Getting ready
All you need for this recipe is a Linux computer with GCC installed, preferably via the
meta-package or package group described in Chapter 1, Getting the Necessary Tools and
Writing our First Linux Programs.

How to do it…
Follow along to explore the differences between the C standards.

1. Write the small C program shown here and save it as no-return.c. Note the
missing return statement:

#include <stdio.h>

int main(void)
{
 printf("Hello, world\n");
}

2. Now, compile it using the C89 standard:

$> gcc -std=c89 no-return.c -o no-return

3. Run the program and check the exit code:

$> ./no-return
Hello, world
$> echo $?
13

4. Now, recompile the program with the same C standard, but enable all warnings,
extra warnings, and pedantic checking (-W is the option for warnings, and all is
which warnings, hence -Wall). Note the error message we get from GCC:

$> gcc -Wall -Wextra -pedantic -std=c89 \
> no-return.c -o no-return
no-return.c: In function 'main':
no-return.c:6:1: warning: control reaches end of non-void
function [-Wreturn-type]
 }
 ^

Changing C standards 75

5. Now, recompile the program using the C99 standard instead and enable all
warnings and pedantic checking. No errors should be displayed this time:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> no-return.c -o no-return

6. Rerun the program and check the exit code. Note the difference:

$> ./no-return
Hello, world
$> echo $?
0

7. Write the following program and name it for-test.c. This program creates an
i integer variable inside the for loop. This is only allowed in C99:

#include <stdio.h>

int main(void)
{
 for (int i = 10; i>0; i--)
 {
 printf("%d\n", i);
 }
 return 0;
}

8. Compile it using the C99 standard:

$> gcc -std=c99 for-test.c -o for-test

9. Then, run it. Everything should work just fine:

$> ./for-test
10
9
8
7
6
5
4
3
2
1

76 Diving Deep into C in Linux

10. Now, instead, try to compile it with the C89 standard. Note that the error message
clearly explains that this only works in C99 or higher. The error messages from
GCC are useful, so always make sure to read them. They can save you a lot of time:

$> gcc -std=c89 for-test.c -o for-test
for-test.c: In function 'main':
for-test.c:5:5: error: 'for' loop initial declarations
are only allowed in C99 or C11 mode
 for (int i = 10; i>0; i--)
 ^~~

11. Now, write the following small program and name it comments.c. In this
program, we use C99 comments (also called C++ comments):

#include <stdio.h>

int main(void)
{
 // A C99 comment
 printf("hello, world\n");
 return 0;
}

12. Compile it using C99:

$> gcc -std=c99 comments.c -o comments

13. And now, try to compile it using C89. Note that this error message is also helpful:

$> gcc -std=c89 comments.c -o comments
comments.c: In function 'main':
comments.c:5:5: error: C++ style comments are not allowed
in ISO C90
 // A C99 comment
 ^
comments.c:5:5: error: (this will be reported only once
per input file)

How it works…
These are some of the more common differences between C89 and C99. There are other
differences that aren't apparent in Linux using GCC. We will discuss some of those
invisible differences in the There's more… section of this recipe.

Changing C standards 77

We change the C standard with the -std option to GCC. In this recipe, we try the two
standards, C89 and C99.

In Steps 1-6, we saw the difference in what happens when we forget the return value. In
C99, a return value of 0 is assumed since no other value was specified. In C89, on the
other hand, it's not okay to forget the return value. The program will still compile, but the
program will return the value 13 (an error code), which is wrong since no error occurred
in our program. The actual code returned could differ, though, but it will always be greater
than 0. When we enabled all warnings, extra warnings, and pedantic checking of the
code (-Wall -Wextra -pedantic), we also saw that the compiler issued a warning
message, meaning it isn't legal to forget the return value. So, always return a value with
return in C89.

Then, in Steps 7-10, we saw that in C99 it's okay to declare a new variable inside a for
loop, something that is not okay in C89.

In Steps 11-13, we saw a new way of using comments, two slashes //. This isn't legal
in C89.

There's more…
There are more C standards and dialects than just C89 and C99. Just to mention a few
more, there are C11, GNU99 (GNU's dialect of C99), GNU11 (GNU's dialect of C11),
and some others, but the most commonly used today are C89, C99, and C11. C18 is
starting to appear as default for some compilers and distributions.

There are actually more differences between C89 and C99 than what we've seen here.
Some of these differences can't be demonstrated in Linux with GCC, since GCC has
implemented workarounds for the differences. The same goes for some other compilers
out there. But in C89, for example, the long long int type isn't specified; it was
specified in C99. But despite that, some compilers (including GCC) support long long
int in C89, but we should be careful with using it in C89 since not all compilers support
it. If you want to use long long int, it's safer to use C99, C11, or C18.

I recommend that you always compile your programs with the -Wall, -Wextra, and
-pedantic options. These will warn you about all sorts of things that would otherwise
go unnoticed.

78 Diving Deep into C in Linux

Using system calls – and when not to use them
System calls are an exciting topic in any conversation about Unix and Linux. They are one
of the lowest parts when it comes to system programming in Linux. If we were to look
at this from a top-down approach, the shell and the binaries we run would be at the top.
Just below that, we have the standard C library functions, such as printf(), fgets(),
putc(), and so on. Below them, at the lowest levels, we have the system calls, such as
creat(), write(), and so on:

Figure 3.1 – High-level functions and low-level functions

When I talk about system calls here in this book, I mean system calls as C functions
provided by the kernel, not the actual system call table. The system call functions we use
here reside in user space, but the functions themselves execute in kernel space.

Many of the standard C library functions, such as putc(), use one or more system
call functions behind the curtains. The putc() function is an excellent example; this
uses write() to print a character on the screen (which is a system call). There are also
standard C library functions that don't use any system calls at all, such as atoi(), which
resides entirely in user space. There is no need to involve the kernel to convert a string
into a number.

Using system calls – and when not to use them 79

Generally speaking, if there is a standard C library function available, we should use
that instead of a system call. System calls are often harder to work with and more
primitive. Think of system calls as low-level operations, and standard C functions as
high-level operations.

There are cases, though, when we need to use system calls, or when they are easier to use
or more beneficial. Learning when and why to use system calls will make you a better
system programmer altogether. For example, there are many filesystem operations we can
perform on Linux via system calls that aren't available elsewhere. Another example when
we need to use a system call is when we want to fork() a process, something we will
discuss in more detail later on. In other words, we need to use system calls when we need
to perform some form of system operation.

Getting ready
In this recipe, we will be using a Linux-specific system call, so you'll need a Linux
computer (which you most probably already have since you're reading this book).
But do notice that the sysinfo() system call won't work under FreeBSD or macOS.

How to do it…
There isn't actually much difference between using a function from the standard C library
versus using a system call function. System calls in Linux are declared in unistd.h, so
we need to include this file when using system calls.

1. Write the following small program and name it sys-write.c. It uses the
write() system call. Notice that we don't include stdio.h here. Since we aren't
using any printf() function or any of the stdin, stdout, or stderr file streams, we
don't need stdio.h here. We print directly to file descriptor 1, which is standard
output. The three standard file descriptors are always opened:

#include <unistd.h>

int main(void)
{
 write(1, "hello, world\n", 13);
 return 0;
}

80 Diving Deep into C in Linux

2. Compile it. From now on, we will always include -Wall, -Wextra, and
-pedantic to write cleaner and better code:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> sys-write.c -o sys-write

3. Run the program:

$> ./sys-write
hello, world

4. Now, write the same program but with the fputs() function instead—a
higher-level function. Notice that we include stdio.h here, instead of
unistd.h. Name the program write-chars.c:

#include <stdio.h>

int main(void)
{
 fputs("hello, world\n", stdout);
 return 0;
}

5. Compile it:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> write-chars.c -o write-chars

6. Then, run it:

$> ./write-chars
hello, world

7. Now, it's time to write a program that reads some user and system information.
Save the program as my-sys.c. All the system calls in the program are highlighted.
This program fetches your user's ID, current working directory, the machine's total
and free random-access memory (RAM), and current process ID (PID):

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/sysinfo.h>

int main(void)
{

Using system calls – and when not to use them 81

 char cwd[100] = { 0 }; /* for current dir */
 struct sysinfo si; /* for system information */

 getcwd(cwd, 100); /* get current working dir */
 sysinfo(&si); /* get system information
 * (linux only) */

 printf("Your user ID is %d\n", getuid());
 printf("Your effective user ID is %d\n",
 geteuid());
 printf("Your current working directory is %s\n",
 cwd);
 printf("Your machine has %ld megabytes of "
 "total RAM\n", si.totalram / 1024 / 1024);
 printf("Your machine has %ld megabytes of "
 "free RAM\n", si.freeram / 1024 / 1024);
 printf("Currently, there are %d processes "
 "running\n", si.procs);
 printf("This process ID is %d\n", getpid());
 printf("The parent process ID is %d\n",
 getppid());
 return 0;
}

8. Compile the program:

$> gcc -Wall -Wextra -pedantic -std=c99 my-sys.c -o \
> my-sys

9. Then, run the program. You should now see some information about your user and
the machine you are using:

$> ./my-sys
Your user ID is 1000
Your effective user ID is 1000
Your current working directory is /mnt/localnas_disk2/
linux-sys/ch3/code
Your machine has 31033 megabytes of total RAM
Your machine has 6117 megabytes of free RAM
Currently, there are 2496 processes running
This process ID is 30421
The parent process ID is 11101

82 Diving Deep into C in Linux

How it works…
In Steps 1-6, we explored the difference between write() and fputs(). The difference
might not be that obvious but write(), the system call, uses file descriptors instead of
file streams. This goes for almost all system calls. File descriptors are more primitive than
file streams. The same top-to-bottom approach goes for file descriptors versus file streams.
File streams are layered on top of file descriptors and provide a higher-level interface.
Sometimes, though, we need to use file descriptors instead, as these offer more control.
File streams, on the other hand, offer a more powerful and richer input and output, with
formatted output—for example, such as printf().

In Steps 7-9, we wrote a program that fetches some system and user information. Here,
we included three system call-specific header files: unistd.h, sys/types.h, and
sys/sysinfo.h.

We have already seen unistd.h, a common header file for system calls in Unix and
Linux systems. The sys/types.h header file is another common header file for system
calls, especially when it comes to getting values from the system. This header file contains
special variable types; for example, uid_t and gid_t for user ID (UID) and group ID
(GID). These are usually an int. Others are ino_t for inode numbers, pid_t for PIDs,
and so on.

The sys/sysinfo.h header file is specifically for the sysinfo() function, which is
a system call specifically for Linux, and hence this won't work under other Unix systems
such as macOS, Solaris, or FreeBSD/OpenBSD/NetBSD. This header file declares the
sysinfo struct, which we populate with information by calling the sysinfo()
function.

The first system call we use in the program is getcwd(), to get the current working
directory. The function takes two arguments: a buffer where it should save the path, and
the length of that buffer.

The next system call is the Linux-specific sysinfo() function. This one gives us a lot of
information. When the function executes, all data is saved to the struct sysinfo. This
information includes the uptime of the system; load average; total amount of memory;
available and used memory; total and available swap space; and the total number of
processes running. In man 2 sysinfo, you can find information on the variables in the
struct sysinfo and their data types. Further down in the code, we print some of these
values using printf()—for example, si.totalram, which contains the size of the
system's memory.

The rest of the system calls are called directly from printf() and returns integer values.

Getting information about Linux- and Unix-specific header files 83

There's more…
There is a lot of detailed information about Linux system calls in the manual. A good
starting point is man 2 intro and man 2 syscalls.

Tip
Most system calls will return -1 if an error occurs. It's generally a good idea to
check for this value to detect errors.

Getting information about Linux- and
Unix-specific header files
There are a lot of specific functions and header files for Linux and other Unix systems.
Generally speaking these are POSIX functions, even though some are Linux-specific,
such as sysinfo(). We have already seen two of the POSIX files in the previous recipe:
unistd.h and sys/types.h. Since they're POSIX files, they're available in all
Unix-like systems such as Linux, FreeBSD, OpenBSD, macOS, and Solaris.

In this recipe, we will learn more about these POSIX header files, what they do, and when
and how you can use them. We will also learn how to look up information about these
files in the manual page.

Getting ready
In this recipe, we will look up header files in the manual. If you are using a Fedora-based
system, such as CentOS, Fedora, or Red Hat, these manual pages are already installed
on your system. If for some reason they are missing, you can install them with dnf
install man-pages as root, or with sudo.

If, on the other hand, you are using a Debian-based system such as Ubuntu or Debian,
you will need to install those manual pages first. Follow the instructions here to install the
manual pages required for this recipe.

Debian
Debian is more strict about not including non-free software, so there are a few extra steps
we need to take.

1. Open up /etc/apt/sources.list in an editor as root.

2. Add the word non-free after the lines that say main at the end of them
(with a space between main and non-free).

84 Diving Deep into C in Linux

3. Save the file.

4. Run apt update as root.

5. Install the manual pages by running apt install manpages-posix-dev
as root.

Ubuntu
Ubuntu and other distributions based on Ubuntu aren't as strict about non-free software,
so here we can install the correct package right away.

Simply run sudo apt install manpages-posix-dev.

How to do it…
There are many header files to cover, so what's more important is learning how to know
which header files we should use and how to find information about them, reading their
manual pages, and knowing how to list them all. We will cover all of this here.

In the previous recipe, we used the sysinfo() and getpid() functions. Here, we will
learn how to find every possible piece of information related to those system calls and the
required header files.

1. First of all, we start by reading the manual page for sysinfo():

$> man 2 sysinfo

Under the SYNOPSIS heading, we find the following two lines:
#include <sys/sysinfo.h>
int sysinfo(struct sysinfo *info);

2. This information means that we need to include sys/sysinfo.h to use
sysinfo(). It also shows that the function takes a struct called sysinfo as an
argument. Under DESCRIPTION, we see what the sysinfo struct looks like.

3. Now, let's look up getpid(). It's a POSIX function, and hence there is more
information available:

$> man 2 getpid

Here, under SYNOPSIS, we that we need to include two header files: sys/
types.h and unistd.h. We also see that the function returns a value of type
pid_t.

Getting information about Linux- and Unix-specific header files 85

4. Let's continue investigating. Open up the manual page for sys/types.h:

$> man sys_types.h

Under NAME, we see that the file contains data types. Under DESCRIPTION,
we find that a pid_t data type is used for process IDs and process group IDs, but
that doesn't tell us what kind of data type it actually is. So, let's continue to scroll
down until we find a subheading saying Additionally. Here, we see a sentence that
says: "blksize_t, pid_t, and ssize_t shall be signed integer types." Mission
accomplished—now, we know that it's a signed integer type and that we can use the
%d formatting operator to print it.

5. But let's investigate further. Let's read the manual page for unistd.h:

$> man unistd.h

6. Now, search this manual page for the word pid_t, and we'll find even more
information about it.

Type a / character and then type pid_t, and press Enter to search. Press the letter
n on your keyboard to search for the next occurrence of the word. You'll find that
other functions also return a pid_t type—for example, fork(), getpgrp(), and
getsid(), to mention a few.

7. While you are reading the manual page for unistd.h, you can also see all
functions that are declared in this header file. If you can't find it, search for
Declarations. Press /, type Declarations, and press Enter.

How it works…
The manual pages in the 7posix or 0p special section, depending on your Linux
distribution, are from something called POSIX Programmer's Manual. If you open, for
example, man unistd.h, you can see the text POSIX Programmer's Manual, as opposed
to man 2 write, which says Linux Programmer's Manual. POSIX Programmer's Manual
is from the Institute of Electrical and Electronics Engineers (IEEE) and The Open
Group, not from the GNU Project or the Linux community.

Since POSIX Programmer's Manual isn't free (as in open source), Debian has chosen
not to include it in their main repository. That's why we need to add the non-free
repository to Debian.

86 Diving Deep into C in Linux

POSIX is a set of standards specified by IEEE. The purpose of the standard is to have
a common programming interface among all POSIX operating systems (most Unix and
Unix-like systems). If you only use POSIX functions and POSIX header files in your
program, it will be compatible with all other Unix and Unix-like systems out there. The
actual implementation can differ from system to system, but the overall functions should
be the same.

Sometimes, when we need some specific information (such as which type pid_t is), we
need to read more than one manual page, as we did in this recipe.

The main takeaway here is to use the manual page for the function to find the
corresponding header file, and then to use the manual page for the header file to find
more specific information.

There's more…
The manual pages for POSIX header files are in a special section of the manual page, not
listed in man man. Under Fedora and CentOS, the section is called 0p, and under Debian
and Ubuntu, it's called 7posix.

Tip
You can list all of the manual pages available in a given section using the
apropos command with a dot (a dot means to match all).

For example, to list all of the manual pages in Section 2, type apropos -s
2. (include the dot—it's part of the command). To list all of the manual pages
in the 7posix special section under Ubuntu, type apropos -s 7posix.

Defining feature test macros
In this recipe, we'll learn what some common POSIX standards are, how and why to use
them, and how we specify them using feature test macros.

We have already seen several examples of when we have included either a POSIX standard
or some specific C standard. For example, when we used getopt(), we defined _
XOPEN_SOURCE 500 at the very top of the source code file (mph-to-kph_v2.c from
Chapter 2, Making Your Programs Easy to Script).

A feature test macro controls the definitions that are exposed by system header files.
We can leverage this in two ways. Either we can use it to create portable applications by
using a feature test macro that prevents us from using non-standard definitions or we can
use it the other way around, allowing us to use non-standard definitions.

Defining feature test macros 87

Getting ready
We will write two small programs in this recipe, str-posix.c and which-c.c. You
can either download them from https://github.com/PacktPublishing/
Linux-System-Programming-Techniques/tree/master/ch3 or follow along
and write them. You'll also need the GCC compiler we installed in Chapter 1, Getting the
Necessary Tools and Writing Our First Linux Programs. It's also a good idea to have access
to all the manual pages, including the ones from POSIX Programmer's Manual covered in
the previous recipe.

How to do it…
Here, we will explore the dark corners of the inner workings of feature test macros, POSIX
and C standards, and other related things.

1. Write the following code and save it in a file called str-posix.c. This program
will simply copy a string using strdup() and then print it. Note that we include
string.h here:

#include <string.h>
#include <stdio.h>

int main(void)
{
 char a[] = "Hello";
 char *b;
 b = strdup(a);
 printf("b = %s\n", b);
 return 0;
}

2. Now, we begin with compiling it using the C99 standard and see what happens.
More than one error message will be printed:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> str-posix.c -o str-posix
str-posix.c: In function 'main':
str-posix.c:8:9: warning: implicit declaration of
function 'strdup'; did you mean 'strcmp'? [-Wimplicit-
function-declaration]
 b = strdup(a);
 ^~~~~~
 strcmp
str-posix.c:8:7: warning: assignment to 'char *' from

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3

88 Diving Deep into C in Linux

'int' makes pointer from integer without a cast [-Wint-
conversion]
 b = strdup(a);

3. That generated a pretty severe warning. The compilation succeeded, though. If
we try to run the program, it will fail on some distributions but not others. This is
what's called undefined behavior:

$> ./str-posix
Segmentation fault

On another Linux distribution, we might see the following:
$> ./str-posix
b = Hello

4. Now comes the fascinating—and somewhat confusing—part. There is one reason
why this program crashes sometimes, but there are several possible solutions to it.
We will cover them all here. But first, the reason it failed is that strdup() isn't
part of C99 (we will cover why it sometimes works in the How it works… section).
The most straightforward solution is to look at the manual page, which clearly states
that we need the _XOPEN_SOURCE feature test macro set to 500 or higher. For the
sake of this experiment, let's set it to 700 (I'll explain why later). Add the following
line at the very top of str-posix.c. It needs to be on the very first line before any
include statement; otherwise, it won't work:

#define _XOPEN_SOURCE 700

5. Now that you have added the preceding line, let's try to recompile the program:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> str-posix.c -o str-posix

6. No warnings this time, so let's run the program:

$> ./str-posix
b = Hello

7. So, that was one of the possible solutions and the most obvious one. Now, delete that
first line again (the entire #define line).

Defining feature test macros 89

8. Once you have deleted the #define line we'll recompile the program, but this
time, we set the feature test macro at the command line instead. We use the -D flag
in GCC to accomplish this:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> -D_XOPEN_SOURCE=700 str-posix.c -o str-posix

9. Let's try to run it:

$> ./str-posix
b = Hello

10. That was the second solution. But if we read the manual page for feature test macros
with man feature_test_macros, we see that _XOPEN_SOURCE with a value
of 700 or greater has the same effect as defining _POSIX_C_SOURCE with a value
of 200809L or greater. So, let's try to recompile the program using _POSIX_C_
SOURCE instead:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> -D_POSIX_C_SOURCE=200809L str-posix.c -o str-posix

11. That worked just fine. Now, for the final—and possibly dangerous—solution. This
time, we'll recompile the program without setting any C-standard or any feature test
macros at all:

$> gcc -Wall -Wextra -pedantic str-posix.c \
> -o str-posix

12. No warning, so let's try to run it:

$> ./str-posix
b = Hello

13. How on earth could that work when we just had to define all of these macros and
standards? Well, it turns out that when we don't set any C-standard or any feature
test macros, the compiler sets a couple of standards of its own. To prove this, and
to know how your compiler works, let's write the following program. Name it
which-c.c. This program will print the C-standard that is being used and any
commonly defined feature test macros:

#include <stdio.h>

int main(void)
{

90 Diving Deep into C in Linux

 #ifdef __STDC_VERSION__
 printf("Standard C version: %ld\n",
 __STDC_VERSION__);
 #endif
 #ifdef _XOPEN_SOURCE
 printf("XOPEN_SOURCE: %d\n",
 _XOPEN_SOURCE);
 #endif
 #ifdef _POSIX_C_SOURCE
 printf("POSIX_C_SOURCE: %ld\n",
 _POSIX_C_SOURCE);
 #endif
 #ifdef _GNU_SOURCE
 printf("GNU_SOURCE: %d\n",
 _GNU_SOURCE);
 #endif
 #ifdef _BSD_SOURCE
 printf("BSD_SOURCE: %d\n", _BSD_SOURCE);
 #endif
 #ifdef _DEFAULT_SOURCE
 printf("DEFAULT_SOURCE: %d\n",
 _DEFAULT_SOURCE);
 #endif

 return 0;
}

14. Let's compile and run this program without setting any C standard or feature test
macros:

$> gcc -Wall -Wextra -pedantic which-c.c -o which-c
$> ./which-c
Standard C version: 201710
POSIX_C_SOURCE: 200809
DEFAULT_SOURCE: 1

Defining feature test macros 91

15. Let's try to specify that we want to use C-standard C99, and recompile which.c.
What will happen here is that the compiler will enforce a strict C standard mode
and disable the default feature test macros it might otherwise have set:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> which-c.c -o which-c
$> ./which-c
Standard C version: 199901

16. Let's see what happens when we set _XOPEN_SOURCE to 600:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> -D_XOPEN_SOURCE=600 which-c.c -o which-c
$> ./which-c
Standard C version: 199901
XOPEN_SOURCE: 600
POSIX_C_SOURCE: 200112

How it works…
In Steps 1-10, we saw what happened to our program when we used different standards
and feature test macros. We also noticed that it surprisingly worked without specifying
any C standard or feature test macro. That's because GCC—and other compilers as
well—set a lot of these features and standards by default. But we can't count on it. It's
always safer to specify it ourselves; that way, we know it will work.

In Step 13, we wrote a program to print out the feature test macros used at compile
time. To prevent the compiler from generating errors if a feature test macro was not set,
we wrapped all the printf() lines inside #ifdef and #endif statements. These
statements are if statements for the compiler, not the resulting program. For example,
let's take the following line:

#ifdef _XOPEN_SOURCE
 printf("XOPEN_SOURCE: %d\n", _XOPEN_SOURCE);
#endif

If _XOPEN_SOURCE is not defined, then this printf() line isn't included after the
preprocessing stage of compilation. If _XOPEN_SOURCE, on the other hand, is defined,
it will be included. We will cover what preprocessing is in the next recipe.

92 Diving Deep into C in Linux

In Step 14, we saw that on my system, the compiler sets _POSIX_C_SOURCE to 200809.
But the manual said that we should set _XOPEN_SOURCE to 500 or greater. But it still
worked—how come?

If we read the manual page for the feature test macros (man feature_test_macros),
we see that _XOPEN_SOURCE of a value greater than 700 has the same effect as setting
_POSIX_C_STANARD to 200809 or greater. And since GCC has set _POSIX_C_
STANDARD to 200809 for us, this has the same impact as _XOPEN_SOURCE 700.

In Step 15, we learned that the compiler enforces a strict C standard when we specify
a standard—for example, -std=c99. This is the reason why str-posix.c failed to
run (and got warning messages during compilation). The strdup() function isn't
a standard C function; it's a POSIX function. That's why we needed to include some
POSIX standard to use it. When the compiler uses a strict C standard, no other features
are enabled. This enables us to write code that is portable to all systems with a C compiler
that supports C99.

In Step 16, we specified _XOPEN_SOURCE 600 when we compiled the program—doing
so also sets _POSIX_C_STANDARD to 200112. We can read about this in the manual
page (man feature_test_macros). From the manual: "[When] _XOPEN_SOURCE
is defined with a value greater than or equal to 500 […] the following macros are implicitly
defined, _POSIX_C_SOURCE […]".

But what do feature macros do, then? How do they modify the code?

The header files on the system are full of #ifdef statements, enabling and disabling
various functions and features, depending on which feature test macros are set. For
example, in our case with strdup(), the string.h header file has the strdup()
function wrapped in #ifdef statements. Those statements check if either _XOPEN_
SOURCE or some other POSIX standard is defined. If no such standards are specified,
then strdup() is not visible. That is how feature test macros work.

But why did the program end with a segmentation fault in Step 3 on some Linux
distribution and not others? As already mentioned, the strdup() function is there,
but without the feature test macro there's no declaration for it. What happens then is
undefined. It could work because of some specific implementation detail, but it could also
not work. When we program, we should always avoid undefined behavior. Just because
something works on this specific computer, on this Linux distribution, with this compiler
version, on this particular night when it's a full moon, this doesn't guarantee that it will
work on someone else's computer on some other night. Therefore, we should always strive
to write correct code following a specific standard. That way, we avoid undefined behavior.

Looking at the four stages of compilation 93

There's more…
All of these feature test macros we have defined correspond to a POSIX or other standard
of some sort. The idea behind these standards is to create a uniform programming
interface among the different Unix versions and Unix-like systems out there.

For anyone who wants to dig deep into standards and feature test macros, there are some
excellent manual pages available. Just to mention a few:

• man 7 feature_test_macros (Here, you can read all about which feature test
macros correspond to which standard, such as POSIX, Single Unix Specification,
XPG (X/Open Portability Guide), and so on.)

• man 7 standards (Even more information about the standards)

• man unistd.h

• man 7 libc

• man 7 posixoptions

Looking at the four stages of compilation
When we generally speak of compilation, we mean the entire process of turning code
into a running binary program. But there are actually four steps involved in compiling
a source code file into a running binary program, and it's just one of these steps that's
called compilation.

Knowing about these four steps, and how to extract the intermediate files, enables us to do
everything from writing efficient Makefiles to writing shared libraries.

Getting ready
For this recipe, we will write three small C source code files. You can also download
them from https://github.com/PacktPublishing/Linux-System-
Programming-Techniques/tree/master/ch3. You'll also need the GCC compiler
that we installed in Chapter 1, Getting the Necessary Tools and Writing Our First Linux
Programs.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3

94 Diving Deep into C in Linux

How to do it…
In this recipe, we will create a small program and then manually compile it by executing
each step individually, using the compiler's flags. We will also look at the files generated
from each step. The program we will write is intentionally small so that we can look at
the resulting code without too much clutter. The program we will write will simply return
a cubed number—in our case, 4 cubed.

1. The first source code file for this recipe is a file called cube-prog.c. This will be
the source code file with the main() function in it:

#include "cube.h"
#define NUMBER 4

int main(void)
{
 return cube(NUMBER);
}

2. Now, we write the function for cube() in a file called cubed-func.c:

int cube(int n)
{
 return n*n*n;
}

3. And finally, we write the header file, cube.h. This is just the function prototype:

int cube(int n);

4. Before we build the program step by step, we first compile it as usual since we
haven't covered how to compile a program that consists of several files yet. To
compile a program that's made up of more than one source file, we simply list
them at the GCC command line. Note, however, that we don't list the header file
here. Since the header file is included with a #include line, the compiler already
knows about it.

This is how we compile a program with several files:
$> gcc -Wall -Wextra -pedantic -std=c99 \
> cube-prog.c cube-func.c -o cube

Looking at the four stages of compilation 95

5. And then, let's run it, and also check the return value:

$> ./cube
$> echo $?
64

6. Now, we begin to build the program step by step instead. First, we delete the binary
file already produced:

$> rm cube

7. Now, let's begin compiling the program step by step. The first step is what is called
the preprocessor. The preprocessor makes textual changes to the code—for
example, it places the content of #include files in the program itself:

$> gcc -E -P cube-prog.c -o cube-prog.i
$> gcc -E -P cube-func.c -o cube-func.i

8. Now, we have two preprocessed files (cube-prog.i and cube-func.i). Let's
take a look at them with cat or an editor. I have highlighted the changes in the
following code snippet. Note how the #include statement has been replaced by
the code from the header file, and how the NUMBER macro has been replaced by a 4.

First, we take a look at cube-prog.i:
int cube(int n);
int main(void)
{
 return cube(4);
}

Then, let's look at cube-func.i. Nothing has changed here:
int cube(int n)
{
 return n*n*n;
}

9. The second step is the compilation. It is here that our preprocessed files are
translated into assembly language. The resulting assembly files will look different
on different machines and architectures:

$> gcc -S cube-prog.i -o cube-prog.s
$> gcc -S cube-func.i -o cube-func.s

96 Diving Deep into C in Linux

10. Let's take a look at these files as well, but do note that these files can be different
on your machine.

First, we take a look at cube-prog.s:
 .file "cube-prog.i"
 .text
 .globl main
 .type main, @function
main:
.LFB0:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 movl $4, %edi
 call cube@PLT
 popq %rbp
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size main, .-main
 .ident "GCC: (Debian 8.3.0-6) 8.3.0"
 .section .note.GNU-stack,"",@progbits

Now, we take a look at cube-func.s:
 .file "cube-func.i"
 .text
 .globl cube
 .type cube, @function
cube:
.LFB0:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 movl %edi, -4(%rbp)
 movl -4(%rbp), %eax

Looking at the four stages of compilation 97

 imull -4(%rbp), %eax
 imull -4(%rbp), %eax
 popq %rbp
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size cube, .-cube
 .ident "GCC: (Debian 8.3.0-6) 8.3.0"
 .section .note.GNU-stack,"",@progbits

11. The third step is called assembly. This step is where the assembly source code files
are built to what are called object files:

$> gcc -c cube-prog.s -o cube-prog.o
$> gcc -c cube-func.s -o cube-func.o

12. Now, we have two object files. We can't look at them since they are binary files,
but we can use the file command to see what they are. The description here can
also differ on different architectures—for example, 32-bit x86 machines, ARM64,
and so on:

$> file cube-prog.o
cube-prog.o: ELF 64-bit LSB relocatable, x86-64, version
1 (SYSV), not stripped
$> file cube-func.o
cube-func.o: ELF 64-bit LSB relocatable, x86-64, version
1 (SYSV), not stripped

13. Now, we are at the fourth and final step. This is where we combine all the object files
into a single binary file. This step is called the linker:

$> gcc cube-prog.o cube-func.o -o cube

14. Now, we have a binary file ready, called cube. Let's see what file has to say
about it:

$> file cube
cube: ELF 64-bit LSB pie executable, x86-64,
version 1 (SYSV), dynamically linked, interpreter /
lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0,
BuildID[sha1]=53054824b4a495b7941cbbc95b550e7670481943,
not stripped

98 Diving Deep into C in Linux

15. And finally, let's run it to verify that it works:

$> ./cube
$> echo $?
64

How it works…
In Step 7 (the first step in the process), we used the -E and -P options to produce
preprocessed files. The -E option makes GCC stop after preprocessing the files— that is,
creating preprocessed files. The -P option is an option for the preprocessor not to include
line markers in the preprocessed files. We want clean output files.

All #include statements include the content of those files in the preprocessed
files. Likewise, any macros—such as NUMBERS—are replaced by the actual number.
Preprocessed files usually have a .i extension.

In Step 9 (the second step in the process), we compiled the preprocessed files. The
compilation step creates assembly language files. For this step, we used the -S option,
which tells GCC to stop after the compilation process is complete. Assembly files usually
have a .s extension.

In Step 11 (the third step in the process), we assembled the files. This step is also called the
assembly stage. This step takes the assembly language files and makes object files. We will
use object files later in this book when we create libraries. The -c option tells GCC to stop
after the assembly stage (or after compiling). Object files usually have a .o extension.

Then, in Step 13 (the fourth and final step), we linked the files, creating a single binary file
that we can execute. No options were needed for this since the default action GCC takes is
to run through all the steps and, finally, link the files to a single binary file. After we linked
the files, we got a running binary file called cube:

Compiling with Make 99

Figure 3.2 – The four stages of compilation

Compiling with Make
We have already seen some example usage with Make. Here, we will recap on what
Make is and how we can use it to compile programs so that we don't have to type GCC
commands.

Getting ready
All you need for this recipe is the GCC compiler and Make. You have already installed
these tools if you followed Chapter 1, Getting the Necessary Tools and Writing Our First
Linux Programs.

100 Diving Deep into C in Linux

How to do it…
We will write a small program that calculates the circumference of a circle, given the
radius. We will then use the Make tool to compile it. The Make tool is smart enough to
figure out the name of the source code file.

1. Write the following code and save it as circumference.c. This program is built
on the same code as mph-to-kph.c from the previous chapter:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define PI 3.14159

int main(void)
{
 char radius[20] = { 0 };

 while(fgets(radius, sizeof(radius), stdin)
 != NULL)
 {
 /* Check if radius is numeric
 * (and do conversion) */
 if(strspn(radius,"0123456789.\n") ==
 strlen(radius))
 {
 printf("%.5f\n", PI*(atof(radius)*2));
 }
 /* If radius is NOT numeric, print error
 * and return */
 else
 {
 fprintf(stderr, "Found non-numeric "
 "value\n");
 return 1;
 }
 }
 return 0;
}

2. Now, let's compile it with Make:

$> make circumference
cc circumference.c -o circumference

Compiling with Make 101

3. If we try to recompile it, it will only tell us that the program is up to date:

$> make circumference
make: 'circumference' is up to date

4. Add some more decimal places to the PI macro, making it 3.14159265 instead.
The fourth line in the code should now look like this:

#define PI 3.14159265

Save the file once you have made the changes.

5. If we try to recompile the program now it will do so, since it notices that the code
has changed:

$> make circumference
cc circumference.c -o circumference

6. Let's try out the program:

$> ./circumference
5
31.41593
10
62.83185
103.3
649.05304
Ctrl+D

How it works…
The Make tool is a tool to ease the compilation of larger projects, but it is useful even for
small programs like this.

When we execute make circumference, it assumes that we want to build a program
called circumference and that its source code file is circumference.c. It also
assumes that our compiler command is cc (cc is a link to gcc on most Linux systems),
and compiles the program using the cc circumference.c -o circumference
command. This command is the same that we run for ourselves when we compile
a program, except that we have used the real name—gcc—instead. In the next recipe,
we will learn how to change this default command.

The Make tool is also smart enough not to recompile a program unless it's necessary. This
feature comes in handy on massive projects, where it can take several hours to recompile.
Only recompiling the changed files saves a lot of time.

102 Diving Deep into C in Linux

Writing a generic Makefile with GCC options
In the previous recipe, we learned that Make compiles a program using the cc prog.c
-o prog command. In this recipe, we will learn how to change that default command.
To control the default command, we write a Makefile and place that file in the same
directory as the source file.

Writing a generic Makefile for all your projects is an excellent idea since you can then
enable -Wall, -Wextra, and -pedantic for all files you compile. With these three
options enabled, GCC will warn you about many more errors and irregularities in your
code, making your programs better. That is what we will do in this recipe.

Getting ready
In this recipe, we will use the circumference.c source code file that we wrote
in the previous recipe. If you don't already have the file on your computer, you can
download it from https://github.com/PacktPublishing/Linux-System-
Programming-Techniques/blob/master/ch3/circumference.c.

How to do it…
Here, we will write a generic Makefile that you can use for all your projects to ensure your
programs follow the C99 standard and don't contain any apparent errors.

1. Write the following code and save it as a file called Makefile in the same directory
as circumference.c. This Makefile sets your default compiler and some
common compiler options:

CC=gcc
CFLAGS=-Wall -Wextra -pedantic -std=c99

2. Now, remove the circumference binary file if you still have it from the previous
recipe. If you don't have it, skip ahead.

3. Now, compile the circumference program with Make, and notice how the
compilation command has changed from the previous recipe. The options we just
specified in the Makefile should now be applied:

$> make circumference
gcc -Wall -Wextra -pedantic -std=c99 circumference.c
-o circumference

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch3/circumference.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch3/circumference.c

Writing a simple Makefile 103

4. Run the program to make sure it works:

$> ./circumference
5
31.41590
10
62.83180
15
94.24770
Ctrl+D

How it works…
The Makefile we created controls the Make behavior. Since this Makefile isn't written for
any particular project, it works for all programs in the same directory.

On the first line of the Makefile, we set the compiler to gcc using the special CC variable.
On the second line, we set the flags to the compiler using the special CFLAGS variable.
We set this variable to -Wall -Wextra -pedantic -std=c99.

When we execute make, it puts together the CC variable and the CFLAGS variable, which
results in a gcc -Wall -Wextra -pedantic -std=c99 command. And, as we
learned in the previous recipe, Make assumes the binary name we wish to use is the name
we gave it. It also assumes the source code file has the same name, but with a .c ending.

Even on a small project like this with only one file, Make saves us from typing a long GCC
command every time we want to recompile it. And that is what Make is all about: saving
us time and energy.

There's more…
If you want to learn more about Make, you can read man 1 make. There is even more
detailed information in info make. If you don't have the info command, you'll need
to install it first using your package manager as root. The package is called info on most
Linux distributions.

Writing a simple Makefile
In this recipe, we will learn how to write a Makefile for a specific project. The Makefile we
wrote in the previous recipe was generic, but this will be for a single project only. Knowing
how to write Makefiles for your projects will save you a lot of time and energy as you start
making more complex programs.

104 Diving Deep into C in Linux

Also, including a Makefile in a project is considered good manners. The person
downloading your project usually has no idea how to build it. That person only wants to
use your program, not be forced to understand how things fit together and how to compile
it. After downloading, for example, an open source project, they would expect to be able
just to type make and make install (or possibly also some form of configuration
script, but we won't cover that here). The program should then be ready to run.

Getting ready
For this recipe, we will use the cube program we made in the Looking at the four stages of
compilation recipe in this chapter. The source code files we will use are cube-prog.c,
cube-func.c, and cube.h. They can all be downloaded from https://github.
com/PacktPublishing/Linux-System-Programming-Techniques/tree/
master/ch3.

Save these three files in a new and separate directory, preferably called cube. Make sure
you are inside that directory when you create the Makefile.

How to do it…
Before we start writing the code, make sure you are in the directory where you saved the
source code files for the cube program.

1. Let's create the Makefile for the cube program. Save the file as Makefile. In this
Makefile we have only one target, cube. Below the target, we have the command
that compiles the program:

CC=gcc
CFLAGS=-Wall -Wextra -pedantic -std=c99

cube: cube.h cube-prog.c cube-func.c
 $(CC) $(CFLAGS) -o cube cube-prog.c cube-func.c

2. Now, it's time to try to build the program using Make:

$> make
gcc -Wall -Wextra -pedantic -std=c99 -o cube cube-prog.c
cube-func.c

3. And finally, we execute the program. Don't forget to also check the return value:

$> ./cube
$> echo $?
64

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3

Writing a simple Makefile 105

4. If we try to rebuild the program now, it will say that everything is up to date, which
it is. Let's try it:

$> make
make: 'cube' is up to date.

5. But if we change something in one of the source code files, it will rebuild
the program. Let's change the NUMBER macro to 2. The second line in the
cube-prog.c file should now look like this:

#define NUMBER 2

6. Now, we can recompile the program with Make:

$> make
gcc -Wall -Wextra -pedantic -std=c99 -o cube cube-prog.c
cube-func.c

7. And then, let's view the changes that are made to our program:

$> ./cube
$> echo $?
8

8. Now, delete the cube program so that we can try to recompile it in the next step:

$> rm cube

9. Rename one of the source code files—for example, cube.h to cube.p:

$> mv cube.h cube.p

10. If we try to recompile it now, Make will protest that it's missing cube.h and refuse
to go any further:

$> make
make: *** No rule to make target 'cube.h', needed by
'cube'. Stop.

How it works…
We have already seen the first two lines in the Makefile. The first one, CC, sets the default
C compiler to gcc. The second one, CFLAGS, sets the flags we want to pass to the
compiler.

106 Diving Deep into C in Linux

The next line—the one that starts with cube:—is called a target. Right after the target,
on the same line, we list all the files that this target is dependent upon, which are all the
source code files and header files.

Below the target, we have an indented line with the following content:

$(CC) $(CFLAGS) -o cube cube-prog.c cube-func.c

This line is the command that will compile the program. $(CC) and $(CFLAGS) will
be replaced with the content of those variables, which is gcc and -Wall -Wextra
-pedantic -std=c99. Basically, we have just written what we would usually write at
the command line, but in a Makefile instead.

In the next recipe, we will learn how to leverage some of the smarter stuff in Make.

Writing a more advanced Makefile
In the previous recipe, we wrote a basic Makefile without using any of its more advanced
features. In this recipe, however, we will write a more advanced Makefile, using object
files, more variables, dependencies, and other fancy things.

Here, we will create a new program. The program will calculate the area of three different
objects: circles, triangles, and rectangles. Each calculation will be performed in its own
function, and every function will reside in its own file. On top of that, we will have
a function in a separate file for the help text. There will also be a header file that holds all
of the function prototypes.

Getting ready
This project will consist of a total of seven files. If you want, you can choose to download
all the files from the directory at https://github.com/PacktPublishing/
Linux-System-Programming-Techniques/tree/master/ch3/area.

Since we will create a Makefile for this project, I really recommend that you place all of the
project files in a new and separate directory.

You will also need the Make tool and the GCC compiler installed in Chapter 1, Getting the
Necessary Tools and Writing Our First Linux Programs.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3/area
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch3/area

Writing a more advanced Makefile 107

How to do it…
First of all, we write all of the code files required for this program. Then, we try to compile
the program using Make, and finally, we try to run it. Follow along.

1. Let's start by writing a main program file called area.c. This is the main part of
the program, and it contains the main() function:

#define _XOPEN_SOURCE 700
#include <stdio.h>
#include <unistd.h>
#include "area.h"

int main(int argc, char *argv[])
{
 int opt;
 /* Sanity check number of options */
 if (argc != 2)
 {
 printHelp(stderr, argv[0]);
 return 1;
 }
 /* Parse command-line options */
 while ((opt = getopt(argc, argv, "crth")) != -1)
 {
 switch(opt)
 {
 case 'c':
 if (circle() == -1)
 {
 printHelp(stderr, argv[0]);
 return 1;
 }
 break;
 case 'r':
 if (rectangle() == -1)
 {
 printHelp(stderr, argv[0]);
 return 1;
 }
 break;
 case 't':
 if (triangle() == -1)

108 Diving Deep into C in Linux

 {
 printHelp(stderr, argv[0]);
 return 1;
 }
 break;
 case 'h':
 printHelp(stdout, argv[0]);
 return 0;
 default:
 printHelp(stderr, argv[0]);
 return 1;
 }

2. Next, we write the header file, called area.h. This file contains all of the function
prototypes:

void printHelp(FILE *stream, char progname[]);
int circle(void);
int rectangle(void);
int triangle(void);

3. And now, add the help function in its own file, called help.c: (Shankar)

#include <stdio.h>
void printHelp(FILE *stream, char progname[])
{
 fprintf(stream, "\nUsage: %s [-c] [-t] [-r] "
 "[-h]\n"
 "-c calculates the area of a circle\n"
 "-t calculates the area of a triangle\n"
 "-r calculates the area of a rectangle\n"
 "-h shows this help\n"
 "Example: %s -t\n"
 "Enter the height and width of the "
 "triangle: 5 9\n"
 "22.500\n", progname, progname);
}

4. Now, let's write a function for calculating the area of a circle. We write this in a file
called circle.c:

#define _XOPEN_SOURCE 700
#include <math.h>
#include <stdio.h>

Writing a more advanced Makefile 109

int circle(void)
{
 float radius;
 printf("Enter the radius of the circle: ");
 if (scanf("%f", &radius))
 {
 printf("%.3f\n", M_PI*pow(radius, 2));
 return 1;
 }
 else
 {
 return -1;
 }
}

5. Next up is a function for calculating the area of a rectangle. We name this file
rectangle.c:

#include <stdio.h>

int rectangle(void)
{
 float length, width;
 printf("Enter the length and width of "
 "the rectangle: ");
 if (scanf("%f %f", &length, &width))
 {
 printf("%.3f\n", length*width);
 return 1;
 }
 else
 {
 return -1;
 }
}

6. And the last function is for calculating the area of a triangle. We name this file
triangle.c:

#include <stdio.h>

int triangle(void)

110 Diving Deep into C in Linux

{
 float height, width;
 printf("Enter the height and width of "
 "the triangle: ");
 if (scanf("%f %f", &height, &width))
 {
 printf("%.3f\n", height*width/2);
 return 1;
 }
 else
 {
 return -1;
 }
}

7. Now comes the exciting part: the Makefile. Note that the indentations in
a Makefile must be precisely one tab character. Note that the area target lists
all the object files using the OBJS variable. The command for this target, $(CC)
-o area $(OBJS) $(LIBS), links together all the object files into a single
binary, using what's called a linker. But since the linker depends on all the object
files, Make builds them first before linking:

CC=gcc
CFLAGS=-std=c99 -Wall -Wextra -pedantic
LIBS=-lm
OBJS=area.o help.o rectangle.o triangle.o circle.o
DEPS=area.h
bindir=/usr/local/bin

area: $(OBJS)
 $(CC) -o area $(OBJS) $(LIBS)

area.o: $(DEPS)

clean:
 rm area $(OBJS)

install: area
 install -g root -o root area $(bindir)/area

uninstall: $(bindir)/area
 rm $(bindir)/area

Writing a more advanced Makefile 111

8. Finally, we can try to compile this entire program by typing make. Note that you
must be in the same directory as the source code files and the Makefile. Notice here
that all the object files get compiled first, then they are linked in the final step:

$> make
gcc -std=c99 -Wall -Wextra -pedantic -c -o area.o
area.c
gcc -std=c99 -Wall -Wextra -pedantic -c -o help.o
help.c
gcc -std=c99 -Wall -Wextra -pedantic -c -o rectangle.o
rectangle.c
gcc -std=c99 -Wall -Wextra -pedantic -c -o triangle.o
triangle.c
gcc -std=c99 -Wall -Wextra -pedantic -c -o circle.o
circle.c
gcc -o area area.o help.o rectangle.o triangle.o circle.o
-lm

9. And now, let's try out the program. Test all the different functions:

$> ./area -c
Enter the radius of the circle: 9
254.469
$> ./area -t
Enter the height and width of the triangle: 9 4
18.000
$> ./area -r
Enter the length and width of the rectangle: 5.5 4.9
26.950
$> ./area -r
Enter the length and width of the rectangle: abcde

Usage: ./area [-c] [-t] [-r] [-h]
-c calculates the area of a circle
-t calculates the area of a triangle
-r calculates the area of a rectangle
-h shows this help
Example: ./area -t
Enter the height and width of the triangle: 5 9
22.500

112 Diving Deep into C in Linux

10. Now, let's pretend we have changed some part of the circle.c file by updating its
timestamp. We can update the timestamp of a file by running touch on it:

$> touch circle.c

11. Now, we rebuild the program. Compare the output from Step 8, where all the
object files were compiled. This time, the only file that gets recompiled is
circle.o. After the recompilation of circle.o, the binary is relinked into
a single binary:

$> make
gcc -std=c99 -Wall -Wextra -pedantic -c -o circle.o
circle.c
gcc -o area area.o help.o rectangle.o triangle.o circle.o
-lm

12. Now, let's try to install the program on the system by using the install target.
For this to succeed, you need to run it as root using either su or sudo:

$> sudo make install
install -g root -o root area /usr/local/bin/area

13. Let's uninstall the program from the system. It's good practice to include an
uninstall target, especially if the install target installs lots and lots of files
on the system:

$> sudo make uninstall
rm /usr/local/bin/area

14. Let's also try the target called clean. This will delete all the object files and the
binary file. It's good practice to include a target for cleaning up object files and other
temporary files:

$> make clean
rm area area.o help.o rectangle.o triangle.o circle.o

How it works…
Even though the program example for this recipe was rather big, it's a pretty
straightforward program. There are some parts of it, though, that are worth
commenting on.

Writing a more advanced Makefile 113

All of the C files get compiled to object files independently of each other. That's the reason
why we need to include stdio.h in every single file that uses printf() or scanf().

In the circle.c file, we have included the math.h header file. This header file is for the
pow() function. We also defined _XOPEN_SOURCE with a value of 700. The reason is
that the M_PI macro that holds the value of Pi isn't included in the C standard but it is,
on the other hand, included in the X/Open standard.

The Makefile
Now, it's time to discuss the Makefile in greater detail. We have already seen the first
two variables, CC and CFLAGS, in previous recipes, but notice that we haven't used the
CFLAGS variable anywhere in the code. We don't need to. CFLAGS is automatically
applied when compiling the object files. If we had applied the CFLAGS variable manually
after the CC variable in the command for the area target, those flags would also have
been used for the linking process. In other words, the command we have specified for the
target called area is just for the linking stage. The compilation of the object files happens
automatically. Since the object files are a dependency, Make tries to figure out how to
build them all on its own.

When we run Make without specifying a target, Make will run the first target in the
Makefile. That's the reason why we put the area target first in the file, so that when we
simply type make, the program is built.

Then, we have LIBS=-lm. This variable is added to the end of the area target to link
against the math library, but do note that it is only the linker that makes use of this. Look
at the output in Step 8. All the object files are compiled as usual, but at the last stage, when
the linker assembles all the object files in to a single binary, -lm is added at the end.

Then, we have the following line:

OBJS=area.o help.o rectangle.o triangle.o circle.o

This variable lists all the object files. This is where Make gets really smart. The first place
where we use OBJS is the dependency for the area target. To put together the area
binary program, we need all of the object files.

The next place where we use OBJS is in the build command for the area binary. Note
that we don't specify the C files here, only the object files (via OBJS). Make is smart
enough to figure out that to build the binary, we first need the object files, and to compile
the object files, we need the C files with the same names as the object files. Therefore, we
don't need to spell out the entire command with all the source code files. Make figures this
out all on its own.

114 Diving Deep into C in Linux

The next new variable is DEPS. In this variable, we list the header file required to build the
area.o object file. We specify this dependency on the area.o: $(DEPS) line. This
target doesn't contain any command; we just use it to verify the dependency.

The final variable is bindir, which contains the full path to where the binary file should
be installed. This variable is used in the install and uninstall targets, which we will
discuss next.

We have already covered the area and area.o targets in the discussion about variables.
So, let's move on to the clean, install, and uninstall targets. These targets are
common in most projects. It's considered good manners to include them. They have
nothing to do with compiling and building the program, but they help the end user to
install and uninstall the software on the system. The clean target helps the end user in
keeping the source code directory clean from temporary files such as object files. The
commands under each of these targets are typical Linux commands, combined with the
variables we have already covered.

The install command used in the install target copies the area file to where
bindir points (/usr/local/bin in our case). It also sets the user and group for the
installed file.

Note that we have specified dependencies for the install and uninstall targets
(the dependency is the file that is to be installed or removed). This makes sense; there
is no need to run these commands if the file doesn't exist. But for the clean target, we
didn't specify any dependency. It could happen that the user has already deleted some of
the object files themself. When they run make clean, they don't want the entire target
to fail but to continue removing any leftover files.

4
Handling Errors in

Your Programs
In this chapter, we will learn about error handling in C programs in Linux—specifically,
how to catch errors and print relevant information about them. We will also learn how
to incorporate this knowledge with what we have previously learned about stdin, stdout,
and stderr.

We will continue on the path of system calls and learn about a particular variable called
errno. Most system calls use this variable to save specific error values when an error
occurs.

Handling errors in your programs will make them more stable. Errors do occur; it's just
a matter of handling them correctly. A well-handled error does not seem like an error
to the end user. For example, instead of letting your program crash in some mysterious
way when the hard drive is filled, it's better to catch the error and print a human-readable
and friendly message about it. That way, it merely appears as information to the end user
and not an error. That, in turn, will make your programs seem friendlier and, most of all,
more stable.

In this chapter, we will cover the following recipes:

• Why error handling is important in system programming

• Handling some common errors

116 Handling Errors in Your Programs

• Error handling and errno

• Handling more errno macros

• Using errno with strerror()

• Using errno with perror()

• Returning an error value

Let's get started!

Technical requirements
For this chapter, you'll need the GCC compiler, the Make tool, and all the manual pages
(dev and POSIX) installed. We covered how to install GCC and Make in Chapter 1,
Getting the Necessary Tools and Writing Our First Linux Programs, and the manual pages
in Chapter 3, Diving Deep into C in Linux. You will also need the generic Makefile that
we created in Chapter 3, Diving Deep into C in Linux. Place that file in the same directory
as the code you are writing for this chapter. You'll find a copy of that file—along with
all other source code files we will write here—in the GitHub folder for this chapter, at
https://github.com/PacktPublishing/Linux-System-Programming-
Techniques/tree/master/ch4.

Check out the following link to see the Code in Action video:
https://bit.ly/3iE1W17

Why error handling is important in system
programming
This recipe is a short introduction to what error handling is. We will also see an example
of a common error: insufficient access rights. Knowing these basic skills will make you
a better programmer in the long run.

Getting ready
For this recipe, you'll only need the GCC compiler, preferably installed via the
meta-package or group install, as we covered in Chapter 1, Getting the Necessary
Tools and Writing Our First Linux Programs. Make sure that the Makefile mentioned
in the Technical requirements section is placed in the same directory as the source code
for this recipe.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch4
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch4
https://bit.ly/3iE1W17

Why error handling is important in system programming 117

How to do it…
Follow these steps to explore a common error and how to handle it:

1. First, we will write the program without any error handling (except the usual
sanity checks for the arguments). Write the following program and save it as
simple-touch-v1.c. The program will create an empty file that the user
specifies as an argument. The PATH_MAX macro is new to us. It contains the
maximum number of characters we can use in a path on our Linux system. It's
defined in the linux/limits.h header file:

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <linux/limits.h>

int main(int argc, char *argv[])
{
 char filename[PATH_MAX] = { 0 };
 if (argc != 2)
 {
 fprintf(stderr, "You must supply a filename "
 "as an argument\n");
 return 1;
 }
 strncpy(filename, argv[1], PATH_MAX-1);
 creat(filename, 00644);
 return 0;
}

2. Compile the program:

$> make simple-touch-v1
gcc -Wall -Wextra -pedantic -std=c99 simple-touch-v1.c
-o simple-touch-v1

3. Now, let's try to run the program and see what happens. If we don't give it any
arguments, it will print an error message and return 1. When we give it a file that
doesn't exist, it will create it with the permissions 644 (we'll cover permissions in the
next chapter):

$> ./simple-touch-v1
You must supply a filename as an argument
$> ./simple-touch-v1 my-test-file

118 Handling Errors in Your Programs

$> ls -l my-test-file
-rw-r--r-- 1 jake jake 0 okt 12 22:46 my-test-file

4. Let's see what happens if we try to create a file outside of our home directory; that
is, a directory where we don't have write permissions:

$> ./simple-touch-v1 /abcd1234

5. This seems to have worked since it didn't complain—but it hasn't. Let's try to check
out the file:

$> ls -l /abcd1234
ls: cannot access '/abcd1234': No such file or directory

6. Let's rewrite the file so that it prints an error message—Couldn't create file—to
stderr in case creat() fails to create a file. To accomplish this, we wrap the entire
call to creat() in an if statement. Name the new version simple-touch-
v2.c. The changes from the previous version are highlighted here:

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <linux/limits.h>

int main(int argc, char *argv[])
{
 char filename[PATH_MAX] = { 0 };
 if (argc != 2)
 {
 fprintf(stderr, "You must supply a filename "
 "as an argument\n");
 return 1;
 }
 strncpy(filename, argv[1], PATH_MAX-1);
 if (creat(filename, 00644) == -1)
 {
 fprintf(stderr, "Can't create file %s\n",
 filename);
 return 1;
 }
 return 0;
}

Why error handling is important in system programming 119

7. Compile the new version:

$> make simple-touch-v2
gcc -Wall -Wextra -pedantic -std=c99 simple-touch-v2.c
-o simple-touch-v2

8. Finally, let's rerun it, both with a file that we can create and one that we can't. When
we try to create a file that we don't have permission to, we will get an error message
stating Couldn't create file:

$> ./simple-touch-v2 hello123
$> ./simple-touch-v2 /abcd1234
Couldn't create file /abcd1234

How it works…
In this recipe, we used a system call, creat(), that creates a file on the filesystem. The
function takes two arguments: the first is the file to be created, while the second is which
file access mode the newly created file shall have. In this case, we set the file's access mode
to 644, which is read and write for the user who owns the file, and read for the owner's
group and all others. We will cover file access modes in more depth in Chapter 5, Working
with File I/O and Filesystem Operations.

Nothing "bad" will happen if it can't create the file we ask it to create. It just returns -1
to the calling function (main() in this case). This means that in the first version of our
program, it seems like everything has worked just fine and that the file has been created
when, in fact, it hasn't. It's up to us, as programmers, to catch that return code and act on
it. We can find the return values of the function in its manual page, man 2 creat.

In the second version of the program, we added an if statement to check for -1. If the
function returns -1, an error message is printed to stderr, and 1 is returned to the shell.
We have now informed both the user and any programs that might depend on this
program to create a file.

Fetching the return values of functions is the most common—and most
straightforward—way to check for errors. We should all make this a habit.
As soon as we use some function, we should check its return value (as long as it's
reasonable, of course).

120 Handling Errors in Your Programs

Handling some common errors
In this recipe, we will look at some common errors we can handle. Knowing what errors
to look for is step one of mastering error handling. A police officer can't catch the bad
guys if they don't know which crimes to look for.

We will look at both errors that can occur due to resource limitations on a computer,
permission errors, and mathematical errors. It's important to remember, though, that
most functions return a special value (often -1 or some predefined value) when errors
occur. The actual data is returned when no errors occur.

We will also briefly touch on the subject of handling buffer overflows. Buffer overflows
are a vast subject that deserves a book of its own, but some short examples can help.

Getting ready
In this recipe, we'll write shorter code samples and compile them with GCC and Make.
We'll also read some man pages from the POSIX Programmer's Manual. If you are using
Debian or Ubuntu, you have to install these manual pages first, which we did in the
Getting information about Linux- and Unix-specific header files section of Chapter 3, Diving
Deep into C in Linux.

How to do it…
The easiest way to find errors that are most likely to occur when using a specific function
is to read the RETURN VALUE section of the function's manual page. Here, we will look
at some examples:

1. Most system calls return -1 when an error occurs, and most—but not all—of
these errors have something to do with resource limitations or access rights. For
example, take a look at the manual pages for these system call functions: creat(),
open(), and write(). Look under the RETURN VALUE heading. Note that all
of these return -1 on an error and set something called errno with more specific
information. We will cover errno later in this chapter.

Handling some common errors 121

2. Now, take a look at the manual page for the power function, pow(). Scroll down
to the RETURN VALUE header. There are a lot of different possible return values.
But since the pow() function returns the answer to a calculation, it can't return 0
or -1 if an error occurs; this could be the answer to some calculation. Instead, some
special numbers are defined that are referred to as HUGE_VAL, HUGE_VALF, and
HUGE_VALL. On most systems, though, these are defined as infinity. However, we
can still use these macros to test for them, as shown in the following example. Name
the file huge-test.c:

#include <stdio.h>
#include <math.h>

int main(void)
{
 int number = 9999;
 double answer;
 if ((answer = pow(number, number)) == HUGE_VAL)
 {
 fprintf(stderr, "A huge value\n");
 return 1;
 }
 else
 {
 printf("%lf\n", answer);
 }
 return 0;
}

3. Compile the program and test it. Remember to link to the math library with -lm:

$> gcc -Wall -Wextra -pedantic huge-test.c \
> -o huge-test -lm
$> ./huge-test
A huge value

122 Handling Errors in Your Programs

4. Other errors that can occur that don't give us return values are mostly overflow
errors. This is especially true when handling user input. User input should always
be handled carefully. Most string functions have an equivalent n function, which
is safer. For example, strcat() has strncat(), strdup() has strndup(),
and so on. Use these whenever possible. Write the following program and name it
str-unsafe.c:

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 char buf[10] = { 0 };
 strcat(buf, argv[1]);
 printf("Text: %s\n", buf);
 return 0;
}

5. Now, compile it using Make (and the Makefile that we have placed in this directory).
Notice that we will get a warning from the compiler here since we aren't using the
argc variable. This warning comes from the -Wextra option to GCC. However,
this is just a warning stating that we never used argc in our code, so we can ignore
this message. Always read the warning messages; sometimes, things may be more
severe:

$> make str-unsafe
gcc -Wall -Wextra -pedantic -std=c99 str-unsafe.c -o
str-unsafe
str-unsafe.c: In function 'main':
str-unsafe.c:4:14: warning: unused parameter 'argc'
[-Wunused-parameter]
 int main(int argc, char *argv[])
          ~~~~^~~~

6. Now, test this with different input lengths. If we don't provide any input at all or if 
we give it too much input (more than 9 characters), a segmentation fault will occur:

$> ./str-unsafe 
Segmentation fault
$> ./str-unsafe hello
Text: hello
$> ./str-unsafe "hello! how are you doing?"



Handling some common errors     123

Text: hello! how are you doing?
Segmentation fault

7. Let's rewrite the program. First, we must make sure the user typed in an argument; 
second, we must replace strcat() with strncat(). Name the new version 
str-safe.c:

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
   if (argc != 2)
   {
      fprintf(stderr, "Supply exactly one "
         "argument\n");
      return 1;
   }
   char buf[10] = { 0 };
   strncat(buf, argv[1], sizeof(buf)-1);
   printf("Test: %s\n", buf);
   return 0;
}

8. Compile it. This time, we won't get a warning about argc since we're using it in  
the code:

$> make str-safe
gcc -Wall -Wextra -pedantic -std=c99    str-safe.c   -o 
str-safe

9. Let's run it with various input lengths. Notice how the long text gets cut off at the 
ninth character, preventing a segmentation fault. Also, note that we have handled 
the segmentation fault on an empty input by requiring precisely one argument:

$> ./str-safe 
Supply exactly one argument
$> ./str-safe hello
Text: hello
$> ./str-safe "hello, how are you doing?"
Text: hello, ho
$> ./str-safe asdfasdfasdfasdfasdfasdfasdfasdf
Text: asdfasdfa



124     Handling Errors in Your Programs

How it works…
In Step 2, we looked at some manual pages to get a feel for what kind of errors we  
can expect to handle when dealing with them. Here, we learned that most system calls 
return -1 on errors and that most errors have something to do with either permissions  
or system resources.

In Steps 2 and 3, we saw how math functions can return special numbers on errors  
(since the usual numbers—0, 1, and -1—can be valid answers to a calculation).

In Steps 4 to 9, we briefly touched on the subject of handling user input and buffer 
overflows. Here, we learned that functions such as  strcat(), strcpy(), and 
strdup() are unsafe since they copy whatever they get, even though the destination 
buffer doesn't have enough space for it. When we gave the program a string longer than 
10 characters (nine actually, since the NULL character takes up one place), the program 
crashed with a segmentation fault. 

These str functions have equivalent functions with n characters in their name; for  
example, strncat(). These functions only copy the size given to them as the third 
argument. In our example, we specified the size as sizeof(buf)-1, which in our 
program is 9. The reason we used one less than the actual size of buf is to make room  
for the null-terminating character (\0) at the end. It's better to use sizeof(buf)  
than to use a literal number. If we would have used the literal number 9 here and then 
changed the size of the buffer to 5, we would most likely forget to update the number  
for strncat().

Error handling and errno
Most of the system call functions in Linux and other UNIX-like systems set a special 
variable called errno when an error occurs. This way, we get a general error code from  
the return value (often -1) and then more specific information about what went wrong  
by looking at the errno variable.

In this recipe, we'll learn what errno is, how to read values from it, and when it is set. 
We'll also see an example use case of errno. Learning about errno is imperative to 
system programming, primarily since it's used in conjunction with system calls.

The next few recipes in this chapter are closely tied to this recipe. In this recipe, we'll learn 
about errno; in the following three recipes, we'll learn how to interpret the error codes 
we get from errno and print human-readable error messages.



Error handling and errno     125

Getting ready
You'll need the same components for this recipe that we used in the previous one; that is, 
the GCC compiler, the Make tool, and the POSIX Programmer's Manual, all of which we 
have already installed. If not, see Chapter 1, Getting the Necessary Tools and Writing Our 
First Linux Programs, and the Getting information about Linux- and UNIX-specific header 
files section of Chapter 3, Diving Deep into C in Linux.

How to do it…
In this recipe, we'll continue building on simple-touch-v2.c from the first recipe in 
this chapter. Here, we'll extend it so that it prints some more useful information if it can't 
create a file:

1. Write the following code into a file and save it as simple-touch-v3.c. In this 
version, we'll use the errno variable to check if the error is caused by a permission 
error (EACCES) or some other, unknown error. The changed code has been 
highlighted here:

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <linux/limits.h>

int main(int argc, char *argv[])
{
   char filename[PATH_MAX] = { 0 };
   if (argc != 2)
   {
      fprintf(stderr, "You must supply a filename "
         "as an argument\n");
      return 1;
   }
   strncpy(filename, argv[1], sizeof(filename)-1);
   if ( creat(filename, 00644) == -1 )
   {
      fprintf(stderr, "Can't create file %s\n", 
         filename);
      if (errno == EACCES)
      {
         fprintf(stderr, "Permission denied\n");
      }



126     Handling Errors in Your Programs

      else
      {
         fprintf(stderr, "Unknown error\n");
      }
      return 1;
   }
   return 0;
}

2. Let's compile this version:

$> make simple-touch-v3
gcc -Wall -Wextra -pedantic -std=c99    simple-touch-v3.c   
-o simple-touch-v3

3. Finally, let's run the new version. This time, the program gives us more information 
about what went wrong. If it's a permission error, it will tell us that. Otherwise, it 
will print Unknown error:

$> ./simple-touch-v3 asdf
$> ls -l asdf
-rw-r--r-- 1 jake jake 0 okt 13 23:30 asdf
$> ./simple-touch-v3 /asdf
Can't create file /asdf
Permission denied
$> ./simple-touch-v3 /non-existent-dir/hello
Can't create file /non-existent-dir/hello
Unknown error

How it works…
The first difference we'll notice in this version is that we now include a header file called 
errno.h. This file is required if we wish to use the errno variable and the many error 
macros. One of these macros is EACCES, which we used in our new version.

The next difference is that we now use sizeof(filename)-1 instead of PATH_MAX-1 
for the size argument to strncpy(). This was something we learned in the previous 
recipe.

Then, we have the if (errno == EACCES) line, which checks the errno variable for 
EACCES. We can read about these macros, such as EACCES, in both man errno.h and 
man 2 creat. This particular macro means permission denied.  



Handling more errno macros     127

When we use errno, we should first check the return value from the function or system 
call, as we did here with the if statement around creat(). The errno variable is just 
like any other variable, meaning that it isn't cleared after the system call. If we were to 
check errno directly, before checking the function's return value, errno could contain 
an error code from a previous error.

In our version of touch, we only handle this specific error. Next, we have an else 
statement, which catches all other errors and prints an Unknown error message.

In Step 3, we generated an Unknown error message by trying to create a file in a 
directory that doesn't exist on our system. In the next recipe, we'll extend our program  
so that it can take more macros into account.

Handling more errno macros
We'll continue to handle more errno macros in our version of touch in this recipe.  
In the previous recipe, we managed to provoke an Unknown error message since we 
only handled permission denied errors. Here, we'll find out what exactly caused that error 
and what it is called. We'll then implement another if statement to handle it. Knowing 
how to find the correct errno macros will help you gain a deeper understanding of 
computing, Linux, system calls, and error handling.

Getting ready
Once again, we'll examine the manual pages to find the information we are looking for. 
The only things that are needed for this recipe are the manual pages, the GCC compiler, 
and the Make tool.

How to do it…
Follow these steps to complete this recipe:

1. Start by reading the manual page for creat() by using man 2 creat. Scroll 
down to the ERRORS heading. Read through the descriptions of the different 
macros. Eventually, you'll find one that talks about pathname does not exist. The 
name of that macro is ENOENT (short for Error No Entry).



128     Handling Errors in Your Programs

2. Let's implement a new if statement that handles ENOENT. Name the new version 
simple-touch-v4.c. The complete program is as follows. The changes from the 
previous version are highlighted here. Also, note that we have removed the brackets 
for some of the if statements in the highlighted code:

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <linux/limits.h>

int main(int argc, char *argv[])
{
   char filename[PATH_MAX] = { 0 };
   if (argc != 2)
   {
      fprintf(stderr, "You must supply a filename "
         "as an argument\n");
      return 1;
   }
   strncpy(filename, argv[1], sizeof(filename)-1);
   if ( creat(filename, 00644) == -1 )
   {
      fprintf(stderr, "Can't create file %s\n", 
         filename);
      if (errno == EACCES)
         fprintf(stderr, "Permission denied\n");
      else if (errno == ENOENT)
         fprintf(stderr, "Parent directories does "
            "not exist\n");
      else
         fprintf(stderr, "Unknown error\n");
      return 1;
   }
   return 0;
}

3. Compile the new version:

$> make simple-touch-v4
gcc -Wall -Wextra -pedantic -std=c99    simple-touch-v4.c   
-o simple-touch-v4



Using errno with strerror()     129

4. Let's run it and generate some errors. This time, it will print an error message when 
the directory does not exist:

$> ./simple-touch-v4 asdf123
$> ./simple-touch-v4 /hello
Can't create file /hello
Permission denied
$> ./simple-touch-v4 /non-existent/hello
Can't create file /non-existent/hello
Parent directories do not exist

How it works…
In this version, I removed the brackets from the inner if, else if, and else 
statements to save space. This is valid code if there is only one statement under each of the 
if, else if, and else. However, this is potentially dangerous since it's easy to make  
a mistake. If we were to write more statements in one of the if statements, those would 
not be a part of the if statement, even though it looks correct and compiles with no 
errors. The name for this is misleading indentation. The indentation fools the brain, 
thinking it's right.

The next new thing in the code is the else if (errno == ENOENT) line and the 
lines below it. This is where we handle the ENOENT error macro.

There's more…
Almost all of the functions listed in man 2 syscalls set the errno variable. Take 
a look at some of the manual pages for these functions and scroll down to RETURN 
VALUE and ERRORS. Here you'll find which errno macros the different functions sets.

Also, read man errno.h, which contains useful information about these macros.

Using errno with strerror()
Instead of looking up every possible errno macro and figuring out which ones apply and 
what they mean, it's easier to use a function called strerror(). This function converts 
the errno code into a readable message. Using strerror() is much faster than 
implementing everything ourselves. It's a lot safer, too, since there's less of a risk that we 
mess something up. Whenever there's a function available to ease the manual work for us, 
we should use it.



130     Handling Errors in Your Programs

Do note that this function is meant to convert the errno macro into a readable error 
message. If we want to handle a particular error in some specific way, we still need to use 
the actual errno value.

Getting ready
The requirements from the previous recipe apply to this recipe. This means we need the 
GCC compiler, the Make tool (along with the Makefile), and the manual pages.

How to do it…
In this recipe, we'll continue developing our own version of touch. We'll continue 
from the previous version. This time, we will rewrite the if statements we made for the 
different macros and use strerror() instead. Let's get started:

1. Write the following code and save it as simple-touch-v5.c. Notice how 
the code has been smaller now that we have replaced the if statements with 
strerror(). This version is much cleaner. The changes from the previous version 
are highlighted here:

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <linux/limits.h>

int main(int argc, char *argv[])
{
   int errornum;
   char filename[PATH_MAX] = { 0 };
   if (argc != 2)
   {
      fprintf(stderr, "You must supply a filename "
         "as an argument\n");
      return 1;
   }
   strncpy(filename, argv[1], sizeof(filename)-1);
   if ( creat(filename, 00644) == -1 )
   {
      errornum = errno;
      fprintf(stderr, "Can't create file %s\n", 
         filename);



Using errno with strerror()     131

      fprintf(stderr, "%s\n", strerror(errornum));
      return 1;
   }
   return 0;
}

2. Compile this new version:

$> make simple-touch-v5
gcc -Wall -Wextra -pedantic -std=c99    simple-touch-v5.c   
-o simple-touch-v5

3. Let's try it out. Notice how the program now prints error messages describing what 
has gone wrong. We didn't even have to check the errno variable against possible 
errors:

$> ./simple-touch-v5 hello123 
$> ls hello123
hello123
$> ./simple-touch-v5 /asdf123
Can't create file /asdf123
Permission denied
$> ./simple-touch-v5 /asdf123/hello
Can't create file /asdf123/hello
No such file or directory
How it works…

All the if, else if, and else statements have now been replaced with a single line  
of code: 

fprintf(stderr, "%s\n", strerror(error));

We have also saved the value from errno in a new variable called errornum. We did 
this because on the next error that occurs, the value in errno will be overwritten by the 
new error code. To safeguard against showing the wrong error message in case errno 
gets overwritten, it's safer to save it to a new variable.

We then used the error code stored in errornum as an argument to a new function  
called strerror(). This function translates the error code into a human-readable  
error message and returns that message as a string. That way, we don't have to create  
if statements ourselves for every possible error that can occur.

In Step 3, we saw how strerror() had translated the EACCES macros into Permission 
denied, and ENOENT into No such file or directory.



132     Handling Errors in Your Programs

There's more…
In the man 3 strerror manual page, you'll find a similar function that can print error 
messages in the user's preferred locale.

Using errno with perror()
In the previous recipe, we used strerror() to get a string containing a human-readable 
error message from errno. There's another function similar to strerr() called 
perror(). Its name stands for print error, and that's what it does; it prints the error 
message directly to stderr.

In this recipe, we'll write the sixth version of our simple touch program. This time,  
we'll replace both of the fprinf() lines with perror().

Getting ready
The only programs necessary for this recipe are the GCC compiler and the Make tool 
(along with the generic Makefile).

How to do it…
Follow these steps to create an even shorter and better version of simple-touch:

1. Write the following code into a file and save it as simple-touch-v6.c. 
This time, the program is even smaller. We have removed the two fprintf() 
statements and replaced them with perror() instead. The changes from the 
previous version are highlighted here:

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <linux/limits.h>

int main(int argc, char *argv[])
{
   char filename[PATH_MAX] = { 0 };
   if (argc != 2)
   {
      fprintf(stderr, "You must supply a filename "
         "as an argument\n");
      return 1;



Using errno with perror()     133

   }
   strncpy(filename, argv[1], sizeof(filename)-1);
   if ( creat(filename, 00644) == -1 )
   {
      perror("Can't create file");
      return 1;
   }
   return 0;
}

2. Compile it using Make:

$> make simple-touch-v6
gcc -Wall -Wextra -pedantic -std=c99    simple-touch-v6.c   
-o simple-touch-v6

3. Run it and witness the change in the error message's output:

$> ./simple-touch-v6 abc123
$> ./simple-touch-v6 /asdf123
Can't create file: Permission denied
$> ./simple-touch-v6 /asdf123/hello
Can't create file: No such file or directory
How it works…

This time, we have replaced both the fprintf() lines with a single line: 

perror("Can't create file");

The perror() function takes one argument, a string with a description or function 
name. In this case, I chose to give it the generic error message Can't create file. 
When perror()prints the error message, it grabs the last error code in errno  
(notice we didn't specify any error code variable) and applies that error message after  
the text Can't create file. Hence, we don't need the fprintf() lines anymore.

Even though errno isn't explicitly stated in the call to perror(), it still uses it. If 
another error occurs, then the next call to perror() will print that error message 
instead. The perror() function always prints the last error.

There's more…
There are some great tips in the manual page, man 3 perror. For example, it's a good 
idea to include the name of the function that caused the error. This makes it easier to 
debug the program when users are reporting bugs.



134     Handling Errors in Your Programs

Returning an error value
Even though human-readable error messages are important, we must not forget to return 
a value to the shell that indicates an error. We have already seen that returning 0 means 
that everything is okay, while returning something else (most of the time, 1) means that 
some kind of error did occur. However, we can return more specific values if we want so 
that other programs relying on our program can read those numbers. For example, we 
can actually return the errno variable since it is just an integer. All the macros we have 
seen, such as EACCES and ENOENT, are integers (13 and 2 for EACCES and ENOENT, 
respectively).

In this recipe, we will learn how to return the errno numbers to the shell to provide 
more specific information.

Getting ready
The same set of programs mentioned in the previous recipe apply to this recipe.

How to do it…
In this recipe, we will make the seventh version of our simple-touch program.  
Let's get started:

1. We are only going to change a single line in this version from the previous one. 
Open up simple-touch-v6.c and change the return statement just below the 
perror() line to return errno;. Save the new file as simple-touch-v7.c. 
The latest version is as follows, with the changed line highlighted:

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <linux/limits.h>

int main(int argc, char *argv[])
{
   char filename[PATH_MAX] = { 0 };
   if (argc != 2)
   {
      fprintf(stderr, "You must supply a filename "
         "as an argument\n");
      return 1;
   }



Returning an error value     135

   strncpy(filename, argv[1], sizeof(filename)-1);
   if ( creat(filename, 00644) == -1 )
   {
      perror("Can't create file");
      return errno;
   }
   return 0;
}

2. Compile the new version:

$> make simple-touch-v7
gcc -Wall -Wextra -pedantic -std=c99    simple-touch-v7.c   
-o simple-touch-v7

3. Run it and check the exit codes:

$> ./simple-touch-v7 asdf
$> echo $
0
$> ./simple-touch-v7 /asdf
Can't create file: Permission denied
$> echo $?
13
$> ./simple-touch-v7 /asdf/hello123
Can't create file: No such file or directory
$> echo $?
2

How it works…
The error macros defined in errno.h are regular integers. So, if we, for example, return 
EACCES, we return the number 13. So, what is happening here (when an error occurs) 
is that, first, errno is set behind the scenes. Then, perror() uses the value stored in 
errno to print a human-readable error message. Finally, the program returns to the  
shell with the integer stored in errno, indicating to other programs what went wrong.  
We should be a bit careful with this, though, since there are some reserved return values. 
For example, in the shell, the return value 2 often means Missuse of shell builtins. However, 
in errno, the return value 2 means No such file or directory (ENOENT). This shouldn't 
cause you too much trouble, but keep it in mind just in case.



136     Handling Errors in Your Programs

There's more…
There is a small program called errno that can print all macros and their integers. This 
tool isn't installed by default, though. The name of the package is moreutils. 

Once installed, you can print a list of all the macros by running the errno -l command, 
where the l option stands for list.

To install the package in Debian and Ubuntu, type apt install moreutils as root.

To install the package in Fedora, use dnf install moreutils as root.

On CentOS and Red Hat, you must first add the epel-release repository with dnf 
install epel-release, then install the package with dnf install moreutils 
as root. At the time of writing, there are some dependency issues with CentOS 8 regarding 
moreutils, so it might not work.



5
Working with File 

I/O and Filesystem 
Operations

File I/O is an important part of system programming since most programs must read  
or write data to and from files. Doing file I/O also requires the developer to know a thing 
or two about the filesystem.

Mastering file I/O and filesystem operations will make you not only a better programmer 
but also a better system administrator.

In this chapter, we will learn about the Linux filesystem and inodes. We will also learn 
how to read and write files on the system, using both streams and file descriptors. We 
will also look at system calls to create and delete files and change file permissions and 
ownership. At the end of the chapter, we will learn how to fetch information about files.

In this chapter, we will cover the following recipes:

• Reading inode information and learning the filesystem

• Creating soft links and hard links

• Creating files and updating the timestamp



138     Working with File I/O and Filesystem Operations

• Deleting files

• Getting access rights and ownership

• Setting access rights and ownership

• Writing to files with file descriptors

• Reading from files with file descriptors

• Writing to files with streams

• Reading from files with streams

• Reading and writing binary data with streams

• Moving around inside a file with lseek()

• Moving around inside a file with fseek()

Technical requirements
For this chapter, you'll need the GCC compiler, the Make tool, and the generic Makefile 
we made in the Writing a generic Makefile with GCC options recipe in Chapter 3, Diving 
Deep into C in Linux. Chapter 1, Getting the Necessary Tools and Writing Our First Linux 
Programs, covers installing the compiler and the Make tool.

The generic Makefile, along with all the source code examples for this chapter, can be 
downloaded from GitHub at this URL: https://github.com/PacktPublishing/
Linux-System-Programming-Techniques/tree/master/ch5.

We are going to look up functions and header files in the built-in manual in Linux. If 
you are using Debian or Ubuntu, the Linux Programmer's Manual is installed as part of 
the build-essentials meta-package, covered in Chapter 1, Getting the Necessary Tools and 
Writing Our First Linux Programs. You'll also need to install the POSIX Programmer's 
Manual, covered in the Getting information about Linux and Unix-specific header files 
recipe in Chapter 3, Diving Deep into C in Linux. If you are using CentOS or Fedora, these 
manuals are most likely already installed. Otherwise, check out the recipe in Chapter 3, 
Diving Deep into C in Linux, that I mentioned.

Check out the following link to see the Code in Action video:  
https://bit.ly/3u4OuWz

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch5
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch5
https://bit.ly/3u4OuWz


Reading inode information and learning the filesystem     139

Reading inode information and learning the 
filesystem
Understanding inodes is the key to understanding the filesystem in Linux at a deeper 
level. A filename isn't the actual file in a Linux or Unix system. It's just a pointer to an 
inode. The inode has information about where the actual data is stored and a lot of  
meta data about the file, such as the file mode, last modification date, and owner.

In this recipe, we'll get a general understanding of the filesystem and how inodes fit into 
this. We will also view inode information and learn a few commands for that. We will also 
write a small C program that reads inode information from a filename.

Getting ready
In this recipe, we'll use both commands and C programs to explore the concepts of inodes. 
Everything you need for this recipe is covered in the Technical requirements section of this 
chapter.

How to do it…
In this recipe, we'll begin by exploring the commands that already exist on the system to 
view inode information. Then, we'll create a small C program to print inode information:

1. We'll start by creating a small text file that we'll use throughout this recipe:

$> echo "This is just a small file we'll use" \
> > testfile1
$> cat testfile1 
This is just a small file we'll use

2. Now, let's view the inode number for this file, along with its size, block count, and 
other information. The inode number will be different on every system and for 
every file:

$> stat testfile1 
  File: testfile1
  Size: 36              Blocks: 8          IO Block: 
262144 regular file
Device: 35h/53d Inode: 19374124    Links: 1
Access: (0644/-rw-r--r--)  Uid: ( 1000/    jake)   Gid: ( 
1000/    jake)
Access: 2020-10-16 22:19:02.770945984 +0200
Modify: 2020-10-16 22:19:02.774945969 +0200



140     Working with File I/O and Filesystem Operations

Change: 2020-10-16 22:19:02.774945969 +0200
 Birth: -

3. The size is in bytes and is 36 bytes. Since no special characters are used in the text, 
this will be the same as the number of characters the file contains. We can count the 
number of characters with wc:

$> wc -c testfile1 
36 testfile1

4. Now, let's build a small program that extracts some of this information; the inode 
number, the file size, and the number of links (we'll return to the number of links in 
the next recipe). Write the following code in a file and save it as my-stat-v1.c. 
The name of the system call function that we'll use to extract information has the 
same name as the command-line tool, stat. The system call function is highlighted 
in the code:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>

int main(int argc, char *argv[])
{
   struct stat filestat;
   if ( argc != 2 )
   {
      fprintf(stderr, "Usage: %s <file>\n", 
         argv[0]);
      return 1;
   }
   if ( stat(argv[1], &filestat) == -1 )
   {
      fprintf(stderr, "Can't read file %s: %s\n", 
         argv[1], strerror(errno));
      return errno;
   }
   printf("Inode: %lu\n", filestat.st_ino);
   printf("Size: %zd\n", filestat.st_size);
   printf("Links: %lu\n", filestat.st_nlink);



Reading inode information and learning the filesystem     141

   return 0;
}

5. Now compile this program using Make and the generic Makefile:

$> make my-stat-v1
gcc -Wall -Wextra -pedantic -std=c99    my-stat-v1.c   -o 
my-stat-v1

6. Let's try the program on testfile1. Compare the inode number, size, and 
number of links. These numbers should be the same as when we used the stat 
program:

$> ./my-stat-v1 testfile1 
Inode: 19374124
Size: 36
Links: 1

7. If we don't type an argument, we'll get a usage message:

$> ./my-stat-v1
Usage: ./my-stat-v1 <file>

8. And if we try it on a file that doesn't exist, we'll get an error message:

$> ./my-stat-v1 hello123
Can't read file hello123: No such file or directory

How it works…
The filename of a file isn't the data or file. The filename is just a link to an inode. And  
that inode, in turn, contains information about where on the filesystem the actual data  
is stored. As we will see in the next recipe, an inode can have multiple names or links.  
A filename is also called a link sometimes. The following figure illustrates the concepts 
of filenames that point to the inode, and the inode contains information about where the 
data blocks are stored:

Figure 5.1 – Inodes and filenames



142     Working with File I/O and Filesystem Operations

An inode also contains metadata, such as the creation date, date of last modification, total 
file size, owner and access rights, and more. In step 2, we extracted this metadata using the 
stat command.

In step 4, we created a small C program that reads this metadata using a system call 
function with the same name as the command, stat(). The stat() system call extracts 
much more data than what we printed here. We will print more of this information 
throughout this chapter. All of this information is stored in a struct called stat. We 
find all the information we need about this struct in the man 2 stat manual page. 
In that manual page, we also see what data types the variables are (ino_t, off_t, and 
nlink_t). And then, in man sys_types.h, under Additionally, we find what types 
these are.

The fields we use here are st_ino for the inode number, st_size for the file size, and 
st_nlink for the number of links to the file.

In step 6, we saw that the information we extracted using our C program was the same as 
the information from the stat command.

We also implemented error handling in the program. The stat() function is wrapped 
in an if statement, checking its return value for -1. And if an error does occur, we print 
an error message to stderr with the filename and the error message from errno. The 
program also returns the errno variable to the shell. We learned all about error handling 
and errno in Chapter 4, Handling Errors in Your Programs.

Creating soft links and hard links
In the previous recipe, we touched on the subject of links. In this recipe, we'll learn more 
about links and how they affect inodes. We'll also investigate the difference between soft 
links and hard links. In short, a hard link is a filename, and a soft link is like a shortcut  
to a filename. 

On top of that, we'll write two programs, one that creates a hard link and one that  
creates a soft link. We'll then use the program we created in the previous recipe to check 
the link count.



Creating soft links and hard links     143

Getting ready
Except for the requirements listed at the beginning of this chapter, you'll also need 
the program we created in the previous recipe, my-stat-v1.c. You'll also need the 
test file we created in the previous recipe, named testfile1. If you haven't created 
those files yet, you can also download them from GitHub at https://github.com/
PacktPublishing/Linux-System-Programming-Techniques/tree/
master/ch5.

You'll also need to compile the my-stat-v1.c program using Make so you'll be able  
to execute it, if you haven't done so already. You compile it with make my-stat-v1. 

How to do it…
We will create both soft links and hard links, using both the built-in commands and 
writing simple C programs to do so:

1. We'll start by creating a new hard link to our test file, testfile1. We'll name the 
new hard link my-file:

$> ln testfile1 my-file

2. Now let's investigate this new filename. Note how the links have increased to 2, but 
the rest is the same as for testfile1:

$> cat my-file 
This is just a small file we'll use
$> ls -l my-file 
-rw-r--r-- 3 jake jake 36 okt 16 22:19 my-file
$> ./my-stat-v1 my-file 
Inode: 19374124
Size: 36
Links: 2

3. Now compare these numbers with the testfile1 file. They should all be the 
same:

$> ls -l testfile1 
-rw-r--r-- 3 jake jake 36 okt 16 22:19 testfile1
$> ./my-stat-v1 testfile1 
Inode: 19374124
Size: 36
Links: 2

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch5
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch5
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch5


144     Working with File I/O and Filesystem Operations

4. Let's create another hard link called another-name. We create this link using the 
name my-file as the target:

$> ln my-file another-name

5. We'll investigate this file as well:

$> ls -l another-name 
-rw-r--r-- 2 jake jake 36 okt 16 22:19 another-name
$> ./my-stat-v1 another-name 
Inode: 19374124
Size: 36
Links: 3

6. Now let's delete the testfile1 filename:

$> rm testfile1

7. Now that we have deleted the first filename we created, we'll investigate the other 
two names:

$> cat my-file 
This is just a small file we'll use
$> ls -l my-file 
-rw-r--r-- 2 jake jake 36 okt 16 22:19 my-file
$> ./my-stat-v1 my-file 
Inode: 19374124
Size: 36
Links: 2
$> cat another-name 
This is just a small file we'll use
$> ls -l another-name 
-rw-r--r-- 2 jake jake 36 okt 16 22:19 another-name
$> ./my-stat-v1 another-name 
Inode: 19374124
Size: 36
Links: 2

8. It's time to create a soft link. We create a soft link called my-soft-link to the 
name another-name:

$> ln -s another-name my-soft-link



Creating soft links and hard links     145

9. A soft link is a special file type, which we can see with the ls command. Note that 
we get a new timestamp here. Also, note that it's a special file, which can be seen by 
the first letter in the file mode field, the letter l for a link:

$> ls -l my-soft-link 
lrwxrwxrwx 1 jake jake 12 okt 17 01:49 my-soft-link -> 
another-name

10. Now let's check the link count of another-name. Note that the counter hasn't 
increased with the soft link:

$> ./my-stat-v1 another-name 
Inode: 19374124
Size: 36
Links: 2

11. It's time to write our own program to create hard links. There exists an easy-to-use 
system call named link() that we'll use for this. Write the following code in a file 
and save it as new-name.c. The link() system call is highlighted in the code:

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

int main(int argc, char *argv[])
{
    if (argc != 3)
    {
        fprintf(stderr, "Usage: %s [target] " 
            "[new-name]\n", argv[0]);
        return 1;
    }
    if (link(argv[1], argv[2]) == -1)
    {
        perror("Can't create link");
        return 1;
    }
    return 0;
}



146     Working with File I/O and Filesystem Operations

12. Compile the program:

$> make new-name
gcc -Wall -Wextra -pedantic -std=c99    new-name.c   -o 
new-name

13. Create a new name to our previous my-file file. Name the new file third-name. 
We also try to generate some errors to see that the program prints the correct error 
messages. Note that the inode information for third-name is the same as for 
my-file:

$> ./new-name 
Usage: ./new-name [target][new-name]
$> ./new-name my-file third-name
$> ./my-stat-v1 third-name
Inode: 19374124
Size: 36
Links: 3
$> ./new-name my-file /home/carl/hello
Can't create link: Permission denied
$> ./new-name my-file /mnt/localnas_disk2/
Can't create link: File exists
$> ./new-name my-file /mnt/localnas_disk2/third-name
Can't create link: Invalid cross-device link

14. Now let's create a program that creates a soft link. There's an easy-to-use system 
call for this as well, called symlink(), for symbolic link, which is another name 
for soft link. This program will be similar to the previous one. Write the following 
code in a file and save it as new-symlink.c. The symlink() system call is 
highlighted in the code. Notice how similar all of these system call functions are:

#define _XOPEN_SOURCE 700
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

int main(int argc, char *argv[])
{
    if (argc != 3)
    {
        fprintf(stderr, "Usage: %s [target] " 
            "[link]\n", argv[0]);



Creating soft links and hard links     147

        return 1;
    }
    if (symlink(argv[1], argv[2]) == -1)
    {
        perror("Can't create link");
        return 1;
    }
    return 0;
}

15. Compile it:

$> make new-symlink
gcc -Wall -Wextra -pedantic -std=c99    new-symlink.c   
-o new-symlink

16. And let's try it out, creating a new soft link called new-soft-link to third-
name. Also, let's try generating some errors so we can verify that the error handling 
is working:

$> ./new-symlink third-name new-soft-link
$> ls -l new-soft-link 
lrwxrwxrwx 1 jake jake 10 okt 18 00:31 new-soft-link -> 
third-name
$> ./new-symlink third-name new-soft-link
Can't create link: File exists
$> ./new-symlink third-name /etc/new-soft-link
Can't create link: Permission denied

How it works…
There's a lot going on here, so let's take it from the top.

In steps 1 to 7, we created two new hard links to the testfile1 file. But as we noticed, 
there's nothing special about a hard link; it's just another name to an inode. All filenames 
are hard links. A filename is just a link to an inode. We saw that when we deleted the 
testfile1 filename. The two remaining names link to the same inode, and it contains 
the same text. There is nothing special about the first filename or link. There's no way to 
tell which of the hard links was created first. They are equal; they even share the same 
date, even though the other links were made at a later time. The date is for the inode, not 
the filenames.

As we created and deleted hard links, we saw how the link count increased and decreased. 
This is the inode keeping count of how many links—or names—it has.



148     Working with File I/O and Filesystem Operations

The inode isn't deleted until the last name is deleted, that is, when the link counter reaches 
zero.

In steps 8 to 10, we saw that a soft link, on the other hand, is a special file type. A soft link 
doesn't count toward the inode's link counter. The file is denoted by an l at the start of 
the ls -l output. We can also see what file the soft link points to in the ls -l output. 
Think of a soft link as a shortcut.

In steps 11 to 13, we wrote a C program that creates a hard link—a new name—to an 
existing filename. Here we learned that the system calls for creating new names is called 
link() and takes two arguments, the target and the new name.

In step 13, we witnessed an interesting property for hard links. They cannot span across 
devices. When we think about it, it makes sense. The filename can't remain on a device 
separate from the inode. If the device is removed, there might not be any more names 
pointing to the inode, making it inaccessible.

For the remaining steps, we wrote a C program that creates soft links to existing files.  
This system call is similar to link() but is instead called symlink().

There's more…
Please look at the manual pages for the system calls we covered in this recipe; they contain 
some great explanations of both hard links and soft links. The manual pages are man 2 
link and man 2 symlink.

Creating files and updating the timestamp
Now that we understand the filesystem, inodes, and hard links, we'll learn how to create 
files by writing our own version of touch in C. We have already started writing a version 
of touch in Chapter 4, Handling Errors in Your Programs, where we learned about error 
handling. We will continue using the latest version of that program, which we named 
simple-touch-v7.c. The real version of touch updates the modification and access 
timestamp of a file if the file exists. In this recipe, we'll add that feature to our new 
version.

Getting ready
Everything you'll need for this recipe is listed in the Technical requirements section for  
this chapter. Although we will add on the latest version of simple-touch, we'll write  
the entire code in this recipe. But for complete comprehension of the program, it is wise  
to read through Chapter 4, Handling Errors in Your Programs, first.



Creating files and updating the timestamp     149

How to do it…
In this eighth version of simple-touch, we will add the feature to update the access  
and modification date of a file:

1. Write the following code in a file and save it as simple-touch-v8.c. Here 
we will use the utime() system call to update a file's access and modification 
timestamps. The changes from the previous version are highlighted in the code 
(except for the added comments). Also, note how the creat() system call has 
moved into an if statement. The creat() system call is only called if the file 
doesn't already exist:

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <utime.h>
#define MAX_LENGTH 100

int main(int argc, char *argv[])
{
   char filename[MAX_LENGTH] = { 0 };
   /* Check number of arguments */
   if (argc != 2)
   {
      fprintf(stderr, "You must supply a filename "
         "as an argument\n");
      return 1;
   }
   strncat(filename, argv[1], sizeof(filename)-1);

   /* Update the access and modification time */
   if ( utime(filename, NULL) == -1 )
   {
      /* If the file doesn't exist, create it */
      if (errno == ENOENT)
      {
         if ( creat(filename, 00644) == -1 )
         {
            perror("Can't create file");
            return errno;
         }
      }



150     Working with File I/O and Filesystem Operations

      /* If we can't update the timestamp,
         something is wrong */
      else
      {
         perror("Can't update timestamp");
         return errno;
      }
   }
   return 0;
}

2. Compile the program using Make:

$> make simple-touch-v8
gcc -Wall -Wextra -pedantic -std=c99    simple-touch-v8.c   
-o simple-touch-v8

3. Let's try it out and see how it works. We'll try it on the filenames we created in the 
previous recipe and see how each filename gets the same timestamp since they all 
point to the same inode:

$> ./simple-touch-v8 a-new-file
$> ls -l a-new-file 
-rw-r--r-- 1 jake jake 0 okt 18 19:57 a-new-file
$> ls -l my-file 
-rw-r--r-- 3 jake jake 36 okt 16 22:19 my-file
$> ls -l third-name 
-rw-r--r-- 3 jake jake 36 okt 16 22:19 third-name
$> ./simple-touch-v8 third-name
$> ls -l my-file 
-rw-r--r-- 3 jake jake 36 okt 18 19:58 my-file
$> ls -l third-name 
-rw-r--r-- 3 jake jake 36 okt 18 19:58 third-name
$> ./simple-touch-v8 /etc/passwd
Can't change filename: Permission denied
$> ./simple-touch-v8 /etc/hello123
Can't create file: Permission denied



Deleting files     151

How it works…
In this recipe, we added the feature to update the timestamp of a file—or inode, as we have 
learned that it is.

To update the access and modification time, we use the utime() system call. The 
utime() system call takes two arguments, a filename and a timestamp. But if we give the 
function NULL as the second argument, it will use the current time and date.

The call to utime() is wrapped in an if statement, which checks whether the return 
value is -1. If it is, then something is wrong, and errno is set (see Chapter 4, Handling 
Errors in Your Programs, for an in-depth explanation of errno). We then use errno to 
check whether it was a File not found error (ENOTENT). If the file doesn't exist, we create  
it using the creat() system call. The call to creat() is also wrapped in an if 
statement. If something goes wrong while creating a file, the program prints an error 
message and return the errno value. If the program managed to create the file, it 
continues down to return 0.

If the errno value from utime() wasn't ENOENT, it continues down to the else 
statement, prints an error message, and returns errno.

When we tried the program, we noticed that both my-file and third-name got an 
updated timestamp when we updated one of them. This is because the filenames are just 
links to the same inode. And the timestamp is metadata in the inode.

There's more…
There's a lot of useful information in man 2 creat and man 2 utime. If you are 
interested in learning more about time and dates in Linux, I recommend you read  
man 2 time, man 3 asctime, and man time.h.

Deleting files
In this recipe, we learn how to delete files using a system call and where the  
name—unlink()—comes from. This recipe will enhance your understanding of  
links and close the circle. This will improve your overall knowledge of Linux and its 
filesystem. Knowing how to delete files using the system call will enable you to remove 
files directly from within your programs.

Here we will write our own version of rm, which we will call remove. After this recipe, 
we know how to create and delete files and how to make links. These are some of the most 
common filesystem operations.



152     Working with File I/O and Filesystem Operations

Getting ready
In this recipe, we will use the my-stat-v1 program, which we wrote in the Reading 
inode information and learning the filesystem recipe. We will also continue experimenting 
on the filenames we created in the previous recipes, my-file, another-name, and 
third-name. Except for that, you'll need what's listed under Technical requirements for 
this chapter, that is, the GCC compiler, the Make tool, and the generic Makefile.

How to do it…
Follow along here to write a simple version of rm:

1. Write the following code in a file and save it as remove.c. This program uses the 
unlink() system call to remove a file. The system call is highlighted in the code:

#include <stdio.h>
#include <unistd.h>
#include <errno.h>

int main(int argc, char *argv[])
{
    if (argc != 2)
    {
        fprintf(stderr, "Usage: %s [path]\n",
            argv[0]);
        return 1;
    }
    if ( unlink(argv[1]) == -1 )
    {
        perror("Can't remove file");
        return errno;
    }
    return 0;
}

2. Compile it using the Make tool:

$> make remove
gcc -Wall -Wextra -pedantic -std=c99    remove.c   -o 
remove



Getting access rights and ownership     153

3. And let's try it out:

$> ./my-stat-v1 my-file 
Inode: 19374124
Size: 36
Links: 3
$> ./remove another-name 
$> ./my-stat-v1 my-file 
Inode: 19374124
Size: 36
Links: 2

How it works…
The system call to remove a file is called unlink(). The name comes from the fact  
that when we remove a filename, we only remove a hard link to that inode; hence we 
unlink a filename. If it happens to be the last filename to an inode, then the inode is  
also removed.

The unlink() system calls only takes one argument: the filename that we want to 
remove.

Getting access rights and ownership
In this recipe, we'll write a program that reads the access rights and ownership of a file 
using the stat() system call we have seen previously in this chapter. We will continue  
to build upon the my-stat-v1 program that we built in the first recipe in this chapter. 
Here we will add the features to show ownership and access rights as well. Knowing how 
to get the owner and access rights programmatically is key to working with files and 
directories. It will enable you to check whether the user has the appropriate permissions 
and print an error message if they haven't.

We will also learn how access rights are interpreted in Linux and how to convert between 
numerical representation and letter representation. Understanding access rights in Linux 
is key to being a Linux system programmer. Every file and directory on the entire system 
has access rights and an owner and a group assigned to them. It doesn't matter whether 
it's a log file, a system file, or just a text file that a user owns. Everything has access rights.



154     Working with File I/O and Filesystem Operations

Getting ready
For this recipe, you'll only need what's listed in the Technical requirements section of this 
chapter.

How to do it…
We will write a new version of my-stat-v1 in this recipe. We will write the entire 
program here, though, so you don't need the previous version:

1. Write the following code in a file and save it as my-stat-v2.c. In this version, 
we'll pull information about the owner and the group of the file and the file mode. 
To translate the user-ID number into a username, we use getpwuid(). To get the 
group name for a group-ID, we use getgrgid(). The changes are highlighted in 
the code:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <pwd.h>
#include <grp.h>

int main(int argc, char *argv[])
{
    struct stat filestat;
    struct passwd *userinfo;
    struct group *groupinfo;
    if ( argc != 2 )
    {
        fprintf(stderr, "Usage: %s <file>\n",
            argv[0]);
        return 1;
    }
    if ( stat(argv[1], &filestat) == -1 )
    {
        fprintf(stderr, "Can't read file %s: %s\n", 
            argv[1], strerror(errno));
        return errno;
    }
    if ( (userinfo = getpwuid(filestat.st_uid)) ==



Getting access rights and ownership     155

        NULL )
    {
        perror("Can't get username");
        return errno;
    }
    if ( (groupinfo = getgrgid(filestat.st_gid)) ==
        NULL )
    {
        perror("Can't get groupname");
        return errno;
    }
    printf("Inode: %lu\n", filestat.st_ino);
    printf("Size: %zd\n", filestat.st_size);
    printf("Links: %lu\n", filestat.st_nlink);
    printf("Owner: %d (%s)\n", filestat.st_uid, 
        userinfo->pw_name);
    printf("Group: %d (%s)\n", filestat.st_gid, 
        groupinfo->gr_name);
    printf("File mode: %o\n", filestat.st_mode);
    return 0;
}

2. Compile the program:

$> make my-stat-v2
gcc -Wall -Wextra -pedantic -std=c99    my-stat-v2.c   -o 
my-stat-v2

3. Try out the program on some different files:

$> ./my-stat-v2 third-name 
Inode: 19374124
Size: 36
Links: 2
Owner: 1000 (jake)
Group: 1000 (jake)
File mode: 100644
$> ./my-stat-v2 /etc/passwd
Inode: 4721815
Size: 2620
Links: 1
Owner: 0 (root)
Group: 0 (root)



156     Working with File I/O and Filesystem Operations

File mode: 100644
$> ./my-stat-v2 /bin/ls
Inode: 3540019
Size: 138856
Links: 1
Owner: 0 (root)
Group: 0 (root)
File mode: 100755

How it works…
In this version of my-stat, we have added features to retrieve the file access mode, or 
actually, the file mode. The file's complete file mode consists of six octal numbers. The 
first two (to the left) is the file type. In this case, it's a regular file (10 equals a regular file). 
The fourth octal digit is for the set-user-ID bit, the set-group-ID bit, and the sticky bit. 
The last three octal digits are for the access mode.

In the output from ls -l, all these bits are instead represented as letters. But when we 
write programs, we must set and read these as numbers. Before we move on, let's examine 
the letter-version of the file mode, so we truly understand it:

Figure 5.2 – File access mode

The set-user-ID bit is a bit that allows a process to run as the owner of the binary file, even 
though it is executed as a different user. Setting the set-user-ID bit is potentially dangerous 
and not something we should set on our programs. One program that does use the 
set-user-ID bit is the passwd program. The passwd program must update the /etc/
passwd and /etc/shadow files when a user changes his or her password, even though 
those files are owned by root. Under normal circumstances, we can't even read the /etc/
shadow file as a regular user, but with the set-user-ID bit set on the passwd program, it 
can even write to it. If the set-user-ID bit is set, it's denoted by an s in the third place of 
the user's access mode.

The set-group-ID has a similar effect. When a program is executed, and the set-group-ID 
bit is set, it is executed as that group. When the set-group-ID is set, it's denoted by an s in 
the third place of the group's access mode.



Getting access rights and ownership     157

The sticky bit was historically used to stick a program to the swap space for faster  
loading time. Nowadays, it's used entirely differently. Now, the name—as well as the 
meaning—has changed to restricted deletion flag. When a directory has the sticky bit set, 
only a file's owner, the directory owner, or the root user can remove a file, even if the 
directory is writeable by anybody. For example, the /tmp directory usually has the sticky 
bit set. A sticky bit is denoted by a t in the last position of the last group.

File access mode
When we run ls -l on a file, we always see two names. The first name is the user  
(the owner), and the second name is the group that owns the file. Take this, for example:

$> ls -l Makefile 
-rw-r--r-- 1 jake devops 134 okt 27 23:39 Makefile

In this case, jake is the user (owner), and devops is the group.

The file access modes are easier to understand than the special flags we just covered. Take 
a look at Figure 5.2. The first three letters are the user's access mode (the owner of the file). 
This particular example has rw-, which means that the user can read and write the file but 
not execute it. If the user were to be able to execute it, that would be denoted by an x in 
the last place.

The middle three letters are for the group access mode (the group that owns the file). In 
this case, the group can only read the file since the group is missing both the w for write 
and the x for execution.

The last three letters are for all others (not the owner and not in the owner group). In this 
case, everybody else can just read the file.

A full set of permissions would be rwxrwxrwx.

Converting access modes between letters and numeric
An octal number represents the file access mode. Until we get used to it, the easiest way 
to convert from letters to octal is to use a pen and paper. We add all the numbers together 
in each group where that access bit is set. If it is not set (a dash), then we don't add that 
number. When we're finished adding each group, we have the access mode:

rw- r-- r—
421 421 421
 6   4   4



158     Working with File I/O and Filesystem Operations

The preceding octal access mode is therefore 644. Let's do another example:

rwx rwx r-x
421 421 421
 7   7   5

The preceding access mode turns out to be 775. Let's take one more example:

rw- --- ---
421 421 421
 6   0   0

This access mode is 600.

The other way around can also be done by using a pen and paper. Let's say we have the 
access mode 750, and we want to convert that into letters:

 7   5   0
421 401 000
rwx r-x ---

Hence, 750 becomes rwxr-x---.

When you have been doing it for a while, you learn the most commonly used access 
modes and don't need a pen and paper anymore.

The file mode in octal
The same principle applies here as with the file access mode. Remember that the 
set-user-ID is denoted by an s in the user's execute position, and the set-group-ID is 
denoted by an s in the group's execute bit. A t character denotes the sticky bit in the last 
execute bit position (the "others"). If we write it in a row, we get this:

s s t
4 2 1

So if only the set-user-ID bit is set, we get a 4. If both the set-user-ID and set-group-ID is 
set, we get 4+2=6. If only the set-group-ID bit is set, we get a 2. If only the sticky bit is set, 
we get a 1, and so forth. And if all the bits are set, we get a 7 (4+2+1).

These file modes are represented by a number before the file access mode. For example, 
the octal file mode 4755 has the set-user-ID bit set (the 4).



Getting access rights and ownership     159

When we program under Linux, we can even encounter two more numbers, as we saw 
with the output from our my-stat-v2 program. There, we had this:

File mode: 100755

The two first numbers, 10 in this example, are the file type. Exactly what these two first 
numbers mean is something we'll have to look up in the man 7 inode manual page. 
There we have a nice table telling us what it means. I have made a simplified list here, 
showing only the first two numbers we are interested in and what file type it represents:

14   socket
12   symbolic link
10   regular file
06   block device
04   directory
02   character device
01   FIFO

That means that our example file is a regular file (10).

If we add up everything we just learned and translate the file mode 100755 from the 
preceding example output from my-stat-v2, we get this:

10  = a regular file
0   = no set-user-ID, set-group-ID or sticky bit is set
755 = the user can read, write, and execute it. The group can 
read and execute it, and all others can also read and execute 
it.

The file type is also denoted by a letter at the very first position (see Figure 5.2). The letters 
are as follows:

s   socket
l   symbolic link
-   regular file
b   block device
d   directory
c   character device
p   FIFO



160     Working with File I/O and Filesystem Operations

Setting access rights and ownership
In the previous recipe, we learned how to read the access rights of files and folders. In 
this recipe, we'll learn how to set access rights, using both the chmod command and the 
chmod() system call. We will also learn how to change the owner and group of a file, 
using both the chown command and the chown() system call.

Knowing how to set access rights properly will help you keep your systems and files 
secure.

Getting ready
For this recipe, you'll only need what's listed in the Technical requirements section of this 
chapter. It's also a good idea to read the previous recipe to understand permissions in 
Linux. You will also need the my-stat-v2 program from the previous recipe.

How to do it…
These steps will teach us how to change the access rights and ownership of files and 
directories.

Access rights
We will start by setting the access rights of a file by using the chmod command. We will 
then write a simple C version of the chmod command, using the chmod() system call:

1. Let's start by removing the execute permission from our my-stat-v2 program, 
using the chmod command. The -x in the following command means remove 
eXecute:

$> chmod -x my-stat-v2

2. Now let's try to execute the program. This should now fail with permission denied:

$> ./my-stat-v2
bash: ./my-stat-v2: Permission denied

3. Now we change it back again, but this time we set the absolute permission using 
octal numbers. Suitable permissions for executable files are 755, which translates  
to rwxr-xr-x. That, in turn, means that the user has full permissions and, the 
group can read and execute the file. The same goes for all others; they can read and 
execute it:

$> chmod 755 my-stat-v2



Setting access rights and ownership     161

4. After this command, we can once again execute the program:

./my-stat-v2 
Usage: ./my-stat-v2 <file>

5. Now it's time to write a simple version of the chmod command, using the chmod() 
system call. Write the following code in a file and save it as my-chmod.c. The 
chmod() system call takes two arguments, the path to the file or directory and the 
file permission expressed as an octal number. Before we get to the chmod() system 
call, we perform some checks to ensure that the permission seems reasonable (an 
octal number that is either three or four digits long). After the checks, we convert 
the number to an octal number with strtol(). The third argument to strtol() 
is the base, in this case, 8:

#include <stdio.h>
#include <sys/stat.h>
#include <string.h>
#include <stdlib.h>

void printUsage(FILE *stream, char progname[]);

int main(int argc, char *argv[])
{
   long int accessmode; /*To hold the access mode*/
   /* Check that the user supplied two arguments */
   if (argc != 3)
   {
      printUsage(stderr, argv[0]);
      return 1;
   }
   /* Simple check for octal numbers and 
      correct length */
   if( strspn(argv[1], "01234567\n") 
         != strlen(argv[1]) 
         || ( strlen(argv[1]) != 3 && 
              strlen(argv[1]) != 4 ) )
   {
      printUsage(stderr, argv[0]);
      return 1;
   }
   /* Convert to octal and set the permissions */
   accessmode = strtol(argv[1], NULL, 8);



162     Working with File I/O and Filesystem Operations

   if (chmod(argv[2], accessmode) == -1)
   {
      perror("Can't change permissions");
   }
   return 0;
}

void printUsage(FILE *stream, char progname[])
{
    fprintf(stream, "Usage: %s <numerical "
        "permissions> <path>\n", progname);
}

6. Now compile the program:

$> make my-chmod
gcc -Wall -Wextra -pedantic -std=c99    my-chmod.c   -o 
my-chmod

7. Test the program using different permissions. Don't forget to check the result using 
ls -l:

$> ./my-chmod 
Usage: ./my-chmod <numerical permissions> <path>
$> ./my-chmod 700 my-stat-v2
$> ls -l my-stat-v2
-rwx------ 1 jake jake 17072 Nov  1 07:29 my-stat-v2
$> ./my-chmod 750 my-stat-v2
$> ls -l my-stat-v2
-rwxr-x--- 1 jake jake 17072 Nov  1 07:29 my-stat-v2

8. Let's also try to set the set-user-ID bit. This set-user-ID bit (and set-group-ID 
and sticky bit) is the fourth digit in front of the access mode. A 4 here sets the 
set-user-ID bit. Note the s (highlighted in the following code) in the user field:

$> chmod 4755 my-stat-v2
$> ls -l my-stat-v2
-rwsr-xr-x 1 jake jake 17072 Nov  1 07:29 my-stat-v2

9. Let's try to set all bits (set-user-ID, set-group-ID, sticky bit, and all permissions):

$> chmod 7777 my-stat-v2
$> ls -l my-stat-v2
-rwsrwsrwt 1 jake jake 17072 Nov  1 07:29 my-stat-v2



Setting access rights and ownership     163

10. And finally, change it back to something more sensible:

$> chmod 755 my-stat-v2
$> ls -l my-stat-v2
-rwxr-xr-x 1 jake jake 17072 Nov  1 07:29 my-stat-v2

Ownership
But we also need to know how to change the ownership of a file, not just the file access 
mode. This is done with the chown command or the chown() system call:

1. To change the owner of a file, we must be root. Regular users cannot give away 
ownership of their files. Likewise, they cannot claim ownership of someone else's 
files. Let's try to change the owner of my-stat-v2 to root using the chown 
command:

$> sudo chown root my-stat-v2
$> ls -l my-stat-v2
-rwxr-xr-x 1 root jake 17072 Nov  1 07:29 my-stat-v2

2. If we want to change both the owner and the group, we separate the user and the 
group using a colon. The first field is the owner, and the second field is the group:

$> sudo chown root:root my-stat-v2
$> ls -l my-stat-v2
-rwxr-xr-x 1 root root 17072 Nov  1 07:29 my-stat-v2

3. And now it's our turn to write a simplified version of chown, using the chown() 
system call. The chown() system call only takes user IDs as numerical values. To be 
able to use names instead, we must first look up the username using getpwnam(). 
This will give us the numerical value in the passwd struct, in the pw_uid field. 
The same goes for the group. We must get the numerical group-ID using its name, 
using the getgrnam()system call. Now that we know all the system calls, let's 
write the program. Name it my-chown.c. This program is a bit longer, so I have 
split it up into several steps. Keep in mind that all steps should go into a single file 
(my-chown.c). You can also download the entire code from https://github.
com/PacktPublishing/Linux-System-Programming-Techniques/
blob/master/ch5/my-chown.c if you wish. Let's start with all the header files, 
the variables, and the arguments check:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch5/my-chown.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch5/my-chown.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch5/my-chown.c


164     Working with File I/O and Filesystem Operations

#include <sys/types.h>
#include <pwd.h>
#include <grp.h>
#include <string.h>
#include <errno.h>

int main(int argc, char *argv[])
{
   struct passwd *user; /* struct for getpwnam */
   struct group *grp; /* struct for getgrnam */
   char *username = { 0 }; /* extracted username */
   char *groupname = { 0 }; /*extracted groupname*/
   unsigned int uid, gid; /* extracted UID/GID */

   /* Check that the user supplied two arguments 
      (filename and user or user:group) */
   if (argc != 3)
   {
      fprintf(stderr, "Usage: %s [user][:group]" 
         " [path]\n", argv[0]);
      return 1;
   }

4. Since we write the username and group as username:group in the argument, 
we need to extract the username part and the group part. We do this with a string 
function called strtok(). We only provide the first argument (the string) in the 
first call to strtok(). After this, we get the User-ID (UID) from the user struct 
and the Group-ID (GID) from the grp struct. We also check whether the user and 
group exist:

 /* Extract username and groupname */
   username = strtok(argv[1], ":");
   groupname = strtok(NULL, ":");
    
   if ( (user = getpwnam(username)) == NULL )
   {
      fprintf(stderr, "Invalid username\n");
      return 1;
   }
   uid = user->pw_uid; /* get the UID */

   if (groupname != NULL) /* if we typed a group */



Setting access rights and ownership     165

   {
      if ( (grp = getgrnam(groupname)) == NULL )
      {
         fprintf(stderr, "Invalid groupname\n");
         return 1;
      }
      gid = grp->gr_gid; /* get the GID */
   }
   else
   {
      /* if no group is specifed, -1 won't change 
         it (man 2 chown) */
      gid = -1;
   }

5. Finally, we update the user and group of the file using the chown() system call:

   /* update user/group (argv[2] is the filename)*/
   if ( chown(argv[2], uid, gid) == -1 )
   {
      perror("Can't change owner/group");
      return 1;
   }
   return 0;
}

6. Let's compile the program so that we can try it:

$> make my-chown
gcc -Wall -Wextra -pedantic -std=c99    my-chown.c   -o 
my-chown

7. Now we test the program on a file. Remember that we need to be root to change  
a file's owner and group:

$> ls -l my-stat-v2 
-rwxr-xr-x 1 root root 17072 nov  7 19:59 my-stat-v2
$> sudo ./my-chown jake my-stat-v2 
$> ls -l my-stat-v2 
-rwxr-xr-x 1 jake root 17072 nov  7 19:59 my-stat-v2
$> sudo ./my-chown carl:carl my-stat-v2 
$> ls -l my-stat-v2 
-rwxr-xr-x 1 carl carl 17072 nov  7 19:59 my-stat-v2



166     Working with File I/O and Filesystem Operations

How it works…
Every file and directory on the system has access rights and an owner/group pair. The 
access rights are changed with the chmod command or the chmod() system call. The 
name is short for change mode bits. In the previous recipe, we covered how to translate 
access rights between the more human-readable text format and the numerical octal form. 
In this recipe, we wrote a program that changed the mode bits using the chmod() system 
call using the numerical form.

To convert the numerical form into an octal number, we used strtol() with 8 as the 
third argument, which is the numeral system base. Base 8 is octal; base 10 is the regular 
decimal system we use in everyday life; base 16 is hexadecimal, and so on.

We wrote the program so that the user can choose whatever they want to set, whether 
that's only the access mode bits (three digits) or also the special bits such as set-user-ID, 
set-group-ID, and sticky bit (four digits). To determine the number of digits the user 
typed, we use strlen().

In the next program we wrote, we used chown() to update the owner and group of  
a file or directory. Since we want to update the user and group using the names, not the 
numerical UID and GID, the program got more complex. The chown()system call only 
takes the UID and GID, not names. That means we need to look up the UID and GID 
before we can call chown(). To look up the UID and GID, we use getpwnam() and 
getgrnam(). Each of these functions gives us a struct containing all information 
available for the respective user or group. From those structs, we extract the UID and 
GID, which we then use in the call to chown().

To separate the username and group part from the command line (the colon), we use 
the strtok() function. In the first call to the function, we specify the string as the 
first argument (in this case, argv[1]) and the separator (a colon). In the next call to 
strtok(), we leave out the string by setting it to NULL, but we still specify the separator. 
The first call gives us the username and the second call gives us the group name.

After that, we check whether the username and group name exist when we call 
getpwnam() and getgrnam(). If the username or group name don't exist, the 
functions return NULL.



Writing to files with file descriptors     167

There's more…
There are several similar functions to getpwnam() and getgrnam(), depending on 
what information you have and what information you have. If you have the UID, you 
instead use getpwuid(). Likewise, if you have the GID, you use getgrgid(). There is 
more information—and more functions—if you read the man 3 getpwnam and man 3 
getgrnam manual pages.

Writing to files with file descriptors
We have already seen some uses of file descriptors in previous chapters, for example, 0, 1, 
and 2 (stdin, stdout, and stderr). But in this recipe, we will use file descriptors to write text 
to files from a program.

Knowing how to use file descriptors to write to files both gives you a deeper 
understanding of the system and enables you to do some low-level stuff.

Getting ready
For this recipe, you only need what is listed under the Technical requirements section.

How to do it…
Here we will write a small program that writes text to a file:

1. Write the following code in a file and save it as fd-write.c. The program takes 
two arguments: a string and a filename. To write to a file using file descriptors,  
we must first open the file with the open() system call. The open() system  
call returns a file descriptor, which is an integer. We then use that file descriptor  
(the integer) with the write() system call. We have already seen write() in 
Chapter 3, Diving Deep into C in Linux. In that chapter, we used write() to write  
a small text to stdout. This time, we use write() to write a text to a file. Notice 
that the open() system call takes three arguments: the path to the file, which mode 
the file shall open in (in this case, create the file if it doesn't exist, and open it in 
read-write mode), and the access mode (here 0644):

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>



168     Working with File I/O and Filesystem Operations

int main(int argc, char *argv[])
{
   int fd; /* for the file descriptor */

   if (argc != 3)
   {
      fprintf(stderr, "Usage: %s [path] [string]\n",
         argv[0]);
      return 1;
   }

   /* Open the file (argv[1]) and create it if it 
      doesn't exist and set it in read-write mode. 
      Set the access mode to 644 */
   if ( (fd = open(argv[1], O_CREAT|O_RDWR, 00644)) 
      == -1 )
   {
      perror("Can't open file for writing");
      return 1;
   }
   /* write content to file */
   if ( (write(fd, argv[2], strlen(argv[2]))) 
      == -1 )
   {
      perror("Can't write to file");
      return 1;
   }
   return 0;
}

2. Let's compile the program:

$> make fd-write
gcc -Wall -Wextra -pedantic -std=c99    fd-write.c   -o 
fd-write



Writing to files with file descriptors     169

3. And let's try to write some text to a file. Remember that if the file already exists,  
the content will be overwritten! If the new text is smaller than the old content of the 
file, only the beginning will be overwritten. Also note that if the text doesn't contain 
a new line, the text in the file won't contain a new line either:

$> ./fd-write testfile1.txt "Hello! How are you doing?"
$> cat testfile1.txt 
Hello! How are you doing?$>Enter
$> ls -l testfile1.txt 
-rw-r--r-- 1 jake jake 2048 nov  8 16:34 testfile1.txt
$> ./fd-write testfile1.txt "A new text"
$> cat testfile1.txt 
A new text are you doing?$>

4. We can even give it input from another file if we use xargs, a program that allows 
us to take the output of a program and parse it as a command-line argument to 
another program. Notice that this time, testfile1 will have a new line at the end. 
The -0 option to xargs makes it ignore new lines and will instead use the null 
character to indicate the end of the argument:

$> head -n 3 /etc/passwd | xargs -0 \
> ./fd-write testfile1.txt 
$> cat testfile1.txt 
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin

How it works…
The open() system call returns a file descriptor, which we save in the fd variable. A file 
descriptor is just an integer, just as 0, 1, and 3 are stdin, stdout, and stderr.

The second argument we give to open() are macros with mode bits that are put  
together using bitwise-or. In our case, we use both O_CREAT and O_RDWR. The first 
one, O_CREAT, means that if the file doesn't exist, it is created. The second one, O_RDWR, 
means that the file should be open for both reading and writing.

To write the string to the file, we pass the file descriptor to write() as the first argument. 
As the second argument, we give it argv[2], which contains the string that we want to 
write to the file descriptor. The last argument is the size of what we want to write. In our 
case, we get the size of argv[2] with strlen, a function from string.h to get the 
length of strings.



170     Working with File I/O and Filesystem Operations

Just as in the previous recipes, we check all the system calls for -1. If they return -1, 
something has gone wrong, and we use perror() to print an error message, and then  
we return 1.

There's more…
When a program returns normally, all open file descriptors are closed automatically. But  
if we want to close a file descriptor explicitly, we use the close() system call with the  
file descriptor as its argument. In our case, we could have added close(fd) just before 
the return.

There's a lot of good information about open(), close(), and write() in the manual 
pages. I suggest you read them for more in-depth information. You can read them with 
the following:

• man 2 open

• man 2 close

• man 2 write

Reading from files with file descriptors
In the previous recipe, we learned how to write to files using file descriptors. In this recipe, 
we will learn how to read from files using file descriptors. We will therefore write a small 
program that is similar to cat. It takes one argument—a filename—and prints its content 
to standard output.

Knowing how to read—and use—file descriptors enables you to read not only files but all 
sorts of data that comes through a file descriptor. File descriptors are a universal way to 
read and write data in Unix and Linux.

Getting ready
The only things you'll need for this recipe are listed under the Technical requirements 
section of this chapter.



Reading from files with file descriptors     171

How to do it…
Reading a file using a file descriptor is similar to writing to one. Instead of using the 
write() system call, we will instead use the read() system call. Before we can read the 
content, we must figure out the size of the file first. We can use the fstat() system call 
for this, which gives us information about a file descriptor:

1. Write the following code in a file and name it fd-read.c. Notice how we get the 
file information using fstat() and then read the data with read(). We still use 
the open() system call, but this time we have removed O_CREATE and changed 
O_RDRW to O_RDONLY to only allow reads. We will use a buffer size of 4,096 here 
so that we will be able to read some bigger files. This program is a bit longer, so I 
have split it up into several steps. All of the code in all of the steps goes into one 
file, though. First, we start by writing all the include lines, the variables, and the 
argument check:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#define MAXSIZE 4096

int main(int argc, char *argv[])
{
   int fd; /* for the file descriptor */
   int maxread; /* the maximum we want to read*/
   off_t filesize; /* for the file size */
   struct stat fileinfo; /* struct for fstat */
   char rbuf[MAXSIZE] = { 0 }; /* the read buffer*/
    
   if (argc != 2)
   {
      fprintf(stderr, "Usage: %s [path]\n",
         argv[0]);
      return 1;
   }



172     Working with File I/O and Filesystem Operations

2. Now, we write the code that opens the file descriptor using the open() system call. 
We add some error handling to it as well by wrapping it in an if statement:

   /* open the file in read-only mode and get
      the file size */
   if ( (fd = open(argv[1], O_RDONLY)) == -1 )
   {
      perror("Can't open file for reading");
      return 1;
   }

3. Now, we write the code that fetches the file's size using the fstat() system call. 
Here we also check whether the file's size is bigger than MAXSIZE, in which case 
we set maxread to MAXSIZE-1. Otherwise, we set it to the file's size. Then, we 
read the file using the read() system call. And finally, we print the content using 
printf():

   fstat(fd, &fileinfo);
   filesize = fileinfo.st_size;

   /* determine the max size we want to read
      so we don't overflow the read buffer */
   if ( filesize >= MAXSIZE )
      maxread = MAXSIZE-1;
   else
      maxread = filesize;
    
   /* read the content and print it */
   if ( (read(fd, rbuf, maxread)) == -1 )
   {
      perror("Can't read file");
      return 1;
   }
   printf("%s", rbuf);
   return 0;
}

4. Let's compile the program:

$> make fd-read
gcc -Wall -Wextra -pedantic -std=c99    fd-read.c   -o 
fd-read



Reading from files with file descriptors     173

5. Let's try it on some files and see if we can read them:

$> ./fd-read testfile1.txt 
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
$> ./fd-read Makefile 
CC=gcc
CFLAGS=-Wall -Wextra -pedantic -std=c99
$> ./fd-read /etc/shadow
Can't open file for reading: Permission denied
$> ./fd-read asdfasdf
Can't open file for reading: No such file or directory

How it works…
When we read data from a file descriptor, we must specify how many characters should be 
read. Here we must be careful not to overflow the buffer. We also don't want to read any 
more than what the file actually contains. To solve all of this, we first find out the file's size 
by using fstat(). That function gives us the same information as we saw previously in 
the my-stat-v2 program when we used stat(). These two functions, stat() and 
fstat(), do the same thing, but they operate on different things. The stat() function 
operates directly on a file, but fstat() operates on a file descriptor. Since we already 
have a file descriptor open to the correct file, it makes sense to use that instead. Both 
functions save their information to a struct called stat. 

To not overflow the buffer, we check which is bigger, the file size or MAXSIZE. If the file 
size is bigger or equal to MAXSIZE, we use MAXSIZE-1 as the maximum number of 
characters to read. Otherwise, we use the file's size as the maximum.

The read() system call takes the same arguments as write(), namely a file descriptor, 
a buffer, and the size we want to read (or write in the case of write()).

Since what we read in from a file is a bunch of characters, we can print the entire buffer  
to stdout using the regular printf().

There's more…
If you look up man 2 fstat, you'll notice that it's the same manual page as man 2 
stat.



174     Working with File I/O and Filesystem Operations

Writing to files with streams
In this recipe, we will write to files using file streams instead of file descriptors, as we did 
in earlier recipes.

As with the previous recipes where we had already seen file descriptors 1, 2, and 3, and 
some of their system calls, we have already seen file streams too, such as some of the 
printUsage() functions we have created. Some of these functions we created took two 
arguments, the first one being declared as FILE *stream. The argument we provided 
was stderr or stdout.

But we can also use file streams to write to files, which we will do in this recipe.

As you probably have noticed by now, some things keep coming again and again, such as 
file descriptors and file streams.

Working with file streams instead of file descriptors has some advantages. For example, 
with file streams, we can use functions such as fprintf() to write to files. This means 
that there are more—and more powerful—functions to read and write data.

Getting ready
For this recipe, we only need what's listed under the Technical requirements section of this 
chapter.

How to do it…
Here we write a program that writes text to a file. The program will be similar to what 
we wrote previously using file descriptors. But this time, we will read the text from stdin 
instead of from the command line. We will also write the text using a file stream instead  
of a file descriptor:

1. Write the following code in a file and name it stream-write.c. Notice how 
much smaller this program is even though we have added a while loop to read 
everything from stdin. Since we can use all functions in C that operate on streams, 
we don't need to use any special system calls to read, write, and so on. We haven't 
even included any special header files, except stdio.h, which we always include 
anyway. We write the text to the file with fprintf(), as we have already seen 
many times when we write to stdout or stderr:

#include <stdio.h>

int main(int argc, char *argv[])
{



Writing to files with streams     175

   FILE *fp; /* pointer to a file stream */
   char linebuf[1024] = { 0 }; /* line buffer */

   if ( argc != 2 )
   {
      fprintf(stderr, "Usage: %s [path]\n", 
         argv[0]);
      return 1;
   }

   /* open file with write mode */
   if ( (fp = fopen(argv[1], "w")) == NULL )
   {
      perror("Can't open file for writing");
      return 1;
   } 
    
   /*loop over each line and write it to the file*/
   while(fgets(linebuf, sizeof(linebuf), stdin) 
      != NULL)
   {
      fprintf(fp, linebuf);
   }
   fclose(fp); /* close the stream */
   return 0;
}

2. Let's compile the program:

$> make stream-write
gcc -Wall -Wextra -pedantic -std=c99    stream-write.c   
-o stream-write

3. Now let's try the program, both by typing in data to it and by redirecting data to it 
using a pipe. After we have redirected the entire password file into a new file using 
our program, we check that they are the same using diff, which they should be. 
We also try to write to a new file in a directory, which we haven't got permission to. 
When we press Ctrl + D, we send an EOF to the program, meaning End Of File, 
indicating no more data is to be received:

$> ./stream-write my-test-file.txt
Hello! How are you doing?
I'm doing just fine, thank you. 



176     Working with File I/O and Filesystem Operations

Ctrl+D
$> cat my-test-file.txt 
Hello! How are you doing?
I'm doing just fine, thank you.
$> cat /etc/passwd | ./stream-write my-test-file.txt
$> tail -n 3 my-test-file.txt 
telegraf:x:999:999::/etc/telegraf:/bin/false
_rpc:x:103:65534::/run/rpcbind:/usr/sbin/nologin
systemd-coredump:x:997:997:systemd Core Dumper:/:/usr/
sbin/nologin
$> diff /etc/passwd my-test-file.txt
$> ./stream-write /a-new-file.txt
Can't open file for writing: Permission denied

How it works…
As you might have noticed, this program is much shorter and easier than the 
corresponding file descriptor version we wrote earlier in this chapter.

We start by creating a pointer to a file stream using FILE *fp. Then we create a buffer 
that we use for each line. 

Then, we open the file stream using fopen(). That function takes two arguments, the 
filename and the mode. Here the mode is also easier to set, just a "w" for write.

After that, we use a while loop to loop over each input line that comes into stdin. 
On each iteration, we write the current line to the file using fprintf(). As the first 
argument to fprintf() we use the file stream pointer, just as we did with stderr in the 
if statement at the top of the program.

Before the program returns, we close the file stream with fclose(). Closing the stream 
isn't strictly necessary, but it's a good thing to do, just in case.

See also
There's a lot of information in man 3 fopen if you want to dig deeper.

For a more in-depth explanation of the difference between file descriptors and file streams, 
see the GNU libc manual: https://www.gnu.org/software/libc/manual/
html_node/Streams-and-File-Descriptors.html.

Another important aspect of streams is that they are buffered. There is more information 
about streams buffering in the GNU libc manual at this URL: https://www.gnu.org/
software/libc/manual/html_node/Buffering-Concepts.html.

https://www.gnu.org/software/libc/manual/html_node/Streams-and-File-Descriptors.html
https://www.gnu.org/software/libc/manual/html_node/Streams-and-File-Descriptors.html
https://www.gnu.org/software/libc/manual/html_node/Buffering-Concepts.html
https://www.gnu.org/software/libc/manual/html_node/Buffering-Concepts.html


Reading from files with streams     177

Reading from files with streams
Now that we know how to write to a file using streams, we will learn how to read a file 
using streams. In this recipe, we will write a similar program to that of the previous recipe. 
But this time, we will read line by line from a file instead and print it to stdout.

Mastering both the writing and reading of streams will enable you to do many things  
in Linux.

Getting ready
All you need for this recipe is listed under the Technical requirements section of this 
chapter.

How to do it…
Here we will write a program that will be very similar to the previous recipe, but it will 
read text from a file instead. The principle of the program is the same as the previous 
recipe:

1. Write the following code in a file and save it as stream-read.c. Notice how 
similar this program is. We have changed write mode ("w") to read mode ("r") 
when opening the stream with fopen(). In the while loop, we read from the file 
pointer fp instead of stdin. Inside the while loop, we print what is in the buffer, 
which is the current line:

#include <stdio.h>

int main(int argc, char *argv[])
{
   FILE *fp; /* pointer to a file stream */
   char linebuf[1024] = { 0 }; /* line buffer */

   if ( argc != 2 )
   {
      fprintf(stderr, "Usage: %s [path]\n", 
         argv[0]);
      return 1;
   }

   /* open file with read mode */
   if ( (fp = fopen(argv[1], "r")) == NULL )
   {



178     Working with File I/O and Filesystem Operations

      perror("Can't open file for reading");
      return 1;
   } 
    
   /* loop over each line and write it to stdout */
   while(fgets(linebuf, sizeof(linebuf), fp) 
      != NULL)
   {
      printf("%s", linebuf);
   }
   fclose(fp); /* close the stream */
   return 0;
}

2. Compile the program:

$> make stream-read
gcc -Wall -Wextra -pedantic -std=c99    stream-read.c   
-o stream-read

3. And now we can try the program on some files. Here I try it on the test file we 
created earlier and the Makefile:

$> ./stream-read testfile1.txt 
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin

$> ./stream-read Makefile 
CC=gcc
CFLAGS=-Wall -Wextra -pedantic -std=c99

How it works…
As you might have noticed, this program is very similar to that of the previous recipe.  
But instead of opening the file for writing ("w"), we instead open it for reading ("r").  
The file pointer looks the same, as well as the linebuffer and the error handling.

To read each line, we loop over the file stream using fgets(). As you might have  
noticed in both this and the previous recipe, we don't use sizeof(linebuf)-1,  
only sizeof(linebuf). That is because fgets() only reads one less than the size  
we give it.



Reading and writing binary data with streams     179

There's more…
There are a lot of similar functions as fgets(). You can find all of them by reading the 
manual page for it with man 3 fgets.

Reading and writing binary data with streams
There comes a time when we must save variables or arrays in a program to a file. For 
example, if we make a stock-keeping program for a warehouse, we don't want to re-write 
the entire warehouse stocks every time we start the program. That would defeat the 
purpose of the program. With streams, it's easy to save variables as binary data in files for 
later retrieval.

In this chapter, we'll write two small programs: one that asks the user for two floats, saves 
them in an array, and writes them to a file, and another program that re-reads that array.

Getting ready
You only need the GCC compiler, the Make tool, and the generic Makefile for this recipe.

How to do it…
In this recipe, we'll write two small programs: one that writes and one that reads binary 
data. The data is an array of floats:

1. Write the following code in a file and save it as binary-write.c. Notice 
that we open the file in write mode and binary mode, indicated by "wb" as the 
second argument to fopen(). In binary mode, we can write variables, arrays, 
and structures to a file. The array in this program will be written to a file called 
my-binary-file in the current working directory. When we write binary data 
with fwrite(), we must specify the size of a single element (a float in this 
case) and how many of those elements we want to write. The second argument to 
fwrite() is the size of a single element and the third argument is the number of 
elements:

#include <stdio.h>

int main(void)
{
   FILE *fp;
   float x[2];
   if ( (fp = fopen("my-binary-file", "wb")) == 0 )



180     Working with File I/O and Filesystem Operations

   {
      fprintf(stderr, "Can't open file for "
         "writing\n");
      return 1;
   }
   printf("Type two floating point numbers, "
      "separated by a space: ");
   scanf("%f %f", &x[0], &x[1]);
   fwrite(&x, sizeof(float), 
      sizeof(x) / sizeof(float), fp);
   fclose(fp);
   return 0;
}

2. Before moving on, let's compile this program:

$> make binary-write
gcc -Wall -Wextra -pedantic -std=c99    binary-write.c   
-o binary-write

3. Let's try out the program and verify that it writes the binary file. Since it's a binary 
file, we can't read it with programs such as more. But we can, however, look at it 
with a program called hexdump:

$> ./binary-write 
Type two floating point numbers, separated by a space: 
3.14159 2.71828
$> file my-binary-file 
my-binary-file: data
$> hexdump -C my-binary-file 
00000000  d0 0f 49 40 4d f8 2d 40            |..I@M.-@|
00000008

4. Now it's time to write the program that reads the array back from the file. Write the 
following code in a file and save it as binary-ready.c. Notice that we use "rb" 
here, for read and binary. The arguments to fread() are the same as fwrite(). 
Also, note that we need to create an array of the same type and length here. We will 
read the data from the binary file into that array:

#include <stdio.h>

int main(void)
{



Reading and writing binary data with streams     181

   FILE *fp;
   float x[2];
   if ( (fp = fopen("my-binary-file", "rb")) == 0 )
   {
      fprintf(stderr, "Can't open file for "
         "reading\n");
      return 1;
   }
   fread(&x, sizeof(float), 
      sizeof(x) / sizeof(float), fp);
   printf("The first number was: %f\n", x[0]);
   printf("The second number was: %f\n", x[1]);
   fclose(fp);
   return 0;
}

5. Now, let's compile this program:

$> make binary-read
gcc -Wall -Wextra -pedantic -std=c99    binary-read.c   
-o binary-read

6. And finally, let's run the program. Notice that the numbers printed here are the 
same as those numbers we gave to binary-write:

$> ./binary-read 
The first number was: 3.141590
The second number was: 2.718280

How it works…
What's important here is fwrite() and fread(), more specifically the sizes we specify:

fwrite(&x, sizeof(float), sizeof(x) / sizeof(float), fp);

First off, we have the x array. Next, we specify the size of a single element or item. In this 
case, we get the size by using sizeof(float). Then, as the third argument, we specify 
how many of those elements or items. Instead of just typing a literal 2 here, we calculate 
the number of items by taking the full size of the array and dividing it by the size of a float. 
This is done with sizeof(x) / sizeof(float). This gives us, in this case, 2.



182     Working with File I/O and Filesystem Operations

The reason why it's better to calculate the items rather than just setting a number is to 
avoid errors when updating the code in the future. If we change the array to 6 items in  
a couple of months, chances are that we'll forget to update the arguments to fread()  
and fwrite().

There's more…
If we didn't know beforehand how many floats the array contained, we could have figured 
it out with the following lines of code. We will learn more about fseek() later in this 
chapter:

fseek(fp, 0, SEEK_END); /* move to the end of the file */
bytes = ftell(fp); /* the total number of bytes */
rewind(fp); /* go back to the start of the file */
items = bytes / sizeof(float); /*number of items (floats)*/

Moving around inside a file with lseek()
In this recipe, we'll learn how to move around inside a file with lseek(). This function 
operates on file descriptors, so please note that we are now working with file descriptors, 
not streams. With lseek(), we can move around (or seek) freely inside a file descriptor. 
Doing so can be handy if we only want to read a specific part of a file or we want to go 
back and read some data twice and so on.

In this recipe, we will modify our previous program, called fd-read.c, to specify where 
we want to start reading. We also make it so that the user can specify how many characters 
should be read from that position.

Getting ready
To easier understand this recipe, I encourage you to read the recipe named Reading from 
files with file descriptors in this chapter before reading this one.



Moving around inside a file with lseek()     183

How to do it…
The program we will write here will read a file using file descriptors. The user must also 
set a starting position where the read should start. The user can also—optionally—specify 
how many characters to read from that position:

1. Write the following code and save it in a file called fd-seek.c. Notice the added 
lseek() before we do read(). We have also added an extra check (else if) 
to check that the user doesn't read more than what the buffer can hold. We have 
also added a newline character in printf() when we print the file to stdout. 
Otherwise, there won't be a new line when we specify how many characters to read, 
and the prompt would end up on the same line. This program is also rather long, so 
I have split it up into several steps. Keep in mind that all steps go into the same file. 
Let's begin with the variables and check the number of arguments:

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdlib.h>
#define MAXSIZE 4096

int main(int argc, char *argv[])
{
   int fd; /* for the file descriptor */
   int maxread; /* the maximum we want to read*/
   off_t filesize; /* for the file size */
   struct stat fileinfo; /* struct for fstat */
   char rbuf[MAXSIZE] = { 0 }; /* the read buffer */

   if (argc < 3 || argc > 4)
   {
      fprintf(stderr, "Usage: %s [path] [from pos] "
         "[bytes to read]\n", argv[0]);
      return 1;
   }

2. Now we open the file using the open() system call. Just as before, we check the 
system call for errors by wrapping it in an if statement:

   /* open the file in read-only mode and get
      the file size */



184     Working with File I/O and Filesystem Operations

   if ( (fd = open(argv[1], O_RDONLY)) == -1 )
   {
      perror("Can't open file for reading");
      return 1;
   }

3. And now, we get the file's size using the fstat() system call. Here we also 
check whether the file is bigger than MAXSIZE, in which case we set maxread 
to MAXSIZE-1. In else if, we check whether the user has provided a third 
argument (how much to read), and set maxread to whatever the user typed:

   fstat(fd, &fileinfo);
   filesize = fileinfo.st_size;

   /* determine the max size we want to read
      so we don't overflow the read buffer */
   if ( filesize >= MAXSIZE )
   {
      maxread = MAXSIZE-1;
   }
   else if ( argv[3] != NULL )
   {
      if ( atoi(argv[3]) >= MAXSIZE )
      {
         fprintf(stderr, "To big size specified\n");
         return 1;
      }
      maxread = atoi(argv[3]);
   }
   else
   {
      maxread = filesize;
   }

4. And finally, we write the code to move the read position with lseek(). After that, 
we read the content with read() and print it with printf():

   /* move the read position */
   lseek(fd, atoi(argv[2]), SEEK_SET);
   /* read the content and print it */
   if ( (read(fd, rbuf, maxread)) == -1 )
   {
      perror("Can't read file");



Moving around inside a file with lseek()     185

      return 1;
   }
   printf("%s\n", rbuf);
   return 0;
}

5. Now compile the program:

$> make fd-seek
gcc -Wall -Wextra -pedantic -std=c99    fd-seek.c   -o 
fd-seek

6. And let's try out the program. Here we read the password file and the generic 
Makefile in our current directory:

$> ./fd-seek /etc/passwd 40 100
:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr
$> ./fd-seek Makefile 10
AGS=-Wall -Wextra -pedantic -std=c99
$> ./fd-seek Makefile
Usage: ./fd-seek [path] [from pos] [bytes to read]

How it works…
The lseek() function moves the read head (sometimes called a cursor) inside the file 
descriptor to the position we specify. The cursor then remains at that position until 
we start read(). To only read the number of characters that we specify as the third 
argument, we take that argument and assign the value to maxread. Since read() doesn't 
read any more than maxread (the third argument to read()), only those characters are 
read. If we don't give the program a third argument, maxread is set to the file's size or 
MAXSIZE, whichever is the smallest.

The third argument to lseek(), SEEK_SET, is where the cursor should be located in 
relation to the value we give as the second argument. In this case, with SEEK_SET, it 
means that the position should be set to whatever we specify as the second argument. 
If we wanted to move the position relative to our current position, we would have used 
SEEK_CUR instead. And if we wanted to move the cursor relative to the end of the file,  
we would have used SEEK_END.



186     Working with File I/O and Filesystem Operations

Moving around inside a file with fseek()
Now that we have seen how to seek inside a file descriptor with lseek(), we can see how 
we can do so in file streams with fseek(). In this recipe, we will write a similar program 
to that of the previous recipe, but now we will use file streams instead. There will also be 
another difference here, namely, how we specify how long we want to read. In the previous 
recipe, we specified the third argument as the number of characters or bytes to read. But 
in this recipe, we will instead specify a position, that is, a from position and a to position.

Getting ready
I advise you to read the Reading from files with streams recipe earlier in this chapter before 
reading this one. That will give you a better understanding of what's going on here.

How to do it…
We will write a program that reads a file from a given position and optionally to an end 
position. If no end position is given, the file is read to the end:

1. Write the following code in a file and save it as stream-seek.c. This program is 
similar to stream-read.c, but with the added ability to specify the start position 
and optionally the end position. Notice that we have added fseek() to set the 
start position. To abort the read, when we have reached the end position, we use 
ftell() to tell us the current position. If the end position is reached, we break out 
of the while loop. Also, we no longer read entire lines but individual characters. 
We do this with fgetc(). We also print individual characters instead of an entire 
string (line). We do this with putchar(). After the loop, we print a newline 
character so that the prompt won't end up on the same line as the output:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
   int ch; /* for each character */
   FILE *fp; /* pointer to a file stream */
   if ( argc < 3 || argc > 4 )
   {
      fprintf(stderr, "Usage: %s [path] [from pos]"
         " [to pos]\n", argv[0]);
      return 1;
   }



Moving around inside a file with fseek()     187

 
   /* open file with read mode */
   if ( (fp = fopen(argv[1], "r")) == NULL )
   {
      perror("Can't open file for reading");
      return 1;
   } 
    
   fseek(fp, atoi(argv[2]), SEEK_SET);
   /* loop over each line and write it to stdout */
   while( (ch = fgetc(fp)) != EOF )
   {
      if ( argv[3] != NULL)
      {
         if ( ftell(fp) >= atoi(argv[3]) )
         {
            break;
         }
      }
      putchar(ch);
   }
   printf("\n");
   fclose(fp); /* close the stream */
   return 0;
}

2. Now let's compile it:

$> make stream-seek
gcc -Wall -Wextra -pedantic -std=c99    stream-seek.c   
-o stream-seek

3. And let's try it out on some files. We try with both possible combinations: only  
a starting position, and both start and end positions:

$> ./stream-seek /etc/passwd 2000 2100
24:Libvirt Qemu,,,:/var/lib/libvirt:/bin/false
Debian-exim:x:120:126::/var/spool/exim4:/bin/false
s
$> ./stream-seek Makefile 20
-Wextra -pedantic -std=c99



188     Working with File I/O and Filesystem Operations

How it works…
The fseek() function works similarly to lseek(), as we saw in the previous recipe. 
We specify SEEK_SET to tell fseek() to seek an absolute position, and as the second 
argument, we specify the position. 

The program is similar to stream-read.c, but we have changed how the program 
reads. Instead of reading the entire lines, we read individual characters. This is so that we 
can stop reading at the exact position we specify as the end position. That wouldn't be 
possible if we read line by line. Because we changed the behavior to read the file character 
by character, we have also changed how we print the file. Now we print each character 
with putchar() instead.

After each character, we check if we are on or above the specified end position. If we are, 
we break out of the loop and end the entire read.

There's more…
There exists a whole family of functions related to fseek(). You can find them all by 
reading the man 3 fseek manual page.



6
Spawning Processes 

and Using Job 
Control

In this chapter, we'll learn about how processes are created on the system, which process 
is the very first one, and how all processes are related to each other. We'll then learn the 
many terms involved in processes and process management in Linux. After that, we'll 
learn how to fork new processes and what zombies and orphans are. At the end of this 
chapter, we'll learn what a daemon is and how to create one, before learning about what 
signals are and how to implement them.

Knowing how processes are created on the system is key to implementing good daemons, 
dealing with security, and creating efficient programs. It will also give you a better 
understanding of the overall system. In this chapter, we will cover the following recipes:

• Exploring how processes are created

• Using job control in Bash

• Controlling and terminating processes using signals

• Replacing the program in a process with execl()



190     Spawning Processes and Using Job Control

• Forking a process

• Executing a new program in a forked process

• Starting a new process with system()

• Creating a zombie process

• Learning about what orphans are

• Creating a daemon

• Implementing a signal handler

Let's get started!

Technical requirements
In this chapter, you'll need the GCC compiler and Make tool. We installed these tools in 
Chapter 1, Getting the Necessary Tools and Writing Our First Linux Programs.

You will also need a new program called pstree for this chapter. You can install it with 
your package manager. If you are using Debian or Ubuntu, you can install it with sudo 
apt install psmisc. If, on the other hand, you are using Fedora or CentOS, you can 
install it with sudo dnf install psmisc.

You will also need the generic Makefile we wrote in Chapter 3, Diving Deep into C in 
Linux. The Makefile is also available on GitHub, together with all the code samples for 
this chapter, at https://github.com/PacktPublishing/Linux-System-
Programming-Techniques/tree/master/ch6.

Check out the following link to see the Code in Action video:  
https://bit.ly/3cxY0eQ

Exploring how processes are created
Before we go into the details of creating processes and daemons, we need a general 
understanding of processes. The best way to get this understanding is by looking at the 
processes already running on your system, which is what we are going to do in this recipe.

Every process on the system has started its life by being spawned—forked—from another 
process. The very first process to be used on Unix and Linux systems has historically been 
init. The init process has been replaced in modern Linux distributions with systemd. 
They both serve the same purpose; to start the rest of the system. 

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch6
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch6
https://bit.ly/3cxY0eQ


Exploring how processes are created     191

A typical process tree may look like this, where a user has logged on via a terminal  
(that is, if we skip the complexity of X Window logons):

|- systemd (1)
  \- login (6384)
    \- bash (6669)
      \- more testfile.txt (7184)

The process IDs are the numbers in parenthesis. systemd (or init on some older 
systems) have a process ID (PID) of 1. Note that on some Linux systems, you can still 
see the name init, even though systemd is used. In this case, init is just a link to 
systemd. There are still Linux systems that use init, though.

Having a deep understanding of how processes spawn is essential when it comes to 
writing system programs. For example, when we want to create a daemon, we often spawn 
a new process. There are many other use cases where we must spawn processes or execute 
a new program from an existing process.

Getting ready
For this recipe, you'll need pstree. Installation instructions for pstree are listed in the 
Technical requirements section of this chapter.

How to do it…
In this recipe, we will look at our system and the processes it runs. We will use pstree  
to get a visual representation of these processes. Let's get started:

1. First, we need a way to get our current process ID. The $$ environment variable 
contains the current shell's PID. Please note that the PID will differ on every system 
and also from one time to another:

$> echo $$
18817

2. Now, let's look at our current process, as well as its parent processes and child 
processes, with pstree. The parent process is what has started the process, while  
a child process is any process under it:

$> pstree -A -p -s $$
systemd(1)---tmux (4050)---bash(18817)---pstree(18845)



192     Spawning Processes and Using Job Control

3. The output from the pstree command will most likely be different on your 
computer. Instead of tmux, you might have xterm, konsole, mate-terminal, 
or something similar. The -A option means to print the lines using ASCII 
characters, the -p option means to print the PID numbers, and the -s  option 
means that we want to show the parent processes of the selected process (which is 
$$ in our case). In my example, tmux is a child process of systemd, bash is  
a child process of tmux, and pstree is a child process of bash.

4. A process can also have several children. For example, we can start several processes 
in Bash. Here, we will start three sleep processes. Each sleep process will sleep for 
120 seconds. We will then print another pstree. In this example, pstree and the 
three sleep processes are all children of bash:

$> sleep 120 &
[1] 21902
$> sleep 120 &
[2] 21907
$> sleep 120 &
[3] 21913
$> pstree -A -p -s $$
systemd(1)---tmux (4050)---bash(18817)-+-pstree(21919)
                                       |-sleep(21902)
                                       |-sleep(21907)
                                       `-sleep(21913)

5. At the beginning of this chapter, we provided a sample process tree that showed  
a process called login. That process originally started out as getty, a process that 
manages TTYs on the system. TTY stands for Teletype. Normally, a Linux computer 
has seven TTYs you can switch between by using the sequence Ctrl+Alt+F1, 
Ctrl+Alt+F2, and so on, all the way up to Ctrl+Alt+F7. 

To demonstrate the getty/login concept, switch over to TTY3 with Ctrl+Alt+F3 
to activate it. Then, go back to X (often on Ctrl+Alt+F7 or Ctrl+Alt+F1). Here, we 
will use grep with ps to find TTY3 and make a note of its PID. The ps program 
is used to find and list processes on the system. Then, we will log in with a user on 
TTY3 (Ctrl+Alt+F3). After that, we will need to go back to our X Window session 
(and our terminal) again and use grep to find the PID we noted from TTY3. The 
program in that process has now been replaced with login. In other words, a 
process can swap out its program:

Ctrl+Alt+F3
login: 



Exploring how processes are created     193

Ctrl+Alt+F7
$> ps ax | grep tty3
9124 tty3     Ss+    0:00 /sbin/agetty -o -p -- \u --
noclear tty3 linux
Ctrl+Alt+F3
login: jake
Password: 
$> 
Ctrl+Alt+F7
$> ps ax | grep 9124
9124 tty3     Ss     0:00 /bin/login -p –

How it works…
In this recipe, we learned about several important concepts regarding processes on Linux 
systems. We will need this knowledge moving forward. First off, we learned that all 
processes get spawned from an existing process. The very first process is init. On newer 
Linux distributions, this is a symbolic link to systemd. systemd then spawns several 
processes on the system, such as getty, to handle the terminals. When a user starts to 
log in on a TTY, getty is replaced with login, the program that handles logins. When 
the user finally logs in, the login process spawns a shell for the user, such as Bash. Every 
time the user then executes a program, Bash spawns a copy of itself and replaces it with 
the program the user executed.

To clarify the process/program terminology a bit: a process runs the program code. We 
often call a running program for a process, which is correct. However, the program code in 
the process can be swapped out, as we saw with the getty/login example.

The reason for using TTY3 in this recipe is that we get a real login process with getty/
login, something we don't get when logging in via a X Window session or over SSH.

A process ID is denoted as PID. A parent process ID is denoted as PPID. Every process on 
the system has a parent (except for the very first process, systemd, which has a PID of 1).

We also learned that a process can have several children, as with the example provided of 
the sleep processes. We started the sleep processes with an & symbol at the end. This 
ampersand tells the shell that we want to start the process in the background.



194     Spawning Processes and Using Job Control

There's more…
The acronym TTY comes from the fact that, back in the old days, it was an actual teletype 
connected to the machine. A teletype is a typewriter-looking terminal. You type your 
commands on the typewriter and read the response on the paper. For anyone interested in 
teletypes, Columbia University has some exciting pictures and information at http://
www.columbia.edu/cu/computinghistory/teletype.html.

Using job control in Bash
Not only will job control give you a better understanding of foreground and background 
processes, but it will also make you more efficient when working on a terminal. Being able 
to put a process in the background frees up your terminal to do other tasks.

Getting ready
Nothing particular is required for this recipe, except for the Bash shell. Bash is most often 
the default shell, so it's likely that you already have it installed.

How to do it…
In this recipe, we will start and stop several processes, send them to the background, and 
bring them back to the foreground. This will give us an understanding of background and 
foreground processes. Let's get started:

1. Previously, we have seen how to start a process in the background with an 
ampersand (&). We will repeat that here, but we will also list the current jobs 
running and bring one of them to the foreground. The first background process 
we'll start here is sleep, while the other will be a manual page:

$> sleep 300 &
[1] 30200
$> man ls &
[2] 30210

2. Now that we have two processes in the background, let's list them with jobs:

$> jobs
[1]-  Running                 sleep 300 &
[2]+  Stopped                 man ls

http://www.columbia.edu/cu/computinghistory/teletype.html
http://www.columbia.edu/cu/computinghistory/teletype.html


Using job control in Bash     195

3. The sleep process is in a running state, meaning that the seconds are ticking 
away in the program. The man ls command has been stopped, though. The man 
command is waiting for you to do something with it since it requires a terminal.  
So, right now, it doesn't do anything. We can bring it to the foreground by using 
the fg command (fg stands for foreground). The argument you give to the fg 
command is the job ID from the jobs list:

$> fg 2

4. Quit the manual page by hitting Q. man ls will appear on the screen.

5. Now, bring the sleep process to the foreground with fg 1. It only says sleep 
300, nothing more. But now, the program is in the foreground. This means we can 
now stop the program by hitting Ctrl+Z:

sleep 300
Ctrl+Z
[1]+  Stopped                 sleep 300

6. With that, the program has been stopped, meaning it doesn't count down anymore. 
We can now once again bring it back to the foreground with fg 1 and let it finish.

7. Now that the previous process has finished, let's start a new sleep process. This 
time, we can start it in the foreground (by omitting the ampersand). Then, we can 
stop the program by hitting Ctrl+Z. List the jobs and notice that the program is in  
a stopped state:

$> sleep 300
Ctrl+Z
[1]+  Stopped                 sleep 300
$> jobs
[1]+  Stopped                 sleep 300

8. Now, we can continue running the program in the background using the bg 
command (bg stands for background):

$> bg 1
[1]+ sleep 300 &
$> jobs
[1]+  Running                 sleep 300 &



196     Spawning Processes and Using Job Control

9. We can also find the PID of the program by using a command called pgrep. The 
name pgrep stands for Process Grep. The -f option lets us specify the complete 
command, including its options, so that we get the correct PID:

$> pgrep -f "sleep 300"
4822

10. Now that we know the PID, we can kill the program using kill:

$> kill 4822
$> Enter
[1]+  Terminated              sleep 300

11. We can also kill a program using pkill. Here, we will start another process and kill 
it with pkill instead. This command is used with the same options as pgrep:

$> sleep 300 &
[1] 6526
$> pkill -f "sleep 300"
[1]+  Terminated              sleep 300

How it works…
In this recipe, we learned about background processes, foreground process, stopped and 
running jobs, killing processes, and much more. These are some basics concepts that are 
used in job control in Linux.

When we killed the process with kill, kill sent a signal to the process in the 
background. The default signal for kill is the TERM signal. TERM stands for terminate. 
A program may choose how to act on a TERM signal, though. The TERM signal is number 
15. A signal that can't be handled—that always kills a program—is signal 9, or the KILL 
signal. We will cover signal handling in more depth in the next recipe.

Controlling and terminating processes using 
signals
Now that we know a bit more about processes, it's time to move on to signals and learn 
how we can kill and control a process using signals. In this recipe, we will also write our 
first C program, which will have a signal handler.



Controlling and terminating processes using signals     197

Getting ready
For this recipe, you'll only need what's listed in the Technical requirements section of this 
chapter.

How to do it…
In this recipe, we'll explore how to control and terminate processes with signals. Let's get 
started:

1. Let's start by listing the signals we can send to a process using the kill command. 
The list you get from this command is rather long, so it's not been included here. 
The most interesting—and used—signals are the first 31:

$> kill -L

2. Let's see how some of these signals work. We can send the STOP signal (number 19) 
to a process, which has the same effect as we saw when hitting Ctrl+Z in sleep. 
But here, we are sending the STOP signal to a background process directly:

$> sleep 120 &
[1] 16392
$> kill -19 16392

 [1]+  Stopped                 sleep 120
$> jobs
[1]+  Stopped                 sleep 120

3. Now, we can continue the process again by sending it the CONT signal (short for 
continue). We can type the name of the signal instead, if we wish, instead of its 
number:

$> kill -CONT 16392
$> jobs
[1]+  Running                 sleep 120 &

4. Now, we can kill the process by sending it the KILL signal (number 9):

$> kill -9 16392
$> Enter
[1]+  Killed                  sleep 120



198     Spawning Processes and Using Job Control

5. Now, let's create a small program that acts upon different signals and ignores  
(or blocks) Ctrl+C, the interrupt signal. The USR1 and USR2 signals are perfect  
for this. Write the following code in a file and save it as signals.c. This code has 
been split up into multiple steps here, but all the code goes into this file. To register 
a signal handler in a program, we can use the sigaction() system call. We need 
to define _POSIX_C_SOURCE since sigaction() and its friends aren't included 
in strict C99. We also need to include the necessary headers files, write the handler 
function prototype, and begin the main() function:

#define _POSIX_C_SOURCE 200809L
#include <stdio.h>
#include <sys/types.h>
#include <signal.h>
#include <unistd.h>

void sigHandler(int sig);

int main(void)
{

6. Now, let's create some variables and structures that we need. The sigaction struct 
that we will create, action, is for the sigaction() system call. A bit further 
down in the code, we set its member. First, we must set sa_handler to our 
function, which will execute when the signal is received. Second, we set sa_mask 
to all signals using sigfillset(). This will ignore all the signals while our  
signal handler is being executed, preventing it from being interrupted. Third, we 
set sa_flags to SA_RESTART, meaning any interrupted systems calls will be 
restarted:

    pid_t pid; /* to store our pid in */
    pid = getpid(); /* get the pid */
    struct sigaction action; /* for sigaction */
    sigset_t set; /* signals we want to ignore */
    printf("Program running with PID %d\n", pid);
    /* prepare sigaction() */
    action.sa_handler = sigHandler;
    sigfillset(&action.sa_mask);
    action.sa_flags = SA_RESTART;



Controlling and terminating processes using signals     199

7. Now, it's time to register the signal handlers using sigaction(). The first 
argument to sigaction() is the signal we want to catch, the second argument is 
a struct for the new action that should be taken, and the third argument gives us the 
old action. If we are not interested in the old action, we set this to NULL. The actions 
must be a sigaction structs:

    /* register two signal handlers, one for USR1
       and one for USR2 */
    sigaction(SIGUSR1, &action, NULL);
    sigaction(SIGUSR2, &action, NULL);

8. Remember that we wanted the program to ignore Ctrl+C (the interrupt signal)? 
This can be achieved by calling sigprocmask() before the code that should 
ignore the signal. But first, we must create a signal set with all the signals it should 
ignore/block. First, we will empty the set with sigemptyset(), and then add 
the required signals with sigaddset(). The sigaddset() function can be 
called multiple times to add more signals. The first argument to sigprocmask() 
is the behavior, which is SIG_BLOCK here. The second argument is the signal set, 
while the third argument can be used to retrieve the old set. However, here, we 
will set it to NULL. After that, we start the infinite for loop. And after the loop, we 
unblock the signal set again. In this case, it's not necessary since we will just quit the 
program, but in other cases, it's advised to unblock the signals once we have moved 
past the section of code that should ignore them:

    /* create a "signal set" for sigprocmask() */
    sigemptyset(&set);
    sigaddset(&set, SIGINT);
    /* block SIGINT and run an infinite loop */
    sigprocmask(SIG_BLOCK, &set, NULL);
    /* infinite loop to keep the program running */
    for (;;)
    {
        sleep(10);
    }
    sigprocmask(SIG_UNBLOCK, &set, NULL);
    return 0;
}



200     Spawning Processes and Using Job Control

9. Finally, let's write the function that will be executed on SIGUSR1 and SIGUSR2. 
The function will print the received signal:

void sigHandler(int sig)
{
    if (sig == SIGUSR1)
    {
        printf("Received USR1 signal\n");
    }
    else if (sig == SIGUSR2)
    {
        printf("Received USR2 signal\n");
    }
}

10. Let's compile the program:

$> make signals
gcc -Wall -Wextra -pedantic -std=c99    signals.c   -o
 signals

11. Run the program, either in a separate terminal or in the same terminal in the 
background. Notice that we are using the signal names here with kill; it's a bit 
easier than keeping track of the numbers:

$> ./signals &
[1] 25831
$> Program running with PID 25831

$> kill -USR1 25831
Received USR1 signal
$> kill -USR1 25831
Received USR1 signal
$> kill -USR2 25831
$> kill -USR2 25831
Received USR2 signal
$> Ctrl+C
^C
$> kill -USR1 25831
Received USR1 signal
$> kill -TERM 25831
$> ENTER 
[1]+  Terminated              ./signals



Controlling and terminating processes using signals     201

How it works…
First, we explored the many signals available in a Linux system, of which the first 31 are 
of interest and widely used. The most common ones are TERM, KILL, QUIT, STOP, HUP, 
INT, STOP, and CONT, as we saw here.

Then, we used the STOP and CONT signals to achieve the same effect that we achieved in 
the previous recipe; that is, to stop and continue running a background process. In the 
previous recipe, we used bg to continue running a process in the background, while to 
stop a process, we hit Ctrl+Z. This time, we didn't need to have the program open in the 
foreground to stop it; we just sent it the STOP signal with kill.

After that, we moved on and wrote a C program that catches two signals, USR1 and USR2, 
and blocks the SIGINT signal (Ctrl+C). Depending on the signal we send to the program, 
different texts are printed. We did this by implementing a signal handler. A signal handler 
is a function that we write ourselves, just like any other function. Then, we registered that 
function as a signal handler with the sigaction() function. 

Before calling the sigaction() system call, we had to populate the sigaction 
structure with information about the handler function, which signals to ignore during the 
handler's execution, and which behavior it should have.

The signal sets, both for sigaction's sa_mask and sigprocmask(), are created using 
the sigset_t type and manipulated with the following function calls (here, we're 
assuming a sigset_t variable with the name s is being used:

• sigemptyset(&s); clears all signals from s

• sigaddset(&s, SIGUSR1); adds the SIGUSR1 signal to s

• sigdelset(&s, SIGUSR1); removes the SIGUSR signal from s

• sigfillset(&s); sets all signals in s

• sigismember(&s, SIGUSR1); finds out if SIGUSR1 is a member of s (not 
used in our example code)

To print the PID of the process when it starts, we must fetch the PID with the getpid() 
system call. We store the PID in a variable of the pid_t type, as we have seen previously.



202     Spawning Processes and Using Job Control

See also
There's a lot of useful information in the manual pages for kill, pkill, 
sigprocmask(), and the sigaction() system call. I suggest you read them by using 
the following commands:

• man 1 kill

• man 1 pkill

• man 2 sigprocmask

• man 2 sigaction

There is a much simpler system call, called signal(), that is also used for signal 
handling. Nowadays, that system call is more or less considered deprecated. But if you're 
interested, you can read about it in man 2 signal.

Replacing the program in a process with 
execl()
At the beginning of this chapter, we saw how getty gets replaced by login when a user 
logs in. In this recipe, we will write a small program that does exactly that—replaces its 
program with a new one. The system call for this is called execl().

Knowing how to use execl() enables you to write programs that execute new programs 
inside the existing process. It also enables you to start a new program in a spawned 
process. When we start a new process, we probably want to replace that copy with a new 
program. So, understanding execl() is paramount.

Getting ready
You will need to have read the first three recipes in this chapter to understand this one 
fully. The other requirements for this recipe are mentioned in the Technical requirements 
section of this chapter; for example, you'll need the pstree tool. 

You will also need two terminals or two terminal windows for this recipe. In one of these 
terminals, we will be running the program, while in the other terminal, we'll be looking  
at pstree for the process.



Replacing the program in a process with execl()     203

How to do it…
In this recipe, we will write a small program that replaces the program running inside the 
process. Let's get started:

1. Write the following code in a file and save it as execdemo.c:

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>

int main(void)
{
   printf("My PID is %d\n", getpid());
   printf("Hit enter to continue ");
   getchar(); /* wait for enter key */
   printf("Executing /usr/bin/less...\n");
   /* execute less using execl and error check it */
   if ( execl("/usr/bin/less", "less", 
      "/etc/passwd", (char*)NULL) == -1 )
   {
      perror("Can't execute program");
      return 1;
   }
   return 0;
}

2. Compile the program using Make:

$> make execdemo
gcc -Wall -Wextra -pedantic -std=c99    execdemo.c   -o 
execdemo

3. Now, run the program in your current terminal:

$> ./execdemo
My PID is 920
Hit enter to continue

4. Now, start a new terminal and execute pstree with the PID from execdemo:

$> pstree -A -p -s 920
systemd(1)---tmux(4050)---bash(18817)---execdemo(920)



204     Spawning Processes and Using Job Control

5. Now, go back to the first terminal, where execdemo is running, and hit Enter.  
This will print the password file with less.

6. Finally, go back to the second terminal—the one where you ran pstree. Rerun  
the same pstree command. Note that execdemo has been replaced with less, 
even though the PID is still the same:

$> pstree -A -p -s 920
systemd(1)---tmux(4050)---bash(18817)---less(920)

How it works…
The execl() function executes a new program and replaces the old one in the same 
process. To make the program pause its execution so that we had time to view it in 
pstree, we used getchar().

The execl() function takes four mandatory arguments. The first one is the path to  
the program we want to execute. The second argument is the program's name, as it 
would be printed from argv[0]. Finally, the third and any following argument is the 
argument we want to pass to the program we are about to execute. To terminate this list 
of arguments that we want to pass to the program, we must end it with a pointer to NULL, 
cast as a char.

Another way to look at a process is to think of it as an execution environment. The 
program running inside that environment can be replaced. That's why we talk about 
processes and why we call them Process IDs, not Program IDs.

See also
There are several other exec() functions we can use, each with their own unique features 
and characteristics. These are often referred to as the "exec() family." You can read all 
about them by using the man 3 execl command.

Forking a process
Previously, we have been saying spawned when a program creates a new process.  
The correct terminology is to fork a process. What's happening is that a process creates  
a copy of itself—it forks.

In the previous recipe, we learned how to execute a new program inside a process using 
execl(). In this recipe, we'll learn how to fork a process using fork(). The forked 
process—the child—is a duplicate of the calling process—the parent.



Forking a process     205

Knowing how to fork a process enables us to create new processes on the system 
programmatically. Without being able to fork, we are limited to only a single process. 
For example, if we want to launch a new program from an existing one and still keep the 
original, we must fork.

Getting ready
Just as in the previous recipes, you'll need the pstree tool. The Technical requirements 
section covers how to install it. You'll also need the GCC compiler and the Make tool. 
You'll also need two terminals; one terminal to execute the program and another to view  
a process tree with pstree.

How to do it…
In this recipe, we'll use fork() to fork a process. We'll also view a process tree so that  
we can see what's going on. Let's get started:

1. Write the following code in a program and save it as forkdemo.c. The fork() 
system call is highlighted in this code. Before we fork(), we print the PID of the 
process:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{
   pid_t pid;
   printf("My PID is %d\n", getpid());
   /* fork, save the PID, and check for errors */
   if ( (pid = fork()) == -1 )
   { 
      perror("Can't fork");
      return 1;
   }
   if (pid == 0)
   {
      /* if pid is 0 we are in the child process */
      printf("Hello from the child process!\n");
      sleep(120);
   }
   



206     Spawning Processes and Using Job Control

   else if(pid > 0)
   {
      /* if pid is greater than 0 we are in 
       * the parent */
      printf("Hello from the parent process! "
         "My child has PID %d\n", pid);
      sleep(120);
   }
   else
   {
      fprintf(stderr, "Something went wrong "
         "forking\n");
      return 1;
   }
   return 0;
}

2. Now, compile the program:

$> make forkdemo
gcc -Wall -Wextra -pedantic -std=c99    forkdemo.c   
-o forkdemo

3. Run the program in your current terminal and take note of the PID:

$> ./forkdemo 
My PID is 21764
Hello from the parent process! My child has PID 21765
Hello from the child process!

4. Now, in a new terminal, run pstree with the PID of forkdemo. Here, we can 
see that forkdemo has forked and that the PID that we got from the program 
before the fork is the parent process. The forked process is the child process, and 
the child's PID matches what the parent told us. Also, notice that there are now two 
copies of forkdemo running:

$> pstree -A -p -s 21764
systemd(1)---tmux(4050)---bash(18817)---
forkdemo(21764)---forkdemo(21765)



Executing a new program in a forked process     207

How it works…
When a process forks, it creates a duplicate of itself. This duplicate becomes a child process 
of the process that called fork()—the parent process. The child process is identical to 
the parent process, except it has a new PID. Inside the parent process, fork() returns 
the PID of the child process. Inside the child process, 0 is returned. This is why the parent 
could print the PID of the child process.

Both processes contain the same program code, and both processes are running, but only 
the specific parts in the if statements get executed, depending on whether the process is 
the parent or the child.

There's more…
Generally speaking, both the parent and the child are identical except for the PID. 
There are, however, some other differences; for example, CPU counters are reset in the 
child. There are other such minor differences that you can read about in man 2 fork. 
However, the overall program code is the same.

Executing a new program in a forked process
In the previous recipe, we learned how to fork a process using the fork() system call. In 
the recipe before that, we learned how to replace the program in a process with execl(). 
In this recipe, we'll combine the two, fork() and execl(), to execute a new program 
in a forked process. This is what happens every time we run a program in Bash. Bash forks 
itself and executes the program we typed in.

Knowing how to use fork() and execl() enables you to write programs that start new 
programs. For example, you could write your own shell with this knowledge.

Getting ready
For this recipe, you'll need the pstree tool, the GCC compiler, and the Make tool. You 
can find installation instructions for these programs in the Technical requirements section 
of this chapter.



208     Spawning Processes and Using Job Control

How to do it…
In this recipe, we'll write a program that forks() and executes a new program in the 
child process. Let's get started:

1. Write the following program code in a file and save it as my-fork.c. When we 
execute a new program inside a child process, we shall wait for the child process to 
finish. This is what we do with waitpid(). The waitpid() call also has another 
important function; to get the return status from the child process:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <string.h>
#include <sys/wait.h>

int main(void)
{
   pid_t pid;
   int status;

   /* Get and print my own pid, then fork
      and check for errors */
   printf("My PID is %d\n", getpid());
   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }
   if (pid == 0)
   {
      /* If pid is 0 we are in the child process,
         from here we execute 'man ls' */
      if ( execl("/usr/bin/man", "man", "ls",
         (char*)NULL) == -1 )
      {
         perror("Can't exec");
         return 1;
      }
   }
   else if(pid > 0)
   {
      /* In the parent we must wait for the child



Executing a new program in a forked process     209

         to exit with waitpid(). Afterward, the
         child exit status is written to 'status' */
      waitpid(pid, &status, 0);
      printf("Child executed with PID %d\n", pid);
      printf("Its return status was %d\n", status);
      printf("Its return status was %d\n", status);
   }
   else
   {
      fprintf(stderr, "Something went wrong "
         "forking\n");
      return 1;
   }
   return 0;
}

2. Compile the program using Make:

$> make my-fork
gcc -Wall -Wextra -pedantic -std=c99    my-fork.c   -o
my-fork

3. In your current terminal, find the PID of the current shell and make a note of it:

$> echo $$
18817

4. Now, execute the program we compiled with ./my-fork. This will display the 
manual page for ls.

5. Start a new terminal and look at the process tree for the shell in the other terminal. 
Note that my-fork has forked and replaced its content with man, which has forked 
and replaced its content with pager (to display the content):

$> pstree -A -p -s 18817
systemd(1)---tmux(4050)---bash(18817)---my-fork(5849)-
--man(5850)---pager(5861)



210     Spawning Processes and Using Job Control

6. Quit the manual page in the first terminal by hitting Q. This will yield the following 
text. Compare the PID of the parent process and the child process from pstree. 
Notice that the child process is 5850, which was the man command. It started out 
as a copy of my-fork, but then replaced its program with man:

My PID is 5849
Child executed with PID 5850
Its return status was 0

How it works…
The fork() system call is responsible for forking processes on Linux and Unix  
systems. execl() (or one of the other exec() functions) is then responsible for 
executing—and replacing its own—program with a new one. This is essentially how  
any program gets started on the system.

Note that we needed to tell the parent process to wait for the child process with 
waitpid(). If we needed to run a program that didn't require a terminal, we could have 
done without waitpid(). However, we should always wait for the child process. If we 
don't, the child will end up as an orphan. This is something we will discuss in great detail 
later on in this chapter, in the Learning what orphans are recipe.

But in this particular case, where we execute the man command, which requires a 
terminal, we need to wait for the child for everything to work. The waitpid() call also 
enables us to grab the return status of the child. We also prevent the child from becoming 
an orphan.

When we ran the program and looked at the process tree with pstree, we saw that the 
my-fork process had forked itself and replaced its program with man. We could see this 
because the PID of the man command was the same as the PID of the child process of 
my-fork. We also noticed that the man command, in turn, had forked itself and replaced 
its child with pager. The pager command is responsible for displaying the actual text on 
the screen, which is usually less.

Starting a new process with system()
What we just covered regarding using fork(), waitpid(), and execl() to start 
a new program in a forked process is the key to understanding Linux and processes at 
a deeper level. This understanding is key to becoming an excellent system developer. 
However, there is a shortcut. Instead of manually dealing with forking, waiting, and 
executing, we can use system(). The system() function does all these steps for us.



Starting a new process with system()     211

Getting ready
For this recipe, you only need what's listed in the Technical requirements section of this 
chapter.

How to do it…
In this recipe, we'll rewrite the previous program—my-fork—using the system() 
function instead. You'll notice how much shorter this program is compared to the 
previous one. Let's get started:

1. Write the following code in a file and save it as sysdemo.c. Notice how much 
smaller (and easier) this program is. The system() function does all the complex 
stuff for us:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
   if ( (system("man ls")) == -1 )
   {
      fprintf(stderr, "Error forking or reading "
         "status\n");
      return 1;
   }
   return 0;
}

2. Compile the program:

$> make sysdemo
gcc -Wall -Wextra -pedantic -std=c99    sysdemo.c   -o
sysdemo

3. Make a note of the shell's PID using the $$ variable:

$> echo $$
957

4. Now, run the program in the current terminal. This will display the manual page  
for the ls command. Leave it running:

$> ./sysdemo



212     Spawning Processes and Using Job Control

5. Start a new terminal and execute pstree on the PID from step 3. Notice that we 
have an additional process here called sh. This is because the system() function 
executes the man command from sh (the basic Bourne Shell):

$> pstree -A -p -s 957
systemd(1)---tmux(4050)---bash(957)---sysdemo(28274)--
-sh(28275)---man(28276)---pager(28287)

How it works…
This program was much smaller and easier to write. However, as we saw with pstree, 
there is an extra process compared to the previous recipe: sh (shell). The system() 
function works by executing the man command from sh. The manual page (man 3 
system) clearly states this. It executes the command we specify by using the following 
execl() call:

execl("/bin/sh", "sh", "-c", command, (char *) 0);

The result is the same, though. It performs a fork() and then an execl() call, and 
it waits for the child with waitpid(). This is also a great example of a higher-level 
function that uses lower-level system calls.

Creating a zombie process
To fully understand processes in Linux, we also need to look at what a zombie process is. 
And to fully understand what this is, we need to create one ourselves.

A zombie process is a child that has exited before the parent, and the parent process 
hasn't waited for the child's status. The name "zombie process" comes from the fact that 
the process is undead. The process has exited, but there is still an entry for it in the system 
process table.

Knowing what a zombie process is and how it's created will help you avoid writing bad 
programs that create zombie processes on the system.

Getting ready
For this recipe, you'll only need what's listed in the Technical requirements section of this 
chapter.



Creating a zombie process     213

How to do it…
In this recipe, we will write a small program that creates a zombie process on the system. 
We will also view the zombie process using the ps command. To prove that we can avoid 
zombies by waiting for the child, we will also write a second version with waitpid(). 
Let's get started:

1. Write the following code in a file and name it create-zombie.c. This program 
is the same as the one we saw in the forkdemo.c file, except that the child exits 
using exit(0) before the parent exits. The parent sleeps for 2 minutes after the 
child has exited, without waiting for the child with waitpid(), thus creating  
a zombie process. The call to exit() is highlighted here:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{
   pid_t pid;
   printf("My PID is %d\n", getpid());
   /* fork, save the PID, and check for errors */
   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }
   if (pid == 0)
   {
        /* if pid is 0 we are in the child process */
        printf("Hello and goodbye from the child!\n");
        exit(0);
   }
   else if(pid > 0)
   {
        /* if pid is greater than 0 we are in
         * the parent */
        printf("Hello from the parent process! "
            "My child had PID %d\n", pid);
        sleep(120);
    }
   else 



214     Spawning Processes and Using Job Control

   {
      fprintf(stderr, "Something went wrong "
         "forking\n");
      return 1;
   }
   return 0;
}

2. Compile the program:

$> make create-zombie
gcc -Wall -Wextra -pedantic -std=c99    create-
zombie.c   -o create-zombie

3. Run the program in the current terminal. The program (the parent process) will stay 
alive for 2 minutes. In the meantime, the child is a zombie since the parent didn't 
wait for it or its status:

$> ./create-zombie
My PID is 2429
Hello from the parent process! My child had PID 2430
Hello and goodbye from the child!

4. While the program is running, open up another terminal and check out the  
child's PID with ps. You get the child's PID from the preceding output from 
create-zombie. Here, we can see that the process is a zombie because of its 
status, Z+, and the word <defunct> after the process name:

$> ps a | grep 2430
  2430 pts/18   Z+     0:00 [create-zombie] <defunct>
  2824 pts/34   S+     0:00 grep 2430

5. After 2 minutes—when the parent process has finished executing—rerun the ps 
command with the same PID. The zombie process will now be gone:

$> ps a | grep 2430
  3364 pts/34   S+     0:00 grep 2430

6. Now, rewrite the program so that it looks as follows. Name the new version 
no-zombie.c. The code that's been added is highlighted here:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>



Creating a zombie process     215

#include <stdlib.h>
#include <sys/wait.h>

int main(void)
{
   pid_t pid;
   int status;
   printf("My PID is %d\n", getpid());
   /* fork, save the PID, and check for errors */
   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }
   if (pid == 0)
   {
      /* if pid is 0 we are in the child process */
      printf("Hello and goodbye from the child!\n");
      exit(0);
   }
   else if(pid > 0)
   {
      /* if pid is greater than 0 we are in 
       * the parent */
      printf("Hello from the parent process! "
         "My child had PID %d\n", pid);
      waitpid(pid, &status, 0); /* wait for child */
      sleep(120);
   }
   else
   {
      fprintf(stderr, "Something went wrong "
         "forking\n");
      return 1;
   }
   return 0;
}



216     Spawning Processes and Using Job Control

7. Compile this new version:

$> make no-zombie
gcc -Wall -Wextra -pedantic -std=c99    no-zombie.c  
-o no-zombie

8. Run the program in the current terminal. Just as before, it will create a child process 
that will exit immediately. The parent process will continue running for 2 minutes, 
giving us enough time to search for the child's PID:

$> ./no-zombie
My PID is 22101
Hello from the parent process! My child had PID 22102
Hello and goodbye from the child!

9. While the no-zombie program is running, open a new terminal and search for the 
child's PID with ps and grep. As you will see, there is no process that matches the 
PID of the child. Hence, the child has exited correctly since the parent waited for its 
status:

$> ps a | grep 22102
22221 pts/34   S+     0:00 grep 22102

How it works…
We always want to avoid creating zombie processes on the system, and the best way to do 
that is to wait for the child processes to finish.

In steps 1 to 5, we wrote a program that creates a zombie process. The zombie process gets 
created by the fact that the parent didn't wait for the child with the waitpid() system 
call. The child does exit, but it remains in the system process table. When we searched for 
the process with ps and grep, we saw the child process's status as Z+, meaning zombie. 
The process doesn't exist since it has exited using the exit() system call. However, it's 
still in there according to the system process table; hence, it's undead—a zombie.

In steps 6 to 9, we rewrote the program using the waitpid() system call to wait for 
the child. The child still exists before the parent, but this time, the parent gets the child's 
status.

A zombie process doesn't use up any system resources since the process has  
terminated. It only resides in the system process table. However, every process on  
the system—including zombies—takes up a PID number. Since there are a finite number 
of PIDs available to the system, there's a risk of running out of PIDs if dead processes are 
taking up PID numbers.



Learning about what orphans are     217

There's more…
There are many details about child process and their state changes in the manual page for 
waitpid(). There's actually three wait() functions available in Linux. You can read 
about them all by using the man 2 wait command.

Learning about what orphans are
Understanding what orphans are in a Linux system is just as crucial as understanding 
zombies. This will give you a deeper understanding of the entire system and how processes 
get inherited by systemd.

An orphan is a child whose parent has died. However, as we have learned in this chapter, 
every process needs a parent process. So, even orphans need a parent process. To solve 
this dilemma, every orphan gets inherited by systemd, which is the first process on the 
system—PID 1.

In this recipe, we'll write a small program that forks, thus creating a child process. The 
parent process will then exit, leaving the child as an orphan.

Getting ready
Everything you need for this recipe is listed in the Technical requirements section of this 
chapter.

How to do it…
In this recipe, we will write a short program that creates an orphan process that will be 
inherited by systemd. Let's get started:

1. Write the following code in a file and save it as orphan.c. The program will create 
a child process that will run for 5 minutes in the background. When we press Enter, 
the parent process will exit. This gives us time to investigate the child process with 
pstree both before and after the parent has exited:

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{
   pid_t pid;



218     Spawning Processes and Using Job Control

   printf("Parent PID is %d\n", getpid());
   /* fork, save the PID, and check for errors */
   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }
   if (pid == 0)
   {
      /* if pid is 0 we are in the child process */
      printf("I am the child and will run for "
         "5 minutes\n");
      sleep(300);
      exit(0);
   }
   else if(pid > 0)
   {
      /* if pid is greater than 0 we are in 
       * the parent */
      printf("My child has PID %d\n" 
         "I, the parent, will exit when you "
         "press enter\n", pid);
      getchar();
      return 0;
   }
   else
   {
      fprintf(stderr, "Something went wrong "
         "forking\n");
      return 1;
   }
   return 0;
}

2. Compile this program:

$> make orphan
gcc -Wall -Wextra -pedantic -std=c99    orphan.c   -o
 orphan



Learning about what orphans are     219

3. Run the program in the current terminal and leave the program running. Don't 
press Enter just yet:

$> ./orphan
My PID is 13893
My child has PID 13894
I, the parent, will exit when you press enter
I am the child and will run for 2 minutes

4. Now, in a new terminal, run pstree with the PID of the child. Here, we will see 
that it looks just like it did in the previous recipes. The process has been forked, 
which has created a child process with the same content:

$> pstree -A -p -s 13894
systemd(1)---tmux(4050)---bash(18817)---orphan(13893)-
--orphan(13894)

5. Now, it's time to end the parent process. Go back and hit Enter in the terminal 
where orphan is still running. This will end the parent process.

6. Now, run pstree again in the second terminal. This is the same command that 
you just ran. As you can see, the child process has now been inherited by systemd 
since its parent has died. After 5 minutes, the child process will exit:

$> pstree -A -p -s 13894
systemd(1)---orphan(13894)

7. There are other, more standardized tools we can use to view the Parent Process ID 
(PPID). One of these is ps. Run the following ps command to view more detailed 
information about the child process. Here, we will see a lot more information. The 
most important to us is the PPID, PID, and the Session ID (SID). We will also see 
the User ID (UID) here, which specifies who owns the process:

$> ps jp 13894
PPID PID PGID  SID   TTY  TPGID STAT UID TIME COMMAND
1  13894 13893 18817 pts/18 18817 S 1000 0:00 ./orphan

How it works…
Every process needs a parent process. That's the reason why systemd inherits any 
processes on the system that end up as orphans.

The code inside if (pid == 0) continued to run for 5 minutes. That gave us enough 
time to check that the child process had been inherited by systemd.



220     Spawning Processes and Using Job Control

In the last step, we used ps to view more details about the child process. Here, we saw 
the PPID, PID, PGID, and SID. Some new names have been mentioned here that are 
important to know. We already know about PPID and PID, but PGID and SID haven't 
been covered yet.

PGID stands for Process Group ID and is a way for the system to group processes. The 
PGID for the child process is the PID of the parent process. In other words, this PGID was 
created to group the parent and child process since they belong together. The system sets 
the PGID to the PID of the parent who created the group. We don't need to create these 
groups ourselves; that is something the system does for us.

SID stands for Session ID, and this is also a way for the system to group processes. 
However, a SID group is usually bigger and contains more processes— often a whole 
"session," hence the name. The SID of this group is 18817, which is the PID of the 
Bash shell. The same rules apply here; the SID number will be the same as the PID of 
the process that started the session. This session consists of my user's shell and all the 
programs that I start from it. That way, the system can kill all the processes that belong  
to that session if I log off the system.

See also
There's a lot of information you can get with ps. I recommend that you at least skim 
through the manual with man 1 ps.

Creating a daemon
A common assignment when working with system programming is to create various 
daemons. A daemon is a background process that runs on the system and performs  
some tasks. The SSH daemon is a great example of this. Another great example is the  
NTP daemon, which takes care of synchronizing the computer clock and sometimes  
even distributing the time to other computers.

Knowing how to create a daemon will enable you to create server software; for example, 
web servers, chat servers, and more.

In this recipe, we will create a simple daemon to demonstrate some important concepts.



Creating a daemon     221

Getting ready
You'll only need the components listed in the Technical requirements section of this 
chapter.

How to do it…
In this recipe, we'll write a small daemon that will run in the background in our system. 
The only "work" the daemon will do is write the current date and time to a file. This proves 
that the daemon is alive and well. Let's get started:

1. The code for the daemon is rather long compared to our previous examples. 
Therefore, the code has been split into several steps. There are some new things 
here as well that we haven't covered yet. Write the code in a file and save it as 
my-daemon.c. Remember that all the code in all the steps goes into this file. We'll 
start with all the include files, the variables we'll need, and our fork(), as we 
have seen previously. This fork() will be the first of two:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include <fcntl.h>

int main(void)
{
   pid_t pid;
   FILE *fp;
   time_t now; /* for the current time */
   const char pidfile[] = "/var/run/my-daemon.pid";
   const char daemonfile[] = 
      "/tmp/my-daemon-is-alive.txt";

   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }



222     Spawning Processes and Using Job Control

2. Now that we've forked, we want the parent to exit. Once the parent has exited, 
we will be in the child process. In the child process, we will create a new session 
with setsid(). Creating a new session will free the process from the controlling 
terminal:

   else if ( (pid != 0) )
   {
      exit(0);
   }
   /* the parent process has exited, so this is the
    * child. create a new session to lose the 
    * controlling terminal */
   setsid();

3. Now, we want to fork() again. This second fork will create a new process just as 
before, but since it's a new process in an already existing session, it will not be  
a session leader, preventing it from obtaining a new controlling terminal. The new 
child process is referred to as a grandchild. Once again, we exit the parent process 
(the child process). However, before we exit the child, we write the PID of the 
grandchild to a PID file. This PID file is used to keep track of the daemon:

   /* fork again, creating a grandchild, 
    * the actual daemon */
   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }
   /* the child process which will exit */
   else if ( pid > 0 )
   {
      /* open pid-file for writing and error 
       * check it */
      if ( (fp = fopen(pidfile, "w")) == NULL )
      {
         perror("Can't open file for writing");
         return 1;
      }
      /* write pid to file */
      fprintf(fp, "%d\n", pid); 
      fclose(fp); /* close the file pointer */



Creating a daemon     223

      exit(0);
   }

4. Now, set the default mode (umask) to something sensible for the daemon. We must 
also change the current working directory to / so that the daemon won't prevent 
a filesystem from unmounting or a directory from being deleted. Then, we must 
open the daemon file, which is what we will write our messages to. The messages 
will contain the current date and time and will let us know if everything is working. 
Normally, this would be a log file instead:

   umask(022); /* set the umask to something ok */
   chdir("/"); /* change working directory to / */
   /* open the "daemonfile" for writing */
   if ( (fp = fopen(daemonfile, "w")) == NULL )
   {
      perror("Can't open daemonfile");
      return 1;
   }

5. Since the daemon will only run detached in the background, we have no use for 
stdin, stdout, and stderr, so let's close them all. However, it's not safe to leave them 
closed. If something in the code would open a file descriptor at a later time, it will 
get file descriptor 0, which is usually stdin. File descriptors are assigned in sequence. 
If there are no open file descriptors, the first call to open() will get descriptor 0; 
the second call will get descriptor 1. Another problem might be that some parts 
might try to write to stdout, which no longer exists, making the program crash. 
Therefore, we must reopen them all, but to /dev/null (the black hole) instead:

   /* from here, we don't need stdin, stdout or, 
    * stderr anymore, so let's close them all, 
    * then re-open them to /dev/null */
   close(STDIN_FILENO);
   close(STDOUT_FILENO);
   close(STDERR_FILENO);
   open("/dev/null", O_RDONLY); /* 0 = stdin */
   open("/dev/null", O_WRONLY); /* 1 = stdout */
   open("/dev/null", O_RDWR); /* 2 = stderr */



224     Spawning Processes and Using Job Control

6. Finally, we can start the daemon's work. This is just a for loop that writes a message 
to the daemon file saying the daemon is still alive. Notice that we must flush the file 
pointer after each fprintf() with fflush(). Usually, in Linux, things are line 
buffered, meaning only a single line is buffered before writing. However, since this 
is a file and not stdout, it's fully buffered instead, meaning it buffers all data until 
either the buffer is full or the file stream is closed. Without fflush(), we wouldn't 
see any text in the file until we have filled the buffer. By using fflush() after each 
fprintf(), we can see the text live in the file:

   /* here we start the daemons "work" */
   for (;;)
   {
      /* get the current time and write it to the
         "daemonfile" that we opened above */
      time(&now);
      fprintf(fp, "Daemon alive at %s", 
         ctime(&now));
      fflush(fp); /* flush the stream */
      sleep(30);
   }
   return 0;
}

7. Now, it's time to compile the entire daemon:

$> make my-daemon
gcc -Wall -Wextra -pedantic -std=c99    my-daemon.c  
-o my-daemon

8. Now, we can start the daemon. Since we are writing the PID file to /var/run, we 
need to execute the daemon as root. We won't get any output from the daemon; it 
will silently detach from the terminal:

$> sudo ./my-daemon

9. Now that the daemon is running, let's check out the PID number that's been written 
to /var/run/my-daemon.pid:

$> cat /var/run/my-daemon.pid 
5508



Creating a daemon     225

10. Let's investigate the daemon process using both ps and pstree. If everything has 
worked out the way it should have, it should have systemd as its parent, and it 
should be in its own session (SID should be the same as the process ID):

$> ps jp 5508
PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND
1   5508 5508 5508?   -1    Ss    0  0:00 ./my-daemon
$> pstree -A -p -s 5508
systemd(1)---my-daemon(5508)

11. Let's also take a look at the /tmp/my-daemon-is-alive.txt file. This file 
should contain some rows specifying the date and time, 30 seconds apart:

$> cat /tmp/my-daemon-is-alive.txt 
Daemon alive at Sun Nov 22 23:25:45 2020
Daemon alive at Sun Nov 22 23:26:15 2020
Daemon alive at Sun Nov 22 23:26:45 2020
Daemon alive at Sun Nov 22 23:27:15 2020
Daemon alive at Sun Nov 22 23:27:45 2020
Daemon alive at Sun Nov 22 23:28:15 2020
Daemon alive at Sun Nov 22 23:28:45 2020

12. Finally, let's kill the daemon so that it doesn't continue to write to the file:

$> sudo kill 5508

How it works…
The daemon we have just written is a basic traditional daemon, but it demonstrates all the 
concepts we need to understand well. One of these new and important concepts is how to 
start a new session with setsid(). If we don't create a new session, the daemon will still 
be a part of the user's login session and die when the user logs off. But since we've created 
a new session for the daemon and it is inherited by systemd, it now lives on its own, 
unaffected by the user and process that started it.

The reason for forking the second time is that a session leader—which is what our first 
child after the setsid() call is—can acquire a new controlling terminal if it were to 
open a terminal device. When we do the second fork, that new child is just a member  
of the session that was created by the first child, not the leader, and hence it cannot 
acquire a controlling terminal anymore. The reason for avoiding a controlling terminal  
is that if that terminal would exit, so would the daemon. Forking twice when creating  
a daemon is often called the double-fork technique.



226     Spawning Processes and Using Job Control

The reason we needed to start the daemon as root is that it needs to write to /var/run/. 
If we were to change the directory—or skip it entirely—the daemon would run just fine as 
a regular user. However, most daemons do run as root. There are, however, daemons that 
run as regular users; for example, daemons that handle user-related things, such as tmux 
(a terminal multiplexer).

We also changed the working directory to /. This is so that the daemon won't lock up  
a directory. The top root directory isn't going to be removed or unmounted, which makes 
it a safe working directory for the daemon.

There's more…
What we have written here is a traditional Linux/Unix daemon. These kinds of daemons 
are still used today, for example, for small and quick daemons like this one. However, since 
systemd came around, we no longer need to "daemonize" a daemon the way we just did. 
For example, it's advised to leave stdout and stderr open and send all log messages there 
instead. These messages will then show up in the journal. We will cover systemd and the 
journal in more depth in Chapter 7, Using systemd to Handle Your Daemons.

The type of daemon we have written here is called forking in systemd language, which we'll 
learn more about later on.

Just like system() simplified things for us when executing new programs, there is a 
function called daemon() that can create daemons for us. This function will do all the 
heavy lifting for us, such as forking, closing and reopening the file descriptors, changing 
the working directory, and more. However, please note that this function doesn't use the 
double-fork technique we used for our daemons in this recipe. This fact is clearly stated 
under the BUGS section in the man 3 daemon manual page.

Implementing a signal handler
In the previous recipe, we wrote a simple but functional daemon. However, there are 
some problems with it; for example, the PID file isn't removed when the daemon is killed. 
Likewise, the open file stream (/tmp/my-daemon-is-alive.txt) isn't closed when 
the daemon is killed. A proper daemon should clean up after itself when it exits.

To be able to clean up on exit, we need to implement a signal handler. The signal handler 
should then take care of all the cleanup before the daemon is terminated. We have already 
seen examples of signal handlers in this chapter, so this concept isn't new.

It's not only daemons that use signal handlers, though. This is a common way of 
controlling processes, especially processes that don't have a controlling terminal.



Implementing a signal handler     227

Getting ready
You should read the previous recipe before reading this one so that you understand 
what the daemon does. Other than that, you'll need the programs listed in the Technical 
requirements section of this chapter.

How to do it…
In this recipe, we'll add signal handlers to the daemon we wrote in the previous recipe. 
Since the code will be a bit longer, I have split it up into several steps. Remember, though, 
that all the code goes in the same file. Let's get started:

1. Write the following code in and file a name it my-daemon-v2.c. We'll start with 
the #include files and the variables, just as we did previously. However, notice 
that this time, we have moved some of the variables to the global space. We have 
done this so that the signal handler can access them. There is no way to pass extra 
arguments to a signal handler, so this is the best way to access them. Here, we  
must also define _POSIX_C_SOURCE for sigaction(). We must also create  
a prototype for our signal handler here, called sigHandler(). Also, notice the 
new sigaction struct:

#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include <fcntl.h>
#include <signal.h>

void sigHandler(int sig);

/* moved these variables to the global scope
   since they need to be access/deleted/closed
   from the signal handler */
FILE *fp;
const char pidfile[] = "/var/run/my-daemon.pid";

int main(void)
{
   pid_t pid;
   time_t now; /* for the current time */
   struct sigaction action; /* for sigaction */
   const char daemonfile[] = 
      "/tmp/my-daemon-is-alive.txt";



228     Spawning Processes and Using Job Control

   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }
   else if ( (pid != 0) )
   {
      exit(0);
   }

2. Just as we did previously, we must create a new session after the first fork. After that, 
we must do the second fork to make sure it isn't a session leader anymore:

   /* the parent process has exited, which makes 
    * the rest of the code the child process */
   setsid(); /* create a new session to lose the 
                controlling terminal */
    
   /* fork again, creating a grandchild, the 
    * actual daemon */
   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }
   /* the child process which will exit */
   else if ( pid > 0 )
   {
      /* open pid-file for writing and check it */
      if ( (fp = fopen(pidfile, "w")) == NULL )
      {
         perror("Can't open file for writing");
         return 1;
      }
      /* write pid to file */
      fprintf(fp, "%d\n", pid); 
      fclose(fp); /* close the file pointer */
      exit(0);
   }



Implementing a signal handler     229

3. Again, as we did previously, we must change the umask, the current working 
directory, and open the daemon file with fopen(). Next, we must close and reopen 
stdin, stdout, and stderr:

   umask(022); /* set the umask to something ok */
   chdir("/"); /* change working directory to / */
   /* open the "daemonfile" for writing */
   if ( (fp = fopen(daemonfile, "w")) == NULL )
   {
      perror("Can't open daemonfile");
      return 1;
   }
   /* from here, we don't need stdin, stdout or, 
    * stderr anymore, so let's close them all, 
    * then re-open them to /dev/null */
   close(STDIN_FILENO);
   close(STDOUT_FILENO);
   close(STDERR_FILENO);
   open("/dev/null", O_RDONLY); /* 0 = stdin */
   open("/dev/null", O_WRONLY); /* 1 = stdout */
   open("/dev/null", O_RDWR); /* 2 = stderr */

4. Now, it's finally time to prepare and register the signal handlers. This is exactly what 
we covered earlier in this chapter, only here, we are registering handlers for all the 
common exit signals, such as terminate, interrupt, quit, and abort. Once we have 
dealt with the signal handlers, we will begin the daemon's work; that is, the for 
loop that will write messages to the daemon file:

/* prepare for sigaction */
   action.sa_handler = sigHandler;
   sigfillset(&action.sa_mask);
   action.sa_flags = SA_RESTART;
   /* register the signals we want to handle */
   sigaction(SIGTERM, &action, NULL);
   sigaction(SIGINT, &action, NULL);
   sigaction(SIGQUIT, &action, NULL);
   sigaction(SIGABRT, &action, NULL);

   /* here we start the daemons "work" */
   for (;;)
   {
      /* get the current time and write it to the



230     Spawning Processes and Using Job Control

         "daemonfile" that we opened above */
      time(&now);
      fprintf(fp, "Daemon alive at %s", 
         ctime(&now));
      fflush(fp); /* flush the stream */
      sleep(30);
   }
   return 0;
}

5. Finally, we must implement the function for the signal handler. Here, we clean up 
after the daemon by removing the PID file before exiting. We also close the open file 
stream to the daemon file:

void sigHandler(int sig)
{
    int status = 0;
    if ( sig == SIGTERM || sig == SIGINT 
        || sig == SIGQUIT 
        || sig == SIGABRT )
    {
        /* remove the pid-file */
        if ( (unlink(pidfile)) == -1 )
            status = 1;
        if ( (fclose(fp)) == EOF )
            status = 1;
        exit(status); /* exit with the status set*/
    }
    else /* some other signal */
    {
        exit(1);
    }
}

6. Compile the new version of the daemon:

$> make my-daemon-v2
gcc -Wall -Wextra -pedantic -std=c99    my-daemon-v2.c
-o my-daemon-v2



Implementing a signal handler     231

7. Start the daemon as root, just as we did previously:

$> sudo ./my-daemon-v2 

8. Check out the PID in the PID file and make note of it:

$> cat /var/run/my-daemon.pid 
22845

9. Check it out with ps to see that it's running as it should:

$> ps jp 22845
  PPID   PID  PGID   SID TTY TPGID STAT UID TIME
COMMAND
    1 22845 22845 22845 ?      -1 Ss     0 0:00 ./my
daemon-v2

10. Kill the daemon with the default signal, TERM:

$> sudo kill 22845

11. If everything has worked out as planned, the PID file will have been removed. See if 
you can access the PID file with cat:

$> cat /var/run/my-daemon.pid 
cat: /var/run/my-daemon.pid: No such file or directory

How it works…
In this recipe, we implemented a signal handler that takes care of all the cleanup. It 
removes the PID file and closes the open file stream. To cover the most common "exit" 
signals, we registered the handler with four different signals: terminate, interrupt, 
quit, and abort. When one of these signals is received by the daemon, it triggers the 
sigHandler() function. This function then removes the PID file and closes the file 
stream. Finally, the function exits the entire daemon by calling exit().

However, since we can't pass the filename or the file stream as an argument to the signal 
handler, we placed those variables in the global scope instead. This makes it possible for 
both main() and sigHandler() to reach them.



232     Spawning Processes and Using Job Control

There's more…
Remember that we had to flush the stream for the time and date to show up in /tmp/
my-daemon-is-alive.txt? Since we now close the file stream once the daemon 
exits, we don't need fflush() anymore. The data is written to the file when it closes. 
However, then we can't see the time and date "live" while the daemon is running. That's 
why we still have fflush() in the code.



7
Using systemd 
to Handle Your 

Daemons
Now that we know how to build our own daemons, it's time to see how we can get Linux 
to handle them using systemd. In this chapter, we will learn what systemd is, how to start 
and stop services, what unit files are, and how to create them. We will also learn how 
daemons are logged to systemd and how we read those logs.

We will then learn about different kinds of services and daemons that systemd can handle 
and put the daemon from the previous chapter under systemd control.

In this chapter, we'll cover the following recipes:

• Getting to know systemd

• Writing a unit file for a daemon

• Enabling and disabling a service—and starting and stopping it

• Creating a more modern daemon for systemd

• Making the new daemon a systemd service

• Reading the journal



234     Using systemd to Handle Your Daemons

Technical requirements
For this recipe, you'll need a computer with a Linux distribution that uses  
systemd—which, today, is pretty much every distribution, with some rare exceptions.

You'll also need the GCC compiler and the Make tool. Installation instructions for 
these tools are covered in Chapter 1, Getting the Necessary Tools and Writing Our First 
Linux Programs. You'll also need the generic Makefile for this chapter, which is found 
in this chapter's repository on GitHub, along with all the code samples for this chapter. 
The URL for this chapter's repository folder on GitHub is https://github.com/
PacktPublishing/Linux-System-Programming-Techniques/tree/
master/ch7.

Check out the following link to see the Code in Action video: https://bit.
ly/3cxmXab

Getting to know systemd
In this recipe, we'll explore what systemd is, how it handles the system, and all of the 
system's services. 

Historically, Linux has been managed with several smaller pieces. For example, init  
was the first process on the system, which started other processes and daemons to bring 
up the system. System daemons were handled by shell scripts, also called init scripts. 
Logging was done either by the daemon itself via files or syslog. Networking was also 
handled by multiple scripts (and still is in some Linux distributions).

Nowadays, though, the entire system is handled by systemd. For example, the first process 
on the system is now systemd (which we have seen in previous chapters). Daemons are 
handled by something called unit files, which create a unified way of controlling daemons 
on the system. Logging is handled by journald, systemd's logging daemon. But do note 
that syslog is still used by many daemons to do extra logging. Later in this chapter, in  
the Making the new daemon a systemd service section, we'll re-write the daemon from 
Chapter 6, Spawning Processes and Using Job Control, to log to the journal.

Knowing how systemd works will enable you to use it properly when, for example, writing 
unit files for daemons. It will also help you to write daemons in the "new" way, to make 
use of systemd's logging features. You will become a better system administrator as well as 
a better Linux developer.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch7
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch7
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch7
https://bit.ly/3cxmXab
https://bit.ly/3cxmXab


Getting to know systemd     235

Getting ready
For this recipe, you'll only need a Linux distribution that uses systemd, which most 
distributions do today.

How to do it...
In this recipe, we'll take a look at some of the components involved in systemd. This will 
give us a bird's eyes view of systemd, journald, its commands, and unit files. All the details 
will come in later recipes in this chapter:

1. Start by typing systemctl in a console window and hit Enter. This will show you 
all active units on your machine right now. If you skim through the list, you'll notice 
that a unit can be just about anything—hard drives, sound cards, mounted network 
drives, miscellaneous services, timers, and so on.

2. All the services we saw in the previous step reside as unit files in /lib/systemd/
system or /etc/systemd/system. Navigate to those directories and look 
around at the files. These are all typical unit files.

3. Now it's time to take a look at the journal, the log of systemd. We need to run this 
command as root; otherwise, we won't see system logs. Either type the command 
sudo journalctl, or switch to root first with su, and then type journalctl. 
This will show you the entire log of systemd and all of its services. Hit Spacebar 
several times to scroll down in the log. To go to the end of the log, type a capital G 
while the log is displayed.

How it works...
These three steps give us an overview of systemd. In the coming recipes, we'll cover the 
details in much more depth.

Installed packages place their unit files in /lib/systemd/system if it's a Debian/
Ubuntu system, and in /usr/lib/systemd/system if it's a CentOS/Fedora system. 
On CentOS/Fedora, though, /lib is a symbolic link to /usr/lib, so /lib/systemd/
system is universal.

So-called local unit files are placed in /etc/systemd/system. Local unit files mean 
unit files specific to this system, for example, modified by the administrator or manually 
added for some program.



236     Using systemd to Handle Your Daemons

There's more...
There have been other init systems for Linux before systemd. We have already mentioned 
the first one briefly, init. That init system, init, is often called Sys-V-style init, from 
UNIX version five (V).

After the Sys-V-style init came Upstart, a full replacement for init developed by Ubuntu. 
Upstart was also used by CentOS 6 and Red Hat Enterprise Linux 6.

Nowadays, though, most major Linux distributions use systemd. Since systemd is a huge 
part of Linux, this makes all the distributions pretty much alike. Fifteen years ago, it wasn't 
easy to jump from one distribution to another one. Nowadays, it's much easier.

See also
There are multiple manual pages on the system we can read to understand systemd, its 
commands, and the journal at a deeper level:

• man systemd

• man systemctl

• man journalctl

• man systemd.unit

Writing a unit file for a daemon
In this recipe, we will take the daemon we wrote in Chapter 6, Spawning Processes and 
Using Job Control, and make it a service under systemd. This daemon is what systemd  
calls a forking daemon because it does just that. It forks. This is traditionally how daemons 
have worked, and they are still widely used. Later in this chapter, in the Making the new 
daemon a systemd service section, we will modify it slightly to log to systemd's journal.  
But first things first, let's make our existing daemon into a service.

Getting ready
In this recipe, you'll need the file my-daemon-v2.c that we wrote in Chapter 6, 
Spawning Processes and Using Job Control. If you don't have that file, there is a copy of it in 
this chapter's directory on GitHub at https://github.com/PacktPublishing/
Linux-System-Programming-Techniques/blob/master/ch7/my-daemon-
v2.c.

Apart from my-daemon-v2.c, you'll need the GCC compiler, the Make tool, and the 
generic Makefile covered in the Technical requirements section of this chapter.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch7/my-daemon-v2.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch7/my-daemon-v2.c
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/blob/master/ch7/my-daemon-v2.c


Writing a unit file for a daemon     237

How to do it...
Here we will put our daemon under systemd's control:

1. If you haven't compiled my-daemon-v2 yet, we'll need to begin with that. Compile 
it like any other program we have made so far:

$> make my-daemon-v2
gcc -Wall -Wextra -pedantic -std=c99    my-daemon-v2.c   
-o my-daemon-v2

2. For this to be a system daemon, we should place it in one of the directories for 
that purpose. A good place for this is /usr/local/sbin. The /usr/local 
directory is where we usually want to place things that we have added to the 
system ourselves, that is, third-party stuff. The sbin subdirectory is for system 
binaries or super-user binaries (hence the s before bin). To move our daemon here, 
we need to be root:

$> sudo mv my-daemon-v2 /usr/local/sbin/

3. Now comes the exciting stuff, writing the unit file for the daemon. Create the file /
etc/systemd/system/my-daemon.service as root. Use either sudo or su 
to become root. Write the content shown below in the file and save it. The unit file 
is divided into several sections. In this file, the sections are [Unit], [Service], 
and [Install]. The [Unit] section contains information about the unit, such 
as the description in our case. The [Service] section contains information 
about how this service should work and behave. Here, we have ExecStart, which 
contains the path to the daemon. We also have Restart=on-failure. This tells 
systemd to restart the daemon if it should crash. Then we have the Type directive, 
which in our case is forking. Remember that our daemon creates a fork of itself 
and the parent process exits. This is what the type forking means. We tell systemd 
the type so it knows how it should handle the daemon. Then we have PIDFile, 
which contains the path to our PID file, which the daemon creates on start. Finally, 
we have WantedBy set to multi-user.target. What this means is that this 
daemon should start when the system enters the multi-user stage:

[Unit]
Description=A small daemon for testing
[Service]
ExecStart=/usr/local/sbin/my-daemon-v2
Restart=on-failure
Type=forking
PIDFile=/var/run/my-daemon.pid



238     Using systemd to Handle Your Daemons

[Install]
WantedBy=multi-user.target

4. For our new unit file to be recognized by the system, we need to reload the systemd 
daemon itself. This will read in our new file. This must be done as root:

$> sudo systemctl daemon-reload

5. We can now see if systemd recognizes our new daemon by using the status 
command for systemctl. Note that we see both the description here from the 
unit file and the actual unit file used. We also see that the daemon is currently 
disabled and inactive:

$> sudo systemctl status my-daemon
. my-daemon.service - A small daemon for testing
   Loaded: loaded (/etc/systemd/system/my-daemon.service; 
disabled; vendor preset: enabled)
   Active: inactive (dead)

How it works...
It's not harder than this to create a service for a daemon in systemd. Once we have learned 
systemd and unit files, it's easier than writing init scripts as we did in the old days. With 
only nine lines, we have put the daemon under the control of systemd.

The unit file is mostly self-explanatory. In our case, with a traditional daemon that forks, 
we set the type to forking and specify a PID file. Systemd then uses the PID number from 
the PID file to track the daemon state. This way, systemd can restart the daemon if it 
notices that the PID has disappeared from the system.

In the status message, we saw that the service is disabled and inactive. Disabled means  
that it won't start automatically when the system boots. Inactive means that it hasn't 
started yet.

There's more...
If you are writing a unit file for a daemon that uses the network, for example, an internet 
daemon, you can explicitly tell systemd to wait with this daemon until the network is 
ready. To achieve this, we add these lines under the [Unit] section:

After=network-online.target
Wants=network-online.target



Enabling and disabling a service – and starting and stopping it     239

You can, of course, use After and Wants for other dependencies as well. There is also 
another dependency statement you can use, called Requires.

The difference between them is that After specifies the order of the units. A unit 
with After will wait to start after the unit required is started. Wants and Requires, 
however, only specify the dependency, not the ordering. With Wants, a unit will still start 
even if the other unit required isn't started successfully. But with Requires, the unit will 
fail to start if the required unit isn't started.

See also
In man systemd.unit is a lot of information about the different sections of a unit file 
and which directives we can use in each section.

Enabling and disabling a service – and starting 
and stopping it
In the previous recipe, we added our daemon as a service to systemd with a unit file. In 
this recipe, we'll learn how to enable it, start it, stop it, and disable it. There is a difference 
between enabling and starting and disabling and stopping a service.

Enabling a service means that it will start automatically when the system boots. Starting 
a service means that it will start right now, regardless of it being enabled or not. And 
disabling a service means that it will no longer start when the system boots. Stopping  
a service stops it right now, regardless of it being enabled or disabled.

Knowing how to do all of this enables you to control the system's services.

Getting ready
For this recipe to work, you'll first need to complete the previous recipe, Writing a unit file 
for a daemon.

How to do it...
1. Let's start by checking out the daemon status again. It should be both disabled and 

inactive:

$> systemctl status my-daemon
. my-daemon.service - A small daemon for testing



240     Using systemd to Handle Your Daemons

   Loaded: loaded (/etc/systemd/system/my-daemon.service; 
disabled; vendor preset: enabled)
   Active: inactive (dead)

2. Now we'll enable it, meaning it will start automatically on boot (when the system 
enters multi-user mode). We must issue this command as root since it's a command 
that modifies the system. Notice also what's happening when we enable it. There's 
no arcane stuff going on; it just creates a symbolic link from our unit file to /etc/
systemd/system/multi-user.target.wants/my-daemon.service. 
Remember that multi-user.target was the target we specified in the unit file. 
So when the system reaches the multi-user level, systemd will start all services in 
that directory:

$> sudo systemctl enable my-daemon
Created symlink /etc/systemd/system/multi-user.target.
wants/my-daemon.service → /etc/systemd/system/my-daemon.
service.

3. Let's check out the status of the daemon now that we have enabled it. It should now 
say enabled instead of disabled. However, it is still inactive (not started):

$> sudo systemctl status my-daemon
. my-daemon.service - A small daemon for testing
   Loaded: loaded (/etc/systemd/system/my-daemon.service; 
enabled; vendor preset: enabled)
   Active: inactive (dead)

4. Now it's time to start the daemon:

$> sudo systemctl start my-daemon

5. And let's check out the status one more time. It should be both enabled and active 
(that is, started). This time, we'll get more information about the daemon than 
before. We'll see its PID, its status, its memory usage, and so on. We'll also see  
a snippet from the log at the end:

$> sudo systemctl status my-daemon
. my-daemon.service - A small daemon for testing
   Loaded: loaded (/etc/systemd/system/my-daemon.service; 
enabled; vendor preset: enabled)
   Active: active (running) since Sun 2020-12-06 14:50:35 
CET; 9s ago
  Process: 29708 ExecStart=/usr/local/sbin/my-daemon-v2 
(code=exited, status=0/SUCCESS)
 Main PID: 29709 (my-daemon-v2)



Enabling and disabling a service – and starting and stopping it     241

    Tasks: 1 (limit: 4915)
   Memory: 152.0K
   CGroup: /system.slice/my-daemon.service
           └─29709 /usr/local/sbin/my-daemon-v2
dec 06 14:50:35 red-dwarf systemd[1]: Starting A small 
daemon for testing...
dec 06 14:50:35 red-dwarf systemd[1]: my-daemon.service: 
Can't open PID file /run/my-daemon.pid (yet?) after start
dec 06 14:50:35 red-dwarf systemd[1]: Started A small 
daemon for testing.

6. Let's verify that systemd restarts the daemon if it crashes or gets killed. First, we 
check out the process with ps. Then we kill it with the KILL signal, so it has no 
chance of exiting normally. Then we check it out again with ps and notices that it 
has a new PID since it's a new process. The old one got killed, and systemd started  
a new instance of it:

$> ps ax | grep my-daemon-v2
  923 pts/12   S+     0:00 grep my-daemon-v2
29709 ?        S      0:00 /usr/local/sbin/my-daemon-v2
$> sudo kill -KILL 29709
$> ps ax | grep my-daemon-v2
 1103 ?        S      0:00 /usr/local/sbin/my-daemon-v2
 1109 pts/12   S+     0:00 grep my-daemon-v2

7. We can also check out the file that the daemon writes to in the /tmp directory:

$> tail -n 5 /tmp/my-daemon-is-alive.txt 
Daemon alive at Sun Dec  6 15:24:11 2020
Daemon alive at Sun Dec  6 15:24:41 2020
Daemon alive at Sun Dec  6 15:25:11 2020
Daemon alive at Sun Dec  6 15:25:41 2020
Daemon alive at Sun Dec  6 15:26:11 2020

8. And finally, let's stop the daemon. We'll also check its status and check that the 
process is gone with ps:

$> sudo systemctl stop my-daemon
$> sudo systemctl status my-daemon
. my-daemon.service - A small daemon for testing
   Loaded: loaded (/etc/systemd/system/my-daemon.service; 
enabled; vendor preset: enabled)
   Active: inactive (dead) since Sun 2020-12-06 15:27:49 
CET; 7s ago



242     Using systemd to Handle Your Daemons

  Process: 1102 ExecStart=/usr/local/sbin/my-daemon-v2 
(code=exited, status=0/SUCCESS)
 Main PID: 1103 (code=killed, signal=TERM)
dec 06 15:18:41 red-dwarf systemd[1]: Starting A small 
daemon for testing...
dec 06 14:50:35 red-dwarf systemd[1]: my-daemon.service: 
Can't open PID file /run/my-daemon.pid (yet?) after start
dec 06 15:18:41 red-dwarf systemd[1]: Started A small 
daemon for testing.
dec 06 15:27:49 red-dwarf systemd[1]: Stopping A small 
daemon for testing...
dec 06 15:27:49 red-dwarf systemd[1]: my-daemon.service: 
Succeeded.
dec 06 15:27:49 red-dwarf systemd[1]: Stopped A small 
daemon for testing.
$> ps ax | grep my-daemon-v2
 2769 pts/12   S+     0:00 grep my-daemon-v2

9. To prevent the daemon from starting when the system reboots, we must also disable 
the service. Notice what's happening here. The symbolic link that got created when 
we enabled the service is now removed:

$> sudo systemctl disable my-daemon
Removed /etc/systemd/system/multi-user.target.wants/
my-daemon.service.

How it works...
When we enable or disable a service, systemd creates a symbolic link in the target 
directory. In our case, the target was multi-user, that is, when the system has reached the 
multi-user level.

In step five, when we started the daemon, we saw the Main PID in the status output. 
This PID matches the PID from the /var/run/my-daemon.pid file that the daemon 
creates. This is how systemd keeps track of forking daemons. In the next recipe, we'll see 
how we can create a daemon for systemd without forking.

Creating a more modern daemon for systemd
Daemons that are handled by systemd don't need to fork or close their file descriptors. 
Instead, it's advised to use standard output and standard error to write the daemon's logs 
to the journal. The journal is systemd's logging facility.



Creating a more modern daemon for systemd     243

In this recipe, we'll write a new daemon, one that doesn't fork and leaves stdin, stdout, 
and stderr open. It will also write messages to standard output every 30 seconds  
(instead of to the /tmp/my-daemon-is-alive.txt file, as before). This kind 
of daemon is sometimes referred to as a new-style daemon. The old forking type, for 
example, my-daemon-v2.c, is referred to as a SysV-style daemon. SysV was the name  
of the init system before systemd.

Getting ready
For this recipe, you'll only need what's listed in the Technical requirements section of this 
chapter.

How to do it...
In this recipe, we'll write a new-style daemon:

1. This program is a bit long, so I've split it up into several steps. Write the code in  
a file and save it as new-style-daemon.c. All the code goes into a single 
file, even though there are several steps. We'll start by writing all the include 
statements, the function prototype for the signal handler, and the main() function 
body. Notice that we don't fork here. We also don't close any file descriptors or 
streams. Instead, we write the "Daemon alive" text to standard output. Note that 
we need to flush stdout here. Normally, streams are line-buffered, meaning they 
get flushed on each new line. But when stdout is redirected to something else, like 
with systemd, it's instead fully buffered. To be able to see the text as it gets printed, 
we need to flush it; otherwise, we wouldn't see anything in the log until we stop the 
daemon or the buffer gets filled:

#define _POSIX_C_SOURCE 200809L
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <signal.h>
#include <time.h>

void sigHandler(int sig);

int main(void)
{
    time_t now; /* for the current time */
    struct sigaction action; /* for sigaction */



244     Using systemd to Handle Your Daemons

    /* prepare for sigaction */
    action.sa_handler = sigHandler;
    sigfillset(&action.sa_mask);
    action.sa_flags = SA_RESTART;

    /* register the signal handler */
    sigaction(SIGTERM, &action, NULL);
    sigaction(SIGUSR1, &action, NULL);
    sigaction(SIGHUP, &action, NULL);

    for (;;) /* main loop */
    {
        time(&now); /* get current date & time */
        printf("Daemon alive at %s", ctime(&now));
        fflush(stdout);
        sleep(30);
    }
    return 0;
}

2. Now we'll write the function for the signal handler. Note that we catch both 
SIGHUP and SIGTERM here. SIGHUP is often used to reload any configuration 
files without restarting the entire daemon. SIGTERM is caught so that the daemon 
can clean up after itself (close all open file descriptors or streams and remove any 
temporary files). We don't have any configuration files or temporary files here,  
so we print a message to standard output instead:

void sigHandler(int sig)
{
    if (sig == SIGUSR1)
    {
        printf("Hello world!\n");
    }
    else if (sig == SIGTERM)
    {
        printf("Doing some cleanup...\n");
        printf("Bye bye...\n");
        exit(0);
    }
    else if (sig == SIGHUP)
    {



Making the new daemon a systemd service     245

        printf("HUP is used to reload any " 
            "configuration files\n");
    }
} 

3. Now it's time to compile the daemon so we can use it:

$> make new-style-daemon
gcc -Wall -Wextra -pedantic -std=c99    new-style-
daemon.c   -o new-style-daemon

4. We can run it interactively to verify that it's working:

$> ./new-style-daemon 
Daemon alive at Sun Dec  6 18:51:47 2020
Ctrl+C

How it works...
This daemon works pretty much like any other program we have written. There's no  
need to do any forking, change the working directory, close file descriptors or streams,  
or anything like that. It's just a regular program.

Note that we don't flush the stdout buffer in the signal handler. Every time the program 
receives a signal and prints a message, the program goes back into the for loop, 
prints another "Daemon alive" message, and then flushes when the program reaches 
fflush(stdout) in the for loop. If the signal is SIGTERM, all buffers are flushed on 
exit(0), so we don't need to flush here either.

In the next recipe, we'll make this program a systemd service.

See also
You can get much more in-depth information about the SysV-style daemons and 
new-style daemons from the manual page at man 7 daemon.

Making the new daemon a systemd service
Now that we've made a new-style daemon in the previous recipe, we'll see that it's even 
easier to make a unit file for this daemon.

Knowing how to write unit files to new-style daemons is important since more and more 
daemons are written this way. When making new daemons for Linux, we should make 
them in this new style.



246     Using systemd to Handle Your Daemons

Getting ready
For this recipe, you'll need to complete the previous one. It's the daemon from that recipe 
that we'll use here.

How to do it...
Here, we will make the new-style daemon a systemd service:

1. Let's begin by moving the daemon to /usr/local/sbin, just as we did with the 
traditional daemon. Remember, you'll need to be root for this:

$> sudo mv new-style-daemon /usr/local/sbin/

2. Now we'll write the new unit file. Create the /etc/systemd/system/
new-style-daemon.service file and give it the following content. Remember, 
you'll need to be root to create that file. Notice that we don't need to specify any 
PID file here. Also, note that we have changed Type=forking to Type=simple. 
Simple is the default type for systemd services:

[Unit]
Description=A new-style daemon for testing
[Service]
ExecStart=/usr/local/sbin/new-style-daemon
Restart=on-failure
Type=simple
[Install]
WantedBy=multi-user.target

3. Reload the systemd daemon, so the new unit file gets recognized:

$> sudo systemctl daemon-reload

4. Start the daemon, and check out its status. Notice that we'll also see a "Daemon 
alive" message here. This is a snippet from the journal. Notice that we don't enable 
the service this time. We don't need to enable the service unless we want it to start 
automatically:

$> sudo systemctl start new-style-daemon
$> sudo systemctl status new-style-daemon
. new-style-daemon.service - A new-style daemon for 
testing
   Loaded: loaded (/etc/systemd/system/new-style-daemon.
service; disabled; vendor preset: enabled



Reading the journal     247

   Active: active (running) since Sun 2020-12-06 19:51:25 
CET; 7s ago
 Main PID: 8421 (new-style-daemo)
    Tasks: 1 (limit: 4915)
   Memory: 244.0K
   CGroup: /system.slice/new-style-daemon.service
           └─8421 /usr/local/sbin/new-style-daemon

dec 06 19:51:25 red-dwarf systemd[1]: Started A new-style 
daemon for testing.
dec 06 19:51:25 red-dwarf new-style-daemon[8421]: Daemon 
alive at Sun Dec  6 19:51:25 2020

5. Leave the daemon running, and we'll take a look at the journal in the next recipe.

How it works...
Since this daemon isn't forking, systemd can keep track of it without a PID file. For this 
daemon, we used Type=simple, which is the default type in systemd.

When we started the daemon in Step 4 and checked out the status of it, we saw the first 
line of the "Daemon alive" message. We can see a daemon's status without using sudo,  
but then we can't see the journal's snippet (since it might contain sensitive data).

Since we flush the stdout buffer after each printf() in the for loop, the journal is 
updated live as each new entry is written to it.

In the next recipe, we'll take a look at the journal.

Reading the journal
In this recipe, we'll learn how to read the journal. The journal is systemd's logging facility. 
All messages that a daemon prints to either stdout or stderr gets added to the journal. But 
we can find more than just the system daemons logs here. There's also the system's boot 
messages, among other things.

Knowing how to read the journal enables you to find errors in the system and the 
daemons more easily.

Getting ready
For this recipe, you'll need to have the new-style-daemon service running. If you 
don't have it running on your system, go back to the previous recipe for information on 
how to start it.



248     Using systemd to Handle Your Daemons

How to do it...
In this recipe, we'll explore how to read the journal and what kind of information we can 
find in it. We'll also learn how to follow a particular service's log:

1. We'll start by examining the logs from our service, new-style-daemon. The -u 
option stands for unit:

$> sudo journalctl -u new-style-daemon

The log is probably pretty long by now, so you can scroll down in the log by hitting 
Spacebar. To quit the journal, press Q.

2. Remember that we implemented a signal handler for SIGUSR1? Let's try sending 
our daemon that signal and then view the log again. But this time, we'll only show 
the last five lines in the journal with --lines 5. Find the PID of the process by 
using systemctl status. Notice the "Hello world" message (it's highlighted in 
the following code):

$> systemctl status new-style-daemon
. new-style-daemon.service - A new-style daemon for 
testing
   Loaded: loaded (/etc/systemd/system/new-style-daemon.
service; disabled; vendor preset: enabled
   Active: active (running) since Sun 2020-12-06 19:51:25 
CET; 31min ago
 Main PID: 8421 (new-style-daemo)
    Tasks: 1 (limit: 4915)
   Memory: 412.0K
   CGroup: /system.slice/new-style-daemon.service
           └─8421 /usr/local/sbin/new-style-daemon
$> sudo kill -USR1 8421
$> sudo journalctl -u new-style-daemon --lines 5
-- Logs begin at Mon 2020-11-30 18:05:24 CET, end at Sun 
2020-12-06 20:24:46 CET. --
dec 06 20:23:31 red-dwarf new-style-daemon[8421]: Daemon 
alive at Sun Dec  6 20:23:31 2020
dec 06 20:24:01 red-dwarf new-style-daemon[8421]: Daemon 
alive at Sun Dec  6 20:24:01 2020
dec 06 20:24:31 red-dwarf new-style-daemon[8421]: Daemon 
alive at Sun Dec  6 20:24:31 2020
dec 06 20:24:42 red-dwarf new-style-daemon[8421]: Hello 
world!
dec 06 20:24:42 red-dwarf new-style-daemon[8421]: Daemon 
alive at Sun Dec  6 20:24:42 2020



Reading the journal     249

3. It's also possible to follow the journal for a service, that is, view it "live." Open up  
a second terminal and run the following command. The -f stands for follow:

$> sudo journalctl -u new-style-daemon -f

4. Now, in the first terminal, send another USR1 signal with sudo kill -USR1 
8421. You'll see the "Hello world" message in the second terminal right away 
without any delay. To quit the follow mode, you just hit Ctrl + C.

5. The journalctl command offers a wide range of filtering. For example, it's 
possible to select only log entries between two dates using --since and --until. 
It's also possible to leave out either one of them to view all messages since or until  
a particular date. Here, we show all messages between two dates:

$> sudo journalctl -u new-style-daemon \
> --since "2020-12-06 20:32:00" \
> --until "2020-12-06 20:33:00"
-- Logs begin at Mon 2020-11-30 18:05:24 CET, end at Sun 
2020-12-06 20:37:01 CET. --
dec 06 20:32:12 red-dwarf new-style-daemon[8421]: Daemon 
alive at Sun Dec  6 20:32:12 2020
dec 06 20:32:42 red-dwarf new-style-daemon[8421]: Daemon 
alive at Sun Dec  6 20:32:42 2020

6. By leaving out the -u option and the unit name, we can see all log entries from all 
services. Try it out and scroll through it with Spacebar. You can also try to only view 
the last 10 lines as we did before with --line 10.

Now it's time to stop the new-style-daemon service. We'll also view  
the last five lines from the log after we have stopped the service. Notice the  
goodbye message from the daemon. This is from the signal handler we made  
for the SIGTERM signal. When we stop a service in systemd, it sends the service  
a SIGTERM signal:

$> sudo systemctl stop new-style-daemon
$> sudo journalctl -u new-style-daemon --lines 5
-- Logs begin at Mon 2020-11-30 18:05:24 CET, end at Sun 
2020-12-06 20:47:02 CET. --
dec 06 20:46:44 red-dwarf systemd[1]: Stopping A 
new-style daemon for testing...
dec 06 20:46:44 red-dwarf new-style-daemon[8421]: Doing 
some cleanup...
dec 06 20:46:44 red-dwarf new-style-daemon[8421]: Bye 
bye...
dec 06 20:46:44 red-dwarf systemd[1]: new-style-daemon.



250     Using systemd to Handle Your Daemons

service: Succeeded.
dec 06 20:46:44 red-dwarf systemd[1]: Stopped A new-style 
daemon for testing.

How it works...
Since the journal takes care of all messages that go to stdout and stderr, we don't need to 
handle logging ourselves. This makes it easier to write daemons for Linux that are handled 
by systemd. As we saw when we viewed the journal, every message gets a timestamp. This 
makes it easy to filter out a specific day or time when looking for errors.

Following the log for a specific service with the -f option is common when 
experimenting with new or unknown services.

See also
The manual page at man journalctl has even more tips and tricks on how to filter the 
journal.



8
Creating Shared 

Libraries
In this chapter, we will learn what libraries are and why they are such a big part of Linux. 
We also learn the differences between static libraries and dynamic libraries. When we 
know what libraries are, we start to write our own—both static and dynamic ones. We also 
take a quick peek inside a dynamic library. 

The use of libraries has many benefits—for example, a developer doesn't need to reinvent 
functions over and over again as there's often an existing function already in a library.  
A big advantage with dynamic libraries is that the resulting program gets much smaller  
in size, and the libraries are upgradable even after the program has been compiled.

In this chapter, we'll learn how to make our own libraries with useful functions and install 
them on the system. Knowing how to make and install libraries enables you to share your 
functions with others in a standardized way.

In this chapter, we'll cover the following recipes:

• The what and why of libraries

• Creating a static library

• Using a static library

• Creating a dynamic library



252     Creating Shared Libraries

• Installing the dynamic library on the system

• Using the dynamic library in a program

• Compiling a statically linked program

Technical requirements
In this chapter, we'll need the GNU Compiler Collection (GCC) compiler and the 
Make tool. You'll find installation instructions for these tools in Chapter 1, Getting the 
Necessary Tools and Writing Our First Linux Programs. All the code samples for this 
chapter can be found in this chapter's GitHub directory at https://github.com/
PacktPublishing/Linux-System-Programming-Techniques/tree/
master/ch8.

Check out the following link to see the Code in Action video:  
https://bit.ly/3zsrIeD 

The what and why of libraries
Before we go into the details of libraries, it's essential to understand what they are and 
why they matter to us. It's also important to understand the difference between static and 
dynamic libraries:

This knowledge will enable you to make smarter choices when making your own libraries.

A dynamic library is dynamically linked to the binary that uses it. What this means 
is that the library code isn't included in the binary. The library resides outside of the 
binary. This has several advantages. First, the resulting binary will be smaller in size since 
the library code isn't included. Second, the library can be updated without needing to 
recompile the binary. The disadvantage is that we can't move or delete the dynamic library 
from the system. If we do, the binary won't work anymore.

A static library, on the other hand, is included inside the binary file. The advantage of 
this is that the binary will be completely independent of the library once compiled. The 
disadvantage is that the binary will be bigger, and the library can't be updated without also 
recompiling the binary.

We have already seen a short example of a dynamic library in Chapter 3, Diving Deep into 
C in Linux.

In this recipe, we'll look at some common libraries. We'll also install a new one on the 
system via the package manager that we'll use in a program.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch8
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch8
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch8
https://bit.ly/3zsrIeD 


The what and why of libraries     253

Getting ready
For this recipe, you'll need the GCC compiler. You'll also need root access to the system, 
either via su or sudo.

How to do it…
In this recipe, we'll both explore some common libraries and look at where they live on 
the system, and then install a new one and peek inside a library. In this recipe, we'll only 
deal with dynamic libraries.

1. Let's start by taking a look at the many libraries already on your system. The 
libraries will reside in one or more of these directories, depending on your 
distribution:

/usr/lib
/usr/lib64
/usr/lib32

2. Now, we will install a new library on the system with the Linux distribution package 
manager. The library we will install is for cURL, an application and library to fetch 
files or data from the internet—for example, over HyperText Transfer Protocol 
(HTTP). Follow these instructions, depending on your distribution: 

- Debian/Ubuntu:
   $> sudo apt install libcurl4-openssl-dev

- Fedora/CentOS/Red Hat:
   $> sudo dnf install libcurl-devel

3. Now, let's take a look inside the library with nm. But first, we need to find it with 
whereis. The path to the library is different on different distributions. This 
example is from a Debian 10 system. The file we are looking for is the .so file. 
Notice that we use grep with nm to only list lines with T. These are the functions 
that the library provides. If we were to remove the grep part, we would also see 
functions that this library depends on. We also add head to the command since the 
list of functions is long. If you want to see all the functions, leave out head:

$> whereis libcurl
libcurl: /usr/lib/x86_64-linux-gnu/libcurl.la
/usr/lib/x86_64-linux-gnu/libcurl.a /usr/lib/x86_64
linux-gnu/libcurl.so
$> nm -D /usr/lib/x86_64-linux-gnu/libcurl.so \



254     Creating Shared Libraries

> | grep " T " | head -n 7
000000000002f750 T curl_easy_cleanup
000000000002f840 T curl_easy_duphandle
00000000000279b0 T curl_easy_escape
000000000002f7e0 T curl_easy_getinfo
000000000002f470 T curl_easy_init
000000000002fc60 T curl_easy_pause
000000000002f4e0 T curl_easy_perform

4. Now that we know a bit more about the library, we can use it in a program. Write 
the following code in a file and save it as get-public-ip.c. The program 
will send a request to the web server at ifconfig.me and give you your public 
Internet Protocol (IP) address. The complete manual for the cURL library can be 
found online at https://curl.se/libcurl/c/. Notice that we don't print 
anything from cURL. The library will automatically print the content it receives 
from the server:

#include <stdio.h>
#include <curl/curl.h>
int main(void)
{
    CURL *curl;

    curl = curl_easy_init();
    if(curl) 
    {
        curl_easy_setopt(curl, CURLOPT_URL, 
            "https://ifconfig.me"); 
        curl_easy_perform(curl); 
        curl_easy_cleanup(curl);
    }
    else
    {
        fprintf(stderr, "Cannot initialize curl\n");
        return 1;
    }
    return 0;
}

http://fconfig.me
https://curl.se/libcurl/c/


Creating a static library     255

5. Compile the code. Notice that we must also link against the cURL library using  
the -l option:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> get-public-ip.c -o get-public-ip -lcurl

6. And now, finally, we can run the program to get our public IP address. My IP 
address is masked in the following output:

$> ./get-public-ip 
158.174.xxx.xxx

How it works…
Here, we have looked at all the steps involved in using a library to add new functionality. 
We installed the library on the system using the package manager. We found its location 
using whereis, investigated which functions it contains using nm, and finally used it in  
a program.

The nm program provides a quick way to see which functions a library contains. The -D 
option, which we used in this recipe, is for dynamic libraries. We used grep to only view 
functions that the library provides; otherwise, we will also see functions that this library 
depends on (those lines start with a U).

Since this library is not part of libc, we needed to link against it with the -l option to 
gcc. The name of the library should be right after the l, without any spaces.

The ifconfig.me website is a site and service that returns the public IP of the client 
requesting the site. 

There's more…
cURL is also a program. Many Linux distributions have it pre-installed. The cURL library 
provides a convenient way of using cURL functions in your own programs.

You can run curl ifconfig.me for the same result as the program we wrote, 
assuming you already have cURL installed.

Creating a static library
In Chapter 3, Diving Deep into C in Linux, we saw how to create a dynamic library and 
how it was linked from the current working directory. In this recipe, we'll make a static 
library instead.

http://ifconfig.me


256     Creating Shared Libraries

A static library is included in the binary during compilation. The advantage is that the 
binary gets a bit more portable and independent. We can remove the static library after 
compilation, and the program will still work.

The downsides are that the binary will be slightly larger and that we can't update the 
library after it has been compiled into the program.

Knowing how to create static libraries will make it much easier to distribute and reuse 
your functions in new programs.

Getting ready
For this recipe, we'll need the GCC compiler. We will also use a tool called ar in this 
recipe. The ar program is almost always installed by default.

How to do it…
In this recipe, we'll make a small static library. The library will contain two functions: one 
for converting Celsius to Fahrenheit and one for converting Celsius to Kelvin:

1. Let's start by writing the library functions. Write the following code in a file and 
save it as convert.c. This file contains both of our functions:

float c_to_f(float celsius)
{
    return (celsius*9/5+32);
}
float c_to_k(float celsius)
{
    return (celsius + 273.15);
}

2. We also need a header file with the function prototypes for these functions. Create 
another file and write the following code in it. Save it as convert.h:

float c_to_f(float celsius);
float c_to_k(float celsius);

3. The first task in making the library is to compile convert.c into an object file. 
We do this by passing the -c option to GCC:

$> gcc -Wall -Wextra -pedantic -std=c99 -c convert.c



Using a static library     257

4. We should now have a file called convert.o in our current directory. We can 
verify this with the file command, which also tells us the type of file it is:

$> file convert.o
convert.o: ELF 64-bit LSB relocatable, x86-64, version 1 
(SYSV), not stripped

5. The last step to making it a static library is to pack it in an archive file, with the 
ar command. The -c option stands for creating the archive; the -v option stands 
for verbose output; and the -r option stands for replacing members with the same 
name. The name libconvert.a is the resulting filename our library will get:

$> ar -cvr libconvert.a convert.o 
a - convert.o

6. Let's take a look at our static library with nm before we move on:

$> nm libconvert.a 
convert.o:
0000000000000000 T c_to_f
0000000000000037 T c_to_k

How it works…
As we have seen here, a static library is just an object file in an archive.

When we looked at the object file with the file command, we noticed it said not 
stripped, meaning that all the symbols are still in the file. Symbols are what expose the 
functions so that programs can access and use them. In the next recipe, we'll return to 
symbols and the meaning of stripped versus not stripped.

See also
There's a lot of good information about ar in its manual page, man 1 ar—for example, 
it's possible to modify and remove an already existing static library.

Using a static library
In this recipe, we'll use the static library created in the previous recipe in a program. Using 
a static library is a bit easier than using a dynamic library. We just add the static library 
(the archive file) to the list of files that will be compiled to a final binary.



258     Creating Shared Libraries

Knowing how to use a static library will enable you to use other people's libraries and 
reuse your own code as static libraries.

Getting ready
For this recipe, you'll need both the convert.h file and the static library file, 
libconvert.a. You'll also need the GCC compiler.

How to do it…
Here, we will write a small program that uses our functions from the library we created in 
the previous recipe: 

1. Write the following code in a file and save it as temperature.c. Notice the syntax 
for including header files from the current directory.

The program takes two arguments: an option (either -f or -k for Fahrenheit 
or Kelvin) and a Celsius degree as a floating-point value. The program will then 
convert the Celsius degree into Fahrenheit or Kelvin, depending on the option 
chosen:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "convert.h"
void printUsage(FILE *stream, char progname[]);
int main(int argc, char *argv[])
{
    if ( argc != 3 )
    {
        printUsage(stderr, argv[0]);
        return 1;
    }
    if ( strcmp(argv[1], "-f") == 0 )
    {
        printf("%.1f C = %.1f F\n", 
            atof(argv[2]), c_to_f(atof(argv[2])));
    }
    else if ( strcmp(argv[1], "-k") == 0  )
    {
        printf("%.1f C = %.1f F\n", 
            atof(argv[2]), c_to_k(atof(argv[2])));
    }



Using a static library     259

    else
    {
        printUsage(stderr, argv[0]);
        return 1;
    }
    
    return 0;
}

void printUsage(FILE *stream, char progname[])
{
    fprintf(stream, "%s [-f] [-k] [temperature]\n"
        "Example: %s -f 25\n", progname, progname);
}

2. Let's compile this program. To include the static library, we simply add it to the list 
of files to GCC. Also, make sure that the convert.h header file is in your current 
working directory:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> temperature.c libconvert.a -o temperature

3. Now we can test the program with some different temperatures:

$> ./temperature -f 30
30.0 C = 86.0 F
$> ./temperature -k 15
15.0 C = 288.1 F

4. Finally, take a look at the resulting temperature binary with nm:

$> nm temperature

As you can see, we can view all of the functions in the binary—for example, we see 
c_to_f, c_to_k, printUsage, and main (the Ts). We also see which functions 
from dynamic libraries the program is depending on—for example, printf 
(preceded by a U). What we see here are called symbols. 



260     Creating Shared Libraries

5. Since this binary will be used as a standalone program, we don't need the symbols. 
It's possible to strip the symbols from the binary with the strip command. This 
makes the program a bit smaller in size. Once we have stripped the binary from its 
symbols, let's look at it again with nm:

$> strip temperature
$> nm temperature
nm: temperature: no symbols

6. We can see if a program or library is stripped or not with the file command. 
Remember that a static library can't be stripped; otherwise, the linker can't see the 
functions, and the linking will fail:

$> file temperature
temperature: ELF 64-bit LSB pie executable, x86-64, 
version 1 (SYSV), dynamically linked, interpreter/
lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, 
BuildID[sha1]=95f583af98ff899c657ac33d6a014493c44c362b, 
stripped
$> file convert.o
convert.o: ELF 64-bit LSB relocatable, x86-64, version 1 
(SYSV), not stripped

How it works…
When we want to use the static library in a program, we give GCC the archive's filename 
and the program's c file, resulting in a binary that includes the static library.

In the last few steps, we examined the binary with nm, revealing all the symbols. Then we 
stripped—removed—those symbols, using the strip command. If we look at programs 
such as ls, more, sleep, and so on with the file command, we notice that these are 
also stripped. This means that the program has had its symbols removed.

A static library must have its symbols untouched. If they were removed—stripped—the 
linker wouldn't find the functions, and the linking process would fail. Therefore, we 
should never strip our static libraries.



Creating a dynamic library     261

Creating a dynamic library
While static libraries are convenient and easy to both create and use, dynamic libraries 
are more common. Just as we saw at the beginning of this chapter, many developers 
choose to provide a library and not only a program—for example, cURL.

In this recipe, we'll redo the library from the Creating a static library recipe that we 
covered earlier in this chapter so that it becomes a dynamic library.

Knowing how to create dynamic libraries enables you to distribute your code as  
easy-to-implement libraries for other developers to use.

Getting ready
For this recipe, you'll need the two convert.c and convert.h files from the Creating  
a static library recipe earlier in this chapter. You'll also need the GCC compiler.

How to do it…
Here, we make a dynamic library out of convert.c from the Creating a static library 
recipe earlier in this chapter:

1. First of all, let's remove the object file and the old static library we created earlier. 
This will make sure we don't use the wrong object file or the wrong library by 
mistake:

$> rm convert.o libconvert.a

2. The first thing we need to do is create a new object file from the c file. The -c 
option creates an object file, not the final binary. The -fPIC option tells GCC to 
generate what's called Position-Independent Code (PIC), allowing the code to 
execute at different addresses in different processes. We also check the resulting file 
with file:

$> gcc -Wall -Wextra -pedantic -std=c99 -c -fPIC \
> convert.c
$> file convert.o 
convert.o: ELF 64-bit LSB relocatable, x86-64, version 1 
(SYSV), not stripped



262     Creating Shared Libraries

3. The next step is to create a .so file, a shared object, using GCC. The -shared 
option does what it says—it creates a shared object. The -Wl option means that 
we want to pass all the options separated by commas to the linker. In this case, the 
option passed to the linker is -soname with the argument libconvert.so, 
which sets the name of the dynamic library to libconvert.so. Finally, the -o option 
specifies the name of the output file. Then, we list the symbols that this shared 
library provides, using nm. The symbols preceded by a T are the symbols provided 
by this library:

$> gcc -shared -Wl,-soname,libconvert.so -o \
> libconvert.so.1 convert.o
$> nm -D libconvert.so.1
00000000000010f5 T c_to_f
000000000000112c T c_to_k
                 w __cxa_finalize
                 w __gmon_start__
                 w _ITM_deregisterTMCloneTable
                 w _ITM_registerTMCloneTable

How it works…
Creating a dynamic library involves two steps: creating an object file that's position-
independent, and packaging that file in a .so file.

The code in a shared library gets loaded at runtime. Since it can't predict where it will end 
up in memory, it needs to be position-independent. That way, the code will work correctly, 
no matter where in memory it gets called.

The -Wl,-soname,libconvert.so GCC option might need some further 
explanation. The -Wl option tells GCC to treat any comma-separated words as options  
to the linker. Since we can't use a space—that would be treated as a new option—we 
separate -soname and libconvert.so with a comma instead. The linker, however, 
sees it as -soname libconvert.so.

soname is short for shared object name, which is an internal name in the library. It's this 
name that is used when referring to the library. 



Installing the dynamic library on the system     263

The actual filename specified with the -o option is sometimes called the real name of the 
library. It's a standard convention to use a real name that contains the version number of 
the library, such as 1 in this example. It's also possible to include a minor version—for 
example, 1.3. In our example, it would look like this: libconvert.so.1.3. Both the 
real name and the soname must begin with lib, short for library. All in all, this gives us  
a total of five parts for the real name:

• lib (short for library)

• convert (the name of the library)

• .so (the extension, short for shared object)

• .1 (the major version of the library)

• .3 (the minor version of the library, optionally)

There's more…
Contrary to static libraries, dynamic libraries can be stripped and will still work. Note, 
however, that the stripping must then occur after creating the dynamic library on the  
.so file. If we were to strip the object (.o) file instead, we would lose all the symbols, 
making it useless for linking. But a .so file keeps the symbols in a special table called 
.dynsym, which the strip command won't touch. It's possible to view this table on  
a stripped dynamic library with the readelf command, using the --symbols 
option. So, if the nm command replies with no symbols on a dynamic library, you can try 
readelf --symbols instead.

See also
GCC is a massive piece of software with lots of options. There are PDF manuals available 
for each version of GCC on GNU's website. The manuals are about 1,000 pages long and 
can be downloaded from https://gcc.gnu.org/onlinedocs/.

Installing the dynamic library on the system
We have now seen how to create both static and dynamic libraries, and in Chapter 3, 
Diving Deep into C in Linux, we even saw how we could use a dynamic library from our 
home directory. But now, the time has come to install a dynamic library system-wide so 
that any user on your computer can use it.



264     Creating Shared Libraries

Knowing how to install a dynamic library on a system will enable you to add libraries 
system-wide for any user to use.

Getting ready
For this recipe, you'll need the libconvert.so.1 dynamic library we created in the 
previous recipe. You will also need root access to the system, either via sudo or su.

How to do it…
Installing a dynamic library is just a matter of moving the library file and header file to 
the correct directory and running a command. However, there are some conventions we 
should follow:

1. The first thing we need to do is to copy the library file to the correct place on the 
system. A common directory for user-installed libraries is /usr/local/lib, 
which we will use here. Since we are copying the file to a place outside of our home 
directory, we need to execute the command as the root user. We'll use install 
here to set the user, the group, and the mode in a single command, and since it's 
a system-wide install, we want it to be owned by root. It should also be executable 
since it will be included and executed at runtime:

$> sudo install -o root -g root -m 755 \
> libconvert.so.1 /usr/local/lib/libconvert.so.1

2. Now, we must run the ldconfig command, which will create the necessary links 
and update the cache. 

Important note
On Fedora and CentOS, the /usr/local/lib directory isn't included in 
the ldconfig search path by default. Add it before moving forward by first 
switching to root with either su or sudo -i and then execute the command:

echo "/usr/local/lib" >> /etc/ld.so.conf.d/local.
conf

After we have executed ldconfig, we run ls on libconvert* in /usr/
local/lib and see that ldconfig has created a symbolic link to our library file, 
without the version part:

$> sudo ldconfig
$> cd /usr/local/lib/
$> ls -og libconvert*



Installing the dynamic library on the system     265

lrwxrwxrwx 1 15 dec 27 19:12 libconvert.so ->
libconvert.so.1
-rwxr-xr-x 1 15864 dec 27 18:16 libconvert.so.1

3. We must also copy the header file to a system directory; otherwise, the user would 
have to download and keep track of the header file manually, which is less than 
ideal. A good place for user-installed header files is /usr/local/include. The 
word include is from the C language #include line:

$> sudo install -o root -g root -m 644 convert.h \
> /usr/local/include/convert.h

4. Since we installed the library and the header file system-wide, we can go ahead and 
remove them from our current working directory. Doing so will make sure that we 
use the correct files in the next recipe:

$> rm libconvert.so.1 convert.h

How it works…
We installed the library file and header file using install. This program is excellent for 
tasks such as this since it sets the user (the -o option), the group (the -g option), and the 
mode (the -m option) in a single command. If we had used cp to copy the file, it would 
have been owned by the user who created it. We always want system-wide installation of 
binaries, libraries, and header files owned by the root user for security purposes.

The /usr/local directory is a good place for user-created stuff. We placed our 
library under /usr/local/lib and our header file under /usr/local/include. 
System libraries and header files are often placed in /usr/lib and /usr/include, 
respectively.

When we later use the library, the system will look for it in a file with a .so ending, and 
hence we need a symbolic link to the library with the name libconvert.so. But we 
didn't need to create that link ourselves; ldconfig took care of that for us.

Also, since we have placed the header file in /usr/local/include, we don't need to 
have that file in our current working directory anymore. We can now use the same syntax 
when including it like any other system header file. We'll see this in the next recipe.



266     Creating Shared Libraries

Using the dynamic library in a program
Now that we have created a dynamic library and installed it on our system, it's time to try 
it out in a program. We have actually been using dynamic libraries without even thinking 
about it since the very beginning of this book. Functions such as printf() and so on 
are all part of the standard library. In the The what and why of libraries recipe from earlier 
in this chapter, we used another dynamic library called cURL. In this recipe, we'll use our 
very own library that we installed in the previous recipe.

Knowing how to use custom libraries will enable you to use other developers' code, which 
will speed up the development process. There's often no need to reinvent the wheel.

Getting ready
For this recipe, we'll need the temperature.c code from the Using a static library  
recipe earlier in this chapter. That program will use the dynamic library. You'll also need  
to complete the previous recipe before attempting this one.

How to do it…
In this recipe, we'll use the temperature.c code to make use of the library we installed 
in the previous recipe:

1. Since we will use the header file installed in /usr/local/include, we must 
modify the #include line in temperature.c. Line 4 in temperature.c 
currently appears as this:

#include "convert.h"

Change the preceding code to this:
#include <convert.h>

Then, save it as temperature-v2.c.

2. We can now go ahead and compile the program. GCC will use the system-wide 
header file and library file. Remember that we need to link against the library using 
the -l option. When we do this, we must leave out the lib part and .so ending:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> temperature-v2.c -o temperature-v2 -lconvert



Using the dynamic library in a program     267

3. Then, let's try it out with some different temperatures:

$> ./temperature-v2 -f 34
34.0 C = 93.2 F
$> ./temperature-v2 -k 21
21.0 C = 294.1 F

4. We can verify which libraries are dynamically linked with ldd. When we run this 
tool on our program, we see our libconvert.so library, libc, and something 
called vdso (virtual  dynamic shared object):

$> ldd temperature-v2
        linux-vdso.so.1 (0x00007fff4376c000)
        libconvert.so => /usr/local/lib/libconvert.so 
(0x00007faaeefe2000)
        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 
(0x00007faaeee21000)
        /lib64/ld-linux-x86-64.so.2 (0x00007faaef029000)

How it works…
When we include local header files from our current directory, the syntax is #include 
"file.h". But for system-wide header files, the syntax is #include <file.h>.

Since the library is now installed in one of the system directories, we didn't need to specify 
the path to it. It was sufficient to link against the library with -lconvert. When doing 
so, all the common system-wide directories are being searched for the library. When we 
link with -l, we leave out both the lib part of the filename and the .so ending—the 
linker figures this out on its own.

In the last step, we verified that we are using the system-wide installation of 
libconvert.so, using ldd. Here, we also saw the standard C library, libc, and 
something called vdso. The standard C library has all the usual functions that we  
use time and time again, such as printf(). The vdso library, however, is a bit more  
arcane and is not something we are going to cover here. In short, it exports a small set  
of often-used system calls to userland to avoid too much context-switching, which would 
impair performance.



268     Creating Shared Libraries

There's more…
Throughout this chapter, we've talked a lot about the linker and the linking process.  
The linker is a separate program called ld. To gain a deeper understanding of the linker,  
I suggest you read its manual page with man 1 ld.

See also
For more information about ldd, see man 1 ldd.

For the curious mind, there's a detailed explanation of vdso in man 7 vdso.

Compiling a statically linked program
Now that we have such a deep understanding of libraries and linking, we can create  
a statically linked program—that is, a program with all dependencies compiled into 
it. This makes the program—more or less—dependency-free. Making statically linked 
programs isn't common but sometimes it can be desirable—for example, if you for 
some reason need to distribute a single precompiled binary to many computers without 
worrying about installing all the libraries. But please note: it's not always possible to  
create completely dependency-free programs. If a program uses a library that depends  
on another library, this is not easily accomplished.

The downside of making and using statically linked programs is that they get a lot bigger 
in size. Also, it's no longer possible to update the program's libraries without recompiling 
the entire program. So, bear in mind that this is only used in rare cases.

But, by knowing how to compile statically linked programs, you not only enhance your 
knowledge but will also be able to distribute precompiled binaries to systems without the 
necessary libraries, on many different distributions.

Getting ready
For this recipe, you'll need to have completed the two previous recipes—in other words, 
you need to have installed the libconvert.so.1 library on the system, and you need 
to have compiled temperature-v2.c. You also need the GCC compiler, as usual.



Compiling a statically linked program     269

How to do it…
In this recipe, we'll compile a statically linked version of temperature-v2.c. We'll 
then remove the library from the system and notice that the statically linked program still 
works while the other doesn't:

Important note
On Fedora and CentOS, the static library for libc isn't included by default. 
To install it, run sudo dnf install glibc-static.

1. To link against the libraries statically, we need to have static versions of all the 
libraries. This means that we have to recreate the archive (.a) version of our library 
and install that as well. These steps are the same as from the Creating a static library 
recipe earlier in this chapter. First, we remove the object file, if we still have it. Then, 
we create a new one and create an archive from that:

$> rm convert.o
$> gcc -Wall -Wextra -pedantic -std=c99 -c convert.c
$> ar -cvr libconvert.a convert.o 
a - convert.o

2. Next, we must install the static library on the system, preferably in the same location 
as the dynamic library. A static library doesn't need to be executable since it's 
included at compile time, not at runtime:

$> sudo install -o root -g root -m 644 \
> libconvert.a /usr/local/lib/libconvert.a

3. Now, compile a statically linked version of temperature-v2.c. The -static 
option makes the binary statically linked, meaning it will include the library code  
in the binary:

$> gcc -Wall -Wextra -pedantic -std=c99 -static \
> temperature-v2.c -o temperature-static -lconvert

4. Before we try the program, let's examine it with ldd, and also its size with du. 
Notice that on my system, the binary is now almost 800 kilobytes (on another 
system, it's 1.6 megabytes). Compare this to the dynamic version, which is only 
around 20 kilobytes:

$> du -sh temperature-static 
788K    temperature-static
$> du -sh temperature-v2



270     Creating Shared Libraries

20K     temperature-v2
$> ldd temperature-static 
        not a dynamic executable

5. Now, let's try the program:

$> ./temperature-static -f 20
20.0 C = 68.0 F

6. Let's remove both the static and the dynamic libraries from the system:

$> sudo rm /usr/local/lib/libconvert.a \
> /usr/local/lib/libconvert.so \ 
> /usr/local/lib/libconvert.so.1

7. Now, let's try the dynamically linked binary, which shouldn't work since we have 
removed a library that it depends on:

$> ./temperature-v2 -f 25
./temperature-v2: error while loading shared
libraries: libconvert.so: cannot open shared object
file: No such file or directory

8. Finally, let's try the statically linked binary, which should work just as well as before:

$> ./temperature-static -f 25
25.0 C = 77.0 F

How it works…
A statically linked program includes all the code from all the libraries, which is why 
our binary got so huge in this example. To build a statically linked program, we need 
static versions of all the program's libraries. That's why we needed to recreate the static 
library and place it in one of the system directories. We also needed a static version of the 
standard C library, which we installed if we were using a CentOS or Fedora machine. On 
Debian/Ubuntu, it's already installed.



9
Terminal I/O and 

Changing Terminal 
Behavior

In this chapter, we learn what a TTY (short for TeleTYpewriter) and a PTY (short for 
Pseudo-TeletYpewriter) are and how to get information about them. We also learn how 
to set their attributes. Then, we write a small program that takes input without echoing the 
text—perfect for a password prompt. We also write a program that checks the size of the 
current terminal.

A terminal can take many forms—for example, a terminal window in X (the graphical 
frontend); the seven terminals accessed with Ctrl + Alt + F1 through F7; an old serial 
terminal; a dial-up terminal; or a remote terminal such as Secure Shell (SSH).

A TTY is a hardware terminal, such as the consoles accessed with Ctrl + Alt + F1 through 
F7, or a serial console.

A PTY, on the other hand, is a pseudo-terminal, meaning it's emulated in software. 
Examples of PTYs are programs such as xterm, rxvt, Konsole, Gnome Terminal,  
or a terminal multiplexer such as tmux. It could also be a remote terminal, such as SSH.



272     Terminal I/O and Changing Terminal Behavior

Since we all use terminals in our daily lives with Linux, knowing how to get information 
about them and control them can help us write better software. One such example is to 
hide the password in a password prompt.

In this chapter, we will cover the following recipes:

• Viewing terminal information

• Changing terminal settings with stty

• Investigating TTYs and PTYs and writing to them

• Checking if it's a TTY

• Creating a PTY

• Disabling echo for password prompts

• Reading the terminal size

Technical requirements
In this chapter, we'll need all the usual tools, such as the GNU Compiler Collection 
(GCC) compiler, the Make tool, and the generic Makefile, but we'll also need a program 
called screen. If you don't already have it, you can install it with your distribution's 
package manager—for example, sudo apt-get install screen for Debian/
Ubuntu, or sudo dnf install screen for CentOS/Fedora.

All code samples for this chapter can be downloaded from https://github.com/
PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch9.

Check out the following link to see the Code in Action video:  
https://bit.ly/2O8j7Lu

Viewing terminal information
In this recipe, we'll learn more about what TTYs and PTYs are and how to read their 
attributes and information. This will help us in our understanding of TTYs as we move 
forward in the chapter. Here, we learn how to find out which TTY or PTY we are using, 
where it lives on the filesystem, and how to read its attributes.

Getting ready
There are no special requirements for this recipe. We'll only use standard programs that 
are already installed.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch9
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch9
https://bit.ly/2O8j7Lu


Viewing terminal information     273

How to do it…
In this recipe, we'll explore how to find your own TTY, what attributes it has, where its 
corresponding file lives, and what kind of TTY it is:

1. Start by typing tty in your terminal. This will tell you which TTY you are using on 
the system. There can be many TTYs and PTYs on a single system. Each of them is 
represented by a file on the system:

$> tty
/dev/pts/24

2. Now, let's examine that file. As we see here, it's a special file type, called character 
special:

$> ls -l /dev/pts/24
crw--w---- 1 jake tty 136, 24 jan  3 23:19 /dev/pts/24
$> file /dev/pts/24 
/dev/pts/24: character special (136/24)

3. Now, let's examine the terminal's attributes with a program called stty. The -a 
option tells stty to display all attributes. The information we get is, for example, 
the size of the terminal (number of rows and columns); its speed (only important 
on serial terminals, dial-up, and so on); which Ctrl key combination is used for EOF 
(End Of File), suspend, kill, and so on. All options that start with a minus sign are 
disabled values, such as -parenb. All values without a minus sign, such as cs8,  
are enabled:

$> stty -a
speed 38400 baud; rows 14; columns 88; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; 
eol = M-^?; eol2 = M-^?;
swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt 
= ^R; werase = ^W; lnext = ^V;
discard = ^O; min = 1; time = 0;
-parenb -parodd -cmspar cs8 hupcl -cstopb cread -clocal 
-crtscts
-ignbrk brkint -ignpar -parmrk -inpck -istrip -inlcr 
-igncr icrnl ixon -ixoff -iuclc
ixany imaxbel iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel 
nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh 
-xcase -tostop -echoprt echoctl
echoke -flusho -extproc



274     Terminal I/O and Changing Terminal Behavior

4. It's also possible to view another terminal's attributes, assuming you own it, 
meaning the logged-in user must be you. If we try to view another user's terminal, 
we get a Permission denied error:

$> stty -F /dev/pts/33 
speed 38400 baud; line = 0;
lnext = <undef>; discard = <undef>; min = 1; time = 0; 
-brkint -icrnl ixoff -imaxbel iutf8
-icanon -echo
$> stty -F /dev/tty2
stty: /dev/tty2: Permission denied

How it works…
A single Linux system can have hundreds or thousands of logged-in users. Each of them 
is connected over a TTY or PTY. Back in the old days, this was often hardware terminals 
(TTYs) connected to the machine over serial lines. Nowadays, hardware terminals are 
pretty rare; instead, we log in over SSH or use terminal programs. 

In our example, the current user is logged in on a PTY device with the number 24, but 
notice that the device said /dev/pts/24; that is pts, not pty. A PTY has two parts, a 
master and a slave. PTS stands for pseudo-terminal slave, and it's that part we connect to. 
The master part opens/creates the pseudo-terminal, but it's the slave that we use. We'll dig 
a bit deeper into this concept later in the chapter.

The settings we used as an example in Step 3 (-parenb and cs8) mean that parenb is 
disabled since it has a minus sign, and cs8 is enabled. The parenb option will generate 
a parity bit and expect one back in the input. Parity bits were widely used in dial-up 
connections and serial communication. The cs8 option sets the character size to 8 bits.

The stty program can be used to both view and set attributes for a terminal. In the next 
recipe, we'll return to stty to change some values.

As long as we are the terminal device owner, we can read and write to it, as we saw in the 
last step of the recipe.

See also
There's a lot of useful information in man 1 tty and man 1 stty.



Changing terminal settings with stty     275

Changing terminal settings with stty
In this recipe, we'll learn how to change the settings (or attributes) of our terminal. In the 
previous recipe, we listed our current settings with stty -a. In this recipe, we'll change 
some of those settings, using the same stty program.

Knowing how to change your terminal settings will enable you to adapt it according to 
your preference.

Getting ready
No special requirements exist for this recipe.

How to do it…
Here, we will change some of the settings for our current terminal:

1. Let's start by turning off echoing. Doing so is common—for example, for password 
prompts—but it can also be done manually, as we'll see here. After you turn off  
the terminal echo, you won't see anything you write. Everything still works, 
though—for example, we can type whoami, and get an answer. Notice that you 
won't see the whoami command as you type it:

$> stty -echo
$> whoami jake 
$> 

2. To turn on echoing again, we type the same command again but without the minus 
sign. Notice that you won't see the stty command when you type it:

$> stty echo
$> whoami
jake

3. We can also change special key sequences—for example, usually, the EOF character 
is Ctrl + D. We can rebind that with a single dot (.) if we'd like:

$> stty eof .

4. Type a single dot (.) now, and your current terminal will quit or log out. When you 
start a new terminal or log back in, the settings are back to normal.



276     Terminal I/O and Changing Terminal Behavior

5. To save the settings for reuse later, we first make the necessary changes—for 
example, setting EOF to a dot. Then, we use stty --save. That option will print 
a long line of hexadecimal numbers—these numbers are the settings. So, to save 
them, we can redirect the output from stty --save to a file:

$> stty eof .
$> stty --save
5500:5:bf:8a3b:3:1c:7f:15:2e:0:1:0:11:13:1a:0:1
2:f:17:16:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0
$> stty --save > my-tty-settings

6. Now, log out by pressing a dot.

7. Log back in (or re-open the terminal window). Try typing a dot, and nothing will 
happen. To reload our settings, we use the my-tty-settings file from the 
previous step. The $() sequence expands the command inside the parenthesis and 
is then used as an argument for stty:

$> stty $(cat my-tty-settings)

8. Now, we can once again try to log out by pressing a dot.

How it works…
A terminal is often a "dumb" device, and hence it requires lots of settings to make it work 
right. This is also one of those leftovers from the old days of hardware teletypewriters. The 
stty program is used to set attributes on a terminal device.

Options with a minus sign are negated—that is, disabled. Options without a minus sign 
are enabled. In our example, we first turned off echoing, a common practice for password 
prompts, and so on.

There is no real way of saving the settings for a TTY, except for the way we saw here by 
saving it to a file and re-reading it later.

Investigating TTYs and PTYs and writing to 
them
In this recipe, we'll learn how to list currently logged-in users, which TTYs they use, 
and which programs they are running. We'll also learn how to write to those users and 
terminals. As we'll see in this recipe, we can write to a terminal device just as if it were  
a file, assuming we have the correct permissions.



Investigating TTYs and PTYs and writing to them     277

Knowing how to write to other terminals deepens understanding of how terminals work 
and what they are. It also enables you to write some interesting software and, above all, it 
will make you a better system administrator. It also teaches you about terminal security.

How to do it…
We'll start by investigating the logged-in users; then, we'll learn how to send messages  
to them:

1. To make things a bit more interesting, open up three to four terminal windows.  
If you're not using the X-Window System, log in on multiple TTYs. Or, if you are 
using a remote server, log in several times.

2. Now, type the who command in one of the terminals. You'll get a list of all the 
logged-in users, which TTY/PTY they are using, and the date and time they logged 
in. In my example, I've logged in several times over SSH. If you are using a local 
machine with multiple xterm applications, you'll see (:0) instead of the Internet 
Protocol (IP) address:

$> who
root     tty1         Jan  5 16:03
jake     pts/0        Jan  5 16:04 (192.168.0.34)
jake     pts/1        Jan  5 16:04 (192.168.0.34)
jake     pts/2        Jan  5 16:04 (192.168.0.34)

3. There's a similar command, w, that even shows which program the user on each 
terminal is currently using:

$> w
 16:09:33 up 7 min,  4 users,  load average: 0.00, 0.16, 
0.13
USER  TTY    FROM          LOGIN@  IDLE  JCPU   PCPU WHAT
root  tty1   -             16:03   6:05  0.07s  0.07s 
-bash
jake  pts/0  192.168.0.34  16:04   5:25  0.01s  0.01s 
-bash
jake  pts/1  192.168.0.34  16:04   0.00s 0.04s  0.01s w
jake  pts/2  192.168.0.34  16:04   5:02  0.02s  0.02s 
-bash

4. Let's find out which terminal we are using:

$> tty
/dev/pts/1



278     Terminal I/O and Changing Terminal Behavior

5. Now that we know which terminal we are using, let's send a message to another  
user and terminal. At the beginning of this book, I mentioned that everything is  
just a file or a process. This is true even for terminals. That means we can send data 
to a terminal using regular redirections:

$> echo "Hello" > /dev/pts/2

The text Hello will now appear in the PTS2 terminal.

6. Sending messages to a terminal using echo only works if it's the same user that's 
logged in on the other terminal. For example, if I try to send a message to TTY1 
where root is logged in, it doesn't work—for a good reason:

$> echo "Hello" > /dev/tty1
-bash: /dev/tty1: Permission denied

7. However, there exists a program that allows users to write to each other's terminal, 
assuming they have allowed it. That program is called write. To allow or disallow 
messages, we use the mesg program. If you can log in as root (or some other user) 
on a terminal, do so, and then allow messages (the letter y stands for yes):

#> tty
/dev/tty1
#> whoami
root
#> mesg y

8. Now, from another user, we can write to that user and terminal:

$> write root /dev/tty1
Hello! How are you doing?
Ctrl+D

That message will now appear on TTY1, where root is logged in.

9. There's another command that allows a user to write on all terminals. However, root 
is the only user that can write to users who have turned off messages. When logged 
in as root, issue the following command to write a message about a pending reboot 
to all logged-in users:

#> wall "The machine will be rebooted later tonight"



Checking if it's a TTY     279

This will display a message, shown here, on all users' terminals:
Broadcast message from root (tty1) (Tue Jan  5 16:59:33)

The machine will be rebooted later tonight

How it works…
Since all the terminals are represented by files on the filesystem, it's easy to send messages 
to them. The regular permissions apply, however, to prevent users from writing to other 
users or snooping on their terminal.

With the write program, though, users can write messages to each other quickly, 
without needing any third-party software.

There's more…
The wall program is used to warn users of a pending reboot or shutdown. For example, 
if root issues the shutdown -h +5 command to schedule a shutdown in 5 minutes, all 
users will receive a warning. That warning is sent automatically, using the wall program.

See also
For more information about the commands covered in this recipe, see the following 
manual pages:

• man 1 write

• man 1 wall

• man 1 mesg

Checking if it's a TTY
In this recipe, we'll start looking at some of the C functions to examine TTYs. Here, we 
mean TTY in the broadest sense, meaning both TTY and PTY.

The program we will write here will check if stdout is a terminal. If it's not, it will print an 
error message.

Knowing how to check if stdin, stdout, or stderr are terminal devices will enable you to 
write error checks for programs that require a terminal to work.



280     Terminal I/O and Changing Terminal Behavior

Getting ready
For this recipe, we'll need the GCC compiler, the Make tool, and the generic Makefile. 
The generic Makefile can be downloaded from this chapter's GitHub folder, at 
https://github.com/PacktPublishing/Linux-System-Programming-
Techniques/tree/master/ch9.

How to do it…
Here, we'll write a small program that prints an error message if stdout is not a terminal:

1. Write the following small program in a file and save it as ttyinfo.c. We use  
two new functions here. The first one is isatty(), which checks if a file 
descriptor is a terminal. Here, we check if stdout is a terminal. The other function  
is ttyname(), which prints the terminal's name connected to stdout (or actually 
the path):

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
int main(void)
{
    if ( (isatty(STDOUT_FILENO) == 1) )
    {
        printf("It's a TTY with the name %s\n",
            ttyname(STDOUT_FILENO));
    }
    else
    {
        perror("isatty");
    }
    printf("Hello world\n");
    return 0;
}

2. Compile the program:

$> make ttyinfo
gcc -Wall -Wextra -pedantic -std=c99    ttyinfo.c   -o 
ttyinfo



Checking if it's a TTY     281

3. Let's try out the program. First, we run it without any redirections. The program 
will print the name of the terminal and the text Hello world:

$> ./ttyinfo 
It's a TTY with the name /dev/pts/10
Hello world

4. But if we were to redirect file descriptor 1 to a file, it's no longer a terminal  
(because that file descriptor is then pointing to a file and not a terminal). This will 
print an error message, but the Hello world message is still redirected to the file:

$> ./ttyinfo > my-file
isatty: Inappropriate ioctl for device
$> cat my-file 
Hello world

5. To prove the point, we can "redirect" file descriptor 1 to /dev/stdout. Everything 
will then work as usual since file descriptor 1 is then once again stdout:

$> ./ttyinfo > /dev/stdout
It's a TTY with the name /dev/pts/10
Hello world

6. Another step to prove the point is to redirect to our own terminal device. This will 
be similar to what we saw in the previous recipe when we used echo to print a text 
to a terminal:

$> tty
/dev/pts/10
$> ./ttyinfo > /dev/pts/10 
It's a TTY with the name /dev/pts/10
Hello world

7. For the sake of experimentation, let's open up a second terminal. Find the TTY 
name of the new terminal with the tty command (in my case, it's /dev/pts/26). 
Then, from the first terminal, run the ttyinfo program again, but redirect file 
descriptor 1 (stdout) to the second terminal:

$> ./ttyinfo > /dev/pts/26

No output will show up in the current terminal. However, on the second terminal, 
we see the program's output, with the name of the second terminal:

It's a TTY with the name /dev/pts/26
Hello world



282     Terminal I/O and Changing Terminal Behavior

How it works…
The STDOUT_FILENO macro, which we used with both isatty() and ttyname(),  
is just the integer 1—that is, file descriptor 1.

Remember that when we redirect stdout with a > sign, we redirect file descriptor 1.

Normally, file descriptor 1 is stdout, which is connected to your terminal. If we redirect 
file descriptor 1 with the > character to a file, it instead points to that file. Since the regular 
file isn't a terminal, we get an error message from the program (from the isatty() 
function's errno variable).

When we redirected file descriptor 1 back to /dev/stdout, it was once again stdout  
and no error message was printed.

In the last step, when we redirected the program's output to another terminal, all text got 
redirected to that terminal. Not only that—the name of the TTY printed by the program 
was indeed that second terminal's. The reason is that the terminal device connected to file 
descriptor 1 was indeed that terminal (/dev/pts/26, in my case).

See also
For more information about the functions we used in the recipe, I recommend that you 
read man 3 isatty and man 3 ttyname.

Creating a PTY
In this recipe, we'll create a PTY using a C program. A PTY consists of two parts: a master 
(referred to as a pseudo-terminal master, or PTM) and a slave, or PTS. The program will 
create a PTY and print the path to the slave on the current terminal. We can then connect 
to that PTS with an application called screen and type away, and the characters will 
be printed to both the master and the slave. The slave is where the screen program is 
connected to, which is our terminal in this case. The master is usually quiet and runs in 
the background, but for demonstration purposes, we'll print the characters on the master 
as well.

Knowing how to create a PTY enables you to write your own terminal applications, such 
as xterm, Gnome Terminal, tmux, and so on.

Getting ready
For this recipe, you'll need the GCC compiler, the Make tool, and the screen program. 
Installation instructions for screen are found in the Technical requirements section of 
this chapter.



Creating a PTY     283

How to do it…
Here, we'll write a small program that creates a PTY. We'll then connect to the slave end 
of this PTY—the PTS—using screen. We can then type characters, and they are printed 
back to us on the PTS:

1. We'll start by writing the program for this recipe. There are a lot of new concepts 
here, so the code is broken up into several steps. Write all of the code in a single 
file, called my-pty.c. We'll start by defining _XOPEN_SOURCE (for posix_
openpt()), and include all the header files we need:

#define _XOPEN_SOURCE 600
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h> 

2. Next, we'll start the main() function and define some variables we'll need:

int main(void)
{
   char rxbuf[1];
   char txbuf[3];
   int master; /* for the pts master fd */
   int c; /* to catch read's return value */ 

3. Now, it's time to create the PTY device with posix_openpt(). This will return  
a file descriptor, which we'll save in master. Then, we run grantpt(), which sets 
the owner of the device to the current user, the group to tty, and changes the mode 
of the device to 620. We must also unlock it with unlockpt() before using it. 
To know where we should connect, we also print the path to the slave device, using 
ptsname():

   master = posix_openpt(O_RDWR);
   grantpt(master);
   unlockpt(master);
   printf("Slave: %s\n", ptsname(master));



284     Terminal I/O and Changing Terminal Behavior

4. Next, we create the main loop of the program. In the loop, we read a character from 
the PTS and then write it back again to the PTS. Here, we also print the character  
to the master so that we'll see that it's a master/slave pair. Since a terminal device  
is rather primitive, we must manually check for a carriage return character  
(the Enter key) and instead print a newline and a carriage return to make  
a new line:

  while(1) /* main loop */
   {
      /* read from the master file descriptor */
      c = read(master, rxbuf, 1);
      if (c == 1)
      {
         /* convert carriage return to '\n\r' */
         if (rxbuf[0] == '\r')
         {
            printf("\n\r"); /* on master */
            sprintf(txbuf, "\n\r"); /* on slave */
         }
         else
         { 
            printf("%c", rxbuf[0]); 
            sprintf(txbuf, "%c", rxbuf[0]);
         }
         fflush(stdout);
         write(master, txbuf, strlen(txbuf));
      }

5. If no characters are received, the device connected to the slave has disconnected.  
If that is the case, we return, and hence exit from the program:

      else /* if c is not 1, it has disconnected */
      {
         printf("Disconnected\n\r");
         return 0;
      } 
   }
   return 0;
}



Creating a PTY     285

6. Now, it's time to compile the program so that we can run it:

$> make my-pty
gcc -Wall -Wextra -pedantic -std=c99    my-pty.c   -o 
my-pty

7. Now, run the program in your current terminal and make a note of the slave path:

$> ./my-pty
Slave: /dev/pts/31

8. Before we move on to connect to it, let's examine the device. Here, we'll see that my 
user owns it, and it's indeed a character special device, common for terminals:

$> ls -l /dev/pts/31
crw--w---- 1 jake tty 136, 31 jan  3 20:32 /dev/pts/31
$> file /dev/pts/31
/dev/pts/31: character special (136/31)

9. Now, open a new terminal and connect to the slave path you got from the master.  
In my case, it's /dev/pts/31. To connect to it, we'll use screen:

$> screen /dev/pts/31

10. Now, we can type away, and all the characters will be printed back to us. They will 
also appear on the master. To disconnect and quit screen, first hit Ctrl + A and 
then type a single K, as in kill. A question will then present to you (Really kill this 
window [y/n]); type Y here. You'll now see Disconnected in the terminal where you 
started my-pty, and the program will exit.

How it works…
We open a new PTY by using the posix_openpt() function. We set to both read  
and write using O_RDWR. By opening a new PTY, a new character device is created in  
/dev/pts/. It is that character device we later connected to using screen.

Since posix_openpt() returns a file descriptor, we can use all the regular system calls 
for file descriptors to read and write data, such as read and write.

A terminal device, such as the one we created here, is rather primitive. If we press Enter, 
the cursor will return to the start of the line. No new line will be created first. That's 
actually how the Enter key used to work. To solve this in our program, we check if the 
character read is a carriage return (that's what the Enter key sends), and if it is, we instead 
first print a newline character and then a carriage return. 



286     Terminal I/O and Changing Terminal Behavior

If we only printed the newline character we would only get a new line, right under our 
current cursor. This behavior is a leftover from the old-school teletype devices with paper.
After we have printed the current character (or newline and carriage return), we flush 
with fflush(). The reason is that the character printed on the master end (where 
the my-pty program is running) isn't followed by a new line. Stdout is line-buffered, 
meaning it only flushes on a line break. But since we want to see each character as it's 
typed we must flush it on every character, using fflush().

See also
There's a lot of useful information in the manual pages. I particularly recommend you 
read the following manual pages: man 3 posix_openpt, man 3 grantpt, man 3 
unlockpt, man 4 pts, and man 4 tty.

Disabling echo for password prompts
To protect users' passwords from shoulder surfing, it's always best to hide what they type. 
The way to hide a password from being displayed is to disable echoing. In this recipe, we'll 
write a simple password program with echoing disabled.

Knowing how to disable echoing is key when writing programs that take some form of 
secret input, such as a password or a key.

Getting ready
For this recipe, you'll need the GCC compiler, the Make tool, and the generic Makefile.

How to do it…
In this recipe, we'll build a small program with a password prompt

1. Since the code in this recipe will be rather long and some parts a bit arcane, I have 
split up the code into several steps. Note, however, that all code should go into  
a single file. Name the file passprompt.c. Let's start with the include lines, 
the main() function, and the variables we'll need. The struct named term of type 
termios is a special structure that holds the attributes for the terminal:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <termios.h>
int main(void)



Disabling echo for password prompts     287

{
    char mypass[] = "super-secret";
    char buffer[80];
    struct termios term;

2. Next, we'll start by disabling echoing, but first, we need to get all the current settings 
of the terminal by using tcgetattr(). Once we have all the settings, we modify 
them to disable echoing. The way we do it is to bitwise AND the current settings 
with the negated value of ECHO. The ~ sign negates a value. More on this in the 
How it works… section later:

    /* get the current settings */
    tcgetattr(STDIN_FILENO, &term);
    /* disable echoing */
    term.c_lflag = term.c_lflag & ~ECHO;
    tcsetattr(STDIN_FILENO, TCSAFLUSH, &term);

3. Then, we write the code for the password prompt; nothing new here that we don't 
already know:

    printf("Enter password: ");
    scanf("%s", buffer);
    if ( (strcmp(mypass, buffer) == 0) )
    {
        printf("\nCorrect password, welcome!\n");
    }
    else
    {
        printf("\nIncorrect password, go away!\n");
    }    

4. Then, before we exit the program, we must turn on echoing again; otherwise, it will 
remain off even after the program has exited. The way to do that is to bitwise OR 
the current settings with ECHO. This will reverse what we previously did:

    /* re-enable echoing */
    term.c_lflag = term.c_lflag | ECHO;
    tcsetattr(STDIN_FILENO, TCSAFLUSH, &term);
    return 0;
}



288     Terminal I/O and Changing Terminal Behavior

5. Now, let's compile the program:

$> make passprompt
gcc -Wall -Wextra -pedantic -std=c99    passprompt.c   -o 
passprompt

6. Now, we can try the program, and we'll notice that we don't see what we type:

$> ./passprompt 
Enter password: test+Enter
Incorrect password, go away!
$> ./passprompt 
Enter password: super-secret+Enter
Correct password, welcome!

How it works…
The way to make changes to the terminal with tcsetattr() is to get the current 
attributes with tcgetattr() and then modify them, and then finally apply those 
changed attributes to the terminal.

The first argument to both tcgetattr() and tcsetattr() is the file descriptor we 
want to change. In our case, it's stdin.

The second argument to tcgetattr() is the struct where the attributes will be saved.

The second argument to tcsetattr() determines when the changes will have an effect. 
Here, we use TCSAFLUSH, which means that changes occur after all output is written, and 
all input received but not read will be discarded.

The third argument to tcsetattr() is the struct that contains the attributes.

To save and set attributes, we need a structure called termios (the same name as the 
header file we use). That structure contains five members, four of which are the modes. 
These are input modes (c_iflag), output modes (c_oflag), control mode (c_cflag), 
and local mode (c_lflag). What we change here is the local mode. 

First, we have the current attributes in the c_lflag member, which is an unsigned 
integer that's built up from a bunch of bits. Those bits are the attributes.

Then, to turn off a setting—for example, echoing in our case—we negate the ECHO macro 
("inverting" it) and then add it back to c_lflag with bitwise AND (the & sign).



Reading the terminal size     289

The ECHO macro is 010 (octal 10), or 8 in decimal, which is 00001000 in binary  
(with 8 bits). Negated, it is 11110111. A bitwise AND operation is then carried out  
on those bits with the other bits from the original settings.

The result of the bitwise AND operation is then applied to the terminal with 
tcsetattr(), which turns off echoing.

Before we end the program, we reverse the process by a bitwise OR operation on the new 
value with the ECHO value. Then, we apply that value with tcsetattr(), turning on 
echoing again.

There's more…
There are lots and lots of attributes we can set this way—for example, it's possible to 
disable flushing on interrupt and quit signals, and so on. The man 3 tcsetattr() 
manual page has complete lists of macros to use for each of the modes.

Reading the terminal size
In this recipe, we'll continue digging around our terminal. Here, we write a funny little 
program that reports the size of the terminal live. As you resize your terminal window 
(assuming you are using an X console application), you'll instantly see the new size being 
reported.

To make this work, we'll make use of both a special escape sequence and the ioctl() 
function.

Knowing how to use these two tools, escape sequences, and ioctl() will enable you to 
do some amusing things with the terminal.

Getting ready
To make the most of this recipe, it's best to use an X-Window console, such as xterm, 
rxvt, Konsole, Gnome Terminal, and so on.

You'll also need the GCC compiler, the Make tool, and the generic Makefile.



290     Terminal I/O and Changing Terminal Behavior

How to do it…
Here, we will write a program that first clears the screen using a special escape sequence, 
then fetches the terminal's size and prints to the screen:

1. Write the following code in a file and save it as terminal-size.c. The program 
uses an endless loop, so to quit the program, we must use Ctrl + C. On each 
iteration of the loop, we first clear the screen by printing a special escape sequence. 
Then, we get the terminal size with ioctl() and print the size on the screen:

#include <stdio.h>
#include <unistd.h>
#include <termios.h>
#include <sys/ioctl.h>

int main(void)
{
   struct winsize termsize;
   while(1)
   {
      printf("\033[1;1H\033[2J");
      ioctl(STDOUT_FILENO, TIOCGWINSZ, &termsize);
      printf("Height: %d rows\n", 
         termsize.ws_row);
      printf("Width: %d columns\n", 
         termsize.ws_col);
      sleep(0.1);
   }
   return 0;
} 

2. Compile the program:

$> make terminal-size
gcc -Wall -Wextra -pedantic -std=c99    terminal-size.c   
-o terminal-size



Reading the terminal size     291

3. Now, run the program in a terminal window. As the program is running, resize  
the window. You'll notice that the size is instantly updated. Quit the program with 
Ctrl + C:

$> ./terminal-size
Height: 20 rows
Width: 97 columns
Ctrl+C

How it works…
First, we define a structure name termsize, with the winsize type. We will save the 
terminal size in this structure later. The structure has two members (actually four, but  
only two are used). The members are ws_row for the number of rows and wc_col for 
the number of columns.

Then, to clear the screen, we use printf() to print a special escape sequence, 
\033[1;1H\033[2J. The \033 sequence is the escape code. After the escape code, 
we have a [ character, then we have the actual code telling the terminal what to do. The 
first one, 1;1H, moves the cursor to position 1,1 (the first row and first column). Then, 
we use the \033 escape code again so that we can use another code. First, we have the 
[ character, just as before. Then, we have the [2J code, which means to erase the entire 
display.

Once we have cleared the screen and moved the cursor, we use ioctl() to get the 
terminal size. The first argument is the file descriptor; here, we use stdout. The second 
argument is the command to send; here, it's TIOCGWINSZ to get the terminal size. These 
macros/commands can be found in the man 2 ioctl_tty manual page. The third 
argument is the winsize structure.

Once we have the sizes in the winsize structure, we print the values using printf().

To avoid draining the system resources, we sleep for 0.1 seconds before the next iteration.

There's more…
In the man 4 console_codes manual page, there are lots and lots of other codes you 
can use. You can do everything from using colors to bold fonts, to moving the cursor, to 
ringing the terminal bell, and so on.



292     Terminal I/O and Changing Terminal Behavior

For example, to print Hello in blinking magenta and then reset to the default values, you 
can use this: 

printf("\033[35;5mHello!\033[0m\n");

Note, though, that not all terminals can blink.

See also
For more information about ioctl(), see both the man 2 ioctl and man 2 
ioctl_tty manual pages. The latter contains information about the winsize struct 
and the macros/commands.



10
Using Different 

Kinds of IPC
In this chapter, we will learn about the various ways we can communicate between 
processes via so-called inter-process communication (IPC). We will write various 
programs that use different kinds of IPC, from signals and pipes to FIFOs, message 
queues, shared memory, and sockets.

Processes sometimes need to exchange information—for example, in the case of a client 
and a server program running on the same computer. It could also be a process that has 
forked into two processes, and they need to communicate somehow.

There are multiple ways in which this IPC can happen. In this chapter, we'll learn about 
some of the most common ones.

Knowing about IPC is essential if you want to write more than the most basic of 
programs. Sooner or later, you'll have a program consisting of multiple pieces or multiple 
programs that needs to share information.

In this chapter, we will cover the following recipes:

• Using signals for IPC—building a client for the daemon

• Communicating with a pipe

• FIFO—using it in the shell



294     Using Different Kinds of IPC

• FIFO—building the sender

• FIFO—building the receiver

• Message queues—creating the sender

• Message queues—creating the receiver

• Communicating between child and parent with shared memory

• Using shared memory between unrelated processes

• Unix socket—creating the server

• Unix socket—creating the client

Let's get started!

Technical requirements
For this chapter, you'll need the GCC compiler, the Make tool, and the generic Makefile 
from Chapter 3, Diving Deep into C in Linux. If you haven't installed these tools yet, please 
see Chapter 1, Getting the Necessary Tools and Writing Our First Linux Programs, for 
installation instructions.

All the code samples—and the generic Makefile—for this chapter can be downloaded 
from GitHub at https://github.com/PacktPublishing/Linux-System-
Programming-Techniques/tree/master/ch10.

Check out the following link to see the Code in Action video:  
https://bit.ly/2TVecQs

Using signals for IPC – building a client for the 
daemon
We have already used signals several times in this book. However, when we did, we always 
used the kill command to send the signal to the program. This time, we'll write a small 
client that controls the daemon, my-daemon-v2, from Chapter 6, Spawning Processes 
and Using Job Control.

This is a typical example of when signals are used for IPC. The daemon has a small  
"client program" that controls it, so that it can stop it, restart it, reload its configuration 
file, and so on.

Knowing how to use signals for IPC is a solid start in writing programs that can 
communicate between them.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch10
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch10
https://bit.ly/2TVecQs


Using signals for IPC – building a client for the daemon     295

Getting ready
For this recipe, you'll need the GCC compiler, the Make tool, and the generic Makefile. 
You will also need the my-daemon-v2.c file from Chapter 6, Spawning Processes 
and Using Job Control. There is a copy of that file in this chapter's GitHub directory at 
https://github.com/PacktPublishing/Linux-System-Programming-
Techniques/tree/master/ch10.

How to do it…
In this recipe, we'll add a small client program to the daemon from Chapter 6, Spawning 
Processes and Using Job Control. This program will send signals to the daemon, just like  
the kill command does. However, this program will only send signals to the daemon,  
no other process:

1. Write the following code in a file and save it as my-daemon-ctl.c. This program 
is a bit longer, so it's split up into several steps. All the code goes into the same file, 
though. We'll start with the include lines, the prototype for the usage function, and 
all the variables we'll need:

#define _XOPEN_SOURCE 500
#include <stdio.h>
#include <sys/types.h>
#include <signal.h>
#include <getopt.h>
#include <string.h>
#include <linux/limits.h>
void printUsage(char progname[], FILE *fp);
int main(int argc, char *argv[])
{
   FILE *fp;
   FILE *procfp;
   int pid, opt;
   int killit = 0;
   char procpath[PATH_MAX] = { 0 };
   char cmdline[PATH_MAX] = { 0 };
   const char pidfile[] = "/var/run/my-daemon.pid";
   const char daemon[] = "my-daemon-v2";

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch10
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch10


296     Using Different Kinds of IPC

2. Then, we want to be able to parse command-line options. We'll only need two 
options; that is, -h for help and -k to kill the daemon. The default is to show the 
status of the daemon:

   /* Parse command-line options */
   while ((opt = getopt(argc, argv, "kh")) != -1)
   {
      switch (opt)
      {
         case 'k': /* kill the daemon */
            killit = 1;
            break;
         case 'h': /* help */
            printUsage(argv[0], stdout);
            return 0;
         default: /* in case of invalid options */
            printUsage(argv[0], stderr);
            return 1;
      }
   }

3. Now, let's open the PID file and read it. Once we've done that, we need to assemble 
the complete path to the process's cmdline file in /proc. Then, we must open that 
file and read the complete command-line path from it:

   if ( (fp = fopen(pidfile, "r")) == NULL )
   {
      perror("Can't open PID-file (daemon isn't "
          "running?)");
      return 1;
   }
   /* read the pid (and check if we could read an 
    * integer) */
   if ( (fscanf(fp, "%d", &pid)) != 1 )
   {
      fprintf(stderr, "Can't read PID from %s\n", 
         pidfile);
      return 1;
   }
   /* build the /proc path */
   sprintf(procpath, "/proc/%d/cmdline", pid);
   /* open the /proc path */



Using signals for IPC – building a client for the daemon     297

   if ( (procfp = fopen(procpath, "r")) == NULL )
   {
      perror("Can't open /proc path"
         " (no /proc or wrong PID?)");
      return 1;
   }
   /* read the cmd line path from proc */
   fscanf(procfp, "%s", cmdline); 

4. Now that we have both the PID and the full command line, we can double-check 
that the PID belongs to /usr/local/sbin/my-daemon-v2 and not some  
other process:

   /* check that the PID matches the cmdline */
   if ( (strstr(cmdline, daemon)) == 0 )
   {
      fprintf(stderr, "PID %d doesn't belong "
         "to %s\n", pid, daemon);
      return 1;
   }

5. If we give the -k option to the program, we must set the killit variable to 1.  
So, at this point, we must kill the process. Otherwise, we just print a message  
stating that the daemon is running:

   if ( killit == 1 )
   {
      if ( (kill(pid, SIGTERM)) == 0 )
      {
         printf("Successfully terminated " 
            "daemon\n");
      }
      else
      {
         perror("Couldn't terminate daemon");
         return 1;
      }        
   }
   else
   {
      printf("The daemon is running with PID %d "
      "and cmdline %s\n", pid, cmdline);
   }



298     Using Different Kinds of IPC

   return 0;
}

6. Finally, we create the function for the printUsage() function:

void printUsage(char progname[], FILE *fp)
{
   fprintf(fp, "Usage: %s [-k] [-h]\n", progname);
   fprintf(fp, "If no options are given, a status "
      "message is displayed.\n"
      "-k will terminate the daemon.\n"
      "-h will display this usage help.\n");       
}

7. Now, we can compile the program:

$> make my-daemon-ctl
gcc -Wall -Wextra -pedantic -std=c99    my-daemon ctl.c   
-o my-daemon-ctl

8. Before we go any further, make sure you have disabled and stopped the systemd 
service for the daemon from Chapter 7, Using systemd to Handle Your Daemons:

$> sudo systemctl disable my-daemon
$> sudo systemctl stop my-daemon

9. Now, compile the daemon (my-daemon-v2.c) if you haven't done so already:

$> make my-daemon-v2
gcc -Wall -Wextra -pedantic -std=c99    my-daemon-v2.c   
-o my-daemon-v2

10. Then, start the daemon manually (no systemd service this time):

$> sudo ./my-daemon-v2

11. Now, we can try out our new program to control the daemon. Notice that we can't 
kill the daemon as a regular user:

$> ./my-daemon-ctl 
The daemon is running with PID 17802 and cmdline ./
my-daemon-v2
$> ./my-daemon-ctl -k
Couldn't terminate daemon: Operation not permitted
$> sudo ./my-daemon-ctl -k
Successfully terminated daemon



Using signals for IPC – building a client for the daemon     299

12. If we rerun the program once the daemon has been killed, it will tell us that there's 
no PID file and that the daemon is therefore not running:

$> ./my-daemon-ctl 
Can't open PID-file (daemon isn't running?): No such file 
or directory

How it works…
Since the daemon creates a PID file, we can use that file to get the PID of the running 
daemon. The daemon removes the PID file when it is terminated, so we can assume that 
the daemon isn't running if there's no PID file.

If the PID file does exist, first, we read the PID from the file. Then, we use the PID to 
assemble the path to that PID's cmdline file in the /proc filesystem. Each process on 
a Linux system has a directory in the /proc filesystem. Inside each process's directory, 
there is a file called cmdline. That file contains the complete command line of the 
process. For example, if the daemon was started from the current directory, it contains  
./my-daemon-v2, while if it was started from /usr/local/sbin/my-daemon-v2, 
it contains that complete path.

For example, if the PID of the daemon is 12345, the complete path to cmdline is /
proc/12345/cmdline. That is what we assemble with sprintf().

Then, we read the content of cmdline. Later, we use that file's content to verify that the 
PID does match a process with the name my-daemon-v2. This is a safety measure so that 
we don't kill the wrong process by mistake. If the daemon is killed with the KILL signal, 
it has no chance to remove the PID file. If another process gets the same PID in the future, 
we run the risk of killing that process instead. PID numbers will eventually be reused.

When we have the PID of the daemon and have verified that it does belong to the correct 
process, we will either get its status or kill it, depending on whatever we specified with  
the -k option.

This is how many control programs work that are used to control complex daemons.

See also
For more information about the kill() system call, see the man 2 kill manual page.



300     Using Different Kinds of IPC

Communicating with a pipe
In this recipe, we'll create a program that forks and then communicates between two 
processes using a pipe. Sometimes, when we fork a process, the parent and the child  
need a way to communicate. A pipe is often a simple way to do just that.

Knowing how to communicate and interchange data between a parent and a child process 
is important when you're writing more complex programs.

Getting ready
For this recipe, we'll only need the GCC compiler, the Make tool, and the generic Makefile.

How to do it…
Let's write a simple program that forks:

1. Write the following code in a file and name it pipe-example.c. We'll go through 
the code step by step. Remember that all the code goes in the same file.

We'll start with the include lines and the main() function. Then, we'll create an 
integer array of size 2. The pipe will use that array later. The first integer in the array 
(0) is the file descriptor for the read end of the pipe. The second integer (1) is for the 
write end of the pipe:

#define _POSIX_C_SOURCE  200809L
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#define MAX 128
int main(void)
{
   int pipefd[2] = { 0 };
   pid_t pid;
   char line[MAX];

2. Now, we will create the pipe using the pipe() system call. We'll give it the integer 
array as an argument. After that, we'll fork using the fork() system call:

   if ( (pipe(pipefd)) == -1 )
   {
      perror("Can't create pipe");
      return 1;



Communicating with a pipe     301

   }   
   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }

3. If we are inside the parent process, we close the read end (since we only want  
to write from the parent). Then, we write a message to the pipe's file descriptor  
(the write end) using dprintf():

   if (pid > 0)
   {
      /* inside the parent */
      close(pipefd[0]); /* close the read end */
      dprintf(pipefd[1], "Hello from parent");
   }

4. Inside the child, we do the opposite; that is, we close the write end of the pipe.  
Then, we read the data in the pipe using the read() system call. Finally, we print 
the message using printf():

   else
   {
      /* inside the child */
      close(pipefd[1]); /* close the write end */
      read(pipefd[0], line, MAX-1);
      printf("%s\n", line); /* print message from
                             * the parent */
   }
   return 0;
}

5. Now, compile the program so that we can run it:

$> make pipe-example
gcc -Wall -Wextra -pedantic -std=c99    pipe-example.c   
-o pipe-example

6. Let's run the program. The parent sends the message Hello from parent to  
the child using a pipe. Then, it's the child that prints that message on the screen:

$> ./pipe-example 
Hello from parent



302     Using Different Kinds of IPC

How it works…
The pipe() system call returns two file descriptors to the integer array. The first one, 
pipefd[0], is the read end of the pipe, while the other, pipefd[1], is the write end of 
the pipe. In the parent, we write a message to the write end of the pipe. Then, in the child 
process, we read that data from the read end of the pipe. But before we do any reading or 
writing, we close the end of the pipe that we're not using in the respective process.

Pipes are one of the more common IPC techniques around. But they do have a drawback 
in that they can only be used between related processes; that is, processes with a common 
parent (or a parent and a child).

There's another form of pipe that overcomes this limitation: the so-called named pipe. 
Another name for a named pipe is FIFO. That's what we will cover in the next recipe.

See also
More information about the pipe() system call can be found in the man 2 pipe 
manual page.

FIFO – using it in the shell
In the previous recipe, I mentioned that there's a disadvantage to the pipe() system 
call—it can only be used between related processes. But there's another type of pipe we 
can use, called a named pipe. Another name for it is First In, First Out (FIFO). Named 
pipes can be used between any processes, related or not.

A named pipe, or a FIFO, is actually a special kind of file. The mkfifo() function creates 
that file on the filesystem, just like any other file. Then, we use that file to read and write 
data between processes.

There's also a command named mkfifo, which we can use directly from the shell to 
create named pipes. We can use this to pipe data between unrelated commands. 

In this introduction to named pipes, we'll cover the mkfifo command. In the next two 
recipes, we'll write a C program using the mkfifo() function and then another program 
to read the pipe's data.

Knowing how to use named pipes will give you much more flexibility as a user, a system 
administrator, and a developer. You are no longer bound to only using pipes between 
related processes. You'll be free to pipe data between any processes or commands on the 
system—even between different users.



FIFO – using it in the shell     303

Getting ready
In this recipe, we won't write any programs, so there are no special requirements.

How to do it…
In this recipe, we'll explore the mkfifo command and learn how to use it to pipe data 
between unrelated processes:

1. We'll start by creating a named pipe—a FIFO file. We'll create it in the /tmp 
directory, which is commonplace for temporary files like this. You can, however, 
create it wherever you like:

$> mkfifo /tmp/my-fifo

2. Let's confirm that's it indeed a FIFO by using the file and ls commands. Note 
the current permission mode of my FIFO. It can be read by everyone. This can differ 
on your system, though, depending on your umask. But we should be vigilant of 
this in case we are going to pipe sensitive data. In that case, we can change it using 
the chmod command:

$> file /tmp/my-fifo 
/tmp/my-fifo: fifo (named pipe)
$> ls -l /tmp/my-fifo 
prw-r--r-- 1 jake jake 0 jan 10 20:03 /tmp/my-fifo

3. Now, we can try sending data to the pipe. Since the pipe is a file, we will use 
redirections here instead of the pipe symbol. In other words, we redirect data to 
the pipe. Here, we'll redirect the output of the uptime command to the pipe. Once 
we've redirected the data to the pipe, the process will hang, which is normal since 
there's no one on the other end receiving the data. It doesn't actually hang; it blocks:

$> uptime -p > /tmp/my-fifo

4. Open up a new terminal and type in the following command to receive the data 
from the pipe. Note that the process in the first terminal will now finish:

$> cat < /tmp/my-fifo 
up 5 weeks, 6 days, 2 hours, 11 minutes



304     Using Different Kinds of IPC

5. We can also do the reverse; that is, we can open the receiving end first and then 
send data to the pipe. This will block the receiving process until it gets some data. 
Run the following command to set up the receiving end, and leave it running:

$> cat < /tmp/my-fifo

6. Now, we send data to the pipe using the same uptime command. Notice that once 
the data is received, the first process will end:

$> uptime -p > /tmp/my-fifo

7. It's also possible to send data to a FIFO from multiple processes. Open up three new 
terminals. In each terminal, type the following command but replace 1 with 2 for 
the second terminal and 3 for the third:

$> echo "Hello from terminal 1" > /tmp/my-fifo

8. Now, open up another terminal and type in the following command. This will 
receive all the messages:

$> cat < /tmp/my-fifo
Hello from terminal 3
Hello from terminal 1
Hello from terminal 2

How it works…
A FIFO is simply a file on the filesystem, albeit a special file. Once we redirect data to  
a FIFO, that process will block (or "hang") until the data is received on the other end.

Likewise, if we start the receiving process first, that process will block until it gets the 
pipe's data. The reason for this behavior is that a FIFO isn't a regular file that we can 
save data in. We can only redirect data with it; that is, it's just a pipe. So, if we send data 
to it, but there's nothing on the other end, the process will just wait there until someone 
receives it on the other end. The data has nowhere to go in the pipe until someone 
connects to the receiving end.



FIFO – building the sender     305

There's more…
If you have multiple users on the system, you can try sending messages to them using 
FIFOs. Doing so provides us with an easy way to copy and paste data between users. Note 
that the permission mode of the FIFO must allow other users to read it (and write to it, if 
you like). It's possible to set the desired permission mode directly while creating the FIFO 
using the -m option. For example, mkfifo /tmp/shared-fifo -m 666 will allow 
any user to read and write to the FIFO.

See also
There's a bit more information about the mkfifo command in the man 1 mkfifo 
manual page. For a more in-depth explanation about FIFOs in general, see the man 7 
fifo manual page.

FIFO – building the sender
Now that we know what a FIFO is, we'll move on and write a program that can create  
and use a FIFO. In this recipe, we'll write a program that creates a FIFO and then sends  
a message to it. In the next recipe, we'll write a program that receives that message.

Knowing how to use FIFOs programmatically will enable you to write programs that can 
communicate between themselves using a FIFO directly, without needing to redirect the 
data via the shell.

Getting ready
We'll need the usual tools; that is, the GCC compiler, the Make tool, and the  
generic Makefile.

How to do it…
In this recipe, we'll write a program that creates a FIFO and sends a message to it:

1. Write the following code in a file and save it as fifo-sender.c. This code is  
a bit longer, so we'll cover it step by step here. Remember that all the code goes 
in the same file. Let's start with the #include lines, the prototype for the signal 
handler, and some global variables:

#define _XOPEN_SOURCE 700
#include <stdio.h>
#include <unistd.h>



306     Using Different Kinds of IPC

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <errno.h>

void cleanUp(int signum);
int fd; /* the FIFO file descriptor */
const char fifoname[] = "/tmp/my-2nd-fifo";

2. Now, we can start writing the main() function. First, we will create the struct for 
the sigaction() function. Then, we will check if the user provided a message as 
an argument:

int main(int argc, char *argv[])
{
   struct sigaction action; /* for sigaction */
   if ( argc != 2 )
   {
      fprintf(stderr, "Usage: %s 'the message'\n",
         argv[0]);
      return 1;
   }

3. Now, we must register the signal handler for all the signals we want to catch. We are 
doing this so that we can remove the FIFO when the program exits. Notice here that we 
are also registering the SIGPIPE signal—more on this in the How it works… section:

   /* prepare for sigaction and register signals
    * (for cleanup when we exit) */
   action.sa_handler = cleanUp;
   sigfillset(&action.sa_mask);
   action.sa_flags = SA_RESTART;
   sigaction(SIGTERM, &action, NULL);
   sigaction(SIGINT, &action, NULL);
   sigaction(SIGQUIT, &action, NULL);
   sigaction(SIGABRT, &action, NULL);
   sigaction(SIGPIPE, &action, NULL);



FIFO – building the sender     307

4. Now, let's create the FIFO with mode 644. Since mode 644 is octal, we need to write 
it as 0644 in the C code; otherwise, it will be interpreted as 644 decimal (any number 
that starts with a 0 in C is an octal number). After that, we must open the FIFO using 
the open() system call—the same system call we use to open regular files:

   if ( (mkfifo(fifoname, 0644)) != 0 )
   {
      perror("Can't create FIFO");
      return 1;
   }
   if ( (fd = open(fifoname, O_WRONLY)) == -1)
   {
      perror("Can't open FIFO");
      return 1;
   }

5. Now, we must create an endless loop. Inside this loop, we will print the user-provided 
message once every second. After the loop, we will close the file descriptor and 
remove the FIFO file. We shouldn't reach this under normal circumstances, though:

   while(1)
   {
      dprintf(fd, "%s\n", argv[1]);
      sleep(1);
   }
   /* just in case, but we shouldn't reach this */
   close(fd);
   unlink(fifoname);
   return 0;
}

6. Finally, we must create the cleanUp() function, which we registered as the signal 
handler. We use this function to clean up before the program exits. We must then 
close the file descriptor and remove the FIFO file:

void cleanUp(int signum)
{
   if (signum == SIGPIPE)
      printf("The receiver stopped receiving\n");
   else
      printf("Aborting...\n");
   if ( (close(fd)) == -1 )
      perror("Can't close file descriptor");



308     Using Different Kinds of IPC

   if ( (unlink(fifoname)) == -1)
   {
      perror("Can't remove FIFO");
      exit(1);
   }
   exit(0);
}

7. Let's compile the program:

$> make fifo-sender
gcc -Wall -Wextra -pedantic -std=c99    fifo-sender.c   
-o fifo-sender

8. Let's run the program:

$> ./fifo-sender 'Hello everyone, how are you?'

9. Now, start another terminal so that we can receive the message using cat. The 
filename we used in the program is /tmp/my-2nd-fifo. The message will repeat 
each second. After a couple of seconds, hit Ctrl + C to exit from cat:

$> cat < /tmp/my-2nd-fifo 
Hello everyone, how are you?
Hello everyone, how are you?
Hello everyone, how are you?
Ctrl+P 

10. Now, go back to the first terminal. You'll notice that it says The receiver  
stopped receiving.

11. Start the fifo-sender program again in this first terminal.

12. Go to the second terminal again and restart the cat program in order to receive the 
messages. Leave the cat program running:

$> cat < /tmp/my-2nd-fifo

13. While the cat program is running on the second terminal, go back to the first one 
and abort the fifo-sender program by hitting Ctrl + C. Notice that this time, it 
says Aborting instead:

Ctrl+C
^CAborting...

The cat program in the second terminal has now exited.



FIFO – building the receiver     309

How it works…
In this program, we register an extra signal that we haven't seen before: the SIGPIPE 
signal. When the other end terminates—in our case, the cat program—our program will 
receive a SIGPIPE signal. If we hadn't caught that signal, our program would have exited 
with signal 141, and no clean-up would have occurred. From this exit code, we can figure 
out that it was due to a SIGPIPE signal since 141-128 = 13; and signal 13 is SIGPIPE. 
See Figure 2.2 in Chapter 2, Making Your Programs Easy to Script, for an explanation of 
reserved return values.

In the cleanUp() function, we use that signal number (SIGPIPE, which is a macro for 
13) to print a special message when the receiver has stopped receiving data.

If we instead abort the fifo-sender program by hitting Ctrl + C, we get another 
message; that is, Aborted.

The mkfifo() function creates a FIFO file for us with the specified mode. Here,  
we specified the mode as an octal number. Any number in C that has a leading 0 is an 
octal number.

Since we opened the FIFO using the open() system call, we got a file descriptor in 
return. We use that file descriptor with dprintf() to print the user's message to the 
pipe. The first argument to the program—argv[1]—is the user's message.

As long as the FIFO stays open in the program, cat will also continue to listen. That's 
why we can repeat the message every second in the loop.

See also
See man 3 mkfifo for an in-depth explanation of the mkfifo() function. 

For a list of the possible signals, see kill -L.

To learn more about dprintf(), see the man 3 dprintf manual page.

FIFO – building the receiver
In the previous recipe, we wrote a program that creates a FIFO and writes a message to it. 
We also tested it using cat to receive the messages. In this recipe, we'll write a C program 
that reads from the FIFO.

Reading from a FIFO isn't any different than reading from a regular file, or let's say, stdin.



310     Using Different Kinds of IPC

Getting ready
Before you start this recipe, it's best if you complete the previous recipe first. We'll use the 
program from the previous recipe to write data to the FIFO that we'll receive in this recipe.

You'll also need the usual tools; that is, the GCC compiler, the Make tool, and the  
generic Makefile.

How to do it…
In this recipe, we'll write a receiving program for the sender we wrote in the previous 
recipe. Let's get started:

1. Write the following code in a file and save it as fifo-receiver.c. We will open 
the FIFO with a file stream and then read it character by character in a loop until we 
get an End Of File (EOF):

#include <stdio.h>
int main(void)
{
    FILE *fp;
    signed char c;
    const char fifoname[] = "/tmp/my-2nd-fifo";
    if ( (fp = fopen(fifoname, "r")) == NULL )
    {
        perror("Can't open FIFO");
        return 1;
    }
    while ( (c = getc(fp)) != EOF )
        putchar(c);
    fclose(fp);
    return 0;
}

2. Compile the program:

$> make fifo-receiver
gcc -Wall -Wextra -pedantic -std=c99    fifo-receiver.c   
-o fifo-receiver

3. Start fifo-sender from the previous recipe and leave it running:

$> ./fifo-sender 'Hello from the sender'



Message queues – creating the sender     311

4. Open up a second terminal and run fifo-receiver, which we just compiled. 
Abort it after a couple of seconds by hitting Ctrl + C:

$> ./fifo-receiver 
Hello from the sender
Hello from the sender
Hello from the sender
Ctrl+C

fifo-sender will also abort, just like when we used the cat command to receive 
the data.

How it works…
Since the FIFO is a file on the filesystem, we can receive data from it using the usual 
functions in C, such as file streams, getc(), putchar(), and so on.

This program is similar to the stream-read.c program from Chapter 5, Working with 
File I/O and Filesystem Operations, except that we read character by character here instead 
of line by line.

See also
For more information about getc() and putchar(), see the man 3 getc and man 3 
putchar manual pages, respectively.

Message queues – creating the sender
Another popular IPC technique is message queues. It's pretty much what the name 
suggests. A process leaves messages in a queue, and another process reads them.

There are two types of message queues available on Linux: System V and POSIX. In  
this recipe, we'll cover POSIX message queues since these are a bit more modern and 
simpler to handle. POSIX message queues are all about using the mq_ functions, such  
as mq_open(), mq_send(), and so on.

Knowing how to use message queues enables you to choose from among a variety of IPC 
techniques.

Getting ready
For this recipe, we'll only need the GCC compiler and the Make tool.



312     Using Different Kinds of IPC

How to do it…
In this recipe, we'll create the sender program. It's this program that will create a new 
message queue and some messages to it. In the next recipe, we'll receive those messages:

1. Write the following code in a file and save it as msg-sender.c. Since there are 
some new things in the code, I have broken it up into several steps. All the code 
goes into a single file, though, called msg-sender.c.

Let's start with the header files that are required. We also define a macro for the 
maximum message size. Then, we will create a struct of the mq_attr type called 
msgattr. We will then set its members; that is, we'll set mq_maxmsg to 10 and 
mq_msgsize to MAX_MSG_SIZE. The first, mq_maxmsg, specifies the total 
number of messages in the queue. The second one, mq_msgsize, specifies the 
maximum size of a message:

#include <stdio.h>
#include <mqueue.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <string.h>
#define MAX_MSG_SIZE 2048
int main(int argc, char *argv[])
{
   int md; /* msg queue descriptor */
   /* attributes for the message queue */
   struct mq_attr msgattr;
   msgattr.mq_maxmsg = 10;
   msgattr.mq_msgsize = MAX_MSG_SIZE;

2. We'll take the first argument to the program as the message. So, here, we'll do  
a check to see if the user typed in an argument or not:

   if ( argc != 2)
   {
      fprintf(stderr, "Usage: %s 'my message'\n",
         argv[0]);
      return 1;
   }



Message queues – creating the sender     313

3. Now, it's time to open and create the message queue with mq_open(). The first 
argument is the name of the queue; here, it's /my_queue. The second argument is 
the flags, which in our case are O_CREATE and O_RDWR. These are the same flags 
that we have seen previously, for example, with open(). The third argument is 
the permission mode; once again, this is the same as for files. The fourth and last 
argument is the struct we created earlier. The mq_open() function then returns  
a message queue descriptor to the md variable.

Then, finally, we send the message to the queue using mq_send(). Here, first, we 
give it the md descriptor. Then, we have the message we want to send, which in this 
case is the first argument to the program. Then, as the third argument, we must 
specify the size of the message. Finally, we must set a priority for the message; in this 
case, we will just go with 1. It can be any positive number (an unsigned int).

The last thing we will do before exiting the program is close the message queue 
descriptor with mq_close():

   md = mq_open("/my_queue", O_CREAT|O_RDWR, 0644, 
      &msgattr); 
   if ( md == -1 )
   {
      perror("Creating message queue");
      return 1;
   }
   if ( (mq_send(md, argv[1], strlen(argv[1]), 1))
      == -1 )
   {
      perror("Message queue send");
      return 1;
   }
   mq_close(md);
   return 0;
}

4. Compile the program. Notice that we must link against the rt library, which stands 
for Realtime Extensions library:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> msg-sender.c -o msg-sender -lrt



314     Using Different Kinds of IPC

5. Now, run the program and send three or four messages to the queue:

$> ./msg-sender "The first message to the queue"
$> ./msg-sender "The second message"
$> ./msg-sender "And another message"

How it works…
In this recipe, we used the POSIX message queue functions to create a new queue and 
then sent messages to it. When we created the queue, we specified that this queue can 
contain a maximum of 10 messages using the mq_maxmsg member of msgattr.

We also set the maximum length of each message to 2,048 characters using the  
mq_msgsize member.

We named the queue /my_queue when we called mq_open(). A message queue must 
start with a forward slash.

Once the queue was created, we sent messages to it using mq_send().

At the end of this recipe, we sent three messages to the queue. These messages are now 
queued, waiting to be received. In the next recipe, we'll learn how to write a program that 
receives these messages and prints them on the screen.

See also
There's a great overview of the POSIX message queue functionality in Linux in the man 7 
mq_overview manual page.

Message queues – creating the receiver
In the previous recipe, we built a program that created a message queue named /my_queue,  
and then sent three messages to it. In this recipe, we'll create a program that receives the 
messages from that queue.

Getting ready
Before you start this recipe, you need to have completed the previous recipe. Otherwise, 
there will be no messages for us to receive.

You'll also need the GCC compiler and the Make tool for this recipe.



Message queues – creating the receiver     315

How to do it…
In this recipe, we'll receive the messages we sent in the previous recipe:

1. Write the following code in a file and save it as msg-receiver.c. This code is  
a bit longer than the code for the sending program, so it's been broken up into 
several steps, each one explaining a bit of the code. Remember, though, that all 
the code goes into the same file. We'll start with the header files, the variables, 
the struct, and a character pointer named buffer. We'll use this later to allocate 
memory:

#include <stdio.h>
#include <mqueue.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
   int md; /* msg queue descriptor */
   char *buffer;
   struct mq_attr msgattr;

2. The next step is to open the message queue using mq_open(). This time, we only 
need to provide two arguments; the name of the queue and the flags. In this case,  
we only want to read from the queue:

   md = mq_open("/my_queue", O_RDONLY);
   if (md == -1 )
   {
      perror("Open message queue");
      return 1;
   }



316     Using Different Kinds of IPC

3. Now, we also want to get the attributes of the message queue using mq_
getattr(). Once we have the attributes of the queue, we can use its mq_
msgsize member to allocate memory for a message of that size using calloc(). 
We haven't seen calloc() before in this book. The first argument is the number  
of elements we want to allocate memory for, while the second argument is the size 
of each element. The calloc() function then returns a pointer to that memory  
(in our case, that's buffer):

   if ( (mq_getattr(md, &msgattr)) == -1 )
   {
      perror("Get message attribute");
      return 1;
   }
   buffer = calloc(msgattr.mq_msgsize, 
      sizeof(char));
   if (buffer == NULL)
   {
      fprintf(stderr, "Couldn't allocate memory");
      return 1;
   }

4. Next, we will use another member of the mq_attr struct called mq_curmsgs, 
which contains the number of messages currently in the queue. First, we will print 
the number of messages. Then, we will loop over all the messages using a for loop. 
Inside the loop, first, we receive a message using mq_receive. Then, we print the 
message using printf(). Finally, before iterating over the next message, we reset 
the entire memory to NULL characters using memset().

The first argument to mq_receive is the descriptor, the second argument is the 
buffer where the message goes, the third argument is the size of the message, and 
the fourth argument is the priority of the message, which in this case is NULL, 
meaning we receive all messages with the highest priority first:

   printf("%ld messages in queue\n", 
      msgattr.mq_curmsgs);
   for (int i = 0; i<msgattr.mq_curmsgs; i++)
   {
      if ( (mq_receive(md, buffer, 
      msgattr.mq_msgsize, NULL)) == -1 )
      {
         perror("Message receive");
         return 1;



Message queues – creating the receiver     317

      }
      printf("%s\n", buffer);
      memset(buffer, '\0', msgattr.mq_msgsize);
   }

5. Finally, we have some cleanup to do. First of all, we must free() the memory 
being pointed to by the buffer. Then, we must close the md queue descriptor, before 
removing the queue from the system using mq_unlink():

   free(buffer);
   mq_close(md);
   mq_unlink("/my_queue");
   return 0;
}

6. Now, it's time to compile the program:

$> gcc -Wall -Wextra -pedantic -std=c99 \
> msg-reveiver.c -o msg-reveiver -lrt

7. Finally, let's receive the messages using our new program:

$> ./msg-reveiver 
3 messages in queue
The first message to the queue
The second message
And another message

8. If we try to rerun the program now, it will simply state that no such file or directory 
exists. This is because we removed the message queue with mq_unlink():

$> ./msg-reveiver 
Open message queue: No such file or directory

How it works…
In the previous recipe, we sent three messages to /my_queue. With the program we 
created in this recipe, we received those messages.

To open the queue, we used the same function we used when we created it; that is,  
mq_open(). But this time—since we're opening an already existing queue—we only 
needed to provide two arguments; that is, the queue's name and the flags.

Each call to an mq_ function is error checked. If an error occurs, we print the error 
message with perror() and return to the shell with 1.



318     Using Different Kinds of IPC

Before reading the actual messages from the queue, we get the queue's attribute with 
mq_getattr(). With this function call, we populate the mq_attr struct. The two most 
important members for reading the messages are mq_msgsize, which is the maximum 
size of each message in the queue, and mq_curmsgs, which is the number of messages 
currently in the queue.

We use the maximum message size from mq_msgsize to allocate memory for a message 
buffer using calloc(). The calloc() function returns "zeroed" memory, which its 
counterpart, malloc(), doesn't. 

To allocate memory, we need to create a pointer to the type we want. This is what we did  
at the beginning of the program with char *buffer. The calloc() function takes 
two arguments: the number of elements to allocate and the size of each such element. 
Here, we want to number of elements to be the same as what the mq_msgsize 
value contains. And each element is a char, so the size of each element should be 
sizeof(char). The function then returns a pointer to the memory, which in our  
case is saved to the char pointer's buffer.

Then, when we receive the queue messages, we save them in this buffer on each iteration 
of the loop.

The loop iterates through all the messages. We got the number of messages from the  
mq_curmsgs member.

Finally, once we finished reading all the messages, we closed and deleted the queue.

See also
For more information about the mq_attr struct, I suggest that you read the man 3  
mq_open manual page.

Each of the functions we have covered in this and the previous recipe has its own manual 
page; for example, man 3 mq_send, man 3 mq_recevie, man 3 mq_getattr, 
and so on.

If you're unfamiliar with the calloc() and malloc() functions, I suggest that you 
read man 3 calloc. This manual page covers malloc(), calloc(), free(), and 
some other related functions.

The memset() function also has its own manual page; that is, man 3 memset.



Communicating between child and parent with shared memory     319

Communicating between child and parent 
with shared memory
In this recipe, we'll learn how to use shared memory between two related processes—a 
parent and a child. Shared memory exists in various forms and can be used in different 
ways. In this book, we'll focus on the POSIX shared memory functions.

Shared memory in Linux can be used between related processes, as we are about to 
explore in this recipe, but also between unrelated processes using file descriptors to 
shared memory. When we use shared memory in this way, the memory is backed by  
a file in the /dev/shm directory. We'll look at this in the next recipe.

In this recipe, we'll be using anonymous shared memory—memory not backed by a file.

Shared memory is just what it sounds like—a piece of memory that is shared between 
processes.

Knowing how to use shared memory will enable you to write more advanced programs.

Getting ready
For this recipe, you'll only need the GCC compiler and the Make tool.

How to do it…
In this recipe, we'll write a program that uses shared memory. First, before forking, the 
process will write a message to the shared memory. Then, after forking, the child will 
replace the message in the shared memory. And then, finally, the parent process will 
replace the content of the shared memory once again. Let's get started:

1. Write the following code in a file and name it shm-parent-child.c. As usual, 
I'll break up the code into several smaller steps. All the code goes into the same file, 
though. First, we'll write all of the header files. There are quite a few of them here. 
We will also define a macro for the size of our memory. We will then write our three 
messages as character array constants:

#include <stdio.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>



320     Using Different Kinds of IPC

#define DATASIZE 128

int main(void)
{
   char *addr;
   int status;
   pid_t pid;
   const char startmsg[] = "Hello, we are running";
   const char childmsg[] = "Hello from child";
   const char parentmsg[] = "New msg from parent";

2. Now comes the exciting part—mapping the shared memory space. There's a total of 
six arguments we need to provide to the memory mapping function; that is, mmap().

The first argument is the memory address, which we'll set to NULL—meaning the 
kernel will take care of it for us.

The second argument is the size of the memory area.

The third argument is the protection the memory should have. Here, we will set it to 
write and read.

The fourth argument is our flags, which we set to shared and anonymous—meaning 
it can be shared among processes and won't be backed by a file.

The fifth argument is a file descriptor. But in our case, we're using anonymous, 
which means that this memory won't be backed by a file. Due to this, we will set it 
to -1 for compatibility reasons.

The last argument is the offset, which we will set to 0:
   addr = mmap(NULL, DATASIZE, 
      PROT_WRITE | PROT_READ, 
      MAP_SHARED | MAP_ANONYMOUS, -1, 0);
   if (addr == MAP_FAILED)
   {
      perror("Memory mapping failed");
      return 1;
   }



Communicating between child and parent with shared memory     321

3. Now that the memory is ready for us, we will copy our first message to it using 
memcpy(). The first argument to memcpy() is a pointer to the memory, which 
in our case is the addr character pointer. The second argument is the data or 
message we want to copy from, which in our case is startmsg. The last argument 
is the size of the data we want to copy, which in this case is the length of the string 
in startmsg + 1. The strlen() function doesn't include the terminating null 
character; that's why we need to add 1.

Then, we print the PID of the process and the message in the shared memory. After 
that, we fork:

   memcpy(addr, startmsg, strlen(startmsg) + 1);
   printf("Parent PID is %d\n", getpid());
   printf("Original message: %s\n", addr);
   if ( (pid = fork()) == -1 )
   {
      perror("Can't fork");
      return 1;
   }

4. If we are in the child process, we copy the child's message to the shared memory. If 
we are in the parent process, we'll wait for the child. Then, we can copy the parent 
message to the memory and also print both messages. Finally, we will clean up by 
unmapping the shared memory. This isn't strictly required, though:

   if (pid == 0)
   {
      /* child */
      memcpy(addr, childmsg, strlen(childmsg) + 1);
   }
   else if(pid > 0)
   {
      /* parent */
      waitpid(pid, &status, 0);
      printf("Child executed with PID %d\n", pid);
      printf("Message from child: %s\n", addr);
      memcpy(addr, parentmsg, 
         strlen(parentmsg) + 1);
      printf("Parent message: %s\n", addr);
   }
   munmap(addr, DATASIZE);
   return 0;
}



322     Using Different Kinds of IPC

5. Compile the program so that we can take it for a spin. Notice that we are using 
another C standard here—GNU11. We're doing this because the C99 standard 
doesn't include the MAP_ANONYMOUS macro, but GNU11 does. GNU11 is the  
C11 standard with some extra GNU extensions. Also, note that we link against the 
Real-Time Extensions library:

$> gcc -Wall -Wextra -std=gnu11 \
> shm-parent-child.c -o shm-parent-child -lrt

6. Now, we can test the program:

$> ./shm-parent-child 
Parent PID is 9683
Original message: Hello, we are running
Child executed with PID 9684
Message from child: Hello from child
Parent message: New msg from parent

How it works…
Shared memory is a common IPC technique between unrelated processes, related 
processes, and threads. In this recipe, we saw how we could use shared memory between  
a parent and a child.

The memory area is mapped using mmap(). This function returns the address to the 
mapped memory. If an error occurs, it returns the MAP_FAILED macro. Once we mapped 
the memory, we checked the pointer variable for MAP_FAILED and aborted it in case 
there was an error.

Once we've mapped the memory and got a pointer to it, we used memcpy() to copy data 
to it.

Finally, we unmapped the memory with munmap(). This isn't strictly necessary since it 
will be unmapped anyway when the last process exists. However, it's a bad practice not to 
do so. You should always clean up after yourself and free up any allocated memory.

See also
For a more detailed explanation of mmap() and munmap(), see the man 2 mmap 
manual page. For a detailed explanation of memcpy(), see the man 3 memcpy  
manual page.

For a more in-depth explanation of the various C standards and what the GNU extensions 
are, see https://gcc.gnu.org/onlinedocs/gcc/Standards.html.

https://gcc.gnu.org/onlinedocs/gcc/Standards.html


Using shared memory between unrelated processes     323

Using shared memory between unrelated 
processes
In the previous recipe, we used shared memory between a child and a parent. In this 
recipe, we'll learn how to use a file descriptor to mapped memory to share that memory 
between two unrelated processes. Using shared memory in this way automatically creates 
an underlying file for the memory in the /dev/shm directory, where shm stands for 
shared memory.

Knowing how to use shared memory between unrelated processes widens your use of this 
IPC technique.

Getting ready
For this recipe, you'll only need the GCC compiler and the Make tool.

How to do it…
First, we'll write a program that opens and creates a file descriptor for shared memory  
and also maps the memory. Then, we'll write another program that reads the memory 
area. Instead of just a message, as we did in the previous recipe, we'll write and retrieve  
an array of three floating-point numbers here.

Creating the writer
Let's create the writer first:

1. The first step is to create a program that will create a shared memory and write  
some data to it. Write the following code in a file and save it as write-memory.c. 
As usual, the code will be broken up into several steps, but all the code goes into  
a single file.

Just as in the previous recipe, we'll have a bunch of header files. Then, we'll create all 
the variables we'll need. Here, we'll need a variable for a file descriptor. Note that even 
if I call it a file descriptor here, it's a descriptor to a memory area. memid contains 
the name of the memory-mapped descriptor. Then, we must use shm_open() to 
open and create the "file descriptor":

#include <stdio.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>



324     Using Different Kinds of IPC

#include <unistd.h>
#include <string.h>
#define DATASIZE 128

int main(void)
{
   int fd;
   float *addr;
   const char memid[] = "/my_memory";
   const float numbers[3] = { 3.14, 2.718, 1.202};
   /* create shared memory file descriptor */
   if ( (fd = shm_open(memid, 
      O_RDWR | O_CREAT, 0600)) == -1)
   {
      perror("Can't open memory fd");
      return 1;
   }

2. The file-backed memory is 0 bytes in size initially. To extend it to our 128 bytes,  
we must truncate it with ftruncate():

   /* truncate memory to DATASIZE */
   if ( (ftruncate(fd, DATASIZE)) == -1 )
   {
      perror("Can't truncate memory");
      return 1;
   }

3. Now, we must map the memory, just as we did in the previous recipe. But this  
time, we will give it the fd file descriptor instead of -1. We have also left out the 
MAP_ANONYMOUS part, thus making this memory backed by a file. Then, we must 
copy our array of floats to memory using memcpy(). To let the reading program 
have a chance to read the memory, we must pause the program and wait for an 
Enter key with getchar(). Then, it's just a matter of cleaning up by unmapping 
the memory and deleting the file descriptor and the underlying file with  
shm_unlink():

   /* map memory using our file descriptor */
   addr = mmap(NULL, DATASIZE, PROT_WRITE, 
      MAP_SHARED, fd, 0);
   if (addr == MAP_FAILED)
   {



Using shared memory between unrelated processes     325

      perror("Memory mapping failed");
      return 1;
   }

   /* copy data to memory */
   memcpy(addr, numbers, sizeof(numbers));

   /* wait for enter */
   printf("Hit enter when finished ");
   getchar();
   /* clean up */
   munmap(addr, DATASIZE);
   shm_unlink(memid);
   return 0;
}

4. Now, let's compile the program:

$> gcc -Wall -Wextra -std=gnu11 write-memory.c \
> -o write-memory -lrt

Creating the reader
Now, let's create the reader:

1. Now, we'll write the program that will read the memory area and print the numbers 
for the array. Write the following program and save it as read-memory.c. This 
program is similar to write-memory.c, but instead of writing to memory, we are 
reading from it:

#include <stdio.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#define DATASIZE 128

int main(void)
{
   int fd;
   float *addr;



326     Using Different Kinds of IPC

   const char memid[] = "/my_memory";
   float numbers[3];

   /* open memory file descriptor */
   fd = shm_open(memid, O_RDONLY, 0600);
   if (fd == -1)
   {
      perror("Can't open file descriptor");
      return 1;
   }

   /* map shared memory */
   addr = mmap(NULL, DATASIZE, PROT_READ, 
      MAP_SHARED, fd, 0);
   if (addr == MAP_FAILED)
   {
      perror("Memory mapping failed");
      return 1;
   }

   /* read the memory and print the numbers */
   memcpy(numbers, addr, sizeof(numbers));
   for (int i = 0; i<3; i++)
   {
      printf("Number %d: %.3f\n", i, numbers[i]);
   }
   return 0;
}

2. Now, compile this program:

$> gcc -Wall -Wextra -std=gnu11 read-memory.c \
> -o read-memory -lrt

Testing everything
Follow these steps:

1. Now, it's time to try it all out. Open up a terminal and run the write-memory 
program that we compiled. Leave the program running:

$> ./write-memory 
Hit enter when finished



Using shared memory between unrelated processes     327

2. Open up another terminal and check out the file in /dev/shm:

$> ls -l /dev/shm/my_memory 
-rw------- 1 jake jake 128 jan 18 19:19 /dev/shm/my_
memory

3. Now, run the read-memory program we just compiled. This will retrieve the three 
numbers from the shared memory and print them on the screen:

$> ./read-memory 
Number 0: 3.140
Number 1: 2.718
Number 2: 1.202

4. Go back to the terminal where the write-memory program is running and hit 
Enter. Doing so will clean up and delete the file. Once you have done this, let's see  
if the file is still in /dev/shm:

./write-memory 
Hit enter when finished Enter

$> ls -l /dev/shm/my_memory
ls: cannot access '/dev/shm/my_memory': No such file or 
directory

How it works…
Using non-anonymous shared memory is similar to what we did in the previous recipe. 
The only exception is that we first open a special file descriptor using shm_open(). As 
you might have noticed, the flags are similar to those of the regular open() call; that 
is, O_RDWR for reading and writing and O_CREATE for creating the file if it doesn't exist. 
Using shm_open() in this fashion creates a file in the /dev/shm directory with the 
name specified as the first argument. Even the permission mode is set the same way as 
regular files—in our case, 0600 for reading and writing for the user, and no permissions 
for anyone else.

The file descriptor we get from shm_open() is then passed to the mmap() call. We 
also left out the MAP_ANONYMOUS macro to the mmap() call, as we saw in the previous 
recipe. Skipping MAP_ANONYMOUS means that the memory will no longer be anonymous, 
meaning it will be backed by a file. We inspected this file using ls -l and saw that it did 
indeed have the name we gave it and the correct permissions.



328     Using Different Kinds of IPC

The next program we wrote opened the same shared memory file descriptor using  
shm_open(). After mmap(), we looped over the floating-point numbers in the  
memory area.

Finally, once we hit Enter in the write-memory program, the file in /dev/shm was 
removed using shm_unlink().

See also
There's a lot more information about shm_open() and shm_unlink() in the man 3 
shm_open manual page.

Unix socket – creating the server
Unix sockets are similar to TCP/IP sockets, but they are only local and are represented  
by a socket file on the filesystem. But the overall functions that are used with Unix sockets 
are more or less the same as for TCP/IP sockets. The complete name for Unix sockets is 
Unix domain sockets.

Unix sockets are a common way for programs to communicate locally on a machine.

Knowing how to use Unix sockets will make it easier to write programs that need to 
communicate between them.

Getting ready
In this recipe, you'll only need the GCC compiler, the Make tool, and the generic Makefile.

How to do it…
In this recipe, we'll write a program that will act as a server. It will receive messages from 
a client and respond with "Message received" every time a message is received. It will also 
clean up after itself when either the server or the client exits. Let's get started:

1. Write the following code in a file and save it as unix-server.c. This code is a bit 
longer than most of our previous examples, so it's been broken up into several steps. 
All the code goes in the same file, though.



Unix socket – creating the server     329

There are quite a few header files here. We'll also define a macro for the maximum 
message length that we will accept. We will then write the prototype for the 
cleanUp() function, which will be used to clean up the file. This function will also 
be used as a signal handler. Then, we'll declare some global variables (so that they 
can be reached from cleanUp()):

#define _XOPEN_SOURCE 700
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <errno.h>
#define MAXLEN 128

void cleanUp(int signum);
const char sockname[] = "/tmp/my_1st_socket";
int connfd;
int datafd;

2. Now, it's time to start writing the main() function and declaring some variables. 
Most of this should be familiar to you by now. We will also register the signal 
handler here for all the signals. What's new is the sockaddr_un struct. This will 
contain the socket type and file path:

int main(void)
{
   int ret;
   struct sockaddr_un addr;
   char buffer[MAXLEN];
   struct sigaction action;
   /* prepare for sigaction */
   action.sa_handler = cleanUp;
   sigfillset(&action.sa_mask);
   action.sa_flags = SA_RESTART;
   /* register the signals we want to handle */
   sigaction(SIGTERM, &action, NULL);
   sigaction(SIGINT, &action, NULL);
   sigaction(SIGQUIT, &action, NULL);



330     Using Different Kinds of IPC

   sigaction(SIGABRT, &action, NULL);
   sigaction(SIGPIPE, &action, NULL);

3. Now that we have all the signal handlers, variables, and structures in place, we can 
create a socket file descriptor using the socket() function. Once that has been 
taken care of, we will set the type of connection (of the family type) and the path to 
the socket file. Then, we will call bind(), which will bind the socket for us so that 
we can use it:

   /* create socket file descriptor */
   connfd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
   if ( connfd == -1 )
   {
      perror("Create socket failed");
      return 1;
   }
   /* set address family and socket path */
   addr.sun_family = AF_UNIX;
   strcpy(addr.sun_path, sockname);
   /* bind the socket (we must cast our sockaddr_un
    * to sockaddr) */
   if ( (bind(connfd, (const struct sockaddr*)&addr, 
      sizeof(struct sockaddr_un))) == -1 )
   {
      perror("Binding socket failed");
      return 1;
   }

4. Now, we will prepare the socket file descriptor for connections by calling listen(). 
The first argument is the socket file descriptor, while the second argument is 
the buffer size we want for the backlog. Once we've done that, we will accept a 
connection using accept(). This will give us a new socket file descriptor (which 
we will call datafd), which we will use when we send and receive data. Once a 
connection has been accepted, we can print Client connected to the local terminal:

   /* prepare for accepting connections */
   if ( (listen(connfd, 20)) == -1 )
   {
      perror("Listen error");
      return 1;
   }
   /* accept connection and create new file desc */



Unix socket – creating the server     331

   datafd = accept(connfd, NULL, NULL);
   if (datafd == -1 )
   {
      perror("Accept error");
      return 1;
   }
   printf("Client connected\n");

5. Now, we will start the main loop of the program. In the outer loop, we'll just write 
a confirmation message when we received a message. In the inner loop, we'll read 
data from the new socket file descriptor, save it in buffer, and then print it on our 
terminal. If read() returns -1, then something has gone wrong, and we must break 
out of the inner loop to read the next line. If read() returns 0, then the client has 
disconnected, and we must run cleanUp() and quit:

   while(1) /* main loop */
   {
      while(1) /* receive message, line by line */
      {
         ret = read(datafd, buffer, MAXLEN);
         if ( ret == -1 )
         {
            perror("Error reading line");
            cleanUp(1);
         }
         else if ( ret == 0 )
         {
            printf("Client disconnected\n");
            cleanUp(1);
         }
         else
         {
            printf("Message: %s\n", buffer);
            break;
         }
      }
   /* write a confirmation message */
   write(datafd, "Message received\n", 18);
   }
   return 0;
}



332     Using Different Kinds of IPC

6. Finally, we must create the body for the cleanUp() function:

void cleanUp(int signum)
{
   printf("Quitting and cleaning up\n");
   close(connfd);
   close(datafd);
   unlink(sockname);
   exit(0);
}

7. Now, compile the program. This time, we'll get a warning from GCC about an 
unused variable, signum, in the cleanUp() function. This is because we never 
used the signum variable inside cleanUp(), so we can safely ignore this warning:

$> make unix-server
gcc -Wall -Wextra -pedantic -std=c99    unix-server.c   
-o unix-server
unix-server.c: In function 'cleanUp':
unix-server.c:94:18: warning: unused parameter 'signum' 
[-Wunused-parameter]
 void cleanUp(int signum)
              ~~~~^~~~~~

8. Run the program. Since we don't have a client, it won't say or do anything just yet.
However it does create the socket file. Leave the program as-is:

$> ./unix-server

9. Open a new terminal and check out the socket file. Here, we can see that it's a
socket file:

$> ls -l /tmp/my_1st_socket
srwxr-xr-x 1 jake jake 0 jan 19 18:35 /tmp/my_1st_socket
$> file /tmp/my_1st_socket
/tmp/my_1st_socket: socket

10. For now, go back to the terminal with the server program running and abort it with
Ctrl + C. Then, see if the file is still there (it shouldn't be):

./unix-server
Ctrl+C
Quitting and cleaning up
$> file /tmp/my_1st_socket

Unix socket – creating the client 333

/tmp/my_1st_socket: cannot open `/tmp/my_1st_socket' (No
such file or directory)

How it works…
The sockaddr_un struct is a special structure for Unix domain sockets. There's another
one called sockaddr_in for TCP/IP sockets. The _un ending stands for Unix sockets,
while _in stands for internet family sockets.

The socket() function that we used to create a socket file descriptor takes three
arguments: the address family (AF_UNIX), the type (SOCK_SEQPACKET, which provides
a two-way communication), and the protocol. We specified the protocol as 0 since there
aren't any to choose from with a socket.

There's also a general structure called sockaddr. When we pass our sockaddr_un
structure as an argument for bind(), we need to typecast it to a sockaddr, the general
type, since that's what the function expects—more precisely, a sockaddr pointer. The last
argument that we supply for bind() is the size of the structure; that is, sockaddr_un.

Once we created the socket and bounded it with bind(), we prepared it for incoming
connections with listen().

Finally, we accepted incoming connections with accept(). This gave us a new socket file
descriptor, which we then used to send and receive messages.

See also
There's some deeper information in the manual pages for the functions we used in this
recipe. I suggest that you check them all out:

• man 2 socket

• man 2 bind

• man 2 listen

• man 2 accept

Unix socket – creating the client
In the previous recipe, we created a Unix domain socket server. In this recipe, we'll create
a client for that socket and then communicate between the client and the server.

In this recipe, we'll see how we can use the socket to communicate between a server and
a client. Knowing how to communicate over a socket is essential to using sockets.

334 Using Different Kinds of IPC

Getting ready
Before doing this recipe, you should have finished the previous recipe; otherwise, you
won't have a server to talk to.

You'll also need the GCC compiler, the Make tool, and the generic Makefile for this recipe.

How to do it…
In this recipe, we'll write a client for the server that we wrote in the previous recipe. Once
they are connected, the client can send messages to the server, and the server will respond
with Message received. Let's get started:

1. Write the following code in a file and save it as unix-client.c. Since this code
is also a bit longer, it's been split up into several steps. All the code goes in the
unix-client.c file, though. The first half of this program is similar to that
of the server, except we have two buffers instead of one and no signal handling:

#define _XOPEN_SOURCE 700
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <errno.h>
#define MAXLEN 128

int main(void)
{
 const char sockname[] = "/tmp/my_1st_socket";
 int fd;
 struct sockaddr_un addr;
 char sendbuffer[MAXLEN];
 char recvbuffer[MAXLEN];

 /* create socket file descriptor */
 fd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
 if (fd == -1)
 {
 perror("Create socket failed");

Unix socket – creating the client 335

 return 1;
 }
 /* set address family and socket path */
 addr.sun_family = AF_UNIX;
 strcpy(addr.sun_path, sockname);

2. Now, instead of using bind(), listen(), and accept(), we will use
connect() to initiate a connection to the server. The connect() function takes
the same arguments as bind():

 /* connect to the server */
 if ((connect(fd, (const struct sockaddr*) &addr,
 sizeof(struct sockaddr_un))) == -1)
 {
 perror("Can't connect");
 fprintf(stderr, "The server is down?\n");
 return 1;
 }

3. Now that we have connected to the server, we can use write() to send messages
over the socket file descriptor. Here, we will use fgets() to read the messages
from the user to a buffer, convert a newline character into a null character, and
then write the buffer to a file descriptor:

 while(1) /* main loop */
 {
 /* send message to server */
 printf("Message to send: ");
 fgets(sendbuffer, sizeof(sendbuffer), stdin);
 sendbuffer[strcspn(sendbuffer, "\n")] = '\0';
 if ((write(fd, sendbuffer,
 strlen(sendbuffer) + 1)) == -1)
 {
 perror("Couldn't write");
 break;
 }

 /* read response from server */
 if ((read(fd, recvbuffer, MAXLEN)) == -1)
 {
 perror("Can't read");
 return 1;
 }

336 Using Different Kinds of IPC

 printf("Server said: %s\n", recvbuffer);
 }
 return 0;
}

4. Compile the program:

$> make unix-client
gcc -Wall -Wextra -pedantic -std=c99 unix-client.c
-o unix-client

5. Let's try to run the program now. It won't work since the server hasn't started yet:

$> ./unix-client
Can't connect: No such file or directory
The server is down?

6. Start the server in a separate terminal and leave it running:

$> ./unix-server

7. Go back to the terminal with the client and rerun it:

$> ./unix-client
Message to send:

You should now see a message in the server saying Client connected.

8. Write some messages in the client program. You should see them appear in the
server at the same time you hit Enter. After a couple of messages, hit Ctrl + C:

$> ./unix-client
Message to send: Hello, how are you?
Server said: Message received

Message to send: Testing 123
Server said: Message received

Message to send: Ctrl+C

Unix socket – creating the client 337

9. Switch over to the terminal with the server. You should see something similar
to this:

Client connected
Message: Hello, how are you?
Message: Testing 123
Client disconnected
Quitting and cleaning up

How it works…
In the previous recipe, we wrote a socket server. In this recipe, we wrote a client that
connects to that server using the connect() system call. This system call takes the same
argument as bind(). Once the connection has been established, both the server and the
client can write and read from the socket file descriptor (two-way communication) using
write() and read().

So, in essence, once the connection has been established, it's not that different than
reading and writing to a file using a file descriptor.

See also
For more information about the connect() system call, see the man 2 connect
manual page.

11
Using Threads in

Your Programs
In this chapter, we will learn what threads are and how to use them in Linux. We will write
several programs using POSIX threads, otherwise known as pthreads. We will also learn
what race conditions are and how to prevent them by using mutexes. Then, we'll learn how
to make a mutex program more efficient. Lastly, we'll learn what condition variables are.

Knowing how to write threaded programs will make them faster and more efficient.

In this chapter, we will cover the following recipes:

• Writing your first threaded program

• Reading return values from threads

• Causing a race condition

• Avoiding race conditions with mutexes

• Making the mutex program more efficient

• Using condition variables

Let's get started!

340 Using Threads in Your Programs

Technical requirements
For this chapter, you'll need the GCC compiler, the Make tool, and the generic Makefile.
If you haven't installed these tools yet, please refer to Chapter 1, Getting the Necessary
Tools and Writing Our First Linux Programs, for installation instructions.

You'll also need a program called htop to view the CPU load. You install it with your
distribution's package manager. The program is called htop on all distributions.

All of the code samples for this chapter can be downloaded from GitHub at the
following URL: https://github.com/PacktPublishing/Linux-System-
Programming-Techniques/tree/master/ch11.

Check out the following link to see the Code in Action video:
https://bit.ly/3gkAP9O

Writing your first threaded program
In this first recipe, we'll write a small program that checks whether two numbers are prime
numbers—in parallel. While those two numbers are checked, each in their own thread,
another thread will write dots in the terminal to indicate that the program is still running.
A total of three threads will run in this program. Each thread will print its own result, so
there's no need to save and return the values in this program.

Knowing the basics of threading will give the foundation to move along to more advanced
programs.

Getting ready
For this recipe, you'll need the htop program so you can see the CPU load go up for
two CPU cores. Of course, other similar programs work as well, such as KSysGuard for
K Desktop Environment (KDE). It's also best if your computer has more than one CPU
core. Most computers today have more than one core, even Raspberry Pis and similar
small computers, so this shouldn't be a problem. The program still works, even if you only
have a single-core CPU, but it's harder to visualize the threads.

You also require the GCC compiler and the Make tool.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch11
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch11
https://bit.ly/3gkAP9O

Writing your first threaded program 341

How to do it…
In this chapter, we are going to use pthreads a lot (short for POSIX threads). To use
pthreads, we need to link to the pthread library. Therefore, we'll start by writing a new
Makefile for this entire chapter. Create a new directory for this chapter and write the
following code in a file (inside that directory). Save it as Makefile. Notice the added
-lpthread, something we didn't have in the generic Makefile:

CC=gcc
CFLAGS=-Wall -Wextra -pedantic -std=c99
LDFLAGS=-lpthread
%: %.c
 $(CC) $< $(CFLAGS) -o $@ $(LDFLAGS)

Now, let's move on and write the program. The code is a bit long, so it's broken up into
several steps. All the code goes into a single file, though. Save the code as first-
threaded.c:

1. Let's start with the header files, some function prototypes, the main() function,
and some necessary variables. Notice the new header file, pthread.h. We have
a new type here also, called pthread_t. This type is used for thread IDs. There's
also a pthread_attr_t type, which is used for the attributes of the threads. We
also perform a check to see whether the user entered two arguments (the numbers
that will be checked to establish whether they are prime numbers). Then, we'll
convert the first and second arguments to long long integers with atoll():

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>

void *isprime(void *arg);
void *progress(void *arg);

int main(int argc, char *argv[])
{
 long long number1;
 long long number2;
 pthread_t tid_prime1;
 pthread_t tid_prime2;
 pthread_t tid_progress;
 pthread_attr_t threadattr;
 if (argc != 3)

342 Using Threads in Your Programs

 {
 fprintf(stderr, "Please supply two numbers.\n"
 "Example: %s 9 7\n", argv[0]);
 return 1;
 }
 number1 = atoll(argv[1]);
 number2 = atoll(argv[2]);

2. Next, we'll initialize the threads attribute structure, threadattr, with some
default settings using pthread_attr_init().

Then, we will create the three threads using pthread_create(). The
pthread_create() function takes four arguments. The first argument is
the thread ID variable; the second argument is the attributes for the thread;
the third argument is the function that will execute in the thread; the fourth
argument is the argument for that function. We will also mark the thread for
the "progress bar" as detached using pthread_detach(). This makes the
thread's resources release automatically when it terminates:

 pthread_attr_init(&threadattr);
 pthread_create(&tid_progress, &threadattr,
 progress, NULL);
 pthread_detach(tid_progress);
 pthread_create(&tid_prime1, &threadattr,
 isprime, &number1);
 pthread_create(&tid_prime2, &threadattr,
 isprime, &number2);

3. To make the program wait for all the threads to finish, we must use pthread_
join() for each thread. Notice that we don't wait for the progress thread, but we
did mark it as detached. Here, we will cancel the progress thread before we exit the
program using pthread_cancel():

 pthread_join(tid_prime1, NULL);
 pthread_join(tid_prime2, NULL);
 pthread_attr_destroy(&threadattr);
 if (pthread_cancel(tid_progress) != 0)
 fprintf(stderr,
 "Couldn't cancel progress thread\n");
 printf("Done!\n");
 return 0;
}

Writing your first threaded program 343

4. Now it's time to write the body for the function that will calculate whether the given
number is a prime number. Notice that the return type of the function is a void
pointer. The argument is also a void pointer. This is the requirement in order for
pthread_create() to work. Since the argument is a void pointer, and we want
it as a long long int, we must first convert it. We do this by casting the void
pointer to a long long int and save what it's pointing to in a new variable
(refer to the See also section for a more verbose option). Notice that we return NULL
in this function. This is because we have to return something, so NULL will do just
fine here:

void *isprime(void *arg)
{
 long long int number = *((long long*)arg);
 long long int j;
 int prime = 1;

 /* Test if the number is divisible, starting
 * from 2 */
 for(j=2; j<number; j++)
 {
 /* Use the modulo operator to test if the
 * number is evenly divisible, i.e., a
 * prime number */
 if(number%j == 0)
 {
 prime = 0;
 }
 }
 if(prime == 1)
 {
 printf("\n%lld is a prime number\n",
 number);
 return NULL;
 }
 else
 {
 printf("\n%lld is not a prime number\n",
 number);
 return NULL;
 }
}

344 Using Threads in Your Programs

5. Finally, we write the function for the progress meter. It isn't really a progress meter;
it just prints a dot every second to show the user that the program is still running.
We must use fflush() after the call to printf() since we aren't printing any
newline characters (remember that stdout is line-buffered):

void *progress(void *arg)
{
 while(1)
 {
 sleep(1);
 printf(".");
 fflush(stdout);
 }
 return NULL;
}

6. Now it's time to compile the program using our new Makefile. Note that we
receive a warning regarding an unused variable here. This is the arg variable for
the progress function. We can safely ignore this warning since we know we aren't
using it:

$> make first-threaded
gcc first-threaded.c -Wall -Wextra -pedantic -std=c99 -o
first-threaded -lpthread
first-threaded.c: In function 'progress':
first-threaded.c:75:22: warning: unused parameter 'arg'
[-Wunused-parameter]
 void *progress(void *arg)

7. Now, before we run the program, start a new terminal and start htop in it. Place it
somewhere where you can see it.

8. Now we run the program in the first terminal. Choose two numbers that aren't
so small that the program will finish immediately but not so large that it will run
forever. For me, the following numbers are sufficiently large to make the program
run for about a minute and a half. This will vary depending on the CPU. While you
run the program, check the htop program. You'll notice that two cores will use
100% until the first number is computed, and then it will only use one core at 100%:

$> ./first-threaded 990233331 9902343047
..........
990233331 is not a prime number
...
......................

Writing your first threaded program 345

9902343047 is a prime number
Done!

How it works…
The two numbers are checked individually, each in their own thread. This speeds up the
process when compared to a non-threaded program. A non-threaded program would
check each number after the other. That is, the second number would have to wait until
the first number was completed. But with a threaded program, like the one we made here,
check both numbers simultaneously.

The isprime() function is where the calculations are performed. The same function is
used for both threads. We also use the same default attributes for both threads.

We execute the functions in threads by calling pthread_create() for each number.
Notice that we don't put any parentheses after the isprime() function in the
pthread_create() argument. Putting parentheses after the function name executes
the function. However, we want the pthread_create() function to execute the
function instead.

Since we won't be joining with the progress thread—it will simply run until
pthread_cancel() is called—we mark it as detached so that its resources will be
released when the thread terminates. We mark it as detached with pthread_detach().

By default, a thread has its cancelability state enabled, meaning that the thread can
be canceled. However, by default, its cancelability type is deferred, meaning that the
cancellation will be delayed until the thread calls the next function that is a cancellation
point. sleep() is one such function; therefore, the progress thread will cancel once it
executes sleep(). The cancelability type can be changed to asynchronous, meaning it
can cancel at any time.

At the end of the main() function, we called pthread_join() on both of the thread
IDs (that are executing isprime()). This is necessary to make the process wait until
the threads are finished; otherwise, it would end right away. The first argument for
pthread_join() is the thread ID. The second argument is a variable wherein the
thread's return value can be saved. But since we aren't interested in the return value
here—it just returns NULL—we set it to NULL, which ignores it.

There's more…
To change the cancelability state of a thread, you use pthread_setcancelstate().
See man 3 pthread_setcancelstate for more information.

346 Using Threads in Your Programs

To change the cancelability type of a thread, you use pthread_setcanceltype().
See man 3 pthread_setcanceltype for more information.

To see a list of which functions are cancellation points, see man 7 pthreads and
search for cancelation points in that manual page.

The conversion from a void pointer to a long long int can seem a bit cryptic. Instead
of doing it all in one line, as we did here:

long long int number = *((long long*)arg);

We could have written it in two steps, which is a bit more verbose, like so:

long long int *number_ptr = (long long*)arg;
long long int number = *number_ptr;

See also
There's a lot of useful information in the manual pages for pthread_create() and
pthread_join(). You can read them with man 3 pthread_create and man 3
pthread_join.

For more information regarding pthread_detach(), see man 3 pthread_detach.

For information regarding pthread_cancel(), see man 3 pthread_cancel.

Reading return values from threads
In this recipe, we'll continue from the previous recipe. Here, we'll fetch the answers as
return values from the threads instead of letting them print the result themselves. This is
like the return values from functions.

Knowing how to fetch the return values from threads enables you to do much more
complicated things with threads.

Getting ready
In order for this recipe to make sense, it's advised that you complete the previous recipe
first.

You'll also need the Makefile that we wrote in the previous recipe.

Reading return values from threads 347

How to do it…
This program is similar to that of the previous recipe, but instead of each thread printing
its own result, they return it to main(). This is similar to how functions return a value
to main(), only here we need to do some casting back and forth. The downside of
this approach is that we won't see the result until both threads are finished unless we
intentionally give the first thread the smallest number. If the first thread has the largest
number, we won't get the result of the second thread until the second thread is finished,
even if it has been completed. However, even if we don't see the results printed right away,
they are still being processed in two separate threads, just as before:

1. The code is long, so it's split up into several steps. Write the code in a single file
called second-threaded.c. As usual, we start with the headers file, the function
prototypes, and the beginning of the main() function. Notice that we have an
extra header file here, called stdint.h. This is for the uintptr_t type, which
we'll cast the returned value to. This is safer than casting to an int, since this is
guaranteed to be of the same size as the pointer we're casting from. We also create
two void pointers (prime1Return and prime2Return) that we'll save the return
values in. Apart from these changes, the rest of the code is the same:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <stdint.h>

void *isprime(void *arg);
void *progress(void *arg);

int main(int argc, char *argv[])
{
 long long number1;
 long long number2;
 pthread_t tid_prime1;
 pthread_t tid_prime2;
 pthread_t tid_progress;
 pthread_attr_t threadattr;
 void *prime1Return;
 void *prime2Return;
 if (argc != 3)
 {
 fprintf(stderr, "Please supply two numbers.\n"

348 Using Threads in Your Programs

 "Example: %s 9 7\n", argv[0]);
 return 1;
 }
 number1 = atoll(argv[1]);
 number2 = atoll(argv[2]);
 pthread_attr_init(&threadattr);
 pthread_create(&tid_progress, &threadattr,
 progress, NULL);
 pthread_detach(tid_progress);
 pthread_create(&tid_prime1, &threadattr,
 isprime, &number1);
 pthread_create(&tid_prime2, &threadattr,
 isprime, &number2);

2. In the next part, we add the void pointers we created earlier as the second argument
to pthread_join(), or actually the address of those variables. This will save the
thread's return value in these variables. Then, we check those return values to see
whether the numbers were a prime number. But since the variable is a void pointer,
we must first cast it to a unitptr_t type:

 pthread_join(tid_prime1, &prime1Return);
 if ((uintptr_t)prime1Return == 1)
 printf("\n%lld is a prime number\n",
 number1);
 else
 printf("\n%lld is not a prime number\n",
 number1);

 pthread_join(tid_prime2, &prime2Return);
 if ((uintptr_t)prime2Return == 1)
 printf("\n%lld is a prime number\n",
 number2);
 else
 printf("\n%lld is not a prime number\n",
 number2);

 pthread_attr_destroy(&threadattr);
 if (pthread_cancel(tid_progress) != 0)
 fprintf(stderr,
 "Couldn't cancel progress thread\n");

Reading return values from threads 349

 return 0;
}

3. Then we have the functions as before. But this time, we return 0 or 1 cast to a void
pointer (since that is what the function is declared to do, we cannot violate that):

void *isprime(void *arg)
{
 long long int number = *((long long*)arg);
 long long int j;
 int prime = 1;

 /* Test if the number is divisible, starting
 * from 2 */
 for(j=2; j<number; j++)
 {
 /* Use the modulo operator to test if the
 * number is evenly divisible, i.e., a
 * prime number */
 if(number%j == 0)
 prime = 0;
 }
 if(prime == 1)
 return (void*)1;
 else
 return (void*)0;
}

void *progress(void *arg)
{
 while(1)
 {
 sleep(1);
 printf(".");
 fflush(stdout);
 }
 return NULL;
}

350 Using Threads in Your Programs

4. Now, let's compile the program. We still get the same warning regarding an unused
variable, but this is safe to ignore. We know we aren't using it for anything:

$> make second-threaded
gcc second-threaded.c -Wall -Wextra -pedantic -std=c99 -o
second-threaded -lpthread
second-threaded.c: In function 'progress':
second-threaded.c:83:22: warning: unused parameter 'arg'
[-Wunused-parameter]
 void *progress(void *arg)
                ~~~~~~^~~

5. Let's now try the program, first with the bigger number as the first argument, and 
then with the smaller number as the first argument:

$> ./second-threaded 9902343047 99023117
.........................................................
.............................
9902343047 is a prime number
99023117 is not a prime number
$> ./second-threaded 99023117 9902343047
.
99023117 is not a prime number
.........................................................
..............................
9902343047 is a prime number

How it works…
The overall basics of this program are the same as in the previous recipe. The difference 
here is that we return the result of the calculations from the threads to main(), just like 
a function. But since the return value of our isprime() function is a void pointer, we 
must also return this type. To save the return values, we pass the address of a variable as 
the second argument to pthread_join().

Since each call to pthread_join() will block until its thread has finished, we won't get 
the result until both threads are completed (unless we give it the smallest number first).

The new type we used in this recipe, uintptr_t, is a special type that matches the size  
of an unsigned integer pointer. Using a regular int will probably work as well, but it's  
not guaranteed.



Causing a race condition     351

Causing a race condition
A race condition is when more than one thread (or process) tries to write to the same 
variable simultaneously. Since we don't know which thread will access the variable first, 
we can't safely predict what will happen. Both threads will try to access it first; they will 
race to access the variable.

Knowing what's causing a race condition will help you avoid them, making your  
programs safer.

Getting ready
For this recipe, you'll only need the Makefile we wrote in the first recipe of this chapter, 
along with the GCC compiler and the Make tool.

How to do it…
In this recipe, we'll write a program that causes a race condition. If the program 
were to work properly, it should add 1 to the i variable on every run, ending up at 
5,000,000,000. There are five threads, and each thread adds 1 up to 1,000,000,000. But 
since all the threads access the i variable simultaneously—more or less—it never reaches 
5,000,000,000. Each time a thread accesses it, it takes the current value and adds 1. But 
during that time, another thread might also read the current value and add 1, which then 
overwrites the added 1 from the other thread. In other words, the threads are overwriting 
each other's work:

1. The code is broken up into several steps. Note that all code goes into a single file. 
Name the file race.c. We'll start with the header files, a function prototype, 
and a global variable i of the type long long int. Then we write the main() 
function, which is pretty self-explanatory. It creates five threads with pthread_
create() and then waits for them to finish with pthread_join(). Finally, it 
prints the resulting i variable:

#include <stdio.h>
#include <pthread.h>

void *add(void *arg);
long long int i = 0;

int main(void)
{
   pthread_attr_t threadattr;
   pthread_attr_init(&threadattr);



352     Using Threads in Your Programs

   pthread_t tid_add1, tid_add2, tid_add3, 
     tid_add4, tid_add5;

   pthread_create(&tid_add1, &threadattr, 
      add, NULL);
   pthread_create(&tid_add2, &threadattr, 
      add, NULL);
   pthread_create(&tid_add3, &threadattr, 
      add, NULL);
   pthread_create(&tid_add4, &threadattr, 
      add, NULL);
   pthread_create(&tid_add5, &threadattr, 
      add, NULL);

   pthread_join(tid_add1, NULL);
   pthread_join(tid_add2, NULL);
   pthread_join(tid_add3, NULL);
   pthread_join(tid_add4, NULL);
   pthread_join(tid_add5, NULL);

   printf("Sum is %lld\n", i);
   return 0;
}

2. Now we write the add() function that will run inside the threads:

void *add(void *arg)
{
   for (long long int j = 1; j <= 1000000000; j++)
   {
      i = i + 1;
   }
   return NULL;
}



Causing a race condition     353

3. Let's compile the program. Once again, it's safe to ignore the warning:

$> make race
gcc race.c -Wall -Wextra -pedantic -std=c99 -o race 
-lpthread
race.c: In function 'add':
race.c:35:17: warning: unused parameter 'arg' [-Wunused-
parameter]
 void *add(void *arg)
           ~~~~~~^~~

4. Now, let's try out the program. We'll run it several times. Notice that each time we
run it, we get a different value. That's because the timing of the threads can't be
predicted. But most likely, it will never reach 5,000,000,000, which should be the
correct value. Note that the program will take several seconds to complete:

$> ./race
Sum is 1207835374
$> ./race
Sum is 1132939275
$> ./race
Sum is 1204521570

5. This program is rather inefficient at the moment. We'll time the program before we
move on using the time command. The time it takes to complete will be different
on different computers. In a later recipe, Making the mutex program more efficient,
we'll make the program much more efficient:

$> time ./race
Sum is 1188433970

real 0m20,195s
user 1m31,989s
sys 0m0,020s

How it works…
Since all the threads read and write to the same variable at the same time, they all undo
each other's work. If they all ran in succession, like a non-threaded program, the result
would be 5,000,000,000, which is what we want.

354 Using Threads in Your Programs

To better understand what's happening here, let's take it step by step. Note that this is just
a rough estimation; the exact values and thread differ from one time to the next.

The first thread reads the value of i; let's say it's 1. The second thread also reads i, which
is still 1, since the first thread hasn't incremented the value yet. Now the first thread
increments the value to 2 and saves it to i. The second thread does the same; it also
increments the value to 2 (1+1=2). Now, the third thread starts and reads the variable
i as 2 and increments it to 3 (2+1=3). The result is now 3, instead of 4. This continues
throughout the program's execution, and there's no telling what the result will be. Each
time the program runs, the timing of the threads will be slightly different. The following
diagram contains a simplified example of the problems that can arise:

Figure 11.1 – Example of a race condition

Avoiding race conditions with mutexes
A mutex is a locking mechanism that prevents access to a shared variable so that no
more than one thread can access it simultaneously. This prevents race conditions. With
a mutex, we only lock the critical part of the code, for example, the updating of a shared
variable. This will make sure that all other parts of the program run in parallel (if this is
possible with the locking mechanism).

However, if we are not careful when we write our programs, a mutex can slow down the
program a lot, which we'll see in this recipe. In the next recipe, we'll fix this problem.

Knowing how to use mutexes will help you overcome many of the problems associated
with race conditions, making your programs safer and better.

Avoiding race conditions with mutexes 355

Getting ready
In order for this recipe to make sense, it's advised that you complete the previous recipe
first. You'll also need the Makefile that we wrote in the first recipe of this chapter, the GCC
compiler, and the Make tool.

How to do it…
This program builds upon the previous recipe, but the complete code is shown here. The
code is broken up into several steps. However, remember that all the code goes into the
same file. Name the file locking.c:

1. We'll start at the top as usual. The added code is highlighted. First, we create a new
variable called mutex of the pthread_mutex_t type. This is the variable that is
used for locking. We place this variable in the global area so that it can be reached
from both main() and add(). The second added bit is the initialization of the
mutex variable, using pthread_mutex_init(). NULL as the second argument
means that we want the default attributes for the mutex:

#include <stdio.h>
#include <pthread.h>

void *add(void *arg);
long long int i = 0;
pthread_mutex_t i_mutex;

int main(void)
{
 pthread_attr_t threadattr;
 pthread_attr_init(&threadattr);
 pthread_t tid_add1, tid_add2, tid_add3,
 tid_add4, tid_add5;

 if ((pthread_mutex_init(&i_mutex, NULL)) != 0)
 {
 fprintf(stderr,
 "Couldn't initialize mutex\n");
 return 1;
 }
 pthread_create(&tid_add1, &threadattr,
 add, NULL);
 pthread_create(&tid_add2, &threadattr,
 add, NULL);

356 Using Threads in Your Programs

 pthread_create(&tid_add3, &threadattr,
 add, NULL);
 pthread_create(&tid_add4, &threadattr,
 add, NULL);
 pthread_create(&tid_add5, &threadattr,
 add, NULL);

 pthread_join(tid_add1, NULL);
 pthread_join(tid_add2, NULL);
 pthread_join(tid_add3, NULL);
 pthread_join(tid_add4, NULL);
 pthread_join(tid_add5, NULL);

2. After we are done with the calculations, we destroy the mutex variable with
pthread_mutex_destroy():

 printf("Sum is %lld\n", i);
 if ((pthread_mutex_destroy(&i_mutex)) != 0)
 {
 fprintf(stderr, "Couldn't destroy mutex\n");
 return 1;
 }
 return 0;
}

3. And finally, we use the locking and unlocking mechanisms in the add() function.
We lock the part where the i variable is updated and unlock it once the update is
complete. That way, the variable is locked while the update is in progress so that no
other threads can access it until the update is complete:

void *add(void *arg)
{
 for (long long int j = 1; j <= 1000000000; j++)
 {
 pthread_mutex_lock(&i_mutex);
 i = i + 1;
 pthread_mutex_unlock(&i_mutex);
 }
 return NULL;
}

Avoiding race conditions with mutexes 357

4. Now, let's compile the program. As usual, we can ignore the warning regarding an
unused variable:

$> make locking
gcc locking.c -Wall -Wextra -pedantic -std=c99 -o locking
-lpthread
locking.c: In function 'add':
locking.c:47:17: warning: unused parameter 'arg'
[-Wunused-parameter]
 void *add(void *arg)
           ~~~~~~^~~

5. Now it's time to run the program. Just as in the previous recipe, we'll time the 
execution using the time command. This time, the calculation will be correct; it 
will end up at 5,000,000,000. However, the program will take a long time to finish. 
On my computer, it takes well over 5 minutes to complete:

$> time ./locking 
Sum is 5000000000

real    5m23,647s
user    8m24,596s
sys     16m11,407s

6. Let's compare this result to a simple, non-threaded program that accomplishes 
the same result with the same basic algorithm. Let's name this program 
non-threaded.c:

#include <stdio.h>

int main(void)
{
   long long int i = 0;
   for (int x = 1; x <= 5; x++)
   {
      for (long long int j = 1; j <= 1000000000; j++)
      {
         i = i + 1;
      }
   }
   printf("Sum is %lld\n", i);
   return 0;
}



358     Using Threads in Your Programs

7. Let's compile this program and time it. Note how much faster this program executes 
while, at the same time, attaining the same result:

$> make non-threaded
gcc non-threaded.c -Wall -Wextra -pedantic -std=c99 -o 
non-threaded -lpthread
$> time ./non-threaded 
Sum is 5000000000

real    0m10,345s
user    0m10,341s
sys     0m0,000s

How it works...
Threaded programs aren't automatically going to be faster than non-threaded programs. 
The non-threaded program that we ran in step 7 was even faster than the threaded 
program from the previous recipe, even though that program didn't even use any mutexes.

So why is this, then?

The threaded program we've written has several inefficiencies. We'll start by discussing  
the issues with the race.c program from the previous recipe. The reason why that 
program is slower than the non-threaded version is because of numerous small things.  
For example, it takes some time to start each thread (a small amount of time, but still). 
Then there's the inefficiency of updating the global i variable by only one step each 
time. All the threads are also accessing the same global variable at the same time. We 
have five threads, and each thread increments its local j variable by one. And each time 
that happens, the thread updates the global i variable. And since all of this happens 
5,000,000,000 times, it takes a bit longer than it would have taken to run it sequentially  
in a single thread.

Then, in the locking.c program in this recipe, we added a mutex to lock the i = i + 
1 part. Since this ensures that only one thread can access the i variable simultaneously, it 
makes the entire program sequential again. Instead of all the threads running side by side, 
the following happens:

1. Run a thread.

2. Lock the i = i + 1 part.

3. Run i = i + 1 to update i.

4. Unlock i = i + 1.



Making the mutex program more efficient     359

5. Run the next thread.

6. Lock the i = i + 1 part.

7. Run i = i + 1 to update i.

8. Unlock i = i + 1.

These steps will repeat over and over again 5,000,000,000 times in a row. Each time  
a thread starts takes time. Then it takes additional time to lock and unlock the mutex,  
and it also takes time to increment the i variable. It also takes time to switch to another 
thread and start the whole locking/unlocking process all over again.

In the next recipe, we'll address these issues and make the program run much faster.

See also
For more information about mutexes, see the manual pages man 3 pthread_mutex_
init, man 3 phtread_mutex_lock, man 3 phthread_mutex_unlock, and 
man 3 pthread_mutex_destroy.

Making the mutex program more efficient
In the previous recipe, we saw that a threaded program isn't necessarily any faster than  
a non-threaded program. We also saw that when we introduced mutexes, the program  
got horribly slow. Much of this slowness is due to switching back and forth and locking 
and unlocking billions of times.

The solution to all of this locking and unlocking and switching back and forth is to lock 
and unlock as few times as possible. And also, to update the i variable as few times as 
possible and do as much work as possible in each thread.

In this recipe, we'll make our threaded program much faster and much more efficient.

Knowing how to write efficient threaded programs will help you stay away from many  
of the pitfalls when it comes to threading.

Getting ready
In order for this recipe to make sense, it's advised that you complete the two previous 
recipes in this chapter. Other than that, the same requirements apply here; we need the 
Makefile, the GCC compiler, and the Make tool.



360     Using Threads in Your Programs

How to do it…
This program builds on the previous locking.c program from the previous recipe. The 
only difference is the add() function. Therefore, only the add() function is shown here; 
the rest is the same as locking.c. The complete program can be downloaded from this 
chapter's GitHub directory. The name of the file is efficient.c:

1. Make a copy of locking.c and name the new file efficient.c.

2. Rewrite the add() function so that it looks like this code instead. Notice that we 
have removed the for loop. Instead, we increment a local j variable in a while 
loop until it reaches 1,000,000,000. Then, we add the local j variable to the global 
i variable. This reduces the number of times we have to lock and unlock the mutex 
(from 5,000,000,000 times to only 5 times):

void *add(void *arg)
{
   long long int j = 1;
   while(j < 1000000000)
   {
      j = j + 1;
   }

   pthread_mutex_lock(&i_mutex);
   i = i + j;
   pthread_mutex_unlock(&i_mutex);
   return NULL;
}

3. Compile the program:

$> make efficient
gcc efficient.c -Wall -Wextra -pedantic -std=c99 -o 
efficient -lpthread
efficient.c: In function 'add':
efficient.c:47:17: warning: unused parameter 'arg' 
[-Wunused-parameter]
 void *add(void *arg)
           ~~~~~~^~~


Using condition variables 361

4. Now, let's run the program and time it using the time command. Notice how much
faster this program is:

$ time ./efficient
Sum is 5000000000

real 0m1,954s
user 0m8,858s
sys 0m0,004s

How it works…
This program is much faster than both the non-threaded version and the first locking
version. As a reminder of the execution times, the non-threaded version took around
10 seconds to complete; the first threaded version (race.c) took around 20 seconds to
complete; the first mutex version (locking.c) took well over 5 minutes to complete.
The final version (efficient.c) took just under 2 seconds to complete—a huge
improvement.

There are two main reasons why this program is so much faster. First, this program only
locks and unlocks the mutex 5 times (compared to 5,000,000,000 times in the previous
recipe). Secondly, each thread can now complete its work (the while loop) fully before
writing anything to the global variable.

Simply put, each thread can now do its work without any interruptions, making it truly
threaded. Only when the threads have completed their work will they write their result
to the global variable.

Using condition variables
With condition variables, we can signal a thread when another thread has finished its
work or when some other event occurs. For example, with condition variables, we can
rewrite the prime number program from the Reading return values from threads recipe to
join with the thread that finishes first. That way, the program isn't compelled to join with
thread 1 first and then thread 2. Instead, the thread that finishes first signals to main()
using a condition variable that it has finished and then joins with that thread.

Knowing how to use condition variables will help you make your threaded programs
more flexible.

362 Using Threads in Your Programs

Getting ready
In order for this recipe to make sense, it's advised that you have completed the Reading
return values from threads recipe first. You'll also need the GCC compiler, the Makefile we
wrote in the Writing your first threaded program recipe, and the Make tool.

How to do it…
In this recipe, we'll rewrite the prime number program from the Reading return values
from threads recipe to use condition variables. The complete program will be shown here,
but we will only discuss the added parts for this recipe.

Since the code is long, it has been broken up into several steps. Save the code in a file
called cond-var.c:

1. We'll start at the top as usual. Here we have added three new variables, a mutex that
we name lock, a condition variable that we name ready, and a thread ID for the
prime thread, which we name primeid. The primeid variable will be used to
send the thread ID from the thread that has finished:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <stdint.h>

void *isprime(void *arg);
void *progress(void *arg);
pthread_mutex_t lock;
pthread_cond_t ready;
pthread_t primeid = 0;

int main(int argc, char *argv[])
{
 long long number1;
 long long number2;
 pthread_t tid_prime1;
 pthread_t tid_prime2;
 pthread_t tid_progress;
 pthread_attr_t threadattr;
 void *prime1Return;
 void *prime2Return;

Using condition variables 363

2. Then we must initialize both the mutex and the condition variable:

 if ((pthread_mutex_init(&lock, NULL)) != 0)
 {
 fprintf(stderr,
 "Couldn't initialize mutex\n");
 return 1;
 }

 if ((pthread_cond_init(&ready, NULL)) != 0)
 {
 fprintf(stderr,
 "Couldn't initialize condition variable\n");
 return 1;
 }

3. After that, we check the number of arguments, just as before. If the argument count
is correct, we start the threads with pthread_create(), also as before:

 if (argc != 3)
 {
 fprintf(stderr, "Please supply two numbers.\n"
 "Example: %s 9 7\n", argv[0]);
 return 1;
 }
 number1 = atoll(argv[1]);
 number2 = atoll(argv[2]);
 pthread_attr_init(&threadattr);
 pthread_create(&tid_progress, &threadattr,
 progress, NULL);
 pthread_detach(tid_progress);
 pthread_create(&tid_prime1, &threadattr,
 isprime, &number1);
 pthread_create(&tid_prime2, &threadattr,
 isprime, &number2);

364 Using Threads in Your Programs

4. Now comes the interesting stuff. We'll start by locking the mutex so that the
primeid variable is protected. Then, we wait for the signal from the condition
variable using pthread_cond_wait(). This will release the mutex so that the
threads can write to primeid. Note that we also loop the pthread_cond_
wait() call in a while loop. We do this because we only want to wait for the
signal if primeid is still 0. Since pthread_cond_wait() will block, it won't
use any CPU cycles. When we get the signal, we move down to the if statement.
This checks which thread it was that finished and joins it. Then we go back and
start again using the for loop. Each time an if or else statement has
completed—when a thread has joined—the primeid variable is reset to 0. This
will make the next iteration wait again with pthread_cond_wait():

 pthread_mutex_lock(&lock);
 for (int i = 0; i < 2; i++)
 {
 while (primeid == 0)
 pthread_cond_wait(&ready, &lock);
 if (primeid == tid_prime1)
 {
 pthread_join(tid_prime1, &prime1Return);
 if ((uintptr_t)prime1Return == 1)
 printf("\n%lld is a prime number\n",
 number1);
 else
 printf("\n%lld is not a prime number\n",
 number1);
 primeid = 0;
 }
 else
 {
 pthread_join(tid_prime2, &prime2Return);
 if ((uintptr_t)prime2Return == 1)
 printf("\n%lld is a prime number\n",
 number2);
 else
 printf("\n%lld is not a prime number\n",
 number2);
 primeid = 0;
 }
 }
 pthread_mutex_unlock(&lock);

Using condition variables 365

 pthread_attr_destroy(&threadattr);
 if (pthread_cancel(tid_progress) != 0)
 fprintf(stderr,
 "Couldn't cancel progress thread\n");

 return 0;
}

5. Next up, we have the isprime() function. Here we have some new lines. Once
the function is done calculating the number, we lock the mutex to protect the
primeid variable. Then we set the primeid variable to the thread's ID. Then,
we signal the condition variable (ready) and release the mutex lock. This will wake
up the main() function since it's now waiting with pthread_cond_wait():

void *isprime(void *arg)
{
 long long int number = *((long long*)arg);
 long long int j;
 int prime = 1;

 for(j=2; j<number; j++)
 {
 if(number%j == 0)
 prime = 0;
 }
 pthread_mutex_lock(&lock);
 primeid = pthread_self();
 pthread_cond_signal(&ready);
 pthread_mutex_unlock(&lock);
 if(prime == 1)
 return (void*)1;
 else
 return (void*)0;
}

366 Using Threads in Your Programs

6. And finally, we have the progress() function. Nothing has changed here:

void *progress(void *arg)
{
 while(1)
 {
 sleep(1);
 printf(".");
 fflush(stdout);
 }
 return NULL;
}

7. Now, let's compile the program:

$> make cond-var
gcc cond-var.c -Wall -Wextra -pedantic -std=c99 -o cond-
var -lpthread
cond-var.c: In function 'progress':
cond-var.c:114:22: warning: unused parameter 'arg'
[-Wunused-parameter]
 void *progress(void *arg)

8. Let's now try out the program. We'll test it with both the smaller number as the
first argument and then as the second argument. Either way, the fastest number
to compute will be displayed instantly, without having to wait for the other thread
to join:

$> ./cond-var 990231117 9902343047
........
990231117 is not a prime number
...
.......................
9902343047 is a prime number
$> ./cond-var 9902343047 990231117
........
990231117 is not a prime number
...
......................
9902343047 is a prime number

Using condition variables 367

How it works…
When we waited in the while loop with pthread_cond_wait(), we called it with
both the condition variable (ready) and the mutex (lock). That way, it knows which
mutex to release and which signal to wait for. It's when we wait that the mutex is released.

During the waiting, the other threads can write to the primeid variable. The other
threads will first lock the variable with the mutex before writing to it. Once they have
written to the variable, they signal the condition variable and release the mutex. This
wakes up the main() function, which is currently waiting with pthread_cond_
wait(). The main() function then checks which thread it was that finished and joins it
with pthread_join(). Then, the main() function will reset the primeid variable to
0 and go back to waiting with pthread_cond_wait() until the next thread signals that
it's finished. There are two threads we are waiting for, so the for loop in main() will run
the loop two times.

Each thread gets its own thread ID using pthread_self().

See also
Refer to the following manual pages for more information regarding condition variables:

• man 3 pthread_cond_init()

• man 3 pthread_cond_wait()

• man 3 pthread_cond_signal()

12
Debugging Your

Programs
No program is perfect on the first try. In this chapter, we'll learn how to debug our
programs using GDB and Valgrind. With the latter tool, Valgrind, we can find memory
leaks in our programs.

We'll also take a look at what memory leaks are, what they can cause, and how to prevent
them. Debugging programs and looking at memory is an important step to understanding
system programming fully.

In this chapter, we will cover the following recipes:

• Starting GDB

• Stepping inside functions with GDB

• Investigating memory with GDB

• Modifying variables during runtime

• Using GDB on a program that forks

• Debugging programs with multiple threads

• Finding a simple memory leak with Valgrind

• Finding buffer overflows with Valgrind

370 Debugging Your Programs

Technical requirements
For this chapter, you'll need the GBD tool, Valgrind, the GCC compiler, a generic
Makefile, and the Make tool.

If you haven't installed GDB and Valgrind yet, you can do so now. Follow these
instructions depending on your distributions. If you don't have sudo installed or don't
have sudo privileges, you can switch to root using su instead (and leave out the sudo
part).

For Debian and Ubuntu systems, run the following command:

$> sudo apt-get install gdb valgrind

For CentOS, Fedora, and Red Hat systems, run the following command:

$> sudo dnf install gdb valgrind

All the code samples for this chapter can be found on GitHub at https://github.
com/PacktPublishing/Linux-System-Programming-Techniques/tree/
master/ch12.

Check out the following link to see the Code in Action videos:
https://bit.ly/2TTiIPp

Starting GDB
In this recipe, we'll learn the basics of GDB, the GNU debugger. We'll learn how to start
GDB, how to set a breakpoint, and how to step forward in a program, one step at a time.
We'll also learn what debugging symbols are and how we enable them.

GDB is the most popular debugger for Linux and other Unix-like systems. It allows you
to examine—and change—variables on the fly, step through instructions one at a time,
view the code as the program is running, read return values, and much more.

Knowing how to use a debugger can save you many hours of frustration. Instead of
guessing what the problem is with your program, you can follow the execution with
GDB and spot the error. This can save you a lot of time.

Getting ready
For this recipe, you'll need the GCC compiler, the Make tool, and the GDB tool. For
installation instructions for GDB, see the Technical requirements section of this chapter.

https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch12
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch12
https://github.com/PacktPublishing/Linux-System-Programming-Techniques/tree/master/ch12
https://bit.ly/2TTiIPp

Starting GDB 371

How to do it…
In this recipe, we'll use GDB on a working program. There are no bugs here. Instead,
we want to focus on how to do some basic things in GDB:

1. Write the following small program in a file and save it as loop.c. Later, we will
examine the program using GDB:

#include <stdio.h>
int main(void)
{
 int x;
 int y = 5;
 char text[20] = "Hello, world";
 for (x = 1; y < 100; x++)
 {
 y = (y*3)-x;
 }
 printf("%s\n", text);
 printf("y = %d\n", y);
 return 0;
}

2. Before we can use GDB to its fullest, we need to enable debugging symbols when
compiling the program. Therefore, write the following new Makefile and save it as
Makefile in the same directory as the loop.c program. Notice we added the
-g option to CFLAGS. These debugging symbols make it possible to see the code
as we execute it in GDB:

CC=gcc
CFLAGS=-g -Wall -Wextra -pedantic -std=c99

3. Now, it's time to compile the program using our new Makefile:

$> make loop
gcc -g -Wall -Wextra -pedantic -std=c99 loop.c -o
loop

4. Let's try the program before we move on:

$> ./loop
Hello, world
y = 117

372 Debugging Your Programs

5. From the same directory as loop and loop.c, start GDB with the loop program
by typing the following (the source code, loop.c, is needed to display the code
within GBD):

$> gdb ./loop

6. You are now presented with some copyright text and version information. Down at
the bottom, there's a prompt saying (gdb). This is where we type our commands.
Let's run the program and see what happens. We run the program by simply typing
run and hitting Enter:

(gdb) run
Starting program: /home/jack/ch12/code/loop
Hello, world
y = 117
[Inferior 1 (process 10467) exited normally]

7. That didn't really tell us much; we could have just run the program directly from
the terminal. So, this time we set a breakpoint at line 1. The breakpoint won't
actually be at line 1 since that is just an include line. Instead, GDB automatically
sets it on the first logical place where there is actual code. A breakpoint is where the
execution should stop in the code so that we'll have a chance to investigate it:

(gdb) break 1
Breakpoint 1 at 0x55555555514d: file loop.c, line 6.

8. Now we can rerun the program. This time the execution will stop at line 6
(the breakpoint):

$> (gdb) run
Starting program: /home/jack/ch12/code/loop

Breakpoint 1, main () at loop.c:6
6 int y = 5;

9. We can start watching over the y variable using the watch command. GDB will
then tell us every time y is updated:

$> (gdb) watch y
Hardware watchpoint 2: y

Starting GDB 373

10. Now we can execute the next statement in the code by using the next command.
To avoid having to type next every time we want to move forward in the code, we
can just hit Enter. Doing so will make GDB execute the last command. Notice the
updated y variable. Also, notice that we see the code we are executing for every step
we take:

(gdb) next

Hardware watchpoint 2: y

Old value = 0
New value = 5
main () at loop.c:7
7 char text[20] = "Hello, world";
(gdb) next
8 for (x = 1; y < 100; x++)
(gdb) next
10 y = (y*3)-x;

11. The line of code being displayed is the next statement that is to be executed.
So, from the previous step, we see that the next line to execute is line 10, which
is y = (y*3)-x. So let's hit Enter here, and that will update the y variable, and
the watchpoint will tell us about it:

(gdb) next

Hardware watchpoint 2: y

Old value = 5
New value = 14
main () at loop.c:8
8 for (x = 1; y < 100; x++)
(gdb) next
10 y = (y*3)-x;
(gdb) next

Hardware watchpoint 2: y

Old value = 14
New value = 40
main () at loop.c:8
8 for (x = 1; y < 100; x++)

374 Debugging Your Programs

(gdb) next
10 y = (y*3)-x;
(gdb) next

Hardware watchpoint 2: y

Old value = 40
New value = 117
8 for (x = 1; y < 100; x++)

12. Before we go any further, let's examine the content of the text character array
and the x variable. We print the content of variables and arrays with the print
command. Here we see that the text array is filled with null characters after the
actual text:

(gdb) print text
$1 = "Hello, world\000\000\000\000\000\000\000"
(gdb) print x
$2 = 3

13. Let's continue the execution. After the process has exited in the last step, we can exit
GDB with quit:

(gdb) next
12 printf("%s\n", text);
(gdb) next
Hello, world
13 printf("y = %d\n", y);
(gdb) next
y = 117
14 return 0;
(gdb) next
15 }
(gdb) next

Watchpoint 2 deleted because the program has left the
block in which its expression is valid.
__libc_start_main (main=0x555555555145 <main>, argc=1,
argv=0x7fffffffdbe8,
 init=<optimized out>, fini=<optimized out>, rtld_
fini=<optimized out>,
 stack_end=0x7fffffffdbd8) at ../csu/libc-start.c:342
342 ../csu/libc-start.c: No such file or directory.

Stepping inside a function with GDB 375

(gdb) next
[Inferior 1 (process 14779) exited normally]
(gdb) quit

How it works…
We've just learned all the basics of GDB. With these commands, we can do a lot of
debugging. There are a few more things to learn, but we've already come a long way.

We started the GDB program with the loop program. To prevent GDB from running
through the entire program without investigating things, we set a breakpoint using the
break command. In our example, we set the break on a line, using break 1. It's also
possible to set a breakpoint on a specific function, such as main(). We can do this with
the break main command.

Once the breakpoint was in place, we could run the program with run. We then watched
over the y variable with watch. We executed one statement at a time, using the next
command. We also learned how to print variables and arrays using the print command.

For all of this to be possible, we had to compile the program with the -g option to GCC.
That enables debugging symbols. But, to see the actual code in GDB, we also need the
source code file.

There's more…
GDB has some nice built-in help. Start GDB without a program. Then type help at the
(gdb) prompt. This will give you a list of different classes of commands. If we want to
read more about breakpoints, we type help breakpoints. This gives you a long list
of breakpoint commands, for example, break. To read more about the break command,
type help break.

Stepping inside a function with GDB
When we use the next command in a program with a function, it will simply execute the
function and move on. However, there's another command called step that will enter the
function, step through it, and then return to main() again. In this recipe, we'll examine
the difference between next and step.

Knowing how to step into a function with GDB will help you debug an entire program,
including its functions.

376 Debugging Your Programs

Getting ready
For this recipe, you'll need the GDB tool, the GCC compiler, the Makefile we wrote in the
Starting GDB recipe in this chapter, and the Make tool.

How to do it…
In this recipe, we'll write a small program that has a function. Then, we'll step into that
function with GDB, using the step command:

1. Write the following code in a file and save it as area-of-circle.c. The program
takes the radius of a circle as an argument and prints its area:

#include <stdio.h>
#include <stdlib.h>
float area(float radius);

int main(int argc, char *argv[])
{
 float number;
 float answer;
 if (argc != 2)
 {
 fprintf(stderr, "Type the radius of a "
 "circle\n");
 return 1;
 }
 number = atof(argv[1]);
 answer = area(number);
 printf("The area of a circle with a radius of "
 "%.2f is %.2f\n", number, answer);
 return 0;
}

float area(float radius)
{
 static float pi = 3.14159;
 return pi*radius*radius;
}

Stepping inside a function with GDB 377

2. Compile the program using the Makefile from the Starting GDB recipe:

$> make area-of-circle
gcc -g -Wall -Wextra -pedantic -std=c99 area-of-
circle.c -o area-of-circle

3. Let's try it out before stepping through it with GDB:

$> ./area-of-circle 9
The area of a circle with a radius of 9.00 is 254.47

4. Now it's time to step through the program with GDB. Start GDB with the
area-of-circle program:

$> gdb ./area-of-circle

5. We start by setting a breakpoint at the main() function:

(gdb) break main
Breakpoint 1 at 0x1164: file area-of-circle.c, line 9.

6. Now we run the program. To specify an argument to a program while inside GDB,
we set the argument at the run command:

(gdb) run 9
Starting program: /home/jack/ch12/code/area-of-circle 9

Breakpoint 1, main (argc=2, argv=0x7fffffffdbd8) at area-
of-circle.c:9
9 if (argc != 2)

7. Let's move ahead one step with the next command:

(gdb) next
15 number = atof(argv[1]);

8. As we can see from the previous step, the next statement to execute will be the
atof() function. This is a standard library function, so we don't have any
debugging symbols or source code for it. Therefore, we can't see anything inside
the function. However, we can still step inside it. Once we are inside the function,
we can let it execute and finish using the finish command. This will tell us the
function's return value, which can be very handy:

(gdb) step
atof (nptr=0x7fffffffdfed "9") at atof.c:27
27 atof.c: No such file or directory.

378 Debugging Your Programs

(gdb) finish
Run till exit from #0 atof (nptr=0x7fffffffdfed "9") at
atof.c:27
main (argc=2, argv=0x7fffffffdbd8) at area-of-circle.c:15
15 number = atof(argv[1]);
Value returned is $1 = 9

9. Now we do another next, which will take us to our area function. We want to
step inside the area function, so we use step here. This will tell us that the value
it was called with is 9. Since there isn't much left to do inside the area function but
to return, we can type finish to get its return value:

(gdb) next
16 answer = area(number);
(gdb) step
area (radius=9) at area-of-circle.c:25
25 return pi*radius*radius;
(gdb) finish
Run till exit from #0 area (radius=9) at area-of-
circle.c:25
0x00005555555551b7 in main (argc=2, argv=0x7fffffffdbd8)
at area-of-circle.c:16
16 answer = area(number);
Value returned is $2 = 254.468796

10. And now, we can walk through the rest of the program with next:

(gdb) next
17 printf("The area of a circle with a radius of
"
(gdb) next
The area of a circle with a radius of 9.00 is 254.47
19 return 0;
(gdb) next
20 }
(gdb) next
__libc_start_main (main=0x555555555155 <main>, argc=2,
argv=0x7fffffffdbd8,
 init=<optimized out>, fini=<optimized out>, rtld_
fini=<optimized out>,
 stack_end=0x7fffffffdbc8) at ../csu/libc-start.c:342
342 ../csu/libc-start.c: No such file or directory.
(gdb) next

Investigating memory with GDB 379

[Inferior 1 (process 2034) exited normally]
(gdb) quit

How it works…
With the step command, we step inside a function. However, functions from the
standard library don't have any debugging symbols or source code available; therefore,
we can't see what's happening inside them. If we wanted to, we could get the source code
and compile it with debugging symbols; Linux is, after all, open source.

But even when we don't see what's happening inside a function, it can still be valuable to
step inside them since we can get their return value with finish.

Investigating memory with GDB
With GDB, we can learn more about how things work under the hood, for example,
strings. A string is an array of characters terminated by a null character. In this recipe,
we'll investigate a character array with GDB and see how the null character ends a string.

Knowing how to examine the memory using GDB can be really handy if you encounter
weird bugs. Instead of guessing or looping over each character in C, we can directly
examine them in GDB.

Getting ready
For this recipe, you'll need the Makefile we wrote in the Starting GDB recipe. You'll also
need the GCC compiler and the Make tool.

How to do it…
In this recipe, we'll write a simple program that fills a character array with the character x.
Then we'll copy a new, shorter string on top of that and finally print the string. It's only the
newly copied string that is printed, even if all the x characters are still there. With GDB,
we can confirm this fact:

1. Write the following code in a file and save it as memtest.c:

#include <stdio.h>
#include <string.h>
int main(void)
{
 char text[20];
 memset(text, 'x', 20);

380 Debugging Your Programs

 strcpy(text, "Hello");
 printf("%s\n", text);
 return 0;
}

2. Compile the program using the Makefile from the Starting GDB recipe:

$> make memtest
gcc -g -Wall -Wextra -pedantic -std=c99 memtest.c -o
memtest

3. Let's run it as we would with any other program:

$> ./memtest
Hello

4. Let's start GDB with our memtest program:

$> gdb ./memtest

5. Now, let's examine what's really inside the text array using GDB. First, we set a
breakpoint on main(), then we run the program and step forward in the program
with next until after the strcpy() function has been executed. Then, we examine
the memory using the x command in GDB (x for eXamine). We must also tell GDB
to examine 20 bytes and print the content using decimal notation. The x command
will therefore be x/20bd text. To interpret the decimals to characters, see the
ASCII table we talked about in Chapter 2, Making Your Programs Easy to Script,
at https://github.com/PacktPublishing/B13043-Linux-System-
Programming-Cookbook/blob/master/ch2/ascii-table.md:

(gdb) break main
Breakpoint 1 at 0x114d: file memtest.c, line 6.
(gdb) run
Starting program: /mnt/localnas_disk2/linux-sys/ch12/
code/memtest

Breakpoint 1, main () at memtest.c:6
warning: Source file is more recent than executable.
6 memset(text, 'x', 20);
(gdb) next
7 strcpy(text, "Hello");
(gdb) next
8 printf("%s\n", text);
(gdb) x/20bd text

https://github.com/PacktPublishing/B13043-Linux-System-Programming-Cookbook/blob/master/ch2/ascii-table.md
https://github.com/PacktPublishing/B13043-Linux-System-Programming-Cookbook/blob/master/ch2/ascii-table.md

Modifying variables during runtime 381

0x7fffffffdae0: 72 101 108 108 111 0 120 120
0x7fffffffdae8: 120 120 120 120 120 120 120 120
0x7fffffffdaf0: 120 120 120 120

How it works…
To examine the memory using GDB, we used the x command. 20bd says the size we want
to read is 20, and we want to present it in groups of bytes (the b) and print the content
using decimal notation (the d). With this command, we get a nice-looking table that
shows us every character in the array printed as a decimal number.

The content of the memory—when translated to characters—is
Hello\0xxxxxxxxxxxxxx. The null character separates the Hello string from all the
x characters. There's a lot to learn by using GDB and examining the memory during
runtime.

There's more...
Instead of just printing the content as decimal notation, it's also possible to print as regular
characters (c), hexadecimal notation (x), floating points (f), and so on. These letters are
the same as for printf().

See also
You can learn more about how to use the x command by typing help x while inside
GDB.

Modifying variables during runtime
With GDB it's even possible to modify variables during runtime. This can be very handy
for experimentation. Instead of changing the source code and recompiling the program,
you can change the variable with GDB and see what happens.

Knowing how to change variables and arrays during runtime can speed up your
debugging and experimentation phase.

Getting ready
For this recipe, you'll need the memtest.c program from the previous recipe. You'll also
need the Makefile from the Starting GDB recipe in this chapter, the Make tool, and the
GCC compiler.

382 Debugging Your Programs

How to do it…
In this recipe, we'll continue using the program from the previous recipe. Here, we'll
replace the null character in the sixth place with another character and the last character
with a null character:

1. If you haven't yet compiled the memtest program from the previous recipe, do
so now:

$> make memtest
gcc -g -Wall -Wextra -pedantic -std=c99 memtest.c -o
memtest

2. Start GDB with the memtest program you just compiled:

$> gdb ./memtest

3. Start by setting a breakpoint at main() and run the program. Step forward to just
after the strcpy() function using next:

(gdb) break main
Breakpoint 1 at 0x114d: file memtest.c, line 6.
(gdb) run
Starting program: /home/jack/ch12/code/memtest

Breakpoint 1, main () at memtest.c:6
6 memset(text, 'x', 20);
(gdb) next
7 strcpy(text, "Hello");
(gdb) next
8 printf("%s\n", text);

4. Before changing the array, let's print it first using the x command like in the
previous recipe:

(gdb) x/20bd text
0x7fffffffdae0: 72 101 108 108 111 0 120 120
0x7fffffffdae8: 120 120 120 120 120 120 120 120
0x7fffffffdaf0: 120 120 120 120

Using GDB on a program that forks 383

5. Now that we know what the content looks like, we can replace the null character at
the sixth position—the fifth actually, we start counting from 0—with a y. We also
replace the last position with a null character. Setting variables and array positions
in GDB is done using the set command:

(gdb) set text[5] = 'y'
(gdb) set text[19] = '\0'
(gdb) x/20bd text
0x7fffffffdae0: 72 101 108 108 111 121 120 120
0x7fffffffdae8: 120 120 120 120 120 120 120 120
0x7fffffffdaf0: 120 120 120 0

6. Let's continue running the rest of the program. Instead of stepping forward with the
next command one step at a time, we can use the continue command to let the
program run until the end. Notice that the printf() function will now print the
string Helloyxxxxxxxxxxxxxx:

(gdb) continue
Continuing.
Helloyxxxxxxxxxxxxx
[Inferior 1 (process 4967) exited normally]
(gdb) quit

How it works…
Using the set command in GDB, we managed to change the content of the text
array during runtime. With the set command, we removed the first null character and
inserted a new one at the end, making it a long valid string. Since we had removed the null
character after Hello, printf() then printed the entire string.

Using GDB on a program that forks
Using GDB to debug a program that forks will automatically follow the parent process,
just like a regular non-forking program. But it's possible to follow the child process
instead, which is what we will learn in this recipe.

Being able to follow the child process is important in debugging since many programs
spawn child processes. We don't want to limit ourselves to only non-forking programs.

384 Debugging Your Programs

Getting ready
For this recipe, you'll need the Makefile from the Starting GDB recipe in this chapter, the
Make tool, and the GCC compiler.

How to do it…
In this recipe, we'll write a small program that forks. We'll put a for loop inside the child
to confirm whether we are inside the child or the parent. On the first run in GDB, we'll
run through the program like we usually would. This will make GDB follow the parent
process. Then, in the next run, we'll follow the child process instead:

1. Write the following code in a file and save it as forking.c. The code is similar
to the forkdemo.c program we wrote in Chapter 6, Spawning Processes and Using
Job Control:

#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>

int main(void)
{
 pid_t pid;
 printf("My PID is %d\n", getpid());
 /* fork, save the PID, and check for errors */
 if ((pid = fork()) == -1)
 {
 perror("Can't fork");
 return 1;
 }
 if (pid == 0)
 {
 /* if pid is 0 we are in the child process */
 printf("Hello from the child process!\n");
 for(int i = 0; i<10; i++)
 {
 printf("Counter in child: %d\n", i);
 }
 }
 else if(pid > 0)
 {
 /* parent process */
 printf("My child has PID %d\n", pid);

Using GDB on a program that forks 385

 wait(&pid);
 }
 return 0;
}

2. Compile the program:

$> make forking
gcc -g -Wall -Wextra -pedantic -std=c99 forking.c -o
forking

3. Let's try the program before we run it in GDB:

$> ./forking
My PID is 9868
My child has PID 9869
Hello from the child process!
Counter in child: 0
Counter in child: 1
Counter in child: 2
Counter in child: 3
Counter in child: 4
Counter in child: 5
Counter in child: 6
Counter in child: 7
Counter in child: 8
Counter in child: 9

4. On the first run through GDB, we'll run it like we usually would. This will make
GDB follow the parent process automatically. Begin with starting GDB with the
forking program:

$> gdb ./forking

5. Set the breakpoint at main() as usual and run it. Then, we'll step forward with the
next command until we see the Counter in child text. That will prove that we are
indeed in the parent process since we never stepped through the for loop. Also,
notice that GDB tells us that the program has forked and detached from the child
process (meaning we are in the parent process). GDB also prints the PID of the
child process:

(gdb) break main
Breakpoint 1 at 0x118d: file forking.c, line 9.
(gdb) run

386 Debugging Your Programs

Starting program: /home/jack/ch12/code/forking

Breakpoint 1, main () at forking.c:9
9 printf("My PID is %d\n", getpid());
(gdb) next
My PID is 10568
11 if ((pid = fork()) == -1)
(gdb) next
[Detaching after fork from child process 10577]
Hello from the child process!
Counter in child: 0
Counter in child: 1
Counter in child: 2
Counter in child: 3
Counter in child: 4
Counter in child: 5
Counter in child: 6
Counter in child: 7
Counter in child: 8
Counter in child: 9
16 if (pid == 0)
(gdb) continue
Continuing.
My child has PID 10577
[Inferior 1 (process 10568) exited normally]
(gdb) quit

6. Now, let's run through the program again. But this time, we will tell GDB to follow
the child process instead. Start GDB with the forking program as before:

$> gdb ./forking

7. Set the breakpoint at main() as we did before. After that, we tell GDB to follow the
child process using the set command as we've seen before. Only this time, we set
something called follow-fork-mode. We set it to child. Then run the program
as usual:

(gdb) break main
Breakpoint 1 at 0x118d: file forking.c, line 9.
(gdb) set follow-fork-mode child
(gdb) run
Starting program: /home/jack/ch12/code/forking

Using GDB on a program that forks 387

Breakpoint 1, main () at forking.c:9
9 printf("My PID is %d\n", getpid());

8. Now, move forward one step at a time with the next command twice. The program
will now fork, and GDB will tell us that it's attaching to the child process and
detaching from the parent process. This means that we are now inside the child
process:

(gdb) next
My PID is 11561
11 if ((pid = fork()) == -1)
(gdb) next
[Attaching after process 11561 fork to child process
11689]
[New inferior 2 (process 11689)]
[Detaching after fork from parent process 11561]
[Inferior 1 (process 11561) detached]
My child has PID 11689
[Switching to process 11689]
main () at forking.c:11
11 if ((pid = fork()) == -1)

9. Let's move forward a bit again to see that we end up inside the for loop, which is
inside the child process:

(gdb) next
16 if (pid == 0)
(gdb) next
19 printf("Hello from the child process!\n");
(gdb) next
Hello from the child process!
20 for(int i = 0; i<10; i++)
(gdb) next
22 printf("Counter in child: %d\n", i);
(gdb) next
Counter in child: 0
20 for(int i = 0; i<10; i++)
(gdb) next
22 printf("Counter in child: %d\n", i);
(gdb) next
Counter in child: 1
20 for(int i = 0; i<10; i++)

388 Debugging Your Programs

(gdb) next
22 printf("Counter in child: %d\n", i);
(gdb) continue
Continuing.
Counter in child: 2
Counter in child: 3
Counter in child: 4
Counter in child: 5
Counter in child: 6
Counter in child: 7
Counter in child: 8
Counter in child: 9
[Inferior 2 (process 11689) exited normally]

How it works…
With set follow-fork-mode, we can tell GDB which process to follow when
the program forks. This is handy for debugging daemons that fork. You can set
follow-fork-mode to either parent or child. The default is parent. The
process that we don't follow will continue to run as usual.

There's more…
There's also follow-exec-mode, which tells GDB which process to follow if the
program calls an exec() function.

For more information about follow-exec-mode and follow-fork-mode, you
can use the help set follow-exec-mode and help set follow-fork-mode
commands inside GDB.

Debugging programs with multiple threads
It's possible to view threads in a program using GBD and also to jump between threads.
Knowing how to jump between the threads in a program will make threaded programs
easier to debug. Writing threaded programs can be hard, but with GDB it's easier to make
sure they are working correctly.

Getting ready
In this recipe, we'll use the first-threaded.c program from Chapter 11, Using
Threads in Your Programs. There's a copy of the source code in this chapter's GitHub
directory.

Debugging programs with multiple threads 389

You'll also need the GCC compiler.

How to do it…
In this recipe, we'll look at the threads from the first-threaded.c program
using GDB:

1. Let's start by compiling the program:

$> gcc -g -Wall -Wextra -pedantic -std=c99 \
> first-threaded.c -o first-threaded -lpthread

2. Before we run the program through the debugger, let's first run it to recap how the
program works:

$> ./first-threaded 990233331 9902343047
........
990233331 is not a prime number
...
......................
9902343047 is a prime number
Done!

3. Now that we know how the programs works, let's start it up in GDB:

$> gdb ./first-threaded

4. Let's set a breakpoint at main() as we have done previously. Then we run it with
the same two numbers:

(gdb) break main
Breakpoint 1 at 0x11e4: file first-threaded.c, line 17.
(gdb) run 990233331 9902343047
Starting program: /home/jack/ch12/code/first-threaded
990233331 9902343047
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/
libthread_db.so.1".

Breakpoint 1, main (argc=3, argv=0x7fffffffdbb8) at
first-threaded.c:17
17 if (argc != 3)

390 Debugging Your Programs

5. Now we move forward using the next command. Once a thread has started, GDB
will notify us with the text New thread:

(gdb) next
23 number1 = atoll(argv[1]);
(gdb) next
24 number2 = atoll(argv[2]);
(gdb) next
25 pthread_attr_init(&threadattr);
(gdb) next
26 pthread_create(&tid_progress, &threadattr,
(gdb) next
[New Thread 0x7ffff7dad700 (LWP 19182)]
28 pthread_create(&tid_prime1, &threadattr,
(gdb) next
[New Thread 0x7ffff75ac700 (LWP 19183)]
30 pthread_create(&tid_prime2, &threadattr,

6. Now we can print information about the current threads using the info threads
command. Notice that this will also tell us what function the threads are currently
executing. The number before the word Thread on each line is GDB's thread ID:

(gdb) info threads
 Id Target Id
Frame
* 1 Thread 0x7ffff7dae740 (LWP 19175) "first-threaded"
main (argc=3, argv=0x7fffffffdbb8)
 at first-threaded.c:30
 2 Thread 0x7ffff7dad700 (LWP 19182) "first-threaded"
0x00007ffff7e77720 in __GI___nanosleep
 (requested_time=requested_time@entry=0x7ffff7dacea0,
 remaining=remaining@entry=0x7ffff7dacea0) at ../
sysdeps/unix/sysv/linux/nanosleep.c:28
 3 Thread 0x7ffff75ac700 (LWP 19183) "first-threaded"
0x000055555555531b in isprime (
 arg=0x7fffffffdac8) at first-threaded.c:52

Debugging programs with multiple threads 391

7. Now, let's switch over to thread number 3, which is currently executing the
isprime function. We switch threads with the thread command:

(gdb) thread 3
[Switching to thread 3 (Thread 0x7ffff75ac700 (LWP
19183))]
#0 0x000055555555531b in isprime (arg=0x7fffffffdac8) at
first-threaded.c:52
52 if(number%j == 0)

8. While inside the thread, we can print the content of variables, move forward using
the next command, and so on. Here we also see that the other thread is starting:

(gdb) print number
$1 = 990233331
(gdb) print j
$2 = 13046
(gdb) next
.[New Thread 0x7ffff6dab700 (LWP 19978)]
47 for(j=2; j<number; j++)
(gdb) next
.52 if(number%j == 0)
(gdb) next
.47 for(j=2; j<number; j++)
(gdb) continue
Continuing.
.........
990233331 is not a prime number
[Thread 0x7ffff75ac700 (LWP 19183) exited]
...
......................
9902343047 is a prime number
Done!
[Thread 0x7ffff6dab700 (LWP 19978) exited]
[Thread 0x7ffff7dad700 (LWP 19182) exited]
[Inferior 1 (process 19175) exited normally]

392 Debugging Your Programs

How it works…
Just like we could follow a child process, we can follow a thread. It's a bit of a different
approach with threads, but still. Once each thread started, GDB notified us about it.
We could then print information about the currently running threads using the info
threads command. That command gave us a thread ID for each thread, its address,
and what frame or function it was currently on. We then jumped to thread 3 using the
thread command. Once we were inside the thread, we could print the content of the
number and j variables, move forward in the code, and so on.

There's more…
There are more things you could do with threads in GDB. To find more commands
regarding threads, you can use the following commands inside GDB:

• help thread

• help info threads

See also
There's a lot of information about GDB at https://www.gnu.org/software/gdb,
so check it out for more in-depth information.

Finding a simple memory leak with Valgrind
Valgrind is a neat program for finding memory leaks and other memory-related bugs. It
can even tell you if you put too much data inside an allocated memory area. These can all
be hard bugs to find without a tool like Valgrind. Even if a program leaks memory or puts
too much data in a memory area, it can still run fine for a long time. That's what makes
those bugs so hard to find. But with Valgrind, we can check the program for all sorts of
memory-related problems.

Getting started
For this recipe, you'll need the Valgrind tool installed on your computer. If you haven't
already installed it, you can follow the instructions listed in the Technical requirements
section of this chapter.

You'll also need the Make tool, the GCC compiler, and the Makefile from the Starting
GDB recipe.

https://www.gnu.org/software/gdb

Finding a simple memory leak with Valgrind 393

How to do it…
In this recipe, we'll write a program that allocates memory using calloc() but never
frees it with free(). We then run the program through Valgrind and see what it says
about it:

1. Write the following program and save it as leak.c. First, we create a pointer to
a character. Then we allocate 20 bytes of memory using calloc() and return its
address to c. Then we copy a string into that memory and print the content using
printf(). However, we never free the memory using free(), which we always
should:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 char *c;
 c = calloc(sizeof(char), 20);
 strcpy(c, "Hello!");
 printf("%s\n", c);
 return 0;
}

2. Compile the program:

$> make leak
gcc -g -Wall -Wextra -pedantic -std=c99 leak.c -o
leak

3. First, we run the program as we normally would. Everything works just fine:

$> ./leak
Hello!

4. Now, we run the program through Valgrind. Under HEAP SUMMARY, it will tell
us that there are 20 bytes still allocated when the program exits. Under LEAK
SUMMARY, we also see that there are 20 bytes definitely lost. What this means is that
we forgot to free the memory using free():

$> valgrind ./leak
==9541== Memcheck, a memory error detector
==9541== Copyright (C) 2002-2017, and GNU GPL'd, by
Julian Seward et al.

394 Debugging Your Programs

==9541== Using Valgrind-3.14.0 and LibVEX; rerun with -h
for copyright info
==9541== Command: ./leak
==9541==
Hello!
==9541==
==9541== HEAP SUMMARY:
==9541== in use at exit: 20 bytes in 1 blocks
==9541== total heap usage: 2 allocs, 1 frees, 1,044
bytes allocated
==9541==
==9541== LEAK SUMMARY:
==9541== definitely lost: 20 bytes in 1 blocks
==9541== indirectly lost: 0 bytes in 0 blocks
==9541== possibly lost: 0 bytes in 0 blocks
==9541== still reachable: 0 bytes in 0 blocks
==9541== suppressed: 0 bytes in 0 blocks
==9541== Rerun with --leak-check=full to see details of
leaked memory
==9541==
==9541== For counts of detected and suppressed errors,
rerun with: -v
==9541== ERROR SUMMARY: 0 errors from 0 contexts
(suppressed: 0 from 0)

5. Open up leak.c and add free(c); just before return 0;. Then, recompile
the program.

6. Rerun the program in Valgrind. This time, there won't be any bytes lost or in use
when the program exits. We also see that there have been two allocations, and they
were both freed:

$> valgrind ./leak
==10354== Memcheck, a memory error detector
==10354== Copyright (C) 2002-2017, and GNU GPL'd, by
Julian Seward et al.
==10354== Using Valgrind-3.14.0 and LibVEX; rerun with -h
for copyright info
==10354== Command: ./leak
==10354==
Hello!
==10354==
==10354== HEAP SUMMARY:
==10354== in use at exit: 0 bytes in 0 blocks

Finding buffer overflows with Valgrind 395

==10354== total heap usage: 2 allocs, 2 frees, 1,044
bytes allocated
==10354==
==10354== All heap blocks were freed -- no leaks are
possible
==10354==
==10354== For counts of detected and suppressed errors,
rerun with: -v
==10354== ERROR SUMMARY: 0 errors from 0 contexts
(suppressed: 0 from 0)

How it works…
The reason Valgrind said we had two allocations even though we only allocated one block
of memory is that other functions in the program have allocated memory.

At the end of the output from Valgrind, we also saw the text All heap blocks were freed,
meaning we have freed all memory using free().

Valgrind doesn't strictly require debugging symbols; we can test just about any program
for memory leaks. For example, we can run valgrind cat leak.c, and Valgrind will
check cat for memory leaks.

See also
There's a lot more you can do with Valgrind. Check out its manual page with man
valgrind. There's also a lot of useful information at https://www.valgrind.org.

Finding buffer overflows with Valgrind
Valgrind can also help us find buffer overflows. That is when we put more data in a buffer
than it can hold. Buffer overflows are the cause of many security bugs and are hard to
detect. But with Valgrind, it gets a little easier. It might not be 100% accurate at all times,
but it's a really good help along the way.

Knowing how to find buffer overflows will make your program more secure.

Getting ready
For this recipe, you'll need the GCC compiler, the Make tool, and the Makefile from the
Starting GDB recipe in this chapter.

https://www.valgrind.org

396 Debugging Your Programs

How to do it…
In this recipe, we'll write a small program that copies too much data into a buffer. We'll
then run the program through Valgrind and see how it points out the problem:

1. Write the following code in a file and save it as overflow.c. The program
allocates 20 bytes with calloc(), then copies a string of 26 bytes into that buffer.
It then frees up the memory using free():

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{
 char *c;
 c = calloc(sizeof(char), 20);
 strcpy(c, "Hello, how are you doing?");
 printf("%s\n", c);
 free(c);
 return 0;
}

2. Compile the program:

$> make overflow
gcc -g -Wall -Wextra -pedantic -std=c99 overflow.c
-o overflow

3. First, we run the program like we normally would. Most likely, we won't see any
problems with it. It will just work. That's why these kinds of bugs are so hard to find:

$> ./overflow
Hello, how are you doing

4. Now, let's run the program through Valgrind and see what it has to say about it:

$> valgrind ./overflow

Finding buffer overflows with Valgrind 397

Since the output of the preceding command is several pages long, it's been omitted
from the book. Notice that at the end, Valgrind says no leaks are possible. This is
because everything is freed as it should. But at the very end of the output, we see 14
errors from 4 contexts. And a bit further up in the output, we find a lot of text blocks
that look like this:

Invalid write of size 8
at 0x109199: main (overflow.c:9)
Address 0x4a43050 is 16 bytes inside a block of size 20
alloc'd
at 0x4837B65: calloc (vg_replace_malloc.c:752)
by 0x10916B: main (overflow.c:8)
Invalid write of size 2
at 0x10919D: main (overflow.c:9)
Address 0x4a43058 is 4 bytes after a block of size 20
alloc'd
at 0x4837B65: calloc (vg_replace_malloc.c:752)
by 0x10916B: main (overflow.c:8)

This a good indication that we overflowed the c buffer, especially the text 4 bytes
after a block of size 20 alloc'd. That means that we have written 4 bytes of data after
the 20 bytes we allocated. There are more lines like these, and they all point us
toward the overflow.

How it works…
Since the program writes data outside of the allocated memory, Valgrind will detect it
as invalid writes and invalid reads. We can even follow how many bytes are written after
the allocated memory and its addresses. This will make it even easier to find the problem
in the code. We might have allocated several buffers, but here we clearly see that it's the
buffer of 20 bytes that's overflowed.

There's more...
For a more detailed output, you can add -v to Valgrind, for example, valgrind
-v ./overflow. This will output several pages of detailed output.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Linux Device Driver Development

John Madieu

ISBN: 978-1-78934-204-8

• Explore and adopt Linux kernel helpers for locking, work deferral, and interrupt
management

• Understand the Regmap subsystem to manage memory accesses and work with the
IRQ subsystem

• Get to grips with the PCI subsystem and write reliable drivers for PCI devices

• Write full multimedia device drivers using ALSA SoC and the V4L2 framework

https://www.packtpub.com/product/mastering-linux-device-driver-development/9781789342048

Other Books You May Enjoy 401

Linux Kernel Programming

Kaiwan N Billimoria

ISBN: 978-1-78995-343-5

• Write high-quality modular kernel code (LKM framework) for 5.x kernels

• Configure and build a kernel from source

• Explore the Linux kernel architecture

• Get to grips with key internals regarding memory management within the kernel

• Understand and work with various dynamic kernel memory alloc/dealloc APIs

• Discover key internals aspects regarding CPU scheduling within the kernel

• Gain an understanding of kernel concurrency issues

https://www.packtpub.com/product/linux-kernel-programming/9781789953435

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
access mode

converting, between letters
and numeric 157, 158

access rights 160-163
access rights and ownership

access mode, converting between
letters and numeric 157, 158

file access mode 157
file access mode, in octal

number 158, 159
obtaining 153-157
setting 160
working 166

advanced Makefile
working 113
writing 106-112

anti-pattern 59
apt package manager 6
arguments 9
array 11, 323
ASCII table 47
assembly 97
atof() function 13
atoi() function 13

atol() function 13
atoll() function 13

B
Bash

job control, using in 194-196
binary data

reading, with file streams 179-181
writing, with file streams 179-181

binary program 3
bitwise AND 287
bitwise OR 287
buffer overflows

about 395
finding, with Valgrind 395-397

bugs 7, 379
build-essential package 18

C
calloc() function 318
cancelability state 345
cancelability type 345
cancellation point 345
CentOS 83

404 Index

characters 11
child process 63, 206, 383
client

building, for daemon 294-299
command line 11
common errors

handling 120-124
compilation

about 95
stages 93-97

compiler 3
conditional variables

using 361-367
connect() system call 337
controlling terminal 225
C program

writing, for Linux 9, 10
C source code 3
C-standards

about 73
modifying 73-77
reference link 322
working 76

cURL library
reference link 254

D
daemon

about 220
creating 220-226
service, disabling 239-242
service, enabling 239-242
unit file, writing for 236-238

data
piping, to program 52

data blocks 141

Debian 83
Debian-based distributions 3
Debian-based systems

GCC, installing 4
GDB, installing 7
GNU Make, installing 4
installation, verifying 4, 5, 8
Valgrind, installing 7

debugging symbols 370
debugging tools 7
double float 72
double-fork technique 225
dprintf() function 309
dynamically linked libraries (DLLs) 69
dynamic libraries 261
dynamic library

about 252
creating 261-263
installing, on system 263, 265
using, in program 266, 267
working 262, 263

E
echoing 286
End Of File (EOF) 46, 273
environment variable

about 12
reading 59, 61, 62

errno
about 124, 136
using, with perror() function 132, 133
using, with strerror() function 129, 131

errno macros
handling 127, 129
working 129

Index 405

error handling
about 117, 124-126
need for, in system

programming 116-119
working 126

error value
returning 134, 135
working 135

escape sequence 289
execl() function

used, for replacing program 202-204
working 204

execution 12
exit code 10, 28

F
feature test macros

about 86
defining 86-92

Fedora 83
Fedora-based distributions 3
Fedora-based systems

GCC, installing 4
GDB, installing 8
GNU Make, installing 4
installation, verifying 4, 5, 8
Valgrind, installing 8

file
moving, with fseek() function 186-188
moving, with lseek() function 182-185
result, redirecting to 52-58

file access mode
about 157
in octal number 158, 159

file descriptors
about 37, 38, 43, 167, 309, 319
used, for reading text from files 170-173
used, for writing text to files 167, 169

files
creating 148, 150, 151
deleting 151-153

file streams
about 43, 174
used, for reading binary data 179-181
used, for reading text from files 177, 178
used, for writing binary data 179-181
used, for writing text to files 174-176

filesystem
about 139
learning 139-142

filters 38
First In, First Out (FIFO)

about 302
receiver program, building 309-311
sender program, building 305-309
using, in shell 302-305
working 304

follow-exec-mode 388
follow-fork-mode 388
fork() function

working 210
for() loop 12
free() function 318
fseek() function

about 182
used, for moving file 186-188

function bodies 11
function prototype 11, 351

406 Index

G
GCC options

used, for writing generic
Makefile 102, 103

GDB
about 8
installing 7

generic Makefile
writing, with GCC options 102, 103

getc() 311
getgrnam() function 167
getopt() function 16
getpwnam() function 167
Git

installing, to download
code repository 3

global variables 63
GNU Compiler Collection (GCC)

installing 3
reference link 263
used, for linking libraries 66

GNU debugger (GDB)
about 8, 370
basics 370, 375
built-in help 375
function 375-378
function, working 379
installing 7
memory, investigating 379-381
reference link 392
set follow-fork-mode, using 388
used, for debugging program 383-387
used, on working program 371-374

GNU Make
installing 3

GNU Project 85
Group-ID (GID) 164

H
hard links

about 142
creating 142-147

header files 11, 83
help message function 17
help texts 9
HyperText Transfer Protocol (HTTP) 253

I
information

viewing, in built-in manual page 18, 19
inode 139
inode information

reading 139-142
Institute of Electrical and Electronics

Engineers (IEEE) 85
Internet Protocol (IP) 254
inter-process communication (IPC) 294
ioctl() function 289, 292
I/O errors 34
IPC signals

using 294-299

J
job control

using, in Bash 194-196
journal

reading 247-249

K
K Desktop Environment (KDE) 340
kill() system call 299
kilometers per hour (mph) 48

Index 407

L
libraries

linking, with GCC 66
need for 252-255
working 255

link count 142
linker 97, 268
Linux

C program, writing for 9, 10
Linux-specific header files 83-85
Linux system calls 83
local variables 63
lseek() function

used, for moving file 182-185

M
macros 126
Makefile

about 102-114
working 106
writing 103-105

Make tool
about 99
compiling with 99-101
working 101

malloc() function 318
man-db 18
man pages 18
manual

searching, for information 20
math library

about 67
linking 67

memcpy() function 322

memory leak
about 7, 392
finding, with Valgrind 392-395

memset() function 318
message queues

about 311
receiver program, creating 314-318
sender program, creating 311-314

metadata 142
miles per hour (mph) 48
mkfifo command 305
mkfifo() function 309
mmap() function 322
modern daemon

creating, for systemd 242-245
mq_attr struct 318
multiple threads

used, for debugging program 388-392
munmap() function 322
mutex

about 363
race condition, avoiding with 354-358

mutex program
making, efficient 359-361

N
named pipe 302
new-style daemon

creating 245, 246, 247
null character 46

O
object files 97
octal number

about 157
file access mode 158, 159

408 Index

orphan
about 217
overview 217- 220

ownership 163-165

P
parent process 12, 29, 63, 207, 383
Parent Process ID (PPID) 219
password prompts

echo, disabling 286-288
perror() function

errno, using with 132, 133
pipe

communicating with 300, 301
pipe-friendly program

writing 48-52
pipes

used, for connecting programs 38-40
pipe() system call 302
pointer 139
Position-Independent Code (PIC) 69, 261
POSIX functions 83
POSIX message queues 311
POSIX Programmer’s Manual 85
POSIX standards 43
POSIX threads 341
pow() function 72
preprocessor 95
print error 132
processes

controlling, with signals 196-201
creation, exploring 190, 191
forking 204-206
running 191, 192
starting, with system() function 210-212
terminating, with signals 196-201
working 193

Process Group ID (PGID) 220
process ID (PID) 80
program

compiling 17
debugging, with multiple

threads 388-392
executing, in forked process 207-210
replacing, with execl() function 202-204
running 17
writing, to parses

command-line options 13-16
programs

connecting, with pipes 38-40
exiting, with relevant return value 29-33
reading, from stdin 44, 46
using 47

Pseudo-TeletYpewriter (PTY)
creating 282-285
investigating 276-278

pseudo-terminal master (PTM) 282
pseudo-terminal slave (PTS) 274
pthreads 341
putchar() 311

R
race condition

avoiding, with mutex 354-359
causing 351, 353

random-access memory (RAM) 80
Realtime Extensions library

(rt library) 313
Red Hat 83
Red Hat Package Manager (RPM) 6
result

redirecting, to file 52-58

Index 409

return values
about 9, 12, 24
purpose 25-28
reading 26-28
reading, from threads 346-350
used, for exiting programs 29-33

root user 3

S
sanity check 12
sections

investigating 19
Session ID (SID) 219, 220
shared library

about 67
creating 68, 69
linking, in home directory 69-72

shared memory (shm)
about 319, 323
program, testing 326
reader program, creating 325, 326
used, for communicating with

child process 319-322
used, for communicating with

parent process 319-322
using, between unrelated

processes 323, 327
writer program, creating 323-325

shell 12
shell script 25
shm_open() function 328
shm_unlink() function 328
signal 361
signal handler

about 201
implementing 226-231

sockaddr 333
sockaddr_in struct 333
sockaddr_un struct 333
socket() function 333
soft links

about 142
creating 142-147

source code 11
standard C library 73
standard input-output 11
standard library 11
standard library functions 18
statically linked program

about 268
compiling 268-270
working 270

static library
about 252, 256
creating 255-257
using 257-260
working 257, 260

stderr
redirecting 34-37
text, writing to 41-43

stdin
programs, reading from 44, 46
redirecting 34-37

stdout
redirecting 34-37
text, writing to 41-43

streams buffering
reference link 176

strerror() function
about 129
errno, using with 129, 131

strings 11, 379

410 Index

stty
terminal settings, modifying

with 275, 276
subshells 63
symbolic link (symlink) 38, 146
syslog 234
system calls

about 78
avoiding 78-82
using 78-82
working 82

systemd
exploring 234-236
modern daemon, creating for 242-245
working 235

system() function
used, for starting processes 210-212

system programming
error handling, need for 116-119

System V message queues 311
SysV 243
SysV-style daemon 243

T
target 106
TCP/IP sockets 328
Teletype (TTT) 192
TeleTYpewriter (TTY)

examining 279-281
investigating 276-278

terminal device
writing to 276-279

terminal information
viewing 272-274

terminal multiplexer 226

terminal settings
modifying, with stty 275, 276

terminal size
reading 289, 291

terminate (TERM) 196
test command 25
test program 27
text

reading, from files with file
descriptors 170-173

reading, from files with file
streams 177, 178

writing, to files with file
descriptors 167, 169

writing, to files with file streams 174-176
thread program

writing 340-345
threads

about 388
return values, reading from 346-350

timestamp
about 148
updating 148-151

U
Ubuntu 84
undefined behavior 88
unit file

writing, for daemon 236-238
Unix sockets

about 328
client, creating 333-337
server, creating 328-333

Unix-specific header files 83-85
unlink() system calls 153
User ID (UID) 164, 219

Index 411

V
Valgrind

about 8, 392
installing 7
reference link 395
used, for finding buffer

overflows 395-397
used, for finding memory leak 392-395

variables
modifying, at runtime 381, 382
set command, using 383

W
wall program 279
while loop 17

X
XOPEN standard 16
xterm 61

Z
zombie process

about 212
creating 212-216
working 216

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting the
Necessary Tools
and Writing
Our First Linux Programs
	Technical requirements
	Installing Git to download the code repository

	Installing GCC and GNU Make
	Getting ready
	How to do it…
	How it works…

	Installing GDB and Valgrind
	Getting ready
	How to do it…
	How it works…

	Writing a simple C program for Linux
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing a program that parses command-line options
	Getting ready
	How to do it…
	How it works…

	Looking up information in the built-in manual page
	Getting ready
	How to do it…
	How it works…
	There's more…

	Searching the manual for information
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 2: Making Your Programs Easy to Script
	Technical requirements
	Return values and how to read them
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Exiting a program with a relevant return value
	Getting ready
	How to do it…
	How it works…
	There's more…

	Redirecting stdin, stdout, and stderr
	Getting ready
	How to do it…
	How it works…
	There's more…

	Connecting programs using pipes
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Writing to stdout and stderr
	How to do it…
	How it works…
	There's more…

	Reading from stdin
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing a pipe-friendly program
	Getting ready
	How to do it…
	How it works…
	There's more…

	Redirecting the result to a file
	Getting ready
	How to do it…
	How it works…
	There's more…

	Reading environment variables
	Getting ready
	How to do it…
	How it works…

	Chapter 3: Diving Deep into
C in Linux
	Technical requirements
	Linking against libraries using GCC
	Getting ready
	How to do it…
	How it works…
	There's more…

	Changing C standards
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using system calls – and when not to use them
	Getting ready
	How to do it…
	How it works…
	There's more…

	Getting information about Linux- and
Unix-specific header files
	Getting ready
	How to do it…
	How it works…
	There's more…

	Defining feature test macros
	Getting ready
	How to do it…
	How it works…
	There's more…

	Looking at the four stages of compilation
	Getting ready
	How to do it…
	How it works…

	Compiling with Make
	Getting ready
	How to do it…
	How it works…

	Writing a generic Makefile with GCC options
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing a simple Makefile
	Getting ready
	How to do it…
	How it works…

	Writing a more advanced Makefile
	Getting ready
	How to do it…
	How it works…

	Chapter 4: Handling Errors in Your Programs
	Technical requirements
	Why error handling is important in system programming
	Getting ready
	How to do it…
	How it works…

	Handling some common errors
	Getting ready
	How to do it…
	How it works…

	Error handling and errno
	Getting ready
	How to do it…
	How it works…

	Handling more errno macros
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using errno with strerror()
	Getting ready
	How to do it…
	There's more…

	Using errno with perror()
	Getting ready
	How to do it…
	There's more…

	Returning an error value
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 5: Working with File I/O and Filesystem Operations
	Technical requirements
	Reading inode information and learning the filesystem
	Getting ready
	How to do it…
	How it works…

	Creating soft links and hard links
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating files and updating the timestamp
	Getting ready
	How to do it…
	How it works…
	There's more…

	Deleting files
	Getting ready
	How to do it…
	How it works…

	Getting access rights and ownership
	Getting ready
	How to do it…
	How it works…

	Setting access rights and ownership
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing to files with file descriptors
	Getting ready
	How to do it…
	How it works…
	There's more…

	Reading from files with file descriptors
	Getting ready
	How to do it…
	How it works…
	There's more…

	Writing to files with streams
	Getting ready
	How to do it…
	How it works…
	See also

	Reading from files with streams
	Getting ready
	How to do it…
	How it works…
	There's more…

	Reading and writing binary data with streams
	Getting ready
	How to do it…
	How it works…
	There's more…

	Moving around inside a file with lseek()
	Getting ready
	How to do it…
	How it works…

	Moving around inside a file with fseek()
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 6: Spawning Processes and Using Job Control
	Technical requirements
	Exploring how processes are created
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using job control in Bash
	Getting ready
	How to do it…
	How it works…

	Controlling and terminating processes using signals
	Getting ready
	How to do it…
	How it works…
	See also

	Replacing the program in a process with execl()
	Getting ready
	How to do it…
	How it works…
	See also

	Forking a process
	Getting ready
	How to do it…
	How it works…
	There's more…

	Executing a new program in a forked process
	Getting ready
	How to do it…
	How it works…

	Starting a new process with system()
	Getting ready
	How to do it…
	How it works…

	Creating a zombie process
	Getting ready
	How to do it…
	How it works…
	There's more…

	Learning about what orphans are
	Getting ready
	How to do it…
	How it works…
	See also

	Creating a daemon
	Getting ready
	How to do it…
	How it works…
	There's more…

	Implementing a signal handler
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 7: Using systemd to Handle Your Daemons
	Technical requirements
	Getting to know systemd
	Getting ready
	How it works...
	There's more...
	See also

	Writing a unit file for a daemon
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Enabling and disabling a service – and starting and stopping it
	Getting ready
	How to do it...
	How it works...

	Creating a more modern daemon for systemd
	Getting ready
	How to do it...
	How it works...
	See also

	Making the new daemon a systemd service
	Getting ready
	How to do it...
	How it works...

	Reading the journal
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 8: Creating Shared Libraries
	Technical requirements
	The what and why of libraries
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating a static library
	Getting ready
	How to do it…
	How it works…
	See also

	Using a static library
	Getting ready
	How to do it…
	How it works…

	Creating a dynamic library
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Installing the dynamic library on the system
	Getting ready
	How to do it…
	How it works…

	Using the dynamic library in a program
	Getting ready
	How to do it…
	How it works…
	See also

	Compiling a statically linked program
	Getting ready
	How to do it…
	How it works…

	Chapter 9: Terminal I/O and Changing Terminal Behavior
	Technical requirements
	Viewing terminal information
	Getting ready
	How to do it…
	How it works…
	See also

	Changing terminal settings with stty
	Getting ready
	How to do it…
	How it works…

	Investigating TTYs and PTYs and writing to them
	How to do it…
	How it works…
	There's more…
	See also

	Checking if it's a TTY
	Getting ready
	How to do it…
	How it works…
	See also

	Creating a PTY
	Getting ready
	How to do it…
	How it works…
	See also

	Disabling echo for password prompts
	Getting ready
	How to do it…
	How it works…
	There's more…

	Reading the terminal size
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 10: Using Different Kinds of IPC
	Technical requirements
	Using signals for IPC – building a client for the daemon
	Getting ready
	How to do it…
	How it works…
	See also

	Communicating with a pipe
	Getting ready
	How to do it…
	How it works…
	See also

	FIFO – using it in the shell
	Getting ready
	How to do it…
	How it works…
	See also

	FIFO – building the sender
	Getting ready
	How to do it…
	How it works…
	See also

	FIFO – building the receiver
	Getting ready
	How to do it…
	How it works…
	See also

	Message queues – creating the sender
	Getting ready
	How to do it…
	How it works…
	See also

	Message queues – creating the receiver
	Getting ready
	How to do it…
	How it works…
	See also

	Communicating between child and parent with shared memory
	Getting ready
	How to do it…
	How it works…
	See also

	Using shared memory between unrelated processes
	Getting ready
	How to do it…
	How it works…
	See also

	Unix socket – creating the server
	Getting ready
	How to do it…
	How it works…
	See also

	Unix socket – creating the client
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 11: Using Threads in Your Programs
	Technical requirements
	Writing your first threaded program
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Reading return values from threads
	Getting ready
	How to do it…
	How it works…

	Causing a race condition
	Getting ready
	How to do it…
	How it works…

	Avoiding race conditions with mutexes
	Getting ready
	How to do it…
	How it works..
	See also

	Making the mutex program more efficient
	Getting ready
	How to do it…
	How it works…

	Using condition variables
	Getting ready
	How it works…
	See also

	Chapter 12: Debugging Your Programs
	Technical requirements
	Starting GDB
	Getting ready
	How to do it…
	How it works…
	There's more…

	Stepping inside a function with GDB
	Getting ready
	How to do it…
	How it works…

	Investigating memory with GDB
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also

	Modifying variables during runtime
	Getting ready
	How to do it…
	How it works…

	Using GDB on a program that forks
	Getting ready
	How to do it…
	How it works…
	There's more…

	Debugging programs with multiple threads
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Finding a simple memory leak with Valgrind
	Getting started
	How to do it…
	How it works…
	See also

	Finding buffer overflows with Valgrind
	Getting ready
	How to do it…
	How it works…
	There's more...

	Why subscribe?

	Other Books You May Enjoy
	Index

