

Red Hat
Enterprise Linux 8
Administration

Master Linux administration skills and prepare for
the RHCSA certification exam

Miguel Pérez Colino

Pablo Iranzo Gómez

Scott McCarty

BIRMINGHAM—MUMBAI

Red Hat Enterprise Linux 8 Administration
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

The content reflects the views of the authors and does not reflect the views of the authors'
employer (Red Hat, Inc.). This work has no connection to Red Hat, Inc. and is not
endorsed or supported by Red Hat, Inc.

Group Product Manager: Vijin Boricha
Publishing Product Manager: Shrilekha Inani
Senior Editor: Shazeen Iqbal
Content Development Editor: Romy Dias
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Shagun Saini
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Shankar Kalbhor

First published: September 2021

Production reference: 1160921

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-982-9

www.packt.com

http://www.packt.com

To all the people contributing to and being part of the open source
community, building it one piece at a time, pushing its boundaries

to make huge things.

Contributors

About the authors
Miguel Pérez Colino is an experienced IT enthusiast with a clear orientation towards
open source software and open standards. He has an extensive background in IT, from
operations to the architecture of large deployments and from identifying and prototyping
solutions to defining IT strategies. He has delivered large projects, including NATO
interoperable command and control systems in defense, extensive large deployments in
retail (>15,000 devices), and digital transformation in the finance sector.

Now, as part of the Cloud Platforms Business Unit of Red Hat, he works as a senior
principal product manager building tools and defining methodologies to ease
modernization and migration for customers, enabling the use of open source.

I want to thank my family, Sonia, Miguel, and Matilde, for the support
and patience they have had with me during the months that I have been

writing this book. Also, to Pablo Iranzo for being part of this adventure, and
without whom we would not have been able to finish it. The whole Packt
editing team has helped this first-time book authors immensely, as well as
Scott and Gunnar, and I'd like to thank all of them for their contributions.

Pablo Iranzo Gómez is a software engineer whose Linux exposure began while studying
physics, a period during which he was also involved in LUGs and some projects related to
HPC clusters and system administration and consultancy.

Currently, he is a senior software engineer in Red Hat's SolEng department, focusing
on OpenShift, with experience in consulting, cloud technical account management,
OpenStack software maintenance in industries such as hospitality, retail, airlines,
government, telco, 5G, partners, IT covering system administration and automation,
virtualization, PaaS, support, the cloud, and so on, having a broad understanding of
different views, needs, and risks across the industry.

Pablo was born in and lives in Valencia, Spain with his family.

I want to thank my wife, Eva, for all the support she offered me enrolling in
this endeavor; to my kid, Pau, for all the happy moments that empowered

me to drive forward; to Javier, for the countless hours of unconditional
understanding; and I want also to say thanks to Miguel for offering me to
help him with this; and, of course, the whole Packt team, who have helped,

guided, and advised me during the whole process.

At Red Hat, Scott McCarty is a principal product manager for the container subsystem
team, which enables key product capabilities in OpenShift Container Platform and Red
Hat Enterprise Linux. His focus areas include container runtimes, tools, and images.

Scott is a social media start-up veteran, an e-commerce old-timer, and a weathered
government research technologist, with experience across a variety of companies and
organizations, from seven-person start-ups to 15,000-employee technology companies.
This has culminated in a unique perspective on open source software development,
delivery, and maintenance.

First, I would like to thank all of the people in the open source community
that have contributed to creating code and documentation that helps
us all achieve more. I would like to thank all of the people that build,

distribute, document, and release Red Hat Enterprise Linux and bring it
into environments that I never thought Linux could reach. Finally, I'd also
like to thank all of the sysadmins out there that run all of this software to

prevent downtime and move projects forward.

About the reviewer
Matthew Bach is a senior specialist solutions architect at Red Hat, focused on the
emerging technologies portfolio, such as OpenShift, middleware, and Ansible for DoD
customers. He has been in the IT industry for over 17 years and is a 13-year US Navy
information systems technician veteran. Matthew currently holds several Red Hat and
other security-related certifications. When Matthew is not working with his customers
on exciting technologies, he likes to spend time with his family, or on a mountain bike
exploring the many trails Virginia has to offer.

To my wife, Ashley, with love: Thank you for your love, support, and
patience through all of my endeavors in the endless pursuit of this career.

I can think of no one I'd rather be with for the rest of my days than you and
our five awesome kids.

To Maurice Carroll, thank you for the countless hours you spent cultivating
an interest in computers with a teenage grandson, and my very first box of

Red Hat Linux. You lit a spark in me that remains today.

Table of Contents
Preface

Section 1: Systems Administration –
Software, User, Network, and Services
Management

1
Installing RHEL8

Technical requirements 4
Obtaining RHEL software and a
subscription 4
Installing RHEL8 8

Preparation for a physical server
installation 8
Preparation for a virtual server
installation 11
Running an RHEL installation 16

Summary 38

2
RHEL8 Advanced Installation Options

Technical requirements 40
Automating RHEL deployments
with Anaconda 40
Deploying RHEL on the cloud 46

Installation best practices 53
Summary 56

viii Table of Contents

3
Basic Commands and Simple Shell Scripts

Logging in as a user and
managing multi-user
environments 58
Using the root account 59
Using and understanding the
command prompt 60

Changing users with the su
command 60
Understanding users, groups,
and basic permissions 62
Users 63
Groups 65
File permissions 66

Using the command line,
environment variables,
and navigating through the
filesystem 68
Command line and environment
variables 68
Navigating the filesystem 70
Bash autocomplete 71
Filesystem hierarchy 73

Understanding I/O redirection
in the command line 75
Filtering output with grep and
sed 78
Listing, creating, copying, and
moving files and directories,
links, and hard links 82
Directories 82
Copying and moving 83
Symbolic and hard links 86

Using tar and gzip 88
Creating basic shell scripts 90
for loops 92
if conditionals 94
Exit codes 96

Using system documentation
resources 96
Man pages 96
Info pages 99
Other documentation resources 100

Summary 101

4
Tools for Regular Operations

Technical requirements 104
Managing system services with
systemd 104
Systemd unit file structure 107
Managing services to be started and
stopped at boot 109
Managing boot targets 110

Scheduling tasks with cron and
systemd 113
System-wide crontab 114
User crontab 115
Systemd timers 116

Table of Contents ix

Learning about time
synchronization with chrony
and NTP 117
NTP client 118
NTP server 121

Checking for free resources –
memory and disk (free and df) 122
Memory 123
Disk space 124

CPU 125
Load average 126
Other monitoring tools 127

Finding logs, using journald,
and reading log files, including
log preservation and rotation 132
Log rotation 134

Summary 137

5
Securing Systems with Users, Groups, and Permissions

Creating, modifying, and
deleting local user accounts
and groups 140
Managing groups and reviewing
assignments 144
Adjusting password policies 145
Configuring sudo access for
administrative tasks 150
Understanding sudo configuration 151

Using sudo to run admin commands 152
Configuring sudoers 154

Checking, reviewing, and
modifying file permissions 155
Using special permissions 162
Understanding and applying Set-UID 162
Understanding and applying Set-GID 163
Using the sticky bit 164

Summary 166

6
Enabling Network Connectivity

Technical requirements 168
Exploring network
configuration in RHEL 168
Getting to know the
configuration files and
NetworkManager 170
Configuring network interfaces
with IPv4
and IPv6 173

IPv4 and IPv6... what does that mean? 173
Configuring interfaces with nmtui 174
Configuring interfaces with nm-
connection-editor 177
Configuring interfaces with nmcli 180
Configuring interfaces with text files 183

Configuring hostname and
hostname resolutions (DNS) 186

x Table of Contents

Overview of firewall
configuration 190
Configuring the firewall 192

Testing network connectivity 194
Summary 196

7
Adding, Patching, and Managing Software

RHEL subscription registration
and management 198
Managing repositories and
signatures with YUM/DNF 205

Doing software installations,
updates, and rollbacks with
YUM/DNF 215
Creating and syncing
repositories with createrepo
and reposync 226
Understanding RPM internals 232
Summary 233

Section 2: Security with SSH, SELinux,
a Firewall, and System Permissions

8
Administering Systems Remotely

Technical requirements 238
SSH and OpenSSH overview
and base configuration 238
OpenSSH server 239
OpenSSH client 241

Accessing remote systems
with SSH 242
Key-based authentication
with SSH 244
SSH agent 248

SCP/rsync – remote file
management 251
Transferring files with an OpenSSH
secure file copy 252
Transferring files with sftp 254
Transferring files with rsync 256

Advanced remote
management – SSH tunnels
and SSH redirections 261
Remote terminals with tmux 263
Summary 266

Table of Contents xi

9
Securing Network Connectivity with firewalld

Introduction to the RHEL
firewall – firewalld 268
Enabling firewalld in the
system and reviewing the
default zones 269
Reviewing the different configuration
items under firewalld 272

Enabling and managing
services and ports 276
Creating and using service
definitions for firewalld 282
Configuring firewalld with
the web interface 284
Summary 289

10
Keeping Your System Hardened with SELinux

Technical requirements 292
SELinux usage in enforcing and
permissive modes 292
Reviewing the SELinux context
for files and processes 296
Tweaking the policy with
semanage 300

Restoring changed file
contexts to the default policy 303
Using SELinux Boolean
settings to enable services 305
SELinux troubleshooting
and common fixes 307
Summary 311

11
System Security Profiles with OpenSCAP

Getting started with OpenSCAP
and discovering system
vulnerabilities 314

Using OpenSCAP with security
profiles for OSPP and PCI DSS 321
Scanning for OSPP compliance 324
Scanning for PCI DSS compliance 327

Summary 329

xii Table of Contents

Section 3: Resource Administration
– Storage, Boot Process, Tuning, and
Containers

12
Managing Local Storage and Filesystems

Technical requirements 334
Let's start with a definition 334
A bit of history 334

Partitioning disks (MBR and
GPT disks) 336

Formatting and mounting
filesystems 343
Setting default mounts
and options in fstab 346
Using network filesystems
with NFS 349
Summary 350

13
Flexible Storage Management with LVM

Technical requirements 352
Understanding LVM 356
Creating, moving, and removing
physical volumes 357
Combining physical volumes
into volume groups 363
Creating and extending logical
volumes 365

Adding new disks to a volume
group and extending a logical
volume 368
Removing logical volumes,
volume groups,
and physical volumes 374
Reviewing LVM commands 379
Summary 381

14
Advanced Storage Management with Stratis and VDO

Technical requirements 384
Understanding Stratis 384
Installing and enabling Stratis 385
Managing storage pools and
filesystems with Stratis 387

Preparing systems to use VDO 391
Creating a VDO volume 392
Assigning a VDO volume to an
LVM volume 395

Table of Contents xiii

Testing a VDO volume and
reviewing the stats 396

Summary 399

15
Understanding the Boot Process

Understanding the boot
process – BIOS and UEFI
booting 402
Working with GRUB, the
bootloader, and initrd system
images 404

Managing the boot sequence
with systemd 410
Intervening in the boot process
to gain access to a system 413
Summary 416

16
Kernel Tuning and Managing Performance Profiles with
tuned

Technical requirements 418
Identifying processes, checking
memory usage, and killing
processes 418

Adjusting kernel scheduling
parameters to better manage
processes 424
Installing tuned and
managing tuning profiles 427
Creating a custom tuned
profile 431
Summary 434

17
Managing Containers with Podman, Buildah, and Skopeo

Technical requirements 436
Introduction to containers 436
Installing container tools 438

Running a container using
Podman and UBI 439
Basic container management – pull,
run, stop, and remove 440

Attaching persistent storage to
a container 443
Deploying a container on a production
system with systemd 444
Building a container image using
a Dockerfile or Containerfile 445
Configuring Podman to search registry
servers 446
Summary of Podman options 448

xiv Table of Contents

When to use Buildah and
Skopeo 448
Building container images
with Buildah 449

Inspecting a remote container
with Skopeo 451

Summary 451

Section 4: Practical Exercises

18
Practice Exercises – 1

Technical requirements 455
Tips for the exercise 456

Practice exercise 1 457
Exercise 1 resolution 459

19
Practice Exercise – 2

Technical requirements 477
Tips for the exercise 478

Practice exercise – 2 478
Answers to practice exercise 2 480

Other Books You May Enjoy
Index

Preface
Linux is everywhere, from personal devices to the largest supercomputers, from the
computer labs at universities to Wall Street or the International Space Station, and
even Mars! Red Hat Enterprise Linux (RHEL for short) is the Linux distribution most
used in enterprise environments and knowing how to use it is a key skill for anyone in
technology. No matter whether you are completely into managing infrastructure or you
are a developer interested in knowing more about the platform you want to deploy on,
learning about Linux – and, more precisely, about RHEL – will help you be more effective
and could even boost your career.

In this book, we cover the basic RHEL administration skills from a very practical
perspective, providing examples and tips that we have learned from our experience in
"the trenches." You will be able to follow it from beginning to end, being able to practice
with each step while learning about how things are built and why they behave as they do.

We hope you enjoy this book, that you make the most of it, and that you end up, after
reading it, with a strong foundation of RHEL administration skills. That's what we
wrote it for.

Enjoy reading ... and practicing!

Who this book is for
Anyone that aspires to build and work on IT infrastructures using Linux will benefit
from this book as a reference for different useful tasks, tips, and best practices. It will
help anyone seeking to pass the Red Hat Certified Systems Administrator (RHCSA)
exam, although it will be no substitute for the official training, in which labs and
specially crafted tests will be run during the whole process. The scope of the book is
adjusted to the RHCSA, extending it with advice from real-world experience and many
practical examples.

xvi Preface

What this book covers
Chapter 1, Installing RHEL8, covers the installation of RHEL, from obtaining the software
and the subscriptions to the installation of the system itself.

Chapter 2, RHEL8 Advanced Installation Options, introduces advanced use cases for the
installer, including deploying instances in the cloud and automating the installation.

Chapter 3, Basic Commands and Simple Shell Scripts, explains the daily commands
that will be used during system administration, and how they can be automated via
shell scripting.

Chapter 4, Tools for Regular Operations, shows which simple tools are available in our
system that can be used for regular daily operations such as starting or enabling a system
service or reviewing what is going on in the system through logs.

Chapter 5, Securing Systems with Users, Groups, and Permissions, covers how to manage
users, groups, and permissions in any Linux system, with some specifics on Red Hat
Enterprise Linux.

Chapter 6, Enabling Network Connectivity, goes through the steps to connect a system to
the network and the possible ways it can be configured.

Chapter 7, Adding, Patching, and Managing Software, reviews the steps to add, remove,
and update can be managed in our system, including examples for upgrades and rollbacks.

Chapter 8, Administering Systems Remotely, covers how to remotely connect to your
system in order to be more effective. It includes using ssh connections to create keys
and using the terminal multiplexer (tmux).

Chapter 9, Securing Network Connectivity with firewalld, instructs you on how the network
firewall configuration works in RHEL and how to properly manage it, including managing
zones, services, and ports.

Chapter 10, Keeping Your System Hardened with SELinux, covers the usage and basic
troubleshooting of SELinux.

Chapter 11, System Security Profiles with OpenSCAP, explains how to run security profiles
with OpenSCAP and check compliance in RHEL with typical regulations.

Chapter 12, Managing Local Storage and Filesystems, covers filesystem creation, mount
points, and general storage management.

Chapter 13, Flexible Storage Management with LVM, explains how LVM empowers more
flexible storage management by being able to add disks and extend logical volumes.

Preface xvii

Chapter 14, Advanced Storage Management with Stratis and VDO, introduces VDO and
how it can be used in our system to deduplicate storage, as well as using Stratis to manage
storage more easily.

Chapter 15, Understanding the Boot Process, explains how the system boots and the details
that make it important.

Chapter 16, Kernel Tuning and Managing Performance Profiles with tuned, explains how
kernel tunning works and how to use tuned for predefined profile usage.

Chapter 17, Managing Containers with Podman, Buildah, and Skopeo, covers containers
and tools for managing and building them.

Chapter 18, Practice Exercises – 1, allows you to test your acquired knowledge.

Chapter 19, Practice Exercises – 2, provides more complex testing of your acquired
knowledge.

To get the most out of this book
All software requirements will be indicated in the chapters. Note that this book assumes
that you have access to a physical or virtual machine, or have access to the internet to
create a cloud account, in order to perform the operations that the book will guide you
through.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

xviii Preface

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-
Administration. If there's an update to the code, it will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800569829_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded RHEL8.iso disk image file as another disk
in your system."

A block of code is set as follows:

#!/bin/bash

echo "Hello world"

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

[default]

branch = main

repo = myrepo

username = bender

protocol = https

https://static.packt-cdn.com/downloads/9781800569829_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800569829_ColorImages.pdf

Preface xix

Any command-line input or output is written as follows:

$ mkdir scripts

$ cd scripts

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Select
System info from the Administration panel."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com

xx Preface

Share Your Thoughts
Once you've read Red Hat Enterprise Linux 8 Administration, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1800569823

Section 1:
Systems Administration

– Software, User,
Network, and Services

Management
Deploying and configuring systems and keeping them up to date is the base task that
every system administrator performs in their day-to-day work. In this section, the core
parts of doing so are explored in a restructured way so that you can follow the tasks one by
one and learn, practice, and understand them properly.

The following chapters are included in this section:

• Chapter 1, Installing RHEL8

• Chapter 2, RHEL8 Advanced Installation Options

• Chapter 3, Basic Commands and Simple Shell Scripts

• Chapter 4, Tools for Regular Operations

• Chapter 5, Securing Systems with Users, Groups, and Permissions

• Chapter 6, Enabling Network Connectivity

• Chapter 7, Adding, Patching, and Managing Software

1
Installing RHEL8

The first step to start working with Red Hat Enterprise Linux, or RHEL, is to have it
running. Whether in your own laptop as the main system, in a virtual machine, or in a
physical server, its installation is necessary in order to get your hands on the system you
want to learn to use. It is highly encouraged that you get yourself a physical or virtual
machine to use the system while reading this book.

In this chapter, you will deploy your own RHEL8 system, so as to be able to follow all the
examples mentioned in this book as well as discover more about Linux.

The topics to be covered in this chapter are as follows:

• Obtaining RHEL software and a subscription

• Installing RHEL8

4 Installing RHEL8

Technical requirements
The best way to get started is by having an RHEL8 virtual machine to work with. You
may do it in your main computer as a virtual machine or using a physical machine. In the
following section of this chapter, we will review both options and you will be able to run
your own RHEL8 system.

Tip
A virtual machine is a way to emulate a complete computer. To be able to create
this emulated computer on your own laptop, in case you are using macOS
or Windows, you will need to install virtualization software such as Virtual
Box, for example. If you are already running Linux, it is already prepared for
virtualization, and you will only need to add the virt-manager package.

Obtaining RHEL software and a subscription
To be able to deploy RHEL, you will need a Red Hat Subscription to obtain the images to
be used, as well as access to repositories with software and updates. You can obtain, free
of charge, a Developer Subscription from the developers' portal site of Red Hat using the
following link: developers.redhat.com. You then need to follow these steps:

1. Log in or create an account at developers.redhat.com.

2. Go to the developers.redhat.com page and click on the Log In button:

Figure 1.1 – The developers.redhat.com home page, indicating where to click to log in

3. Once in the login page, use your account or, if you do not have one, create it by
clicking on Register in the top-right corner or on the Create one now. button
directly in the registration box, as follows:

http://developers.redhat.com
http://developers.redhat.com
http://developers.redhat.com

Obtaining RHEL software and a subscription 5

Figure 1.2 – Red Hat login page (common to all Red Hat resources)
You can choose to use your credentials in several services (in other words, Google,
GitHub, or Twitter) if you prefer to do so.

4. Once you have logged in, go to the Linux section

You can find the Linux section in the navigation bar before the content:

Figure 1.3 – Accessing the Linux page at developers.redhat.com

6 Installing RHEL8

Click on Download RHEL which appears as a fancy button on the next page:

Figure 1.4 – Accessing the RHEL downloads page at developers.redhat.com
Then select the ISO image for the x86_64 (9 GB) architecture (which is the one
used in Intel- and AMD-based computers):

Figure 1.5 – Choosing the ISO download of RHEL8 for x86_64

Obtaining RHEL software and a subscription 7

5. Obtain the RHEL8 ISO image as follows:

Figure 1.6 – Download dialog for RHEL8 for x86_64

The ISO image is a file that contains an exact copy of the contents of a full DVD
(even when we are not using a DVD). This file will later be used to install our machines,
whether dumping it to a USB drive for Bare Metal installations, unpacking it for network
installations, or attaching it for virtual machine installations (or using out-of-band
capabilities in servers such as IPMI, iLO, or iDRAC)

Tip
To verify the ISO image, and ensure that the one we have obtained is not
corrupted, or altered, a mechanism called "checksum" can be used. Checksums
are a way to review a file and provide a set of letters and numbers that can be
used to verify that the file is precisely the same one as in the origin. Red Hat
provides a list of sha256 checksums for doing so in the downloads section
of the Customer Portal (https://access.redhat.com/). An article
describing the process is available here: https://access.redhat.
com/solutions/8367.

https://access.redhat.com/
https://access.redhat.com/solutions/8367
https://access.redhat.com/solutions/8367

8 Installing RHEL8

We have the software, in this case the ISO image, to install RHEL8 in any computer. These
are the same bits that are used in production machines worldwide and that you can use
yourself for learning purposes with your developer subscription. Now it is time to give
them a go in the next section.

Installing RHEL8
For this section of the chapter, we will follow the typical installation process to have RHEL
installed on a machine. We will follow the default steps, reviewing the options available for
each one.

Preparation for a physical server installation
A physical server requires some initial setup before beginning with installation. Common
steps include configuring the disks in the internal array, connecting it to the networks,
preparing the switches for any interface aggregation that is expected (teaming, bonding),
preparing access to external disk arrays (in other words, fiber channel arrays), setting up
out-of-band capabilities, and securing the BIOS configuration.

We will not get into the details of these preparations, except for the boot sequence. The
server will require to boot (start loading the system) from an external device such as a
USB thumb drive or optical disk (whether physical or emulated through the out-of-band
capabilities).

To create a bootable USB thumb drive from a machine with Linux or macOS, this is as
simple as doing a "disk dump" with the dd application. Perform the following steps:

1. Find your USB device in the system, usually /dev/sdb in Linux, or /dev/disk2
in macOS (in macOS, this command requires special privileges; please run it as
sudo dmesg | grep removable):

$ dmesg | grep removable

[66931.429805] sd 0:0:0:0: [sdb] Attached SCSI removable
disk

Important note
Please verify the disk name very carefully, as the procedure for using
"disk dump" will completely overwrite the disk target.

Installing RHEL8 9

Check whether the USB is mounted and, if so, dismount it (for macOS users, please
use diskutil list to ascertain whether the device is mounted):

$ lsblk /dev/sdb

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sdb 8:0 1 3,8G 0 disk

├─sdb1 8:1 1 1,8G 0 part /run/media/miguel/USB

├─sdb2 8:2 1 10,9M 0 part

└─sdb3 8:3 1 22,9M 0 part

In this case, only partition 1 of the sdb disk, referred to as sdb1, is mounted.
We will need to unmount all the partitions mounted. In this example, this is
straightforward as there is only one. To do so, we can run the following command:

Important note
Using super-user do or sudo, for administrative tasks, such as unmounting
devices, we could open an administrator shell (root in Linux and Unix-like
systems) or run the command using sudo, which provides administrative
privileges to the current user. When running commands with sudo, the user
will be requested to enter their password (not the admin password, but the
user's own password) to proceed with the execution (this default behavior may
be overridden in the sudoers configuration file).

$ sudo umount /dev/sdb1

 Dump the image! (Warning, this will erase the selected disk!):
$ sudo dd if=rhel-8.3-x86_64-dvd.iso of=/dev/sdb bs=512k

Tip
Alternative methods are available for creating a boot device. Alternative
graphical tools are available for creating a boot device that can help select
both the image and the target device. In Fedora Linux (the community
distribution where RHEL was based on, and a workstation for many engineers
and developers), the Fedora Media Writer tool can be used. For other
environments, the UNetbootin tool could also serve to create your boot media.

10 Installing RHEL8

Now, with the USB thumb drive, we can install any physical machine, from a tiny laptop
to a huge server. The next part involves making the physical machine boot from the
USB thumb drive. The mechanism for doing that will depend on the server being used.
However, it is becoming common to offer an option to select a boot device during bootup.
The following is an example of how to select a temporary boot device in a laptop:

1. Interrupt the normal startup. In this case, the boot process shows that I can do that
by pressing Enter:

Figure 1.7 – Example of a BIOS message to interrupt normal startup

2. Choose a temporary start up device, in this case by pressing the F12 key:

Figure 1.8 – Example of a BIOS menu for interrupted startup

3. Select the device to boot from. We want to boot from our USB thumb drive, which,
in this case, is USB HDD: ChipsBnk Flash Disk:

Installing RHEL8 11

Figure 1.9 – Example of a BIOS menu to choose the USB HDD boot device

Let the system start the installer from the USB drive.

Once we know how to prepare a USB drive with an RHEL installer, and how to make
a physical machine to boot from it, we can skip to the Running an RHEL installation
section in this chapter and proceed to install it. This can be pretty useful if we have
a mini server (in other words, an Intel NUC), an old computer, or a laptop to be used as
the machine for following along with this book.

Next, we will look at how to prepare a virtual machine in your installation, in case you are
considering following this book with your current main laptop (or workstation) but you
still want to keep a separate machine to work with.

Preparation for a virtual server installation
A virtual server works like having some virtualization software that emulates a real
machine in your current system. In a Linux workstation, installing virt-manager
will add all the under-the-hood components required to run (for your information,
these components are KVM, Libvirt, Qemu, and virsh, among others). Other no-cost
virtualization software, recommended for Windows or macOS systems, includes Oracle
VirtualBox and VMware Workstation Player.

The examples in this section will be executed using virt-manager, but are easily
applicable to any other virtualization software, whether in a laptop or in the largest
deployments.

12 Installing RHEL8

The preliminary steps have been described above and require obtaining the Red Hat
Enterprise Linux ISO image, which, in this case, will be rhel-8.3-x86_64-dvd.
iso. Once downloaded and, if possible, having checked its integrity (as mentioned in the
last tip of the Obtaining RHEL software and a subscription section), let's prepare to deploy
a virtual machine:

1. Start your virtualization software, in this case, virt-manager:

Figure 1.10 – The virtual manager main menu

2. Create a new virtual machine by going to File and then clicking on New Virtual
Machine. Select Local install media (ISO Image or CDROM):

Installing RHEL8 13

Figure 1.11 – Virtual manager – New VM menu

3. Select the ISO image. With this, the virtual machine will be configured with
a virtual DVD/CDROM drive and already prepared to boot from it. This is
customary behavior. However, when using a different virtualization software, you
may want to perform a check:

Figure 1.12 – The virtual manager menu to select an ISO image as an installation medium

14 Installing RHEL8

4. Assign memory and CPU to the virtual machine we are creating (note: a virtual
machine is usually referred to as a VM). For Red Hat Enterprise Linux 8
(also referred to as RHEL8), 1.5 GB of memory is the minimum, while 1.5 GB per
logical CPU is recommended. We will use the minimum settings (1.5 GB memory,
1 CPU core):

Figure 1.13 – The virtual manager menu for selecting memory and CPU
It is time to assign at least one disk to the virtual machine. In this case, we will
assign a single disk with the minimum disk space, 10 GB, but in future chapters,
we will be able to assign more disks to test other functionalities:

Figure 1.14 – The virtual manager menu to create a new disk and add it to the virtual machine

Installing RHEL8 15

5. Our virtual machine has all that we need to get started: A boot device, memory,
CPU, and disk space. In this last step, a network interface is added, so now we even
have a network. Let's review the data and launch it:

Figure 1.15 – The virtual manager menu for selecting the name of the virtual machine and the network

After taking these steps, we have a fully functional virtual machine available. Now it is
time to complete the process by installing the RHEL operating system on it. Check how to
do this in the next section.

16 Installing RHEL8

Running an RHEL installation
Once we have prepared our virtual or physical server for installation, it's time to proceed
with it. We will know whether all the previous steps were performed correctly if we arrive
at the following screen:

Figure 1.16 – Initial boot screen for RHEL8 installation with Install selected

We are offered three options (selected in white):

• Install Red Hat Enterprise Linux 8.3: This option will boot and run the installer.

• Test this media & install Red Hat Enterprise Linux 8.3: This option will check
the image being used to ensure that it is not corrupt, and that the installation can
proceed with certainty. It is recommended to use this one for the first time using
a just downloaded ISO image or just created media, such as a USB thumb drive or
DVD (in a virtual machine, it takes approximately 1 minute to run the check).

Installing RHEL8 17

• Troubleshooting: This option will help you review other options in case there are
problems with installation, with a running system, or with hardware. Let's take a
quick look at the available options on this menu:

– Install Red Hat Enterprise Linux 8.3 in basic graphics mode: This option is
useful for systems with an old graphics card and/or an unsupported one. It can
help to get the system installed in case an issue with visualization is identified.

– Rescue a Red Hat Enterprise Linux system: This option can be used when we
have a system with issues booting or when we want to access it to introspect it
(in other words, review a possible compromised system). It will initiate a basic
in-memory system to perform these tasks.

– Run a memory test: The system memory can be checked to prevent issues, as
in the case of a brand-new server, for instance, where we want to ensure that its
memory is running correctly, or a system suffering issues and panics that may
indicate a memory-related issue.

– Boot from local drive: In case you booted from the install media, but you already
have a system installed.

– Return to main menu: To go back to the previous menu.

Important note
The RHEL boot menu will show several options. The one selected will show in
white, with one single letter in a different color, in this case, "i" for install and
"m" for test media. These are shortcuts. Pressing the key with that letter will
take us directly to this menu item.

Let's proceed with Test this media & install Red Hat Enterprise Linux 8.3 to let the
installer review the ISO image we are using:

Figure 1.17 – RHEL8 ISO image self-check

18 Installing RHEL8

Once completed, it will reach the first installation screen. The installer is called Anaconda
(a joke, as it is written in a language called Python, and it follows a step-by-step
approach). It is important to pay attention to the options we will select during installation,
as we will review them later in the Automating deployments with Anaconda section of the
book.

Localization
The first step to installation is selecting the installation language. For this installation, we
will select English, followed by English (United States):

Figure 1.18 – RHEL8 install menu – Language

Installing RHEL8 19

In case you cannot easily find your language, you may type it in the box under the list to
search for it. Once a language is selected, we can click the Continue button to proceed.
This will take us to the INSTALLATION SUMMARY screen:

Figure 1.19 – RHEL8 install menu – Main page

On the INSTALLATION SUMMARY screen, all the configuration parts required are
shown, with many of them (the ones without a warning sign and red text underneath)
already preconfigured with defaults.

Let's review the LOCALIZATION settings. First, Keyboard:

Figure 1.20 – RHEL8 install – The Keyboard selection icon

20 Installing RHEL8

We can review the keyboard settings, which can help, not just changing the keyboard,
but adding extra layouts in case we want to switch between them:

Figure 1.21 – RHEL8 install – Keyboard selection dialog

This can be done by clicking on the + button. Here is an example of adding the Spanish;
Castilian (Spanish) layout. We search for spa until it appears, and then we select it and
then click Add, as follows:

Figure 1.22 – RHEL8 install – Keyboard selection list

To make it the default option will require clicking on the ^ button underneath. In this
case, we will keep it as a secondary option so that the supporting software gets installed.
Once completed, click Done:

Installing RHEL8 21

Figure 1.23 – RHEL8 install – Keyboard selection dialog with different keyboards

Now, we will move on to Language Support:

Figure 1.24 – RHEL8 install – Language selection icon

Here, we can also add our local language. In this example, I'll use Español, and then
Español (España). This will again include the software required to support the language
that has been added:

Figure 1.25 – RHEL8 install – Language selection dialog with different languages

22 Installing RHEL8

We will proceed with both languages configured, although you may want to choose your
own localized language.

Now, we will move on to Time & Date, which can be seen as follows:

Figure 1.26 – RHEL8 install – Time and Date selection icon

The default configuration is set to the city of New York in the United States of America.
You have two possibilities here:

• Use your local time zone. This is recommended when you want to have all the logs
registered in that time zone (in other words, because you are only working in one
time zone or because there are local teams for each time zone). In this example, we
are selecting the Spain, Madrid, Europe time zone:

Figure 1.27 – RHEL8 install – Time and Date selection dialog – Madrid selected

Installing RHEL8 23

• Use Coordinated Universal Time (also known as UTC) to have the same time zone
for all the servers around the globe. This can be selected under Region: | Etc, and
then City: | Coordinated Universal Time:

Figure 1.28 – RHEL8 install – Time and Date selection dialog – UTC selected

We will proceed with the localized time for Spain, Madrid, Europe, although you may
want to select your localized time zone.

Tip
As you can see in the screen, there is an option to select Network Time to have
the machine's clock synchronized with other machines. This option can only be
selected once the network is configured.

24 Installing RHEL8

Software
With the Localization configuration completed (or almost completed; we may come back
for the network time later), we move on to the Software section, or, more precisely, to
Connect to Red Hat under it:

Figure 1.29 – RHEL8 install – Connect to Red Hat selection icon

In this section, we can use our own Red Hat account, like the one we created previously
under developers.redhat.com, to access the latest updates for the system. To
configure it, we will need to configure the network first.

For the purposes of this deployment, we will not configure this section now. We will
review how to manage subscriptions and get updates in Chapter 7, Adding, Patching,
and Managing Software, of this book.

Important note
Systems management with Red Hat Satellite: For large deployments with more
than 100 servers, Red Hat offers "Red Hat Satellite," with advanced software
management capabilities (such as versioned content views, centralized security
scans with OpenSCAP, and simplified patching and updating for RHEL).
To connect to a Red Hat Satellite, the activation key can be used, thereby
simplifying the management of systems.

Let's now move on to Installation Source, as follows:

Figure 1.30 – RHEL8 install – Installation Source icon

This can be used for installation using remote sources. It is very useful when using the
boot ISO image that only contains the installer. In this case, as we are using the full
ISO image, it already contains all the software (also referred to as packages) needed to
complete the installation.

The next step is Software Selection, as shown in the following screenshot:

Figure 1.31 – RHEL8 install – Software Selection icon

http://developers.redhat.com

Installing RHEL8 25

In this step, we can select a predefined set of packages to be installed on the system so that
it can perform different tasks. While it can be very convenient to do so in this stage, we
are going to adopt a more manual approach and select the Minimal Install profile to add
software to the system later.

This approach also has the advantage of reducing the attack surface by installing just the
minimum required packages in the system:

Figure 1.32 – RHEL8 install – Software Selection menu; Minimal Install selected

System
Once the set of packages has been selected, let's move on to the System configuration
section. We will start with the destination of the installation, where we can choose the
disk or disks to be used to install and configure them:

Figure 1.33 – RHEL8 install – Installation Destination icon with a warning sign
as this step is not complete

26 Installing RHEL8

This task is very important as it will define not just the way the system is deployed on the
disk, but also how the disk is distributed and with which tools. Even when in this section,
we won't use the advanced options. We will take some time to review the main options.

This is the default Device Selection screen, with only one local standard disk discovered,
no Specialized & Network Disks options, and ready to run the Automatic partitioning.
This can be seen in the following screenshot:

Figure 1.34 – RHEL8 install – INSTALLATION DESTINATION menu,
with automatic partitioning selected

Clicking Done in this section will complete the minimal set of data required to continue
with the installation.

Let's review the sections.

Local Standard Disks are a set of disks to be used by the installer. It may be the case that
we have several disks, and we only want to use a specific disk:

Figure 1.35 – RHEL8 install – INSTALLATION DESTINATION menu, with several local disks selected

Installing RHEL8 27

This is an example of having three available disks and using only the first and third ones.

In our case, we only have one disk, and it is already selected:

Figure 1.36 – RHEL8 install – INSTALLATION DESTINATION menu, with a single local disk selected

It would be easy to use full disk encryption by selecting Encrypt my data, which is highly
recommended for laptop installations or for installing in environments with low levels
of trust:

Figure 1.37 – RHEL8 install – INSTALLATION DESTINATION menu,
with the data encryption option (not selected)

For this example, we will not encrypt our drive.

The Automatic install option will distribute the disk space automatically:

Figure 1.38 – RHEL8 install – INSTALLATION DESTINATION menu;
Storage Configuration (Automatic)

It will do so by creating the following resources:

• /boot: Space to allocate the system core (kernel) and files to help during the
boot process (such as the initial boot image, initrd).

• /boot/efi: Space to support the EFI boot process.

• /": The root filesystem. This is the main storage space where the system lives.
Other disks/partitions will be assigned to folders (when doing so, they will be
called mountpoints).

• /home: Space where the user will store personal files.

28 Installing RHEL8

Let's select this option and then click Done.

Tip
System partitions and the boot process: Do not worry if you still do not fully
understand some extended concepts regarding system partitions and boot
processes. To cover the filesystems, partitions, and how to manage disk space,
there is a chapter entitled Managing Local Storage and Filesystems dedicated to
it. To review the boot process, there is a chapter entitled Understanding the Boot
Process, which reviews step by step the full system start up sequence.

The next step involves reviewing Kdump, or Kernel Dump. This is a mechanism
that allows the system to save the status in case a critical event happens and it crashes
(it dumps the memory, hence its name):

Figure 1.39 – RHEL8 install – Kdump configuration icon

In order to work, it will reserve some memory for itself where it will stay, waiting to act if
the system crashes. The default configuration does a good calculation of the requirements:

Figure 1.40 – RHEL8 install – Kdump configuration menu

Clicking Done will take us to the next step, Network & Host Name, which appears
as follows:

Figure 1.41 – RHEL8 install – Network & Host Name configuration icon

Installing RHEL8 29

This section will help to have the system connected to a network. In the case of a virtual
machine, access to external networks will be handled by the Virtualization Software. It
is very common that the default configuration uses Network Address Translation (NAT)
and Dynamic Host Configuration Protocol (DHCP), which will provide a network
configuration to the virtual machine and access to external networks.

Once on the configuration page, we can see how many network interfaces are assigned to
our machine. In this case, there is only one, as follows:

Figure 1.42 – RHEL8 install – NETWORK & HOST NAME configuration menu

First, we can enable the interface by clicking on the ON/OFF toggle on the right. To turn
it off, it looks like this:

Figure 1.43 – RHEL8 install – NETWORK & HOST NAME configuration toggle (OFF)

And to turn it on, it should look like this:

Figure 1.44 – RHEL8 install – NETWORK & HOST NAME configuration toggle (ON)

30 Installing RHEL8

We will see that the interface now has a configuration (IP Address, Default Route,
and DNS):

Figure 1.45 – RHEL8 install – NETWORK & HOST NAME configuration information details

To make this change permanent, we will click the Configure button at the bottom-right
corner of the screen to edit the interface configuration:

Figure 1.46 – RHEL8 install – NETWORK & HOST NAME configuration;
interface configuration; Ethernet tab

Installing RHEL8 31

Clicking on the General tab will present the main options. We will select Connect
automatically with priority and leave the value as 0, just like this:

Figure 1.47 – RHEL8 install – NETWORK & HOST NAME configuration;
interface configuration; General tab

Clicking Save will make the changes permanent and have this network interface enabled
by default.

Now it's time to give a name to our virtual server. We will go to the Host Name section in
the main page and type the name we want for it. We can use rhel8.example.com, and
then click Apply:

Figure 1.48 – RHEL8 install – NETWORK & HOST NAME configuration; Host Name detail

Tip
The domain example.com is used for demonstration purposes, and it is safe
to be used on any occasion, knowing that it will not collide or cause any trouble
to other systems or domains.

32 Installing RHEL8

The networking page will look like this:

Figure 1.49 – RHEL8 install – NETWORK & HOST NAME configuration menu; configuration complete

Clicking Done will take us back to the main installer page, with a system connected
to a network and prepared to connect once the installation is complete.

The chapter entitled Enabling Network Connectivity will describe in more detail the
options available to configure the network in an RHEL system.

Important note
Now that the system is connected to the network, we can go back to Time &
Date and enable network time (which is done automatically by the installer), as
well as go to Connect to Red Hat to subscribe the system to Red Hat's Content
Distribution Network (or CDN). The subscription of the system to the CDN
will be explained in detail in Chapter 7, Adding, Patching, and Managing
Software.

It is now time to review the final system option, security profiles, by going to Security
Policy as follows:

Figure 1.50 – RHEL8 install – Security Policy configuration icon

Installing RHEL8 33

In it, we will see a list of security profiles that can be enabled by default in our system:

Figure 1.51 – RHEL8 install – SECURITY POLICY configuration menu

The security profiles have requirements that we are not covering in this installation
(such as having separate /var or /tmp partitions). We can click on Apply security
policy to turn it off, and then on Done:

Figure 1.52 – RHEL8 install – Security policy configuration toggle (off)

More on this topic will be covered in Chapter 11, System Security Profiles with OpenSCAP.

User settings
The main administrator user in a Unix or Linux system is called root.

34 Installing RHEL8

We can enable a root user by clicking in the Root Password section, although this is not
necessary and, in security restricted environments, you are advised not to do so. We will
do so in this chapter in order to learn how to do it and explain the cases covered:

Figure 1.53 – RHEL8 install – Root Password configuration icon (warning as it is not set)

After clicking on Root Password, we are presented with a dialog to type it:

Figure 1.54 – RHEL8 install – Root Password configuration menu

It is recommended that the password has the following:

• More than 10 characters (and a minimum of 6)

• Lowercase and uppercase

• Numbers

• Special characters (such as $, @, %, and &)

If the password does not meet those requirements, it will warn us and it will force us to
click Done twice to use a weak password.

It is now time to create a user for the system by clicking on User Creation:

Figure 1.55 – RHEL8 install – User Creation configuration icon (warning as it is not complete)

Installing RHEL8 35

This will take us to a section to input user data:

Figure 1.56 – RHEL8 install – User Creation configuration menu

The same password rules will apply here as in the previous section.

Clicking on Make this user administrator will enable the performance of administrative
tasks (and also no need to configure the root password).

Tip
As a good practice, do not use the same password for the root account and for
the user account.

The Chapter 5, Securing Systems with Users, Groups, and Permissions includes a section on
how to use and manage administrative privileges for users with the sudo tool.

36 Installing RHEL8

Click on Done to return to the main installer screen. The installer is ready to proceed with
the installation. The main page will look like this:

Figure 1.57 – RHEL8 install – Main menu once completed

Clicking on Begin Installation will launch the installation process:

Important note
If any of the steps required to start the installation are omitted, the Begin
Installation button will be grayed out, and therefore not available to be clicked.

Installing RHEL8 37

Figure 1.58 – RHEL8 install – Installation in progress

Once the installation is complete, we can click on Reboot System and it will be ready
to use:

Figure 1.59 – RHEL8 install – Installation complete

38 Installing RHEL8

It is important to remember to detach the ISO image from the virtual machine
(or remove the USB thumb drive from the server) and check that the boot order
is properly configured in the system.

Your first Red Hat Enterprise Linux 8 system is now ready! Congratulations.

As you can see, it is easy to install RHEL in a virtual or physical machine and have it ready
to be used for any service we want to run in it. In the cloud, the process is very different as
machines are instantiated from images to run. In the next chapter, we will review how to
run RHEL in a virtual machine instance in the cloud.

Summary
The Red Hat Certified System Administrator exam is entirely practical, based on real-world
experience. The best way to prepare for it is by practicing as much as possible, which is
why this book begins by providing access to Red Hat Enterprise Linux 8 (RHEL8) and
offering alternatives on how to deploy your own virtual machine.

Different scenarios are covered regarding installation. These are the most common ones,
and include using a physical machine, a virtual machine, or a cloud instance. In this
chapter, we focused on using a virtual machine or a physical one.

When using physical hardware, we will be focusing on the fact that many people like to
reuse old hardware, buy second-hand or cheap mini servers, or even use their laptop as
the primary installation for their Linux experience.

In the case of virtual machines, we are thinking about the people that want to keep all
their work on the same laptop, but without messing with their current operating system
(which may not even be Linux). This could also work well with the previous option by
having virtual machines on your own mini server.

After this chapter, you are ready to proceed with the rest of the book, having at least an
instance or Red Hat Enterprise Linux 8 available to work with and practice on.

In the next chapter, we will review a number of advanced options, such as using the cloud
for RHEL instances, automating the installation, and best practices.

Let's get started!

2
RHEL8 Advanced

Installation Options
In the previous chapter, we learned how to install Red Hat Enterprise Linux, or RHEL,
on a physical or virtual machine so that we use it while we're reading this book. In this
chapter, we will review how to use RHEL instances in the cloud and the main differences
that appear when doing so.

You will also learn not just how to deploy a system, but the best choices to do so, and be
able to perform the deployment in an automated fashion.

To complete the installation, a section on best practices has been included so that you can
start avoiding long-term issues from day one.

These are the topics that will be covered in this chapter:

• Automating RHEL deployments with Anaconda

• Deploying RHEL on the cloud

• Installation best practices

40 RHEL8 Advanced Installation Options

Technical requirements
In this chapter, we will review the automated installation process using Anaconda. For
that, you will need to use the RHEL8 deployment we created in the previous chapter.

We will also create cloud instances, for which you will need to create an account in the
cloud environment of your choice. We will be using Google Cloud Platform.

Automating RHEL deployments with Anaconda
Once you have finished your first deployment of RHEL locally, you can log in as root on
the machine and list the files that the root user has in their folder:

[root@rhel8 ~]# ls /root/

anaconda-ks.cfg

You will find the anaconda-ks.cfg file. This is an important file, called a kickstart,
and it contains the responses given to the installer, Anaconda, during the installation
process. Let's review the content of this file.

Important note
In cloud images, there is no anaconda-ks.cfg file.

This file can be reused to install other systems with the same options as the ones we
used for this installation. Let's review the options that we added during our previous
installation.

Lines starting with # are comments and have no effect on the installation process.

The comment specifying the version that is being used is as follows:

#version=RHEL8

Then, a type of installation was performed. It can be graphical or text (for headless
systems, it is common to use the second one):

Use graphical install

graphical

Automating RHEL deployments with Anaconda 41

The software source for installing application packages, or any other package, is specified
with the repo entry. As we were using the ISO image, it was accessed (mounted, in Linux
parlance) as if it were a CDROM:

repo --name="AppStream" --baseurl=file:///run/install/sources/
mount-0000-cdrom/AppStream

Sections are specified with the % symbol. In this case, we will enter the packages section
with the list of packages to be installed and use the %end special tag to close them. There
are two selections: a group of packages that is defined by it starting with the @^ symbol
(in this case, minimal-environment) and the name of a package that doesn't require
any prefix (in this case the package is kexec-tools, which are responsible for installing
the kdump capability we explained previously):

%packages

@^minimal-environment

kexec-tools

%end

We continue to click options without a section. In this case, we have the keyboard layouts
and system language support. As you can see, we added the English US American keyboard
(marked as us) and the Spanish, Spain one (marked as es):

Keyboard layouts

keyboard --xlayouts='us','es'

For the system language, we also added English US American (en_US) and Spanish,
Spain (es_ES). There are several ways to manage, store, and represent text in operating
systems. The most common one nowadays is UTF-8, which enables us to have many
character sets under one single standard. That's why the system language has.UTF-8
appended to it:

System language

lang en_US.UTF-8 --addsupport=es_ES.UTF-8

42 RHEL8 Advanced Installation Options

Tip
Unicode (or Universal Coded Character Set) Transformation Format –
8-bit, or UTF-8 for short is a character encoding that extends the capabilities
of previous ones in order to support Chinese, Cyrillic, or Arabic (among many
others) in the same text (like the one representing a web page or a console).
UTF-8 was presented in 1993 and is used by 95.9% of the world-wide web's
pages. Previous character sets supported US English or Latin characters only,
such as the American Standard Code for Information Interchange, or
ASCII, published in 1963. To learn more about character encodings and their
evolution, check out the Wikipedia pages for both UTF-8 and ASCII.

Now, it's time to configure the network interface. In this case, we only have one, named
enp1s0. The configuration uses IPv4 with the Dynamic Host Configuration Protocol
(DHCP) and IPv6, both of which are activated at boot. The hostname is configured as
rhel8.example.com:

Network information

network --bootproto=dhcp --device=enp1s0 --ipv6=auto
--activate

network --hostname=rhel8.example.com

Now, we need to define the installation media. In this case, we used an emulated
CDROM/DVD using the ISO image file we downloaded:

Use CDROM installation media

cdrom

The option for firstboot is enabled by default. In this case, as the installation does not
include a graphical interface, it won't be run, but will be added to the kickstart file. We
can safely remove it, like so:

Run the Setup Agent on first boot

firstboot --enable

Now, let's configure the disks. First, to be safe, we will instruct the installer to ignore all
the disks except for the target one; in this case, vda:

ignoredisk --only-use=vda

Automating RHEL deployments with Anaconda 43

Important note
The disk's name will vary, depending on the platform you are running on.
Typically, it will be vda, xda, or sda. In this example, we show the vda disk
that was defined by the installer, Anaconda, as we used in the previous chapter.

Now, we must install the bootloader to enable the system to boot. We will do so in the
Master Boot Record or MBR of the main disk, vda, and we will instruct it to use the
crashkernel option, which enables the kdump mechanism (this dumps memory in
case of a system crash):

System bootloader configuration

bootloader --append="crashkernel=auto" --location=mbr --boot-
drive=vda

Now, we must partition the disk. In this case, this will be fully automated:

autopart

Space to be used by the system must be declared. We will clear the whole disk for this
example:

Partition clearing information

clearpart --none --initlabel

Let's set the time zone to Madrid, Europe:

System timezone

timezone Europe/Madrid --isUtc

Now, we will set the root password and create a user (note that the encrypted password
was redacted for security purposes):

Root password

rootpw --iscrypted $xxx
xx

user --groups=wheel --name=user
--password=$xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xxxxxxxxxxxx --iscrypted --gecos="user"

44 RHEL8 Advanced Installation Options

Tip
The generated Anaconda file from the previous chapter contains an
example of the encrypted password hash. If we want to change it, a new
encrypted password hash, to be included here, can be generated if we run
the python -c 'import crypt,getpass;pw=getpass.
getpass();print(crypt.crypt(pw) if (pw==getpass.
getpass("Confirm: ")) else exit())' command.

Now, we need a special section where we can configure kdump so that we can reserve
memory automatically:

%addon com_redhat_kdump --enable --reserve-mb='auto'

%end

We also need a special section specifying the password policy that will be used for
installation:

%anaconda

pwpolicy root --minlen=6 --minquality=1 --notstrict --nochanges
--notempty

pwpolicy user --minlen=6 --minquality=1 --notstrict --nochanges
--emptyok

pwpolicy luks --minlen=6 --minquality=1 --notstrict --nochanges
--notempty

%end

And with this, our kickstart file to reinstall our system is complete.

To use it, we will need to pass the kickstart option to the installer. To do so we edit the
kernel parameters. Let's see how is it done.

We start by pressing Tab, during boot, while the line Install Red Hat Enterprise
Linux 8.3 is selected. The boot line, starting with vmlinuz, will appear at the bottom
of the screen:

Automating RHEL deployments with Anaconda 45

Figure 2.1 – RHEL8 Installer – Editing the boot line

Let's remove the quiet option and add the one that lets the installer know where the
kickstart is:

Figure 2.2 – RHEL8 Installer – Adding the kickstart option to the boot line

The option we've added is as follows:

inst.ks=hd:sdc1:/anaconda-ks.cfg

There are three parts to it that we can take a look at:

• hd: The kickstart will be in a disk, such as a second USB drive.

• sdc1: The device that hosts the file.

• /anaconda-ks.cfg: The path to the kickstart file in the device.

With this, we can reproduce the full installation we have done.

Tip
The Red Hat Enterprise Linux 8 Customizing Anaconda guide provides detailed
options you can follow if you wish to create your own Anaconda Kickstart file
or further customize this one. It can be accessed here: https://access.
redhat.com/documentation/en-us/red_hat_enterprise_
linux/8/html-single/customizing_anaconda/index.

As you have seen, it is very easy to create a kickstart file and automate the deployment
of Red Hat Enterprise Linux.

Now, let's move and look at a different way to make a RHEL 8 instance available:
in the cloud.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/customizing_anaconda/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/customizing_anaconda/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/customizing_anaconda/index

46 RHEL8 Advanced Installation Options

Deploying RHEL on the cloud
Deploying Red Hat Enterprise Linux on the cloud has some differences from the
previous deployments we've done. Let's look at what these differences are:

• We won't use an ISO image or Anaconda to perform a deployment, but
a preconfigured image, usually prepared and made available by the cloud provider:

- The image can be later customized and adapted to our needs.
• We will not be able to choose the configuration details of our system (such as

selecting a time zone, for example) during installation time, but will be able to after.

• An automated mechanism will be in place to change settings, such as adding a user
and their credentials to access the system or configure network:

- The most extended and well-known mechanism used by cloud providers to
do so is cloud-init.

- Some of the images that are delivered by the cloud provider include the
cloud-init software.

- Systems are usually accessed remotely using the ssh protocol and the SSH keys
that are generated by the user in the cloud provider (please check out Chapter 8,
Administering Systems Remotely, for more details on how to access a system).

Important note
When it comes to creating RHEL images, it's possible to create our own
for the cloud or virtualization. To do so, we can use the Red Hat Enterprise
Linux image builder (https://developers.redhat.com/
blog/2019/05/08/red-hat-enterprise-linux-8-image-
builder-building-custom-system-images/). However, it
is not part of RHCSA, so it will not be covered in this book. Instead, we will
follow the approach of taking the default image and customizing it.

Cloud providers propose an initial getting started offer where you try their services at no
cost. It's a good way to get started with RHEL and cloud services.

In this book, we'll be using Google Cloud as an example, so other clouds will not be
covered. We will provide a brief example of how a Red Hat Enterprise Linux 8 instance
can be created and modified in this cloud environment. To do so, we will use Google
Cloud (it provides, as of December 2020, an initial credit that could last the whole
duration required to complete this book).

https://developers.redhat.com/blog/2019/05/08/red-hat-enterprise-linux-8-image-builder-building-custom-system-images/
https://developers.redhat.com/blog/2019/05/08/red-hat-enterprise-linux-8-image-builder-building-custom-system-images/
https://developers.redhat.com/blog/2019/05/08/red-hat-enterprise-linux-8-image-builder-building-custom-system-images/

Deploying RHEL on the cloud 47

To follow this chapter, you will need to complete the following steps:

1. If you do not have a Google account, you will need to create one (if you use Gmail
and/or an Android phone, you will have one already).

2. Log into your Google account at https://accounts.google.com (or check
you have already logged in). You will be required to sign in for a free trial, at which
point you will have to provide a credit card number.

3. Go to https://cloud.google.com/free and claim your free credits.

4. Go to the cloud console at https://console.cloud.google.com.

5. Go to the Projects menu, which is shown here as No organization at the top bar,
to show the projects for the new account:

Figure 2.3 – RHEL8 in Google Cloud – Organization menu access

6. Click on NEW PROJECT:

Figure 2.4 – RHEL8 in Google Cloud – Organization menu

https://accounts.google.com
https://cloud.google.com/free
https://console.cloud.google.com

48 RHEL8 Advanced Installation Options

7. Name it RHEL8 and click CREATE:

Figure 2.5 – RHEL8 in Google Cloud – Organization menu; create new project

Important note
Depending on how your Google account is configured, you may need to enable
billing after this step.

8. Go to the top-left menu (also called Hamburger Menu, with three horizontal lines
next to it), click on Compute Engine, and then click on VM Instances:

Figure 2.6 – RHEL8 in Google Cloud – Access the VM Instances menu

Deploying RHEL on the cloud 49

9. Once Compute Engine is ready (this may take a few minutes), click on Create:

Figure 2.7 – RHEL8 in Google Cloud – create new VM instance

10. We will name the instance rhel8-instance:

Figure 2.8 – RHEL8 in Google Cloud – Create new VM instance; name

11. Select the most convenient region (or leave the one already provided):

Figure 2.9 – RHEL8 in Google Cloud – Create new VM instance, region, and zone

50 RHEL8 Advanced Installation Options

12. Set the machine family and type to General purpose | e2-medium:

Figure 2.10 – RHEL8 in Google Cloud – Create new VM instance, type, and size

13. Click Change next to boot disk:

Figure 2.11 – RHEL8 in Google Cloud – Changing the boot disk

14. Change Operating system to Red Hat Enterprise Linux and Version to Red Hat
Enterprise Linux 8. Then, click Select:

Deploying RHEL on the cloud 51

Figure 2.12 – RHEL8 in Google Cloud – Create new VM instance, image selection, and disk size

15. Click Create and wait for the instance to be created:

Figure 2.13 – RHEL8 in Google Cloud – VM instance list

16. Later, we will learn how to connect via SSH. Now, click on the triangle next to SSH,
under Connect, and select Open in browser window, as follows:

Figure 2.14 – RHEL8 in Google Cloud – VM instance, access console

52 RHEL8 Advanced Installation Options

17. With that, your fresh RHEL8 instance will be deployed, as shown in the following
screenshot:

Figure 2.15 – RHEL8 in Google Cloud – VM instance, console

It takes some time to get set up in the cloud, configure your account, and find the SSH key
(which will be shown in Chapter 8, Administering Systems Remotely) but once it's all set
up, it's easy to get a new instance up and running.

To become an administrator, you only need to run the following command:

[miguel@rhel8-instance ~]$ sudo -i

[root@rhel8-instance ~]#

Now, you can check the time configuration with timedatectl and change it:

[root@rhel8-instance ~]# timedatectl

 Local time: Sat 2020-12-12 17:13:29 UTC

 Universal time: Sat 2020-12-12 17:13:29 UTC

 RTC time: Sat 2020-12-12 17:13:29

 Time zone: UTC (UTC, +0000)

System clock synchronized: yes

 NTP service: active

 RTC in local TZ: no

[root@rhel8-instance ~]# timedatectl set-timezone Europe/Madrid

[root@rhel8-instance ~]# timedatectl

 Local time: Sat 2020-12-12 18:20:32 CET

 Universal time: Sat 2020-12-12 17:20:32 UTC

 RTC time: Sat 2020-12-12 17:20:32

 Time zone: Europe/Madrid (CET, +0100)

System clock synchronized: yes

 NTP service: active

 RTC in local TZ: no

Installation best practices 53

You can also change the language configuration with localectl:

[root@rhel8-instance ~]# localectl

 System Locale: LANG=en_US.UTF-8

 VC Keymap: us

 X11 Layout: n/a

To change locale or language support, you will need to install its language package first,
as follows:

[root@rhel8-instance ~]# yum install glibc-langpack-es –y

... [output omitted] ...

[root@rhel8-instance ~]# localectl set-locale es_ES.utf8

[root@rhel8-instance ~]# localectl

 System Locale: LANG=es_ES.utf8

 VC Keymap: us

 X11 Layout: n/a

Now, you have a machine configured that you can use throughout this book. These locale
changes are not needed to proceed, just to create a machine with the same configuration
as in the previous chapter.

Now that we know how to automatically redeploy VMs using Anaconda and how to get
instances in the cloud, let's move on and look at some of the best practices to be taken into
account when performing installations.

Installation best practices
Red Hat Enterprise Linux installations have many options you can choose from, and
what you choose should be tailored for your specific use case. However, some common
recommendations apply. Let's look at the most common types.

54 RHEL8 Advanced Installation Options

The first type is blueprints:

• Standardize the core installation and create a blueprint for it:

- This blueprint shall be minimal enough to serve as the base for all other blueprints
and deployments.

• Build a set of blueprints for common cases when needed:

- Try to use an automation platform to build extended cases (that is, Ansible).

- Try to make the cases modular (that is, App Server; database blueprints can be
combined into one single machine).

- Be aware of the requirements you must apply to your templated blueprints and
adapt to the environments you will use.

The second type is software:

• The less software that's installed, the smaller the attack surface. Try to keep
servers with the minimal set of packages required on it for it to run and operate
(that is, try not to add a graphical user interface to your servers).

• Standardize the installed tools where possible to be able to react quickly in case
of emergency.

• Package your third-party applications so that you have healthy life cycle
management (whether with RPM or in containers).

• Establish a patching schedule.

The third type is networking:

• In virtual machines, try not to overuse the number of network interfaces.

• In physical machines, use interface teaming/bonding whenever possible. Segment
networks using VLANs.

The fourth type is storage:

• For servers, use Logical Volume Management (LVM) where possible
(usually everything but /boot or /boot/efi).

• If you think you will need to reduce your filesystems, use ext4; otherwise,
go for the default of xfs.

Installation best practices 55

• Partition the disk carefully:

- Keep the default boot partition with its default size. If you change it, enlarge it
(you may need space there during upgrades).

- The default swap partition is the safest bet, unless the third-party software has
specific requirements.

- For long-lived systems, have at least separate partitions for / (root) /var, /usr,
 /tmp, and /home, and consider even a separate one for /var/log and /opt
(for ephemeral cloud instances or short-lived systems, this does not apply).

The fifth type is security:

• Do not disable SELinux. It has been improved a lot in the latest versions and it's very
likely that it won't interfere with your system (if required, set it in permissive mode
instead of fully disabling it).

• Do not disable the firewall. Automate port opening with the service deployment.

• Redirect logs to a central location whenever possible.

• Standardize the security tools and configuration that you want to install to check
system integrity and audit (that is, AIDE, logwatch, and auditd).

• Review software install (RPM) GPG keys, as well as ISO images, to ensure integrity.

• Try to avoid using passwords (especially for your root account) and use strong ones
where needed.

• Review your systems with OpenSCAP to check on security (if needed, create your
own hardware SCAP profile with help from your security team).

Finally, we will look at the miscellanea type:

• Keep system time synchronized.

• Review logrotate policies to avoid "disk full" errors due to logs.

Following these best practices will help you avoid issues and make the installed base more
manageable. With that, you know how to deploy Red Hat Enterprise Linux on a system
in a structured, repeatable manner while providing services to other teams in a fast and
resilient fashion.

56 RHEL8 Advanced Installation Options

Summary
In the previous chapter, we mentioned how to prepare a machine that we can work with
throughout this book. An alternative to that is using cloud instances, with which we could
be consuming virtual machine instances from the public cloud, which may simplify our
consumption and provide us with enough free credit to prepare for RHCSA. Also, once
the self-training process is complete, the machines can be still used to provide your own
public services (such as deploying a blog).

Understanding the need to standardize your environments and the impact of doing so is
also important when you're working with Linux as a professional. It is key to start with
a good set of practices (automating installations, keeping track of installed software,
reducing the attack surface, and so on) from the beginning.

Now that you've completed this chapter, you are ready to continue with the rest of this
book, since you now have an instance of Red Hat Enterprise Linux 8 available to work
and practice with. In the next chapter, we will review the basics of the system to make
ourselves comfortable and gain confidence in using the system.

3
Basic Commands

and Simple
Shell Scripts

Once you have your first Red Hat Enterprise Linux (RHEL) system running, you want
to start using it, practicing, and getting comfortable with it. In this chapter, we will review
the basics of logging into the system, navigating through it, and getting to know the basics
in terms of its administration.

The set of commands and practices described in this chapter will be used on many
occasions when managing systems, so it is important to study them with care.

The following topics will be covered in this chapter:

• Logging in as a user and managing multi-user environments

• Changing users with the su command

• Using the command line, environment variables, and navigating through the
filesystem

• Understanding I/O redirection in the command line

• Filtering output with grep and sed

58 Basic Commands and Simple Shell Scripts

• Listing, creating, copying, and moving files and directories, links, and hard links

• Using tar and gzip

• Creating basic shell scripts

• Using system documentation resources

Logging in as a user and managing multi-user
environments
Login is the process during which a user identifies themselves in the system, usually by
providing a username and password, a couple of pieces of information often referred to
as credentials.

The system can be accessed in many ways. The initial case for this, which we are covering
here, is how a user accesses it when they install a physical machine (such as a laptop) or
via the virtualization software interface. In this case, we are accessing the system through
a console.

During installation, the user was created with an assigned password, and no graphical
interface was installed. We will access the system in this case via its text console. The first
thing we are going to do is to log in to the system using it. Once we start the machine
and the boot process is completed, we will enter, by default, the multi-user text mode
environment in which we are being requested to provide our login:

Figure 3.1 – Login process, username request

The blinking cursor will let us know that we are ready to enter our username, in this case
user, and then press Enter. A line requesting the password will appear:

Figure 3.2 – Login process, password request

We may now type the user's password to complete the log in and, by pressing Enter on
your keyboard, start a session. Note that no character will be displayed on screen when
typing the password to avoid eavesdropping on it. This would be the session running:

Logging in as a user and managing multi-user environments 59

Figure 3.3 – Login process, login completed, session running

Now we are fully logged in to the system with the credentials for the user named user.
This will define what we can do in the system, which files we can access, and even how
much disk space we have assigned.

The console can have more than one session. To make that possible, we have different
terminals through which we can log in. The default terminal can be reached by
simultaneously pressing the Ctrl + Alt + F1 keys. In our case, nothing will happen as
we are already in that terminal. We could move to the second terminal by pressing
Ctrl + Alt + F2, to the third one by pressing Ctrl + Alt + F3, and so on for the rest of the
terminals (by default, six are allocated). This way, we can run different commands in
different terminals.

Using the root account
Regular users will not be able to make changes to the system, such as creating new users
or adding new software to the whole system. To do so, we need a user with administrative
privileges and for that, the default user is root. This user always exists in the system and
its identifier (User Id or UID) has the value 0.

In the previous installation, we have configured the root password, making the account
accessible through the console. To use it by logging in the system, we only need to type, in
one of the terminals shown, right next to login, the user root, then hit Enter, and then
provide its Password, which won't be displayed. This way, we will access the system as the
administrator, root:

Figure 3.4 – Login process, login completed as root

60 Basic Commands and Simple Shell Scripts

Using and understanding the command prompt
The command line that appears once we have logged in and are waiting for our commands
to be typed and run is called the command prompt.

In its default configuration, it will show the username and hostname between brackets to
let us know with which user we are working. Next, we see the path, in this case ~, which
is the shortcut for the user's home directory (in other words, /home/user for user,
and /root for root)

The last part and, probably the most important one, is the symbol before the prompt:

• The $ symbol is used for regular uses with no administrative privileges.

• The # symbol is used for root or once a user has acquired administrative privileges.

Important note
Be careful when using a prompt with the # sign as you will be running as an
administrator and the system will, very likely, not stop you from damaging it.

Once we have identified ourselves in the system, we are logged in and have a running
session. It is time to learn how to change from one user to the other in the next section.

Changing users with the su command
As we have entered a multi-user system, it is logical to think that we will be able to
change between users. Even when this can be done easily by opening a session for each,
sometimes we want to act as other users in the same session we are in.

To do so, we can use the su tool. The name of the tool is usually referred to as
Substitute User.

Let's use that last session in which we logged in as root and turn ourselves into the
user user.

Before doing so, we can always ask which user I am logged in with by running the
whoami command:

[root@rhel8 ~]# whoami

root

Changing users with the su command 61

Now we can make the change from root to user:

[root@rhel8 ~]# su user

[user@rhel8 root]$ whoami

user

Now we have a session as the user user. We could finish this session by using the exit
command:

[user@rhel8 root]$ exit

exit

[root@rhel8 ~]# whoami

root

As you may have seen, when we are logged in as root, we can act as any user without
knowing its password. But how can we impersonate root? We can do so by running the
su command and specifying the root user. In this case, the root user's password will be
requested:

[user@rhel8 ~]$ su root

Password:

[root@rhel8 user]# whoami

root

As root is the user with the ID 0 and the most important one, when running su without
specifying the user we want to turn to, it will default to turning ourselves into root:

[user@rhel8 ~]$ su

Password:

[root@rhel8 user]# whoami

root

Each user can define several options in their own environment, such as, for example, their
preferred editor. If we want to fully impersonate the other user and take their preferences
(or environment variables, as they are declared and referred to on many occasions), we
can do so by adding a - after the su command:

[user@rhel8 ~]$ su -

Password:

Last login: mar dic 22 04:57:29 CET 2020 on pts/0

[root@rhel8 ~]#

62 Basic Commands and Simple Shell Scripts

Also, we can switch from root to user:

[root@rhel8 ~]# su - user

Last login: Tue Dec 22 04:53:02 CET 2020 from 192.168.122.1 on
pts/0

[user@rhel8 ~]$

As you can observe, it behaves as if a new login was done, but within the same session.
Now, let's move on to managing the permissions for the different users in the system, as
addressed in the next section.

Understanding users, groups, and basic
permissions
Multi-user environments are defined by being able to handle more than one user
simultaneously. But in order to be able to administer the system resources, there are two
capabilities that help with the tasks:

• Groups: Can aggregate users and provide permission for them in blocks.

Each user has a primary group.

By default, a group is created for each user and assigned to it as a primary with
the same name as the username.

• Permissions: Are assigned to files and determine which users and groups can
access each file.

Standard Linux (and UNIX/POSIX) permissions include user, group, and
others (ugo).

The whole system comes with a set of permissions assigned by default to each file and
directory. Be careful when changing them.

There is a principle in UNIX that Linux inherited that is: everything is a file. Even when
there may be some corner cases to this principle, it stays true on almost any occasion. It
means that a disk is represented as a file in the system (in other words, like /dev/sdb
mentioned in the installation), a process can be represented as a file (under /proc) and
many other components in the system are represented as files.

This means that, when assigning permissions to files, we can also assign permissions to
many other components and capabilities implemented by them by virtue of the fact that,
in Linux, everything is represented as a file.

Understanding users, groups, and basic permissions 63

Tip
POSIX stands for Portable Operating System Interface and is a family
of standards specified by the IEEE Computer Society: https://
en.wikipedia.org/wiki/POSIX.

Users
Users are a way of providing security limits to people as well as programs running in
a system. There are three types of users:

• Regular users: Assigned to individuals to perform their job. They have restrictions
applied to them.

• Superuser: Also referred to as ''root." This is the main administrative account in the
system and has full access to it.

• System users: These are user accounts usually assigned to running processes or
''daemons'' to limit their reach within the system. System users are not intended to
log in to the system.

Users have a number called the UID (User Id) that the system uses to internally identify
each one of them.

We previously used the whoami command to reveal which user we were working with,
but to get more information, we will use the id command:

[user@rhel8 ~]$ id

uid=1000(user) gid=1000(user) groups=1000(user),10(wheel) conte
xt=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

We can also check on the information related to other user accounts in the system,
even to get info about root:

[user@rhel8 ~]$ id root

uid=0(root) gid=0(root) groups=0(root)

Now, let's take a look at the information we have received for user by running id:

• uid=1000(user): The user ID is the numeric identifier of the user in the system.
In this case, it is 1000. Identifiers of 1000 and above are used in RHEL for regular
users, whereas 999 and below are reserved for system users.

• gid=1000(user): The group ID is the numeric identifier for the principal group
assigned to the user.

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX

64 Basic Commands and Simple Shell Scripts

• groups=1000(user),10(wheel): These are the groups that the user belongs
to, in this case, ''user'' with Group ID (GID) 1000 and ''wheel'' with GID 10. The
''wheel'' user group is a special one. It is used in RHEL and many other systems
as the group for users that can become administrators by using the sudo tool
(to be explained later).

• context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.
c1023: This is the SELinux context for the user. It will define several restrictions
in the system by using SELinux (to be explained in depth in Chapter 10, Keeping
Your System Hardened with SELinux).

ID-related data is stored in the system in the /etc/passwd file. Please note that this file
is very sensitive and is better managed by using the tools related to it. In case we want to
edit it, we will do so by using vipw, a tool that will ensure (among other things) that only
one admin is editing the file at any one time. The /etc/passwd file contains the info of
each user per line. This is the line for user:

user:x:1000:1000:user:/home/user:/bin/bash

Each field is separated by a colon, : in each line. Let's review what they mean:

• user: The username assigned to the user.

• x: The field for the encrypted password. In this case, it shows as x because it has
moved to /etc/shadow, which is not directly accessible by regular users, to make
the system more secure.

• 1000 (first one): The UID value.

• 1000 (second one): The GID value.

• user: A description of the account.

• /home/user: The home directory assigned to the user. This will be the default
directory (or folder if you prefer) that the user will work on and where their
preferences will be stored.

• /bin/bash: The command interpreter for the user. Bash is the default interpreter
in RHEL. Other alternatives, such as tcsh, zsh, or fish are available to be
installed in RHEL.

Understanding users, groups, and basic permissions 65

Groups
Groups are a way of assigning certain permissions to a subset of users in a dynamic way.
As an example, let's imagine a scenario where we have a finance team. We can create the
finance group and provide permission to access, read, and write the /srv/finance
directory. When the finance team has a new hire, in order to provide them with access to
that folder, we only need to add the user assigned to this person to the finance group
(this also works if someone leaves the team; we will only have to remove their account
from the finance group).

Groups have a number called the GID that the system uses to identify them internally.

The data for groups is stored in the system in the /etc/group file. To edit this file in a
way that ensures consistency and avoids corruption, we must use the vigr tool. The file
contains one group per line with different fields separated by a colon, :. Let's take a look
at the line for the wheel group:

wheel:x:10:user

Let's review what each field means:

• wheel: This is the name of the group. In this case, this group is special as it is
configured to be used, by default, as the one to provide admin privileges to regular
users.

• x: This is the group password field. It's currently obsolete and should always contain
x. It is kept for compatibility purposes.

• 10: This is the GID value for the group itself.

• user: This is the list of the users belonging to that group (separated by commas,
such as user1, user2, and user3).

The types of groups are as follows:

• Primary group: This is the group assigned to the files newly created by the user.

• Private group: This is a specific group, with the same name as the user, that is
created for each user. When adding a new user account, a private group will be
automatically created for it. It is very common that the ''primary group'' and
''private group'' are one and the same.

• Supplementary group: This is another group usually created for specific purposes.
By way of an example, we can see the wheel group for enabling admin privileges
to users, or the cdrom group for providing access to CDs and DVD devices in the
system.

66 Basic Commands and Simple Shell Scripts

File permissions
To review file permissions, we are going to log in to the system as root. We will use the
ls command to list files and we will review the permissions associated with them. We
will learn more on how to change permissions in Chapter 5, Securing Systems with Users,
Groups, and Permissions.

Once logged in to the system as root, we can run the ls command:

[root@rhel8 ~]# ls

anaconda-ks.cfg

This shows the files present in the root user home directory, represented by ~. In this case,
it shows the kickstart file created by Anaconda that we reviewed in the previous chapter.

We could get the long version of the list by appending the -l option to ls:

[root@rhel8 ~]# ls -l

total 4

-rw-------. 1 root root 1393 Dec 7 16:45 anaconda-ks.cfg

We see the following in the output:

• total 4: This is the total space, in kilobytes, occupied in the disk by the files
(note that we are using 4K blocks, so every file under that size will occupy
a minimum of 4K).

• -rw-------.: These are the permissions assigned to the file.

The structure of the permissions can be seen in the following diagram:

Figure 3.5 – Linux permissions structure

Understanding users, groups, and basic permissions 67

The first character is for the special permissions that the file may have. If it is a regular file,
and has no special permission (as in this case), it will appear as -:

• Directories will appear with d. Consider that in Linux, everything is a file, and
directories are a file with special permissions.

• Links, usually symbolic links, will appear with a l. These behave like a shortcut to
a file from a different directory.

• Special permissions to run a file as a different user or group, called setuid or setgid,
will appear as s.

• A special permission so that the owner can only remove or rename the file, called
the sticky bit, will appear as t.

The next three characters, rw-, are the permissions for the owner:

• The first one, r, is the read permission assigned.

• The second one, w, is the write permission assigned.

• The third one, x, not present and shown as -, is the executable permission. Note
that executable permission for directories means being able to enter them.

The next three characters, ---, are for the group permissions and work the same way as
the owner permission. In this case, no group access is granted.

The final three characters, ---, are the permissions for others, which means users and/or
groups do not show as the ones assigned to the file:

• 1: This indicates the number of links (hard links) to this file. This is intended,
among other things, so that we do not delete a file used in another folder.

• root: This indicates the (first-time) owner of the file.

• root: This indicates the (second-time) group assigned to the file.

• 1393: This indicates the size in bytes.

• Dec 7 16:45: This indicates the date and time that the file was last modified.

• anaconda-ks.cfg: This indicates the filename.

68 Basic Commands and Simple Shell Scripts

When we list a directory (referred to in other systems as folder), the output will show
the contents of the directory itself. We can list the info for the directory itself with the
-d option. Let's now take a look at /etc, the directory that stores the system-wide
configuration:

[root@rhel8 ~]# ls -l -d /etc

drwxr-xr-x. 81 root root 8192 Dec 23 17:03 /etc

As you can see, it's quite easy to obtain information pertaining to files and directories
in the system. Let's now learn more about the command line and how to navigate the
filesystem, in order to move around the system easily, in the next section.

Using the command line, environment
variables, and navigating through the
filesystem
As we have seen before, once we log in to the system, we have access to the command
line. It's important to navigate the command line and the filesystem well in order to feel
comfortable in the environment and make the most of it.

Command line and environment variables
The command line is provided by a program also known as interpreter or shell. It will
behave differently depending on which shell we use, but in this section, we will cover the
most widespread shell used in Linux and the one provided by default in RHEL: bash.

A simple trick to know which shell you are using is to run the following command:

[root@rhel8 ~]# echo $SHELL

/bin/bash

The echo command will show on screen the content of whatever we give to it. Some
content needs to be substituted or interpreted, like environment variables. The content to
be substituted starts with the $ symbol. In this case, we are telling the system to echo the
content of the SHELL variable. Let's use it for other variables:

[root@rhel8 ~]# echo $USER

root

[root@rhel8 ~]# echo $HOME

/root

Using the command line, environment variables, and navigating through the filesystem 69

These are environment variables that can be customized for every user. Let's now check
these for a different user:

[root@rhel8 ~]# su - user

Last login: Wed Dec 23 17:03:32 CET 2020 from 192.168.122.1 on
pts/0

[user@rhel8 ~]$ echo $USER

user

[user@rhel8 ~]$ echo $HOME

/home/user

As you can see, you can always refer to $USER and it will be substituted with the current
user, or to $HOME and it will be substituted by the directory dedicated to the user, also
known as the home directory.

These are some of the most common and important environment variables:

The ~/.bashrc file is the one that should be edited in order to change these values for
the current user.

70 Basic Commands and Simple Shell Scripts

Navigating the filesystem
Now it's time to move ourselves into the directory tree of the system. In Linux and Unix
(macOS is a Unix-like system), there are no drive letters but a single directory tree that
starts with the root directory, represented by /. The rest of the content of the system
will hang from that folder and any other disk or device to be accessed will be assigned
a directory to be accessed.

Important note
The root directory and the home directory for the root user are two different
things. The root user has assigned, by default, the home directory, /root,
whereas the root directory is the mother of all directories in the system and is
represented by /.

We can see which directory we are in by running the pwd command:

[user@rhel8 ~]$ pwd

/home/user

We can change directory by using the cd command:

[user@rhel8 ~]$ cd /var/tmp

[user@rhel8 tmp]$ pwd

/var/tmp

As you already know, there is a shortcut for the home directory of the current user, ~. We
can use this shortcut to go to it:

[user@rhel8 tmp]$ cd ~

[user@rhel8 ~]$ pwd

/home/user

Some shortcuts for directories include the following:

• "~": This is the home of the current user.

• ".": This is the current directory.

• "..": This is the parent directory.

• "-": This is the directory used previously.

More details on managing files and directories in Linux and RHEL are available in the
Listing, creating, copying, and moving files and directories, links, and hard links section.

Using the command line, environment variables, and navigating through the filesystem 71

Bash autocomplete
Shortcuts are a faster way to reach commonly used directories or relative references to
the current working directory. However, bash includes some capabilities to reach other
directories in a fast way, which is called autocompletion. It relies on the Tab key (the one
with two opposing arrows at the very left of your keyboard, right above Caps Lock).

When reaching a folder or a file, we can hit Tab to complete its name. For example, if we
want to go to the /boot/grub2 folder, we type the following:

[user@rhel8 ~]$ cd /bo

Then, when we hit the Tab key, this will autocomplete it to /boot/, even adding the
final / as it is a directory:

[user@rhel8 ~]$ cd /boot/

Now we type the first letter of the directory we want to go to, grub2, which is g:

[user@rhel8 ~]$ cd /boot/g

Then, when we hit the Tab key, this will autocomplete it to /boot/grub2/:

[root@rhel8 ~]# cd /boot/grub2/

Now we can hit Enter and go there.

If we press Tab + Tab (pressing Tab twice during complete), this will show a list of
available targets to complete, for example:

[root@rhel8 ~]# cd /r

root/ run/

It can also be used to complete commands. We can type a letter, for example, h, hit
Tab + Tab, and this will show all the commands starting with h:

[root@rhel8 ~]# h

halt hardlink hash h dparm head
help hexdump history hostid hostname
hostnamectl hwclock

This capability can be extended to help complete other parts of our commands by
installing the bash-completion package:

[root@rhel8 ~]# yum install bash-completion –y

72 Basic Commands and Simple Shell Scripts

Previous commands
There is a way to recover the last commands run, which is referred to as history, in
case you want to re-run them again. Just press the up arrow key (the one with an arrow
pointing up) and the previous commands will appear on screen.

If there are too many commands in your history, you can search through them quickly
by running the history command:

[user@rhel8 ~]$ history

 1 su root

 2 su

 3 su -

 4 id

 5 id root

 6 grep user /etc/passwd

 7 echo $USER

 8 echo $HOME

 9 declare

 10 echo $SHELL

 11 echo EDITOR

 12 echo $EDITOR

 13 grep wheel /etc/gro

 14 grep wheel /etc/group

 15 cat /etc/group

 16 grep nobody /etc/group /etc/passwd

You can run any of those commands again by using the ! command. Just run ! with the
number of the command and it will run again:

[user@rhel8 ~]$!5

id root

uid=0(root) gid=0(root) groups=0(root)

Tip
The command !! will run the very last command again, no matter which
number.

Now it is time to enjoy your superfast command line. Let's learn more on the structure of
directories in Linux, to know where to go in order to find things, in the next section.

Using the command line, environment variables, and navigating through the filesystem 73

Filesystem hierarchy
Linux has a standard, maintained by the Linux Foundation, that defines the filesystem
hierarchy and is used in almost every Linux distribution, including RHEL. This standard
is known as FHS, or Filesystem Hierarchy Standard. Let's review here the most
important folders in the standard and the system itself:

74 Basic Commands and Simple Shell Scripts

Tip
Previous versions of RHEL used to have /bin for the essential binaries and /
usr/bin for the non-essential ones. Now, the content of both resides in /
usr/bin. They also used /var/lock and /var/run for what is running
in /run. In addition, they used to have /lib for the essential libraries and /
usr/lib for the non-essential ones, which were consolidated into a single
directory, /usr/lib. And last but not least, /sbin is the directory for the
essential super-user binaries, and /usr/sbin is the directory for the non-
essential ones merged under /usr/sbin.

When partitioning, we may well be asking ourselves, where does the disk space go?

These are the allocation values for a ''minimal'' installation of RHEL 8 and the
recommendations:

It's important to become familiar with the main directories in the system in order to make
the best of them. It is recommended to navigate through the different system directories
and look at what's in them in order to become comfortable with the structure. In the next
section, we will look at how to perform redirections on the command line to learn more
about command and file interaction.

Understanding I/O redirection in the command line 75

Understanding I/O redirection in the
command line
We have already run several commands to ascertain information about the system, such
as listing files with ls, and we have got some information, output, from the running
command, including, for example, filenames and file sizes. That information, or output,
can be useful, and we want to be able to work with it, store it, and manage it properly.

When talking about command output and also input, there are three sources or targets for
them that need to be understood:

• STDOUT: Also known as Standard Output, this is where commands will put their
regular messages to provide information on what they are doing. In a terminal,
on an interactive shell (like the ones we are using so far), this output will show on
screen. This will be the main output managed by us.

• STDERR: Also known as Standard Error, this is where the commands will put
their error messages to be processed. In our interactive shells, this output will
also be shown on screen together with the standard output unless we specifically
redirect it.

• STDIN: Also known as Standard Input, this is where the commands get data to be
processed.

We will mention these in the next paragraphs to better understand them.

The way in which command input and output is used requires the following operators:

• |: A pipe operator is used to get the output from one command and make it the
input of the next command. It pipes data from one command to another.

• >: A redirect operator is used to put the output of a command into a file. If the file
exists, it will be overwritten.

• <: Reverse redirect can be applied to use a file as input to a command. Using it
won't delete the file used as input.

• >>: A redirect and add operator is used to append the output of a command into
a file. If the file does not exist, it will be created with the output provided to it.

• 2>: A redirect STDERR operator will only redirect the output sent to the error
message handler. (Note, no space should be included between ''2'' and ''>'' in order
for this to work!)

• 1>: A redirect STDOUT operator will only redirect the output sent to the standard
output and not to the error message handler.

76 Basic Commands and Simple Shell Scripts

• >&2: A redirect to STDERR operator will redirect the output to the standard error
handler.

• >&1: A redirect to STDOUT operator will redirect the output to the standard
output handler.

To better understand these, we will go through a number of examples in this section and
the following one.

Let's get a list of files and put it in a file. First, we list the files in /var, using the -m option
to separate entries with commas:

[root@rhel8 ~]# ls -m /var/

adm, cache, crash, db, empty, ftp, games, gopher, kerberos,
lib, local, lock, log, mail, nis, opt, preserve, run, spool,
tmp, yp

Now, we run the command again, redirecting the output to the /root/var-files.
txt file:

[root@rhel8 ~]# ls –m /var/ > /root/var-files.txt

[root@rhel8 ~]#

As we can see, no output is shown on screen, but we will be able to find the new file in the
current working directory, in this case, /root, the newly created file:

[root@rhel8 ~]# ls /root

anaconda-ks.cfg var-files.txt

To see the content of the file on screen, we use the cat command, intended to concatenate
the output for several files, but regularly used for this purpose:

[root@rhel8 ~]# ls –m /var/ > /root/var-files.txt

[root@rhel8 ~]#

[root@rhel8 ~]# cat var-files.txt

adm, cache, crash, db, empty, ftp, games, gopher, kerberos,
lib, local, lock,

log, mail, nis, opt, preserve, run, spool, tmp, yp

We can also add to this file the content of /var/lib. First, we can list it:

[root@rhel8 ~]# ls -m /var/lib/

alternatives, authselect, chrony, dbus, dhclient, dnf, games,

Understanding I/O redirection in the command line 77

initramfs, logrotate, misc, NetworkManager, os-prober,
plymouth, polkit-1, portables, private, rhsm, rpm, rpm-state,
rsyslog, selinux, sss, systemd, tpm, tuned, unbound

Now, to append this content to the /root/var-files.txt file, we use the >>
operator:

[root@rhel8 ~]# ls -m /var/lib/ >> var-files.txt

[root@rhel8 ~]# cat var-files.txt

adm, cache, crash, db, empty, ftp, games, gopher, kerberos,
lib, local, lock, log, mail, nis, opt, preserve, run, spool,
tmp, yp

alternatives, authselect, chrony, dbus, dhclient, dnf, games,
initramfs, logrotate, misc, NetworkManager, os-prober,
plymouth, polkit-1, portables, private, rhsm, rpm, rpm-state,
rsyslog, selinux, sss, systemd, tpm, tuned, unbound

The /root/var-files.txt file now contains both the comma-separated list for /var
and for /var/lib.

Now we can try to list a non-existing directory to see an error being printed:

[root@rhel8 ~]# ls -m /non

ls: cannot access '/non': No such file or directory

The output we see is an error, and it is treated differently by the system than the regular
messages. We can try to redirect the output to a file:

[root@rhel8 ~]# ls -m /non > non-listing.txt

ls: cannot access '/non': No such file or directory

[root@rhel8 ~]# cat non-listing.txt

[root@rhel8 ~]#

We see that using the standard redirect, with a command providing an error message, will
show the error message, via STDERR, on screen and create an empty file. This is because
the file contains the output of the common information messages which are shown via
STDOUT. We can still capture the output of the error, redirecting STDERR, by using 2>:

[root@rhel8 ~]# ls /non 2> /root/error.txt

[root@rhel8 ~]# cat /root/error.txt

ls: cannot access '/non': No such file or directory

Now we can redirect the standard output and the error output independently.

78 Basic Commands and Simple Shell Scripts

Now we want to count the number of files and directories in /var. For that, we are
going to use the wc command, which stands for word count, with the option -w to focus
on only counting words. To do so, we will redirect the output of ls to it by using a pipe
represented by |:

[root@rhel8 ~]# ls -m /var/ | wc -w

21

We can also use it to count the entries in /etc:

 [root@rhel8 ~]# ls -m /etc/ | wc -w

174

Pipes, |, are great for reusing the output of one command, and sending it to another
command to process that output. Now we know more about using the more common
operators to redirect input and output. There are several ways to process that output and
we will see more examples in the next section.

Filtering output with grep and sed
The grep command is heavily used (and commonly mistyped) in system administration.
It helps when finding a pattern in a line, whether in a file or via standard input (STDIN).

Let's do a recursive search of the files in /usr with find and put it in /root/
usr-files.txt:

[root@rhel8 ~]# find /usr/ > /root/usr-files.txt

[root@rhel8 ~]# ls -lh usr-files.txt

-rw-r--r--. 1 root root 1,9M dic 26 12:38 usr-files.txt

As you can see, it's a file 1.9 MB in size, and it isn't easy to go through it. There is a utility
in the system called gzip and we want to know which files in /usr contain the gzip
pattern. To do so, we run the following command:

[root@rhel8 ~]# grep gzip usr-files.txt

/usr/bin/gzip

/usr/lib64/python3.6/__pycache__/gzip.cpython-36.opt-2.pyc

/usr/lib64/python3.6/__pycache__/gzip.cpython-36.opt-1.pyc

/usr/lib64/python3.6/__pycache__/gzip.cpython-36.pyc

/usr/lib64/python3.6/gzip.py

/usr/share/licenses/gzip

Filtering output with grep and sed 79

/usr/share/licenses/gzip/COPYING

/usr/share/licenses/gzip/fdl-1.3.txt

/usr/share/doc/gzip

/usr/share/doc/gzip/AUTHORS

/usr/share/doc/gzip/ChangeLog

/usr/share/doc/gzip/NEWS

/usr/share/doc/gzip/README

/usr/share/doc/gzip/THANKS

/usr/share/doc/gzip/TODO

/usr/share/man/man1/gzip.1.gz

/usr/share/info/gzip.info.gz

/usr/share/mime/application/gzip.xml

As you can see, we have found all the files with gzip under the /usr directory by
creating a file with all the content and searching though it with grep. Could we do the
same without creating the file? Sure we can, by using a pipe. We can redirect the output of
find to grep and get the same output:

[root@rhel8 ~]# find /usr/ | grep gzip

/usr/bin/gzip

/usr/lib64/python3.6/__pycache__/gzip.cpython-36.opt-2.pyc

/usr/lib64/python3.6/__pycache__/gzip.cpython-36.opt-1.pyc

/usr/lib64/python3.6/__pycache__/gzip.cpython-36.pyc

/usr/lib64/python3.6/gzip.py

/usr/share/licenses/gzip

/usr/share/licenses/gzip/COPYING

/usr/share/licenses/gzip/fdl-1.3.txt

/usr/share/doc/gzip

/usr/share/doc/gzip/AUTHORS

/usr/share/doc/gzip/ChangeLog

/usr/share/doc/gzip/NEWS

/usr/share/doc/gzip/README

/usr/share/doc/gzip/THANKS

/usr/share/doc/gzip/TODO

/usr/share/man/man1/gzip.1.gz

/usr/share/info/gzip.info.gz

/usr/share/mime/application/gzip.xml

80 Basic Commands and Simple Shell Scripts

In this command, the standard output from find was sent to grep to process it. We can
even count the number of instances of files with wc, but this time using the -l option to
count the lines:

[root@rhel8 ~]# find /usr/ | grep gzip | wc -l

18

We have now concatenated two pipes, one to filter the output and another one to count it.
We will find ourselves doing this kind of plumbing often when searching for, and finding,
information in the system.

Some very common options for grep are as follows:

• -i: for ignore-case. This will match the pattern whether it's uppercase or lowercase
or a combination thereof.

• -v: for invert match. This will show all entries that do not match the pattern being
searched for.

• -r: for recursive. We can tell grep to search for a pattern in all the files within
a directory, while going through all of them (if we have permission).

There is a way to also filter columns in the output provided. Let's say we have a list of files
in our home directory, and we want to see the size of it. We run the following command:

[root@rhel8 ~]# ls -l

total 1888

-rw-------. 1 root root 1393 dic 7 16:45 anaconda-ks.cfg

-rw-r--r--. 1 root root 52 dic 26 12:17 error.txt

-rw-r--r--. 1 root root 0 dic 26 12:08 non-listing.txt

-rw-r--r--. 1 root root 1917837 dic 26 12:40 usr-files.txt

-rw-r--r--. 1 root root 360 dic 26 12:12 var-files.txt

Let's say we only want the size, which is the fifth column, of the content that has files in
its name. We can use awk for that:

[root@rhel8 ~]# ls -l | grep files | awk '{ print $5}'

1917837

360

The awk tool will help us to filter according to the correct column. It is very useful for
finding identifiers in processes or for getting a specific list of data in from a long output.

Filtering output with grep and sed 81

Tip
Consider that awk is super powerful in processing output and that we will use
the minimal capability for it.

We could replace the separator with -F and get a list of available users in the system:

[root@rhel8 ~]# awk -F: '{ print $1}' /etc/passwd

root

bin

daemon

adm

lp

sync

shutdown

halt

mail

operator

games

ftp

nobody

dbus

systemd-coredump

systemd-resolve

tss

polkitd

unbound

sssd

chrony

sshd

rngd

user

The awk and grep tools are very common processing tools in the life of a Linux
sysadmin, and it is important to understand them well in order to manage the output
provided by the system. We have applied the base knowledge to filter the output received
by row and column. Let's now move on to how to manage files in a system so that we can
better handle the stored output we have just generated.

82 Basic Commands and Simple Shell Scripts

Listing, creating, copying, and moving files and
directories, links, and hard links
It is important to know how to manage files and directories (also known as folders)
in a system from the command line. It will serve as a basis for managing and copying
important data such as configuration files or data files.

Directories
Let's start by creating a directory to keep some working files. We can do so by running
mkdir, short for make directory:

[user@rhel8 ~]$ mkdir mydir

[user@rhel8 ~]$ ls -l

total 0

drwxrwxr-x. 2 user user 6 Dec 23 19:53 mydir

Folders can be deleted with the rmdir command, short for remove directory:

[user@rhel8 ~]$ ls -l

total 0

drwxrwxr-x. 2 user user 6 Dec 23 19:53 mydir

[user@rhel8 ~]$ mkdir deleteme

[user@rhel8 ~]$ ls -l

total 0

drwxrwxr-x. 2 user user 6 Dec 23 20:15 deleteme

drwxrwxr-x. 2 user user 6 Dec 23 19:53 mydir

[user@rhel8 ~]$ rmdir deleteme

[user@rhel8 ~]$ ls -l

total 0

drwxrwxr-x. 2 user user 6 Dec 23 19:53 mydir

However, rmdir will only delete empty directories:

[user@rhel8 ~]$ ls /etc/ > ~/mydir/etc-files.txt

[user@rhel8 ~]$ rmdir mydir

rmdir: failed to remove 'mydir': Directory not empty

Listing, creating, copying, and moving files and directories, links, and hard links 83

How can we delete a directory and all the other files and directories it contains using the
remove (rm) command? First, let's just create and remove a single file, var-files.txt:

[user@rhel8 ~]$ ls /var/ > ~/var-files.txt

[user@rhel8 ~]$ ls -l var-files.txt

-rw-rw-r--. 1 user user 109 Dec 26 15:31 var-files.txt

[user@rhel8 ~]$ rm var-files.txt

[user@rhel8 ~]$ ls -l var-files.txt

ls: cannot access 'var-files.txt': No such file or directory

To remove a full directory branch, including its contents, we may use the -r option, short
for recursive:

[user@rhel8 ~]$ rm -r mydir/

[user@rhel8 ~]$ ls -l

total 0

Important note
Be very careful when using recursive mode when deleting as there is neither a
recovery command for it nor a trash bin to keep files that have been removed
in the command line.

Let's take a look at the review table:

Now that we know how to create and delete directories in a Linux system, let's start
copying and moving content.

Copying and moving
Now, let's copy some files to play with them using the cp (for copy) command. We may
get some powerful awk examples copied to our home directory:

[user@rhel8 ~]$ mkdir myawk

[user@rhel8 ~]$ cp /usr/share/awk/* myawk/

[user@rhel8 ~]$ ls myawk/ | wc -l

26

84 Basic Commands and Simple Shell Scripts

To copy more than one file at the same time, we have used globbing with the * sign. This
works in a way in which specifying the files one by one, we can just type * for everything.
We can also type the initial characters and then *, so let's try it by copying some more files
using globbing, first:

[user@rhel8 ~]$ mkdir mysystemd

[user@rhel8 ~]$ cp /usr/share/doc/systemd/* mysystemd/

[user@rhel8 ~]$ cd mysystemd/

[user@rhel8 mysystemd]$ ls

20-yama-ptrace.conf CODING_STYLE DISTRO_PORTING ENVIRONMENT.
md GVARIANT-SERIALIZATION HACKING NEWS README TRANSIENT-
SETTINGS.md TRANSLATORS UIDS-GIDS.md

You will see that running ls TR* shows only those files that start with TR:

[user@rhel8 mysystemd]$ ls TR*

TRANSIENT-SETTINGS.md TRANSLATORS

It will work the same way with the file ending:

[user@rhel8 mysystemd]$ ls *.md

ENVIRONMENT.md TRANSIENT-SETTINGS.md UIDS-GIDS.md

As you can see, it shows only those files ending in .md.

We can copy a full branch of files and directories with the recursive option for cp,
which is -r:

[user@rhel8 mysystemd]$ cd ~

[user@rhel8 ~]$ mkdir myauthselect

[user@rhel8 ~]$ cp -r /usr/share/authselect/* myauthselect

[user@rhel8 ~]$ ls myauthselect/

default vendor

The recursive option is very useful for copying complete branches. We could also move
directories or files easily with the mv command. Let's put all our new directories together
into a newly created directory called docs:

[user@rhel8 ~]$ mv my* docs/

[user@rhel8 ~]$ ls docs/

myauthselect myawk mysystemd

Listing, creating, copying, and moving files and directories, links, and hard links 85

You can see that with mv, you do not need to use the recursive option to manage a full
branch of files and directories. It can also be used to rename files and/or directories:

[user@rhel8 ~]$ cd docs/mysystemd/

[user@rhel8 mysystemd]$ ls

20-yama-ptrace.conf CODING_STYLE DISTRO_PORTING ENVIRONMENT.
md GVARIANT-SERIALIZATION HACKING NEWS README TRANSIENT-
SETTINGS.md TRANSLATORS UIDS-GIDS.md

[user@rhel8 mysystemd]$ ls -l NEWS

-rw-r--r--. 1 user user 451192 Dec 26 15:59 NEWS

[user@rhel8 mysystemd]$ mv NEWS mynews

[user@rhel8 mysystemd]$ ls -l NEWS

ls: cannot access 'NEWS': No such file or directory

[user@rhel8 mysystemd]$ ls -l mynews

-rw-r--r--. 1 user user 451192 Dec 26 15:59 mynews

There is a special command for creating empty files, which is touch:

[user@rhel8 ~]$ ls -l docs/

total 4

drwxrwxr-x. 4 user user 35 Dec 26 16:08 myauthselect

drwxrwxr-x. 2 user user 4096 Dec 26 15:51 myawk

drwxrwxr-x. 2 user user 238 Dec 26 16:21 mysystemd

[user@rhel8 ~]$ touch docs/mytouch

[user@rhel8 ~]$ ls -l docs/

total 4

drwxrwxr-x. 4 user user 35 Dec 26 16:08 myauthselect

drwxrwxr-x. 2 user user 4096 Dec 26 15:51 myawk

drwxrwxr-x. 2 user user 238 Dec 26 16:21 mysystemd

-rw-rw-r--. 1 user user 0 Dec 26 16:27 mytouch

86 Basic Commands and Simple Shell Scripts

When applied to an existing file or folder, it will update its access time to the current one:

[user@rhel8 ~]$ touch docs/mysystemd

[user@rhel8 ~]$ ls -l docs/

total 4

drwxrwxr-x. 4 user user 35 Dec 26 16:08 myauthselect

drwxrwxr-x. 2 user user 4096 Dec 26 15:51 myawk

drwxrwxr-x. 2 user user 238 Dec 26 16:28 mysystemd

-rw-rw-r--. 1 user user 0 Dec 26 16:27 mytouch

Let's check the review table:

Now we know how to copy, delete, rename, and move files and directories, even full
directory branches. Let's now take a look at a different way to work with them – links.

Symbolic and hard links
We can have the same file in two places using links. There are two types of links:

• Hard links: There will be two entries (or more) to the same file in the filesystem.
The content will be written once to disk. Hard links, for the same file, cannot be
created in two different filesystems. Hard links cannot be created for directories.

• Symbolic links: A symbolic link is created pointing to a file or directory in any
place in the system.

Both are created using the ln, for link, utility.

Let's now create hard links:

[user@rhel8 ~]$ cd docs/

[user@rhel8 docs]$ ln mysystemd/README MYREADME

[user@rhel8 docs]$ ls -l

total 20

Listing, creating, copying, and moving files and directories, links, and hard links 87

drwxrwxr-x. 4 user user 35 Dec 26 16:08 myauthselect

drwxrwxr-x. 2 user user 4096 Dec 26 15:51 myawk

-rw-r--r--. 2 user user 13826 Dec 26 15:59 MYREADME

drwxrwxr-x. 2 user user 238 Dec 26 16:28 mysystemd

-rw-rw-r--. 1 user user 0 Dec 26 16:27 mytouch

[user@rhel8 docs]$ ln MYREADME MYREADME2

[user@rhel8 docs]$ ls -l

total 36

drwxrwxr-x. 4 user user 35 Dec 26 16:08 myauthselect

drwxrwxr-x. 2 user user 4096 Dec 26 15:51 myawk

-rw-r--r--. 3 user user 13831 Dec 26 16:32 MYREADME

-rw-r--r--. 3 user user 13831 Dec 26 16:32 MYREADME2

drwxrwxr-x. 2 user user 238 Dec 26 16:28 mysystemd

-rw-rw-r--. 1 user user 0 Dec 26 16:27 mytouch

drwxrwxr-x. 2 user user 6 Dec 26 16:35 test

Check the increasing number of references to the file (in bold in the previous example).

Now let's create a symbolic link to a directory with ln -s (s for symbolic):

[user@rhel8 docs]$ ln -s mysystemd mysystemdlink

[user@rhel8 docs]$ ls -l

total 36

drwxrwxr-x. 4 user user 35 Dec 26 16:08 myauthselect

drwxrwxr-x. 2 user user 4096 Dec 26 15:51 myawk

-rw-r--r--. 3 user user 13831 Dec 26 16:32 MYREADME

-rw-r--r--. 3 user user 13831 Dec 26 16:32 MYREADME2

drwxrwxr-x. 2 user user 238 Dec 26 16:28 mysystemd

lrwxrwxrwx. 1 user user 9 Dec 26 16:40 mysystemdlink ->
mysystemd

-rw-rw-r--. 1 user user 0 Dec 26 16:27 mytouch

drwxrwxr-x. 2 user user 6 Dec 26 16:35 test

Check how the symbolic link created is treated as a different type when listing it,
as it starts with l for link (in bold in the previous example) instead of d for directory
(also in bold in the previous example).

88 Basic Commands and Simple Shell Scripts

Tip
When in doubt as to what to use, be it a hard link or a symbolic link, use the
symbolic link as the default choice.

Let's check the review table:

As you can see, creating links and symbolic links is super simple and can help in having
access to the same file or directory from different locations. In the next section, we will
cover how to pack and compress a set of files and directories.

Using tar and gzip
Sometimes, we want to pack a full directory, including files, into a single file for backup
purposes or simply to share it more easily. The command that can help aggregate files into
one is tar.

First, we need to install tar:

[root@rhel8 ~]# yum install tar -y

We can try by creating, as root, a backup of the /etc directory branch:

[root@rhel8 ~]# tar -cf etc-backup.tar /etc

tar: Removing leading '/' from member names

[root@rhel8 ~]# ls -lh etc-backup.tar

-rw-r--r--. 1 root root 21M dic 27 16:08 etc-backup.tar

Let's check the options used:

• -c: Short for create. TAR can put files together but also unpack them.

• -f: Short for file. We specify that the next parameter will be working with a file.

We can try to unpack it:

[root@rhel8 ~]# mkdir tmp

[root@rhel8 ~]# cd tmp/

[root@rhel8 tmp]# tar -xf ../etc-backup.tar

Using tar and gzip 89

[root@rhel8 tmp]# ls

etc

Let's check the new option used:

• -x: for extraction. It unpacks a TAR file.

Please realize that we created a directory called tmp to work on and that we pointed to the
parent directory of tmp by using the .. shortcut (which refers to the parent directory to
the current working directory).

Let's gzip to compress a file. We can copy /etc/services and compress it:

[root@rhel8 etc]# cd ..

[root@rhel8 tmp]# cp /etc/services .

[root@rhel8 tmp]# ls -lh services

-rw-r--r--. 1 root root 677K dic 27 16:16 services

[root@rhel8 tmp]# gzip services

[root@rhel8 tmp]# ls -lh services.gz

-rw-r--r--. 1 root root 140K dic 27 16:16 services.gz

Please note that when using gzip, this will compress the specified file, adding the .gz
extension to it and the original file will not be kept. Also, be aware that the newly created
file is 1/5 of the size of the original file.

To recover it, we can run gunzip:

-rw-r--r--. 1 root root 140K dic 27 16:16 services.gz

[root@rhel8 tmp]# gunzip services.gz

[root@rhel8 tmp]# ls -lh services

-rw-r--r--. 1 root root 677K dic 27 16:16 services

Now we can combine the two of them, packing and compressing them:

[root@rhel8 ~]# tar cf etc-backup.tar /etc/

tar: Removing leading '/' from member names

[root@rhel8 ~]# ls -lh etc-backup.tar

-rw-r--r--. 1 root root 21M dic 27 16:20 etc-backup.tar

[root@rhel8 ~]# gzip etc-backup.tar

[root@rhel8 ~]# ls etc-backup.tar.gz

etc-backup.tar.gz

90 Basic Commands and Simple Shell Scripts

[root@rhel8 ~]# ls -lh etc-backup.tar.gz

-rw-r--r--. 1 root root 4,9M dic 27 16:20 etc-backup.tar.gz

This way, we pack and compress in two steps.

The tar command is smart enough to be able to perform packing and compression in a
single step:

[root@rhel8 ~]# rm -f etc-backup.tar.gz

[root@rhel8 ~]# tar -czf etc-backup.tar.gz /etc/

tar: Removing leading '/' from member names

[root@rhel8 ~]# ls -lh etc-backup.tar.gz

-rw-r--r--. 1 root root 4,9M dic 27 16:22 etc-backup.tar.gz

Let's check the new option:

• -z: This compresses the newly created tar file with gzip. It is also applicable to
decompress.

We may want to review that same option while decompressing:

[root@rhel8 ~]# cd tmp/

[root@rhel8 tmp]# rm -rf etc

[root@rhel8 tmp]# tar -xzf ../etc-backup.tar.gz

[root@rhel8 tmp]# ls

etc

As you can see, it's very easy to pack and compress files using tar and gzip. There are
other available compression methods with higher rations, such as bzip2 or xz, that
you may want to try, too. Now, let's move on to combine all the commands that we have
learned into a powerful way to automate – by creating shell scripts.

Creating basic shell scripts
As a system administrator, or sysadmin, there will be times when you want to run a series
of commands more than once. You can do this manually by running each command every
time; however, there is a more efficient way to do so, by creating a shell script.

A shell script is nothing more than a text file with a list of commands to be run, and
a reference to the shell that will interpret it.

Creating basic shell scripts 91

In this book, we will not cover how to use a text editor; however, we will provide three
recommendations for text editors in Linux that could help:

• Nano: This is probably the easiest text editor to use for beginners. Lean, simple, and
straightforward, you may want to start by installing it and giving it a try.

• Vi or Vim: Vi is the default text editor available in RHEL, included even in the
minimal install, and in many Linux distributions. Even if you are not going to use it
every day, it's good to familiarize yourselves with the basics of it as it will be present
in almost any Linux system you will use. Vim stands for vi-improved.

• Emacs: This is probably the most advanced and complex text editor ever. It can
do everything and beyond, including reading emails or helping with a bit of
psychoanalysis via Emacs Doctor.

We can create our first shell script by editing a new file called hello.sh with the
following line as its content:

echo ''hello world!''

Then we can run it by using the bash command interpreter with the following line:

[root@rhel8 ~]# bash hello.sh

hello world!

There is a different way to do this where we do not need to type bash. We can add an
initial line referencing the interpreter, so the file content for hello.sh looks like this:

#!/bin/bash

echo ''hello world!''

Now we are changing the permissions so as to make it executable:

[root@rhel8 ~]# ls -l hello.sh

-rw-r--r--. 1 root root 32 dic 27 18:20 hello.sh

[root@rhel8 ~]# chmod +x hello.sh

[root@rhel8 ~]# ls -l hello.sh

-rwxr-xr-x. 1 root root 32 dic 27 18:20 hello.sh

And we run it just like this:

[root@rhel8 ~]# ./hello.sh

hello world!

92 Basic Commands and Simple Shell Scripts

We have created our first shell script. Congratulations!

Tip
The commands, in order to be run in any working directory, must be in the
path, as stated by the $PATH variable. If our command (or shell script) is
not in one of the directories specified in the path, we will specify the running
directory, in this case, using the . shortcut for the current directory and the
/ separator.

Let's use some variables in it. We can define a variable by simply putting the name of it
and the value we want for it. Let's try replacing the word world with a variable. To use
it, we prepend the $ symbol to the name of the variable and it will be used. The script will
look like this:

#!/bin/bash

PLACE=''world''

echo ''hello $PLACE!''

We can run the script, obtaining the same output as before:

[root@rhel8 ~]# ./hello.sh

hello world!

To have more clarity, when using the value of the variable, we will put the name of it
between curly braces, {''and ''}, and take this as a good practice.

The previous script will look like this:

#!/bin/bash

PLACE=''world''

echo ''hello ${PLACE}!''

Now we know how to create a basic script, but we may want to have a deeper control of it
by using some programmatic capabilities, starting with loops. Let's go for it!

for loops
What if we want to run the same command over a list of places? That's what a for loop is
used for. It can help iterate over a set of elements, such as a list or a counter, for example.

Creating basic shell scripts 93

The for loop syntax is as follows:

• for: To specify the iteration

• do: To specify the action

• done: To close the loop

We can define a space-separated list to try it and iterate through it with our first for loop:

#!/bin/bash

PLACES_LIST=''Madrid Boston Singapore World''

for PLACE in ${PLACES_LIST}; do

echo ''hello ${PLACE}!''

done

Let's run it. The output will look like this:

[root@rhel8 ~]# ./hello.sh

hello Madrid!

hello Boston!

hello Singapore!

hello World!

Using the for loop can be very interesting when reading the list from an external
command. We can do so by putting the external command between $(and).

Tip
Backticks, ', can also be used to run a command and get its output as a list, but
we will stick to the previous expression for clarity.

One example of the external command to be used can be ls. Let's create the txtfiles.
sh script with the following content:

#!/bin/bash

for TXTFILE in $(ls *.txt); do

 echo ''TXT file ${TXTFILE} found! ''

done

94 Basic Commands and Simple Shell Scripts

Make it executable and run it:

[root@rhel8 ~]# chmod +x txtfiles.sh

[root@rhel8 ~]# ./txtfiles.sh

TXT file error.txt found!

TXT file non-listing.txt found!

TXT file usr-files.txt found!

TXT file var-files.txt found!

You see how we can now iterate over a set of files, including, for example, changing their
names, finding and replacing content in them, or simply making a specific backup of a
selection of files.

We've seen several ways in which to iterate a list with the for loop, which can be very
useful when it comes to automating tasks. Now, let's move on to another programmatic
capability in scripts – conditionals.

if conditionals
Sometimes, we may want to execute something different for one of the elements in a list,
or if a condition is happening. We can use the if conditional for this.

The if conditional syntax is if: to specify the condition.

Conditions are usually specified between brackets, [and].

• then: To specify the action

• fi: To close the loop

Let's change our previous hello.sh script to say hello to Madrid in Spanish,
like this:

#!/bin/bash

PLACES_LIST=''Madrid Boston Singapore World''

for PLACE in ${PLACES_LIST}; do

 if [${PLACE} = ''Madrid'']; then

 echo ''¡Hola ${PLACE}!''

 fi

done

Creating basic shell scripts 95

Then, run it:

[root@rhel8 ~]# ./hello.sh

¡Hola Madrid!

We have a problem; it only says hello to Madrid. What happens if we want to run
the previous code on the ones not matching the condition? That's when we extend the
conditional using else for the items that do not match. The syntax is as follows:

• else: This is used as a then element when the condition is not matched.

And now we have an example of a conditional using else:

#!/bin/bash

PLACES_LIST=''Madrid Boston Singapore World''

for PLACE in ${PLACES_LIST}; do

 if [${PLACE} = ''Madrid'']; then

 echo ''¡Hola ${PLACE}!''

 else

 echo ''hello ${PLACE}!''

 fi

done

And now we can run it:

[root@rhel8 ~]# ./hello.sh

¡Hola Madrid!

hello Boston!

hello Singapore!

hello World!

As you see, it's simple to use the conditionals in a script and provide a lot of control on the
conditions under which a command is run. We now need to control when something may
not be running correctly. That's what the exit codes (or error codes) are for. Let's go for it!

96 Basic Commands and Simple Shell Scripts

Exit codes
When a program is run, it provides an exit code, specifying whether it ran OK or whether
there was an issue. That exit code is stored in a special variable called $?.

Let's take a look at it by running ls hello.sh:

[root@rhel8 ~]# ls hello.sh

hello.sh

[root@rhel8 ~]# echo $?

0

When the program runs OK, the exit code is zero, 0.

What happens when we try to list a file that doesn't exist (or run any other command
incorrectly, or that is having issues)? Let's try listing a nonexistent file:

[root@rhel8 ~]# ls nonexistentfile.txt

ls: cannot access 'nonexistentfile.txt': No such file or
directory

[root@rhel8 ~]# echo $?

2

You see, the exit code is different to zero. We will go to the documentation and check the
number associated with it to understand the nature of the issue.

When running a command in a script, check for the exit code and act accordingly. Let's
now review where to find further information on the commands, such as exit codes or
other options, in the next section.

Using system documentation resources
The system includes resources to help you while working with it and guide you to improve
your sysadmin skills. This is referred to as the system documentation. Let's check three
different resources available by default in your RHEL installation: man pages, info pages,
and other documents.

Man pages
The most common resource used to obtain documentation is manual pages, also referred
to by the command used to invocate them: man.

Using system documentation resources 97

Almost any utility installed in the system has a man page to help you use it (in other
words, specifying all the options for the tools and what do they do). You can run man
tar and check the output:

[root@rhel8 ~]# man tar

TAR(1) GNU TAR Manual
TAR(1)

NAME

 tar - an archiving utility

SYNOPSIS

 Traditional usage

 tar {A|c|d|r|t|u|x}[GnSkUWOmpsMBiajJzZhPlRvwo] [ARG...]

 UNIX-style usage

 tar -A [OPTIONS] ARCHIVE ARCHIVE

 tar -c [-f ARCHIVE] [OPTIONS] [FILE...]

 tar -d [-f ARCHIVE] [OPTIONS] [FILE...]

You can see in it (navigate with the arrow keys, space bar, and/or Page Up and Page Down)
and exit it by hitting the letter q (for quit).

There are sections in the man page on related topics. It is pretty simple to search those by
using the apropos command. Let's see this for tar:

[root@rhel8 ~]# apropos tar

dbus-run-session (1) - start a process as a new D-Bus session

dnf-needs-restarting (8) - DNF needs_restarting Plugin

dracut-pre-udev.service (8) - runs the dracut hooks before
udevd is started

gpgtar (1) - Encrypt or sign files into an archive

gtar (1) - an archiving utility

open (1) - start a program on a new virtual
terminal (VT).

openvt (1) - start a program on a new virtual
terminal (VT).

98 Basic Commands and Simple Shell Scripts

scsi_start (8) - start one or more SCSI disks

setarch (8) - change reported architecture in new
program environment and set personalit...

sg_reset (8) - sends SCSI device, target, bus or host
reset; or checks reset state

sg_rtpg (8) - send SCSI REPORT TARGET PORT GROUPS
command

sg_start (8) - send SCSI START STOP UNIT command:
start, stop, load or eject medium

sg_stpg (8) - send SCSI SET TARGET PORT GROUPS command

systemd-notify (1) - Notify service manager about start-up
completion and other daemon status c...

systemd-rc-local-generator (8) - Compatibility generator for
starting /etc/rc.local and /usr/sbin...

systemd.target (5) - Target unit configuration

tar (1) - an archiving utility

tar (5) - format of tape archive files

unicode_start (1) - put keyboard and console in unicode mode

As you can see, it matches not only tar but also start. This isn't perfect, but it can
provide helpful information related to tar, such as gpgtar.

Man pages have a section. As you can see in the previous example, for tar, there are
manual pages in two sections, one for the command-line utility (section 1), and one for
the archiving format (section 5):

tar (1) - an archiving utility

tar (5) - format of tape archive files

We can access the page in section 5 to understand the format by running the following
command:

[root@rhel8 ~]# man 5 tar

Now we can see the tar format page:

TAR(5) BSD File Formats Manua
l TAR(5)

NAME

 tar — format of tape archive files

Using system documentation resources 99

DESCRIPTION

 The tar archive format collects any number of files,
directories, and other file system objects (symbolic links,
device nodes, etc.) into a single stream of bytes. The format
was ...

You can see that manual pages are a great resource for learning more about the typical
commands being used. This is also a fantastic resource as regards the Red Hat Certified
System Administrator exam. One recommendation is to review all man pages for the
commands shown previously in this chapter, as well as for the forthcoming chapters.
Consider man pages the main information resource in the system. Let's now review other
information resources available.

Info pages
Info pages are usually more descriptive than man pages and are more interactive. They
help more in getting started on a topic.

We can try to get info for the ls command by running the following:

[root@rhel8 ~]# info ls

We can see the info page for it:

Next: dir invocation, Up: Directory listing

10.1 'ls': List directory contents

==================================

The 'ls' program lists information about files (of any type,
including

directories). Options and file arguments can be intermixed
arbitrarily,

Info pages can redirect to other topics, shown underlined, and these can be followed by
putting the cursor over them and hitting Enter.

As with man pages, press q to quit.

100 Basic Commands and Simple Shell Scripts

Please take some time to review the info pages for the main topics covered in this chapter
(in several cases, info pages will not be available, but the ones that are could be very
valuable).

What if we do not find a man or info page for a topic? Let's cover this in the next section.

Other documentation resources
For other documentation resources, you can go to the /usr/share/doc directory.
There, you will find other documents that come with the tools installed in the system.

Let's see how many items we have:

[root@rhel8 doc]# cd /usr/share/doc/

[root@rhel8 doc]# ls | wc -l

219

You can see that there are 219 directories available under /usr/share/doc.

As a good example, let's enter the bash directory:

[root@rhel8 doc]# cd bash/

Then, let's take a look at the INTRO file using less to read it (remember, you use q
to quit):

[root@rhel8 bash]# ls

bash.html bashref.html FAQ INTRO RBASH README

[root@rhel8 bash]# less INTRO

 BASH - The Bourne-Again Shell

Bash is the shell, or command language interpreter, that will
appear in the GNU operating system. Bash is an sh-compatible
shell that

incorporates useful features from the Korn shell (ksh) and C
shell

(csh). It is intended to conform to the IEEE POSIX P1003.2/
ISO 9945.2 Shell and Tools standard. It offers functional
improvements

Summary 101

This is a good read for a better understanding of bash. Now you have a lot of
documentation resources that you will be able to be use during your daily tasks
as well as in the RHCSA exam.

Summary
We have learned in this chapter how to log in to a system with a user and with root,
understanding the basics of permissions and security. We are now also more comfortable
using the command line with autocomplete, navigating through the directories and
files, packing, and unpacking them, redirecting command output and parsing it, and
even automating processes with shell scripts. More importantly, we have a way to obtain
information on what we are doing (or want to do) available in any RHEL system with
the included documentation. These skills are the basis of the upcoming chapters. Don't
hesitate to revisit this chapter if you feel stuck or if your progress is not as fast as you
thought.

Now, it is time to extend your knowledge to encompass more advanced topics in the
upcoming chapters. In the following chapter, you will be getting used to the tools for
regular operations, in which you will review the most common actions taken when
managing a system. Enjoy!

4
Tools for Regular

Operations
At this point in this book, we've installed a system, and we've covered some of the scripts
we can create to automate tasks, so we've reached the point where we can focus on the
system itself.

Having a system properly configured requires not only installing it but understanding
how to run tasks at specific times, keeping all the services running appropriately, and
configuring time synchronization, service management, boot targets (runlevels), and
scheduled tasks, all of which we will be covering in this chapter.

In this chapter, you will learn how to check the statuses of services, how to start, stop, and
troubleshoot them, as well as how to keep the system clock in sync for your server or your
whole network.

104 Tools for Regular Operations

The list of topics that will be covered is as follows:

• Managing system services with systemd

• Scheduling tasks with cron and systemd

• Learning about time synchronization with chrony and ntp

• Checking for free resources – memory and disk (free and df)

• Finding logs, using journald, and reading log files, including log preservation
and rotation

Technical requirements
It is possible for you to complete this chapter by using the virtual machine we created at
the beginning of this book. Additionally, for testing the NTP server, it might be useful to
create a second virtual machine that will connect to the first one as a client, following the
same procedure we used for the first one. Additionally, required packages will be indicated
within the text.

Managing system services with systemd
In this section, you will learn how to manage System Services, runtime targets, and all
about the service status with systemd. You will also learn how to manage system boot
targets and services that should start at system boot.

systemd (which you can learn a bit about at https://www.freedesktop.org/
wiki/Software/systemd/) is defined as a system daemon that's used to manage
the system. It came as a rework of how a system boots and starts, and it looks at the
limitations related to the traditional way of doing it.

When we think about system starting, we have the initial kernel and ramdisk load
and execution, but right after that, services and scripts take control to make filesystems
available. This helps prepare the services that provide the functionality we want from our
system, such as the following:

• Hardware detection

• Additional filesystem activation

• Network initialization (wired, wireless, and so on)

• Network services (time sync, remote login, printers, network filesystems, and so on)

• User-space setup

https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/systemd/

Managing system services with systemd 105

However, most of the tools that existed before systemd came into play and worked
on this in a sequential way, causing the whole boot process (from boot to user login) to
become lengthy and be subject to delays.

Traditionally, this also meant we had to wait for the required service to be fully available
before the next one that depended on it could be started, increasing the total boot time.

Some approaches were attempted, such as using monit or other tools that allow us to
define dependencies, monitor processes, and even recover from failures, but in general, it
was reusing an existing tool to perform other functions, trying to win the race regarding
the fastest-booting system.

Important Note
systemd redesigned the process to focus on simplicity: start less processes
and do more parallel execution. The idea itself sounds easy but requires
redesigning a lot of what was taken for granted in the past, to focus on the
needs of a new approach to improve OS performance.

This redesign, which has provided lot of benefits, also came with a cost: it
drastically changed the way systems used to boot, so there has been a lot of
controversy on the adoption of systemd by different vendors, and even some
efforts by the community to provide systemd-free variants.

Rationalizing how services start so that only those that are required are started is a good
way to accomplish efficiency, for example, there is no need to start Bluetooth, printer, or
network services when the system is disconnected, there is no Bluetooth hardware, or
no one is printing. With fewer services waiting to start, the system boot is not delayed by
those waits and focuses on the ones that really need attention.

On top of that, parallel execution allows us to have each service taking the time it needs to
get ready but not make others wait, so in general, running services initialization in parallel
allows us to maximize the usage of CPU, disk, and so on, and the wait times for each
service are used by other services that are active.

systemd also pre-creates the listening sockets before the actual daemon is started, so
services that have requirements on other services can be started and be on a wait status
until its dependencies are started. This is done without them losing any messages that are
sent to them, so when the service is finally started, it will act on all the pending actions.

Let's learn a bit more about systemd as it will be required for several operations we're
going to describe in this chapter.

106 Tools for Regular Operations

Systemd comes with the concept of units, which are nothing but configuration files. These
units can be categorized as different types, based on their file extension:

Tip
Don't feel overwhelmed by the different systemd unit types. In general, the
most common ones are Service, Timer, Socket, and Target.

Of course, these unit files are expected to be found in some specific folders:

As we mentioned earlier about the sockets, unit files for path, bus, and more are activated
when a system's access to that path is performed, allowing services to be started when
another one is requiring them. This adds more optimization for lowering system startup
times.

With that, we have learned about systemd unit types. Now, let's focus on the file structure
of unit files.

Managing system services with systemd 107

Systemd unit file structure
Let's get our hands dirty with an example: a system has been deployed with sshd enabled,
and we need to get it running once the network has been initialized in the runlevels,
which provide connectivity.

As we mentioned previously, systemd uses unit files, and we can check the
aforementioned folders or list them with systemctl list-unit-files . Remember
that each file is a configuration file that defines what systemd should do; for example,
/usr/lib/systemd/system/chronyd.service:

Figure 4.1 – chronyd.service contents

This file defines not only the traditional program to start and the PID file, but the
dependencies, the conflicts, and soft dependencies, which provides enough information to
systemd to decide on the right approach.

If you're familiar with "inifiles," this file uses that approach, in that, it uses square brackets,
[and], for sections and then pairs of key=value for the settings in each section.

Section names are case-sensitive, so they will not be interpreted correctly if the proper
naming convention is not used.

108 Tools for Regular Operations

Section directives are named like so:

• [Unit]

• [Install]

There are additional entries for each of the different types:

• [Service]

• [Socket]

• [Mount]

• [Automount]

• [Swap]

• [Path]

• [Timer]

• [Slice]

As you can see, we have specific sections for each type. If we execute man systemd.
unit it will give you examples, along with all the supported values, for the systemd
version you're using:

Figure 4.2 – man page of systemd.unit

Managing system services with systemd 109

With that, we have reviewed the file structure of unit files. Now, let's use systemctl to
actually manage the service's status.

Managing services to be started and stopped at boot
Services can be enabled or disabled; that is, the services will or won't be activated on
system startup.

If you're familiar with the previous tools available in RHEL, it was common to use
chkconfig to define the status of the services based on their default rc.d/ settings.

A service, such as sshd, can be enabled via the following command:

#systemctl enable sshd

It can also be disabled via the following command:

#systemctl disable sshd

This results in creating or removing /etc/systemd/system/multi-user.
target.wants/sshd.service. Notice multi-user.target in the path, which is
the equivalent of the runlevel we used to configure other approaches such as initscripts.

Tip
Although traditional usage of chkconfig is provided for compatibility so that
chkconfig sshd on/off or service start/stop/status/
restart sshd is valid, it is better to get used to the systemctl
approach described in this chapter.

The previous commands enable or disable the service at boot, but for executing an
immediate action, we need to issue different commands.

To start the sshd service, use the following command:

#systemctl start sshd

To stop it, use the following command:

#systemctl stop sshd

110 Tools for Regular Operations

Of course, we can also check the service's status. The following is an example of looking at
systemd via systemctl status sshd:

Figure 4.3 – Status of sshd daemon

This status information provides details about the unit file defining the service, its
default status at boot, if it is running or not, its PID, some other details about its resource
consumption, and some of the most recent log entries for the service, which are quite
useful when you're debugging simple service start failures.

One important thing to check is the output of systemctl list-unit-files as it
reports the defined unit files in the system, as well as the current status and the vendor
preset for each one.

Now that we have covered how to start/stop and status check services, let's work on
managing the actual system boot status itself.

Managing boot targets
The default status we have defined at boot is important when it comes to talking about
runlevels.

A runlevel defines a predefined set of services based on usage; that is, they define which
services will be started or stopped when we're using a specific functionality.

Managing system services with systemd 111

For example, there are runlevels that are used to define the following:

• Halt mode

• Single user mode

• Multi-user mode

• Networked multiuser

• Graphical

• Reboot

Each of those runlevels allows a predefined set of services to be started/stopped when the
runlevel is changed with init $runlevel. Of course, levels used to be based on each
other, and were very simple:

• Halt stopped all the services and then halted or powered off the system.

• Single user mode starts a shell for one user.

• Multi-user mode enables regular login daemons on the virtual terminals.

• Networked is like multi-user but with the network started.

• Graphical is like networked but with graphical login via display manager
(gdm or others).

• Reboot is like halt, but at the end of processing services, it issues a reboot instead
of a halt.

These runlevels (and the default one when the system is booted) used to be defined in
/etc/inittab, but the file placeholder reminds us of the following:

inittab is no longer used.

#

ADDING CONFIGURATION HERE WILL HAVE NO EFFECT ON YOUR SYSTEM.

#

Ctrl-Alt-Delete is handled by /usr/lib/systemd/system/ctrl-
alt-del.target

#

systemd uses 'targets' instead of runlevels. By default,
there are two main targets:

#

multi-user.target: analogous to runlevel 3

graphical.target: analogous to runlevel 5

112 Tools for Regular Operations

#

To view current default target, run:

systemctl get-default

#

To set a default target, run:

systemctl set-default TARGET.target

So, by making this change to systemd, a new way to check the available boot targets and
define them is in place.

We can find the available system targets by listing this folder:

#ls -l /usr/lib/systemd/system/*.target

Or more, correctly, we can use systemctl, like so:

#systemctl list-unit-files *.target

When you examine the output on your system, you will find some compatibility aliases for
runlevels 0 to 6 that provide compatibility with the traditional ones.

For example, for regular server usage, the default target will be multi-user.target
when you're running without graphical mode or graphical.target when you're
using it.

We can define, as instructed in the placeholder at /etc/inittab, the new runlevel to
use by executing the following command:

#sysemctl set-default TARGET.target

We can verify the active one by using the following command:

#systemctl get-default

This brings us to the next question: What does a target definition look like? Let's examine
the output in the following screenshot:

Scheduling tasks with cron and systemd 113

Figure 4.4 – Contents of runlevel 5 from its target unit definition

As you can see, it is set as a dependency of another target (multi-user.target) and has
some requirements on other services, such as display-manager.service, and also other
conflicts, and the target can only be reached when other targets have completed.

In this way, systemd can select the proper order of services to start and the dependencies
to reach the configured boot target.

With that, we have covered the service's status, as well as how to start, stop, and enable it
on boot, but there are other tasks we should execute in our system but in a periodic way.
Let's get further into this topic.

Scheduling tasks with cron and systemd
The skills you will learn in this section will be concerned with scheduling periodic tasks in
the system for business services and maintenance.

For regular system usage, there are tasks that need to be executed periodically, ranging
from temporary folder cleanup, updating the cache's refresh rate, and performing
check-in with inventory systems, among other things.

The traditional way to set them up is via cron, which is provided in RHEL8 via the
cronie package.

Cronie implements a daemon that's compatible with the traditional vixie cron and allows
us to define both user and system crontabs.

A crontab defines several parameters for a task that must be executed. Let's see how it
works.

114 Tools for Regular Operations

System-wide crontab
System-wide crontab can be defined in /etc/crontab or in individual files at /etc/
cron.d. Other additional folders exist, such as /etc/cron.hourly, /etc/cron.
daily, /etc/cron.weekly, and /etc/cron.monthly.

In the folders for hourly, daily, weekly, or monthly, you can find scripts or symbolic links
to them. When the period since the preceding execution is met (one hour, one day, one
week, one month), the script will be executed.

In contrast, in /etc/crontab or /etc/cron.d, as well as in the user crontabs, the
standard definition of jobs is used.

Jobs are defined by specifying the parameters that are relevant to the execution period,
the user that will be executing the job (except for user crontabs), and the command to
execute:

Run the hourly jobs

SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

01 * * * * root run-parts /etc/cron.hourly

By looking at the standard /etc/crontab file, we can check the meaning of each field:

Example of job definition:

.---------------- minute (0 - 59)

| .------------- hour (0 - 23)

| | .---------- day of month (1 - 31)

| | | .------- month (1 - 12) OR jan,feb,mar,apr ...

| | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR
sun,mon,tue,wed,thu,fri,sat

| | | | |

* * * * * user-name command to be executed

Based on this, if we check the initial example, 01 * * * * root run-parts /
etc/cron.hourly, we can deduce the following:

• Run at minute 01.

• Run every hour.

• Run every day.

Scheduling tasks with cron and systemd 115

• Run every month.

• Run every day of the week.

• Run as root.

• Execute the run-parts /etc/cron.hourly command.

This, in brief, means that the job will run on the first minute of every hour as the
root user.

Sometimes, it is possible to see an indication, such as */number, which means that the job
will be executed every multiple of that number. For example, */3 will run every 3 minutes
if it is on the first column, every 3 hours if it's on the second, and so on.

Any command we might execute from the command line can be executed via cron, and
the output will be, by default, mailed to the user running the job. It is a common practice
to either define the user that will receive the email via the MAILTO variable in the crontab
file, or to redirect them to the appropriate log files for the standard output and standard
error (stdout and stderr).

User crontab
Like the system-wide crontab, users can define their own crontabs so that tasks are
executed by the user. This is, for example, useful for running periodic scripts both for
a human user or a system account for a service.

The syntax for user crontabs is the same as it is system-wide. However, the column for the
username is not there, since it is always executed as the user is defining the crontab itself.

A user can check its crontab via crontab –l:

[root@el8-692807 ~]# crontab -l

no crontab for root

A new one can be created by editing it via crontab -e, which will open a text editor so
that a new entry can be created.

Let's work with an example by creating an entry, like this:

*/2 * * * * date >> datecron

When we exit the editor, it will reply with the following:

crontab: installing new crontab

116 Tools for Regular Operations

This will create a file in the /var/spool/cron/ folder with the name of the user that
created it. It is a text file, so you can check its contents directly.

After some time (at least 2 minutes), we'll have a file in our $HOME folder that contains the
contents of each execution (because we're using the append redirect; that is, >>):

[root@el8-692807 ~]# cat datecron

Mon Jan 11 21:02:01 GMT 2021

Mon Jan 11 21:04:01 GMT 2021

Now that we've covered the traditional crontab, let's learn about the systemd way of doing
things; that is, using timers.

Systemd timers
Apart from the regular Cron Daemon, a cron-style systemd feature is to use timers.
A timer allows us to define, via a unit file, a job that will be executed.

We can check the ones that are already available in our system with the following code:

>systemctl list-unit-files *.timer

...

timers.target static

dnf-makecache.timer enabled

fstrim.timer disabled

systemd-tmpfiles-clean.timer static

...

Let's see, for example, fstrim.timer, which is used on SSD drives to perform a trim
at /usr/lib/systemd/system/fstrim.timer:

[Unit]

Description=Discard unused blocks once a week

Documentation=man:fstrim

..

[Timer]

OnCalendar=weekly

AccuracySec=1h

Persistent=true

…

Learning about time synchronization with chrony and NTP 117

[Install]

WantedBy=timers.target

The preceding timer sets a weekly execution for fstrim.service:

[Unit]

Description=Discard unused blocks

[Service]

Type=oneshot

ExecStart=/usr/sbin/fstrim -av

As the fstrim -av command shows, we are only executing this once.

One of the advantages of having the service timers as unit files, similar to the service itself,
is that it can be deployed and updated via the /etc/cron.d/ files with the regular cron
daemon, which is handled by systemd.

We now know a bit more about how to schedule tasks, but to get the whole picture,
scheduling always requires proper timing, so we'll cover this next.

Learning about time synchronization with
chrony and NTP
In this section, you will understand the importance of time synchronization and how to
configure the service.

With connected systems, it is important to keep a source of truth in regards to timing
(think about bank accounts, incoming transfer wires, outgoing payments, and more
that must be correctly timestamped and sorted). Also, consider tracing logs between
users connecting, issues happening, and so on; they all need to be in sync so that we can
diagnose and debug between all the different systems involved.

You might think that the system clock, which is defined when the system is provisioned,
should be OK, but setting the system clock is not enough as the clocks tend to drift;
internal batteries can cause the clock to drift or to even reset, and even intense CPU
activity can affect it. To keep clocks accurate, they need to be regularly synced against
a reference clock that fixes the drift and tries to anticipate future drifts before the local
clock is compared against the remote reference.

118 Tools for Regular Operations

The system clock can be synced against a GPS unit, for example, or more easily against
other systems that have connections to more precise clocks (other GPS units, atomic
clocks, and so on). The Network Time Protocol (NTP) is an internet protocol that's
used over UDP to maintain communication between the clients and the servers.

Tip
NTP organizes servers by stratum. A stratum 0 device is a GPS device or
an atomic clock that directly sends the signal to a server, a stratum 1 server
(primary server) is connected to a stratum 0 device, a stratum 2 server is
connected to stratum 1 servers, and so on... This hierarchy allows us to reduce
the usage of higher stratum servers but also keep a reliable time source for our
systems.

Clients connect to servers and compare the times that are received to reduce the effects
of network latency.

Let's see how the NTP client works.

NTP client
In RHEL8, chrony acts as both the server (when enabled) and the client (via the chronyc
command), and it comes with some features that make it suitable for current hardware
and user needs, such as fluctuating networks (laptop is suspend/resumed or flaky
connections).

One interesting feature is that chrony does not step the clock after its initial sync, which
means that the time doesn't jump. Instead, the system clock runs faster or slower so that,
after a period of time, it will be in sync with the reference clock it's using. This makes the
time to be a continuum from the operating system and application's point of view: the
seconds are going faster or slower than what they should be, if compared against a clock,
until they match the reference clock.

Chrony is configured via /etc/chrony.conf and acts as a client, so it connects to
servers to check if they're eligible to be the time source. The main difference between the
traditional server directive and the pool is that the latter can receive several entries while
the former only uses one. It is possible to have several servers and pool because, in effect,
the servers will be added to the list of possible sources once the duplicates have been
removed.

Learning about time synchronization with chrony and NTP 119

For pool or server directives, there are several options available (described in man
chrony.conf), such as iburst, which enables faster checks so that they can quickly
transition to a synchronized status.

The actual sources for time can be checked with chronyc sources:

Figure 4.5 – chronyc sources output

As we can see, we know which status is for each server based on the first column (M):

• ^: This is a server

• =: This is a peer

 In the second column (S), we can see the different statuses for each entry:

• *: This is our current synchronized server.

• +: This is another acceptable time source.

• ?: This is used to indicate sources that has lost network connectivity.

• x: This server is considered a false ticker (its time is considered inconsistent
compared to other sources).

• ~: A source that has a high variability (it also appears during daemon startup).

So, we can see that our system is connected to a server that is considering the reference
at ts1.sct.de, which is a stratum 2 server.

120 Tools for Regular Operations

More detailed information can be checked via the chronyc tracking command:

Figure 4.6 – Chronyc tracking output

This provides more detailed information about our clock and our reference clock. Each
field in the preceding screenshot has the following meaning:

• Field: Description.

• Reference ID: ID and name/IP of the server that the system has synchronized.

• Stratum: Our stratum level. In this example, our synchronized server is a stratum
3 clock.

• Ref time: The last time the reference was processed.

• System time: When running in normal mode (without time skip), this references
how far away or behind the system is from the reference clock.

• Last offset: Estimated offset on the last clock update. If it's positive, this indicates
that our local time was ahead of our source.

• RMS offset: Long-term average of the offset value.

• Frequency: It is the rate at which the system clock would be wrong if chronyd is not
fixing it, expressed in parts per million.

• Residual freq: Reflects any difference between the measurements for the current
reference clock.

Learning about time synchronization with chrony and NTP 121

• Skew: Estimated error on the frequency.

• Root delay: Total network delays to the stratum -1 synchronized server.

• Root dispersion: Total dispersion accumulated through all the computers
connected to the stratum -1 server we're synchronized to.

• Update interval: Interval between the last two clock updates.

• Leap status: It can be Normal, Insert, Delete, or Not synchronized. It reports the
leap status.

Tip
Don't underestimate the information sources you have at your fingertips.
Remember that when you're preparing for RHCSA exams, the information
that's available in the system can be checked during the exam: man pages,
documentation included with the program (/usr/share/doc/
program/), and more. For example, more detailed information about each
field listed here can be found via the man chronyc command.

To configure the client with additional options, other than the ones provided at install
time or via the kickstart file, we can edit the /etc/chrony.cnf file.

Let's learn how to convert our system into an NTP server for our network.

NTP server
As we introduced earlier, chrony can also be configured as a server for your network.
In this mode, our system will be providing accurate clock information to other hosts
without consuming external bandwidth or resources from higher-stratum servers.

This configuration is also performed via the /etc/chrony.conf file, which is where
we will be adding a new directive; that is, allow:

Allow NTP client access from all hosts

allow all

This change enables chrony to listen on all host requests. Alternatively, we can define
a subnet or host to listen to, such as allow 1.1.1.1. More than one directive can
be used to define the different subnets. Alternatively, you can use the deny directive to
block specific hosts or subnets from reaching our NTP server.

122 Tools for Regular Operations

The serving time starts from the base that our server is already synchronized with, as well
as an external NTP server, but let's think about an environment without connectivity. In
this case, our server will not be connected to an external source and it will not serve time.

chrony allows us to define a fake stratum for our server. This is done via the local
directive in the configuration file. This allows the daemon to get a higher local stratum so
that it can serve the time to other hosts; for example:

local stratum 3 orphan

With this directive, we're setting the local stratum to 3 and we're using the orphan option,
which enables a special mode in which all the servers with an equal local stratum are
ignored unless no other source can be selected, and its reference ID is smaller than the
local one. This means that we can set several NTP servers in our disconnected network
but only one of them will be the reference.

Now that we have covered time synchronization, we are going to dive into resource
monitoring. Later, we'll look at logging. All of this is related to our time reference
for the system.

Checking for free resources – memory and
disk (free and df)
In this section, you will check the availability of system resources such as memory
and disk.

Keeping a system running smoothly means using monitoring so that we can check
that the services are running and that the system provides the resources for them
to do their tasks.

There are simple commands we can use to monitor the most basic use cases:

• Disk

• CPU

• Memory

• Network

This includes several ways of monitoring, such as one-shot monitoring, continuously,
or even for a period of time to diagnose performance better.

Checking for free resources – memory and disk (free and df) 123

Memory
Memory can be monitored via the free command. It provides details on how much
RAM and SWAP are available and in use, which also indicates how much memory is used
by shares, buffers, or caches.

Linux tends to use all available memory; any unused RAM is directed toward caches
or buffers and memory pages that are not being used. These are swapped out to disk if
available:

free

 total used free shared buff/
cache available

Mem: 823112 484884 44012 2976
294216 318856

Swap: 8388604 185856 8202748

For example, in the preceding output, we can see that the system has a total of 823 MB
of RAM and that it's using some swap and some memory for buffers. This system is not
swapping heavily as it's almost idle (we'll check the load average later in this chapter), so
we should not be concerned about it.

When RAM usage gets high and there's no more swap available, the kernel includes a
protection mechanism called OOM-Killer. It determines, based on time in execution,
resources usage, and more which processes in the system should be terminated to recover
the system so that it's functional. This, however, comes at a cost, as the kernel knows about
the processes that may have gone out of control. However, the killer may kill databases
and web servers and leave the system in an unstable way. For production servers, it is
sometimes typical to, instead of letting the OOM-Killer start killing processes in an
uncontrolled way, to either tune the values for some critical process so that those are not
killed or to cause a system crash.

A system crash is used to collect debug information that can later be analyzed via a dump
containing information about what caused the crash, as well as a memory dump that can
be diagnosed.

We will come back to this topic in Chapter 16, Kernel Tuning and Managing Performance
Profiles with tuned. Let's move on and check the disk space that's in use.

124 Tools for Regular Operations

Disk space
Disk space can be checked via the df tool. df provides data as output for each filesystem.
This indicates the filesystem and its size, available space, percent of utilization, and
mount point.

Let's check this in our example system:

> df

Filesystem 1K-blocks Used Available Use%
Mounted on

devtmpfs 368596 0 368596 0%
/dev

tmpfs 411556 0 411556 0%
/dev/shm

tmpfs 411556 41724 369832 11%
/run

tmpfs 411556 0 411556 0%
/sys/fs/cgroup

/dev/mapper/rhel-root 40935908 11026516 29909392 27%

/dev/sda2 1038336 517356 520980 50%
/boot

/dev/sda1 102182 7012 95170 7%
/boot/efi

tmpfs 82308 0 82308 0%
/run/user/1000

By using this, it's easy to focus on filesystems with higher utilization and less free space to
prevent issues.

Important Note
If a file is being written, such as by a process logging its output, removing the
file will just unlink the file from the filesystem, but since the process still has
the file handle open, the space is not reclaimed until the process is stopped.
In case of critical situations where disk space must be made available as soon
as possible, it's better to empty the file via a redirect, such as echo "" >
filename. This will recover the disk space immediately while the process
is still running. Doing this with rm command will require the process to be
finalized.

We'll check out CPU usage next.

Checking for free resources – memory and disk (free and df) 125

CPU
When it comes to monitoring the CPU, we can make use of several tools, such as ps:

Figure 4.7 – Output of the ps aux command (every process in the system)

The ps command is the de facto standard for checking which process is running, as well
as resource consumption usage.

As for any other command, we could write a lot about all the different command
arguments we could use (so, again, check the man page for details), but as a rule, try to
learn about their basic usage or the ones that are more useful for you. For anything else,
check the manual. For example, ps aux provides enough information for normal usage
(every process in the system).

126 Tools for Regular Operations

The top tool, as shown in the following screenshot, refreshes the screen regularly and
can sort the output of running processes, such as CPU usage, memory usage, and more.
In addition, top also shows a five-line summary of memory usage, load average,
running processes, and so on:

Figure 4.8 – top execution on our test system

CPU usage is not the only thing that may keep our system sluggish. Now, let's learn a bit
about load average indicators.

Load average
Load average is usually provided as a group of three numbers, such as load average:
0.81, 1.00, 1.17, which is the average that's calculated for 1, 5, and 15 minutes,
respectively. This indicates how busy a system is; the higher it is, the worse it will respond.
The values that are compared for each time frame give us an idea of whether the
system load is increasing (higher values in 1 or 5 and lower on 15) or if it is going down
(higher at 15 mins, lower at 5 and 1), so it becomes a quick way to find out if something
happened or if it is ongoing. If a system usually has a high load average (over 1.00),
it would be a good idea to dig a bit deeper into the possible causes (too much demand
for its power, not many resources available, and so on).

Checking for free resources – memory and disk (free and df) 127

Now that we have covered the basics, let's move on and look at some extra checks we can
perform on our system resource's usage.

Other monitoring tools
For monitoring network resources, we can check the packages that are sent/received
for each card via ifconfig, for example, and match the values that are received for
transmitted packages, received, errors, and so on.

When the goal Is to perform more complete monitoring, we should ensure that the sysstat
package is installed. It includes some interactive tools such as iostat, which can be used to
check disk performance, but the most important thing is that it also sets up a job that will
collect system performance data on a periodical basis (the default is every 10 minutes).
This will be stored in /var/log/sa/.

The historical data that's recorded and stored per day (##) at /var/log/sa/sa## and
/var/log/sa/sar## can be queried so that we can compare against other days. By
running the data collector (which is executed by a systemd timer) with a higher frequency,
we can increase the granularity for specific periods while an issue is being investigated.

However, the appearance of the sar file is showing lots of data:

Figure 4.9 – Contents of /var/log/sar02 on the example system

128 Tools for Regular Operations

Here, we can see that the 8-0 device had 170.27 transactions per second and 14.51%
utilization. In this case, the device's name is using the values for the major/minor, which
we can check in the /dev/ folder. We can see this by running ls -l /dev/*|grep 8,
as shown in the following screenshot:

Figure 4.10 – Directory listing for /dev/ for locating the device corresponding to major 8 and minor 0

Here, we can see that this corresponds to the full hard drive statistics at /dev/sda.

Tip
Processing the data via sar is a good way to get insights on what's going on with
our system, but since the sysstat package has been around for a long time in
Linux, there are tools such as https://github.com/mbaldessari/
sarstats that help us process the data that's recorded and present it
graphically as a PDF file.

In the following graph, we can see the system service times for the different drives, along
with a label at the time the system crashes. This helps us identify the system's activity at
that point:

https://github.com/mbaldessari/sarstats
https://github.com/mbaldessari/sarstats

Checking for free resources – memory and disk (free and df) 129

Figure 4.11 – Sarstats graphics for the disk service's time in their example PDF at https://acksyn.org/
software/sarstats/sar01.pdf

Modern tooling for monitoring the system's resources has evolved, and Performance
Co-Pilot (pcp and, optionally, the pcp-gui packages) can be set up for more powerful
options. Just bear in mind that pcp requires us to also start the data collector on the
system.

https://acksyn.org/software/sarstats/sar01.pdf
https://acksyn.org/software/sarstats/sar01.pdf

130 Tools for Regular Operations

RHEL8 also includes cockpit, which is installed by default when we do a server
installation. This package provides a set of tools that enable web management for
the system, and it can also be made part of other products via plugins that extend its
functionality.

The web service provided by cockpit can be reached at your host IP at port 9090, so you
should access https://localhost:9090 to get a login screen so that we can use our
system credentials to log in.

Important Tip
If cockpit is not installed or available, make sure that you execute dnf
install cockpit to install the package and use systemctl enable
--now cockpit.socket to start the service. If you are accessing the
server remotely, instead of using localhost, use the server hostname or IP
address after allowing the firewall to connect via firewall-cmd --add-
service=cockpit, if you haven't done so previously.

After logging in, we will see a dashboard showing the relevant system information and
links to other sections, as shown in the following screenshot:

Figure 4.12 – Cockpit screen after logging in with a system dashboard

Checking for free resources – memory and disk (free and df) 131

As you can see, cockpit includes several tabs that can be used to view the status of the
system and even perform some administration tasks, such as SELinux, software updates,
subscriptions, and more.

For example, we can check the system graphs on performance, as shown in the following
screenshot:

Figure 4.13 – Cockpit graphs in the dashboard for Usage Graphs

Cockpit allows us to check a service's status, package upgrade status, plus other
configuration settings from a graphical interface that can also connect remotely to other
systems. These can be selected from the lateral menu on the left.

There are better tools suited for large deployment monitoring and management, such as
Ansible and Satellite, so it is important to get used to the tools we have for troubleshooting
and simple scripts we can build. This allows us to combine what we've learned so far to
quickly generate hints about things that require our attention.

With that, we have covered some of the basics of checking resource usage. Now, let's check
out how to find information about the running services and errors we can review.

132 Tools for Regular Operations

Finding logs, using journald, and reading log
files, including log preservation and rotation
In this section, you will learn how to review a system's status via logs.

Previously in this chapter, we learned how to manage system services via systemd,
check their status, and check their logs. Traditionally, the different daemons and system
components used to create files under the /var/log/ folder are based on the name
of the daemon or service. If the service used to create several logs, it would do so inside
a folder for the service (for example, httpd or samba).

The system log daemon, rsyslogd, has a new systemd partner, named systemd-
journald.service, that also stores logs, but instead of using the traditional plain text
format, it uses binary format, which can be queried via the journalctl command.

It's really important to get used to reading the log files as it's the basis for troubleshooting,
so let's learn about general logging and how to use it.

Logs contain status information for the services that generate it. They might have some
common formatting and can often be configured, but they tend to use several common
elements, such as the following:

• Timestamp

• Module generating the entry

• Message

The following is an example:

Jan 03 22:36:47 el8-692807 sshd[50197]: Invalid user admin from
49.232.135.77 port 47694

In this case, we can see that someone attempted to log into our system as the admin user
from IP address 49.232.135.77.

We can correlate that event with additional logs, such as the ones for the login subsystem
via journalctl -u systemd-logind. In this example, we cannot find any login for
the admin user (this is expected as the admin user was not defined in this system).

Additionally, we can see the name of the host, el8-692807, the service generating it,
sshd, a PID of 50197, and the message that's been logged by that service.

In addition to journalctl, there are additional logs that we can look at when we wish to
check the system's health. Let's look at an example with /var/log/messages:

Finding logs, using journald, and reading log files, including log preservation and rotation 133

Figure 4.14 – Excerpt of /var/log/messages

In this example, we can see how the system ran some commands while following
a similar output to the initial lines. For example, in the preceding example, we can see
how sysstat has been executed every 10 minutes, as well as how the dnf cache has
been updated.

Let's look at a list of important logs that are available in a standard system installation
(note that the filenames are relative to /var/log folder):

• boot.log: Stores the messages that are emitted by the system during boot. It
might contain escape codes that are used to provide colorized output.

• audit/audit.log: Contains the stored messages that have been generated
by the Kernel audit subsystem.

• secure: Contains security-related messages, such as failed sshd login attempts.

• dnf.log: Logs generated by the DNF package manager, such as cache refreshes.

• firewalld: Output generated by the firewalld daemon.

• lastlog: This is a binary file that contains information about the last few users
logging into the system (to be queried via the last command).

• messages: The default logging facility. This means that anything that is not
a specific log will go here. Usually, this is the best place to start checking what
happened with a system.

134 Tools for Regular Operations

• maillog: The log for the mail subsystem. When enabled, it attempts to deliver
messages. Any messages that are received will be stored here. It's common practice
to configure outgoing mail from servers so that system alerts or script outputs can
be delivered.

• btmp: Binary log for failed access to the system.

• wtmp: Binary log for access to the system.

• sa/sar*: Text logs for the sysstat utility (the binary ones, named sa, plus the day
number, are converted via a cron job at night).

Additional log files might exist, depending on the services that have been installed, the
installation method that was used, and so on. It is very important to get used to the
available logs and, of course, review their contents to see how the messages are formatted,
how many logs are created every day, and what kind of information they produce.

Using the information that's been logged, we will get hints on how to configure each
individual daemon. This allows us to adjust the log level between being showing just
errors or being more verbose about debugging issues. This means we can configure the
required log rotation to avoid risking system stability because all the space has been
consumed by logs.

Log rotation
During regular system operation, lots of daemons are in use, and the system itself
generates the logs that are used for troubleshooting and system checks.

Some services might allow us to define the log file to write for based on the date, but
usually, the standard is to log to a file named like the daemon in the /var/log directory;
for example, /var/log/cron. Writing to the same file will cause the file to grow
until the drive holding the logs is filled, which might not make sense as after a while
(sometimes, under company-defined policies), logs are no longer useful.

The logrotate package provides a script with a cron entry that simplifies the log rotation
process. It is configured via /etc/logrotate.conf and is executed on a daily basis, as
shown here:

Finding logs, using journald, and reading log files, including log preservation and rotation 135

Figure 4.15 – Example listing of logs and rotated logs (using date extension)

If we check the contents of the configuration file, we will see that it includes some file
definitions either directly there or via drop-in files in the /etc/logrotate.d/ folder,
which allows each program to drop their own requirements without it affecting others
when packages are installed, removed, or updated.

Why is this important? Because, if you remember from of the tips earlier in this chapter
(while speaking about disk space), if logrotate just deleted the files and created a new
one, the actual disk space would not be freed, and the daemon writing to the log will
continue to write to the file it was writing to (via the file handle). To overcome this, each
definition file can define a post-rotation command. This signals the process of log rotation
so that it can close and then reopen the files it uses for logging. Some programs might
require a signal such as kill –SIGHUP PID or a special parameter on execution such
as chronyc cyclelogs.

With these definitions, logrotate will be able to apply the configuration for each
service and, at the same time, keep the service working in a sane state.

136 Tools for Regular Operations

Configuration can also include special directives, such as the following:

• missingok

• nocreate

• nopytruncate

• notifempty

You can find out more about them (and others) on the man page for logrotate.conf
(yes, some packages also include a man page for the configuration files, so try checking
man logrotate.conf to get the full details!).

The remaining general configuration in the main file allows us to define some common
directives, such as how many days of logs to keep, if we want to use the date in the file
extension for the rotated log files, if we want to use compression on the rotated logs, how
frequently we want to have the rotation executed, and so on.

Let's look at some examples.

The following example will rotate on a daily basis, keep 30 rotated logs, compress
them, and use an extension with date as part of its trailing filename:

rotate 30

daily

compress

dateext

In this example, it will keep 4 logs rotated on a weekly basis (so 4 weeks) and will
compress the logs, but use a sequence number for each rotated log (this means that
each time a rotation happens, the sequence number is increased for the previously
rotated logs too):

rotate 4

weekly

compress

One of the advantages of this approach (not using dateext) is that the log naming
convention is predictable as we have daemon.log as the current one, daemon.1.log
as the prior one, and so on. This makes it easier to script log parsing and processing.

Summary 137

Summary
In this chapter, we learned about systemd and how it takes care of booting the required
system services in an optimized way. We also learned how to check a service's status,
how to enable, disable, start, and stop them, and how to make the system boot into the
different targets that we boot our system into.

Time synchronization was introduced as a must-have feature and it ensures our service
functions properly. It also allows us to determine the status of our system clock and how
to act as a clock server for our network.

We also used system tools to monitor resource usage, learned how to check the logs
that are created by our system to find about the functional status of the different tools,
and how to can ensure that logs are maintained properly so that older entries are
discarded when they are no longer relevant.

In the next chapter, we will dive into securing the system with different users, groups,
and permissions.

5
Securing Systems

with Users, Groups,
and Permissions

Security is a key part of managing a system, and understanding the security concepts in
order to provide the right access to the right resource to the right user, or group of users,
is required for any system administrator.

In this chapter, we will review the basics of security in Red Hat Enterprise Linux (RHEL).
We will add new users to a system and change their attributes. We will also add a user
to a group, and reviewing groups before making changes will be seen in this chapter.
We shall review how to handle user passwords and changing the age requirements for
them, locking and/or restricting user access. We will use sudo as a way to assign admin
privileges to different users in the system (and even disable the root account). We will
also take a deeper look into file permissions and how to change them, using an extended
capability to enable commands to be run with a different user or group or simplify group
collaboration in directories.

140 Securing Systems with Users, Groups, and Permissions

We will cover the following topics:

• Creating, modifying, and deleting local user accounts and groups

• Managing groups and reviewing assignments

• Adjusting password policies

• Configuring sudo access for administrative tasks

• Checking, reviewing, and modifying file permissions

• Using special permissions

Let's get started in the world of permissions and security with user accounts and groups.

Creating, modifying, and deleting local user
accounts and groups
One of the first tasks that a system administrator has to do when preparing a system to
be accessed by users is to create new user accounts for the people accessing the system. In
this section, we will review how local accounts are created and deleted, as well as how they
are assigned to groups.

The first step is to create a new user account in the system. That is done by using the
useradd command. Let's add user01 to the system by running the following:

[root@rhel8 ~]# useradd user01

[root@rhel8 ~]# grep user01 /etc/passwd

user01:x:1001:1001::/home/user01:/bin/bash

[root@rhel8 ~]# id user01

uid=1001(user01) gid=1001(user01) groups=1001(user01)

With that, the user is created.

Important note
To be able to add users, we need administrative privileges. In the current
configuration, we do that by running the commands as root.

Creating, modifying, and deleting local user accounts and groups 141

The account is created using the default options configured in the system, such as the
following:

• No password assigned: The new user will not be able to log in using a password.
However, we can switch to that account by using su as root. We will see how to
add a password to the user next.

• User ID (UID): The first number over 999 available. In the command we ran before,
for user01, the UID is 1001.

• Group ID (GID): The same number as the UID. In this case, the GID is 1001.

• Description: No description is added when creating the user. This field is left empty.

• Home: A home directory is created in /home/$USER, in this case /home/
user01. This will be default and main directory for the user and is where their
personal preferences and files will be stored. Initial contents are copied from
/etc/skel.

• Shell: The default shell is bash.

Tip
The default options applied when a new user is created are defined in the
/etc/default/useradd file.

Once the user is created, we can add (or change) the password by running, as root, the
command passwd followed by the username to change it:

[root@rhel8 ~]# passwd user01

Changing password for user user01.

New password: redhat

BAD PASSWORD: The password is shorter than 8 characters

Retype new password: redhat

passwd: all authentication tokens updated successfully

Now the user has the new password assigned. Note two things:

• User root can change the password to any user without knowing the previous one
(a full password reset). This is useful when a user comes back from their holidays
and doesn't remember their password.

• In the example, we show the password assigned, redhat, but that is not shown on
the screen. The password is too simple and does not meet the default complexity
criteria, however, as root we can still assign it.

142 Securing Systems with Users, Groups, and Permissions

 Let's check the new user with the id command we learned before:

[root@rhel8 ~]# id user01

uid=1001(user01) gid=1001(user01) groups=1001(user01)

After the steps taken in this section, we now have the user in the system and ready to be
used. The main options we could have used to customize the user creation with useradd
are the following:

• -u or --uid: Assign a specific UID to the user.

• -g or --gid: Assign a main group to the user. It can be specified by number (GID)
or by name. The group needs to be created first.

• -G or --groups: Make the user part of other groups by providing a comma-
separated list of them.

• -c or --comment: Provide a description for the user, specified between quotes if
you want to use spaces.

• -d or --home-dir: Define the home directory for the user.

• -s or --shell: Assign a custom shell to the user.

• -p or --password: A way to provide a password to the user. The password should
be already encrypted to use this method. It is recommended not to use this option
as there are ways to capture the encrypted password. Please use passwd instead.

• -r or --system: To create a system account instead of a user account.

What if we need to change any of the user's properties, such as, for example, the
description? The tool for that is usermod. Let's modify the description to user01:

[root@rhel8 ~]# usermod -c "User 01" user01

[root@rhel8 ~]# grep user01 /etc/passwd

user01:x:1001:1001:User 01:/home/user01:/bin/bash

The usermod command uses the same options as useradd. It will be easy to customize
your current users now.

Let's create user02 as an example of how to use the options:

[root@rhel8 ~]# useradd --uid 1002 --groups wheel \

--comment "User 02" --home-dir /home/user02 \

--shell /bin/bash user02

[root@rhel8 ~]# grep user02 /etc/passwd

Creating, modifying, and deleting local user accounts and groups 143

user02:x:1002:1002:User 02:/home/user02:/bin/bash

[root@rhel8 ~]# id user02

uid=1002(user02) gid=1002(user02) groups=1002(user02),10(wheel)

Tip
When the command line is too long, the character \ can be added, then press
Enter and continue the command on a new line.

Now we know how to create a user, but we may need to create a group too and add our
users to it. Let's create the finance group, with the groupadd command:

[root@rhel8 ~]# groupadd finance

[root@rhel8 ~]# grep finance /etc/group

finance:x:1003:

We can add the user01 and user02 users to the finance group:

[root@rhel8 ~]# usermod -aG finance user01

[root@rhel8 ~]# usermod -aG finance user02

[root@rhel8 ~]# grep finance /etc/group

finance:x:1003:user01,user02

Important note
We are using the -aG option to add the user to the group, instead of modifying
the groups the user belongs to.

Once we know how to create users and groups, let's check how to delete them with the
userdel command:

[root@rhel8 ~]# userdel user01

[root@rhel8 ~]# grep user01 /etc/passwd

[root@rhel8 ~]# id user01

id: 'user01': no such user

[root@rhel8 ~]# grep user02 /etc/passwd

user02:x:1002:1002:User 02:/home/user02:/bin/bash

[root@rhel8 ~]# id user02

uid=1002(user02) gid=1002(user02)
groups=1002(user02),10(wheel),1003(finance)

[root@rhel8 ~]# ls /home/

144 Securing Systems with Users, Groups, and Permissions

user user01 user02

[root@rhel8 ~]# rm -rf /home/user01/

As you can see, we needed to manually delete the home directory. This way of removing
a user is good if we want to keep its data for future use.

To fully remove a user, we shall apply the option -r. Let' try it with user02:

[root@rhel8 ~]# userdel -r user02

[root@rhel8 ~]# ls /home/

user user01

[root@rhel8 ~]# grep user02 /etc/passwd

[root@rhel8 ~]# id user02

id: 'user02': no such user

Now let's remove the finance group with the groupdel command:

[root@rhel8 ~]# groupdel finance

[root@rhel8 ~]# grep finance /etc/group

As we have seen, it's simple and easy to create users and groups in RHEL and make simple
assignments. In the next section, let's check in more depth how to manage groups and
assignments to them.

Managing groups and reviewing assignments
We have seen how to create a group with groupadd and delete it with groupdel. Let's
see how to modify a created group with groupmod.

Let's create a group to work with. We will create the misspelled acounting group by
running the following:

[root@rhel8 ~]# groupadd -g 1099 acounting

[root@rhel8 ~]# tail -n1 /etc/group

acounting:x:1099:

Adjusting password policies 145

You see we made a mistake in the name by not spelling it accounting. We may even
have added some user accounts to it, and we need to modify it. We can do so using
groupmod and running the following:

[root@rhel8 ~]# groupmod -n accounting acounting

[root@rhel8 ~]# tail -n1 /etc/group

accounting:x:1099:

Now we've seen how we modify the group name. We can modify not just the name but the
GID by using the -g option:

[root@rhel8 ~]# groupmod -g 1111 accounting

[root@rhel8 ~]# tail -n1 /etc/group

accounting:x:1111:

We can see which groups are assigned to a user by running the groups command%:

[root@rhel8 ~]# groups user

user : user wheel

With this, we are ready to manage groups and users in a Linux system. Let's move on to
password policies.

Adjusting password policies
As was mentioned in Chapter 3, Basic Commands and Simple Shell Scripts, users are stored
in the /etc/passwd file while the encrypted passwords, or password hashes, are stored
in the /etc/shadow file.

Tip
A hashing algorithm is made so that it generates a precise string of characters,
or a hash, from a provided piece of data (that is, a file or a word). It does it in
a way so that it will always generate the same hash from the same original data,
but the original data is almost impossible to recreate from the hash. That's why
they are used to store passwords or verify the integrity of a downloaded file.

146 Securing Systems with Users, Groups, and Permissions

Let's take a look at one example by running grep user as root against /etc/shadow:

user:6tOT/cvZ4PWRcl8XX$0v3.ADE/
ibzlUGbDLer0ZYaMPNRJ5gK17LeKnoMfKK9
.nFz8grN3IafmHvoHPuh3XrU81nJu0.
is5znztB64Y/:18650:0:99999:7:3:19113:

As with the password file, the data stored in /etc/shadow has an entry per line and the
fields are separated by colons (:).

• user: Account name. It should be the same one as in /etc/passwd.

• 6tOT/cvZ4PWRcl8XX$0v3.ADE/
ibzlUGbDLer0ZYaMPNRJ5gK17LeKnoMfKK
9.nFz8grN3IafmHvoHPuh3XrU81nJu0.is5znztB64Y/: Password hash. It
contains three parts separated by $:

- $6: Algorithm used to encrypt the file. In this case, the value 6 indicates that it is
SHA-512. The number 1 is for the old, now insecure, MD5 algorithm.

- $tOT/cvZ4PWRcl8XX: The password salt. This token is used to improve
password encryption.

- $0v3.ADE/ibzlUGbDLer0ZYaMPNRJ5gK17LeKnoMfKK9.
nFz8grN3IafmHvoHPuh3XrU81nJu0.is5znztB64Y/: Encrypted password
hash. Using the salt and the SHA-512 algorithm, this token is created. When the
user validates, the process is run again and if the same hash is generated, the
password is validated and access is granted.

• 18650: The time and date when the password was last changed. The format is the
number of days since 1970-01-01 00:00 UTC (this date is also known as the epoch).

• 0: Minimum number of days until the user can change the password again.

• 99999: Maximum number of days until the user has to change the password again.
If empty, it won't expire.

• 7: Number of days the user will be warned that the password is about to expire.

• 3: Number of days the user can still log in even when the password has expired.

• 19113: Date on which the password should expire. If empty, it won't expire on
a specific date.

• <empty>: The last colon is left to allow us to add new fields easily.

Adjusting password policies 147

Tip
To convert the date field to a human-readable date, you can run the following
command: date -d '1970-01-01 UTC + 18650 days'.

How do we change the expiration dates for passwords? The tool to do so is chage, for
change age. Let's first review the options that can be used in the same order as they are
stored in /etc/shadow:

• -d or --lastday: The time and date when the password was last changed. The
format for it is YYYY-MM-DD.

• -m or --mindays: Minimum number of days until the user can change the
password again.

• -W or --warndays: Number of days the user will be warned that the password is
about to expire.

• -I or --inactive: Number of days, once the password has expired, that will have
to pass before the account is locked.

• -E or --expiredate: Date after which the user's account will be locked. The date
should be expressed in the format YYYY-MM-DD.

Let's try it. First, we create the usertest account:

[root@rhel8 ~]# adduser usertest

[root@rhel8 ~]# grep usertest /etc/shadow

usertest:!!:18651:0:99999:7:::

Important note
The tools adduser and useradd are the same tool in RHEL 8. Feel free to
type it the way you feel most comfortable with.

You'll notice in the previous example, from the two exclamation marks, !!, in bold that
the password is not set, and we are using the defaults. Let's change the password and check
the difference. Use any password you like:

[root@rhel8 ~]# passwd usertest

Changing password for user usertest.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

148 Securing Systems with Users, Groups, and Permissions

[root@rhel8 ~]# grep usertest /etc/shadow

usertest:$6$4PEVPj7M4GD8CH.4$VqiYY.
IXetwZA/g54bFP1ZJwQ/yc6bnaFauHGA1 1eFzsGh/
uFbJwxZCQTFHIASuamBz.27gb4ZpywwOA840eI.:18651:0:99999:7:::

The password hash is created and the date for the last change is just kept the same as the
current date. Let's establish some options:

[root@rhel8 ~]# chage --mindays 0 --warndays 7 --inactive 3
--expiredate 2030-01-01 usertest

[root@rhel8 ~]# grep usertest /etc/shadow

usertest:$6$4PEVPj7M4GD8CH.4$VqiYY.IXetwZA/g54bFP1ZJwQ/
yc6bnaFauHGA1 1eFzsGh/uFbJwxZCQTFHIASuamBz.27gb4ZpywwOA
840eI.:18651:0:99999:7:3:21915:

[root@rhel8 ~]# date -d '1970-01-01 UTC + 21915 days'

mar ene 1 01:00:00 CET 2030

Please notice the changes in the /etc/shadow file corresponding to the values specified
for chage. We can check the changes with the option –l of chage:

[root@rhel8 ~]# chage -l usertest

Last password change : ene 24, 2021

Password expires : never

Password inactive : never

Account expires : ene 01, 2030

Minimum number of days between password change : 0

Maximum number of days between password change : 99999

Number of days of warning before password expires: 7

To change the default values, we shall edit /etc/login.defs. Let's check the section
for the most common changes:

Password aging controls:

#

PASS_MAX_DAYS Maximum number of days a password may be
used.

PASS_MIN_DAYS Minimum number of days allowed between
password changes.

PASS_MIN_LEN Minimum acceptable password length.

PASS_WARN_AGE Number of days warning given before a
password expires.

Adjusting password policies 149

#

PASS_MAX_DAYS 99999

PASS_MIN_DAYS 0

PASS_MIN_LEN 5

PASS_WARN_AGE 7

Please take some minutes to review the options in /etc/login.defs.

Now, we could have a situation in which a user has left the company. How can we lock the
account so the user cannot access the system? The usermod command has the –L option,
for lock, to do so. Let's try it. First, let's log into the system:

Figure 5.1 – User account usertest logging into the system

Now let's lock the account:

[root@rhel8 ~]# usermod -L usertest

[root@rhel8 ~]# grep usertest /etc/shadow

usertest:!$6$4PEVPj7M4GD8CH.4$VqiYY.IXetwZA/g54bFP1ZJwQ/
yc6bnaFauHGA 11eFzsGh/uFbJwxZCQTFHIASuamBz.27gb4ZpywwOA840eI.
:18651:0:99999:7:3:21915:

Notice that there is a ! character added before the password hash. This is the mechanism
used to lock it. Let's try to log in again:

Figure 5.2 – User account usertest not being able to log into the system

The account can be unlocked by using the –U option:

[root@rhel8 ~]# usermod -U usertest

[root@rhel8 ~]# grep usertest /etc/shadow

usertest:$6$4PEVPj7M4GD8CH.4$VqiYY.IXetwZA/g54bFP1ZJwQ/
yc6bnaFauHGA1 1eFzsGh/uFbJwxZCQTFHIASuamBz.27gb4ZpywwOA840eI.
:18651:0:99999:7:3:21915:

150 Securing Systems with Users, Groups, and Permissions

Now you can see that the ! character is removed. Feel free to try logging in again.

Important note
To fully lock the account from access, not just from logging in with a password
(there are other mechanisms), we should set the expiry date to 1.

Another common use case is when you want users to access the system, such as having a
network shared directory (that is, via NFS or CIFS, as explained in Chapter 12, Managing
Local Storage and Filesystems) but you do not want them to be able to run commands in
the system. For that, we can use a very special shell, the nologin shell. Let's assign that
shell to the usertest user account using usermod:

[root@rhel8 ~]# usermod -s /sbin/nologin usertest

[root@rhel8 ~]# grep usertest /etc/passwd

usertest:x:1001:1001::/home/usertest:/sbin/nologin

[root@rhel8 ~]# su - usertest

Last login: sun jan 24 16:18:07 CET 2021 on pts/0

This account is currently not available.

[root@rhel8 ~]# usermod -s /bin/bash usertest

[root@rhel8 ~]# su - usertest

Last login: sun jan 24 16:18:15 CET 2021 on pts/0

[usertest@rhel8 ~]$

Note that we are reviewing the changes in /etc/passwd this time as it is where the
modification is applied.

As you can see, it's easy to set the values for password aging for any user, lock them,
or restrict access to the system. Let's move on to more administrative tasks and how
to delegate admin access.

Configuring sudo access for administrative
tasks
There is a way to delegate administrative access to users in RHEL, and it is done so with
a tool called sudo, which stands for Super User Do.

Configuring sudo access for administrative tasks 151

It not only allows you to grant full administrative privileges to users or groups but also be
very granular on the privileged commands that some users may be able to execute.

Let's start by understanding the default configuration and how to change it.

Understanding sudo configuration
The tool has its main configuration file in /etc/sudoers and includes this part in the
default configuration:

root ALL=(ALL) ALL

%wheel ALL=(ALL) ALL

Read drop-in files from /etc/sudoers.d (the # here does not
mean a comment)

#includedir /etc/sudoers.d

Let's analyze the lines one by one to understand what they do.

The first line enables the root user to use sudo for any command that they want to run:

root ALL=(ALL) ALL

The second line enables the user in the wheel group to use sudo for any command that
they want to run. We will explain the details of the syntax later:

%wheel ALL=(ALL) ALL

Important note
Please do not disable the wheel group directive unless there is an important
reason to do so. This behavior is expected by other programs to be available,
and disabling it may cause some problems.

The third line, and all the lines starting with #, are considered comments, and they are
intended only to add descriptive content with no effect on the final configuration:

 ## Read drop-in files from /etc/sudoers.d (the # here does not
mean a comment)

The fourth line is the only exception to the previous rule. This line enables the directory
/etc/sudoers.d as a source for configuration files. We can drop a file in that folder,
and it will be used by sudo:

#includedir /etc/sudoers.d

152 Securing Systems with Users, Groups, and Permissions

The exception to this last rule is files that end with ~ or contain a . (dot) character.

As you have seen, the default configuration enables root and the members of the wheel
group to run any command as an administrator using sudo.

The easiest way to use it is to add a user to the wheel group to grant that user full admin
privileges. An example of how to modify the usertest account to make it an admin
account is as follows:

[root@rhel8 ~]# usermod -aG wheel usertest

[root@rhel8 ~]# groups usertest

usertest : usertest wheel

Important note
For cloud instances, the account root does not have a valid password assigned.
To be able to manage the mentioned cloud instance, in some clouds such as
Amazon Web Services (AWS), a user is created by default and added to the
wheel group. In the case of AWS, the default user account is ec2-user. In
other clouds, a custom user is also created and also added to the wheel group.

To edit the /etc/sudoers file, as happens with other sensitive files, there is a tool that
helps not only ensure that two admins are not editing it simultaneously but also that the
syntax is correct. In this case, the tool to edit it is visudo.

Using sudo to run admin commands
We will use the user account in these examples. As you may remember, in Chapter 1,
Installing RHEL8, we enabled the checkbox in which we requested the account to be the
administrator. Under the hood, the account was added to the wheel group, so we can
start using sudo to run admin commands.

Let's log in with the user account and try to run an administrative command such as
adduser:

[root@rhel8 ~]# su - user

Last login: dom ene 24 19:40:31 CET 2021 on pts/0

[user@rhel8 ~]$ adduser john

adduser: Permission denied.

adduser: cannot lock /etc/passwd; try again later.

Configuring sudo access for administrative tasks 153

As you can see, we receive a Permission denied error message. To be able to run it
with sudo, we only need to add it to the beginning of the command line:

[user@rhel8 ~]$ sudo adduser john

We trust you have received the usual lecture from the local
System

Administrator. It usually boils down to these three things:

 #1) Respect the privacy of others.

 #2) Think before you type.

 #3) With great power comes great responsibility.

[sudo] password for user:

[user@rhel8 ~]$ id john

uid=1002(john) gid=1002(john) groups=1002(john)

In this case, we see that we have been shown a warning message that is shown the first
time we run sudo successfully. Then we are asked for our own password – not the admin
password as there may not even be one, but the one we have for the user running sudo.
Once the password is correctly typed, the command is run and registered in the system
journal:

jan 24 19:44:26 rhel8.example.com sudo[2879]: user : TTY=pts/0
; PWD=/home/user ; USER=root ; COMMAND=/sbin/adduser john

Important note
Once you have run sudo successfully, it will remember that validation for 15
minutes (as the default behavior). This is done so you don't have to type your
password again and again if you need to run more than one administrative
command in a session. To increase it to 30 minutes, we can add the following
line using visudo: Defaults:USER timestamp_timeout=30.

Sometimes you want to have an interactive session so that there is no need to type sudo
again and again. For that, the –i option is really useful. Let's try it:

[user@rhel8 ~]$ sudo -i

[sudo] password for user:

[root@rhel8 ~]#

154 Securing Systems with Users, Groups, and Permissions

Let's now move on to customizing the configuration of sudo in the sudoers file.

Configuring sudoers
We have seen the details of the default /etc/sudoers file in the previous section. Let's
see a couple of examples of how to make a more granular configuration.

Let's start by making sudo run admin commands without requesting a password for
the users in the wheel group. We can run visudo and make the line that starts with
%wheel look like this:

%wheel ALL=(ALL) NOPASSWD: ALL

Save it. Note that there is a commented line in the configuration file with that
configuration. Now let's try it:

[user@rhel8 ~]$ sudo adduser ellen

[user@rhel8 ~]$ id ellen

uid=1003(ellen) gid=1003(ellen) groups=1003(ellen)

We can now create a file, with your favorite editor, to make the new user account, ellen,
able to run admin commands. Let's create the /etc/sudoers.d/ellen file with this
content:

ellen ALL=(ALL) ALL

With this, we are using the /etc/sudoers.d directory to extend the sudo
configuration.

We will review the detailed configuration of sudoers here despite it not being part of the
RHCSA exam. As you can see, there are three fields, separated by spaces or tabs, to define
policies in the configuration files. Let's review them:

• The first field is to specify who is affected by the policy:

- We can add users by simply putting the username in the first field.

- We can add groups by using the % character before the name of the group in the
first field.

• The second field is for where the policy applies:

- We have so far used ALL=(ALL) to specify everything.

- In the first part of this field, we can define a group of computers to be run such as
SERVERS=10.0.0.0/255.255.255.0.

Checking, reviewing, and modifying file permissions 155

- In the second part, we can specify commands such as NETWORK=/usr/sbin/
ip.

- Between parentheses is the user account that can be used to run the command.
• The third field is to specify which commands will use the password and which

won't.

The syntax goes like this:

user hosts = (run-as) commands

Let's see an example:

Runas_AliasDB = oracle

Host_Alias SERVERS=10.0.0.0/255.255.255.0

Cmnd_Alias NETWORK=/ust/sbin/ip

pete SERVERS=NETWORK

julia SERVERS=(DB)ALL

We have already seen how to provide administrative access to users in RHEL, and even
how to do it in a very granular manner. Let's move on now to the section on working with
file permissions.

Checking, reviewing, and modifying file
permissions
We have learned so far how to create users and groups, and even provide administrative
capabilities to them. It's time now to see how permissions work at the files and directories
level.

As you'll remember, in Chapter 3, Basic Commands and Simple Shell Scripts, we already
saw how to see the permissions that are applied to a file. Let's review them now and dive
deeper.

Let's get the permissions info for some example files by listing it with the –l, for long,
option. Remember to run this as the root user (or using sudo):

[root@rhel8 ~]# ls -l /usr/bin/bash

-rwxr-xr-x. 1 root root 1150704 jun 23 2020 /usr/bin/bash

[root@rhel8 ~]# ls -l /etc/passwd

156 Securing Systems with Users, Groups, and Permissions

-rw-r--r--. 1 root root 1324 ene 24 21:35 /etc/passwd

[root@rhel8 ~]# ls -l /etc/shadow

----------. 1 root root 1008 ene 24 21:35 /etc/shadow

[root@rhel8 ~]# ls -ld /tmp

drwxrwxrwt. 8 root root 172 ene 25 17:35 /tmp

Remember that, in Linux, everything is a file.

Now let's review the five different blocks of information that the permissions include by
using the ones for /usr/bin/bash:

-rwxr-xr-x.

The blocks are as follows:

Let's review them again, as they are very important.

Block 1 is for the special permissions that the file may have. If it is a regular file and has no
special permissions (as in this case), it will appear as -:

• Directories will appear with d.

• Links, usually symbolic links, will appear with an l.

• Special permissions to run a file as a different user or group, called setuid or setgid,
will appear as s.

• A special permission for directories, so that the owner can only remove or rename
the file, called the sticky bit will appear as t.

Block 2 is permissions for the user owning the file, and consists of three characters:

• The first one, r, is the read permission assigned.

• The second one, w, is the write permission assigned.

• The third one, x, is the executable permission. (Note that the executable permission
for directories means being able to enter them.)

Block 3 is permissions for the group. It consists of the same three characters for read,
write, and execute (rwx). In this case, write is missing.

Checking, reviewing, and modifying file permissions 157

Block 4 is the permissions for others. It also consists of the same three characters for read,
write, and execute (rwx) as before. As in the previous block, write is missing.

Block 5 indicates that there is an SELinux context applied to the file. More on this topic in
Chapter 10, Keeping Your System Hardened with SELinux.

To change permissions for a file, we will use the chmod command.

First, let's create a file:

[root@rhel8 ~]# touch file.txt

[root@rhel8 ~]# ls -l file.txt

-rw-r--r--. 1 root root 0 ene 27 18:30 file.txt

As you can see, the file is created with your username as the owner, your main group as
the group, and a default set of permissions. The default set of permissions are defined by
umask, and in RHEL, the defaults for newly created file permissions are as follows:

• User: Read and write

• Group: Read

• Others: Read

To change permissions using chmod, we specify the changes with three characters:

• The first one, which determines whom the change affects:

- u: User

- g: Group

- o: Others
• The second one to add or remove permissions:

- +: Add

- -: Remove
• The third one, which determines the permission to be changed:

- r: Read

- w: Write

- x: Execute

158 Securing Systems with Users, Groups, and Permissions

So, to add write permissions to the group, we can run the following:

[root@rhel8 ~]# chmod g+w file.txt

[root@rhel8 ~]# ls -l file.txt

-rw-rw-r--. 1 root root 0 ene 27 18:30 file.txt

And to remove read permissions from others, we run the following:

[root@rhel8 ~]# chmod o-r file.txt

[root@rhel8 ~]# ls -l file.txt

-rw-rw----. 1 root root 0 ene 27 18:30 file.txt

The permissions are stored in four octal digits. This means that special permissions are
stored in a number from 0 to 7, the same way user, group, and other permissions are
stored, each one of them with a number from 0 to 7.

Some examples are shown as follows:

How does it work? We assign a number (power of 2) for each permission:

• Nothing: 0

• Execute: 2^0 = 1

• Write: 2^1 = 2

• Read: 2^2 = 4

We add them:

rwx = 4 + 2 + 1 = 7

rw- = 4 + 2 = 6

r-x = 4 + 1 = 5

r-- = 4

--- = 0

Checking, reviewing, and modifying file permissions 159

This is how we can assign permissions using numbers. Now let's try it:

[root@rhel8 ~]# chmod 0755 file.txt

[root@rhel8 ~]# ls -l file.txt

-rwxr-xr-x. 1 root root 0 ene 27 18:30 file.txt

[root@rhel8 ~]# chmod 0640 file.txt

[root@rhel8 ~]# ls -l file.txt

-rw-r-----. 1 root root 0 ene 27 18:30 file.txt

[root@rhel8 ~]# chmod 0600 file.txt

[root@rhel8 ~]# ls -l file.txt

-rw-------. 1 root root 0 ene 27 18:30 file.txt

As we said before, the default configuration of permissions is set by umask. We can very
easily see the value:

[root@rhel8 ~]# umask

0022

All the newly created files have execute permissions removed (1).

With this umask, 0022, the one provided by default in RHEL, we will have write
permissions for group and others also removed (2).

Even when it is not recommended to change umask, we could give it a try to learn how
it works. Let's start by using the most permissive umask, 0000, to see how all read and
write permissions are assigned to newly created files:

[root@rhel8 ~]# umask 0000

[root@rhel8 ~]# touch file2.txt

[root@rhel8 ~]# ls -l file2.txt

-rw-rw-rw-. 1 root root 0 ene 27 18:33 file2.txt

Now let's use the more restrictive umask for group and others permissions:

[root@rhel8 ~]# umask 0066

[root@rhel8 ~]# touch file3.txt

[root@rhel8 ~]# ls -l file3.txt

-rw-------. 1 root root 0 ene 27 18:33 file3.txt

160 Securing Systems with Users, Groups, and Permissions

If we try a higher number, it won't work and will return an error:

[root@rhel8 ~]# umask 0088

-bash: umask: 0088: octal number out of range

You can see that the effect of 0066 and 0077 is the same:

[root@rhel8 ~]# umask 0077

[root@rhel8 ~]# touch file4.txt

[root@rhel8 ~]# ls -l file4.txt

-rw-------. 1 root root 0 ene 27 18:35 file4.txt

Let's re-establish umask in our session, to the defaults, to continue practicing:

[root@rhel8 ~]# umask 0022

Now we may find ourselves with the need to create a directory for a specific user or group,
or to change the owner of a file. To be able to change the ownership of a file or directory,
the chown or chgrp tools are used. Let's see how it works. Let's move to /var/tmp and
create the folders for finance and accounting:

[root@rhel8 ~]# cd /var/tmp/

[root@rhel8 tmp]# mkdir finance

[root@rhel8 tmp]# mkdir accounting

[root@rhel8 tmp]# ls -l

total 0

drwxr-xr-x. 2 root root 6 ene 27 19:35 accounting

drwxr-xr-x. 2 root root 6 ene 27 19:35 finance

Now let's create the groups for finance and accounting:

[root@rhel8 tmp]# groupadd finance

[root@rhel8 tmp]# groupadd accounting

groupadd: group 'accounting' already exists

In this example, the accounting group was already created. Let's change the group for
each directory with chgrp:

[root@rhel8 tmp]# chgrp accounting accounting/

[root@rhel8 tmp]# chgrp finance finance/

[root@rhel8 tmp]# ls -l

Checking, reviewing, and modifying file permissions 161

total 0

drwxr-xr-x. 2 root accounting 6 ene 27 19:35 accounting

drwxr-xr-x. 2 root finance 6 ene 27 19:35 finance

Now we create users for sonia and matilde, and assign them to finance and
accounting respectively:

[root@rhel8 tmp]# adduser sonia

[root@rhel8 tmp]# adduser matilde

[root@rhel8 tmp]# usermod -aG finance sonia

[root@rhel8 tmp]# usermod -aG accounting matilde

[root@rhel8 tmp]# groups sonia

sonia : sonia finance

[root@rhel8 tmp]# groups matilde

matilde : matilde accounting

Now we can create a personal folder for each under their group folder:

[root@rhel8 tmp]# cd finance/

[root@rhel8 finance]# mkdir personal_sonia

[root@rhel8 finance]# chown sonia personal_sonia

[root@rhel8 finance]# ls -l

total 0

drwxr-xr-x. 2 sonia root 6 ene 27 19:44 personal_sonia

[root@rhel8 finance]# chgrp sonia personal_sonia/

[root@rhel8 finance]# ls -l

total 0

drwxr-xr-x. 2 sonia sonia 6 ene 27 19:44 personal_sonia

There is a way to specify a user and group to chown, using the : separator. Let's use it
with matilde:

[root@rhel8 tmp]# cd ../accounting

[root@rhel8 accounting]# mkdir personal_matilde

[root@rhel8 accounting]# chown matilde:matilde \

personal_matilde

[root@rhel8 accounting]# ls -l

total 0

drwxr-xr-x. 2 matilde matilde 6 ene 27 19:46 personal_matilde

162 Securing Systems with Users, Groups, and Permissions

If we want to change the permissions for a full branch, we can use chown with the –R, for
recursive, option. Let's copy a branch and change its permissions:

[root@rhel8 accounting]# cp -rv /usr/share/doc/audit personal_
matilde/

'/usr/share/doc/audit' -> 'personal_matilde/audit'

'/usr/share/doc/audit/ChangeLog' -> 'personal_matilde/audit/
ChangeLog'

'/usr/share/doc/audit/README' -> 'personal_matilde/audit/
README'

'/usr/share/doc/audit/auditd.cron' -> 'personal_matilde/audit/
auditd.cron'

[root@rhel8 accounting]# chown -R matilde:matilde \

personal_matilde/audit

[root@rhel8 accounting]# ls -l personal_matilde/audit/

total 20

-rw-r--r--. 1 matilde matilde 271 ene 28 04:56 auditd.cron

-rw-r--r--. 1 matilde matilde 8006 ene 28 04:56 ChangeLog

-rw-r--r--. 1 matilde matilde 4953 ene 28 04:56 README

With this, we have a good understanding of permissions in RHEL, their default behaviors,
and how to work with them.

Let's move on to some more advanced topics about permissions.

Using special permissions
As we've seen in the previous section, there are special permissions that could be applied
to files and directories. Let's start by reviewing Set-UID (or suid) and Set-GUID (or sgid).

Understanding and applying Set-UID
Let's review how Set-UID applies to files and directories:

• Set-UID permission applied to a file: When applied to an executable file, this file
will run as if the owner of the file was running it, applying the permissions.

• Set-UID permission applied to a directory: No effect.

Using special permissions 163

Let's check a file with Set-UID:

[root@rhel8 ~]# ls -l /usr/bin/passwd

-rwsr-xr-x. 1 root root 33544 dic 13 2019 /usr/bin/passwd

The passwd command requires root permissions to change hashes in the
/etc/shadow file.

To apply this permission, we can use the chmod command, applying u+s permissions:

[root@rhel8 ~]# touch testsuid

[root@rhel8 ~]# ls -l testsuid

-rw-r--r--. 1 root root 0 ene 28 05:16 testsuid

[root@rhel8 ~]# chmod u+s testsuid

[root@rhel8 ~]# ls -l testsuid

-rwsr--r--. 1 root root 0 ene 28 05:16 testsuid

Tip
Be very careful when assigning suid to files as root. If you leave write
permissions on the file, any user will be able to change the content and execute
anything as root.

Understanding and applying Set-GID
Let's review how Set-GID applies to files and directories:

• Set-GID permission applied to a file: When applied to an executable file, this file
will run with the group permissions of the file.

• Set-GID permission applied to a directory: New files created in that directory will
have the group of the directory applied to them.

Let's check a file with Set-GID:

[root@rhel8 ~]# ls -l /usr/bin/write

-rwxr-sr-x. 1 root tty 21232 jun 26 2020 /usr/bin/write

164 Securing Systems with Users, Groups, and Permissions

We can try applying the permission to a file with chmod using g+s:

[root@rhel8 ~]# touch testgid

[root@rhel8 ~]# chmod g+s testgid

[root@rhel8 ~]# ls -l testgid

-rw-r-sr--. 1 root root 0 ene 28 05:23 testgid

Now let's try it with a directory. Let's go to our previous example:

[root@rhel8 ~]# cd /var/tmp/

[root@rhel8 tmp]# ls

accounting finance

[root@rhel8 tmp]# chmod g+s accounting finance

[root@rhel8 tmp]# ls -l

total 0

drwxr-sr-x. 3 root accounting 30 ene 27 19:46 accounting

drwxr-sr-x. 3 root finance 28 ene 27 19:44 finance

[root@rhel8 tmp]# touch finance/testfinance

[root@rhel8 tmp]# ls -l finance/testfinance

-rw-r--r--. 1 root finance 0 ene 28 05:27 finance/testfinance

[root@rhel8 tmp]# touch accounting/testaccounting

[root@rhel8 tmp]# ls -l accounting/testaccounting

-rw-r--r--. 1 root accounting 0 ene 28 05:27 accounting/
testaccounting

You can see how, after applying Set-GID to the folders, they show the s permission for
the group (in bold). Also, when creating new files in those directories the group assigned
to them is the same as the group that the parent directory has (also in bold). This way we
ensure group permissions are properly assigned.

Using the sticky bit
The last of the permissions to be used is the sticky bit. It only has an effect on directories
and what it does is simple: when a user creates a file in a directory with the sticky bit, only
that user can edit or delete that file.

Let's check an example:

[root@rhel8 ~]# ls -ld /tmp

drwxrwxrwt. 8 root root 172 ene 28 04:31 /tmp

Using special permissions 165

We could apply those to the previous example, also with chmod using o+t:

[root@rhel8 ~]# cd /var/tmp/

[root@rhel8 tmp]# ls -l

total 0

drwxr-sr-x. 3 root accounting 52 ene 28 05:27 accounting

drwxr-sr-x. 3 root finance 47 ene 28 05:27 finance

[root@rhel8 tmp]# chmod o+t accounting finance

[root@rhel8 tmp]# ls -l

total 0

drwxr-sr-t. 3 root accounting 52 ene 28 05:27 accounting

drwxr-sr-t. 3 root finance 47 ene 28 05:27 finance

Let's give it a try. We will add the user sonia to the accounting group. We will grant
a write permission to the group for the /var/tmp/accounting directory. Then, we
will create a file with the user matilde and try to delete it with the user sonia. Let's go:

[root@rhel8 ~] # usermod -aG accounting sonia

[root@rhel8 ~]# cd /var/tmp/

[root@rhel8 tmp]# chmod g+w accounting

[root@rhel8 tmp]# ls -l

total 0

drwxrwsr-t. 3 root accounting 52 ene 28 05:27 accounting

drwxr-sr-t. 3 root finance 47 ene 28 05:27 finance

[root@rhel8 tmp]# su - matilde

Last login: jue ene 28 05:41:09 CET 2021 on pts/0

[matilde@rhel8 ~]$ cd /var/tmp/accounting/

[matilde@rhel8 accounting]$ touch teststickybit

[matilde@rhel8 accounting]$ exit

logout

[root@rhel8 tmp]# su - sonia

[sonia@rhel8 ~]$ cd /var/tmp/accounting/

[sonia@rhel8 accounting]$ ls -l teststickybit

-rw-rw-r--. 1 matilde accounting 0 Jan 28 05:43 teststickybit

[sonia@rhel8 accounting]$ rm -f teststickybit

rm: cannot remove 'teststickybit': Operation not permitted

166 Securing Systems with Users, Groups, and Permissions

Tip
The numeric values for special permissions are: suid = 4; sgid = 2;
sticky bit = 1.

With this, we have completed how to manage permissions in RHEL.

Summary
In this chapter, we have reviewed the permission management system in RHEL,
implemented using traditional permissions. We have learned how to create user accounts
and groups, and how to ensure that passwords are managed correctly. We have also
learned how passwords are stored in the system, and even how to block shell access to
a user. We have created files and folders, assigning permissions to them and ensuring that
users can collaborate with an enforced set of rules.

These are the basics of managing access in RHEL and will be very useful to avoid security
issues when managing systems. As this is such an important topic, we recommend
reviewing this chapter carefully, reading the man pages for the commands shown, and
making an effort to have a really good understanding of the topic as it will avoid any
uncomfortable situations in the future.

Now you are ready to start providing services to users and managing their access, which
is what we will cover in the next chapter. Remember to practice and test thoroughly the
lessons learned here.

6
Enabling Network

Connectivity
When we installed our system in the first chapter, we enabled the network interface.
However, network configuration is, or can be, even more than that.

A server connected to a network might require additional interfaces for configuring other
networks; for example, for reaching backup servers, performing internal services from
other servers, or even accessing storage that is not presented directly via a Storage Array
Network (SAN) as local drives but as, for example, Internet Small Computer System
Interface (iSCSI) drives.

Additionally, a server might use redundant network capabilities to ensure that, in the
event of a failure in one of the cards, switches, and so on, the server can still be reached
and perform properly.

In this chapter, we will learn about how to define network configuration for our RHEL
machine using different methods and perform some basic network troubleshooting.

This knowledge will be key since servers are commonly used to provide services to other
systems, and we need networking for that purpose.

168 Enabling Network Connectivity

In this chapter, we will cover the following topics:

• Exploring network configuration in RHEL
• Config files and NetworkManager
• Configuring network interfaces with IPv4 and IPv6
• Configuring hostname and hostname resolutions (DNS)
• Overview of firewall configuration
• Testing connectivity

Let's get hands-on with networking!

Technical requirements
You can continue using the virtual machine we created at the beginning of this book in
Chapter 1, Installing RHEL8. Additionally, to test network communication, it might be
useful to create a second virtual machine or reuse the one we created in the previous
chapters for testing the Network Time Protocol (NTP) configuration as we will use it
to check for connectivity. Any additional packages that are required will be indicated in
the text. Any additional files that are required for this chapter can be downloaded from
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-
Administration.

Exploring network configuration in RHEL
A network is made of different devices that have been interconnected so that information
and resources can be shared among them; for example, internet access, printers, files,
and more.

Networks have been present since the beginning computing. Initially, the most common
were non-IP-based ones, which were generally used for sharing data across computers
in the local network, but with the expansion of internet services and the requirement for
applications or remote services, IP networks were expanded and the concept of intranet
was introduced, where the Transmission Control Protocol/Internet Protocol (TCP/IP)
was used as transport, and the applications started to be more like internet services (or
even be based on them).

The migration to IP-based networks has also adapted other protocols such as Network
Basic Input/Output System (NetBIOS) so that they can run on top of it (it was working
on top of NetBIOS Extended User Interface (NetBEUI), and even if other networks such
as InfiniBand or Remote Direct Memory Access (RDMA) are still in use, they are not as
common as TCP/IP).

https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration

Exploring network configuration in RHEL 169

TCP/IP, of course, is built on top of other protocols. You can check the OSI layer
definition at https://www.redhat.com/sysadmin/osi-model-bean-dip.
However, some concepts are still involved. We will cover these when we become familiar
with TCP/IP and networks.

Before we get into the actual details, we need to clarify a few common TCP/IP and
networking keywords we'll be using from now on:

• IP address: This is the address that's used for interacting with other devices on
the network.

• Netmask: This is used to determine which devices are in the neighborhood. It can
be expressed via a mask or via a network size, such as 255.255.255.0 or /24.

• Gateway: This the IP address of the device that will get all our traffic when the
target device is outside our netmask, so that we cannot reach it directly.

• DNS: This is the IP address of a server or servers that translate domain names into
IP addresses so that the hosts can connect to them.

• MAC address: This is the physical interface address. It is unique for each card and
helps identify the card in the network so that the proper traffic is sent to it.

• Network Interface Card (NIC): This card allows our device to connect to the
network. It might be wireless, wired, and so on.

• Extended Service Set Identification (ESSID): This is how a wireless network
is named.

• Virtual Private Network (VPN): This is a virtual network that is created between
the client and the server. Once established, it allows you to direct connection to the
services as if they were local, even if the client and the server are in different places.
For example, a VPN network is used to allow remote workers to connect to their
corporate network using their private internet connection.

• Virtual Local Area Network (VLAN): This allows us to define virtual networks
on top of the actual wiring. We can then use a specific header field to have them
correctly understood and processed by the network equipment.

• IPv6: This is the replacement protocol for IPv4, which is still the predominant
protocol in networks today.

In the following sections, we will use some of these terms when we explain how a network
is set up and defined in Red Hat Enterprise Linux (RHEL) systems.

In general, when systems are connected, some relationships between the devices on the
network are established. Sometimes, some hosts are providers of services, often called
servers, and the consumers are known as clients. When the systems in the network
perform roles, these networks are known as Peer-To-Peer (p2p) networks.

https://www.redhat.com/sysadmin/osi-model-bean-dip

170 Enabling Network Connectivity

In the next section, we'll become familiar with the configuration files and the different
approaches for configuring networking in our system.

Getting to know the configuration files and
NetworkManager
Now that we have learned about some of the keywords and concepts of networking, it's
the time to look at where we can use them to get our system networked.

Traditionally, network interfaces were configured via text files in the system, under the
/etc/sysconfig/network-scripts/ folder. Those scripts were processed via the
utilities provided via the network-scripts package, which took care of getting the
networking stack up and running with the defined configuration.

Important note
Although the network-scripts package is available and can be installed,
it is considered to be deprecated, which means that the package is provided
and available but might disappear in future major versions of the operating
system, so they will only be provided to ease the transition toward the
updated methods.

NetworkManager is a utility that was created in 2004 to make network configuration and
its usage easier for desktop users. At that point, all configuration was done via text files
and it was more or less static. Once a system was connected to a network, the information
barely changed at all. With the adoption of wireless networks, more flexibility was
required to automate and ease the connection to different networks via different profiles,
VPNs, and more.

NetworkManager was created to cover those gaps and aimed to be a component that
would be used in many distributions but from a new standpoint, for example, it queries
the Hardware Abstraction Layer (HAL) at startup to learn about available network
devices and their changes.

Imagine a laptop system; it can be connected to a wired cable, disconnected when you're
moving it to another location or cubicle, can connect to a wireless network, and so on. All
those events are relayed to NetworkManager, which takes care of reconfiguring network
interfaces, routes, authenticating with the wireless network, and making the user's life a lot
easier than it traditionally was.

Getting to know the configuration files and NetworkManager 171

Tip
The hardware that is connected to the system can be queried with several
commands, depending on how the hardware is connected; for example,
via utilities such as lsusb, lspci, or lshw (provided by installing the
usbutils, pciutils, and lshw packages, respectively).

In the following screenshot, we can see the available packages related to NetworkManager,
as obtained via the dnf search network manager command:

Figure 6.1 – NetworkManagermanager-related packages available for installation
in a Red Hat Enterprise Linux 8 system

172 Enabling Network Connectivity

NetworkManagermanager is configured with the files located in the /etc/
NetworkManager folder, especially NetworkManager.conf and the files
available in that folder:

• conf.d

• dispatcher.d

• dnsmasq-shared.d

• dnsmasq.d

• system-connections

Can't remember what a dispatcher is? Remember to use man networkmanager
to get details on this!

The man page of NetworkManager explains that those scripts are executed in alphabetical
order based on network events and will receive two arguments: the name of the device for
the event and the action.

There are several actions you can perform, as follows:

• pre-up: The interface gets connected to a network but is not activated yet. The
script must be executed before the connection can be notified as activated.

• up: The interface has been activated.

• pre-down: The interface is being deactivated but hasn't been disconnected from
the network yet. In the case of forced disconnections (lost wireless connection or
lost carrier), this will not be executed.

• down: The interface has been deactivated.

• vpn-up/vpn-down/vpn-pre-up/vpn-pre-down: Similar to the preceding
interfaces but for VPN connections.

• hostname: Hostname has been changed.

• dhcp4-change/dhcp6-change: The DHCP lease has changed (renewed,
rebounded, and so on).

• connectivity-change: Connectivity transitions such as no connection, system
went online, and so on.

Now that we have learned a bit about NetworkManager and how it works and was
designed, let's learn how to configure network interfaces.

Configuring network interfaces with IPv4 and IPv6 173

Configuring network interfaces with IPv4
and IPv6
There are several approaches to configuring network interfaces and several network
configurations. These will help us determine what we need to do and the required
parameters and settings.

Let's look at some examples:

• A server might have two or more Network Interface Cards (NIC) for redundancy,
but only one of them is active at a time.

• A server might use a trunk network and require that we define VLANs on top for
accessing or providing the different services in the networks.

• Two or more NICS might be combined to provide increased output and redundancy
via teaming.

Configuration can be performed in several ways, too:

• nmtui: Text-based interface for configuring a network

• nmcli: The command-line interface for NetworkManager

• nm-connection-editor: The graphical tool available for graphical
environments

• Via text configuration files

Important note
Before editing your network configuration, ensure that you can reach the
system being configured in another way. In the case of a server, this can be
done via a remote management card or physical console access. A mistake in
the configuration might leave the system unreachable.

Before we move on, let's learn a bit about IPv4 and IPv6

IPv4 and IPv6... what does that mean?
IPv4 was created in 1983 and uses a 32-bit address space, which provides 2³² unique
addresses (4,294,967,296), but from those possible ones, large blocks are reserved for
special usage. IPv6, ratified as Internet Standard in 2017, is the latest version at the time
of writing and uses a 128-bit address space instead; that is, 2¹²⁸ (3.4 x 10³⁸ addresses).

174 Enabling Network Connectivity

Long story short, the number of IPv4 addresses seemed huge at the time, but today, where
phones, tablets, computers, laptops, servers, lightbulbs, smart plugs, and all of the other
Internet of Things (IoT) devices require an IP address, that number has been depleted
for public IP addresses, meaning that it's not possible to assign more. This has caused
some Internet Service Providers (ISP) to use techniques such as Carrier-Grade Network
Address Translation (CGNAT), similar to what private networks do, which causes all the
traffic from several devices to appear as coming from only one IP, and having the device
interacting on both networks (a router), to do the proper routing from outgoing and
incoming packages to the original requestors.

Why no IPv6, then? The main problem is that IPv4 and IPv6 are not interoperable, and
even if IPv6 was a draft in 1998, not all network equipment is compatible with it and
might not have been yet tested. Check out https://www.ripe.net/support/
training/videos/ipv6/transition-mechanisms for more details.

In the next section, we will learn about how to configure network interfaces using a text-
based user interface to NetworkManager named nmtui.

Configuring interfaces with nmtui
nmtui provides a text-based interface for configuration. This is the initial screen you'll
see when it is executed by running nmtui on a Terminal:

Figure 6.2 – The nmtui welcome screen showing a menu of possible actions that can be performed

https://www.ripe.net/support/training/videos/ipv6/transition-mechanisms
https://www.ripe.net/support/training/videos/ipv6/transition-mechanisms

Configuring network interfaces with IPv4 and IPv6 175

Let's explore the available options for our interface. In this case, let's select Edit a
connection. On the screen that appears, move down and edit the Wired Connection
option that we have in our system to get to the following screen:

Figure 6.3 – The Edit Connection page with the IPv4 options expanded

It will be hard to show screenshots for each step, as one of the advantages of the text
interface is that we can condense a lot of options into a simple screen. However, the
preceding screenshot makes it easy to understand each of the required parameters:

• IP address

• Netmask

• Gateway

• Search domain

• Routing

As you can see, there are checkboxes for ignoring routes or DNS parameters that are
obtained when the connection is set to Automatic. Additionally, there are other
options for interfaces: Disabled, Link-Local, Manual, and Shared.

176 Enabling Network Connectivity

Let's discuss the Automatic option, which means that the interface will be set to
autoconfiguration. This is one of the most common settings for configuration. It does
not mean that everything is done magically, though. Let's dig into this a bit more.

In a network (corporate, private, and others), it is typical to have a special service or
server doing Dynamic Host Routing Protocol (DHCP). DHCP is a protocol that runs
on top of TCP/IP that allows you to configure hosts dynamically, using the configuration
that was made previously either by the network administrator or some appliance and its
default settings.

DHCP allows you to autoconfigure (from the client side) many aspects of network
configuration, such as IP, netmask, gateway, DNS, search domain, time server, and so on.
The configuration that's received is given a lease that is valid for a period of time. After
that, the system attempts to renew it or if the system is being powered off or disconnected,
the lease is released.

Usually, the DHCP configuration is considered to be tied to dynamic IPs, but keep in mind
that a DHCP server can use two different approaches: a pool of IPs that can be reused by
different systems connecting and fixed mappings of MAC addresses to static IPs.

Let's, for example, think about a Small Office – Home Office (SOHO) network with
a private IP range in the 192.168.1.0/24 subnet.

We can define our ISP router to be at IP 192.168.1.1 because of the subnet (/24),
which means that the last part of the IPv4 address can range from 0 to 255.

Using that IP range, we can set up hosts to get dynamic configuration and a dynamic IP
from a pool in the last 100 IPs and leave the ones at the beginning for fixed equipment
(even if they get the configuration dynamically), such as printers, storage devices, and more.

As we mentioned previously, we can create reservations for servers, but in general, for
devices that are always going to have the same address, it is also common practice to
configure static addressing. In this way, if the DHCP server becomes unavailable, the
servers will be still reachable from other services with either a valid lease or other
servers/devices with static addresses configured.

Tip
Just to get familiar with this concept, IP addresses are represented in
IPv4 with a dotted notation separating four groups of numbers, such as
192.168.2.12, while in IPv6, numbers are separated with :; for example,
2001:db8:0:1::c000:207.

Configuring network interfaces with IPv4 and IPv6 177

Configuring interfaces with nm-connection-editor
If our system has the graphical environment installed, which is not the case for our test
system, we can use the graphical configuration tool instead. If it is not installed, proceed
to execute dnf install nm-connection-editor in a shell console inside your
graphical session.

Tip
To install the graphical interface, you can run the dnf groupinstall
"Server with GUI" -y command or select it during installation.

In the following screenshot, we can see the window that was opened by executing
nm-connection-editor. It's similar to the text interface shown by nmtui earlier
in this chapter:

Figure 6.4 – Initial screen for nm-connection-editor

Here, we can see the +, -, and gear buttons, which are used to add/remove or configure the
connection that's highlighted, respectively.

178 Enabling Network Connectivity

Let's click on our Wired Connection option and then click on the gear icon to open the
details:

Figure 6.5 – Dialog for editing a network connection

In the dialog, we can see the fields we had in the simpler command-line configuration
tool, plus extra fields and different tabs for each group of options.

The important fields to remember are those that are used to Connect automatically with
priority in the General tab. This enables our system to automatically enable that NIC
when a connection is available.

As you can find by examining the different tabs, there are lots of choices, such as marking
a connection to be metered. This means that, for example, if a connection is made via a
mobile phone, extra charges may be specified if network usage is not controlled.

When we're creating extra networks, we can define physical or virtual devices based on
the packages we have installed in our system (if you recall the list of packages we saw
when searching for NetworkManager, we had packages for different VPNs, Wi-Fi, and
others), as we can see in the following screenshot:

Configuring network interfaces with IPv4 and IPv6 179

Figure 6.6 – nm-connection-editor with plugins for Wi-Fi, OpenVPN, PPTP,
Bluetooth, and more installed

For server environments, the most common network types are Bonds, Bridge, and Team
(a part of Ethernet), while for desktops, the most common network types are Ethernet,
Wi-Fi, and Broadband.

Each type of connection has some requirements. For example, for bonds, bridges, and
teams, we need more than one network interface that can be combined.

Now, let's move on a review nmcli usage in the next section.

180 Enabling Network Connectivity

Configuring interfaces with nmcli
nmcli is the command-line interface for NetworkManager. It allows us to not only check
but also configure the network interfaces in our system, and even if using it might require
more memory skills than what nmtui required, it empowers users and administrators
with scripting capabilities to automate the network setup of our system.

Tip
Most commands allow us to use autocompletion; that is, pressing the Tab key
will use the autocompletion lists on the command line to suggest the syntax.
For example, typing nmcli dev on the command line and pressing Tab
will autocomplete the command to nmcli device. In this case, it might
not be as critical as nmcli takes both arguments as valid, but for others, it's
mandatory to spell it properly for the code to work.

Let's start checking the available connections in our system with nmcli dev, and then
use nmcli con show to check out its details:

Figure 6.7 – nmcli dev and nmcli con show

Configuring network interfaces with IPv4 and IPv6 181

When controlling a network connection, for example, when using nmcli con up
"Wired Connection" or when disabling it with nmcli con down ens3, we
should bear in mind what we explained about NetworkManager: if the connection is
available in the system, NetworkManager might reactivate it just after being disconnected
because the connection and the devices required are available in our system.

Now, let's create a new interface to illustrate the process of adding a new connection
via IPv4:

nmcli con add con-name eth0 type ethernet \

 ifname eth0 ipv4.address 192.168.1.2/24 \

 ipv4.gateway 192.168.1.254

We can do the same with IPv6:

nmcli con add con-name eth0 type ethernet \

 ifname eth0 ipv6.address 2001:db8:0:1::c000:207/64 \

 ipv6.gateway 2001:db8:0:1::1 ipv4.address \

 192.0.1.3/24 ipv4.gateway 192.0.1.1

Once the preceding commands have been executed, we can check the network connections
that have been defined with nmcli connection show eth0 and validate that the
proper settings were applied (or, of course, via nmtui, nm-connection-editor, or the
text files that were created on disk as the information is shared and stored in the system).

When we reviewed the output of nmcli connection show interface, the output
contained some keys separated by dots, such as the following:

• ipv4.address

• ipv4.gateway

• ipv6.address

• ipv6.gateway

• connection.id

182 Enabling Network Connectivity

We can use these keys to define new values via nmcli con mod $key $value, as
shown in the following example:

Figure 6.8 – Example of modifying a network connection to change the name
of the connection ID and IP address

Of course, after doing the preceding tests, we can also remove the connection to avoid
problems in our system with nmcli con del datacenter.

The following commands can be used to modify connections with the nmcli tool:

• nmcli con show: Shows the status of the connections.

• nmcli con show NAME: Shows the details of the connection named NAME.

• nmcli dev status: Shows the statuses of the devices in the system. Note that
this means devices, not connections that might be using those devices.

• nmcli con add con-NAME: Adds a new connection.

• nmci con mod NAME: Modifies a connection.

• nmcli con up NAME: Brings up a connection.

• nmcli con down NAME: Brings down a connection (that can still be reenabled
by NetworkManager).

• nmcli con del NAME: Removes a connection definition from the system.

Configuring network interfaces with IPv4 and IPv6 183

Tip
Check man nmcli-examples to find more examples that are included in
the documentation for the system.

Configuring interfaces with text files
In prior subsections, we explored how to configure the network using different approaches,
but in the end, all those configurations end up being written to disk as interface definition
files (which also provides backward compatibility with the previously mentioned
network-scripts).

Instead of starting with creating an interface definition from scratch, let's examine what
nmcli did when we created the interface with the following command:

nmcli con add con-name eth0 type ethernet ifname eth0 ipv6.
address 2001:db8:0:1::c000:207/64 ipv6.gateway 2001:db8:0:1::1
ipv4.address 192.0.1.3/24 ipv4.gateway 192.0.1.1

The preceding command will generate the /etc/sysconfig/network-scripts/
ifcfg-eth0 file, which we can see in the following screenshot:

Figure 6.9 – Contents of the /etc/sysconfig/network-scripts/ifcfg-eth0 connection definition

184 Enabling Network Connectivity

As we can see, by default, we have specified a network interface of the Ethernet (TYPE)
type using the eth0 device, along with the provided values for IPv4 and IPv6 addressing
and gateways. The names of the keys differ from the ones defined with nmcli, and the
reason for this is that we have backward compatibility.

Note that in the preceding example, the ONBOOT field has already been set to yes, which
means that the interface will be enabled automatically when the system is booting. If
we're using nmcli, we can check the status via the connection.autoconnect
configuration key, which will also, by default, make the connection automatically enabled
at boot.

We can edit those files directly, but to let NetworkManager be aware of the changes that
will be introduced, nmcli con reload must be executed. This will sync the changes
that are made to the individual files.

For example, we can correct one of the settings in the preceding file because for statically
defined IPs, it is a common practice to define BOOTPROTO=none. Use your preferred
method to modify the /etc/sysconfig/network-scripts/ifcfg-eth0 file
(vim, nano, sed, or others). To get other details we can check with nmcli and also
change the IP address.

Note how, in the following screenshot, the changes don't appear in nmcli until we issue
the reload command:

Figure 6.10 – The process of editing an interface definition doesn't show up
on nmcli until we reload the connections

Configuring network interfaces with IPv4 and IPv6 185

Of course, we can also create network definitions from scratch, and until the arrival and
spread of NetworkManager, this method was used in scripting, including Anaconda
automated installations via kickstart files.

Let's create a simple network definition in IPv4 with the commands show in the following
screenshot:

Figure 6.11 – Creating a connection using a configuration file (that can be part of a script)

Here, you can see not only the creation of the connection but the previous status, the
interface definition, the NetworkManager view of the system, and a comparison of the
configuration files that were reloaded. Note that the device column is empty as we have
defined an interface for that connection that is not present in our system.

186 Enabling Network Connectivity

Important note
The network interface definition can become a nightmare as the interface
name itself is subject to several rules, such as the location of the interface
in the bus, if it was previously seen, and so on. Generally, once the network
cards have been detected in the system, a custom rule is written that matches
the MAC address of the interface to a custom naming convention. This
happens so that it does not change across reboots or if a new software update
changes the way we must enumerate the cards. You can read more about this
topic by looking at the official RHEL8 manual at https://access.
redhat.com/documentation/en-us/red_hat_enterprise_
linux/8/html/configuring_and_managing_networking/
consistent-network-interface-device-naming_
configuring-and-managing-networking.

Now that we have reviewed the different ways to configure networking in our system, let's
learn about naming resolutions.

Configuring hostname and hostname
resolutions (DNS)
Remembering IP addresses, whether they are IPv4 or IPv6 addresses, can become a
nightmare. To make things easier, a more human approach was used for the hostnames
and the DNS, in that we can translate those easier-to-remember names into the IP
addresses that systems use for connecting.

Hostnames are the names we assign to a host to have them identified, but when they're
used in addition to a DNS server, we must have other hosts that can resolve them into
IP addresses they can connect to.

We can use the hostname command to see or to temporarily modify the current
hostname, as shown in the following screenshot:

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/consistent-network-interface-device-naming_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/consistent-network-interface-device-naming_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/consistent-network-interface-device-naming_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/consistent-network-interface-device-naming_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/consistent-network-interface-device-naming_configuring-and-managing-networking

Configuring hostname and hostname resolutions (DNS) 187

Figure 6.12 – Querying and changing the hostname for our host

Bear in mind that this change is only temporary; as long as we restart the server, it will use
the configured one.

To define a new configured hostname, we will use the hostnamectl set-hostname
command, as shown in the following screenshot:

Figure 6.13 – Checking the previously configured hostname and the definition
of a new one via hostnamectl

188 Enabling Network Connectivity

Note in the preceding example how we have Transient hostname versus Static
hostname, which refers to the temporary status of the name that was defined with
hostname instead of hostnamectl.

When it comes to name resolution, there are several approaches we can take. One, of
course, is to use DNS servers, which we will explain later in this section, but there are
other ways.

In general, systems have several resolvers, and those are defined in the /etc/
nsswitch.conf configuration file. Those resolvers are not only for network naming,
but, for example, for resolving users, where, for example, a corporate LDAP server
might be used for defining users, passwords, and so on. By default, nsswitch.conf
instructs our system to use, for hosts resolving this entry: hosts: files dns
myhostname.

This means that we are using the files in our /etc/ directory as our first source. In the case
of hostnames, this refers to the /etc/hosts file. If an entry is defined in that file, the value
that was specified will be used; if not, the /etc/resolv.conf file will determine how to
proceed with its resolution. Those files, and especially resolv.conf, are configured when
the system is deployed and when a connection is activated. NetworkManager takes care
of updating the values that were obtained via DHCP if autoconfiguration was used, or the
specified DNS servers if manual configuration was performed.

In the following screenshot, we can see the entries that have been defined in our /etc/
hosts file, how pinging a host fails because the name does not exist, and how, after
manually adding an entry to the /etc/hosts file, our system is able to reach it:

Configuring hostname and hostname resolutions (DNS) 189

Figure 6.14 – Adding a static host entry to our local system

As we mentioned previously, DNS resolution is done via the configuration at /etc/
resolv.conf, which, by default, contains a search parameter and a nameserver
parameter. If we check the man page of resolv.conf, we can obtain descriptions for
the common parameters:

• nameserver: Contains the IP of the nameserver to use. Currently, only
a maximum of three entries (each on its own line) will be used by the resolv
library in the system. The resolution is performed in order each time, so if one
server fails, it will time out, try with the next one, and so on.

• domain: The local domain name. It allows us to use short names to hosts that are
relative to the local domain in our host. If it's not listed, it's calculated based on the
hostname of our system (everything after the first ".").

• search: By default, this contains the local domain name, and it's the list
of domains we can attempt to use to resolve the short name that's provided.
It's limited to 6 domains and 256 characters. Domain and search are mutually
exclusive, since the last one in the file is the one to be used.

190 Enabling Network Connectivity

Tip
DNS resolution works by asking special servers (DNS) for the relevant data for
a domain. This happens in a hierarchical way, with the top-most general servers
being called root servers. DNS servers contain not only registers or entries for
converting hostnames into IPs, but also information about the mail server to
use when sending an email, verification details for security, reverse entries, and
more. Also, DNS servers can be used to block access to services by returning
invalid IPs for some domains, or to speed up internet navigation by using
faster DNS servers than the ones provided by the ISP. When a domain name is
registered, a new entry is created in the root tables for the domain pointing to
the DNS server. This will take care of that domain resolution, and later, those
entries will be populated and cached across the internet for faster resolution.

If we want to modify the DNS servers defined for a connection, remember to use nmcli
con mod NAME ipv4.dns IP (or IPv6 equivalent) and use a + symbol beforehand,
as in +ipv4.dns, to add a new entry to the list of DNS servers. Any manual changes
that are to resolv.conf might be overwritten.

Now that we have learned about how DNS works and how our system uses it, let's look
at how to secure system network access.

Overview of firewall configuration
When a system is connected to a network, many of the services running can be reached
from other systems. That is the goal behind having systems connected. However, we also
want to keep systems secure and away from unauthorized usage.

A firewall is a software layer that sits between the network cards and the services and
allows us to fine-tune what is allowed or not.

We cannot completely block all the incoming connections to our system as often, the
incoming connection is a response from a request that our system made.

The connections are blocked via a kernel framework named netfilter, which is used by
the firewall software to modify how the packets are processed. Nftables is a new filter
and packet classifier subsystem that enhances parts of netfilter code, but retains the
architecture and provides faster processing among other features using only one interface
(nft), thus deprecating old frameworks such as iptables, ip6tables, ebtables,
and arptables.

Overview of firewall configuration 191

Important note
As we explained earlier in regard to network configuration, a bad configuration
in a firewall can lock you out of the system, so be extremely careful when you're
setting some restrictive rules so that you can log into the system again if you
are remotely accessing it.

firewalld is a frontend to the nftables framework that, before its adoption, interfaced with
netfilter via iptables. In the vast majority of occasions, firewalld should be able to deal
with the requirements for filtering, so it is the recommended frontend for editing rules. It
can be installed on your system by you installing the firewalld package, which should
be included in a base installation. It will provide the firewall-cmd command once
installed for interacting with the service.

firewalld uses the concept of zones, which allows us to predefine a set of rules for each of
those zones. These can also be assigned to network connections. This is more relevant, for
example, for laptops that might be roaming across connections, and they might have some
default settings for when you're using home or corporate connections. However, they will
default to a more secure one when you're using Wi-Fi from a cafeteria.

firewalld also uses predefined services so that the firewall knows what ports and protocols
should enable based on the services and zones they have been enabled on.

Let's check out the available zones and some more details about the home zone:

Figure 6.15 – Available zones and configuration for the zone home

192 Enabling Network Connectivity

As we can see, several zones have been defined:

• public: This is the default zone for newly added interfaces. It allows us to
cockpit SSH and DHCP clients and rejects all incoming traffic not related
to the outgoing traffic.

• block: Rejects all incoming traffic unless it's related to outgoing traffic.

• dmz: Rejects all incoming traffic unless it's related to outgoing or SSH connections.

• drop: Drops all incoming packets that are not related to outgoing ones
(not even ping).

• external: Blocks all incoming traffic except that related to outgoing traffic. It also
allows SSH and it masquerades traffic as originating from this interface.

• home: In addition to public, its allows smb and mdns.

• internal: Based on the home zone.

• trusted: Allows all incoming traffic.

• work: Blocks all incoming traffic except that related to outgoing or SSH/cockpit/
DHCP traffic.

Next, we'll learn how to use those zones when we're configuring the firewall.

Configuring the firewall
As shown in the introduction to this section, a firewall can be configured via the
firewall-cmd command (as well as the cockpit web interface, which was described
earlier in this book on Chapter 4, Tools for Regular Operations). The most common
command options that are used are as follows:

• firewall-cmd --get-zones: Lists the available zones.

• firewall-cmd --get-active-zones: List the active zones and interfaces
that have been assigned.

• firewall-cmd --list-all: Dumps the current configuration.

• firewall-cmd --add-service: Adds a service to the current zone.

• firewall-cmd --add-port: Adds a port/protocol to the current zone.

Overview of firewall configuration 193

• firewall-cmd --remove-service: Removes the service from the
current zone.

• firewall-cmd --remove-port: Removes the port/protocol from the
current zone.

Important note
Note that you need to mention the port number and service name after the
preceding commands to add or remove a service/port.

• firewall-cmd --reload: Reloads the configuration from the saved data, thus
discarding the runtime configuration.

• firewall-cmd –get-default-zone: Gets the default zone.

• firewall-cmd --set-default-zone: Defines the default zone to use.

For example, when we install an HTTP server in our system (for serving web pages),
port 80 on TCP must be enabled.

Let's try this in our sample system by installing, running, and opening the HTTP port:

dnf –y install httpd

systemctl enable httpd

systemctl start httpd

firewall-cmd –add-service=http

curl localhost

The last command will make a petition to the local http server to grab the results. If you
have access to an additional system, you can try to connect to the IP of the server that we
have been using to watch the default web page be served by the system.

194 Enabling Network Connectivity

In the following screenshot, we can see the output of the curl localhost command:

Figure 6.16 – Output of curl when requesting the web page hosted by our system

At this point, we have reviewed how to configure some basic firewall rules, so we are ready
to check the network's connectivity.

Testing network connectivity
In the previous sections, we were interacting with network interfaces, addresses, and
firewall rules that define, limit, or allow connections to our system. In this section,
we will review some of the basic tools that can be used to validate that network
connectivity exists.

Note that the following commands assume that the firewall is not set to strict mode and
that we can use the Internet Control Message Protocol (ICMP) to reach the servers
hosting the service. In secured networks, the service might be working but not answering
to ping – it may only be answering the service queries themselves.

Testing network connectivity 195

There are several commands that we can use here, so consider these suggestions for
diagnosing issues:

• Check the local interface's IP address, netmask, and gateway.

• Use the ping command with the IP address of the gateway to validate the proper
network configuration.

• Use the ping command to ping the DNS servers in /etc/resolv.conf to see
if those are reachable. Alternatively, use the host or dig command to query the
DNS servers.

• If there's supposedly external network connectivity, try to reach external DNS
servers such as 8.8.8.8 or 1.1.1.1 or use curl or wget to request some of the
web pages of known services; for example, curl nasa.gov.

This should give you a rough idea of where a problem might be, based on how far you
reach into the tests. Remember that there are other tools, such as tracepath, that will
show the hops a TCP packet does before reaching the destination. The man pages for each
command will give you hints and examples on their usage.

In the following screenshot, you can see the output of tracepath against one
web server:

Figure 6.17 – The output of the tracepath command against the University of Valencia, Spain web server

196 Enabling Network Connectivity

As we can see, there were 11 steps that were performed across different servers until our
data package reached the destination host. This allowed us to learn about how a package
traverses the internet to reach target systems.

Summary
In this chapter, we learned about configuring network interfaces using different
approaches, either via manual interaction or via methods that allow us to script or
automate the configuration.

Some troubleshooting for network issues was also introduced to help us find some of the
basic errors that might occur.

As we mentioned in this chapter's introduction, networking is the basis for our system to
reach other services and to provide services to other systems. We also introduced the idea
of more complex network setups that fall outside the scope of this RHCSA level, but it's
interesting to at least be familiar with the keywords that we'll be using in our career.

In the next chapter, we will cover some important topics related to security such as
adding, patching, and managing the software in our systems.

7
Adding, Patching,

and Managing
Software

Maintaining a system's software, to close security issues, apply fixes, and keep the system
up to date is an essential task in systems management. In this chapter, we will review how
the Red Hat Subscription Management system works, how to ensure that packages are
verified, and other software management tasks to keep the system fresh.

Going a bit more into the details, in this chapter, we will go over how the subscription
system works and how to use your developer subscription for self-training or installing
a personal server. We will also check how to manage the software origins, also known
as repositories, that your system will use. That includes learning the role of signatures
in package management, to ensure the software installed is the one Red Hat provides.
We will also learn about key tasks such as adding and removing packages and package
groups, using different software versions with modularity, and reviewing and rolling back
changes.

To simplify expanding your knowledge, enabling you to prepare your own labs,
we will see how to have a full local copy of all the Red Hat Enterprise Linux (RHEL)
repositories in your system.

198 Adding, Patching, and Managing Software

And last but not the least, we need to understand Red Hat Package Manager (RPM), now
changed to RPM Package Manager, by learning the basics of how the internals of package
management work.

In summary, we will cover the following topics in this chapter:

• RHEL subscription registration and management

• Managing repositories and signatures with Yum/DNF

• Doing software installations, updates, and rollbacks with Yum/DNF

• Creating and syncing repositories with createrepo and reposync

• Understanding RPM internals

Now, let's start managing the software in our systems.

RHEL subscription registration and
management
RHEL is a fully open source operating system, which means that all the source code used
to build it is available to access, modify, redistribute and learn from. Pre-built binaries
are, on the other hand, delivered as a service, and accessible via a subscription. As seen
in Chapter 1, Installing RHEL8, we can have, for our own personal use, a developer
subscription. That subscription provides access to ISO images, but also to the updated,
signed packages that are part of RHEL 8. These are the exact same bits that are used in
production by so many companies worldwide.

Let's see how to use that subscription with our own system.

First, let's take a look at the Red Hat Customer Portal at https://access.redhat.
com and click LOG IN:

https://access.redhat.com
https://access.redhat.com

RHEL subscription registration and management 199

Figure 7.1 – Log into the Red Hat Customer Portal

Once we click on LOG IN, we will be redirected to the Single Sign-On page for all
the Red Hat services. There, we will need to use the username we created in Chapter 1,
Installing RHEL8. In the following screenshot, we are using student as an example:

Figure 7.2 – Entering our username in Red Hat Single Sign-On

200 Adding, Patching, and Managing Software

Now it's time to type our password to validate:

Figure 7.3 – Entering our password in Red Hat Single Sign-On

Once logged in, we shall go to the Red Hat subscriptions page by clicking on the
SUBSCRIPTIONS link in the top bar:

Figure 7.4 – Accessing the subscriptions page in the Red Hat Customer Portal

RHEL subscription registration and management 201

The subscriptions page will look like this for a user with one physical machine subscribed:

Figure 7.5 – Subscription page example in the Red Hat Customer Portal

Tip
The Developer Subscription was updated in January 2021 to support up to 16
systems. You can use your account for more than one single system to simulate
larger production-like deployments.

Now let's register our new system:

[root@rhel8 ~]# subscription-manager register

Registering to: subscription.rhsm.redhat.com:443/subscription

Username: student

Password:

The system has been registered with ID: d9673662-754f-49f3-
828c-86fd9f5b4e93

The registered system name is: rhel8.example.com

202 Adding, Patching, and Managing Software

With this, our system will be registered in the Red Hat Content Delivery Network (CDN)
but will still not have a subscription assigned.

Let's go to the subscriptions page and refresh to see the new system there. We will click on
View all Systems to continue:

Figure 7.6 – Subscriptions page with the new subscribed system

We can see our new system on the page, rhel8.example.com, with a red square next
to it to show it does not have a subscription attached to it. Let's click on the name of the
system to see the details:

Figure 7.7 – Subscription page with the new subscribed system

RHEL subscription registration and management 203

Once on the specific system page, we see all the details for the system. We click on
Subscriptions to see the attached ones:

Figure 7.8 – Subscriptions page with the new subscribed system's details

We can see on the page that there are no attached subscriptions for this system:

Figure 7.9 – Subscriptions page with the new subscribed system, with no subscription attached

204 Adding, Patching, and Managing Software

Let's attach a subscription to our system using subscription-manager attach:

[root@rhel8 ~]# subscription-manager attach --auto

Installed Product Current Status:

Product Name: Red Hat Enterprise Linux for x86_64

Status: Subscribed

The result of the command shows that the system is now registered and has a subscription
attached to it for Red Hat Enterprise Linux for x86_64. Let's refresh the page
for the system to ensure the subscription attachment runs properly:

Figure 7.10 – Subscriptions page with the new subscribed system, with one subscription attached

With this, we know for sure that the system is properly registered and subscribed to the
Red Hat CDN and it's ready to access all the software, patches, and updates available
from it.

Also, in the system, we can see that a new file with the information on the software
repositories, or repos for short, has been created:

[root@rhel8 ~]# ls -l /etc/yum.repos.d/redhat.repo

-rw-r--r--. 1 root root 94154 feb 6 15:17 /etc/yum.repos.d/
redhat.repo

Managing repositories and signatures with YUM/DNF 205

Now we know how to manage available subscriptions and assign them to a running
system so it has access to the software binaries built by Red Hat. Let's learn more about
how to use the provided repositories in the next section.

Managing repositories and signatures with
YUM/DNF
RHEL like many other Linux distributions, has a mechanism to provide software based
on repos. These contain a list of software packages (which could be end user applications
such as Firefox, or components for them such as GTK3), a list of dependencies between
the packages, and other useful metadata.

Once we finish subscribing the system, we can take a look at the repositories available in
the system using yum or dnf:

[root@rhel8 ~]# yum repolist

Updating Subscription Management repositories.

repo id repo name

rhel-8-for-x86_64-appstream-rpms Red Hat Enterprise Linux 8
for x86_64 - AppStream (RPMs)

rhel-8-for-x86_64-baseos-rpms Red Hat Enterprise Linux 8
for x86_64 - BaseOS (RPMs)

[root@rhel8 ~]# dnf repolist

Updating Subscription Management repositories.

repo id repo name

rhel-8-for-x86_64-appstream-rpms Red Hat Enterprise Linux 8
for x86_64 - AppStream (RPMs)

rhel-8-for-x86_64-baseos-rpms Red Hat Enterprise Linux 8
for x86_64 - BaseOS (RPMs)

As you can see, the output of yum and dnf is exactly the same. As a matter of fact, dnf is
the evolution of yum, and in RHEL8 the yum command is just a symbolic link to dnf:

[root@rhel8 ~]# which yum

/usr/bin/yum

[root@rhel8 ~]# ll /usr/bin/yum

lrwxrwxrwx. 1 root root 5 jul 29 2020 /usr/bin/yum -> dnf-3

[root@rhel8 ~]# which dnf

206 Adding, Patching, and Managing Software

/usr/bin/dnf

[root@rhel8 ~]# ll /usr/bin/dnf

lrwxrwxrwx. 1 root root 5 jul 29 2020 /usr/bin/dnf -> dnf-3

They both can be used indistinctively in RHEL8. From now on, we will use dnf only, but
remember, if you prefer yum, feel free to use it.

Tip
YUM used to be an acronym for Yellowdog Updater Modified, a project that
started as a Linux distribution for Macs called Yellowdog. DNF stands for
Dandified YUM.

Now let's take a look at the repository definition created during the subscription
attachment /etc/yum.repos.d/redhat.repo. We can edit the file and go to the
entry of the BaseOS repository shown above rhel-8-for-x86_64-baseos-rpms:

[rhel-8-for-x86_64-baseos-rpms]

name = Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)

baseurl = https://cdn.redhat.com/content/dist/
rhel8/$releasever/x86_64/baseos/os

enabled = 1

gpgcheck = 1

gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

sslverify = 1

sslcacert = /etc/rhsm/ca/redhat-uep.pem

sslclientkey = /etc/pki/entitlement/7881187918683323950-key.pem

sslclientcert = /etc/pki/entitlement/7881187918683323950.pem

metadata_expire = 86400

enabled_metadata = 1

As you can see, every section in the file starts with the name of the section between
brackets – in the previous case, [rhel-8-for-x86_64-baseos-rpms]. Now
let's check all the entries under this section:

• name: A long descriptive name for the repository. It's the one displayed when
we listed the repos in the previous example.

• baseurl: The main resource the packages will be obtained from. In this case,
it is a single HTTPS source. It contains the $releasever variable that will be
substituted before being accessed. Other methods are NFS, HTTP, and FTP.

Managing repositories and signatures with YUM/DNF 207

• enabled: A variable to provide a simple way to have repositories enabled or disabled
in the system. When set to 1, it will be enabled, and when set to 0 it will be disabled.

• gpgcheck: Mechanism to verify the packages. When set to 1 it will be enabled and
all the packages installed in the system with dnf / yum will be verified using their
gpg signatures against a provided key.

• gpgkey: A key to verify, using gpg, the downloaded packages.

• sslverify: A mechanism to verify the machine subscription to the CDN. Enabled
when set to 1, and disabled when set to 0.

• sslcacert: A certificate used as a Certificate Authority to validate client certificates.

• sslclient key: A client key used to habilitate the client certificate.

• sslclientcert: The client certificate that the machine will use to identify itself against
the CDN.

• metadata_expire: The time in seconds after which to consider the retrieved
metadata as expired. The default, as shown here, is 24 hours.

• enabled_metadata: An option to enable other tools (not dnf) to use the metadata
as downloaded in this repository.

The minimal required options to have a running repository are: name, baseurl, and
gpgckeck, having this last one set to 0.

Important note
Although it is possible to change the configuration of the repositories by
editing the files, the best way to modify the Red Hat provided repos is by using
commands that will be shown in this chapter. That's because the redhat.
repo file will be overwritten by the subscription manager when refreshing
data.

208 Adding, Patching, and Managing Software

By running dnf repolist, we obtained the list of repositories enabled in the system.
What if we want to see all the repositories, the ones enabled and the ones disabled? That
can be done by running dnf repolist --all:

Figure 7.11 – Partial output of dnf repolist –all

The list is very extensive. It includes the repositories with the binaries as used in many
production cases, from SAP to managing systems with Satellite. We can filter it with grep
to search for supplementary:

[root@rhel8 ~]# dnf repolist --all | grep supplementary

rhel-8-for-x86_64-supplementary-debug-rpms
disabled

rhel-8-for-x86_64-supplementary-eus-debug-rpms
disabled

rhel-8-for-x86_64-supplementary-eus-rpms
disabled

rhel-8-for-x86_64-supplementary-eus-source-rpms
disabled

rhel-8-for-x86_64-supplementary-rpms
disabled

rhel-8-for-x86_64-supplementary-source-rpms
disabled

Managing repositories and signatures with YUM/DNF 209

There are four different types of channels here:

• Regular channels: For example, rhel-8-for-x86_64-supplementary-
rpms, which contains the packages, also known as rpms, ready to be installed in
the system. These apply during the standard maintenance period.

• Extended update support: For example, rhel-8-for-x86_64-
supplementary-eus-rpms, which contains eus in the name. These provide
packages with backports to be able to keep the same minor version for a longer
time. Don't use them unless it is required by a third-party vendor.

• Source channels: For example, rhel-8-for-x86_64-supplementary-
source-rpms, which contains source in the name. They provide the source used
to build the packages delivered in regular and extended updated support channels.

• Debug channels: For example, rhel-8-for-x86_64-supplementary-
debug-rpms, which contain debug in their name. These include the debugging
information as generated when building a package useful for deep troubleshooting
of issues.

We can enable rhel-8-for-x86_64-supplementary-rpms by using the
config-manager option of dnf, running the following:

[root@rhel8 ~]# dnf config-manager --enable rhel-8-for-x86_64-
supplementary-rpms

Updating Subscription Management repositories.

[root@rhel8 ~]# dnf repolist

Updating Subscription Management repositories.

repo id repo name

rhel-8-for-x86_64-appstream-rpms Red Hat
Enterprise Linux 8 for x86_64 - AppStream (RPMs)

rhel-8-for-x86_64-baseos-rpms Red Hat
Enterprise Linux 8 for x86_64 - BaseOS (RPMs)

rhel-8-for-x86_64-supplementary-rpms Red Hat
Enterprise Linux 8 for x86_64 - Supplementary (RPMs)

The repository is now enabled. You may want to try to enable and disable other
repositories to practice.

210 Adding, Patching, and Managing Software

Let's now try to add a repository for which we know only its URL, such as the EPEL repo.
This repo contains Extra Packages for Enterprise Linux, and is specifically built for
Linux, but not supported by Red Hat. As it is a well-known repo, it is replicated around
the world and there is a local mirror at http://mirror.uv.es/mirror/fedora-
epel/8/Everything/x86_64/ (you can find your local one in the mirror list here:
https://admin.fedoraproject.org/mirrormanager/mirrors/EPEL).
Now we can add this repo using dnf config-manager:

[root@rhel8 ~]# dnf config-manager --add-repo="http://mirror.
uv.es/mirror/fedora-epel/8/Everything/x86_64/"

Updating Subscription Management repositories.

Adding repo from: http://mirror.uv.es/mirror/fedora-epel/8/
Everything/x86_64/

[root@rhel8 ~]# dnf repolist

Updating Subscription Management repositories.

repo id repo name

mirror.uv.es_mirror_fedora-epel_8_Everything_x86_64_ created
by dnf config-manager from http://mirror.uv.es/mirror/fedora-
epel/8/Everything/x86_64/

rhel-8-for-x86_64-appstream-rpms Red Hat
Enterprise Linux 8 for x86_64 - AppStream (RPMs)

rhel-8-for-x86_64-baseos-rpms Red Hat
Enterprise Linux 8 for x86_64 - BaseOS (RPMs)

rhel-8-for-x86_64-supplementary-rpms Red Hat
Enterprise Linux 8 for x86_64 - Supplementary (RPMs)

We can inspect the newly created file – /etc/yum.repos.d/mirror.uv.es_
mirror_fedora-epel_8_Everything_x86_64_.repo:

[mirror.uv.es_mirror_fedora-epel_8_Everything_x86_64_]

name=created by dnf config-manager from http://mirror.uv.es/
mirror/fedora-epel/8/Everything/x86_64/

baseurl=http://mirror.uv.es/mirror/fedora-epel/8/Everything/
x86_64/

enabled=1

http://mirror.uv.es/mirror/fedora-epel/8/Everything/x86_64/
http://mirror.uv.es/mirror/fedora-epel/8/Everything/x86_64/
https://admin.fedoraproject.org/mirrormanager/mirrors/EPEL

Managing repositories and signatures with YUM/DNF 211

You may have realized that there is an option missing in this repo, however, let's move
ahead. I can search for a package available in EPEL, such as, for example, screen:

[root@rhel8 ~]# dnf info screen

Updating Subscription Management repositories.

created by dnf config-manager from http://mirror.uv.es/mirror/
fedor 18 MB/s | 8.9 MB 00:00

Last metadata expiration check: 0:00:02 ago on sáb 13 feb 2021
15:34:56 CET.

Available Packages

Name : screen

Version : 4.6.2

Release : 10.el8

Architecture : x86_64

Size : 582 k

Source : screen-4.6.2-10.el8.src.rpm

Repository : mirror.uv.es_mirror_fedora-epel_8_Everything_
x86_64_

Summary : A screen manager that supports multiple logins
on one terminal

URL : http://www.gnu.org/software/screen

License : GPLv3+

Description : The screen utility allows you to have multiple
logins on just one

 : terminal. Screen is useful for users who telnet
into a machine or are

 : connected via a dumb terminal, but want to use
more than just one

 : login.

 :

 : Install the screen package if you need a screen
manager that can

 : support multiple logins on one terminal.

212 Adding, Patching, and Managing Software

The package is found, now let's try to install it:

[root@rhel8 ~]# dnf install screen

[omitted]

Install 1 Package

Total download size: 582 k

Installed size: 971 k

Is this ok [y/N]: y

Downloading Packages:

screen-4.6.2-10.el8.x86_64.rpm
2.8 MB/s | 582 kB 00:00

Total
2.8 MB/s | 582 kB 00:00

warning: /var/cache/dnf/mirror.uv.es_mirror_fedora-epel_8_
Everything_x86_64_-ee39120d2e2a3152/packages/screen-4.6.2-
10.el8.x86_64.rpm: Header V3 RSA/SHA256 Signature, key ID
2f86d6a1: NOKEY

Public key for screen-4.6.2-10.el8.x86_64.rpm is not installed

The downloaded packages were saved in cache until the next
successful transaction.

You can remove cached packages by executing 'yum clean
packages'.

Error: GPG check FAILED

As we can see there is an error trying to install from this source, as it required the
gpgcheck and gpgkey entries to be configured to have a properly secured repo
(as gpg ensures that the content delivered is the same as the content created).

We can obtain gpgkey from the same mirror, at the URL http://mirror.uv.es/
mirror/fedora-epel/RPM-GPG-KEY-EPEL-8, and drop it where dnf will search
for it, /etc/pki/rpm-gpg/:

[root@rhel8 ~]# curl -s http://mirror.uv.es/mirror/fedora-epel/
RPM-GPG-KEY-EPEL-8 > /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-8

[root@rhel8 ~]# head –n 1 /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-8

-----BEGIN PGP PUBLIC KEY BLOCK-----

http://mirror.uv.es/mirror/fedora-epel/RPM-GPG-KEY-EPEL-8
http://mirror.uv.es/mirror/fedora-epel/RPM-GPG-KEY-EPEL-8

Managing repositories and signatures with YUM/DNF 213

 Now let's modify the file /etc/yum.repos.d/mirror.uv.es_mirror_fedora-
epel_8_Everything_x86_64_.repo to look like this:

[mirror.uv.es_mirror_fedora-epel_8_Everything_x86_64_]

name=created by dnf config-manager from http://mirror.uv.es/
mirror/fedora-epel/8/Everything/x86_64/

baseurl=http://mirror.uv.es/mirror/fedora-epel/8/Everything/
x86_64/

enabled=1

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-8

You can see we added both the gpgcheck and gpgkey entries in the file. Let's try
installing the screen package again:

[root@rhel8 ~]# dnf install screen

[omitted]

Install 1 Package

Total size: 582 k

Installed size: 971 k

Is this ok [y/N]: y

Downloading Packages:

[SKIPPED] screen-4.6.2-10.el8.x86_64.rpm: Already downloaded

warning: /var/cache/dnf/mirror.uv.es_mirror_fedora-epel_8_
Everything_x86_64_-ee39120d2e2a3152/packages/screen-4.6.2-
10.el8.x86_64.rpm: Header V3 RSA/SHA256 Signature, key ID
2f86d6a1: NOKEY

created by dnf config-manager from http://mirror.uv.es/mirror/
fedor 1.6 MB/s | 1.6 kB 00:00

Importing GPG key 0x2F86D6A1:

Userid : "Fedora EPEL (8) <epel@fedoraproject.org>"

Fingerprint: 94E2 79EB 8D8F 25B2 1810 ADF1 21EA 45AB 2F86 D6A1

From : /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-8

Is this ok [y/N]: y

Key imported successfully

Running transaction check

Transaction check succeeded.

Running transaction test

214 Adding, Patching, and Managing Software

Transaction test succeeded.

Running transaction

 Preparing : 1/1

 Running scriptlet: screen 4.6.2-10.el8.x86_64 1/1

 Installing : screen-4.6.2-10.el8.x86_64 1/1

 Running scriptlet: screen-4.6.2-10.el8.x86_64 1/1

 Verifying : screen-4.6.2-10.el8.x86_64 1/1

Installed products updated.

Installed:

 screen-4.6.2-10.el8.x86_64

Complete!

You'll notice that there is a step in which it asks you to confirm that the gpg key
fingerprint is correct: 94E2 79EB 8D8F 25B2 1810 ADF1 21EA 45AB 2F86
D6A1. To do so, you can go to the Fedora security page, as the Fedora project is managing
EPEL, and check. The URL for that page is https://getfedora.org/security/:

Figure 7.12 – Partial capture of the Fedora security page with an EPEL8 gpg fingerprint

As you can see, it is correct. We have just verified that the signature we are using has
the same fingerprint as announced by the project managing it, and now all the packages
downloaded from this repo will be verified with it to avoid package tampering (which is
someone changing the content before you receive it).

https://getfedora.org/security/

Doing software installations, updates, and rollbacks with YUM/DNF 215

Let's review the commands that we used, which dnf provides to manage repos:

Now that we know how to securely manage repositories in RHEL, let's start adding more
packages to our system, updating them, and undoing installations if we need to.

Doing software installations, updates, and
rollbacks with YUM/DNF
In the previous section, we saw how to install a package. During the process, we saw
a confirmation request to ensure that we were sure that we wanted to include new software
in the system. Let's now install software with dnf install, but using the –y option to
answer yes to all questions that the command will issue:

[root@rhel8 ~]# dnf install zip –y

[omitted]

Installed:

unzip-6.0-43.el8.x86_64 zip-3.0-23.el8.x86_64

Complete!

As you can see, the zip package was installed, and also a dependent package called
unzip, without asking questions. We also notice that dnf finds the dependent packages,
resolves the dependencies, and installs all that is needed for a package to run. This way,
the system is kept in a coherent status, making it more reliable and predictable.

216 Adding, Patching, and Managing Software

We cam see which packages are ready to be updated using the dnf check-update
command:

[root@rhel8 ~]# dnf check-update

Updating Subscription Management repositories.

Last metadata expiration check: 0:20:00 ago on sáb 13 feb 2021
16:04:58 CET.

kernel.x86_64 4.18.0-240.10.1.el8_3 rhel-
8-for-x86_64-baseos-rpms

kernel-core.x86_64 4.18.0-240.10.1.el8_3 rhel-8-
for-x86_64-baseos-rpms

kernel-modules.x86_64 4.18.0-240.10.1.el8_3 rhel-8-for-
x86_64-baseos-rpms

kernel-tools.x86_64 4.18.0-240.10.1.el8_3 rhel-8-for-
x86_64-baseos-rpms

kernel-tools-libs.x86_64 4.18.0-240.10.1.el8_3 rhel-8-for-
x86_64-baseos-rpms

python3-perf.x86_64 4.18.0-240.10.1.el8_3 rhel-8-
for-x86_64-baseos-rpms

qemu-guest-agent.x86_64 15:4.2.0-34.module+el8.3.0+8829+e7a0a
3ea.1 rhel-8-for-x86_64-appstream-rpms

selinux-policy.noarch 3.14.3-54.el8_3.2 rhel-8-for-
x86_64-baseos-rpms

selinux-policy-targeted.noarch 3.14.3-54.el8_3.2 rhel-8-for-
x86_64-baseos-rpms

sudo.x86_64 1.8.29-6.el8_3.1 rhel-
8-for-x86_64-baseos-rpms

tzdata.noarch 2021a-1.el8 rhel-
8-for-x86_64-baseos-rpms

The easiest way to update a package and apply fixes and security patches is to use
dnf update:

[root@rhel8 ~]# dnf update tzdata –y

[omitted]

Upgraded:

 tzdata-2021a-1.el8.noarch

Complete!

Doing software installations, updates, and rollbacks with YUM/DNF 217

To update everything, just run dnf update without specifying the package:

Figure 7.13 – Partial capture of RHEL updating with dnf/yum

The result of running dnf update in the system is the following:

Upgraded:

 kernel-tools-4.18.0-240.10.1.el8_3.x86_64

 kernel-tools-libs-4.18.0-240.10.1.el8_3.x86_64

 python3-perf-4.18.0-240.10.1.el8_3.x86_64

 qemu-guest-agent 15:4.2.0-34.module+el8.3.0+8829+e7a0a3ea.1.
x86_64

 selinux-policy-3.14.3-54.el8_3.2.noarch

 selinux-policy-targeted-3.14.3-54.el8_3.2.noarch

 sudo-1.8.29-6.el8_3.1.x86_64

Installed:

 kernel-4.18.0-240.10.1.el8_3.x86_64

 kernel-core-4.18.0-240.10.1.el8_3.x86_64

 kernel-modules-4.18.0-240.10.1.el8_3.x86_64

Complete!

218 Adding, Patching, and Managing Software

These were examples of packages upgraded in a system. Your system, depending on the
time you last upgraded it and the newly released packages, may have a different output.

Important note
The kernel is the most important part of the system. It enables hardware
access and all the basic functions of the operating system. That's why, instead
of upgrading it, a new version is installed. The system keeps the previous two
versions just in case the system becomes unbootable, and one of them can be
selected to run easily.

We can search the packages available with the dnf search command:

[root@rhel8 ~]# dnf search wget

Updating Subscription Management repositories.

Last metadata expiration check: 0:05:02 ago on sáb 13 feb 2021
16:34:00 CET.

=================== Name Exactly Matched: wget
===================

wget.x86_64 : A utility for retrieving files using the HTTP or
FTP protocols

We can obtain extended information about a package, installed or not, with dnf info:

[root@rhel8 ~]# dnf info wget

Updating Subscription Management repositories.

Last metadata expiration check: 0:06:45 ago on sáb 13 feb 2021
16:34:00 CET.

Available Packages

Name : wget

Version : 1.19.5

Release : 10.el8

Architecture : x86_64

Size : 734 k

Source : wget-1.19.5-10.el8.src.rpm

Repository : rhel-8-for-x86_64-appstream-rpms

Summary : A utility for retrieving files using the HTTP or
FTP protocols

URL : http://www.gnu.org/software/wget/

License : GPLv3+

Description : GNU Wget is a file retrieval utility which can

Doing software installations, updates, and rollbacks with YUM/DNF 219

use either the HTTP or

 : FTP protocols. Wget features include the ability
to work in the

 : background while you are logged out, recursive
retrieval of

 : directories, file name wildcard matching, remote
file timestamp

 : storage and comparison, use of Rest with FTP
servers and Range with

 : HTTP servers to retrieve files over slow or
unstable connections,

 : support for Proxy servers, and configurability.

We can also remove an installed package with dnf remove:

[root@rhel8 ~]# dnf remove screen –y

[omitted]

Removed: screen-4.6.2-10.el8.x86_64

Complete!

Sometimes you want to install some packages that come together to perform a specific
task, and that's what package groups are for. Let's get a list of the groups first with dnf
grouplist:

[root@rhel8 ~]# dnf grouplist | grep Tools

 Additional Virtualization Tools

 RPM Development Tools

 Security Tools

 Development Tools

 System Tools

 Graphical Administration Tools

You may run it without | grep Tools to see the full list.

Let's install the System Tools group with dnf groupinstall:

[root@rhel8 ~]# dnf groupinstall "System Tools"

Updating Subscription Management repositories.

Last metadata expiration check: 0:16:03 ago on sáb 13 feb 2021
16:34:00 CET.

Dependencies resolved.

220 Adding, Patching, and Managing Software

The entire output of the preceding command is shown in the following screenshot:

Figure 7.14 – Partial capture of RHEL installing a group dnf/yum

Once the preinstallation completes, we can see that we will install 78 packages:

Install 78 Packages

Total download size: 44 M

Installed size: 141 M

Is this ok [y/N]:y

Replying with y will perform the installation (note that the –y option works here too,
assuming yes to all questions).

Doing software installations, updates, and rollbacks with YUM/DNF 221

We can check the history of all the installation transactions with dnf history:

Figure 7.15 – Partial capture of RHEL dnf/yum history

It's easy to obtain specific info from each transaction specifying the number of it to dnf
history:

[root@rhel8 ~]# dnf history info 12

Updating Subscription Management repositories.

Transaction ID : 12

Begin time : sáb 13 feb 2021 16:27:06 CET

Begin rpmdb : 393:cec089e1c176497af3eb97582311fcd7cb7adb02

End time : sáb 13 feb 2021 16:27:06 CET (0 seconds)

End rpmdb : 393:6cf80ca6746149100bb1a49d76ebbf7407804e56

User : root <root>

Return-Code : Success

Releasever : 8

Command Line : update tzdata

Comment :

Packages Altered:

 Upgrade tzdata-2021a-1.el8.noarch @rhel-8-for-x86_64-
baseos-rpms

 Upgraded tzdata-2020d-1.el8.noarch @@System

222 Adding, Patching, and Managing Software

More interestingly, we can roll back to one of the previous points marked with dnf
history rollback. To make it faster, install the lsof package and then roll back
to the previous number:

[root@rhel8 ~]# dnf history rollback 15

[omitted]

Removed: lsof-4.93.2-1.el8.x86_64

Complete!

We can also undo a single transaction with yum history undo. Let's see it with
this transaction:

[root@rhel8 ~]# dnf history undo 10 –y

[omitted]

Removed:

 screen-4.6.2-10.el8.x86_64

Complete!

Let's review the most important transactions done with dnf:

Doing software installations, updates, and rollbacks with YUM/DNF 223

There is a new feature on RHEL 8 that wasn't available in the previous version, which is
modularity. It enables the possibility to have different versions for the same package in
the system. It is all managed with dnf so there is no need to install
extra software:

[root@rhel8 repos]# dnf module list postgresql

Updating Subscription Management repositories.

Last metadata expiration check: 0:00:30 ago on dom 14 feb 2021
19:25:32 CET.

Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)

Name Stream Profiles Summ
ary

postgresql 9.6 client, server [d]
PostgreSQL server and client module

postgresql 10 [d] client, server [d]
PostgreSQL server and client module

postgresql 12 client, server [d]
PostgreSQL server and client module

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled

Tip
The dnf module list command, without specifying any package, would
show the full list of modules. Try it!

As you can see, we have three different versions of the PostgreSQL database available
in RHEL8, which are 9.6, 10, and 12. None of them are enabled and the default one is
version 10.

224 Adding, Patching, and Managing Software

Let's enable version 12 of PostgreSQL using dnf module:

[root@rhel8 ~]# dnf module enable postgresql:12

[omitted]

Enabling module streams: postgresql 12

[omitted]

Is this ok [y/N]: y

Complete!

[root@rhel8 ~]# dnf module list postgresql

The output of the preceding command can be seen in the following screenshot:

Figure 7.16 – Capture of the PostgreSQL module list

From now on Yum will install, update, and maintain in this system version 12 of
PostgreSQL. Let's install it:

[root@rhel8 ~]# dnf install postgresql -y

[omitted]

Installed:

 libpq-12.5-1.el8_3.x86_64

 postgresql-12.5-1.module+el8.3.0+9042+664538f4.x86_64

Complete!

In the previous example, version 12 was installed.

We can remove the PostgreSQL package and reset the module status to go back to the
initial point:

[root@rhel8 ~]# dnf remove postgresql -y

[omitted]

Removing:

Doing software installations, updates, and rollbacks with YUM/DNF 225

postgresql x86_64 12.5-1.module+el8.3.0+9042+664538f4 @rhel-
8-for-x86_64-appstream-rpms 5.4 M

Removing unused dependencies:

libpq x86_64 12.5-1.el8_3 @rhel-
8-for-x86_64-appstream-rpms 719 k

[omitted]

Complete!

[root@rhel8 ~]# dnf module reset postgresql

Updating Subscription Management repositories.

Last metadata expiration check: 1:23:08 ago on dom 14 feb 2021
19:25:32 CET.

Dependencies resolved.

==
===Package Architecture Version
Repository Size

===
Resetting modules:

postgresql

Transaction Summary

===Is
this ok [y/N]: y

Complete!

[root@rhel8 ~]# dnf module list postgresql

Updating Subscription Management repositories.

Last metadata expiration check: 1:23:21 ago on dom 14 feb 2021
19:25:32 CET.

Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)

Name Stream Profiles Summ
ary

postgresql 9.6 client, server [d]
PostgreSQL server and client module

postgresql 10 [d] client, server [d]
PostgreSQL server and client module

postgresql 12 client, server [d]
PostgreSQL server and client module

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled

226 Adding, Patching, and Managing Software

Let's review the commands shown in this section for modularity:

Tip
For more info on modularity, go to the system's manual page by running man
dnf.modularity.

Now that we have learned how to handle software transactions in RHEL, let's go ahead
with how to create and handle local repositories.

Creating and syncing repositories with
createrepo and reposync
It's common that we receive an RPM file and keep it in a repository that we can use on our
machine (and sometimes share it with other machines with a web server of an NFS share).
It's also common that when we start building our own RPMs, we distribute them and, to
do so, we need to create a repository. To do that, we can use the createrepo tool.

First let's create a folder in /var/tmp for repos:

[root@rhel8 ~]# cd /var/tmp/

[root@rhel8 tmp]# mkdir repos

[root@rhel8 tmp]# cd repos/

Then let's create a folder for slack, a common tool to communicate with your team, and
download the RPM package:

[root@rhel8 repos]# mkdir slack

[root@rhel8 repos]# cd slack/

[root@rhel8 repos]# curl -s -O https://downloads.slack-edge.
com/linux_releases/slack-4.12.2-0.1.fc21.x86_64.rpm

[root@rhel8 slack]# ls -l

total 62652

-rw-r--r--. 1 root 64152596 feb 14 18:12 slack-4.12.2-0.1.fc21.
x86_64.rpm

Creating and syncing repositories with createrepo and reposync 227

Now we have a repository with an RPM file. We could have one with as many RPMs as
we want but we will continue with only this single package.

Let's install the createrepo tool:

[root@rhel8 slack]# dnf install -y createrepo

[omitted]

Installed:

 createrepo_c-0.15.11-2.el8.x86_64 createrepo_c-
libs-0.15.11-2.el8.x86_64 drpm-0.4.1-3.el8.x86_64

Complete!

And now we could simply run it to create a repository in the current folder with the
following command:

[root@rhel8 slack]# createrepo .

Directory walk started

Directory walk done - 1 packages

Temporary output repo path: ./.repodata/

Preparing sqlite DBs

Pool started (with 5 workers)

Pool finished

[root@rhel8 slack]# ls -l

total 62656

drwxr-xr-x. 2 root 4096 feb 14 18:19 repodata

-rw-r--r--. 1 root 64152596 feb 14 18:12 slack-4.12.2-0.1.fc21.
x86_64.rpm

We see that the repodata folder has been created. In it, we can find the repomd.xml
file that defines the repository content and also the recently created index files:

[root@rhel8 slack]# ls repodata/

13b6b81deb95354164189de7fe5148b4dbdb247fb910973cc94c120d36c
0fd27-filelists.xml.gz

18fb83942e8cb5633fd0653a4c8ac3db0f93ea73581f91d90be932560610
43f0-other.sqlite.bz2

aa72116fa9b47caaee313ece2c16676dce26ffcc78c69dc74ebe4fc59ae
a2c78-filelists.sqlite.bz2

d5e2ff4b465544a423bfa28a4bc3d054f316302feab8604d64f73538809b
1cf0-primary.xml.gz

228 Adding, Patching, and Managing Software

e92cd0e07c758c1028054cfeb964c4e159004be61ae5217927c27d27e
a2c7966-primary.sqlite.bz2

f68973de8a710a9a078faf49e90747baaf496c5a43865cd5dc5757512a06
64a8-other.xml.gz

repomd.xml

Now we can add the repository to the system. We could do it without gpg signatures,
setting the gpgcheck variable to 0 but, to have better security, let's do it with the gpg
signature. By searching in the slack page, we find the signature and download it to the
/etc/pki/rpm-gpg directory:

[root@rhel8 slack]# curl https://slack.com/gpg/slack_
pubkey_2019.gpg -o /etc/pki/rpm-gpg/RPM-GPG-KEY-SLACK

Then we add the repository to the system by creating the file /etc/yum.repos.d/
local-slack.repo with the following content:

[local-slack-repo]

name=Local Slack Repository

baseurl=file:///var/tmp/repos/slack

enabled=1

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-SLACK

And now we can try installing slack. To run completely, it would require that the
package group Server with a GUI is installed, however, for the purpose of this exercise,
we can continue with its installation. We can do so by running dnf -y install
slack – please note how the gpg key gets imported automatically and the package is
verified and installed:

root@rhel8 slack]# dnf -y install slack

[omitted]

warning: /var/tmp/repos/slack/slack-4.12.2-0.1.fc21.x86_64.rpm:
Header V4 RSA/SHA1 Signature, key ID 8e6c9578: NOKEY

Local Slack Repository
1.6 MB/s | 1.6 kB 00:00

Importing GPG key 0x8E6C9578:

Userid : "Slack Packages (Signing Key) <packages@slack-
corp.com>"

Fingerprint: 93D5 D2A6 2895 1B43 83D8 A4CE F184 6207 8E6C 9578

From : /etc/pki/rpm-gpg/RPM-GPG-KEY-SLACK

Creating and syncing repositories with createrepo and reposync 229

Key imported successfully

Running transaction check

Transaction check succeeded.

Running transaction test

Transaction test succeeded.

[omitted]

 slack-4.12.2-0.1.fc21.x86_64

Complete!

Once a new version of Slack appears, we can download it to the same folder, and
regenerate the repository index by running createrepo again. This way all the systems
using this repository will update slack when they run a yum update. It's a good way
to keep all systems standardized and in the same version. For advanced features when
managing RPM repositories, please check Red Hat Satellite.

Sometimes we want to have a local replica of the repositories in our system. To do that,
we can use the reposync tool.

First, we install reposync, which comes in the yum-utils package:

[root@rhel8 ~]# dnf install yum-utils -y

[omitted]

Installed:

 yum-utils-4.0.17-5.el8.noarch

Complete!

Tip
If you try to install the dnf-utils package, this same package will be
installed.

Now it's time to disable all repos provided by Red Hat except rhel-8-for-x86_64-
baseos-rpms, which can be done with the following command:

[root@rhel8 ~]# subscription-manager repos --disable="*"
--enable="rhel-8-for-x86_64-baseos-rpms"

230 Adding, Patching, and Managing Software

Time to check the change:

[root@rhel8 ~]# dnf repolist

Updating Subscription Management repositories.

repo id repo name

local-slack-repo Local
Slack Repository

mirror.uv.es_mirror_fedora-epel_8_Everything_x86_64_ created
by dnf config-manager from http://mirror.uv.es/mirror/fedora-
epel/8/Everything/x86_64/

rhel-8-for-x86_64-baseos-rpms Red Hat
Enterprise Linux 8 for x86_64 - BaseOS (RPMs)

We can also disable the other repos, but this time we will do it in a different way, renaming
them to something that doesn't end with .repo:

[root@rhel8 ~]# mv /etc/yum.repos.d/local-slack.repo /etc/yum.
repos.d/local-slack.repo_disabled

[root@rhel8 ~]# mv /etc/yum.repos.d/mirror.uv.es_mirror_fedora-
epel_8_Everything_x86_64_.repo /etc/yum.repos.d/mirror.uv.es_
mirror_fedora-epel_8_Everything_x86_64_.repo_disabled

[root@rhel8 ~]# yum repolist

Updating Subscription Management repositories.

repo id repo name

rhel-8-for-x86_64-baseos-rpms Red Hat Enterprise Linux
8 for x86_64 - BaseOS (RPMs)

Now we can run reposync with some options:

[root@rhel8 ~]# cd /var/tmp/repos

[root@rhel8 repos]# reposync --newest-only --download-metadata
--destdir /var/tmp/repos

Updating Subscription Management repositories.

[omitted]

(1725/1726): selinux-policy-3.14.3-54.el8_3.2.noarch.rpm
2.3 MB/s | 622 kB 00:00

(1726/1726): selinux-policy-devel-3.14.3-54.el8_3.2.noarch.rpm
4.1 MB/s | 1.5 MB 00:00

[root@rhel8 repos]# ls

rhel-8-for-x86_64-baseos-rpms slack

[root@rhel8 repos]# ls rhel-8-for-x86_64-baseos-rpms/

Creating and syncing repositories with createrepo and reposync 231

Packages repodata

[root@rhel8 repos]# ls rhel-8-for-x86_64-baseos-rpms/repodata/

14d4e7f9bbf5901efa7c54db513a2ac68cb0b6650ae23a2e0bff15dc035
65f25-other.sqlite.bz2

26727acbd819c59d4da7c8aeaddb027adbfb7ddb4861d31922465b4c09
22f969-updateinfo.xml.gz

46f0b974d2456ad4f66dec3afff1490648f567ee9aa4fe695494ec2cfc9a
88f6-primary.sqlite.bz2

580de0089dbaa82ca8963963da9cb74abf7a5c997842492210e2c10e1d
eac832-primary.xml.gz

5954c1ef-00bc-457b-9586-e51789358b97

a7504888345e2440fa62e21a85f690c64a5f5b9ffd84d8e525a077c955644
abe-filelists.xml.gz

acad9f7dfbc7681c2532f2fd1ff56e0f4e58eb0e2be72cc1d4a
4ec8613008699-comps.xml

d2e90d6a0f138e6d8ea190cf995902c821309a03606c7acc28857e1864899
74a-filelists.sqlite.bz2

e0a7c4b677c633b859dba5eac132de68e138223e4ad696c72a97c454f2fe7
0bd-other.xml.gz

repomd.xml

This will download the latest packages for the enabled channels. Let's review the options:

• --newest-only: Red Hat repositories keep all the versions of the packages since
the first release. This will download only the latest version.

• --download-metadata: To be sure that we download a fully functional repo,
and we do not need to run createrepo on it, we can use this option, which will
retrieve all metadata in a source repository.

• --destdir /var/tmp/repos: Sets the destination directory for the
downloaded files. It will also create a directory for each repo configured so the
specified directory will be the parent of them all.

With this replicated repository, we can also work in isolated environments. It could be
very convenient to prepare test environments. For advanced repo management features,
please remember to try Red Hat Satellite.

After learning the basics of repositories and how to use them to manage software, let's dive
into the technology behind it, the Red Hat Package Manager, or RPM.

232 Adding, Patching, and Managing Software

Understanding RPM internals
Linux distributions tend to have their own package manager, from Debian with .deb
to Pacman in Arch Linux and other more exotic mechanisms. The intention of the
package managers is to keep software installed on the system, update it, patch it, keep
dependencies, and maintain an internal database of what is installed on the system. RPM
is used by distributions such as Fedora, openSUSE, CentOS, Oracle Linux, and, of course,
RHEL.

To handle RPMs, the rpm command is available in the system, however, since the
introduction of yum/dnf, it is hardly ever used in system administration, and is not
included in RHCSA.

RPMs contain the following:

• The files to be installed on the system, stored in CPIO format and compressed

• Information on permissions and the assigned owner and group for each file

• The dependencies required and provided by each package, along with, conflicts with
other packages

• Install, uninstall, and upgrade scripts to be applied in any of those phases

• A signature to ensure the package was not modified

To learn a bit about it, we will show some simple useful commands.

Commands to check packages include the following:

• rpm –qa: Lists all the installed packages in the system

• rpm –qf <filename>: Shows which package installed the mentioned filename

• rpm –ql <packagefile>: Lists the files included in a downloaded package
(interesting to check the previously downloaded packages)

Commands to install, upgrade, and remove include the following:

• rpm –i <packagefile>: Installs the list of provided packages, not fetching
dependencies.

• rpm –U <packagefile>: Upgrades a package with the downloaded one. Checks
dependencies but doesn't manage them.

• rpm –e <packagename>: Removes the packages specified, although it won't
remove dependencies.

Summary 233

If you want to understand how the dependency management system works in yum/dnf,
try installing packages with rpm –i.

It is important to know that all the databases of installed packages are located in /var/
lib/rpm and can be managed with the rpmdb command.

In modern times, having to work with the rpm command usually means having
a low-level issue, so it's better to try to break a test system before having to use it in
real life.

With this, we've completed software management in RHEL systems.

Summary
In this chapter, we have gone through the admin parts of software management in a RHEL
8 system, from subscriptions to installation, to modularity, and other miscellaneous tips.

All the system patching, updating, and management in RHEL relies on yum/dnf
and simplifies managing dependencies, installing the right versions of software, and
distributing it in isolated environments. This is one of the tasks more common for system
administrators and should be understood completely.

For the Red Hat Certified Engineer level, a more in-depth look will be required, including
creating RPM packages, which are very useful to manage, maintain, and distribute
internally produced software in your own environments leveraging the experience and
tools that Red Hat provides.

Now that our systems are up to date, let's move on to learn how to manage them remotely
in the upcoming chapter.

Section 2:
Security

with SSH, SELinux,
a Firewall, and

System Permissions
Security in production systems is a direct responsibility of systems administrators.
To handle that, RHEL includes capabilities such as SELinux, an integrated firewall,
and of course, the standard system permissions. In this section, a good overview and
understanding of the security mechanisms in RHEL are provided so that you can perform
everyday maintenance tasks.

The following chapters are included in this section:

• Chapter 8, Administering Systems Remotely

• Chapter 9, Securing Network Connectivity with firewalld

• Chapter 10, Keeping Your System Hardened with SELinux

• Chapter 11, System Security Profiles with OpenSCAP

8
Administering

Systems Remotely
When working with systems, once the server has been installed, and many times, even
during the installation itself, administration can be performed remotely. Once a machine
has been installed, the tasks that need to be performed during its life cycle are not that
different to the ones that have already been performed.

In this chapter, we will cover, from a connection point of view, how to connect to remote
systems, transfer files, and how to automate the connection so that it can be scripted and
make it resilient if issues arise with the network link. Administration tasks that can be
performed on the system are the same as the ones we described in previous chapters, such as
installing software, configuring additional networking settings, and even managing users.

Since administering a system requires privileged credentials, we will focus on the available
tools that are considered to be secure to perform such connections, as well as how to use
them to encapsulate other traffic.

We will cover the following topics:

• SSH and OpenSSH overview and base configuration

• Accessing remote systems with SSH

• Key-based authentication with SSH

238 Administering Systems Remotely

• Remote file management with SCP/rsync

• Advanced remote management – SSH tunnels and SSH redirections

• Remote terminals with tmux

By covering these topics, we will be able to master remote system access and bring our
administration skills to the next level.

Let's start by talking about the SSH protocol and the OpenSSH client and server in the
next section.

Technical requirements
You can continue using the virtual machine that we created at the beginning of this book
in Chapter 1, Installing RHEL8. Any additional packages that are required will be indicated
in the text. Any additional files that are required for this chapter can be downloaded from
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-
Administration.

SSH and OpenSSH overview and base
configuration
SSH is an acronym for Secure Shell Host. It started to spread by replacing traditional
telnet usage, which was a remote login protocol that used no encryption for connecting to
hosts, so the credentials that were used for logging in were transmitted in plain text. This
means that anyone who had a system between the user terminal and the remote server
could intercept the username and password and use that information to connect to remote
systems. This is similar to what happens when credentials are transmitted to a web server
via HTTP and not HTTPS.

With SSH, a secure channel is created between the client and the target host, even if the
connection is performed over untrusted or insecure networks. Here, the SSH channel
that's created is secure and no information is leaked.

OpenSSH provides both a server and a client (the openssh-server and openssh-
clients packages in Red Hat Enterprise Linux (RHEL) that can be used to connect to
and allow connections from remote hosts.

https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration

SSH and OpenSSH overview and base configuration 239

Tip
Knowing everything is not possible, so it is really important for
Red Hat Certified System Administrator (RHCSA) certified individuals
(and even later certifications, if you followed that path) to be resourceful.
We already know how to install packages and how to check the manual
pages that are installed by them, but we can also use those packages to find
the necessary configuration files. This skill can be used to find the possible
configuration files we need to edit to configure a service or a client. Remember
to use rpm –ql package to review the list of files provided by a package if
you cannot remember which one to use.

The default configuration for both the client and server allows connections, but there are
many options that can be tuned.

OpenSSH server
OpenSSH is a free implementation based on the last free SSH version that was created by
OpenBSD members and updated with all the relevant security and features. It has become
a standard in many operating systems, both as a server and as a client, to make secure
connections between them.

The main configuration file for the OpenSSH server is located at /etc/ssh/sshd_
config (and you can use man sshd_config to get detailed information about the
different options). Some of the most used options are as follows:

• AcceptEnv: Defines which environment variables that have been set by the client
will be used on the remote host (for example, locale, terminal type, and so on).

• AllowGroups: A list of groups a user should be a member of to get access to
the system.

• AllowTcpForwarding: Allows us to forward ports using the SSH connection
(we will discuss this later in this chapter, in the SSH tunnels and SSH redirections
section).

• DisableForwarding: This takes precedence over other forwarding options,
making it easier to restrict the service.

• AuthenticationMethods: Defines which authentication methods can be used,
such as disabling password-based access.

• Banner: Files to send to the connecting user before authentication is allowed.
This defaults to no banner, which might also reveal who is running the service that
might be providing too much data to possible attackers.

240 Administering Systems Remotely

• Ciphers: A list of valid ciphers to use when you're interacting with the server. You
can use + or – to enable or disable them.

• ListenAddress: The hostname or address and port where the sshd daemon
should be listening for incoming connections.

• PasswordAuthentication: This defaults to yes and can be disabled to block users
from interactively connecting to the system unless a public/private keypair is used.

• PermitEmptyPasswords: Allows accounts with no password to access the
system (the default is no).

• PermitRootLogin: Defines how login works for the root user, for example, to
avoid the root user from connecting remotely with a password.

• Port: Related to ListenAddress, this defaults to 22. It's the port number where
the sshd daemon listens for incoming connections.

• Subsystem: Configures the command for the external subsystem. For example, it
is used with sftp for file transfers.

• X11Forwarding: This defines whether X11 forwarding is permitted so that
remote users can open graphical programs on their local display by tunneling the
connection.

The following screenshot shows the options that are installed by our system while we're
removing comments:

Figure 8.1 – Default values at installation time defined in /etc/ssh/sshd_config

SSH and OpenSSH overview and base configuration 241

We'll check the client part of the configuration in the next section.

OpenSSH client
The client part of OpenSSH is configured system-wide via the /etc/ssh/ssh_config
file and the files in the /etc/ssh/ssh_config.d/ folder. They are also configured via
each user ~/.ssh/config file.

Usually, the system-wide file just contains some comments, not actual settings, so we will
be focusing on the per-user configuration file and command-line parameters.

One example entry in our ~/.ssh/config file could be as follows:

Host jump

 Hostname jump.example.com

 User root

 Compression yes

 StrictHostKeyChecking no

 GSSAPIAuthentication yes

 GSSAPIDelegateCredentials yes

 GSSAPIKeyExchange yes

 ProxyCommand connect-proxy -H squid.example.com:3128 %h %p

 ControlPath ~/.ssh/master-%r@%h:%p

 ControlMaster auto

In the previous example, we defined an entry named jump (that we can use with ssh jump)
that will connect the root username to the jump.example.com host.

This is a basic setting, but we're also defining that we'll be using a helper program in
ProxyCommand that will make use of a proxy server on squid.example.com on port
3128 to connect to the %h host and %p port to reach our target system. Additionally,
we're making use of Compression and using ControlMaster with additional
GSSAPI authentication.

One feature that has security implications is StrictHostKeyChecking. When we
connect to a host for the first time, keys are exchanged between the client and the host,
and the server identifies itself with the keys that are used. If they're accepted, they will be
stored in the .ssh/known_hosts file at the user's home.

242 Administering Systems Remotely

If the remote host key is changed, a warning will be printed on the ssh client's terminal
and the connection will be refused, but when we set StrictHostKeyChecking to
no, we will accept any key that's sent by the server, which might be useful if we're using
a test system that gets redeployed frequently (and thus, generating a new host key). It is
not recommended to be used in general, since it protects us from a server being replaced
and also someone impersonating the server we want to connect to with a server that, for
example, logs usernames and passwords to access our system later.

In the next section, we will learn about accessing remote systems with ssh.

Accessing remote systems with SSH
SSH, as we mentioned earlier in this chapter, is a protocol that's used to connect to remote
systems. In general, the syntax, in its most basic form, is just executing ssh host within
a terminal.

The ssh client will then initiate a connection to the ssh server on the target host, using
the username of the currently logged-in user by default, and will try to reach the remote
server on port 22/tcp, which is the default for the SSH service.

In the following screenshot, we can see the closest server to our localhost system,
which means we will be connecting to our own server:

Figure 8.2 – Initiating a SSH connection to localhost

In the preceding screenshot, we can see how the first interaction with the server prints
the fingerprint of the server to authenticate it. This is what was discussed in the previous
section; that is, StrictHostKeyChecking. Once accepted, if the host key changes, the
connection will be denied until we manually remove the older key to confirm that we're
aware of the server change.

Accessing remote systems with SSH 243

Let's add the key and try again, as shown in the following screenshot:

Figure 8.3 – Initiating an SSH connection to localhost denied

On our second attempt, the connection failed, but let's examine the output; that is,
Permission denied (publickey,gssapi-keyex,gssapi-with-mic). What
does it mean? If we pay attention, password isn't listed, which means that we cannot connect
to this host via a password prompt (which comes from setting PasswordAuthentication
to no, which we defined in the /etc/ssh/sshd_config file).

In the following screenshot, we can see that once we set PasswordAuthentication to
yes, the system asks for the password, which is not echoed on screen. Once validated, we
get a shell prompt so that we can start typing in commands:

Figure 8.4 – SSH connection completed

244 Administering Systems Remotely

In general, password authentication can be a security risk as the keyboard might be
intercepted, someone might be looking over your shoulder, a brute-force attack might be
used against the accounts, and so on. Due to this, it's common practice to at least disable
it for the root user, meaning that someone trying to log into the system should know the
username and password for a user, and from there, use the system tools to become root.

Let's learn how to log into remote systems that have passwords disabled by using
authentication keys.

Key-based authentication with SSH
One big advantage of SSH connections is that commands can be given to be executed on
remote hosts, for example, to grab updated data that can be used for monitoring without
requiring a specific agent on the host.

Having to provide login details on each connection is not something that we could
consider an improvement to the user experience, but SSH also allows us to create a
keypair that can be used for authentication to remote systems so that no password or
credential input is required.

The keys contain two parts: one that is public and must be configured in each host we
want to connect to, and one that is private and must be secured as it will be used to
identify us while we're trying to connect to remote hosts.

It is not necessary to say that this entire process happens over the encrypted connection
created by SSH. So, using SSH and compression will also make our connections faster
versus other legacy methods such as telnet, which is unencrypted.

First of all, let's create one keypair for authentication.

Tip
It is recommended to have at least one keypair per user so that each user can
have keys based on the roles when they're connecting to servers. Even if the
keys can be shared for users in a role, it's better to have each user have its
own set so that keys can be revoked individually. For example, we can keep
several ssh keypairs to be used in different roles, such as personal systems,
production systems, lab systems, and so on. Having to specify the keypair for
connecting is also an extra security measure: we cannot connect to production
systems unless we use the production keypair.

To create a keypair, we can use the ssh-keygen tool, which has several options for the
key we are creating, as shown in the following screenshot:

Key-based authentication with SSH 245

Figure 8.5 – ssh-keygen options

When no arguments are provided, by default, it will create a key for the current user and
ask for a password for the key. When we use the defaults and provide no values, we get an
output similar to the one shown in the following screenshot:

Figure 8.6 – ssh-keygen execution creating an RSA keypair under ~/.ssh/{id_rsa,id_rsa.pub}

246 Administering Systems Remotely

From this point on, this system has created a keypair for the root user, and it has stored
the two pieces of it in the same folder, which is .ssh by default. The public one contains
the.pub suffix, while the other contains the private key.

How do we use them? If we look inside the .ssh folder in our home directory, we can see
several files: we have an authorized_keys file and a known_hosts file, in addition to
the keypair we have just created. The authorized_keys file will contain one entry per
line. This contains the public keys that can be used to log into this system for this user.

Tip
The vast range of options that can be used with authorized_keys goes
further than adding just regular keys – you can also define commands to
execute, expiry times for keys, remote hosts that can be used to connect so
that only those hosts will be able to use that key successfully, and many more.
Again, man sshd is your friend, so check out the AUTHORIZED_KEYS
FILE FORMAT section there to learn about more complex setups.

To simplify how keys are set up on remote systems, we have the ssh-copy-id utility,
which connects via ssh to the remote host. This will ask for the ssh password and
install the available public keys on our system. However, this requires the system to have
password authentication enabled.

The alternate method consists of manually appending our public key to that file
(.ssh/autorized_keys), as shown in the following screenshot:

Figure 8.7 – ssh-copy-id failure and manual authorization of the private key

Key-based authentication with SSH 247

The first line has attempted to use ssh-copy-id, but since we had password
authentication enabled, it tried to copy our public key and failed. Then, we appended the
public key using >> to the authorized_keys file. Finally, we demonstrated how to
connect to localhost with ssh and execute a command without a password.

Important Note
The permissions for the .ssh folder and the authorized_keys file must
not be too wide open (for example, 777). If they are, the ssh daemon will
reject them as someone could have appended new keys and tried to gain access
without really being a legit user of the system.

What has just happened opens a new world of automation. Using the keys being exchanged
between our system and the remote hosts, we can now connect remotely to them to run
commands interactively or to script commands to be executed on remote hosts. We can
check the results in our terminal. Let's consider this simple script, for a system load average
check, which is available at https://github.com/PacktPublishing/Red-Hat-
Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-
systems-administration/loadaverage-check.sh:

#!/usr/bin/bash

for system in host1 host2 host3 host4;

do

 echo "${system}: $(ssh ${system} cat /proc/loadavg)"

done

In this example, we're running a loop to connect to four systems and then outputting the
name and the load average of that system, as shown in the following screenshot:

Figure 8.8 – Password-less login to four hosts to check their load average

https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/loadaverage-check.sh
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/loadaverage-check.sh
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/loadaverage-check.sh

248 Administering Systems Remotely

As we can see, we quickly grabbed the information from four hosts over ssh. If you want
to test this in your environment, you might want to put into practice what we learned
about creating entries in the /etc/hosts file, which points to 127.0.0.1 for the host
names we want to try, so that the connection goes to your own practice system, as we
explained in Chapter 6, Enabling Network Connectivity.

Now, think about the different options we have for administering our systems remotely:

• Check IPs for a range of hosts.

• Install updates or add/remove one package.

• Check the local time in case the system has drifted.

• Restart one service after adding a new user to the system.

Many more options exist, but these are the main ones.

Of course, there are more suitable tools for remotely administering systems and ensuring
that errors are detected and handled properly, such as using Ansible, but in this case, for
simple tasks, we are good to go.

Previously, we created a key and replied with <ENTER> when we were asked for
a password. What if we had typed one in? We'll look at this in the next section.

SSH agent
If we have decided to create an SSH key with a password to protect it (good choice), we
will need to input the passphrase each time we want to use the key, so in the end, it might
be as insecure as having to type in the password as someone might be checking over our
shoulder. To overcome this, we can use a program called ssh-agent that temporarily
keeps the passphrase in memory. This is convenient and reduces the chances of someone
watching while you type in your key.

When you're using a graphical desktop, such as GNOME, as provided by RHEL, the agent
might be already set up to start at session login. In the event that you're using a console
(local or remote), the agent must be started manually by executing ssh-agent.

Key-based authentication with SSH 249

When ssh-agent is executed, it will output some variables that must be set in our
environment so that we can make use of it, as shown in the following screenshot:

Figure 8.9 – ssh-agent being used to set the required variables

As shown in the preceding screenshot, before being executed, or just while we're
executing the agent, the variables are undefined. However, if we were to execute eval
$(ssh-agent), we would accomplish the goal of having the variables defined and ready
to use.

The next step is to add the keys to the agent. This can be accomplished with the ssh-add
command, which can be used without parameters or by specifying the key to be added. If
the key requires a password, it will prompt you for it. Once we're done, we might be able
to use that key to log into the systems with the passphrase that's being cached until we exit
the session that executed the agent, thus clearing the passphrase from memory.

250 Administering Systems Remotely

The following screenshot shows the command that was used to generate a new keypair
with a password. Here, we can see that the only difference is that we're storing it in a file
named withpass versus what we did earlier in this chapter:

Figure 8.10 – Creating an additional ssh keypair with a password

We can see how to connect to our localhost (which we added the key for with the
password public part of our .ssh/authorized_keys while removing the one without
a password) and how the connection behaves in the following screenshot:

Figure 8.11 – Using ssh-agent to remember our passphrase

SCP/rsync – remote file management 251

To make this clearer, let's analyze what's happening:

1. First, we ssh to the host. Permission is denied as the default key we used was
removed from authorized_keys.

2. We ssh again but while defining the identity file (the keypair) to connect to, as we
can see, we're asked for the passphrase for the key, not for logging into the system.

3. Then, we log out and the connection is closed.

4. Next, we try to add the key, and we get an error because we have not set the
environment variables for the agent.

5. As instructed when we introduced the agent, we execute the command for loading
the environment variables for the agent in the current shell.

6. When we retry adding the key with ssh-add withpass, the agent asks for
our passphrase.

7. When we finally ssh to the host, we can connect without a password as the key is in
memory for our keypair.

Here, we have achieved two things: we now have an automated/disattended method to
connect to systems and have ensured that only authorized users will know the passphrase
to unlock them.

We'll learn how to do remote file management in the next section!

SCP/rsync – remote file management
Similar to telnet, which was replaced with ssh on many devices and systems, using
insecure solutions for file transfer is being reduced. By default, the File Transfer Protocol
(FTP) uses TCP port 21, but since communication happened in plain text, it was a perfect
target for intercepting credentials. FTP is still used today, mostly for serving file on servers
that only allow anonymous access and wish to move to more secure options.

SSH usually enables two interfaces for copying files: scp and sftp. The first one is used
in a similar way to the regular cp command, but here, we're accepting remote hosts
as our target or source, while sftp uses a client approach similar to the traditional
ftp command that interacts with FTP servers. Just remember that in both cases, the
connection is encrypted and happens over port 22/tcp on the target host.

We'll dig into SCP in the next section.

252 Administering Systems Remotely

Transferring files with an OpenSSH secure file copy
The scp command, which is part of the openssh-clients package, allows us to copy
files between systems using the ssh layer for the whole process. This allows us to securely
transfer a file's contents, plus all the automation capabilities that were introduced by
keypair login, to various systems.

To set up this example, we will create a new user in our sample system that will be used to
copy over files using the tools described in this section, as shown in the following screenshot:

Figure 8.12 – Preparing our system with an additional user to practice file transfers

You can find the preceding commands in a script available at https://github.com/
PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/
blob/main/chapter-08-remote-systems-administration/create-kys-
user.sh.

Once the user has been created and the key has been copied, we can start testing!

Earlier in this chapter, we created a key named withpass with a public counterpart at
withpass.pub. To provide the key to the newly created user, we can copy both files to
the kys user via the following command:

scp withpass* kys@localhost:

Let's analyze each part of the command using this template:

scp origin target

https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/create-kys-user.sh
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/create-kys-user.sh
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/create-kys-user.sh
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/create-kys-user.sh

SCP/rsync – remote file management 253

In our case, origin is indicated with withpass.*, which means that it will select all
the files starting with the withpass string.

Our target value is a remote host. Here, the username is kys, the host is localhost,
and the folder you should store the files in is the default one, usually the home folder of
the user indicated (the one with an empty path after the: symbol).

In the following screenshot, we can see the output of the command and the validation we
can perform later via remote execution:

Figure 8.13 – Copying SCP files to a remote path and validating the files that have been copied

In the preceding screenshot, you can also check that the files that were owned by the root
user are copied. The copied ones are owned by the kys user, so the file's contents are the
same, but since the creator on the target is the kys user, files have their ownership.

We can also make more complex copies by indicating remote files first and local paths as
targets so that we download files to our system, or even copy files across remote locations
for both the origin and target (unless we specify the–3 option, they will go directly from
origin to target).

Tip
Time for a reminder! man scp will show you all the available options for
the scp command, but since it is based on ssh, most of the options we
use with ssh are available, as well as the host definitions we made in the
.ssh/config file.

We'll explore the sftp client in the next section.

254 Administering Systems Remotely

Transferring files with sftp
Compared to scp, which can be scripted in the same way we can script with the regular
cp command, sftp has an interactive client for navigating a remote system. However, it
can also automatically retrieve files when a path containing files is specified.

To learn about the different commands that are available, you can invoke the help
command, which will list the available options, as shown in the following screenshot:

Figure 8.14 – Available sftp interactive mode commands

SCP/rsync – remote file management 255

Let's look at an example of this with the help of the following screenshot:

Figure 8.15 – Both modes of operation with sftp – automated transfer or interactive transfer

In this example, we've created a local folder to be our work folder, called getfilesback.
First, we have invoked sftp with a remote path with the files we've identified. Here,
sftp has automatically transferred the files and has stopped executing. The files we have
received are now the property of our user.

In the second command, when we invoke sftp with the user and host and we enter
interactive mode, we can execute several commands, similar to what we can do on a
remote shell session. Finally, using the mget command with the * wildcard character,
we transferred the files to our local system.

256 Administering Systems Remotely

In both cases, the files have been transferred from the remote system to our local system,
so our goal has been accomplished. However, using scp requires knowing the exact path
of the files you want to transfer. On the other hand, it might be a bit more user-friendly
to navigate the system using the ls and cd commands within the sftp interactive client
until we reach the files we want to transfer if we can't remember it.

Now, let's learn how to quickly transfers files and trees with rsync.

Transferring files with rsync
Although we can use the –r option of scp to transfer files recursively, scp only handles
the full copy of the file, which is not ideal if we are just keeping some folders in sync
across systems.

In 1996, rsync was launched, and many systems implemented it by using a dedicated
server that was listening to client connections. This was to allow trees to be synchronized
with files. This was done by copying over the differences between the files. Here, parts
of the source and destination were compared to see whether there were differences that
should be copied over.

With ssh, and with the rsync package installed on both the client and the server, we can
take advantage of the secure channel that's created by ssh and the faster synchronization
provided by rsync.

The difference between using the rsync daemon and using ssh is the syntax for the
source or destination, which either uses the rsync:// protocol or :: after the hostname.
In other cases, it will use ssh or even the local filesystem.

The following screenshot shows us mentioning the schema for URLs via the
rsync –help command:

SCP/rsync – remote file management 257

Figure 8.16 – The rsync command's help output

Now, let's review some of the useful options we can use with rsync:

• -v : Provides more verbose output during the transfer.

• -r: Recurses into directories.

• -u: Update – only copies files that are newer than the ones at the target.

• -a: Archive (this includes several options, such as –rlptgoD).

• -X: Preserves extended attributes.

• -A: Preserves ACLs.

• -S: Sparse – sequences of nulls will be converted into sparse blocks.

258 Administering Systems Remotely

• --preallocate: Claims the space that's required for files before transferring them.

• --delete-during: Deletes files on the target that are not hosted during the copy.

• --delete-before: Deletes files on the target that are not hosted before the copy.

• --progress: Shows progress information on the copy (copied files versus
total files).

The rsync algorithm breaks the file into chunks and calculates checksums for each
chunk that's transmitted to source. They are then compared to the ones for local files. We
are only allowed to share the differences between the source and the target. rsync doesn't
check the modification file date and size by default, so if the file has changed without
changes being left in both, the change might not be detected unless a checksum check is
forced for each file candidate to be transferred.

Let's look at some basic examples:

• rsync –avr getfilesback/ newfolder/ will copy the files in the local
getfilesback/ folder to newfolder/ by showing a progress update, but only
for the updated files, as shown in the following screenshot:

Figure 8.17 – The rsync operation being used on the same source/destination,
repeated to illustrate transfer optimization

As we can see, the second operation just sent 85 bytes and received 12 bytes. This is
because there was a little checksum operation happening internally to validate across
the folders because the files hadn't been changed. The same output can be obtained if we
use the remote target approach with rsync -avr --progress getfilesback/
root@localhost:newfolder/, but in this case, ssh transport will be used.

SCP/rsync – remote file management 259

Let's get some bigger sample files and compare them by checking out a Git repository at
some point in time, transferring the files, then updating to the latest version to simulate
work on the repository. Then, we will synchronize again.

First, let's install git if it's not installed and check out a sample repository by executing
the following code:

dnf –y install git # install git in our system

git clone https://github.com/citellusorg/citellus.git # clone
a repository over https

cd citellus # to enter into the repository folder

git reset HEAD~400 # to get back 400 commits in history

At this point, we have a folder with files ready for transfer. Once we've done this, we'll
execute git pull to sync with the latest changes and use rsync again to copy the
differences. Later, we'll use --delete to remove any files that no longer exist on the source.

Let's check out the sequence shown in the following screenshot:

Figure 8.18 – Synchronizing the git folder to a new folder with rsync

In the preceding screenshot, pay attention to the speedup that's reported in the latest line
of the command.

260 Administering Systems Remotely

Now, let's execute git pull to get the 400 changes we were missing and repeat rsync
again. We will get an output similar to the following:

Figure 8.19 – Using rsync again to copy over the differences

In the preceding screenshot, pay attention to the speedup reported in the last line so that
you can compare it with the previous one.

From this sequence of screenshots, we can check the last numbers for the total bytes
that were sent to see the improvement in transfer, along with some of the files that were
received (because we added the –v modifier to get verbose output and --progress).

The biggest advantage comes when a copy is performed over slower network links and
it's performed periodically, for example, as a way to copy to an offsite copy for backup
purposes. This is because rsync will only copy the changes, update the newer files
that have been modified on the source, and allow us to use compression over the ssh
channel. For example, the Linux kernel at https://www.kernel.org/ can be
mirrored using rsync.

In the next section, we will dig into a very interesting feature of SSH to make connecting
to servers with no direct access easy.

https://www.kernel.org/

Advanced remote management – SSH tunnels and SSH redirections 261

Advanced remote management – SSH tunnels
and SSH redirections
SSH has two really powerful features; that is, SSH tunnels and SSH redirections. When an
SSH connection is established, it can not only be used to send commands to the remote
host and let us work on them as if they were our local system, but we can also create
tunnels that interconnect our systems.

Let's try to imagine a scenario that is common in many companies, where a VPN is used
to reach the internal network with all the services and servers, but with SSH instead of
a regular VPN.

So, let's put some context into this imaginary scenario.

We can use a host that gets external traffic for ssh redirected from our internet router
to the ssh service in that system. So, in brief, our router gets connections on port 22 via
TCP and the connection is forwarded to our server. We will be naming this server bastion
in this exercise.

With this in place, our common sense tells us that we will be able to reach that bastion
host via SSH, even if we can use other tools or even ssh it to connect to other
systems later.

Can we connect directly to other hosts in the internal network? The answer is YES,
because, by default, SSH allows us to use TCP forwarding (sshd_config setting
AllowTcpForwarding), which empowers us, as remote login users, to create port
redirections and even a SOCKS proxy to be used for our connections.

For example, we can create a tunnel using that bastion host to reach our internal mail
server via the Internet Message Access Protocol (IMAP) and Simple Mail Transfer
Protocol (SMTP) protocols by just executing the following code:

ssh –L 10993:imap.example.com:993 –L 10025:smtp.example.com:25
user@bastionhost

This command will listen on local ports 10993 and 10025. All the connections that
are performed there will be tunneled until bastionhost connects those to imap.
example.com at port 993 and smtp.example.com at port 25. This allows our local
system to configure our email account using those custom ports and use localhost as
the server, and still be able to reach those services.

262 Administering Systems Remotely

Tip
Ports under 1024 are considered privileged ports and usually, only the
root user can bind services to those ports. That's why we use them for our
redirection ports, 10025 and 10093, so that those can be used by a regular
user instead of requiring the root user to perform the ssh connection. Pay
attention to ssh messages when you're trying to bind to local ports in case
those are in use, as the connections might fail.

Additionally, from the target server's point of view, the connections will appear
as if they originated in the bastion server as it's the one effectively performing
the connections.

When the list of open ports starts to grow, it is better to go back to what we explained
at the beginning of this chapter: the ~/.ssh/config file can hold the host definition,
along with the redirections we want to create, as shown in this example:

Host bastion

 ProxyCommand none

 Compression yes

 User myuser

 HostName mybastion.example.com

 Port 330

 LocalForward 2224 mail.example.com:993

 LocalForward 2025 smtp.example.com:25

 LocalForward 2227 ldap.example.com:389

 DynamicForward 9999

In this example, when we are connecting to our bastion host (via ssh bastion), we
are automatically enabling Compression, setting the host to connect to mybastion.
example.com at port 330, and defining port forwarding for our imap, smtp, and
ldap servers and one dynamic forward (SOCKS proxy) at port 9999. If we have different
identities (keypairs), we can also define the one we wish to use via the IdentityFile
configuration directive for each host, or even use wildcards such as Host *.example.
com to automatically apply those options to hosts ending in that domain that have no
specific configuration stanza.

Remote terminals with tmux 263

Note
Sometimes, while using ssh, scp, or sftp, the goal is to reach a system that
is accessible from a bastion host. Other port forwarding is not needed here –
only reaching those systems is required. In this case, you can use the handy –J
command-line option (equivalent to defining a ProxyJump directive) to use
that host as a jump host to the final target you want to reach. For example, ssh
–J bastion mywebsiteserver.example.com will transparently
connect to bastion and jump from there to mywebsiteserver.
example.com.

In the next section, we will learn how to protect ourselves from network issues with our
remote connections and get the most out of our remote terminal connection.

Remote terminals with tmux
tmux is a terminal multiplexer, which means that it allows us to open and access several
terminals within a single screen. A good similitude would be a window manager in a
graphical desktop, which allows us to open several windows so that we can switch context
while using only one monitor.

tmux also allows us to detach and reattach to the sessions, so it's the perfect tool in case
our connection drops. Think, for example, about performing a software upgrade on a
server. If, for whatever reason, the connection drops, it will be equivalent to abruptly
stopping the upgrade process in whatever status it was at that moment, which can lead to
bad consequences. However, if the upgrade was launched inside tmux, the command will
continue executing, and once the connection is restored, the session can be reattached and
the output will be available to be examined.

First of all, let's install it on our system via dnf –y install tmux. This line will
download the package and make the tmux command available. Bear in mind that the goal
of tmux is not to install it on our system (even if this is useful), but for it to be available
on the servers we connect to, to get that extra layer of protection in case a disconnection
happens. So, it's a good habit to get used to installing it on all the servers we connect to.

Tip
In versions prior to RHEL8, the tool that was used for creating virtual multiplexed
terminals was screen, which has been marked as deprecated and is only
available via EPEL repositories. If you were used to its key bindings (CTRL-A +
<key>), most of them are equivalent in tmux via (CTRL-B + <key>).

264 Administering Systems Remotely

In the following screenshot, we can see what tmux looks like with the default
configuration after executing tmux on a command line:

Figure 8.20 – tmux default layout after execution

As shown in the preceding screenshot, it hasn't changed a lot of the view of our terminal
except for the status bar in the lower part of the window. This shows some information
about the host, such as its name, time, date, and the list of open windows, with 0:bash
being the active one, as denoted by the asterisk (*) symbol.

There are lots of combinations for using tmux, so let's get familiar with some of them that
will cover the initial use case:

• Run tmux to create a new session.

• Run tmux at to attach to a previous session (for example, after reconnecting
to a host).

• Run tmux at –d to attach to a previous session and detach other connections
from it.

Once we're inside tmux, there is a whole world of commands we can use that are
preceded by the CTRL+B keys. Let's view some important ones (remember that Ctrl + B
must be pressed before you use the next item in the list):

• ?: Displays inline help about the shortcuts to use.

• c: Creates a new window.

• n/p: Go to the next/previous window.

• d: Detaches the tmux session.

• 0-9: Go to the window numbered with the pressed number.

Remote terminals with tmux 265

• ,: Renames windows.

• ": Splits the pane horizontally.

• %: Splits the pane vertically.

• space: Switches to the next layout.

• &: Kills the window.

• Pg down/pg up: Go higher or lower in the window history.

• Arrow keys: Select the pane in the direction of the pressed key.

Let's look at an example in action in the following screenshot:

Figure 8.21 – tmux with four panes running different commands inside the same window

As we can see, there are several commands running at the same time – top,
journalctl –f, iostat –x, and ping – so this is a good way to monitor a system
while operations are being performed on it.

Additionally, one of the advantages is that tmux can be scripted, so if we are using one layout
while administering systems, we can copy that script and execute it as soon as we connect to
them so that we can enjoy the same layout and even the commands being executed.

266 Administering Systems Remotely

You can find the following code with extra comments and descriptions at
https://github.com/PacktPublishing/Red-Hat-Enterprise-
Linux-8-Administration/blob/main/chapter-08-remote-systems-
administration/term.sh if you want to try it on your system:

#!/bin/bash

SESSION=$USER

tmux -2 new-session -d -s $SESSION # create new session

tmux select-window -t $SESSION:0 # select first window

tmux rename-window -t $SESSION "monitoring" #rename to
monitoring

tmux split-window –h #split horizontally

tmux split-window –v #split vertically

tmux split-window –h # split again horizontally

tmux select-layout tiled #tile panes

tmux selectp –t1 # select pane 1

tmux send-keys "top" C-m #run top by sending the letters +
RETURN

tmux selectp –t2 # select pane 2

tmux send-keys "journalctl -f" C-m # run journalctl

tmux selectp –t3 # select pane 3

tmux send-keys "iostat -x" C-m # run iostat

tmux selectp –t0 #select the pane without commands executed

Once the session with tmux has been set, we can attach the session we've just created and
configured by executing tmux, which will show a layout similar to the one shown in the
preceding screenshot.

Summary
In this chapter, we covered SSH and how to use it to connect to remote systems, how to
use keys to authenticate with or without a password, and how to take advantage of it for
automation, transferring files, and even making services accessible or reachable via port
redirection. With tmux, we learned how to make our administration sessions survive
network interruptions and at the same time, show important information at a glance by
automating the layouts for it.

In the next chapter, we'll be digging into securing our system network via firewalld to only
expose the services that are required for operation.

https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/term.sh
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/term.sh
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-08-remote-systems-administration/term.sh

9
Securing Network
Connectivity with

firewalld
A great mentor and technologist working with military restricted environments once told
me that "The only secure system is the one that is switched off, disconnected from any network,
and buried in the middle of the desert." He is right, of course, but we must provide a service
to make the system useful. This means having it running and connected to a network.

One of the techniques that's used in security to reduce incidents, such as avoiding
unexpected exposure to a vulnerability and enabling unauthorized remote access, is
reducing the attack surface and applying defense in depth principles. When you do that
in a network, step one is filtering connections using a firewall. The firewall management
tool that's included in Red Hat Enterprise Linux (RHEL) is firewalld and it helps us
manage zones, profiles, services, and ports. It also includes a command-line tool called
firewall-cmd and a systemd service unit to simplify its management.

In this chapter, we will cover the following topics to get a good understanding of how to
manage the default firewall in RHEL:

• Introduction to the RHEL firewall – firewalld

• Enabling firewalld on the system and reviewing the default zones

268 Securing Network Connectivity with firewalld

• Reviewing the different configuration items under firewalld

• Enabling and managing services and ports

• Creating and using service definitions for firewalld

• Configuring firewalld with the web interface

Introduction to the RHEL firewall – firewalld
RHEL comes with two low-level network traffic filtering mechanisms: nftables, for filtering
IP-related traffic, and ebtables, for transparent filtering in bridges. These mechanisms are
static and use a set of rules to accept or reject traffic, though they do provide a myriad of
other capabilities. In RHEL, they are both handled and managed dynamically by firewalld.
Unless there is a specific need to have a very low-level usage of these low-level filtering
mechanisms, please use firewalld (or its main command; that is, firewall-cmd) instead.
In this section, we will take a look at the firewall defaults in RHEL.

firewalld is installed by default in the system, which we can check by using the rpm
command, so there is no need to install it:

[root@rhel8 ~]# rpm -qa | grep firewalld

firewalld-filesystem-0.8.2-2.el8.noarch

firewalld-0.8.2-2.el8.noarch

If we have an installation that doesn't include firewalld for some reason, we can install it
by running dnf install firewalld.

firewalld includes a service called firewalld, which is configured to run by default at
startup. We can check this by using the systemctl status firewalld command:

Figure 9.1 – Output of "systemctl status firewalld"

Enabling firewalld in the system and reviewing the default zones 269

As we can see, the firewalld service is enabled and running. This is the default status
in a RHEL system.

The main way for a sysadmin to configure firewalld is by using the firewall-cmd
command. However, you can also do the following:

• Add new files with service definitions in /etc/firewalld/ (as explained in the
Creating and using service definitions for firewalld section of this chapter)

• Use the web interface, called cockpit, to configure firewalls (as explained in the
Configuring firewalld with the web interface section of this chapter)

• Use the firewall-config graphical interface in your desktop environment

In this chapter, we will review the main mechanism and the web interface.

Now that we know the defaults of the RHEL main firewall, let's learn how to enable it.

Enabling firewalld in the system and reviewing
the default zones
We have already seen that firewalld is enabled by default in the system. However, we may
need to disable (that is, check if the firewall is interfering with a service), re-enable (that is,
after restoring configuration files), and start and stop it (that is, to reload configuration or
to do a quick check). This tasks are managed like any other service in the system; that is,
using systemctl. Let's stop the firewalld service:

[root@rhel8 ~]# systemctl stop firewalld

[root@rhel8 ~]# systemctl status firewalld

 firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded (/usr/lib/systemd/system/firewalld.service;
enabled; vendor preset: enabled)

 Active: inactive (dead) since Sun 2021-02-28 17:36:45 CET;
4s ago

 Docs: man:firewalld(1)

 Process: 860 ExecStart=/usr/sbin/firewalld --nofork --nopid
$FIREWALLD_ARGS (code=exited, status=>

Main PID: 860 (code=exited, status=0/SUCCESS)

feb 28 17:36:19 rhel8.example.com systemd[1]: Starting
firewalld - dynamic firewall daemon...

270 Securing Network Connectivity with firewalld

feb 28 17:36:20 rhel8.example.com systemd[1]: Started firewalld
- dynamic firewall daemon.

feb 28 17:36:20 rhel8.example.com firewalld[860]: WARNING:
AllowZoneDrifting is enabled. This is co>

feb 28 17:36:45 rhel8.example.com systemd[1]: Stopping
firewalld - dynamic firewall daemon...

feb 28 17:36:45 rhel8.example.com systemd[1]: firewalld.
service: Succeeded.

feb 28 17:36:45 rhel8.example.com systemd[1]: Stopped firewalld
- dynamic firewall daemon.

In the previous output, as shown in bold the service is inactive. We can check this by using
the firewall-cmd --state command:

[root@rhel8 ~]# firewall-cmd --state

not running

At the moment, the firewall service has stopped and all the rules have been dropped.
The configuration for the service, however, has not changed, so if we reboot the system,
firewalld will be running again.

Tip
We can always see the underlying netfilter rules by running the nft
list table filter command. You may want to run it before and after
stopping the service to see the difference.

Now, let's try and start the service again:

[root@rhel8 ~]# systemctl start firewalld

[root@rhel8 ~]# systemctl status firewalld

 firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded (/usr/lib/systemd/system/firewalld.service;
enabled; vendor preset: enabled)

 Active: active (running) since Sun 2021-02-28 17:43:31 CET;
7s ago

 Docs: man:firewalld(1)

Main PID: 1518 (firewalld)

 Tasks: 2 (limit: 8177)

 Memory: 23.3M

 CGroup: /system.slice/firewalld.service

Enabling firewalld in the system and reviewing the default zones 271

 └─1518 /usr/libexec/platform-python -s /usr/sbin/
firewalld --nofork –nopid

Let's check that firewalld is running:

[root@rhel8 ~]# firewall-cmd --state

running

To fully disable the service, we will need to run the following command:

[root@rhel8 ~]# systemctl disable firewalld

Removed /etc/systemd/system/multi-user.target.wants/firewalld.
service.

Removed /etc/systemd/system/dbus-org.fedoraproject.FirewallD1.
service.

Let's see how the service is disabled but still running:

[root@rhel8 ~]# systemctl status firewalld -n0

 firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded (/usr/lib/systemd/system/firewalld.service;
disabled; vendor preset: enabled)

 Active: active (running) since Sun 2021-02-28 17:43:31 CET;
8min ago

 Docs: man:firewalld(1)

Main PID: 1518 (firewalld)

 Tasks: 2 (limit: 8177)

 Memory: 24.1M

 CGroup: /system.slice/firewalld.service

 └─1518 /usr/libexec/platform-python -s /usr/sbin/
firewalld --nofork –nopid

When you're managing services with systemd using systemctl, you need to understand
that enabling and disabling the service only affects how it behaves during the startup
sequence, while starting and stopping only affects the current status of the service.

Tip
To disable and stop in one command, we can use the --now option; for
example, systemctl disable firewalld --now. This option
can also be used to enable and start; for example, systemctl enable
firewalld --now.

272 Securing Network Connectivity with firewalld

Let's reenable the service again and ensure it's running:

[root@rhel8 ~]# systemctl enable firewalld --now

Created symlink /etc/systemd/system/dbus-org.fedoraproject.
FirewallD1.service → /usr/lib/systemd/system/firewalld.service.

Created symlink /etc/systemd/system/multi-user.target.wants/
firewalld.service → /usr/lib/systemd/system/firewalld.service.

[root@rhel8 ~]# firewall-cmd --state

running

Now that we know how to start and stop, as well as enable and disable, the firewalld
service, let's understand the configuration structure and learn how to interact with it by
reviewing the default configuration.

Reviewing the different configuration items under
firewalld
firewalld manages three concepts in its configuration:

• Zones: A firewalld zone is a group of rules that can be activated all together and
assigned to a network interface. It includes different services and rules but also
settings that alter the behavior of network traffic filtering.

• Services: A firewalld service is a port or group of ports that must be configured
together for a specific system service (hence the name) to work properly.

• Ports: A firewalld port includes a port number (that is, 80) and a type of traffic
(that is, TCP) and can be used to manually enable network traffic to a custom
system service.

firewalld manages two types of configurations:

• Running: The rules that have currently been applied to the system.

• Permanent: The rules that have been saved and will be loaded when the service starts.

Important Note
The concept behind running versus permanent is to try network filtering
rules in a running system and, once ensured that they work well, save them
as permanent ones. Remember to check that the rules you want in the system
have been saved properly.

Enabling firewalld in the system and reviewing the default zones 273

Now, let's check out our system and see which zones are available:

[root@rhel8 ~]# firewall-cmd --get-zones

block dmz drop external home internal nm-shared public trusted
work

Let's also check which zone is applied by default:

[root@rhel8 ~]# firewall-cmd --get-default-zone

public

Let's review the zones that are available in firewalld by looking at the following table:

274 Securing Network Connectivity with firewalld

Important Note
You can always access the information about these zones, and more, by
accessing the firewalld.zones manual pages available in the system
by running man firewalld.zones. A good exercise is to review the
aforementioned manual page.

The aforementioned services will be reviewed in more detail in the next section. For now,
let's learn how to manage zones.

Let's change the default zone to home:

[root@rhel8 ~]# firewall-cmd --set-default-zone=home

success

[root@rhel8 ~]# firewall-cmd --get-default-zone

home

We can establish a public zone as the default and assign a home zone to our local
network:

[root@rhel8 ~]# firewall-cmd --set-default-zone=public

success

[root@rhel8 ~]# firewall-cmd --permanent --zone=internal \

--add-source=192.168.122.0/24

success

[root@rhel8 ~]# firewall-cmd --reload

success

[root@rhel8 ~]# firewall-cmd --get-active-zones

internal

 sources: 192.168.122.0/24

public

 interfaces: enp1s0

This configuration allows us to publish services to the local network only, which is defined
as 192.168.122.0/24 and assigned to the internal zone. Any service or port that's
assigned to the internal zone from now on will be only accessible if it's accessed from
an IP address in the internal network. We avoid allowing access to these services from
other networks.

Also, to enable services to be accessed from any other network, we only need to assign
them to the public zone.

Enabling firewalld in the system and reviewing the default zones 275

Let's review the main options that are used and a couple more that could be useful:

• --get-zones: Lists the zones that have been configured in the system.

• --get-default-zone: Shows the zone that's configured by default.

• --set-default-zone=<zone>: Sets the default zone. This is applied to the
running and permanent configuration

• --get-active-zones: Shows the zones being used what networks/interfaces
they apply to.

• --zone=<zone>: Used to specify a zone for another option.

• --permanent: Used to apply the changes to the saved configuration. When you
use this option, the changes will not be applied to the running configuration.

• --reload: Loads the saved configuration as running.

• --add-source=<network>: Adds a source network, in CIDR format, to a
specified zone. The default zone is used if one hasn't been specified. Changes are
applied to the running config; use --permanent to save them.

• --remove-source=<network>: Removes a source network, in CIDR format,
to a specified zone. The default zone is used if one hasn't been specified. Changes
are applied to the running config; use --permanent to save them.

• --add-interface=<interface>: Routes traffic from an interface to a zone.
The default zone is used if one hasn't been specified.

• --change-interface=<interface>: Changes the traffic that's being routed
to an interface to a zone. The default zone used if one hasn't been specified.

Although this list of options may be very helpful, the full list of options is available on
the manual page for firewall-cmd. You should review this page as you will be using it
often when you're reconfiguring your firewall options.

Tip
To view the firewall-cmd manual page, simply run man firewall-
cmd.

Now that we are aware on what zones are and how they are selected, let's learn how to
manage services and ports.

276 Securing Network Connectivity with firewalld

Enabling and managing services and ports
As we mentioned in the previous section, a firewalld service is a port or group of ports
that are configured together for a specific system service (hence the name) to work
properly. There are a set of services that are enabled by default in one or many of the
available firewalld zones. Let's start by reviewing them:

• ssh: Provides access to the Secure Shell (SSH) service in the system, which also
enables remote management. The traffic that's accepted goes to port 22 and is of
the TCP type.

• mdns: Provides access to the Multicast DNS (MDNS) service that's used to
announce services in the local network. Traffic is accepted to multicast address
224.0.0.251 (IPv4) or ff02::fb (IPv6), on port 5353, and is of the UDP type.

• ipp-client: Provides access to the Internet Printing Protocol (IPP) client, which
goes to port 631 and uses the UDP protocol.

• samba-client: This is a file and print sharing client that's compatible with Microsoft
Windows. It uses ports 137 and 138 and is of the UDP type.

• dhcpv6-client: A Dynamic Host Configuration Protocol (DHCP) for IPv6. It's
destination is the special network fe80::/64, its port is 546, and it's of the UDP
type.

• cockpit: The web management interface for RHEL. Its destination is port 9090 and
it's of the TCP type.

As you can see, a firewalld service can specify more than one port, a target address, and
even a target network.

Now, let's take a look at the services that have been configured in our firewall:

[root@rhel8 ~]# firewall-cmd --list-services

cockpit dhcpv6-client ssh

[root@rhel8 ~]# firewall-cmd --list-services --zone=internal

cockpit dhcpv6-client mdns samba-client ssh

Please note that when you're not establishing a zone, the services that are displayed are
the related to the default zone – in this case, public. However, consider that we have
configured more than one zone.

Enabling and managing services and ports 277

Now, let's install a web server – in this case, the Apache httpd server:

[root@rhel8 ~]# dnf install httpd -y

Updating Subscription Management repositories.

Last metadata expiration check: 0:25:05 ago on lun 01 mar 2021
17:02:09 CET.

Dependencies resolved.

===
=====================================

Package Arch Version
Repository Size

===
=====================================

Installing:

httpd x86_64 2.4.37-30.module+el8.3.0+7001+0766b9e7
rhel-8-for-x86_64-appstream-rpms 1.4 M

Installing dependencies:

apr x86_64 1.6.3-11.el8
rhel-8-for-x86_64-appstream-rpms 125 k

[omitted]

Installed:

 apr-1.6.3-11.el8.x86_64

 apr-util-1.6.1-6.el8.x86_64

 apr-util-bdb-1.6.1-6.el8.x86_64

 apr-util-openssl-1.6.1-6.el8.x86_64

 httpd-2.4.37-30.module+el8.3.0+7001+0766b9e7.x86_64

 httpd-filesystem-2.4.37-30.module+el8.3.0+7001+0766b9e7.
noarch

 httpd-tools-2.4.37-30.module+el8.3.0+7001+0766b9e7.x86_64

 mailcap-2.1.48-3.el8.noarch

 mod_http2-1.15.7-2.module+el8.3.0+7670+8bf57d29.x86_64

 redhat-logos-httpd-81.1-1.el8.noarch

Complete!

278 Securing Network Connectivity with firewalld

Let's enable and start the httpd service:

[root@rhel8 ~]# systemctl enable httpd --now

Created symlink /etc/systemd/system/multi-user.target.wants/
httpd.service → /usr/lib/systemd/system/httpd.service.

[root@rhel8 ~]# systemctl status httpd -n0

● httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service;
enabled; vendor preset: disabled)

 Active: active (running) since Mon 2021-03-01 17:31:57 CET;
8s ago

 Docs: man:httpd.service(8)

Main PID: 2413 (httpd)

 Status: "Started, listening on: port 80"

 Tasks: 213 (limit: 8177)

 Memory: 25.0M

 CGroup: /system.slice/httpd.service

 ├─2413 /usr/sbin/httpd -DFOREGROUND

 ├─2414 /usr/sbin/httpd -DFOREGROUND

 ├─2415 /usr/sbin/httpd -DFOREGROUND

 ├─2416 /usr/sbin/httpd -DFOREGROUND

 └─2417 /usr/sbin/httpd -DFOREGROUND

Now, let's check that the service is listening on all the interfaces:

[root@rhel8 ~]# ss -a -A "tcp" | grep http

LISTEN 0 128 *:http
:

Optionally, we can check if the port is open by using an external machine (if we have one):

[root@external:~]# nmap 192.168.122.8

Starting Nmap 7.80 (https://nmap.org) at 2021-03-01 17:45 CET

Nmap scan report for rhel.redhat.lan (192.168.122.8)

Host is up (0.00032s latency).

Not shown: 998 filtered ports

PORT STATE SERVICE

22/tcp open ssh

9090/tcp closed zeus-admin

Enabling and managing services and ports 279

MAC Address: 52:54:00:E6:B4:A4 (QEMU virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 5.15 seconds

Now, we can enable the http service on the firewall:

[root@rhel8 ~]# firewall-cmd --add-service http \

--zone=public --permanent

success

[root@rhel8 ~]# firewall-cmd --add-service http \

--zone=internal --permanent

success

[root@rhel8 ~]# firewall-cmd --reload

success

[root@rhel8 ~]# firewall-cmd --list-services

cockpit dhcpv6-client http ssh

[root@rhel8 ~]# firewall-cmd --list-services --zone=internal

cockpit dhcpv6-client http mdns samba-client ssh

With that, the service has been enabled and the port is open. We can verify this from an
external machine, like so (this is optional):

[root@external:~]# nmap 192.168.122.8

Starting Nmap 7.80 (https://nmap.org) at 2021-03-01 17:50 CET

Nmap scan report for rhel.redhat.lan (192.168.122.8)

Host is up (0.00032s latency).

Not shown: 997 filtered ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

9090/tcp closed zeus-admin

MAC Address: 52:54:00:E6:B4:A4 (QEMU virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 5.18 seconds

280 Securing Network Connectivity with firewalld

We can see the port 80 open now. We can also retrieve the main page from the web server
and show the first line:

[root@external:~]# curl -s http://192.168.122.8 | head -n 1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.
w3.org/TR/xhtml11/DTD/xhtml11.dtd">

Important Note
The definitions of the services in firewalld are kept in independent files in the
/usr/lib/firewalld/services directory. If you need to out the
details of a service, you can go there and inspect the file and its definition.

Now, let's try to remove the service from the public network, since this will be an
internal service:

[root@rhel8 ~]# firewall-cmd --list-services --zone=public

cockpit dhcpv6-client http ssh

[root@rhel8 ~]# firewall-cmd --remove-service http \

--zone=public --permanent

success

[root@rhel8 ~]# firewall-cmd --reload

success

[root@rhel8 ~]# firewall-cmd --list-services --zone=public

cockpit dhcpv6-client ssh

Let's assume we didn't have the service definition and we still wanted to open port 80 on
TCP in the public interface:

[root@rhel8 ~]# firewall-cmd --list-ports --zone=public

[root@rhel8 ~]# firewall-cmd --add-port 80/tcp --zone=public
--permanent

success

[root@rhel8 ~]# firewall-cmd --reload

success

[root@rhel8 ~]# firewall-cmd --list-ports --zone=public

80/tcp

Enabling and managing services and ports 281

We can review the ports and services in one go, like so:

[root@rhel8 ~]# firewall-cmd --list-all --zone=public

public (active)

 target: default

 icmp-block-inversion: no

 interfaces: enp1s0

 sources:

 services: cockpit dhcpv6-client ssh

 ports: 80/tcp

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

Now, we can remove the port:

[root@rhel8 ~]# firewall-cmd --list-ports --zone=public

80/tcp

[root@rhel8 ~]# firewall-cmd --remove-port 80/tcp --zone=public
--permanent

success

[root@rhel8 ~]# firewall-cmd --reload

success

[root@rhel8 ~]# firewall-cmd --list-ports --zone=public

[root@rhel8 ~]#

With this, we know how to add and remove services and ports to/from a firewall and
check their statuses. Let's review the options that we can use for firewall-cmd to do so:

• --zone=<zone>: Used to specify a zone. When no zone is specified, the default
one is used.

• --list-services: Displays a list of services for the specified zone.

• --add-service: Adds a service to the specified zone.

282 Securing Network Connectivity with firewalld

• --remove-service: Removes a service from the specified zone.

• --list-ports: Lists the open ports in the specified zone.

• --add-port: Adds a port to the specified zone.

• --remove-port: Removes a port from the specified zone.

• --list-all: Lists the ports, services and all configuration items associated with
the specified zone.

• --permanent: Rules will be applied to the saved configuration instead of the
running one.

• --reload: Reloads the rules from the saved configuration.

Now that we know how to assign services and ports to different zones in the firewall, let's
take a look at how they are defined.

Creating and using service definitions for
firewalld
Service definitions for firewalld are stored in the /usr/lib/firewalld/services
directory. Let's take a look at a simple service, such as the ssh service stored in the
ssh.xml file, which has the following content:

<?xml version="1.0" encoding="utf-8"?>

<service>

 <short>SSH</short>

 <description>Secure Shell (SSH) is a protocol for logging
into and executing commands on remote machines. It provides
secure encrypted communications. If you plan on accessing your
machine remotely via SSH over a firewalled interface, enable
this option. You need the openssh-server package installed for
this option to be useful.</description>

 <port protocol="tcp" port="22"/>

</service>

Here, we can see that we only need an XML file with three sections to describe a
basic service:

• short: The short name for the service

• description: A long description of what the service does

• port: The port to be opened for this service

Creating and using service definitions for firewalld 283

Let's say we want to install an Oracle database in our server. We must have the 1521 port
open, and it must be of the TCP type. Let's create the /etc/firewalld/services/
oracledb.xml file with the following content:

<?xml version="1.0" encoding="utf-8"?>

<service>

 <short>OracleDB</short>

 <description>Oracle Database firewalld service. It allows
connections to the Oracle Database service. You will need to
deploy Oracle Database in this machine and enable it for this
option to be useful.</description>

 <port protocol="tcp" port="1521"/>

</service>

We can enable it by using the following code:

[root@rhel8 ~]# firewall-cmd --reload

success

[root@rhel8 ~]# firewall-cmd --add-service oracledb

success

[root@rhel8 ~]# firewall-cmd --list-services

cockpit dhcpv6-client oracledb ssh

Now, it's ready to be used in the running configuration. We can add it to the permanent
configuration like so:

[root@rhel8 ~]# firewall-cmd --add-service oracledb --permanent

success

Tip
It would be infrequent to have to open more complex services. In any case, the
manual page that describes how to create firewalld services is firewalld.
service and can be opened by running man firewalld.service.

With this, we have an easy way to standardize the services to be opened in the firewalls of
our systems. We can includes these files in our configuration repositories so that they can
be shared with the whole team.

Now that we can create a service, let's take a look at an easier way to configure the firewall
in RHEL; that is, using the web interface.

284 Securing Network Connectivity with firewalld

Configuring firewalld with the web interface
To use the RHEL web administrative interface of RHEL8, we must install it. The package
and service running it are both called cockpit. We can install it by running the
following code:

[root@rhel8 ~]# dnf install cockpit -y

Updating Subscription Management repositories.

[omitted]

Installing:

cockpit x86_64 224.2-1.el8
rhel-8-for-x86_64-baseos-rpms 74 k

[omitted]

 cockpit-224.2-1.el8.x86_64

 cockpit-bridge-224.2-1.el8.x86_64

 cockpit-packagekit-224.2-1.el8.noarch

 cockpit-system-224.2-1.el8.noarch

 cockpit-ws-224.2-1.el8.x86_64

Complete!

Now, let's enable it:

[root@rhel8 ~]# systemctl enable --now cockpit.socket

Created symlink /etc/systemd/system/sockets.target.wants/
cockpit.socket → /usr/lib/systemd/system/cockpit.socket.

Tip
Cockpit uses a clever trick to save resources. The interface is stopped but
a socket is enabled to listen on port 9090. When it receives a connection,
cockpit is started. This way, it will only consume resources in your machine
when it is in use.

Now, let's learn how to add the DNS service to the public zone.

Let's access cockpit by pointing a browser to the IP of the machine and port 9090 – in
this case, https://192.168.122.8:9090. Let's log in as root with the password
that was provided during installation:

Configuring firewalld with the web interface 285

Figure 9.2 – Cockpit login screen

Now, we can access the cockpit dashboard, which contains information about the system:

Figure 9.3 – Cockpit initial screen and dashboard

286 Securing Network Connectivity with firewalld

Now, let's go to Networking and then click on Firewall, as shown in the following
screenshot:

Figure 9.4 – Cockpit accessing the firewall configuration

At this point, we can click on Add Services in the public zone section to modify it and
add one more service:

Configuring firewalld with the web interface 287

Figure 9.5 – Cockpit firewall configuration interface

The steps to add the dns service to the public zone section of the firewall are simple:

1. Click on Services.

2. Filter the services by typing dns into it.

3. Select the dns service with TCP:53 and UDP:53.

288 Securing Network Connectivity with firewalld

4. Click on Add Services:

Figure 9.6 – Cockpit firewall – adding a service to a public zone

Once you've done this, the service will be added to the running and permanent
configurations. It will be displayed on the public zone section of cockpit:

Figure 9.7 – Cockpit firewall – the result of a service DNS being added to a public zone

Summary 289

With this, we know how to make modifications to the firewall in RHEL8 using a web
interface. We'll leave it as an exercise for you to remove and redo the configuration we did
with the command line at the beginning of this chapter, but with the web interface instead.

Summary
Security is a very important part of system administration. Disabling the security
measures on a system just because it's in an isolated network goes against the defense
in depth principle, so this is heavily discouraged.

In this chapter, we saw how simple and easy it is to configure a firewall using firewalld,
in RHEL8, thus providing us with another tool to manage, filter, and secure the network
connections in our system. We also worked with cockpit, a web administration tool that
makes this task more visual and easier to perform.

We can now take control of the network connectivity of our systems, provide access to
the services we want to provide, and add a layer of security to them. We also know how
to manage zones and how to use them, depending on our system's use case. We are now
ready to define our own custom services so that we can always filter network connectivity
for them. We can now also deploy more secure systems by using the firewall included
in RHEL.

Now, we are ready to learn more about security in RHEL, which is what we will do in the
next chapter. Remember, security is a team sport, and the system administrators are key.

10
Keeping Your

System Hardened
with SELinux

In this chapter, we are going to familiarize ourselves with SELinux. SELinux has been
around for a while, but a lack of understanding regarding how it works leads many people
to suggest disabling it.

This is not something we want, as it would be similar to telling a user to forego a password
because it is hard to remember.

We will introduce the origins of SELinux, and what the default modes and policies are.
Then, we will understand how SELinux applies to our files, folders, and processes, and
how to restore them to the system defaults.

Additionally, we will explore how to fine-tune the policies using Booleans and
troubleshoot common issues with the help of the following sections:

• SELinux usage in enforcing and permissive modes

• Reviewing the SELinux context for files and processes

• Tweaking the policy with semanage

292 Keeping Your System Hardened with SELinux

• Restoring changed file contexts to the default policy

• Using SELinux Boolean settings to enable services

• SELinux troubleshooting and common fixes

By the end, we will better understand how to use SELinux properly and how to benefit
from the additional protection that it provides to our system.

During the chapter, there will be detailed explanations of how SELinux works to aid our
understanding of the way it operates, even if using it, in reality, is a lot simpler. We will also
use these examples to illustrate cases where SELinux prevents attacks or misconfigurations.

Let's get hands-on with SELinux!

Technical requirements
It is possible to continue the practice of using the virtual machine created at the beginning
of this book in Chapter 1, Installing RHEL8. Any additional packages required for this
chapter will be indicated alongside the text and can be downloaded from https://
github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-
Administration.

SELinux usage in enforcing and permissive
modes
Security-Enhanced Linux (SELinux) was introduced in December of 2000 via the
Linux-Kernel mailing list as a product started by the National Security Agency (NSA) to
improve the security of the operating system by means of mandatory access controls and
role-based access control, as opposed to the traditional discretionary access controls that
were available in the system.

Before SELinux was introduced in the Linux kernel, discussions took place regarding
the proper way to do it, and finally, a kernel framework named Linux Security Modules
(LSM) was introduced and SELinux was implemented using it so that other approaches
could use LSM, too, and not just SELinux.

SELinux provides security improvements to Linux as access to files made by users,
processes, or even other resources can be controlled in a very granular way.

https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration

SELinux usage in enforcing and permissive modes 293

Let's take one example to make it clearer when SELinux comes into play: when a web
server is serving pages from users, it reads files from the user's home directory inside the
public_html or www folders (the most standard ones). Being able to read files from the
user's home directory can reveal the contents in the event that the web server process is
hijacked by an attacker, and this precise moment is when SELinux comes into play, as it
will automatically block access to files that should not be accessible for a web server.

SELinux then confines the processes and services to only perform what they are supposed
to, and only using the resources that are authorized. This is a really important feature
that keeps things under control, even in the event of software bugs that may lead to
unexpected files or resources being accessed. SELinux will block it if it has not been
authorized by the active policy.

Important tip
SELinux permissions always arise following regular Discretionary Access
Controls (DAC) if a user has no access to a file because of improper file
permissions. SELinux has nothing to do there.

By default, the system installation should deploy it in enforcing mode and using the
targeted policy. It is possible to check your current system status via execution of
sestatus, as shown in the following screenshot:

Figure 10.1 – Output of sestatus for our system

As we can see, our system has SELinux enabled, using the targeted policy, and is
currently enforcing. Let's learn about what this means.

SELinux works by defining a policy, that is, a set of predefined rules for granting or
denying access to resources. The ones available can be listed via dnf list selinux-
policy-* in your system, with targeted and mls being the most common ones.

294 Keeping Your System Hardened with SELinux

We will focus on the targeted policy, but to make an analogy regarding mls, the
Multi-Level Security (MLS) policy, it is about allowing users to interact based on their
security clearance, similar to what we can see in movies where someone has clearance
to know some information, but not other people. How does this apply to a system? Well,
the root user might have access to perform certain actions but not others, and if the
user became root via su or sudo, they would still have the original label attached so
permissions could be reduced if the root login happened over a local terminal or a remote
connection and sudo execution.

The mode, listed as enforcing, means that the policy is currently being enforced,
which is the opposite of permissive. We can consider this as being active and offering
protection, while permissive entails being active but only providing a warning, and not
offering protection.

Why do we have permissive instead of just disabling it? This question is a bit tricky,
so let's explain a bit more about how it works to provide a better answer.

SELinux uses extended attributes in the filesystem to store the labels. Each time a file is
created, a label is assigned based on the policy, but this only happens while SELinux is
active, so this makes SELinux disabled different from SELinux permissive, because
the first one will not create those labels for the new files created.

Additionally, SELinux in permissive mode allows us to see the errors that will be raised
if a program has not received a good policy for it or if a file has no proper labels.

It is really easy to switch from enforcing to permissive and vice versa and always
via the setenforce command, while we can use getenforce to retrieve the current
status, as we can see in the following screenshot:

Figure 10.2 – Changing SELinux enforcing status

SELinux usage in enforcing and permissive modes 295

It might look basic, but it really is as easy as that, a matter of running a command.
However, if the status was disabled, it would be a completely different story.

SELinux status is configured by editing the /etc/selinux/config file, but changes only
take effect after a system reboot; that is, we can switch from enforcing to permissive
in real time or from permissive to enforcing, but when changing the policy from
disabling to enabling, or vice versa, SELinux will require us to reboot the system.

The general advice is to leave SELinux in enforcing mode, but if, for whatever reason, it
was disabled, the recommendation is to switch SELinux to permissive as the first step
when moving from disabled. This will allow us to check that the system actually works
without being locked out of it because of a kernel blocking access to files and resources.

Note
During the reboot after switching from disabled to permissive or
enforcing, the system will force a relabeling of the filesystem based on
the policy. This is accomplished by the creation of a file in the root folder of
our filesystem named /.autorelabel, which will trigger the process and
reboot again afterward.

But why opt for disabling instead of permissive? For example, some software might
require to set it in disabled mode even if later, it can be re-enabled for operations or
for other reasons, but bear in mind that SELinux is a security feature that protects your
system and should be kept.

Keep in mind that SELinux uses Access Vector Cache (AVC) messages that are logged to
the /var/log/audit/audit.log file as well as system journals, and yes, it's a cache,
so rules are not checked as frequently so as to speed up operations.

Let's go back to the idea of the filesystem storing labels and let's jump into the next section
to see how they relate to processes, files, and the RBAC provided by SELinux.

296 Keeping Your System Hardened with SELinux

Reviewing the SELinux context for files and
processes
SELinux uses labels, also referred to as the security context attached to each file, and
defines several aspects. Let's check one example in our home folder with the ls –l
command, but with a special modifier, Z, that will show SELinux attributes as well,
as we can see in the following screenshot:

Figure 10.3 – File listing showing SELinux attributes

Let's focus on the output for one of the files:

-rw-r--r--. 1 root unconfined_u:object_r:admin_home_t:s0
540 Mar 6 19:33 term.sh

The SELinux attributes are the ones listed as unconfined_u:object_r:admin_
home_t:s0:

• The first part is the user mapping: unconfined_u

• The second part is the role: object_r

• The third part is the type: admin_home_t

• The fourth part is used for the level: s0 in multi-level security and multi-category
security

Reviewing the SELinux context for files and processes 297

Something similar happens with processes, and similarly, we can append Z to many of
the common commands to get the contexts, for example, with ps Z, as we can see in the
following screenshot:

Figure 10.4 – ps output with SELinux contexts

Again, let's examine one of the lines:

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 2287661
pts/0 S+ 0:00 tmux

Again, we can see the same approach: user, role, type, and level for multi-level security
and multi-category security.

Now that we've introduced what it looks like, let's focus on how it works in the targeted
policy.

The targeted policy allows everything to run as if SELinux was not enabled in the system,
except for the services targeted by it. This makes a good compromise between security
and usability.

During development of the policy, new services are added, while others are refined, and
many of the most common services have policies written for protecting them.

SELinux also features something named transitions. A transition allows one process
started by a user, with a binary with some specific role, to transition via the execution
into some other role, which is used later to define what the permissions are for it.

As you might imagine, our user also has a SELinux context, and similarly, we can use the
id -Z command for checking it:

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

298 Keeping Your System Hardened with SELinux

So, going back to the first example, Apache Web Server is provided by the httpd package,
which can be installed via dnf –y install httpd. Once installed, let's start it with
systemctl start httpd and enable it with systemctl enable httpd, and
then open the firewall with firewall-cmd --add-service=http and firewall-
cmd --add-service=https, as we've done with other services in previous chapters.

Previous commands can be found in the following script: https://github.com/
PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/
blob/main/chapter-10-selinux/apache.sh.

Let's see how all that comes into play in the following screenshot:

Figure 10.5 – Web server SELinux contexts

Here, we can see how the executable on disk has the context httpd_exec_t, the process
is httpd_t, and the files/folder served by it is httpd_sys_content_t, and it works!

Let's now create an index.htm file in our home folder and move it to the Apache Web
Root folder as follows:

echo '<html><head><title>Our test</title></head><body>This is
our test html</body></html>' > index.htm

cp index.htm /var/www/html/index2.htm

mv index.htm /var/www/html/index1.htm

https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-10-selinux/apache.sh
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-10-selinux/apache.sh
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-10-selinux/apache.sh

Reviewing the SELinux context for files and processes 299

Let's see what happens when we try to access the files as shown in the following screenshot:

Figure 10.6 – Apache behavior with the generated files

As we can see, each file has one SELinux context, but on top of that, Apache is denying
access to the one we moved (index1.htm), but showing the contents for the one we
copied (index2.htm).

What has happened here? We copied one file and move the other, out of the same source,
but they got two different SELinux contexts.

Let's extend the test as shown in the following screenshot:

Figure 10.7 – Retrying with SELinux in permissive mode

300 Keeping Your System Hardened with SELinux

As we can see in the preceding screenshot, we are now able to access file contents, so you
could say "What is wrong with SELinux that does not allow my site to work?", but the right
way to express it would be "Look how SELinux has protected us from disclosing a personal
file on a website".

If, instead of directly moving a file into the Apache's DocumentRoot (/var/www/html),
it was an attacker trying to reach our home folder files, SELinux would have denied those
accesses by default. The httpd_t process cannot access the admin_home_t context.

A similar thing happens when we try to get Apache or any other service under the
targeted policy to listen on a port that is not the one configured by default, and the best
way to get familiar with what we can or cannot do is to learn about the semanage utility.

Using semanage, we can list, edit, add, or delete the different values in the policy, and
even export and import our customizations, so let's use it to learn a bit more about it
using our example with httpd.

Let's learn about semanage in the following section.

Tweaking the policy with semanage
As we introduced earlier, the targeted policy contains some configurations that are
enforced for the services it has defined, allowing the protection of those services while
not interfering with the ones it does not know about.

Still, sometimes we need to tweak a number of settings, such as allowing http or the ssh
daemon to listen on alternate ports or accessing some other file types, but without losing
the additional layer of protection provided by SELinux.

First, let's ensure that policycoreutils and policycoreutils-python-utils
are installed in our system with dnf –y install policycoreutils-python-
utils policycoreutils as they provide the tools we will use in this and the next
sections of this chapter.

Let's learn with the help of an example. Let's see which ports httpd_t can access with
semanage port -l|grep http:

http_cache_port_t tcp 8080, 8118, 8123,
10001-10010

http_cache_port_t udp 3130

http_port_t tcp 80, 81, 443, 488, 8008,
8009, 8443, 9000

Tweaking the policy with semanage 301

As we can see, http_port_t, used by Apache Daemon, is allowed, by default, to use the
ports 80, 81, 443, 488, 8008, 9009, 8443, and 9000 via tcp.

That means that if we want to run Apache on any of those ports, no changes to policy will
be required.

If we repeat the command but for ssh, we only see port 22 opened (executing semanage
port -l|grep ssh):

ssh_port_t tcp 22

For example, we might want to add another port, let's say 2222, to the list of possible
ports, so that we hide the standard one being tested by port scanners. We will be able to
do it via semanage port -a -p tcp -t ssh_port_t 2222 and then validate
with the prior command semanage port –l|grep ssh, which now shows the
following:

ssh_port_t tcp 2222, 22

As we can see, port 2222 has been added to the list of available ports for the
ssh_port_t type, and that enables the ssh daemon to start listening on it (this, of
course, requires additional configuration for the ssh daemon configuration and to the
firewall before we get a working service).

In the same way, for example, some web services require writing to specific folders
for storing configurations, but by default, the context on /var/www/html is
httpd_sys_content_t, which does not allow writing to disk.

We can check the available file contexts with semanage fcontext –l in a similar
way to what we did with the ports, but the list of files is huge, as a web server might use
common locations such as logs and cgi-bin, as well as filesystem files for certificates,
configuration, and home directories, and extensions such as PHP and others. When you
check the contexts with the preceding command, pay attention to the different types that
are available and what the structure is for one listing, for example:

/var/www/html(/.*)?/wp-content(/.*)? all files
system_u:object_r:httpd_sys_rw_content_t:s0

As we can see, there is a regular expression that matches the files in the wp-content
folder inside the /var/www/html path applying to all files and sets a SELinux context
of httpd_sys_rw_content_t, which allows read-write access. This folder is used
by the popular blog software WordPress, so the policy is already prepared for covering
some of the most popular services, folders, and requirements without requiring system
administrators to write them ad hoc.

302 Keeping Your System Hardened with SELinux

When invoking semanage, it will output that it has some subcommands we can use, such
as the following:

• import: This allows the importing of local modifications.

• export: This allows the exporting of local changes.

• login: This allows the login and SELinux user associations to be managed.

• user: This manages SELinux users with roles and levels.

• port: This manages port definitions and types.

• ibpkey: This manages InfiniBand definitions.

• ibendport: This manages end port InfiniBand definitions.

• interface: This defines network interface definitions.

• module: This manages policy modules for SELinux.

• node: This manages definitions of network nodes.

• fcontext: This manages file context definitions.

• boolean: This manages Booleans for tweaking policies.

• permissive: This manages the enforcing mode.

• dontaudit: This manages the dontaudit rules in the policy.

For each one of the preceding commands, we can use the -h argument to list, help, and
learn about the extra arguments that can be used for each one.

For the day-to-day use case, most of the time we'll be using port and fcontext as those
will cover extending or tuning the available services that come with Red Hat Enterprise
Linux, like the example we have showcased with ssh listening on an additional port.

Important tip
Traditionally, Red Hat Certified System Administrator (RHCSA) and Red
Hat Certified Engineer (RHCE) courses used to have a reboot validation.
This meant that for each service that was installed and started, it was also
mandatory to remember to enable it to be active on the next reboot. A similar
thing happens with SELinux. If we are adding a piece of software that will stay
in our system, the best approach is to define, via semanage, regexp for
the path that will be used. When following this approach, if the filesystem is
relabeled or the context restored, the application will continue to work.

Let's see how to manually set the context for files and how to restore the defaults in the
next section.

Restoring changed file contexts to the default policy 303

Restoring changed file contexts to the default
policy
In the previous section, we mentioned how semanage enables us to perform changes
to the policy, which is the recommended way to perform changes and to persist them
for future files and folders, but that is not the only way we can perform operations.

From the command line, we can use the chcon utility to change the context for a file.
This will allow us to define the user, the role, and the type for the file we want to alter,
and similar to other filesystem utilities such as chmod or chown, we can also affect files
recursively, so it's easy to set a full folder hierarchy to the desired context.

One feature that I always found very interesting is the ability to copy the context of a file
via the --reference flag, so that the same context as the referenced file is applied to
the target one.

When we were introducing the example of httpd earlier in this chapter, we did a test
with two files, index1.htm and index2.htm, that were moved and copied to the
/var/www/html folder. To go deeper into this example, we will make additional copies
of index1.htm to demonstrate in the next screenshot the usage of chcon. Bear in mind
that creating the files directly in the /var/www/html folder will set the files to have the
proper context, so we need to create them at /root and then move them to the target
folder, as we can see in the following screenshot:

Figure 10.8 – Demonstrating chcon usage

As we can see, both the index1.htm and index3.htm files now have the proper
context, in the first case, using the reference, and in the second, defining the type to use.

304 Keeping Your System Hardened with SELinux

Of course, this is not the only method. As we indicated earlier, the recommended way for
setting context for applications is to define the regexps path via semanage, and this
empowers us to use the restorecon command to apply the right context, according to
the configuration, to the files. Let's check how it operates in the following screenshot:

Figure 10.9 – Using restorecon to restore context

As we can see, we used restorecon –vR /var/www/html/ and it automatically
changed the index3.htm file into httpd_sys_content_t, which is defined for that
folder as we saw when we were testing semanage to list the contexts. The arguments
used, v and R, make the utility report the changes (verbose) and work recursively on the
paths provided.

Let's say we have messed the system up by running chcon over the root filesystem.
What would be the way to fix it? In this case, as we mentioned earlier, we should do
the following:

• Set the operation mode to permissive to not block further access via
setenforce 0.

• Put the marker to have the filesystem relabeled via touch /.autorelabel.

• Modify the /etc/selinux/config file to set the boot mode to permissive.

• Reboot the system to let relabeling happen.

• Once the system reboots, edit /etc/selinux/config again to define the
operation mode as enforcing.

Using SELinux Boolean settings to enable services 305

By operating in this way, instead of just running restorecon -R /, we are making sure
that the system is operational and will continue to operate after reboot and a full relabel is
applied to the filesystem, so it is left ready to re-enable the enforcing mode safely.

In the next section, let's see how to tune the policy within itself, using the Booleans to
tune how it works.

Using SELinux Boolean settings to enable
services
Many services have a wide range of configuration options for many common cases, but
not always the same. For example, the http server should not access user files, but at the
same time, it's a common way of operation to enable personal websites from the www or
public_html folders in each user's home directory.

To overcome that use case and, at the same time, provide enhanced security, the SELinux
policy makes use of Booleans.

A Boolean is a tunable that can be set by the administrator that can enable or disable
conditionals in the policy code. Let's see, for example, a list of Booleans available for
httpd by executing getsebol -a|grep ^http (list reduced):

httpd_can_network_connect --> off

httpd_can_network_connect_db --> off

httpd_can_sendmail --> off

httpd_enable_homedirs --> off

httpd_use_nfs --> off

This list is a reduced subset of the Booleans available, but it does give us an idea of what
it can accomplish; for example, http, by default, cannot use the network to connect to
other hosts, or send an email (usually done in PHP scripts), or can't even access home
folders for users.

For example, if we want to enable users in a system to publish their personal web pages
from the www folder in their home directory, that is /home/user/www/, we will have to
enable the httpd_enable_homedirs Boolean by running the following command:

setsebool -P httpd_enable_homedirs=1

306 Keeping Your System Hardened with SELinux

This will tweak the policy to enable http to access the user's home directory to serve the
pages there. If, additionally, the servers will be stored on a Network FileSystem (NFS) or
Common Internet FileSystem (CIFS) mount, additional Booleans will be required. We're
still using the same targeted policy, but we've enabled the internal conditionals to permit
that the accesses are not to be blocked by SELinux.

Important tip
The –P parameter to setsebool is required to make the change permanent.
That means writing the change so that it is persisted; without it, the change will
be lost once we restart our server.

As we've seen, getsebool and setsebool allow us to query and to set the values for
the Booleans that tune the policy, but also, semanage boolean -l can help here, as
we can see in the following screenshot:

Figure 10.10 – Using semanage to manage Booleans

In the previous screenshot, we can see not only the Boolean we edited using setsebool,
but also a description of the intended behavior.

One of the benefits is that semanage, as we introduced, allows us to export and import
the local changes to the policy, so any customization made can be exported and imported
to another system to ease the setup of similar server profiles.

SELinux troubleshooting and common fixes 307

All the possible Booleans in the policy can be checked with semanage boolean –l,
similar to what we did to list the binding ports for applications in our http example.

We have learned about using Booleans to tune how the policy is adapting to some specific
but pretty common cases. Next, we will explore probably the most frequently used part
for administrators, that is, troubleshooting, but with the focus on SELinux.

SELinux troubleshooting and common fixes
One of the main problems in getting used to SELinux is that many people who are not
familiar with it blame it for things not working; however, this argument is getting a bit
outdated: SELinux was introduced in Red Hat Enterprise Linux 4, which was back in 2005.

Most of the time, issues with SELinux and our systems are related to changed file contexts
and changing ports for services, and fewer time issues with the policy itself.

First of all, there are several places where we can check for errors, but in our list we
should start with the audit log or the system messages. For example, we can start with
the /var/log/audit/audit.log file that we introduced earlier in this chapter.

Also bear in mind that SELinux Mandatory Access Control (MAC) only plays once we
have cleared access from regular Discretionary Access Controls (DAC), that is, if we've
no permission to check a file (for example, mode 400 and our user not being the owner).
In this case, it's highly unlikely that SELinux is blocking access.

Most of the time, our system will have installed the setroubleshoot-server and
setroubleshoot-plugins packages that provide several tools, including sealert,
to query the received SELinux messages and many times, also, to suggest changes.

Let's cover some of the basics that we should always validate:

• Review all the other controls (user and group ownership and permissions are
properly set).

• Do not disable SELinux.

If a program is not working properly and it was shipped with the OS, it might
be a bug and should be reported via a support case or Bugzilla at https://
bugzilla.redhat.com.

Only if a program is not working properly might it be made to run unconfined,
but leaving all remaining system services protected via the targeted policy.

https://bugzilla.redhat.com
https://bugzilla.redhat.com

308 Keeping Your System Hardened with SELinux

• Think about what was done before the error happened if this is an existing program.

Perhaps files were moved instead of copied or created upon reaching their
destination, or perhaps the ports or folders for the software were changed.

Having arrived at this point, we should check audit.log for relevant messages. For
example, as regards the example we mentioned regarding the wrong context with the
files in /var/www/html/, an example audit entry would be as follows:

type=AVC msg=audit(1617210395.481:1603680): avc:
denied { getattr } for pid=2826802 comm="httpd"
path="/var/www/html/index3.htm" dev="dm-0"
ino=101881472 scontext=system_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:admin_home_t:s0 tclass=file
permissive=0

It looks strange, but if we check the parameters, we see the path of the affected file, the
PID, the source context (scontext), and the target context (tcontext), so in brief, we
can see that httpd_t tried to access (get attributes) for a target context admin_home_t
and that was denied.

At the same time, if we're using setroubleshoot, we will get a message like this in the
system journal:

Figure 10.11 – setroubleshoot logging in the system journal

As we can see in the preceding screenshot, it already identified that one of the plugins
suggests applying the command restorecon over the file, as it's not matching the one
for the folder it's in, and even suggests the exact command to use for restoring the label.

SELinux troubleshooting and common fixes 309

Another plugin suggests generating a custom policy using the following two commands:

ausearch -c 'httpd' --raw | audit2allow -M my-httpd

semodule -X 300 -i my-httpd.pp

However, this kind of recommendation should be taken with knowledge of what is being
done, which means that the preceding commands will fix httpd_t in terms of getting
access to the home_admin_t file. We can learn about what would happen by only
running the first command, together with the audit2allow pipe.

Running ausearch –c 'httpd' --raw | audit2allow –M my-httpd creates
several files named my-httpd in the current folder, one named my-httpd.te, and
another named my-httpd.pp. The second command that we will not use installs the
modified policy, but please, don't ever do that until you have an understanding of what's
going on, as we will see in the following lines.

The interesting file for us now is the my-httpd.te one (where te means type
enforcement):

module my-httpd 1.0;

require {

 type httpd_t;

 type admin_home_t;

 class file getattr;

}

#============= httpd_t ==============

allow httpd_t admin_home_t:file getattr;

From there, we can see that it uses a requirements session for the types involved, and
later, the rule itself, which allows httpd_t access to admin_home_t files for using the
getattr function, nothing else, nothing more.

As has been said previously, will this fix our issue? It will effectively allow httpd_t to
obtain access to the index3.html file, so there will no longer be any errors, but this
comes with a significant cost. From that point, httpd_t could also read home directory
files without any complaints.

310 Keeping Your System Hardened with SELinux

Important note
I don't know how many times this fact needs to be reinforced, but think
twice before acting on a system. SELinux is a protection mechanism for
increasing the safety of your system; do not disable it, do not blindly accept
audit2allow created policies without some initial investigation and
understanding of what the issue might be and what the proposed resolution
does, as it may almost be equivalent to disabling SELinux.

If, at this point, we have installed that module, we can use semodule to do the following:

• List semodule -l.

• Install semodule -i $MODULE_NAME.

• Remove semodule –r $MODULE_NAME.

With the preceding commands, we can check or alter the current status for the policy-
loaded modules.

Going back to reviewing system logs, we may realize that something is actually failing
sometime after it began, but not from the very beginning, so using ausearch or
passing the full logs to audit2allow might not prove helpful; however, we can use
the command suggested by setroubleshootd to list them:

Mar 31 17:06:41 bender setroubleshoot[2924281]: SELinux is
preventing /usr/sbin/httpd from getattr access on the file /
var/www/html/index3.htm. For complete SELinux messages run:
sealert -l 1b4d549b-f566-409f-90eb-7a825471aca8

If we execute sealert –l <ID>, we will receive the output provided by the different
plugins to fix the issue as well as context information similar to what is shown in
Figure 10.11.

In the case of new software being deployed that has no SELinux support, we can do the
following checks the other way around in a test system:

• Set SELinux to permissive mode.

• Deploy the software.

• Analyze all the alerts received to see whether anything is unexpected.

• Contact software vendors and initiate a support case with Red Hat to work on
a policy.

Summary 311

In case we're getting locked out of our system because SELinux is enforcing and we have
badly messed the labels up, for example, by running a bad chcon command recursively
against our root folder (for example, scripting a context change depending on a variable
and that variable being empty), we still have the following ways to get out of trouble:

• Use setenforce 0 to put SELinux in permissive mode.

• Run touch /.autorelabel.

• Reboot the host so that at the next boot, SELinux restores the appropriate labels

If we are in a really bad situation and, for example, are unable to use setenforce 0 or
the system cannot even boot or perform relabeling correctly, there is still hope, but some
additional steps are required.

When a system is rebooting, we can see the list of installed kernels at the grub prompt and
use it to edit the kernel boot parameters.

Using the selinux=0 parameter, we completely disable SELinux, and this is something
we don't want, but we can use enforcing=0 to accomplish having SELinux enabled,
but in permissive mode.

Once we have our system booting into permissive mode, we can repeat the previous
procedure to get back to the previous behavior and continue debugging the situation within
the system itself with the prior indications given (checking system logs, and others).

Summary
This chapter has introduced SELinux, how it works, how we can check the processes, files,
and ports, and how to fine-tune them either by adding new options or using Booleans.
We also covered several initial troubleshooting skills that we should explore further to
enhance our knowledge and experience.

SELinux, as we've seen, is a powerful tool for keeping our system secured with an extra
layer that protects our system even from unknown issues that might come from defects
in the software itself.

We have covered how to find the SELinux context in files and processes, how those are
applied via the policy, and how to tune it so that our system is protected and still able to
provide the expected service.

Troubleshooting SELinux is a skill that will help us in adapting the software that doesn't
come with Red Hat Enterprise Linux to still perform properly.

In the next chapter, we will learn about security profiles with OpenSCAP to continue
keeping our system safe.

11
System Security

Profiles with
OpenSCAP

SCAP stands for Security Content Automation Protocol, a standardized way to check,
verify, and report vulnerability assessment and policy assessment. Red Hat Enterprise
Linux (RHEL) 8 includes the tool OpenSCAP, and profiles to audit and manage the
security in the systems. This helps ensure the systems you are managing comply with
standard security policies such as the Payment Card Industry Data Security Standard
(PCI DSS) or the Protection Profile for General Purpose Operating Systems,
or Operating System Protection Profile (OSPP) for short, as well as discovering
vulnerabilities.

RHEL 8 includes this tool to review security profiles in order to discover possible attack
vectors (misconfigurations or vulnerabilities) and can obtain guidance on how to better
harden the system. We will learn how to perform a scan on a system, and discover what
needs to be changed to prepare it, in order to ensure it is completely aligned with the
regulatory requirements. We will also learn how this tool can be used to improve the
security of a system for general use by reviewing it and applying the recommended
changes.

314 System Security Profiles with OpenSCAP

To review how to use OpenSCAP, in this chapter we will go through the following topics:

• Getting started with OpenSCAP and discovering system vulnerabilities

• Using OpenSCAP with security profiles for OSPP and PCI DSS

Getting started with OpenSCAP and
discovering system vulnerabilities
Let's get started in OpenSCAP in a practical way by first reviewing the Security
Tools software group, which has some tools that are good to know, and then proceeding
to run some scans.

Our initial step will be to get information on Security Tools:

[root@rhel8 ~]# dnf group info "Security Tools"

Updating Subscription Management repositories.

Last metadata expiration check: 0:37:16 ago on dom 14 mar 2021
16:55:55 CET.

Group: Security Tools

Description: Security tools for integrity and trust
verification.

Default Packages:

 scap-security-guide

Optional Packages:

 aide

 hmaccalc

 openscap

 openscap-engine-sce

 openscap-utils

 scap-security-guide-doc

 scap-workbench

 tpm-quote-tools

 tpm-tools

 tpm2-tools

 trousers

 udica

Getting started with OpenSCAP and discovering system vulnerabilities 315

This group includes several security tools, such as aide, to ensure file integrity in
the system; tpm-tools to manage the Trusted Platform Module (TPM) to store
encryption keys; and openscap-utils to review the security policies in the system.

We can get more information on those tools by using dnf. Let's review the one that is
more relevant for this chapter, openscap-utils:

[root@rhel8 ~]# dnf info openscap-utils

Updating Subscription Management repositories.

Last metadata expiration check: 0:03:24 ago on dom 14 mar 2021
17:38:49 CET.

Available Packages

Name : openscap-utils

Version : 1.3.3

Release : 6.el8_3

Architecture : x86_64

Size : 43 k

Source : openscap-1.3.3-6.el8_3.src.rpm

Repository : rhel-8-for-x86_64-appstream-rpms

Summary : OpenSCAP Utilities

URL : http://www.open-scap.org/

License : LGPLv2+

Description : The openscap-utils package contains command-line
tools build on top

 : of OpenSCAP library. Historically, openscap-
utils included oscap

 : tool which is now separated to openscap-scanner
sub-package.

We can see in the output of the previous command what the openscap-utils package
is about, with a brief description and a link to the main web page, which includes more
extensive information.

Tip
It would be useful to run the dnf info command for each of the tools
mentioned and visit their web pages. This way you will be able to gain a better
understanding of the capabilities these tools provide and be able to use them.

316 System Security Profiles with OpenSCAP

Let's now install openscap-utils:

[root@rhel8 ~]# dnf install openscap-utils -y

Updating Subscription Management repositories.

Last metadata expiration check: 0:04:25 ago on dom 14 mar 2021
17:38:49 CET.

Dependencies resolved.

===
=====================================

Package Arch Version
Repository Size

===
=====================================

Installing:

openscap-utils x86_64 1.3.3-6.el8_3
rhel-8-for-x86_64-appstream-rpms 43 k

Installing dependencies:

GConf2 x86_64 3.2.6-22.el8
rhel-8-for-x86_64-appstream-rpms 1.0 M

[omitted]

 rpmdevtools-8.10-8.el8.noarch

 rust-srpm-macros-5-2.el8.noarch

 zstd-1.4.4-1.el8.x86_64

Complete!

Now let's install scap-security-guide, which includes the RHEL-specific SCAP
profiles:

[root@rhel8 ~]# dnf install scap-security-guide -y

Updating Subscription Management repositories.

Last metadata expiration check: 15:06:55 ago on dom 14 mar 2021
17:38:49 CET.

Dependencies resolved.

===
=====================================

Package Arch Version
Repository Size

Getting started with OpenSCAP and discovering system vulnerabilities 317

===
=====================================

Installing:

scap-security-guide noarch 0.1.50-16.el8_3 rhel-8-
for-x86_64-appstream-rpms 7.4 M

Installing dependencies:

xml-common noarch 0.6.3-50.el8 rhel-8-
for-x86_64-baseos-rpms 39 k

[omitted]

Installed:

 scap-security-guide-0.1.50-16.el8_3.noarch
xml-common-0.6.3-50.el8.noarch

Complete!

With this package comes the SCAP Security Guides, including the one related to
vulnerabilities for RHEL 8, which is located at /usr/share/xml/scap/ssg/
content/ssg-rhel8-oval.xml. We can now run an initial scan using all the checks
included in the profile. Please note that this will include 2,323 tests and that this will be
done as an exercise to learn about possible vulnerabilities and actions to harden a system.
So, let's run it:

[root@rhel8 ~]# oscap oval eval --report \

vulnerability.html \

/usr/share/xml/scap/ssg/content/ssg-rhel8-oval.xml

Definition oval:ssg-zipl_vsyscall_argument:def:1: false

Definition oval:ssg-zipl_slub_debug_argument:def:1: false

Definition oval:ssg-zipl_page_poison_argument:def:1: false

Definition oval:ssg-zipl_bootmap_is_up_to_date:def:1: false

[omitted]

Definition oval:ssg-accounts_logon_fail_delay:def:1: false

Definition oval:ssg-accounts_have_homedir_login_defs:def:1:
true

Definition oval:ssg-account_unique_name:def:1: true

Definition oval:ssg-account_disable_post_pw_expiration:def:1:
false

Evaluation done.

318 System Security Profiles with OpenSCAP

A file called vulnerability.html will be generated with the output of the scan. The
results will look like this:

Figure 11.1 – Initial results of an OpenSCAP test scan

Let's check some of the details of the report. In the top-left corner, we will find OVAL
Results Generator Information, with the details of the run, and a summary of the results:

Figure 11.2 – OpenSCAP test scan summary

In the top-right corner, we can see OVAL Definition Generator Information with
a summary of the definitions used for checks:

Figure 11.3 – OpenSCAP test scan definitions summary

Getting started with OpenSCAP and discovering system vulnerabilities 319

Right below those tokens of information, we can see a basic summary of the system, useful
if we have a long list of scans and we want to assign this scan to the proper system:

Figure 11.4 – OpenSCAP test scan system summary

Underneath it, we have information on the generator:

Figure 11.5 – OpenSCAP test scan generator info

And finally, the results of the checks:

Figure 11.6 – OpenSCAP test scan results

320 System Security Profiles with OpenSCAP

With this test, we have run a vulnerability scan on our system, obtaining a set of results
that, depending on the usage of the system, will need to be addressed. In many cases, the
warnings received do not apply, so we need to review them carefully. This kind of exercise
shall be done carefully on production systems, taking care of having a proper backup and
snapshot of the system before proceeding to apply changes. It is recommended to run the
hardening in test environments while building the service before moving it to production
when possible.

Important note
The Red Hat Enterprise Linux System Design Guide for RHEL 8 is a great piece
of documentation to get started on system security. It is recommended to
read through it in order to extend the knowledge acquired in this chapter. It's
available at https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/8/html/system_
design_guide/index.

Let's learn more about the basics. For this scan, we have used the Red Hat security
advisories Open Vulnerability Assessment Language (OVAL) feed, as provided by
system packages. To check, we have run the OpenSCAP tool to review different security
advisories and vulnerabilities as written in OVAL.

OVAL requires that the analyzed resources are in a certain state to consider them correct.
It does so in a declarative manner, which means the end state is described and reviewed,
not how to get to it.

The Red Hat security team generates Red Hat security advisories to address the different
vulnerabilities that the system may be incurring and releases an OVAL definition for each
one of them. These are released openly and are available at https://www.redhat.
com/security/data/oval/v2/.

Now let's take a look at one example found in our report:

• ID: oval:ssg-accounts_logon_fail_delay:def:1

• Result: false

• Class: compliance

• Reference ID: [accounts_logon_fail_delay]

• Title: Ensure that FAIL_DELAY is Configured in /etc/login.
defs

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/system_design_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/system_design_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/system_design_guide/index
https://www.redhat.com/security/data/oval/v2/
https://www.redhat.com/security/data/oval/v2/

Using OpenSCAP with security profiles for OSPP and PCI DSS 321

We can check the manual page for it by running man login.defs. In it, we will find
the following:

FAIL_DELAY (number)

 Delay in seconds before being allowed another attempt after
a

 login failure.

This is the value to establish how long a user will have to wait after a failed login attempt.
It is intended to avoid brute force attacks on accounts in the system. We may take, for
example, two approaches to fix it:

• Add the FAIL_DELAY variable and value to login.defs.

• Enforce access to the system by only allowing login access using SSH keys and
not passwords.

Or even better, do both (security in depth). We could continue to review each of the
entries in the list and understand each of them to complete the hardening of the system
to avoid as much exposure as possible. This is a task that is usually run in coordination
with the security teams and is continuously being reviewed.

Now that we have run our first vulnerability scan, let's see how we can do it for
compliance in the next section.

Using OpenSCAP with security profiles for
OSPP and PCI DSS
There are several security profiles used for compliance in the industry. Two of the most
common, which we will review here, are the Operating System Protection Profile
(OSPP) and the PCI DSS.

The OSPP standard is heavily used in the public sector, serving general-purpose systems
and also as the baseline for other more restrictive environments (that is, defense
accredited systems).

PCI DSS is one of the most widely used standards in the finance sector, which also applies
to other sectors that want to provide online payments using credit cards.

322 System Security Profiles with OpenSCAP

RHEL 8 provides references to verify those profiles using OpenSCAP tools. Let's move
to the /usr/share/xml/scap/ssg/content/ directory, where they reside, and
take a look:

[root@rhel8 ~]# cd /usr/share/xml/scap/ssg/content/

[root@rhel8 content]# ls *rhel8*

ssg-rhel8-cpe-dictionary.xml

ssg-rhel8-ds-1.2.xml

ssg-rhel8-ocil.xml

ssg-rhel8-xccdf.xml

ssg-rhel8-cpe-oval.xml

ssg-rhel8-ds.xml

ssg-rhel8-oval.xml

As you can see, we have different types of descriptions that can be used with OpenSCAP.
We already know OVAL. Let's check the most important ones:

• Extensible Configuration Checklist Description Format (XCCDF): XCCDF
is used to build security checklists. It's very common for compliance testing
and scoring.

• Common Platform Enumeration (CPE): CPE helps identify systems by assigning
unique identifier names. This way, it can correlate tests and names.

• Open Checklist Interactive Language (OCIL): OCIL is part of the SCAP standard.
It is a way to aggregate other checks from different datastores.

• DataStream (DS): DS is a format that puts together several components into
a single file. It is used to distribute profiles easily.

Tip
More information on the different security descriptions and components
can be found on the OpenSCAP web page by checking the components
URL: https://www.open-scap.org/features/scap-
components/.

In this case, we will use the ssg-rhel8-ds.xml file. Let's check the information
related to it:

[root@rhel8 content]# oscap info ssg-rhel8-ds.xml

Document type: Source Data Stream

[omitted]

https://www.open-scap.org/features/scap-components/
https://www.open-scap.org/features/scap-components/

Using OpenSCAP with security profiles for OSPP and PCI DSS 323

Profiles:

Title: CIS Red Hat Enterprise Linux 8 Benchmark

Id: xccdf_org.ssgproject.content_profile_cis

Title: Unclassified Information in Non-federal Information
Systems and Organizations (NIST 800-171)

Id: xccdf_org.ssgproject.content_profile_cui

Title: Australian Cyber Security Centre (ACSC) Essential Eight

Id: xccdf_org.ssgproject.content_profile_e8

Title: Health Insurance Portability and Accountability Act
(HIPAA)

Id: xccdf_org.ssgproject.content_profile_hipaa

Title: Protection Profile for General Purpose Operating Systems

Id: xccdf_org.ssgproject.content_profile_ospp

Title: PCI-DSS v3.2.1 Control Baseline Red Hat Enterprise Linux
8

Id: xccdf_org.ssgproject.content_profile_pci-dss

Title: [DRAFT] DISA STIG for Red Hat Enterprise Linux 8

Id: xccdf_org.ssgproject.content_profile_stig

Referenced check files: ssg-rhel8-oval.xml

system: http://oval.mitre.org/XMLSchema/oval-definitions-5

ssg-rhel8-ocil.xml

system: http://scap.nist.gov/schema/ocil/2

security-data-oval-com.redhat.rhsa-RHEL8.xml

system: http://oval.mitre.org/XMLSchema/oval-definitions-5

Checks:

Ref-Id: scap_org.open-scap_cref_ssg-rhel8-oval.xml

Ref-Id: scap_org.open-scap_cref_ssg-rhel8-ocil.xml

Ref-Id: scap_org.open-scap_cref_ssg-rhel8-cpe-oval.xml

Ref-Id: scap_org.open-scap_cref_security-data-oval-com.redhat.
rhsa-RHEL8.xml

Dictionaries:

Ref-Id: scap_org.open-scap_cref_ssg-rhel8-cpe-dictionary.xml

As you can see, it includes the profiles for both OSPP and PCI DSS for RHEL 8. Let's give
them a try.

324 System Security Profiles with OpenSCAP

Scanning for OSPP compliance
We can use the --profile option for oscap to get information specific to the
OSPP profile:

[root@rhel8 content]# oscap info --profile \

ospp ssg-rhel8-ds.xml

Document type: Source Data Stream

Imported: 2020-10-12T09:41:22

Stream: scap_org.open-scap_datastream_from_xccdf_ssg-rhel8-
xccdf-1.2.xml

Generated: (null)

Version: 1.3

WARNING: Datastream component 'scap_org.open-scap_cref_
security-data-oval-com.redhat.rhsa-RHEL8.xml' points out to the
remote 'https://www.redhat.com/security/data/oval/com.redhat.
rhsa-RHEL8.xml'. Use '--fetch-remote-resources' option to
download it.

WARNING: Skipping 'https://www.redhat.com/security/data/
oval/com.redhat.rhsa-RHEL8.xml' file which is referenced from
datastream

Profile

Title: Protection Profile for General Purpose Operating Systems

Id: xccdf_org.ssgproject.content_profile_ospp

Description: This profile reflects mandatory configuration
controls identified in the NIAP Configuration Annex to the
Protection Profile for General Purpose Operating Systems
(Protection Profile Version 4.2.1). This configuration profile
is consistent with CNSSI-1253, which requires U.S. National
Security Systems to adhere to certain configuration parameters.
Accordingly, this configuration profile is suitable for use in
U.S. National Security Systems.

Using OpenSCAP with security profiles for OSPP and PCI DSS 325

We can see in the information that the OSPP profile comes described as xccdf. We can
now run oscap, indicating that we want to use that format with the xcddf option and
that the action we want to take is to evaluate the system with eval. The command will be
as follows:

[root@rhel8 content]# oscap xccdf eval \

--report ospp-report.html --profile ospp ssg-rhel8-ds.xml

[omitted]

Title Set Password Maximum Consecutive Repeating Characters

Rule xccdf_org.ssgproject.content_rule_accounts_password_
pam_maxrepeat

Ident CCE-82066-2

Result fail

Title Ensure PAM Enforces Password Requirements - Maximum
Consecutive Repeating Characters from Same Character Class

Rule xccdf_org.ssgproject.content_rule_accounts_password_
pam_maxclassrepeat

Ident CCE-81034-1

Result fail

[omitted]

Title Disable Kerberos by removing host keytab

Rule xccdf_org.ssgproject.content_rule_kerberos_disable_no_
keytab

Ident CCE-82175-1

Result pass

326 System Security Profiles with OpenSCAP

We will obtain the ospp-report.html file with the full report on the OSPP
rule results:

Figure 11.7 – OpenSCAP OSPP scan results

It will show the points that require modification to be compliant with the profile:

Figure 11.8 – OpenSCAP OSPP scan results, detail rules that require action

Using OpenSCAP with security profiles for OSPP and PCI DSS 327

We can now follow, step by step, the recommendations and fix them in order to be fully
OSPP compliant. Also, we can use this scan to harden systems that, even when they do not
need to be OSPP compliant, will be in an exposed network such as a DMZ, and we want
to have them hardened.

Important note
Red Hat provides a way to automatically apply all those changes. It is based on
the automation tool Ansible. It is provided in the form of a playbook, a set of
descriptions for Ansible that will apply all the changes required to the system.
The playbook for OSPP is located at /usr/share/scap-security-
guide/ansible/rhel8-playbook-ospp.yml.

Now that we have reviewed the system for OSPP compliance, let's move to the next target,
PCI DSS compliance.

Scanning for PCI DSS compliance
We can follow the same procedure as before, also using the --profile option for
oscap to get information specific to the PCI DSS profile:

[root@rhel8 content]# oscap info --profile pci-dss \

ssg-rhel8-ds.xml

Document type: Source Data Stream

Imported: 2020-10-12T09:41:22

Stream: scap_org.open-scap_datastream_from_xccdf_ssg-rhel8-
xccdf-1.2.xml

Generated: (null)

Version: 1.3

WARNING: Datastream component 'scap_org.open-scap_cref_
security-data-oval-com.redhat.rhsa-RHEL8.xml' points out to the
remote 'https://www.redhat.com/security/data/oval/com.redhat.
rhsa-RHEL8.xml'. Use '--fetch-remote-resources' option to
download it.

WARNING: Skipping 'https://www.redhat.com/security/data/
oval/com.redhat.rhsa-RHEL8.xml' file which is referenced from
datastream

Profile

Title: PCI-DSS v3.2.1 Control Baseline for Red Hat Enterprise
Linux 8

328 System Security Profiles with OpenSCAP

Id: xccdf_org.ssgproject.content_profile_pci-dss

Description: Ensures PCI-DSS v3.2.1 security configuration
settings are applied.

We can run oscap with the same options as in the previous section but specifying
pci-dss as the profile. It will generate the proper report:

[root@rhel8 content]# oscap xccdf eval –report \

pci-dss-report.html --profile pci-dss ssg-rhel8-ds.xml

WARNING: Datastream component 'scap_org.open-scap_cref_
security-data-oval-com.redhat.rhsa-RHEL8.xml' points out to the
remote 'https://www.redhat.com/security/data/oval/com.redhat.
rhsa-RHEL8.xml'. Use '--fetch-remote-resources' option to
download it.

WARNING: Skipping 'https://www.redhat.com/security/data/
oval/com.redhat.rhsa-RHEL8.xml' file which is referenced from
datastream

WARNING: Skipping ./security-data-oval-com.redhat.rhsa-RHEL8.
xml file which is referenced from XCCDF content

Title Ensure PAM Displays Last Logon/Access Notification

Rule xccdf_org.ssgproject.content_rule_display_login_
attempts

Ident CCE-80788-3

Result pass

[omitted]

Title Specify Additional Remote NTP Servers

Rule xccdf_org.ssgproject.content_rule_chronyd_or_ntpd_
specify_multiple_servers

Ident CCE-80764-4

Result fail

[root@rhel8 content]# ls -l pci-dss-report.html

-rw-r--r--. 1 root root 3313684 mar 21 20:16 pci-dss-report.
html

Summary 329

We can start reviewing the items in the report and start fixing them.

Important note
As in the previous section, Red Hat also provides a way to automatically apply
all those changes with Ansible. The playbook for PCI DSS is located at /usr/
share/scap-security-guide/ansible/rhel8-playbook-
pci-dss.yml.

We have seen that changing from one profile to a different one with OpenSCAP is very
easy and we can scan for as many profiles as available.

Summary
By learning the basics of OpenSCAP, we are ready to review and harden systems to make
them compliant with the regulations we need them to run under.

Now if you are requested to comply with any regulatory requisitions, you can find the
right SCAP profile for it (or build it if it doesn't exist) and ensure that your systems are
fully compliant.

Also, even when no regulatory requirements apply, the use of OpenSCAP can help you
find vulnerabilities in the system, or apply a more secure (and restrictive) configuration
to your systems in order to reduce the risks.

There are ways to extend our knowledge and skills by learning Ansible and being able
to automatically apply changes to our systems in a way that is easy to scale, as well as
Red Hat Satellite, which can help run SCAP scans to the whole IT base we are managing
even when we could be talking about thousands of systems.

Now that our security skills are improving and being consolidated, let's dive deeper
into more low-level topics such as local storage and filesystems, as described in the
next chapter.

Section 3:
Resource

Administration –
Storage, Boot Process,

Tuning, and Containers
Managing the resources of machines running RHEL is fundamental in terms of a
performant, efficient IT environment. Understanding the storage, tuning the performance
(including the configuration required to make it permanent in the boot process), and then
using containers to isolate processes and assign resources more efficiently are areas into
which a system administrator will surely step in their daily work.

The following chapters are included in this section:

• Chapter 12, Managing Local Storage and Filesystems

• Chapter 13, Flexible Storage Management with LVM

• Chapter 14, Advanced Storage Management with Stratis and VDO

• Chapter 15, Understanding the Boot Process

• Chapter 16, Kernel Tuning and Managing Performance Profiles with tuned

• Chapter 17, Managing Containers with Podman, Buildah, and Skopeo

12
Managing Local

Storage and
Filesystems

In the previous chapters, we have learned about security and system administration.
In this chapter, we will focus on the administration of resources—specifically, storage
administration.

Storage administration is an important part of keeping a system running: the system logs
can eat available space, new applications might require additional storage set up for them
(even on separate disks to improve performance), and such issues may require our action
in order to solve them.

334 Managing Local Storage and Filesystems

In this chapter, we will learn about the following topics:

• Partitioning disks (Master Boot Record (MBR) and Globally Unique Identifier
(GUID) Partition Table (GPT) disks)

• Formatting and mounting filesystems

• Setting default mounts and options in fstab

• Using network filesystems with Network File System (NFS)

This will provide us basic knowledge to build upon our storage administration skills
to keep our systems running.

Let's get hands-on!

Technical requirements
You can continue the practice using the virtual machine (VM) created at the
beginning of this book in Chapter 1, Installing RHEL8. Any additional packages required
for this chapter will be indicated alongside the text. You will also need partitioning disks
(MBR and GPT disks).

Let's start with a definition
A partition is a logical division of a storage device and it's used to logically separate the
available storage into smaller pieces.

Now, let's move on to learning a bit about the origins of storage to better understand it.

A bit of history
Storage is also related to a system's ability to use it, so let's explain a bit about the history
of personal computers (PCs), the software that allows them to boot (Basic Input/Output
System (BIOS)), and how that influenced storage administration.

It might sound a bit strange, but initial storage needs were just a small amount
of kilobytes (KB), and for the first hard drives in PCs, storage was just a few
megabytes (MB).

Technical requirements 335

PCs also come with one feature and limitation: PCs were compatible, which means
that subsequent models had compatibility with the initial International Business
Machines (IBM) PC design.

Traditional disk partitioning uses a space at the beginning of disks after the MBR that
allows four partition registers (start, end, size, partition type, active flag), called primary
partitions.

When the PC is booting, BIOS will check the partition table of the disk by running a small
program in the MBR, and then it loads the boot area of the active partition and executes it
to get the operating system booting.

The IBM PC that contained a Disk Operating System (DOS) and compatibles (MS-DOS,
DR-DOS, FreeDOS, and others) also used a filesystem named a File Allocation Table
(FAT). The FAT contained several structures based on its evolution, indicated as the
cluster addressing size (as well of some other features).

With a limit in the number of clusters, having bigger disks meant having bigger blocks, so
if a file was using just a limited amount of space, the remaining ones couldn't be used by
other files. Thus, it became more or less normal to break bigger hard drives into smaller
logical partitions so that small files would not eat up the available space because of limits.

Think about this as an agenda with a maximum number of entries, similar to a speed
dial in your phone: if you have only nine slots for the speed dial, a short number such as
calling voicemail will still count as having stored a big international number as both still
use one slot.

Some of those limitations became reduced by subsequent versions of the FAT sizing,
which in parallel increased the maximum supported disk size.

Of course, other operating systems introduced their own filesystems, but using this same
partitioning schema.

Later, a new partition type was created: the extended partition, which used one of the
four available primary partition slots and allowed extra partitions to be defined inside it,
enabling us to create logical disks to be assigned as needed.

Additionally, having several primary partitions also allowed the installation in the
same computer of different operating systems with their own dedicated space that were
completely independent of other operating systems.

336 Managing Local Storage and Filesystems

So... partitions allowed computers to have different operating systems, have a better usage
of the available storage, or even logically sorting the data by keeping it on different areas,
such as keeping operating system space separate from user data so that a user filling the
available space would not affect the computer's operation.

As we said, many of those designs came with the compatibility restriction of the original
IBM PC, so when new computers using the Extensible Firmware Interface (EFI)
appeared to overcome the limitations of traditional BIOS, a new partition table format
called GPT arrived.

Systems using GPT make use of 32-bit and 64-bit support versus the 16-bit support used
by BIOS (inherited from IBM PC compatibility), so bigger addressing can be used for the
disks, as well as extra features such as extended controllers loading.

Now, let's learn about disk partitioning in the next section.

Partitioning disks (MBR and GPT disks)
As mentioned, using disk partitions allows us to more efficiently use the space available in
our computers and servers.

Let's dig into disk partitioning by first identifying the disk to act on.

Important note
Once we have learned about what caused disks to be partitioned and the
limitations of this, we should follow one schema or another based on our
system specifications, but bear in mind that EFI requires GPT and BIOS
requires MBR, so a system supporting UEFI, but having a disk partitioned with
MBR, will boot the system into BIOS-compatible mode.

Linux uses different notation for the disks based on the way those are connected to the
system, so—for example—you can see disks as hda or sda or mmbclk0 depending on
that connection being used. Traditionally, disks connected using the Integrated Drive
Electronics (IDE) interface used to have disks named hda, hdb, and so on, while disks
using the Small Computer System Interface (SCSI) used to have disks named sda, sdb,
and so on.

We can list the available devices with fdisk –l or lsblk –fp, as we can see in the
following screenshot:

Partitioning disks (MBR and GPT disks) 337

Figure 12.1 – lsblk-fp and fdisk –l output

As we can see, our disk named /dev/sda has three partitions: sda1, sda2, and sda3,
with sda3 being a LVM volume group that has a volume named /dev/mapper/rhel-
root.

To demonstrate disk partitioning in a safe way and to make it easier for readers using
a VM for testing, we will create a fake virtual hard drive (VHD) for testing. In doing
so, we will use the truncate utility that comes with the coreutil package and the
losetup utility that comes with the util-linux package.

In order to create a VHD, we will execute the following sequence of commands as they
appear in Figure 12.2:

1. truncate –s 20G myharddrive.hdd

Note
This command creates a 20 gigabytes (GB)-sized file but this will be an
empty file, which means that the file is not really using 20 GB on our disk,
just showing that size. Unless we use it, it will not consume more disk space
(this is called a sparse file).

338 Managing Local Storage and Filesystems

2. losetup –f, which will find the next available device

3. losetup /dev/loop0 myharddrive.hdd, which will associate loop0 with
the file created

4. lsblk –fp, to validate the newly looped disk

5. fdisk –l /dev/loop0, to list the available space in the new disk

The following screenshot shows the output of the preceding sequential commands:

Figure 12.2 – Execution of the indicated commands for creating a fake hard drive

The losetup -f command finds the next available loopback device, which is a device
used for looping back accesses to a backing file. This is often used for mounting ISO files
locally, for example.

With the third command, we use the previously available loopback device to set up a loop
connection between device loop0 device and the file we created with the first command.

As we can see, in the remaining commands, the device now appears when running the
same commands, we executed in Figure 12.1, showing that we have a disk of 20 GB
available.

Partitioning disks (MBR and GPT disks) 339

Important note
Partitioning operations on disks can be dangerous and can render a system
unusable and in need of restoration or reinstallation. To reduce that chance, the
examples in this chapter will use the /dev/loop0 fake created disk and only
interact with this. Pay attention when performing this over real volumes, disks,
and so on.

Let's start creating partitions by executing fdisk /dev/loop0 on our newly created
device, as seen in the following screenshot:

Figure 12.3 – fdisk execution over /dev/loop0

As we can see in Figure 12.3, the disk doesn't contain a recognized partition table, so
a new DOS partition disk label is created, but the changes only remain in memory until
written back to disk.

Inside the fdisk command, we can use several options to create a partition. The first one
we should be aware of is m, as indicated in Figure 12.3, which shows the help functionality
and available commands.

The first thing to take into consideration is our previous explanation about UEFI, BIOS,
and so on. By default, fdisk is creating a DOS partition, but as we can see inside the
manual (m), we can create a GPT one by running the g command inside fdisk.

340 Managing Local Storage and Filesystems

One important command to remember is p, which prints the current disk layout and
partition, as defined in the next screenshot:

Figure 12.4 – fdisk creating a new partition table

As we can see, the initial disklabel type was dos and now is gpt, compatible with
EFI/UEFI.

Let's review some of the basic commands we can use, as follows:

• n: Creates a new partition

• d: Deletes a partition

• m: Shows manual page (help)

• p: Prints current layout

• x: Enters advanced mode (extra functionality intended for experts)

• q: Quits without saving

Partitioning disks (MBR and GPT disks) 341

• w: Writes changes to disk and exits

• g: Creates new GPT disk label

• o: Creates a DOS disk label

• a: In DOS mode, sets the bootable flag to one of the primary partitions

What will be the sequence for creating a new traditional disk partition layout with
a bootable partition for the operating system and another one for the user data with
half the disk size each?

This will be the sequence of commands (these are also shown in Figure 12.5):

1. o and press Enter to create a new DOS disk label

2. n and press Enter to create a new partition

3. Press Enter to accept a primary partition type

4. Press Enter to confirm use of the first partition (1)

5. Press Enter to accept initial sector

6. +10G and press Enter to indicate 10 GB in size from first sector

7. n and press Enter to create a second new partition

8. Press Enter to accept it as a primary partition type

9. Press Enter to accept the partition number (2)

10. Press Enter to accept the first sector as default proposed by fdisk

11. Press Enter to accept the end sector as default proposed by fdisk

12. a and press Enter to mark a partition as bootable

13. 1 and press Enter to mark the first partition

As you can see, most of the options accept the defaults; the only change was to specify
a partition size of +10G, meaning it should be 10 GB (the disk was 20 GB), and then
start with the second partition with the new n command, now not specifying the size as
we want to use all the remaining ones. The last step is to mark the first partition as active
for booting.

342 Managing Local Storage and Filesystems

Of course, remember what we said before: unless we execute the w command, the changes
are not written to disk, and we can use p to review them, as shown in the following
screenshot:

Figure 12.5 – Disk partition layout creation and verification before writing it back to disk

Formatting and mounting filesystems 343

To conclude this section, let's write the changes to disk with the w command and let's
move on to discuss filesystems in the next section. Before that, however, let's execute
partprobe /dev/loop0 to make the kernel update its internal view on the disk and
find the two new partitions. Without this, the /dev/loop0p1 and /dev/loop0p2
special files might not be created and will not be usable.

Note that some partition modifications will not be updated even after a partprobe
execution and might require the system to be rebooted. This is, for example, happening
in disks that have partitions in use, such as the one holding the root filesystem in our
computer.

Formatting and mounting filesystems
In the previous section, we learned how to logically divide our disk, but that disk is still
not usable for storing data. In order to enable this to do so, we need to define a filesystem
on it as the first step to make it available to our system.

A filesystem is a logical structure that defines how files, folders, and more are stored and
provides, based on each type, a different set of features.

The number and types of filesystems supported depends on the operating system version,
as during its evolution, new filesystems might be added, removed, and so on.

Tip
Remember that Red Hat Enterprise Linux (RHEL) focuses on stability, so
there are strict controls about which features are added or phased out for
newer releases, but not within the current release. You can read more about
this at https://access.redhat.com/articles/rhel8-abi-
compatibility.

In RHEL 8, the default filesystem is the eXtended File System (XFS), but you can see
a list of available ones at the RHEL documentation found at https://access.
redhat.com/documentation/en-us/red_hat_enterprise_linux/8/
html/system_design_guide/overview-of-available-file-systems_
system-design-guide, and of course, others such as Fourth Extended Filesystem
(EXT4) can be used.

The choice of the filesystem depends on several factors such as usage intention, type of
files that are going to be used, and more, as different filesystems might have performance
implications.

https://access.redhat.com/articles/rhel8-abi-compatibility
https://access.redhat.com/articles/rhel8-abi-compatibility
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/system_design_guide/overview-of-available-file-systems_system-design-guide
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/system_design_guide/overview-of-available-file-systems_system-design-guide
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/system_design_guide/overview-of-available-file-systems_system-design-guide
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/system_design_guide/overview-of-available-file-systems_system-design-guide

344 Managing Local Storage and Filesystems

For example, both EXT4 and XFS are journaled filesystems that provide more protection
against power failures, but the maximum filesystem differs in terms of other aspects such
as the likeliness of becoming fragmented, and so on.

Before choosing a filesystem, it is a good practice to get an idea of the kind of files
being deployed and their usage pattern, as choosing the wrong one might affect system
performance.

As we defined in the previous section two partitions on our VHD, we can try creating
both XFS and EXT4 filesystems. Again, however, be very careful when performing
operations, as filesystem creation is a destructive operation that writes new structures back
to the disk, and when operating as root user of the system, which is required, selecting the
wrong one can destroy within seconds the available data we had on our system.

Important note
Remember to check the man page for the commands being used in order to get
familiar with the different recommendations and options available for each one.

Let's then use the two partitions we created to test with two filesystems, XFS and EXT4,
by using the mkfs.xfs and mkfs.ext4 commands against each one of the devices
respectively, as follows:

Figure 12.6 – Filesystem creation on the VHD created

Formatting and mounting filesystems 345

Note that we have specified the different loop device partition and we also specified one
-L parameter for each command. We will look at this again later.

Now that the filesystem has been created, we can run lsblk -fp to verify this, and we
can see both devices, now indicating the filesystem is in use as well as LABEL and UUID
values (the ones shown when we created the filesystem with mkfs), as we can see in the
following screenshot:

Figure 12.7 – Output of lsblk –fp after creating the filesystems

From the preceding output, it's important to pay attention to the UUID and LABEL
values (if you remember, the value listed is the one we specified in the mkfs command
with the –L option), as we will be using them later in this chapter.

Now that the filesystems have been created, in order to use them we need to mount them,
which means making the filesystem available at a path in our system so that every time we
store inside that path, we will be using that device.

Mounting a filesystem can be done in several ways, but the simplest way is to use
autodetection and just specify the device to mount and the local path to mount it at, but
more complex ones that allow several options to be defined can be found when checking
the man mount help page.

346 Managing Local Storage and Filesystems

For mounting our two created filesystems, we will create two folders and then proceed to
mounting each device by executing the following commands:

1. cd

2. mkdir first second

3. mount /dev/loop0p1 first/

4. mount /dev/loop0p2 second/

At this point, the two filesystems will be available in our home folder (root user) in the
subfolders named first and second.

The kernel has automatically found which filesystem is in use for each device and has
loaded it via the appropriate controller and this worked, but sometimes we might want to
define specific options— for example, forcing the filesystem type, which was used in the
past when ext2 and ext3 were the common filesystems to enable or disable journaling,
or, for example, to disable the built-in features that update the file or directory access time
to reduce the disk I/O and increase performance.

All options specified on the command line, or filesystems mounted, will not be available
once the system is rebooted as those are only runtime changes. Let's move on to the next
section to learn how to define default options and filesystem mounts when the system is
being started.

Setting default mounts and options in fstab
In the previous section, we introduced how disks and partitions can be mounted so that
our services and users can make use of them. In this section, we will learn how to make
those filesystems available in a persistent way.

The /etc/fstab file contains the filesystem definitions for our system and, of course,
it has a dedicated manual page that can be checked with man fstab containing useful
information about the formatting, fields, ordering, and so on that must be taken into
consideration, as this file is critical for the smooth operation of the system.

Setting default mounts and options in fstab 347

The file format is defined by several fields separated by tabs or spaces, with lines starting
with a # considered as comments.

For example, we will use this line to look at each field description:

LABEL=/ / xfs defaults 0 0

The first field is the device definition, which can be a special block device, a remote
filesystem, or—as we can see—a selector made by LABEL, UUID, or, for GPT systems,
also a PARTUUID or PARTLABEL. The man page for mount, blkid, and lsblk provides
more information about device identifiers.

The second field is the mount point for the filesystem, which is where to make the
contents of that filesystem available based on our system directory hierarchy. Some special
devices/partitions such as swap areas have this defined as none, as effectively the contents
are not made available via the filesystem.

The third field is the filesystem type as supported by the mount command or swap, for
swap partitions.

The fourth field is the mount options as supported by mount or swapon commands
(check their man pages for more details), being at its default setting an alias for most
common options (read/write, allow devices, allow execution, automount on boot,
async access, and so on). Other common options might be noauto, which defines the
filesystem but doesn't mount at boot (often used with removable devices), user, which
allows users to mount and unmount it, and _netdev, which defines remote paths that
require networking to be up before attempting the mount.

The fifth field is used by dump to determine which filesystems should be used—its value
defaults to 0.

The sixth field is used by fsck to determine the order for filesystems to be checked on
boot. The root filesystem should have a value of 1 and the others should have a value of
2 (the default is 0, not fsck). Checks are performed in parallel to speed up the booting
process. Note that with filesystems that have a journal, the filesystem itself can perform
a fast validation instead of a full one.

348 Managing Local Storage and Filesystems

In the following screenshot, let's see how it looks in our system with the output of
cat /etc/fstab:

Figure 12.8 – fstab example from our system

Why should we use UUID or LABEL instead of devices such as /dev/sda1?

Disk ordering might change when a system is booting, as some kernels might introduce
differences in the devices in how those are accessed, and so on, causing changes in
the enumeration of the devices; this happens not only for removable devices such as
Universal Serial Bus (USB) ones, but also to internal devices such as network interfaces
or hard drives.

When, instead of specifying the devices, we use UUID or LABEL, even in the event of
a device reordering, the system will still be able to find the right device to use and
boot from it. This was especially important when systems used to have IDE and Serial
Advanced Technology Attachment (SATA) drives and SCSI drives, or even today when
internet SCSI (iSCSI) devices might be connected in a different order than expected,
resulting in device name changes and failures when reaching them.

Remember to use blkid or lsblk –fp commands to check the filesystems' labels and
universally unique identifiers (UUIDs) that could be used when referring to them.

Important note
When editing the /etc/fstab file, be extremely careful: altering the mount
points used by the system might render your system unusable. If in doubt,
double-check for any change and be sure to be familiar with system recovery
methods and have rescue media available in case this is needed.

Using network filesystems with NFS 349

Let's learn about mounting a remote NFS in the next section

Using network filesystems with NFS
Mounting a remote NFS is not much different than mounting local devices, but instead of
specifying a local device as we did in the previous section with our /dev/loop0p1 file,
we provide server:export as a device.

We can find a range of available options by checking the manual page via man mount,
and this will show us several of the options and the way the device looks.

When a NFS mount is going to be used, the administrator will need to use the host and
the export name to mount that device—for example, based on the following data about
the NFS export:

• Server: server.example.com

• Export: /isos

• Mount point: /mnt/nfs

With the preceding data, it's easy to construct the mount command, which will look
like this:

mount –t nfs sever.example.com:/isos /mnt/nfs

If we analyze the preceding command, it will define the type of filesystem to mount as
nfs, provided by a server.example.com hostname, and using the /isos NFS
export, and will be made available locally under the /mnt/nfs folder.

If we want to define this filesystem as available at boot, we should add an entry in /etc/
fstab, but... how should we indicate this?

Based on the settings explained during this chapter, the constructed entry would look
something like this:

server.example.com:/isos /mnt/nfs nfs defaults,_netdev 0 0

The preceding line of code contains the parameters we indicated on the command line,
but it also adds that it is a resource that required network access before attempting to
mount it, as networking is required to be able to reach the NFS server, similar to what will
be required for other network-based storage such as Samba mounts, iSCSI, and so on.

350 Managing Local Storage and Filesystems

Important note
Reinstating the idea of keeping our system bootable, once we make
modifications to the /etc/fstab configuration file, it is recommended
to execute mount -a so that the validation is performed from a running
system. If after the execution the new filesystems are available and shown when
executing—for example, df—and no error appeared, it should be safe.

Summary
In this chapter, we've learned about how a disk is divided logically for optimal use of
storage and how to later create a filesystem on that disk division so that it can be used to
actually store data.

Once the actual filesystem was created, we learned how to make it accessible in our system
and how to ensure that it will be available after the next system restart via modification of
the /etc/fstab configuration file.

Finally, we also learned about using a remote filesystem with NFS based on the data that
was provided for us and how to add it to our fstab file to make it persistent.

In the next chapter, we will learn how to make storage even more useful via Logical
Volume Management (LVM), which empowers the definition of different logical units
that can be resized, combined to provide data redundancy, and so on.

13
Flexible Storage

Management
with LVM

Managing local storage can be done in a more flexible manner than in Chapter 12,
Managing Local Storage and Filesystems, by using the Logical Volume Manager (LVM).
LVM allows you to assign more than one disk to the same logical volume (the equivalent
in LVM to a partition), have data replicated across different disks, and make snapshots of
a volume.

352 Flexible Storage Management with LVM

In this chapter, we will review the basic usage of LVM and the main objects that are
used to manage storage. We will learn how to prepare disks to be used with LVM, and
then aggregate them into a pool, thereby not only increasing the available space, but also
enabling you to use it consistently. We will also learn how to distribute that aggregated
disk space into partition-like chunks that can easily be extended if necessary. To do so, we
will go through the following topics:

• Understanding LVM

• Creating, moving, and removing physical volumes

• Combining physical volumes into volume groups

• Creating and extending logical volumes

• Adding new disks to a volume group and extending a logical volume

• Removing logical volumes, volume groups, and physical volumes

• Reviewing LVM commands

Technical requirements
For this chapter, we will add two more disks to the machine we are working with to be
able to follow the examples mentioned in this chapter. These are your options:

• If you are using a physical machine, you may add a couple of USB drives.

• If you are using a local virtual machine, you will need to add two new virtual drives.

• If you are using a cloud instance, you can add two new block devices to it.

As an example, let's see how these disks are added to our virtual machine in Linux. First,
we power off the virtual machine we installed in Chapter 1, Installing RHEL8, called
rhel8. Then we open the characteristics page of the virtual machine. There we find the
Add Hardware button:

Technical requirements 353

Figure 13.1 – Editing virtual machine properties

Tip
Depending on the virtualization platform you are using, there are different
paths to reach the virtual machine characteristics. However, it's very common
that there is an option directly accessible from the virtual machine menu.

354 Flexible Storage Management with LVM

Clicking on Add Hardware will open the dialog in the following screenshot. In it, we will
select the Storage option and specify the size of the virtual disk to be created and attached
to the virtual machine, in this case, 1 GiB, and then click Finish:

Figure 13.2 – Adding a disk to a virtual machine

Technical requirements 355

We will repeat this procedure twice to add two disks. The end result will look like this:

Figure 13.3 – Two new disks added to a virtual machine, making a total of three

We will now power on the virtual machine and log in to it to check the availability of new
devices:

[root@rhel8 ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

vda 252:0 0 10G 0 disk

├─vda1 252:1 0 1G 0 part /boot

└─vda2 252:2 0 9G 0 part

 ├─rhel-root 253:0 0 8G 0 lvm /

 └─rhel-swap 253:1 0 1G 0 lvm [SWAP]

vdb 252:16 0 1G 0 disk

vdc 252:32 0 1G 0 disk

356 Flexible Storage Management with LVM

We can see that the new 1 GiB disks, vdb and vdc, are available. Now that we have
a system disk, where we installed the RHEL 8 operating system and two more disks to
work with, we are ready to continue with this chapter.

Tip
The naming of the disk devices in Linux depends on the driver they use.
Devices attached as SATA or SCSI show as sd and a letter, such as sda
or sdb. Devices connected with IDE buses use hd and a letter, such as hda
or hdb. Devices as in the example, which use the VirtIO paravirtualized
drivers, use vd and a letter, for example, vda or vdb.

Understanding LVM
LVM uses three layers to manage the storage devices in our systems. These layers are
as follows:

• Physical Volumes (PV): The first layer of LVM . Assigned to the block devices
directly. A physical volume can be either a partition on a disk, or a full raw disk
itself.

• Volume Groups (VG): The second layer of LVM. It groups the physical volumes
to aggregate space. This is an intermediate layer and not very visible, but its role is
very important.

• Logical Volumes (LV): The third layer of LVM. It distributes the space that the
volume groups aggregate.

Let's see the example that we want to implement using the two newly added disks:

Figure 13.4 – LVM example using two disks

Creating, moving, and removing physical volumes 357

Let's explain this example diagram to understand all the layers:

• We have two disks, which, in the diagram, are Disk1 and Disk2.

• Disk1 is partitioned into two partitions, Part1 and Part2.

• Disk2 is not partitioned.

• There are three physical volumes. The mission of these is to prepare the disk space
to be used in LVM. The physical volumes are as follows:

– PV1, created on the Part1 partition of Disk1

– PV2, created on the Part2 partition of Disk1

– PV3, created directly on Disk2
• One single volume group, VG1, aggregates all three physical volumes, PV1, PV2,

and PV3. Now, all that disk space is consolidated and can be easily redistributed.

• To distribute the space, there are four logical volumes – LV1, LV2, LV3, and LV4.
Please note that the logical volumes do not use the whole disk. This way, if we need
to extend a volume or create a snapshot, it will be possible.

This is a basic description of how the layers are distributed, without diving into complex
cases such as mirroring, thin provisioning, or snapshot.

As a rule of thumb, we need to understand that PVs are designed to prepare devices to be
used by LVM, VGs to aggregate PVs, and LVs to distribute the aggregated space.

It is interesting to see that if we create a VG, we can add an extra disk to it, thereby
increasing its size without having to stop or reboot the machine. Likewise, we can
distribute the added space along the LVs that require it without having to stop or reboot
the machine. This is one of the main reasons why LVM is so powerful and recommended
for every server, with very few exceptions.

Now that we know the layers into which LVM is divided, let's begin using them to start
understanding how they work.

Creating, moving, and removing physical
volumes
Having our machine ready with the two new disks, vdb and vdc, as the Technical
requirements section explains, we can get started on implementing the example diagram,
as shown in Figure 13.4, in our machine.

358 Flexible Storage Management with LVM

The first step is not directly related to LVM, but it is still important to continue with the
example. This first step involves partitioning the vdb disk. Let's take a look at this with the
tool to manage partitions, parted:

[root@rhel8 ~]# parted /dev/vdb print

Error: /dev/vdb: unrecognised disk label

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 1074MB

Sector size (logical/physical): 512B/512B

Partition Table: unknown

Disk Flags:

Important note
Your disk device, if you are using a physical machine or a different disk driver,
may be different. For example, if we were using SATA disks, it would be
/dev/sdb instead of /dev/vdb.

The disk is completely unpartitioned, as we can see in the unrecognised disk
label message. As is explained in Chapter 12, Managing Local Storage and Filesystems,
there are two types of disk labels that we can use; msdos (also referred to as MBR), the
old type that machines with a Basic Input Output System (BIOS) can use to boot, and
gpt, the new type that machines with a Unified Extensible Firmware Interface (UEFI)
can use to boot. In case of doubt, use gpt, as we will do in this example. The option to be
used with parted to create a new label is mklabel:

[root@rhel8 ~]# parted /dev/vdb mklabel gpt

Information: You may need to update /etc/fstab.

[root@rhel8 ~]# parted /dev/vdb print

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 1074MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

Creating, moving, and removing physical volumes 359

Tip
To create an msdos label, the command would be parted /dev/vdb
mklabel msdos.

Now we have a disk with a gpt label, but without partitions. Let's create a partition using
the mkpart option in interactive mode:

[root@rhel8 ~]# parted /dev/vdb mkpart

Now we can enter the partition name, mypart0:

Partition name? []? mypart0

For the next step, specifying the filesystem, we will use ext2:

File system type? [ext2]? ext2

Now it is time to set the start point. We will use the first sector available, which is 2048s:

Start? 2048s

Tip
The first sector in modern disks is, by definition, 2048s. This is not provided
by the tool. We could review other existing disks, when in doubt, by running
parted /dev/vda unit s print.

And then we come to the final step, setting the endpoint, which can be described as the
size of the partition we want to make:

End? 200MB

The command is complete with the following warning:

Information: You may need to update /etc/fstab.

To ensure that the partition table is refreshed in the system, and to allow the devices to be
generated under /dev, we can run the following command:

[root@rhel8 ~]# udevadm settle

360 Flexible Storage Management with LVM

Tip
The full command to run in non-interactive mode is parted /dev/vdb
mkpart mypart0 xfs 2048s 200MB.

We can see the new partition available:

[root@rhel8 ~]# parted /dev/vdb print

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 1074MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

1 1049kB 200MB 199MB mypart0

We need to change the partition to be able to host LVM physical volumes. The parted
command uses the set option to change the partition type. We need to specify the
number of the partition, which is 1, and then type lvm and on to activate:

root@rhel8 ~]# parted /dev/vdb set 1 lvm on

Information: You may need to update /etc/fstab.

[root@rhel8 ~]# udevadm settle

[root@rhel8 ~]# parted /dev/vdb print

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 1074MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

1 1049kB 200MB 199MB mypart0 lvm

We see the flag of the partition now set as lvm.

Creating, moving, and removing physical volumes 361

Let's add the second partition, mypart1:

[root@rhel8 ~]# parted /dev/vdb mkpart mypart1 xfs \

200MB 100%

Information: You may need to update /etc/fstab.

[root@rhel8 ~]# parted /dev/vdb set 2 lvm on

Information: You may need to update /etc/fstab.

[root@rhel8 ~]# parted /dev/vdb print

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 1074MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

1 1049kB 200MB 199MB mypart0 lvm

2 200MB 1073MB 872MB mypart1 lvm

Now that we have created two partitions, /dev/vdb1 (with the name mypart0) and
/dev/vdb2 (with the name mypart1), this is what our storage looks like:

Figure 13.5 – Partitions created in our two new disks

Tip
There is another tool that comes by default in RHEL8 to manage partitions,
which is fdisk. You may want to give it a try to see whether you find it easier
to use.

362 Flexible Storage Management with LVM

Now it is time to create persistent volumes. We will do it only on the newly created
partitions. First, we check the available persistent volumes with the pvs command:

[root@rhel8 ~]# pvs

 PV VG Fmt Attr PSize PFree

 /dev/vda2 rhel lvm2 a-- <9,00g 0

Now, we proceed to create the persistent volumes with pvcreate:

[root@rhel8 ~]# pvcreate /dev/vdb1

 Physical volume "/dev/vdb1" successfully created.

[root@rhel8 ~]# pvcreate /dev/vdb2

 Physical volume "/dev/vdb2" successfully created.

And we check they have been created correctly with pvs again:

[root@rhel8 ~]# pvs

 PV VG Fmt Attr PSize PFree

 /dev/vda2 rhel lvm2 a-- <9,00g 0

 /dev/vdb1 lvm2 --- 190,00m 190,00m

 /dev/vdb2 lvm2 --- 832,00m 832,00m

Notice that persistent volumes do not have their own name, but the name of the partition
(or device) they are created on. We can refer to them as PV1 and PV2 to draw the
diagram.

This is now the status:

Figure 13.6 – Persistent volumes created in the two new partitions

Combining physical volumes into volume groups 363

We can also create a persistent volume directly on the disk device, vdc. Let's do it:

[root@rhel8 ~]# pvcreate /dev/vdc

 Physical volume "/dev/vdc" successfully created.

[root@rhel8 ~]# pvs

 PV VG Fmt Attr PSize PFree

 /dev/vda2 rhel lvm2 a-- <9,00g 0

 /dev/vdb1 lvm2 --- 190,00m 190,00m

 /dev/vdb2 lvm2 --- 832,00m 832,00m

 /dev/vdc lvm2 --- 1,00g 1,00g

As in the previous example, there is no name for the physical volume, which we will refer
to as PV3. The result looks like the following:

Figure 13.7 – Persistent volumes created in the two new partitions and the new disk device

Now that we have the persistent volumes, let's group them using virtual groups in the
next section.

Combining physical volumes into volume
groups
It's time to create a new volume group with the physical volumes added previously. Before
doing that, we can check the volume groups available with the vgs command:

[root@rhel8 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 rhel 1 2 0 wz--n- <9,00g 0

364 Flexible Storage Management with LVM

We can see that only the volume group created during installation for the operating
system is available. Let's create our storage volume group with the /dev/vdb1 and
/dev/vdb2 partitions using the vgcreate command:

[root@rhel8 ~]# vgcreate storage /dev/vdb1 /dev/vdb2

 Volume group "storage" successfully created

[root@rhel8 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 rhel 1 2 0 wz--n- <9,00g 0

 storage 2 0 0 wz--n- 1016,00m 1016,00m

As you can see, the new storage volume group has been created. The diagram of the
current status would now look like this:

Figure 13.8 – First volume group created with two physical volumes

Important note
Volume groups are a very thin layer in LVM whose only goal is to aggregate
disks or partitions into a pool of storage. The advanced management of that
storage, such as, for example, having data mirrored in two different disks, is
done with logical volumes.

Creating and extending logical volumes 365

We have already prepared the partitions and disks as physical volumes and aggregated
them into volume groups, so we have a pool of disk space. Let's move on to the next
section to learn how the distribution of that disk space can be done using logical volumes.

Creating and extending logical volumes
We currently have several physical volumes created and two of them grouped into
a volume group. Let's move to the next layers and check the logical volumes with the
lvs command:

[root@rhel8 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move
Log Cpy%Sync Convert

 root rhel -wi-ao---- <8,00g

 swap rhel -wi-ao---- 1,00g

We see the root and swap volumes on the rhel volume group, which hosts the
operating system.

Now, we can create a simple logical volume called data, 200 MB in size, on the storage
volume group:

[root@rhel8 ~]# lvcreate --name data --size 200MB storage

 Logical volume "data" created.

[root@rhel8 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta%
Move Log Cpy%Sync Convert

 root rhel -wi-ao---- <8,00g

 swap rhel -wi-ao---- 1,00g

 data storage -wi-a----- 200,00m

366 Flexible Storage Management with LVM

Our configuration now looks like this:

Figure 13.9 – First logical created using space from a volume group

The logical volume created is a block device, and behaves similarly to a disk partition.
Therefore, in order to be used, we need to format it with a filesystem. Let's do this by
formatting it with the xfs format:

[root@rhel8 ~]# mkfs.xfs /dev/storage/data

meta-data=/dev/storage/data isize=512 agcount=4,
agsize=12800 blks

 = sectsz=512 attr=2,
projid32bit=1

 = crc=1 finobt=1, sparse=1,
rmapbt=0

 = reflink=1

data = bsize=4096
blocks=51200,imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0,
ftype=1

log =internal log bsize=4096 blocks=1368,
version=2

Creating and extending logical volumes 367

 = sectsz=512 sunit=0 blks, lazy-
count=1

realtime =none extsz=4096 blocks=0,
rtextents=0

Discarding blocks...Done.

Now it's ready to be mounted. We can create the /srv/data directory and mount it
there:

[root@rhel8 ~]# mkdir /srv/data

[root@rhel8 ~]# mount -t xfs /dev/storage/data /srv/data

[root@rhel8 ~]# df -h /srv/data/

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/storage-data 195M 12M 184M 6% /srv/data

We have set up our LVM-enabled space available in our system. Mounting a filesystem
manually, as in the previous example, works while the system is not powered down or
rebooted. To make it persistent, we need to add the following line to /etc/fstab:

/dev/storage/data /srv/data xfs defaults 0 0

To test that the line is correctly written, we can run the following commands. First,
dismount the filesystem:

[root@rhel8 ~]# umount /srv/data

Check the available space in the mount point:

[root@rhel8 ~]# df -h /srv/data/

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/rhel-root 8,0G 2,8G 5,3G 35% /

The output of the df (for disk free) command shows that the space in the /srv/data/
directory is related to the root partition, meaning that the folder does not have any
filesystem associated with it. Let's now run the mount command when the system is
starting:

[root@rhel8 ~]# mount –a

368 Flexible Storage Management with LVM

All filesystems in /etc/fstab that are not mounted will be mounted, or an error will be
shown if there is any issue with them (such as a typo in /etc/fstab). Let's check that it
is mounted:

[root@rhel8 ~]# df -h /srv/data/

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/storage-data 195M 12M 184M 6% /srv/data

Important note
The /dev/storage/data and /dev/mapper/storage-data
devices are aliases (or symbolic links, to be more precise) of the same
device generated by a component called device mapper. They are fully
interchangeable.

As we can see, the filesystem is properly mounted. Now that we know how to create a
logical volume and assign a filesystem and mount point to it, we can move on to more
advanced tasks, such as extending disk space in our LVM layers and beyond.

Adding new disks to a volume group and
extending a logical volume
One of the great things about LVM, and more specifically, volume groups, is that we can
add a new disk to it and start using that newly extended space. Let's try it by adding the
physical volume in /dev/vdc to the storage volume group:

[root@rhel8 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 rhel 1 2 0 wz--n- <9,00g 0

 storage 2 1 0 wz--n- 1016,00m 816,00m

[root@rhel8 ~]# vgextend storage /dev/vdc

 Volume group "storage" successfully extended

[root@rhel8 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 rhel 1 2 0 wz--n- <9,00g 0

 storage 3 1 0 wz--n- <1,99g 1,79g

Adding new disks to a volume group and extending a logical volume 369

Now, our disk distribution looks like this:

Figure 13.10 – Extended volume group with three physical volumes

Let's now extend the data logical volume by adding 200 MB to it:

[root@rhel8 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta%
Move Log Cpy%Sync Convert

 root rhel -wi-ao---- <8,00g

 swap rhel -wi-ao---- 1,00g

 data storage -wi-ao---- 200,00m

[root@rhel8 ~]# lvextend --size +200MB /dev/storage/data

 Size of logical volume storage/data changed from 200,00 MiB
(50 extents) to 400,00 MiB (100 extents).

 Logical volume storage/data successfully resized.

[root@rhel8 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta%
Move Log Cpy%Sync Convert

 root rhel -wi-ao---- <8,00g

 swap rhel -wi-ao---- 1,00g

 data storage -wi-ao---- 400,00m

370 Flexible Storage Management with LVM

The logical volume has been extended. However, the filesystem on top of it hasn't:

[root@rhel8 ~]# df -h /srv/data/

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/storage-data 195M 12M 184M 6% /srv/data

We need to extend the filesystem. The tool to do so depends on the type of filesystem.
In our case, as it is xfs, the tool to extend it is xfs_growfs. Let's do it:

[root@rhel8 ~]# xfs_growfs /dev/storage/data

meta-data=/dev/mapper/storage-data isize=512 agcount=4,
agsize=12800 blks

 = sectsz=512 attr=2,
projid32bit=1

 = crc=1 finobt=1, sparse=1,
rmapbt=0

 = reflink=1

data = bsize=4096 blocks=51200
imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0,
ftype=1

log =internal log bsize=4096 blocks=1368
version=2

 = sectsz=512 sunit=0 blks,
lazy-count=1

realtime =none extsz=4096 blocks=0,
rtextents=0

data blocks changed from 51200 to 102400

[root@rhel8 ~]# df -h /srv/data/

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/storage-data 395M 14M 382M 4% /srv/data

And now, the filesystem has some extra space added and available.

Important note
When doing this task, the logical volume can be mounted and be used by the
system. LVM is ready to do volume extensions on production systems while
running.

Adding new disks to a volume group and extending a logical volume 371

It's very easy to redistribute the space and add another logical volume:

[root@rhel8 ~]# lvcreate --size 100MB --name img storage

 Logical volume "img" created.

[root@rhel8 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta%
Move Log Cpy%Sync Convert

 root rhel -wi-ao---- <8,00g

 swap rhel -wi-ao---- 1,00g

 data storage -wi-ao---- 400,00m

 img storage -wi-a----- 100,00m

[root@rhel8 ~]# mkfs.xfs /dev/storage/img

meta-data=/dev/storage/img isize=512 agcount=4,
agsize=6400 blks

 = sectsz=512 attr=2,
projid32bit=1

 = crc=1 finobt=1, sparse=1,
rmapbt=0

 = reflink=1

data = bsize=4096 blocks=25600
imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0,
ftype=1

log =internal log bsize=4096 blocks=1368,
version=2

 = sectsz=512 sunit=0 blks,
lazy-count=1

realtime =none extsz=4096 blocks=0,
rtextents=0

Discarding blocks...Done.

[root@rhel8 ~]# mkdir /srv/img

[root@rhel8 ~]# mount -t xfs /dev/storage/img /srv/img

[root@rhel8 ~]# df /srv/img/

Filesystem 1K-blocks Used Available Use% Mounted
on

/dev/mapper/storage-img 96928 6068 90860 7% /srv/img

[root@rhel8 ~]# df -h /srv/img/

372 Flexible Storage Management with LVM

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/storage-img 95M 6,0M 89M 7% /srv/img

The --size and --extents options for the lvcreate command have several options
that can be used to define the space to be consumed:

• Human-readable: We can define the size in human-readable blocks, such as
gigabytes, using GB, or megabytes, using MB (in other words, --size 3GB).

• Extents: If we just provide a number after --extents, the command will use
its internal measure, extents, which is similar to block size for disk partitions
(that is, --extents 125).

The --size and --extents options also apply to the lvextend command. In this
case, we can use the options shown previously for lvcreate to define the new size of
a logical volume. We also have other options to define increments of space to be assigned
to them:

• Adding space: If we provide the + symbol before the number to lvextend, this
will increase the size in the measurement provided (that is, --size +1GB adds
one extra gigabyte to the current logical volume).

• Percentage of free space: We can provide the percentage of free space to be created
or extended by using --extents, and the percentage of free space to be used
followed by %FREE (that is, --extents 10%FREE).

Tip
As we have seen previously in other tools, we can use the manual pages to
remind ourselves of the options available. Please run man lvcreate and
man lvextend to get familiar with the pages for these tools.

We are going to create a logical volume to be used as swap, which is a part of the disk that
the system uses as a parking space for memory. The system puts processes that consume
memory and that are not active there so that the physical memory (which is much faster
than disk) is freed. It is also used when there is no more free physical memory in the
system.

Adding new disks to a volume group and extending a logical volume 373

Let's create a swap device on LVM:

[root@rhel8 ~]# lvcreate --size 100MB --name swap storage

 Logical volume "swap" created.

[root@rhel8 ~]# mkswap /dev/storage/swap

Setting up swapspace version 1, size = 100 MiB (104853504
bytes)

no label, UUID=70d07e58-7e8d-4802-8d20-38d774ae6c22

We can check the memory and swap status with the free command:

[root@rhel8 ~]# free

 total used free shared buff/
cache available

Mem: 1346424 218816 811372 9140
316236 974844

Swap: 1048572 0 1048572

[root@rhel8 ~]# swapon /dev/storage/swap

[root@rhel8 ~]# free

 total used free shared buff/
cache available

Mem: 1346424 219056 811040 9140
316328 974572

Swap: 1150968 0 1150968

Important note
The two new changes would require adding a line for each to /etc/fstab
to make use of them persistently across reboots.

374 Flexible Storage Management with LVM

Our disk space distribution would now look like this:

Figure 13.11 – Extended volume group with three physical volumes

This distribution looks a lot like the initial example we used to describe the layers of LVM.
We now have practiced with all the layers to create the pieces required in each one of
them. We know how to create, so now it's time to learn how to remove them in the next
section.

Removing logical volumes, volume groups,
and physical volumes
To start with the commands used to remove, let's do the simple step of removing the img
logical volume. First, we need to check whether it's mounted:

[root@rhel8 ~]# mount | grep img

/dev/mapper/storage-img on /srv/img type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,
logbsize=32k,noquota)

As it is mounted, we need to dismount it:

[root@rhel8 ~]# umount /srv/img

[root@rhel8 ~]# mount | grep img

Removing logical volumes, volume groups, and physical volumes 375

The last command shows an empty output, which means that it isn't mounted.
Let's proceed to remove it:

[root@rhel8 ~]# lvremove /dev/storage/img

Do you really want to remove active logical volume storage/img?
[y/n]: y

 Logical volume "img" successfully removed

Now, we can also remove the mount point:

[root@rhel8 ~]# rmdir /srv/img

And the removal of the logical volume is done. This process is not reversible, so run
it carefully. Our disk distributions now look like this:

Figure 13.12 – Volume group with logical volume removed

Now it's time for a more complex task, removing a physical volume from a virtual group.
The reason for doing so is that sometimes you want to transfer the data stored on
a physical disk to a different disk, and then detach it and remove it from the system.
This can be done, but first, let's add some files to the data logical volume:

[root@rhel8 ~]# cp -ar /usr/share/scap-security-guide \

/srv/data/

376 Flexible Storage Management with LVM

[root@rhel8 ~]# ls /srv/data/

scap-security-guide

[root@rhel8 ~]# du -sh /srv/data/

30M /srv/data/

Now let's evacuate the data from /dev/vdb1 using the pvmove command:

[root@rhel8 ~]# pvmove /dev/vdb1

 /dev/vdb1: Moved: 7,75%

 /dev/vdb1: Moved: 77,52%

 /dev/vdb1: Moved: 100,00%

Important note
Depending on the allocation of the extents, you may receive a message stating
no data to move for storage. This means that the saved data was
already allocated to the other disk. You can use pvmove with other devices to
try it.

Now there is no data stored in /dev/vdb1 and it can be removed from the volume
group. We can do so by using the vgreduce command:

[root@rhel8 ~]# vgreduce storage /dev/vdb1

 Removed "/dev/vdb1" from volume group "storage"

We can see that there is now less space in the storage volume group:

[root@rhel8 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 rhel 1 2 0 wz--n- <9,00g 0

 storage 2 2 0 wz--n- 1,80g 1,30g

[root@rhel8 ~]# vgdisplay storage

 --- Volume group ---

 VG Name storage

 System ID

 Format lvm2

 Metadata Areas 2

 Metadata Sequence No 20

 VG Access read/write

 VG Status resizable

Removing logical volumes, volume groups, and physical volumes 377

 MAX LV 0

 Cur LV 2

 Open LV 2

 Max PV 0

 Cur PV 2

 Act PV 2

 VG Size 1,80 GiB

 PE Size 4,00 MiB

 Total PE 462

 Alloc PE / Size 129 / 516,00 MiB

 Free PE / Size 333 / 1,30 GiB

 VG UUID 1B6Nil-rvcM-emsU-mBLu-wdjL-mDlw-66dCQU

We can also see that the physical volume, /dev/vdb1, is not attached to any volume
group:

[root@rhel8 ~]# pvs

 PV VG Fmt Attr PSize PFree

 /dev/vda2 rhel lvm2 a-- <9,00g 0

 /dev/vdb1 lvm2 --- 190,00m 190,00m

 /dev/vdb2 storage lvm2 a-- 828,00m 312,00m

 /dev/vdc storage lvm2 a-- 1020,00m 1020,00m

[root@rhel8 ~]# pvdisplay /dev/vdb1

 "/dev/vdb1" is a new physical volume of "190,00 MiB"

 --- NEW Physical volume ---

 PV Name /dev/vdb1

 VG Name

 PV Size 190,00 MiB

 Allocatable NO

 PE Size 0

 Total PE 0

 Free PE 0

 Allocated PE 0

 PV UUID veOsec-WV0n-JP9D-WMz8-UYeZ-Zjs6-sJSJst

378 Flexible Storage Management with LVM

Tip
The vgdisplay, pvdisplay, and lvdisplay commands show
detailed information on any of the parts of LVM.

The most important part is that we can do these operations while the system is running
production workloads with confidence. Our disk distribution now looks like this:

Figure 13.13 – Volume group with physical volumes removed

Now it's time to remove the volume group, but we need to remove the logical volumes
first, just like we did before (feel free to run lvs and vgs before and after each command
to check progress):

[root@rhel8 ~]# swapoff /dev/storage/swap

[root@rhel8 ~]# lvremove /dev/storage/swap

Do you really want to remove active logical volume storage/
swap? [y/n]: y

 Logical volume "swap" successfully removed

Reviewing LVM commands 379

With this, we have removed /dev/storage/swap. Let's now remove /dev/
storage/data, using the --yes option so that we do not get asked for confirmation
(important when using this command in a script):

[root@rhel8 ~]# umount /dev/storage/data

[root@rhel8 ~]# lvremove --yes /dev/storage/data

 Logical volume "data" successfully removed

Now it's time to remove the storage volume group:

[root@rhel8 ~]# vgremove storage

The storage volume group has been removed successfully.

And finally, clean the physical volumes:

[root@rhel8 ~]# pvremove /dev/vdb1 /dev/vdb2

 Labels on physical volume "/dev/vdb1" successfully wiped.

 Labels on physical volume "/dev/vdb2" successfully wiped.

And with this, we know how to work with each part of the LVM in our RHEL8 systems.
Let's review the commands used in the next section.

Reviewing LVM commands
As a summary of the commands used to manage physical volumes, let's take a look at the
following table:

380 Flexible Storage Management with LVM

Now, let's review the commands used to manage volume groups:

And finally, let's review the commands used to manage logical volumes:

Remember that you can always use the manual pages available for each command to get
more information on the options you want to use and learn new ones, just by running
man <command>.

Important note
The web administration interface Cockpit, has an extension for managing
storage components. It can be installed as root (or with sudo) with the
following command, dnf install cockpit-storaged. A good
exercise for you would be to repeat the process done in this chapter using the
storage interface in Cockpit.

Summary 381

Summary
The LVM is an incredibly useful part of Red Hat Enterprise Linux and provides the
capabilities to manage, reallocate, distribute, and assign disk space without having to
stop anything in the system. Battle-tested over the years, it is a key component for system
administrators, as well as facilitating the incorporation of other extended capabilities in
our systems (a flexible way to provide storage to be shared via iSCSI).

Practicing LVM on test machines is extremely important, so we can be sure that the
command we will run on a production system will not mean the service being stopped
or data being lost.

In this chapter, we have seen the most basic, yet important, tasks that can be done with
LVM. We have learned how the different layers of LVM work: physical volumes, volume
groups, and logical volumes. Also, we've seen how they interact with each other and
how they can be managed. We have practiced creating, extending, and removing logical
volumes, volume groups, and physical volumes. It will be important to practice them
to consolidate the knowledge acquired and be able to use them in production systems.
However, the basis for doing so is now already in place.

Now, let's move on to the next chapter to discover a new feature in RHEL8 to improve
the storage layer further by adding deduplication capabilities to it – Virtual Data
Optimizer (VDO).

14
Advanced Storage
Management with

Stratis and VDO
In this chapter, we will learn about Stratis and Virtual Data Optimizer (VDO).

Stratis is a storage management tool to simplify running the most typical daily tasks.
It uses the underlying technologies explained in the previous chapters, such as LVM,
partition schemas, and filesystems.

VDO is a storage layer that includes a driver that sits between our applications and the
storage devices to provide deduplication and compression of the data stored, as well as
tools to manage this functionality. This will allow us, for example, to maximize the ability
of our system to hold virtual machine (VM) instances that will only consume disk space
based on what makes them unique, but just storing once the data that is common to them.

We can also use VDO for storing different copies of our backups, knowing that disk usage
will still be optimized.

By the end of this chapter, we will know how VDO works and what is required to set it up
for our system.

384 Advanced Storage Management with Stratis and VDO

We will explore how to prepare, configure, and use our systems in the following sections:

• Understanding Stratis

• Installing and enabling Stratis

• Managing storage pools and filesystems with Stratis

• Preparing systems to use VDO

• Creating a VDO volume

• Assigning a VDO volume to LVM

• Testing a VDO volume and reviewing stats

Let's jump into preparing our systems to use VDO.

Technical requirements
It is possible to continue the practice of using the VM created at the beginning of
this book in Chapter 1, Installing RHEL8. Any additional packages required for this
chapter will be indicated and can be downloaded from https://github.com/
PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration.

We will need, for the Understanding Stratis section, the same two disks added in Chapter
13, Flexible Storage Management with LVM, after all the LVM components have been
cleaned up from them.

Understanding Stratis
As a new feature, to manage storage, Stratis was included in RHEL 8 as a technology
preview (as of version 8.3 of RHEL). Stratis was created to manage local storage by
combining a system service, stratisd, with the well-known tools in LVM (explained in
Chapter 13, Flexible Storage Management with LVM) and the XFS filesystem (explained
in Chapter 12, Managing Local Storage and Filesystems), which makes it very solid and
reliable.

Important note
The filesystems/pools created with Stratis should always be managed with
it, and not with the LVM/XFS tools. In the same way, already-created LVM
volumes should not be managed with Stratis.

https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration

Installing and enabling Stratis 385

Stratis combines local disks into pools and then distributes the storage in filesystems,
as shown in the following diagram:

Figure 14.1 – Stratis simplified architecture diagram

As can be seen, when compared to LVM, Stratis provides a much simpler and
easy-to-understand interface to storage management. In the following sections, we
will install and enable Stratis and then use the same disks created in Chapter 13, Flexible
Storage Management with LVM, to create a pool and a couple of filesystems.

Installing and enabling Stratis
To be able to work with Stratis, we will start by installing it. The two packages required
to work with it are these:

• stratis-cli: A command-line tool to execute storage management tasks

• stratisd: A system service (also known as a daemon) that takes commands and
executes the low-level tasks

To install them, we will use the dnf command:

[root@rhel8 ~]# dnf install stratis-cli stratisd

Updating Subscription Management repositories.

Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)
17 MB/s | 32 MB 00:01

Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)
12 MB/s | 30 MB 00:02

Dependencies resolved.

===
=====================================

Package Arch Version
Repository Size

===

386 Advanced Storage Management with Stratis and VDO

=====================================

Installing:

stratis-cli noarch 2.3.0-3.el8
rhel-8-for-x86_64-appstream-rpms 79 k

stratisd x86_64 2.3.0-2.el8
rhel-8-for-x86_64-appstream-rpms 2.1 M

[omitted]

Complete!

Now we can start the stratisd service with systemctl:

[root@rhel8 ~]# systemctl start stratisd

[root@rhel8 ~]# systemctl status stratisd

● stratisd.service - Stratis daemon

 Loaded: loaded (/usr/lib/systemd/system/stratisd.service;
enabled; vendor preset: enabled)

 Active: active (running) since Sat 2021-05-22 17:31:35 CEST;
53s ago

 Docs: man:stratisd(8)

Main PID: 17797 (stratisd)

 Tasks: 1 (limit: 8177)

 Memory: 1.2M

 CGroup: /system.slice/stratisd.service

 └─17797 /usr/libexec/stratisd --log-level debug

[omitted]

Now we shall enable it to start at boot:

[root@rhel8 ~]# systemctl enable stratisd

[root@rhel8 ~]# systemctl status stratisd

● stratisd.service - Stratis daemon

 Loaded: loaded (/usr/lib/systemd/system/stratisd.service;
enabled; vendor preset: enabled)

[omitted]

Tip
We can do both tasks with one command, which would be systemctl
enable --now stratisd.

Managing storage pools and filesystems with Stratis 387

Let's check with stratis-cli that the daemon (also known as system service) is
running:

[root@rhel8 ~]# stratis daemon version

2.3.0

We have it all ready, so it's time to start working on disks. Let's move on to the next
sub-section.

Managing storage pools and filesystems with
Stratis
In order to have some storage available for Stratis, we will use the /dev/vdb and /dev/
vdc disks. We need to be sure that they do not have any logical volumes or partitions on
them. Let's review them:

[root@rhel8 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move
Log Cpy%Sync Convert

 root rhel -wi-ao---- <8,00g

 swap rhel -wi-ao---- 1,00g

[root@rhel8 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 rhel 1 2 0 wz--n- <9,00g 0

[root@rhel8 ~]# pvs

 PV VG Fmt Attr PSize PFree

 /dev/vda2 rhel lvm2 a-- <9,00g 0

We are good: all the LVM-created objects are on disk /dev/vda. Let's check the other
two disks, /dev/vdb and /dev/vdc:

[root@rhel8 ~]# parted /dev/vdb print

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 1074MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

388 Advanced Storage Management with Stratis and VDO

[root@rhel8 ~]# parted /dev/vdc print

Error: /dev/vdc: unrecognised disk label

Model: Virtio Block Device (virtblk)

Disk /dev/vdc: 1074MB

Sector size (logical/physical): 512B/512B

Partition Table: unknown

Disk Flags:

Disk /dev/vdc has no partition table label. We are good with this one. However,
disk /dev/vdb has a partition table. Let's remove it:

[root@rhel8 ~]# dd if=/dev/zero of=/dev/vdb count=2048 bs=1024

2048+0 records in

2048+0 records out

2097152 bytes (2,1 MB, 2,0 MiB) copied, 0,0853277 s, 24,6 MB/s

Tip
The dd command, which stands for disk dump, is used to dump data from
devices and to devices. The special device /dev/zero simply generates
zeroes, which we use to overwrite the initial sectors of the disk, where the label
lives. Please use dd with care; it may overwrite anything without warning.

Now we are ready to create the first pool with the stratis command:

[root@rhel8 ~]# stratis pool create mypool /dev/vdb

[root@rhel8 ~]# stratis pool list

Name Total Physical Properties

mypool 1 GiB / 37.63 MiB / 986.37 MiB ~Ca,~Cr

We currently have the pool created, as shown in the following diagram:

Figure 14.2 – Stratis pool created

Managing storage pools and filesystems with Stratis 389

We have the pool created; we can now create a filesystem on top of it:

[root@rhel8 ~]# stratis filesystem create mypool data

[root@rhel8 ~]# stratis filesystem list

Pool Name Name Used Created Device
UUID

mypool data 546 MiB May 23 2021 19:16 /dev/stratis/
mypool/data b073b6f1d56843b888cb83f6a7d80a43

The status of the storage is as follows:

Figure 14.3 – Stratis filesystem created

Let's prepare to mount the filesystem. We need to add the following line in /etc/fstab:

/dev/stratis/mypool/data /srv/stratis-data xfs
defaults,x-systemd.requires=stratisd.service 0 0

Important note
In order for a Stratis filesystem to be mounted correctly during boot, we shall
add the x-systemd.requires=stratisd.service option so it is
mounted after the stratisd service is started.

Now we can mount it:

[root@rhel8 ~]# mkdir /srv/stratis-data

[root@rhel8 ~]# mount /srv/stratis-data/

390 Advanced Storage Management with Stratis and VDO

Let's now extend the pool:

[root@rhel8 ~]# stratis blockdev list mypool

Pool Name Device Node Physical Size Tier

mypool /dev/vdb 1 GiB Data

[root@rhel8 ~]# stratis pool add-data mypool /dev/vdc

[root@rhel8 ~]# stratis blockdev list mypool

Pool Name Device Node Physical Size Tier

mypool /dev/vdb 1 GiB Data

mypool /dev/vdc 1 GiB Data

As the underlying layer uses thin-pooling, we do not need to extend the filesystem. The
storage is as follows:

Figure 14.4 – Stratis pool extended

Time to use the stratis snapshot command to create a snapshot. Let's create some
data and then snapshot it:

[root@rhel8 ~]# stratis filesystem

Pool Name Name Used Created Device
UUID

mypool data 546 MiB May 23 2021 19:54 /dev/stratis/
mypool/data 08af5d5782c54087a1fd4e9531ce4943

[root@rhel8 ~]# dd if=/dev/urandom of=/srv/stratis-data/file
bs=1M count=512

512+0 records in

512+0 records out

536870912 bytes (537 MB, 512 MiB) copied, 2,33188 s, 230 MB/s

[root@rhel8 ~]# stratis filesystem

Pool Name Name Used Created Device

Preparing systems to use VDO 391

UUID

mypool data 966 MiB May 23 2021 19:54 /dev/stratis/
mypool/data 08af5d5782c54087a1fd4e9531ce4943

[root@rhel8 ~]# stratis filesystem snapshot mypool data data-
snapshot1

[root@rhel8 ~]# stratis filesystem

Pool Name Name Used Created
Device UUID

mypool data 1.03 GiB May
23 2021 19:54 /dev/stratis/mypool/data
08af5d5782c54087a1fd4e9531ce4943

mypool data-snapshot1 1.03 GiB May 23
2021 19:56 /dev/stratis/mypool/data-snapshot1
a2ae4aab56c64f728b59d710b82fb682

Tip
To see the internal pieces of Stratis, you can run the lsblk command. With
it, you will see the components used by Stratis in a tree: physical devices,
allocations for metadata and data, pools, and filesystems. All of that is
abstracted by Stratis.

With this, we have seen an overview of Stratis in order to cover the basics of its
management. Remember that Stratis is in preview and therefore it should not be used in
production systems.

Let's move on now to other advanced topics in storage management by reviewing data
deduplication with VDO.

Preparing systems to use VDO
As mentioned earlier, VDO is a driver, specifically a Linux device-mapper driver, that uses
two kernel modules:

• kvdo: This does data compression.

• uds: This is in charge of deduplication.

392 Advanced Storage Management with Stratis and VDO

Regular storage devices such as local disks, Redundant Array of Inexpensive Disks
(RAID), and so on are the final backend where data is stored; the VDO layer on top
reduces disk usage via the following:

• The removal of zeroed blocks, only storing them in the metadata.

• Deduplication: Duplicate data blocks are referenced in the metadata but stored
only once.

• Compression, using 4 KB data blocks with a lossless compression algorithm
(LZ4: https://lz4.github.io/lz4/).

These techniques have been used in the past in other solutions, such as in
thin-provisioned VMs that only kept the differences between VMs, but VDO
makes this happen transparently.

Similar to thin-provisioning, VDO can mean faster data throughput, as data can be
cached by the system controller and several services or even VMs can use that data
without there being a need for additional disk reads to access it.

Let's install the required packages on our system in order to create VDO volumes by
installing the vdo and kmod-kvdo packages:

dnf install vdo kmod-kvdo

Now, with the packages installed, we're ready to create our first volume in the next section.

Creating a VDO volume
To create a VDO device, we will make use of the loopback device we created in Chapter
12, Managing Local Storage and Filesystems, so we will check first whether it's mounted
or not by executing this:

mount|grep loop

https://lz4.github.io/lz4/

Creating a VDO volume 393

If no output is shown, we're set for creating our vdo volume on top of it with the
following:

vdo create -n myvdo --device /dev/loop0 –force

The output is shown in the following screenshot:

Figure 14.5 – vdo volume creation

394 Advanced Storage Management with Stratis and VDO

Once the volume has been created, we can execute vdo status to get detailed
information about the volume created, as seen in the following screenshot:

Figure 14.6 – Output of vdo status

Assigning a VDO volume to an LVM volume 395

As we can see, there's information about the kvdo version, the configuration file being
used, and our volumes (size, compression status, and so on).

The new volume can now be seen via /dev/mapper/myvdo (the name we assigned
with –n) and it's ready to be used.

We can execute vdo status|egrep -i "compression|dedupli" and get an
output that looks as follows:

Figure 14.7 – Checking vdo status for compression and deduplication

This means that both compression and deduplication are enabled on our volume, so we're
ready to test the functionality by adding it to an LVM volume in the next section.

Assigning a VDO volume to an LVM volume
In the previous section, we created a VDO volume, which will now become our physical
volume (PV) when creating an LVM volume group and some logical volumes on top of it.

Let's create the PV by running the following sequence of commands:

1. pvcreate /dev/mapper/myvdo

2. vgcreate myvdo /dev/mapper/myvdo

3. lvcreate -L 15G –n myvol myvdo

At this point, our /dev/myvdo/myvol is ready to be formatted. Let's use the XFS
filesystem:

mkfs.xfs /dev/myvdo/myvol

396 Advanced Storage Management with Stratis and VDO

Once the filesystem has been created, let's put some data on it by mounting as follows:

mount /dev/myvdo/myvol /mnt

Now let's test the VDO volume in the next section.

Testing a VDO volume and reviewing the stats
In order to test deduplication and compression, we will test with a big file, such as
the RHEL 8 KVM guest image available at https://access.redhat.com/
downloads/content/479/ver=/rhel---8/8.3/x86_64/product-
software.

Once downloaded, save it as rhel-8.3-x86_64-kvm.qcow2 and copy it four times
to our VDO volume:

cp rhel-8.3-x86_64-kvm.qcow2 /mnt/vm1.qcow2

cp rhel-8.3-x86_64-kvm.qcow2 /mnt/vm2.qcow2

cp rhel-8.3-x86_64-kvm.qcow2 /mnt/vm3.qcow2

cp rhel-8.3-x86_64-kvm.qcow2 /mnt/vm4.qcow2

This would be the typical case for a server holding VMs that start of the same base disk
image, but do we see any improvement?

Let's execute vdostats --human-readable to verify the data. Note that the image
downloaded is 1.4 GB, as reported by ls –si. The output obtained from vdostats
--human-readable is as follows:

Device Size Used Available Use% Space
saving%

/dev/mapper/myvdo 20.0G 5.2G 14.8G 25%
75%

The original volume (the loopback file) was 20 GB, so that's the size we can see, but
the LVM volume we created was 15 GB, judging from the output, and we see that
approximately only 1.2 GB has been consumed, even if we've got four files of 1.4 GB each.

The percentage is also very clear. We've saved 75% of the space (three files out of four are
exact copies). If we make an additional copy, we will see that the percentage goes to 80%
(1 out of 5 copies).

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.3/x86_64/product-software
https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.3/x86_64/product-software
https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.3/x86_64/product-software

Testing a VDO volume and reviewing the stats 397

Let's check out one of the other approaches, by creating an empty file (filled with zeros):

[root@bender mnt]# dd if=/dev/zero of=emptyfile bs=16777216
count=1024

dd: error writing 'emptyfile': No space left on device

559+0 records in

558+0 records out

9361883136 bytes (9.4 GB, 8.7 GiB) copied, 97.0276 s, 96.5 MB/s

As we can see, we were able to write 9.4 GB before the disk completely filled, but let's
check the vdo stats again with vdostats --human-readable as seen in the
following screenshot:

Figure 14.8 – Checking the vdostats output

As we can see, we still have 14.8 GB available and we've increased the disk space saved
from 80% to 92%, because this big file is empty.

Wait – how, if we're using deduplication and compression, have we filled the volume if
92% of it has been saved?

As we did not indicate the logical size of the VDO volume, it set by default a 1:1 ratio with
the underlying device. This is the safest approach, but we're not taking real advantage of
the compression and deduplication beyond performance.

To make the most of the optimizations, we can create a bigger logical drive on top of the
volume we have. For example, if after a long period of time we're pretty sure that the disk
optimizations might be similar, we can grow the logical size with the following command:

vdo growLogical --name=myvdo --vdoLogicalSize=30G

398 Advanced Storage Management with Stratis and VDO

This will, of course, not increase the available size, as we defined a PV with a volume
group and a logical volume on top. So, we will also need to extend it by executing these
commands:

1. pvresize /dev/mapper/myvdo

2. lvresize –L +14G /dev/myvdo/myvol

3. xfs_growfs /mnt

With this, we have extended the physical volume, increased the size of the logical volume,
and extended the filesystem, so the space is now available to be used.

If we now execute df|grep vdo, we will see something like this:

Figure 14.9 – Disk space availability after resizing the volume

From this point on, we must be extremely careful, as our real usage of disk space might
not be as optimized in terms of possible compression as it was before, resulting in failures
in writes. It is then required to monitor available disk space as well as VDO status to
ensure that we're not attempting to use more space than is available, for example, if the
files stored can't be compressed or deduplicated at the same ratio.

Important note
It's tempting to set a really big logical volume out of our real physical disk
space, but we should plan ahead and think about avoiding future problems,
such as the likelihood of compression ratios not being as high as our optimism.
Adequately profiling the actual data being stored and the typical compression
ratios for it can give us a better idea of what is a safe approach to be used while
we continue to actively monitor disk usage evolution, both for the logical
volume and for the physical one.

Long ago, when disk space was really expensive (and hard drives were 80 MB in total),
it became very popular to use tools that allowed an increase in disk space by using a
transparent layer of compression that could make some estimations and report bigger
space; but in reality, we know that content such as images and movies don't compress as
well as other document formats such as text files. Some document formats, such as the
ones used by LibreOffice, are already compressed files, so no extra compression benefits
are gained.

Summary 399

But this changes when we speak about VMs, where the base for each one is more or
less equal (based on company policies and standards) and are deployed via cloning disk
images and later performing small customization, but in essence, sharing most of the disk
contents.

Tip
In general, bear in mind that optimizations really just mean trade-offs. In the
case of tuned profiles, you're adjusting throughput for latency, and in our case,
you're trading CPU and memory resources for disk availability. The only way
to tell whether something's a worthwhile trade-off is to implement it and see
how it performs, look at the benefits gained, and then continue to monitor
performance over time.

Summary
In this chapter, we have learned about VDO and Stratis. We've looked at simple ways to
manage storage, how to save disk space transparently, and how to gain some throughput
in the process.

With Stratis, we have created a pool with two disks and assigned it to a mountpoint. It
takes fewer steps than doing so with LVM, but on the other hand, we have less control
over what we are doing. In any case, we learned how to use this preview technology
in RHEL 8.

With VDO, we used the volume we created to define an LVM PV and, on top of it,
a volume group and a logical volume that we've formatted using the knowledge gained
in previous chapters to store a VM disk image several times, to simulate a scenario where
several VMs are started from the same base.

We also learned how to check the VDO optimizations and the amount of disk saved.

Now, we're ready to use Stratis instead of LVM to group and distribute storage
(though not for production). We can also implement VDO for our servers to start
optimizing disk usage.

In the next chapter, we will learn about the boot process.

15
Understanding the

Boot Process
The boot process is what happens between the moment you power on a machine
(physical or virtual) and when the operating system is completely loaded.

Like in many good video games, there are three stages for it: the initial startup performed
by the hardware (again physical or virtual), the load of the initial stages of the operating
system, and then the mechanism that helps run the required services in the system. We
will review the three stages in this chapter, and we will also add tips and tricks in order to
intervene in a system and perform rescue operations.

The sections in this chapter in which we will cover all these topics are as follows:

• Understanding the boot process – BIOS and UEFI booting

• Working with GRUB, the bootloader, and initrd system images

• Managing the boot sequence with systemd

• Intervening in the boot process to gain access to a system

It is very likely that you will not need to make many changes in the first two stages of
the boot process, but these are the points that could be extremely helpful in cases of
emergency, forensics, or major failures. That's why it's important to go through them
carefully.

402 Understanding the Boot Process

The third stage, the one managed by systemd, is where more actions and changes will be
performed in order to manage which services are running by default in the system. We
have already seen examples of most of the tasks to be performed in previous chapters;
however, in this one we will provide a comprehensive review.

Let's get started with stage one.

Understanding the boot process – BIOS and
UEFI booting
Computers have hardware-embedded software controllers, also called firmware, that let
you manage the very lowest layers of the hardware. This firmware is what performs the
first recognition of what hardware is available in the system and what hardware features
are enabled (such as pre-boot network execution, called PXE).

In the architecture known as PC (for Personal Computer), also referred to as x86, which
Intel and IBM popularized, the embedded firmware is referred to as BIOS, which stands
for Basic Input and Output System.

The BIOS boot process, with Linux, takes the following steps:

1. The machine is powered on and BIOS firmware is loaded.

2. The firmware initializes devices such as keyboard, mouse, storage, and other
peripherals.

3. The firmware reads the configuration, including the boot order, specifying which
storage device is the one to continue the boot process with.

4. Once the storage device is selected, BIOS will load the Master Boot Record (MBR)
on it, which will enable running the operating system loader. In RHEL, the
operating system loader is called Grand Unified Bootloader (GRUB).

5. GRUB loads the configuration and the operating system kernel and initial RAM
disk as specified in its configuration. In Red Hat Enterprise Linux (RHEL) the
kernel is stored in a file called vmlinuz, and the initial boot image in a file called
initrd. All of the GRUB configuration vmlinuz and initrd files are stored in
the /boot partition.

6. The initial boot image enables loading the first process of the system, also referred
to as init, which in RHEL8 is systemd.

7. systemd loads the rest of the operating system.

Understanding the boot process – BIOS and UEFI booting 403

For this process to happen, the disk has to have an MBR partition table, and the partition
assigned to /boot has to be marked as bootable.

Tip
The MBR partition table format is very limited, allowing only four primary
partitions and using extensions such as extended partitions to overcome this
limit. It is not recommended to use this type of partition unless it is completely
required.

The UEFI boot process is very similar to the BIOS boot process. UEFI stands for
Unified Extensible Firmware Interface. The main difference in the boot sequence
is that UEFI can access and read disk partitions directly. The flow for it is as follows:

1. The machine is powered on and the UEFI firmware is loaded.

2. The firmware initializes devices such as keyboard, mouse, storage, and other
peripherals.

3. The firmware reads the configuration, in which it is specified which storage device
and bootable partition to continue the boot process with (UEFI does not need an
MBR to boot).

4. Once the storage device is selected, the partitions on it are read from the GUID
Partition Table (GPT). The first partition with VFAT format is accessed. Then
EFI Boot Loader is loaded and run. The EFI Boot Loader in RHEL lives in the
/boot/efi partition, and it continues to load GRUB.

5. GRUB then loads the operating system kernel, which in RHEL is stored in a
file called vmlinuz, and the initial boot image, which is stored in a file called
initrd. GRUB configuration vmlinuz and initrd files are stored in the
/boot partition.

6. The initial boot image enables loading the first process of the system, also referred
to as init, which in RHEL8 is systemd.

7. systemd loads the rest of the operating system.

UEFI has several advantages over BIOS, enabling more complete pre-boot environments
and other capabilities such as secure boot and support for GPT partitions that can go
beyond the 2 TB limit that MBR partitions have.

The installer will take care of creating the boot and, if needed, UEFI partitions and
binaries.

404 Understanding the Boot Process

The part of pre-boot that needs to be known for the Red Hat Certified System
Administrator certification is how to load the operating system loader from it. Through
BIOS or UEFI we can select from which storage device the operating system will load and
move to the next phase. Let's go to this next phase in the next section.

Working with GRUB, the bootloader, and initrd
system images
Once the pre-boot execution is completed, the system will be running the GRUB
bootloader.

GRUB has the mission to load the main file of an operating system, the kernel, pass
parameters and options to it, and load the initial RAM disk, also known as initrd.

GRUB can be installed by using the grub2-install command. We will need to know
which disk device will be used to boot, in this case, /dev/vda:

[root@rhel8 ~]# grub2-install /dev/vda

Installing for i386-pc platform.

Installation finished. No error reported.

Important note
You should point grub-install to the disk you will use to boot the
system, the same one that you configured in the BIOS/UEFI to boot from.

This is intended to be used to manually rebuild a system or to fix a broken boot.

GRUB files are stored in /boot/grub2. The main configuration file is /boot/grub2/
grub.cfg; however, if you take a close look at this file you will see the following header:

[root@rhel8 ~]# head -n 6 /boot/grub2/grub.cfg

#

DO NOT EDIT THIS FILE

#

It is automatically generated by grub2-mkconfig using
templates

from /etc/grub.d and settings from /etc/default/grub

#

Working with GRUB, the bootloader, and initrd system images 405

As you can see, this file is automatically generated and, therefore, not intended to be
edited manually. How do we make changes to it then? There are two ways to do so:

• The first way is by following the instructions mentioned in the grub.cfg file.
This means editing the /etc/default/grub file and/or the contents in the
/etc/grub.d/ directory, and then regenerating the GRUB configuration by
running grub2-mkconfig.

• The second way is by using the grubby command-line tool.

Important note
In RHEL, when there is a new version of the kernel, it is not updated, but a new
kernel is installed alongside the previous one, adding a new entry in GRUB. In
this way, there is an easy way to roll back to a previous working kernel in case
it's needed. During the installation, a new updated initrd is created for the
new kernel.

Let's take a look at the current kernel configuration with grubby. The --default-
kernel option will show which kernel file is loaded by default:

 [root@rhel8 ~]# grubby --default-kernel

/boot/vmlinuz-4.18.0-240.15.1.el8_3.x86_64

The --default-title option will show the name used during boot:

[root@rhel8 ~]# grubby --default-title

Red Hat Enterprise Linux (4.18.0-240.15.1.el8_3.x86_64) 8.3
(Ootpa)

406 Understanding the Boot Process

We can see more information for the default kernel by using the --info option:

[root@rhel8 ~]# grubby --info=/boot/vmlinuz-4.18.0-
240.15.1.el8_3.x86_64

index=0

kernel="/boot/vmlinuz-4.18.0-240.15.1.el8_3.x86_64"

args="ro crashkernel=auto resume=/dev/mapper/rhel-swap rd.lvm.
lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet $tuned_params"

root="/dev/mapper/rhel-root"

initrd="/boot/initramfs-4.18.0-240.15.1.el8_3.x86_64.img
$tuned_initrd"

title="Red Hat Enterprise Linux (4.18.0-240.15.1.el8_3.x86_64)
8.3 (Ootpa)"

id="21e418ac989a4b0c8afb156418393409-4.18.0-240.15.1.el8_3.
x86_64"

We can see the options passed to GRUB:

• index: Shows the index number of the entry

• kernel: The file containing the kernel that will be loaded to run the core of the
operating system

• root: The partition, or logical volume, that will be assigned to the root / directory
and mounted

• initrd: File containing the RAM disk to perform the initial part of the boot
process

• title: Descriptive title to be shown to the user during the boot process

• id: Identifier of the boot entry

Tip
You may want to run the grubby command to obtain the information for the
kernel configured as default. To do so, you can do it by running the following
command: grubby --info=$(grubby --default-kernel).

Working with GRUB, the bootloader, and initrd system images 407

Let's make the boot process more verbose by removing the quiet and rhbg arguments
passed to the kernel:

[root@rhel8 ~]# grubby --remove-args="rhgb quiet" \

--update-kernel=/boot/vmlinuz-4.18.0-240.15.1.el8_3.x86_64

[root@rhel8 ~]# grubby \

--info=/boot/vmlinuz-4.18.0-240.15.1.el8_3.x86_64

index=0

kernel="/boot/vmlinuz-4.18.0-240.15.1.el8_3.x86_64"

args="ro crashkernel=auto resume=/dev/mapper/rhel-swap rd.lvm.
lv=rhel/root rd.lvm.lv=rhel/swap $tuned_params"

root="/dev/mapper/rhel-root"

initrd="/boot/initramfs-4.18.0-240.15.1.el8_3.x86_64.img
$tuned_initrd"

title="Red Hat Enterprise Linux (4.18.0-240.15.1.el8_3.x86_64)
8.3 (Ootpa)"

id="21e418ac989a4b0c8afb156418393409-4.18.0-240.15.1.el8_3.
x86_64"

Let's test it by rebooting the machine with the systemctl reboot command. This is
an example output:

Figure 15.1 – Verbose boot

408 Understanding the Boot Process

In a normal boot, this may not be very useful as it goes too fast. However, if there are
issues, it can help debug the situation from the console. To review these messages after
booting, the dmesg command can be used:

Figure 15.2 – Output of the dmesg command

We can add an argument to the kernel by using the --args option. Let's add the quiet
option again:

[root@rhel8 ~]# grubby --args="quiet" \

--update-kernel=/boot/vmlinuz-4.18.0-240.15.1.el8_3.x86_64

[root@rhel8 ~]# grubby \

--info=/boot/vmlinuz-4.18.0-240.15.1.el8_3.x86_64

index=0

kernel="/boot/vmlinuz-4.18.0-240.15.1.el8_3.x86_64"

args="ro crashkernel=auto resume=/dev/mapper/rhel-swap rd.lvm.
lv=rhel/root rd.lvm.lv=rhel/swap $tuned_params quiet"

root="/dev/mapper/rhel-root"

initrd="/boot/initramfs-4.18.0-240.15.1.el8_3.x86_64.img
$tuned_initrd"

title="Red Hat Enterprise Linux (4.18.0-240.15.1.el8_3.x86_64)
8.3 (Ootpa)"

Working with GRUB, the bootloader, and initrd system images 409

id="21e418ac989a4b0c8afb156418393409-4.18.0-240.15.1.el8_3.
x86_64"

Important note
The --info and --update-kernel options accept the ALL option to
review or do actions to all the configured kernels.

If any administration task requires us to change kernel parameters, now we know how to
do it. Let's move to the next section of the boot process, initrd.

The initrd file, or initial RAM disk, contains a minimal system that is used to prepare
the system to start. We found it in the previous configuration as /boot/initramfs-
4.18.0-240.15.1.el8_3.x86_64.img. It can be regenerated by using the dracut
command. Let's see an example of how to rebuild the current initrd file:

[root@rhel8 ~]# dracut --force --verbose

dracut: Executing: /usr/bin/dracut --force --verbose

dracut: dracut module 'busybox' will not be installed, because
command 'busybox' could not be found!

[omitted]

dracut: *** Including module: shutdown ***

dracut: *** Including modules done ***

dracut: *** Installing kernel module dependencies ***

dracut: *** Installing kernel module dependencies done ***

dracut: *** Resolving executable dependencies ***

dracut: *** Resolving executable dependencies done***

dracut: *** Hardlinking files ***

dracut: *** Hardlinking files done ***

dracut: *** Generating early-microcode cpio image ***

dracut: *** Constructing GenuineIntel.bin ****

dracut: *** Constructing GenuineIntel.bin ****

dracut: *** Store current command line parameters ***

dracut: *** Stripping files ***

dracut: *** Stripping files done ***

dracut: *** Creating image file '/boot/initramfs-4.18.0-
240.15.1.el8_3.x86_64.img' ***

dracut: *** Creating initramfs image file '/boot/initramfs-
4.18.0-240.15.1.el8_3.x86_64.img' done ***

410 Understanding the Boot Process

We can see in the previous output what kernel modules and files, required for early access,
are included in the initrd file. This step is useful when our initrd file is corrupted and
also when restoring a system from a backup, if done in different hardware, to include the
proper storage drivers.

Tip
Check the manual page of dracut to learn more on options to create
initrd files. There's a Red Hat knowledge base article to unpack initrd,
an interesting exercise to learn more: https://access.redhat.com/
solutions/24029.

We have learned the very basics of the early stages of the boot process in order to be able
to start troubleshooting boot issues, as required to become an RHCSA. This advanced
topic could be covered in an entire book, but very little of it will be used in your daily
tasks as a system administrator. That's why we only included the required aspects of it. We
will include a specific use case in the last section of this chapter called Intervening in the
boot process to gain access to a system and fix disk issues. Let's move on to the next topic on
how services are managed in RHEL with systemd.

Managing the boot sequence with systemd
We have already learned how the firmware of the system will take care of pointing at
a disk to run the operating system loader, which in RHEL is GRUB.

GRUB will load the kernel and initrd to prepare the system to start. Then it's time to
start the first process of the system, also referred to as process 1 or PID 1 (PID stands for
process identifier). This process has to take care of loading all the required services in the
system efficiently. In RHEL8, the PID 1 is run by systemd.

In Chapter 4, Tools for Regular Operations, we described services and targets management
with systemd. Let's review in this chapter its interactions with the boot sequence.

The first two things related to the boot sequence that we can do with systemd are to
reboot the system and to power it off. We will do it with the systemctl tool:

[root@rhel8 ~]# systemctl reboot

We will see that the system will reboot. We can check how long the system has been
running with the uptime command:

[root@rhel8 ~]# uptime

11:11:39 up 0 min, 1 user, load average: 0,62, 0,13, 0,04

https://access.redhat.com/solutions/24029
https://access.redhat.com/solutions/24029

Managing the boot sequence with systemd 411

Now it's time to check poweroff. Before doing so, remember that after running this
command you will need to have a way to power on the machine again. Once we are aware
of the process we are going to follow, let's run it:

[root@rhel8 ~]# systemctl poweroff

Now I shall power my machine on again.

There is a command that will stop the system but without sending the signal to power
the machine off, which is systemctl halt. The cases where this can be used are rare;
however, it's good to know that it exists and what it does.

Important note
The previously shown commands can be abbreviated to reboot and
poweroff. If you check the file in /usr/sbin/poweroff you will see
that it is a symbolic link pointing to systemctl.

In Chapter 4, Tools for Regular Operations, we also reviewed how to set a default systemd
target with systemctl. However, we can override the default configuration during
boot time by passing the systemd.unit parameter to the kernel. We can do that using
grubby:

[root@rhel8 ~]# systemctl get-default

multi-user.target

[root@rhel8 ~]# grubby --args="systemd.unit=emergency.target"
--update-kernel=/boot/vmlinuz-4.18.0-240.15.1.el8_3.x86_64

[root@rhel8 ~]# systemctl reboot

Now the system is rebooting. The systemd.unit=emergency.target parameter has
been passed by GRUB to the kernel, and from the kernel to systemd, which, in turn, will
ignore the default configuration and load the services required for the emergency target.

Now the system is started in emergency mode and is waiting for the root password to give
you control:

Figure 15.3 – RHEL system booted in emergency mode

412 Understanding the Boot Process

In emergency mode, there is no network configured and no other process running. You
can make changes to the system knowing that no other user is accessing it. Also, only the
/ filesystem is mounted in read-only mode.

If a filesystem in the system is broken, this would be a good way to check it without any
service accessing it. Let's try it with the command for checking the filesystem, which is
called fsck:

[root@rhel8 ~]# fsck /boot

fsck from util-linux 2.32.1

If you wish to check the consistency of an XFS filesystem or

repair a damaged filesystem, see xfs_repair(8).

The filesystem is OK. We could run xfs_repair on it, as it is an xfs filesystem
(fsck detects the filesystem used) if it had issues that required a fix.

At this point we may be thinking, how can we make changes to the root filesystem if it's
already mounted as read-only at /? The process starts by remounting the / filesystem as
read-write:

[root@rhel8 ~]# mount -o remount -o rw /

Remember, you can access the manual pages for the command by running man mount.
Now our root filesystem is mounted in / as read-write. We also need to mount /boot,
so let's do it:

[root@rhel8 ~]# mount /boot

With the /boot mounted, let's do some admin tasks, such as removing the arguments we
have used in GRUB:

[root@rhel8 ~]# grubby --remove-args="systemd.unit=emergency.
target" --update-kernel=/boot/vmlinuz-4.18.0-240.15.1.el8_3.
x86_64

[root@rhel8 ~]# reboot

And we are back to a regular boot in the system. This may not be a practical way to go to
emergency mode in Linux, but it shows how to pass parameters to systemd at boot.

Intervening in the boot process to gain access to a system 413

Tip
There is rescue.target that loads more services and makes the process
somewhat easier. It does so by waiting for sysinit.target to complete,
something that the emergency target does not do. A good exercise would be to
repeat the previous sequence with rescue.target.

We will see in the coming section how to make this change, and similar ones, for
a one-time boot only and more easily during the GRUB boot sequence, and in a way
in which no password is required.

Intervening in the boot process to gain access
to a system
Sometimes you need to intervene in a system that was handed over in which you do not
have the password for the root user. This is an exercise that, though it sounds like an
emergency situation, is more frequent than you would expect.

Important note
The boot sequence must not have any disk encrypted for it to work or you will
need the password for the encrypted volumes.

The way to perform this procedure starts by stopping the boot process during the GRUB
menu. This means we need to restart the system. Once the BIOS/UEFI checks have
finished, the system will load GRUB. There we can stop the count by pressing the down
or up arrow key while it's waiting for the selection of the kernel, as in the following
screenshot:

Figure 15.4 – GRUB menu to select the kernel

We move back to the first entry. Then we read the bottom of the screen where we find the
instructions to edit the boot line:

Figure 15.5 – GRUB menu to select the kernel

414 Understanding the Boot Process

If we press the E key, we will be able to edit the boot line selected in the menu. We will see
the following five lines:

Figure 15.6 – GRUB menu to select the kernel

The first three lines with load_video, set gfx_payload=keep, and insmod gzio
are setting options for GRUB. The next two options are the ones that are important. Let's
review them:

• linux: Defines the kernel to be loaded and passes parameters to it

• initrd: Defines where to load the initrd and if there are any options for it

Tip
Please note that the linux line is so long that it is wrapped, as we can see by
the \ symbols, which mean that the line continues below.

We shall now go to the end of the linux line and add the rd.break option, as in the
following screenshot:

Figure 15.7 – linux kernel line edited with the rd.break option

To boot the edited line, we only need to press Ctrl + X. The rd.break option stops the
boot process before the initrd is loaded. The situation now is the following:

• A single shell is loaded.

• The current root filesystem mounted on / is a minimal one with basic
administration commands.

• The target root filesystem is mounted in /sysroot as read-only (instead of on /).

• No other filesystems are mounted.

• SELinux is not loaded.

Intervening in the boot process to gain access to a system 415

The first thing we can do now is switch to the real, on-disk root filesystem with chroot:

switch_root:/# chroot /sysroot

sh-4.4#

Now our root filesystem is properly mounted, but read-only. Let's change that in the same
way as we did in the previous section:

sh-4.4# mount –o remount –o rw /

Now we need to change the root user password with the passwd command:

sh-4.4# passwd

Changing password for user root

New password:

Retype new password:

passwd: all authentication tokens updated successfully

The password for the root user is now changed and the /etc/shadow file has been
updated. However, it was modified without SELinux enabled, and therefore it could cause
an issue in the next boot. To avoid that, there is a mechanism to fix the SELinux labels
during the next boot. This mechanism consists of creating the /.autorelabel hidden
empty file and then rebooting the system:

sh-4.4# touch /.autorelabel

Once the file is created, it's time to reboot it to apply the SELinux changes. In this status,
the machine may require forcing the power off and then powering on. During the next
boot, we will see the SELinux autorelabel happening:

Figure 15.8 – SELinux autorelabel during boot

Now we can log in with the root user and its new password.

416 Understanding the Boot Process

Summary
We have reviewed the boot sequence in this chapter. As you have seen, it is not long, but
it is complex and it is also very important as no system can run if it cannot boot. We have
learned the main differences between a BIOS-enabled system and a UEFI one, which
enables some capabilities but also has its own requirements. We have also learned about
GRUB and its important role in the boot sequence, how to modify entries permanently
with grubby, and how to make a one-time modification. We now know the main files to
boot, such as the kernel, vmlinuz, and the initial RAM disk, initrd.

This chapter also showed us how to start in emergency and rescue modes, as well as how
to intervene in a system to reset the root password.

We are now more prepared to handle any difficult situation in our systems with these tools
and procedures. It's time to dive deeper and learn about kernel tuning and performance
profiles in the next chapter.

16
Kernel Tuning
and Managing

Performance
Profiles with tuned

As described occasionally in previous chapters, each system performance profile must be
adapted to the expected usage for our system.

Kernel tuning plays a key role in this optimization, and we will be exploring this further
in this chapter in the following sections:

• Identifying processes, checking memory usage, and killing processes

• Adjusting kernel scheduling parameters to better manage processes

• Installing tuned and managing tuning profiles

• Creating a custom tuned profile

418 Kernel Tuning and Managing Performance Profiles with tuned

By the end of this chapter, you will know how kernel tuning is applied, how quick profiles
can be used via tuned to suit general use cases for different system roles, and how to
further extend those customizations for your servers.

Additionally, identifying processes that have become a resource hog and how to terminate
them and or prioritize them will be a useful way of getting a bit more juice out of our
hardware when most needed.

Let's get hands-on and learn about these topics!

Technical requirements
You can continue the practice of using the virtual machine (VM) created at the beginning
of this book in Chapter 1, Installing RHEL8. Any additional packages required for this
chapter will be indicated alongside the text.

Identifying processes, checking memory
usage, and killing processes
A process is a program that runs on our system—it might be a user logged in via Secure
Shell (SSH) that has a bash terminal process running, or even the portion of the SSH
daemon listening and replying to remote connections, or it could be a program such
as a mail client, a file manager, and so on being executed.

Of course, processes take up resources in our system: memory, Central Processing Unit
(CPU), disk, and so on. Identifying or locating ones that might be misbehaving is a key
task for system administrators.

Some of the basics were already covered in Chapter 4, Tools for Regular Operations, but it
would be a good idea to have a refresher on these before continuing; however, we will be
showing and using some of those tools in the context of performance tuning here, such
as—for example—the top command, which allows us to see processes and sort lists based
on CPU usage, memory usage, and so on. (Check the output of man top for a refresher
on how to change the sorting criteria.)

One parameter to watch while checking system performance is the load average, which
is a moving average made by the processes ready to run or waiting for input/output (I/O)
to complete. It's composed of three values—1, 5, and 15 minutes—and gives an idea
of whether a load is increasing or lowering. A rule of thumb is that if a load average is
below 1, there is no resource saturation.

Identifying processes, checking memory usage, and killing processes 419

The load average is shown with many other tools, such as the aforementioned top,
or with uptime or w, and so on.

If the system-load average is growing, CPU or memory usage is spiking, and if some
processes are listed there, it will be easier to locate. If the load average is also high and
increasing, it might be possible that the I/O operations are increasing it. It is possible to
install the iotop package, which provides the iotop command to monitor disk activity.
When executed, it will show the processes in a system and the disk activity: reads, writes,
and swaps that might give us some more hints about where to look.

Once a process has been identified as taking too many resources, we can send a signal
to control it.

A signal list can be obtained with the kill –l command, as illustrated in the following
screenshot:

Figure 16.1 – Available signals to send to processes

Note that each signal contains a number and a name—both can be used to send the signal
to the process via its process identifier (PID).

420 Kernel Tuning and Managing Performance Profiles with tuned

Let's review the most common ones, as follows:

From the list shown in Figure 16.1, it's important to know that each signal has a
disposition—that is, once a signal is sent, the process must, according to the signal
received, perform one of the following actions: terminate, ignore the signal, perform
a core dump, stop the process, or continue the process if it was stopped. The exact details
about each signal can be checked at man 7 signal, as illustrated in the following
screenshot:

Figure 16.2 – Listing of signals, number equivalent, disposition (action), and behavior (man 7 signal)

Identifying processes, checking memory usage, and killing processes 421

One of the most typical usages when arriving at this point is to terminate processes that
are misbehaving, so a combination of locating the process, obtaining the PID, and sending
a signal to it is a very common task... so common that there are even tools that allow you
to combine these stages in one command.

For example, we can compare ps aux|grep -i chrome|grep –v grep|awk
'{print $2}'|xargs kill –9 with pkill –9 –f chrome: both will perform
the same action, search processes named chrome, and send signal 9 (kill) to them.

Of course, even a user logging in is a process in the system (running SSH or the shell, and
more); we can find the processes started by our target user via a similar construction (with
ps, grep, and others) or with pgrep options such as pgrep –l –u user.

Bear in mind that, as the signals indicate, it's better to send a TERM signal to allow the
process to run its internal cleanup steps before exiting, as directly killing them might
result in leftovers in our system.

One interesting command that was widely used before terminal multiplexers such as
tmux or screen became commonplace was nohup, which was prepended to commands
that would last longer—for example, downloading a big file. This command captured the
terminal hangout signal, allowing the process executed to continue execution, storing the
output in a nohup.out file that could later be checked.

For example, to download the latest Red Hat Enterprise Linux (RHEL) Image Standard
Optical (ISO) file from the Customer Portal, select one release—for example, 8.4—and
once logged in at https://access.redhat.com/downloads/content/479/
ver=/rhel---8/8.4/x86_64/product-software, we will select the binary ISO
and right-click to copy the Uniform Resource Locator (URL) for the download.

Tip
The URLs obtained when copying from the Customer Portal are timebound,
meaning they are only valid for a short period of time, and afterward, the
download link is no longer valid and a new one should be obtained after
refreshing the URL.

In a terminal, we will then execute the following command with the copied URL:

nohup wget URL_OBTAINED_FROM_CUSTOMER_PORTAL &

With the preceding command, nohup will not close the processes on terminal hang-up
(disconnection), so wget will continue downloading the URL, and the ending ampersand
symbol (&) detaches the execution from the active terminal, leaving it as a background job
we can check with the jobs command until it has finished.

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.4/x86_64/product-software
https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.4/x86_64/product-software

422 Kernel Tuning and Managing Performance Profiles with tuned

If we forgot to add the ampersand, the program will be blocking our input, but we can
press Ctrl + Z on the keyboard and the process will be stopped. However, as we really
want it to be continuing execution but in the background, we will execute bg, which will
continue the execution of it.

In case we want to bring back the program to receive our input and interact with it, we can
move it to the foreground with the fg command.

If we press Ctrl + C instead, while the program has our input, it will receive a petition to
interrupt and stop execution.

You can see that workflow in the following screenshot:

Figure 16.3 – Suspending the process, resuming to the background,
bringing to the foreground, and aborting

In this case, we're downloading the Fedora 34 installation ISO (8 gigabytes (GB)) using
nohup and wget; as we forgot to add the ampersand, we executed Ctrl + Z (appearing on
screen as ^Z).

The job was reported as job [1] with a status of Stopped (also reported when executing
jobs).

Then, we bring the job to the background execution with bg, and now, jobs reports it as
Running.

Identifying processes, checking memory usage, and killing processes 423

Afterward, we bring the job back to the foreground with fg and execute Ctrl + C,
represented as ^C on the screen, to finalize it.

This feature enables us to run multiple background commands—for example, we can copy
a file in parallel to several hosts, as illustrated in the following screenshot:

Figure 16.4 – Sample for loop to copy a file to several servers with nohup

In this example, the copy operation performed over scp will be happening in parallel,
and, in the event of disconnection from our terminal, the job will continue execution and
the output will be stored on nohup.out files in the folder we were executing it from.

Important note
Processes launched with nohup will not be getting any additional input, so in
case the program asks for input, it will just stop execution. If the program asks
for input, it's recommended to use tmux instead as it will still protect from
terminal disconnection but also allow interaction with the launched program.

Not always will we be willing to kill processes or to stop or resume them; we may just
want to deprioritize or prioritize them—for example, for long-running tasks that might
not be critical.

Let's learn about this feature in the next section.

424 Kernel Tuning and Managing Performance Profiles with tuned

Adjusting kernel scheduling parameters to
better manage processes
The Linux kernel is a highly configurable piece of software, so there's a whole world of
tunables that can be used for adjusting its behavior: for processes, for network cards, for
disk, for memory, and more.

The most common tunables are the nice process value and the I/O priority, which
regulate respectively the prioritization versus other processes of the CPU and I/O time.

For interacting with processes we're about to start, we can use nice or ionice
commands, prepending the command we want to execute with some parameters
(remember to check the man contents for each one to get the full available range of
options). Just remember that for nice, processes can go from –20 to +19, with 0 being
the standard one, -20 the highest priority, and 19 the lowest priority (the higher the value,
the nicer the process is).

Each process has a likelihood of getting kernel attention to run; by changing the priority
via nice before execution or via renice once it's running, we can alter it a bit.

Let's think about a long-running process such as performing a backup—we want the
task to succeed, so we will not be stopping or killing the process, but at the same time,
we don't want it to alter the production or level of service of our server. If we define the
process with a nice value of 19, this means that any process in the system will get more
priority—that is, our process will keep running but will not make our system busier.

This gets us into an interesting topic—many new users arriving in the Linux world, or
administrators of other platforms, get a shock when they see that the system, with plenty
of memory (random-access memory, or RAM), is using swap space, or system load is
high. It is clear that some slight usage of swap and having lots of free RAM just means that
the kernel has optimized the usage by swapping out unused memory to disk. As long as
the system doesn't feel sluggish, having a high load just means that the system has a long
queue of processes to be executed, but—for example—if the processes are niced to 19, they
are in the queue, but as mentioned, any other process will get ahead of it.

When we're checking the system status with top or ps, we can also check for how long
a process has been running, and that is also accounted for by the kernel. A new process
just created that starts eating CPU and RAM has a higher chance of being killed by
the kernel to ensure system operability (remember the out-of-memory (OOM) killer
mentioned in Chapter 4, Tools for Regular Operations?).

Adjusting kernel scheduling parameters to better manage processes 425

For example, let's renice the process running our backup (containing the backup
pattern in the process name to the lowest priority) with the following code:

pgrep –f backup | xargs renice –n 19

143405 (process ID) old priority 0, new priority 19

144389 (process ID) old priority 0, new priority 19

2924457 (process ID) old priority 0, new priority 19

3228039 (process ID) old priority 0, new priority 19

As we can see, pgrep has collected a list of PIDs, and that list has been piped as
arguments for renice with a priority adjustment of 19, making processes nicer to others
actually running in the system.

Let's repeat the preceding example in our system by running a pi (π) calculation using
bc, as illustrated in the man page for bc. First, we will time how long it takes for your
system, and then, we will execute it via renice. So, let's get hands-on—first, let's time it,
as follows:

time echo "scale=10000; 4*a(1)" | bc –l

In my system, this was the result:

real 3m8,336s

user 3m6,875s

sys 0m0,032s

Now, let's run it with renice, as follows:

time echo "scale=10000; 4*a(1)" | bc -l &

pgrep –f bc |xargs renice –n 19 ; fg

In my system again, this was the result:

real 3m9,013s

user 3m7,273s

sys 0m0,043s

426 Kernel Tuning and Managing Performance Profiles with tuned

There's a slight difference of 1 second, but you can try running more processes to generate
system activity in your environment to make it more visible and add more zeros to the
scale to increase the time of execution. Similarly, ionice can adjust the priority of I/O
operations that a process is causing (reads, writes)—for example, repeating the action over
the processes for our backup, we could run the following command:

pgrep –f backup|xargs ionice –c 3 –p

By default, it will not output information, but we can check the value via execution of the
following command:

pgrep -f backup|xargs ionice -p

idle

idle

idle

idle

In this case, we've moved our backup processes so that I/O requests are handled when the
system is idle.

The class, which we specified with the –c argument, can be one of the following:

• 0: None

• 1: Real-time

• 2: Best-effort

• 3: Idle

With –p, we specify the processes to act on.

Most of the settings that we can apply to our system came from specific ones, applied
to each PID via the /proc/ virtual filesystem, such as—for example—adjusting the
oom_adj file to reduce the value shown on the oom_score file, which in the end
determines if the process should be higher in the list when OOM has to kill some
process to try saving the system from catastrophe.

Of course, there are system-level settings such as /proc/sys/vm/panic_on_oom that
can tune how the system has to react (panic or not) in case the OOM has to be invoked.

The disks also have a setting to define the scheduler being used—for example, for a disk
named sda, it can be checked via cat /sys/block/sda/queue/scheduler.

Installing tuned and managing tuning profiles 427

The scheduler used for a disk has different approaches and depends on the kernel
version—for example, it used to be noop, deadline, or cfq in RHEL 7, but in RHEL 8
those were removed, and we have md-deadline, bfq, kyber, and none.

This is such a big and complex topic that there is even a specific manual for it at
https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux_for_real_time/8/html-single/tuning_guide/
index, so if you're interested in going deeper, have a look at it.

I hope to have achieved two things here, as follows:

• Making clear that the system has a lot of options for tuning and that it has its
own documentation for it, and even a Red Hat Certified Architect exam for it at
https://www.redhat.com/en/services/training/rh442-red-hat-
enterprise-performance-tuning.

• It's not an easy task—several times in this book, one idea has been reinforced: test
everything using your system's workload, as results might vary from one system to
another.

Fortunately, there's no need to feel afraid about system tuning—it's something we can
become more proficient in with experience at all levels (knowledge, hardware, workloads,
and so on), but on the other hand, systems also include some easier ways to perform quick
adjustments that will fit many scenarios, as we will see in the next section.

Installing tuned and managing tuning profiles
Hopefully, after a bit of scaremongering happening in the previous section, you already
have a mindset prepared for an easier path.

Just in case, ensure the tuned package is installed, or install it with dnf –y install
tuned. The package provides a tuned service that must be enabled and started for
operation; as a refresher, we achieve this by running the following command:

systemctl enable tuned

systemctl start tuned

We're now ready to interact and get more information about this service, which
announces itself at dnf info tuned as a daemon that tunes the system dynamically
based on some observation and is currently acting on an Ethernet network and hard disks.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index
https://www.redhat.com/en/services/training/rh442-red-hat-enterprise-performance-tuning
https://www.redhat.com/en/services/training/rh442-red-hat-enterprise-performance-tuning

428 Kernel Tuning and Managing Performance Profiles with tuned

Interaction with the daemon is performed via the tuned-adm command. For illustration,
we're showing in the following screenshot the command-line options available and a list
of profiles:

Figure 16.5 – The tuned-adm command-line options and profiles

As we can see, there are some options for listing, disabling, and grabbing information
about a profile, getting recommendations on which profile to use, verifying that settings
have not been altered, automatically selecting a profile, and so on.

One thing to bear in mind is that newer versions of the tuned package might bring
additional profiles or configurations (stored in the /usr/lib/tuned/ folder hierarchy),
so the output might differ in your system.

Let's review some of the most common ones in the following table:

Installing tuned and managing tuning profiles 429

As mentioned, each configuration is always a trade-off: more power consumption is
required when increasing performance, or improving throughput might also increase
latency.

Let's enable the latency-performance profile for our system. To do so, we will
execute the following command:

tuned-adm profile latency-performance

We can verify that it has been activated with tuned-adm active, where we can see it
shows latency-performance, as seen in the following screenshot:

Figure 16.6 – The tuned-adm profile activation and verification

430 Kernel Tuning and Managing Performance Profiles with tuned

We additionally modified the system with sysctl -w vm.swappiness=69
(on purpose) to demonstrate the tuned-adm verify operation, as it reported that
some settings changed from the ones defined in the profile.

Important note
Dynamic tuning is by default disabled as of this writing—to enable or to check
the current status, check that dynamic_tuning=1 appears in the /etc/
tuned/tuned-main.conf file. It is disabled in the performance profiles
as it by default tries to balance between power consumption and system
performance, which is the opposite of what performance profiles try to do.

Additionally, bear in mind that the Cockpit interface introduced in this book also features
a way to change the performance profile—as seen in the following screenshot—once you
have clicked on the Performance profile link in the main Cockpit page, opening up this
dialog:

Figure 16.7 – Changing tuned profile within Cockpit web interface

In the next section, we will examine how tuned profiles work under the hood and how to
create a custom one.

Creating a custom tuned profile 431

Creating a custom tuned profile
Once we've commented on the different tuned profiles... How do they work? How to
create one?

Let's examine, for example, latency-performance in the next lines of code, by
checking the /usr/lib/tuned/latency-performance/tuned.conf file.

In general, the syntax of the file is described in the man tuned.conf page, but the file,
as you will be able to examine, is an initialization (ini)-file—that is, a file organized in
categories, expressed between brackets and pairs of keys and values assigned by the equals
(=) sign.

The main section defines a summary of the profile if it inherits from another profile via
include, and the additional sections depend on the plugins installed.

To learn about the available plugins, the documentation included in the man page
(man tuned.conf) instructs us to execute rpm -ql tuned | grep 'plugins/
plugin_.*.py$', which provides an output similar to this:

Figure 16.8 – Available tuned plugins in our system

432 Kernel Tuning and Managing Performance Profiles with tuned

Important note
If two or more plugins try to act over the same devices, the replace=1
setting will mark the difference between running all of them or only the latest
one.

Coming back to the latency-performance profile, this has three sections: main,
cpu, and sysctl.

For the CPU, it sets the performance governor, which we can check—if supported via
cat /sys/devices/system/cpu/*/cpufreq/scaling_governor—for each
CPU available in our system. Bear in mind that in some systems, the path might differ
or may even not exist, and we can check the available ones via execution of cpupower
frequency-info –governors, with powersave and performance being the
most common ones.

The name of the section for each plugin might be arbitrary if we specify the type
keyword to indicate which plugin to use, and we can use some devices to act on via the
devices keyword, allowing—for example—the definition of several disk sections with
different settings based on the disk being configured. For example, we might want some
settings for the system disk—let's say sda—and for the disk we use for data backups at
sdb, as illustrated here:

[main_disk]

type=disk

devices=sda

readahead=>4096

[data_disk]

type=disk

devices=!sda

spindown=1

In the preceding example, the disk named sda gets configured with readahead
(which reads sectors ahead of current utilization to have the data cached before actually
being requested to access it), and we're telling the system to spindown data disks that
might be used only at backup time, thus reducing noise and power consumption when
not in use.

Another interesting plugin is sysctl, used by several of the profiles, which defines
settings in the same way we might do with the sysctl command, and because of this,
the possibilities are huge: defining Transmission Control Protocol (TCP) window sizes
for tuning networking, virtual memory management, transparent huge pages, and so on.

Creating a custom tuned profile 433

Tip
It is hard to start from scratch with any performance tuning, and as tuned
allows us to inherit settings from a parent, it makes sense to find which one
of the available profiles is the closest to what we want to achieve, check what
is being configured in it, and—of course—compare it with the others (as we
can see, there are also examples for other plugins) and apply it to our custom
profile.

To get an idea about how the defined system profiles touch a system, my RHEL 8 system
shows the following output for cat /usr/lib/tuned/*/tuned.conf|grep -v
^#|grep '^\['|sort –u:

Figure 16.9 – Sections in system-supplied profiles

So, as we can see, they touch a lot of areas, and I would like to highlight the script
section, which defines a shell script to execute used by the powersave profile, and
the variables section, used by throughput-performance to define regular
expressions for later matching and applying settings based on the CPU.

Once we're ready, we will create a new folder at /etc/tuned/newprofile. A tuned.
conf file must be created, containing the main section with the summary and the
additional sections for the plugins we want to use.

434 Kernel Tuning and Managing Performance Profiles with tuned

When creating a new profile, it might be easier if we copy the profile we're interested in
from /usr/lib/tuned/$profilename/ into our /etc/tuned/newprofile/
folder and start the customization from there.

Once it's ready, we can enable the profile with tuned-adm profile newprofile,
as we introduced earlier in this chapter.

You can find more information about the profiles available in the official documentation
at https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/8/html-single/monitoring_and_managing_system_
status_and_performance/index.

With this, we've set up our own custom profile for tuning our performance settings.

Summary
In this chapter, we learned about identifying the processes, checking their resource
consumption, and how to send signals to them.

About the signals, we learned that some of them have some additional behavior, such as
terminating processes nicely or abruptly, or just sending a notification that some programs
understand as reload configuration without restarting, and so on.

Also, related to processes, we learned about how to adjust their priority compared to
other processes in terms of CPU and I/O so that we can adjust long-running processes
or disk-intensive ones to not affect other services running.

Finally, we introduced the tuned daemon, which includes several general use-case
profiles that we can use directly in our system, allowing tuned to apply some dynamic
tuning, or we can fine-tune the profiles by creating one of our own to increase system
performance or optimize power usage.

In the next chapter, we will learn about how we can work with containers, registries, and
other components so that applications can run as provided by the vendor while being
isolated from the server running them.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/monitoring_and_managing_system_status_and_performance/index

17
Managing

Containers with
Podman, Buildah,

and Skopeo
In this chapter, we'll learn to use Podman and Red Hat Universal Base Image, also called
UBI. Together, Podman and UBI provide users with the software they need to run, build,
and share enterprise-quality containers on Red Hat Enterprise Linux (RHEL).

In recent years, understanding and using containers has become a key requirement for
Red Hat systems administrators. In this chapter, we'll review the basics of containers, how
containers work, and the standard tasks for managing containers.

You will learn how to run containers with simple commands, build enterprise-quality
container images, and deploy them on a production system. You will also learn when to
use more advanced tools such as Buildah and Skopeo.

436 Managing Containers with Podman, Buildah, and Skopeo

These are the topics that will be covered in this chapter:

• Introduction to containers

• Running a container using Podman and UBI

• When to use Buildah and Skopeo

Technical requirements
In this chapter, we will review the basic usage of Podman, Buildah, and Skopeo, as well as
how to build and run containers using Red Hat UBI.

We will create and run containers on the local RHEL 8 system, as we deployed in
Chapter 1, Installing RHEL8. You will need to have the container-tools:rhel8
Application Stream installed.

Introduction to containers
Containers provide users with a new way to run software on Linux systems. Containers
provide all the dependencies related to a given piece of software, in a consistent
redistributable manner. While containers were first made popular by Docker, Google,
Red Hat, and many others joined Docker to create a set of open standards called the
Open Container Initiative (OCI). The popularity of the OCI standards has facilitated
a large ecosystem of tools where users don't have to worry about compatibility between
popular container images, registries, and tools. Containers have become standardized
in recent years and most major tools follow three standards governed by the OCI,
outlined here:

• Image specification: Governs how container images are saved on disk

• Runtime specification: Specifies how containers are started by communicating with
the operating system (in particular, the Linux kernel)

• Distribution specification: Governs how images are pushed and pulled from
registry servers

You can learn more about this at https://opencontainers.org/.

Introduction to containers 437

All container tools (Docker, Podman, Kubernetes, and so on) need an operating system
to run the container, and each operating system can choose different sets of technology
to secure containers, as long as they comply with the OCI standards. RHEL uses the
following operating system capabilities to securely store and run the containers:

• Namespaces: These are a technology in the Linux kernel that helps isolate processes
from one another. Namespaces prevent containerized processes from having visibility
of other processes on the host operating system (including other containers).
Namespaces are what make a container feel like a virtual machine (VM).

• Control groups (Cgroups): These limit the amount of central processing unit
(CPU), memory, disk input/output (I/O), and/or network I/O available to a given
process/container. This prevents the noisy neighbor problem.

• Security-Enhanced Linux (SELinux): As described in Chapter 10, Keeping Your
System Hardened with SELinux, this provides an extra layer of operating system
security that can limit the damage caused by security exploits. SELinux is nearly
transparent when used in conjunction with containers and provides mitigation of
security breakouts, even when there are vulnerabilities in tools such as Podman,
Docker, or Runc.

Many systems administrators use VMs to isolate applications and their dependencies
(libraries, and so on). Containers provide the same level of isolation but reduce the
overhead of virtualization. Since containers are simple processes, they do not need a
virtual CPU (vCPU) with all of the overhead of translation. Containers are also smaller
than VMs, which simplifies management and automation. This is particularly useful for
continuous integration/continuous delivery (CI/CD).

RHEL provides users with container tools and images that are compatible with all OCI
standards. This means they work in a way that is very familiar to anyone who has used
Docker. For those unfamiliar with these tools and images, the following concepts are
important:

• Layers: Container images are constructed as a set of layers. New containers
are created by adding new layers (even to delete things) that reuse existing
lower layers. The ability to use existing prepackaged containers is convenient for
developers who simply want to make changes to their applications and test them
in a reproducible way.

• Distribution and deployments: Since containers provide all the dependencies
coupled with an application, they are easy to deploy and redistribute. Combining
them with container registries makes it easy to share container images, and
collaboration, deployments, and rollbacks are much quicker and easier.

438 Managing Containers with Podman, Buildah, and Skopeo

The container tools provided with RHEL make it easy to deploy containers at a small scale,
even for production workloads. But to manage containers at scale and with reliability,
container orchestration such as Kubernetes is a much better fit. Red Hat, following the
lessons learned from building Linux distributions, has created a Kubernetes distribution
called OpenShift. If you need to deploy containers at scale, we recommend you take a
look at this platform. The container tools and images provided in RHEL, and introduced
in this chapter, will provide a solid foundation for later deploying to Kubernetes/
OpenShift if and when you are ready for it. The tools introduced in this chapter are built
in a way that will prepare your applications to be deployed in Kubernetes when you are
ready for it.

Installing container tools
There are two Application Streams for container tools provided in RHEL 8. The first
is a fast-moving stream that is updated every 12 weeks. The second is a stable stream
that is released once a year and supported for 24 months.

Before we install the container tools, let's take a look at which ones are available, as
follows:

[root@rhel8 ~]# yum module list | grep container-tools

container-tools rhel8 [d][e] common [d]
Most recent (rolling) versions of podman, buildah, skopeo,
runc, conmon, runc, conmon, CRIU, Udica, etc as well as
dependencies such as container-selinux built and tested
together, and updated as frequently as every 12 weeks.

container-tools 1.0 common [d]
Stable versions of podman 1.0, buildah 1.5, skopeo 0.1, runc,
conmon, CRIU, Udica, etc as well as dependencies such as
container-selinux built and tested together, and supported for
24 months.

container-tools 2.0 common [d]
Stable versions of podman 1.6, buildah 1.11, skopeo 0.1, runc,
conmon, etc as well as dependencies such as container-selinux
built and tested together, and supported as documented on the
Application Stream lifecycle page.

container-tools 3.0 common [d]
Stable versions of podman 3.0, buildah 1.19, skopeo 1.2, runc,
conmon, etc as well as dependencies such as container-selinux
built and tested together, and supported as documented on the
Application Stream lifecycle page.

Running a container using Podman and UBI 439

Let's take a look at the main tools that we have listed, as follows:

• podman: This is the command to run containers. You may use it in every case in
which you find the use of the docker command in the examples you will discover
on the internet. It is the command we will use in this chapter to run our own
containers.

• buildah: This is a tool specific to create container images. It uses the same
Dockerfile definitions as Docker but without the need for a daemon.

• skopeo: A tool to introspect containers and check the different layers so that we
can review whether they contain any non-compliant issues.

We will install the fast-moving stream to get access to the latest versions of Podman,
Skopeo, and Buildah, as follows:

[root@rhel8 ~]# yum module install container-tools:rhel8

... [output omitted] ...

You now have a machine installed with all of the tools you need to build, run, and manage
containers on an RHEL 8 system.

Running a container using Podman and UBI
Now you have the container tools' Application Stream installed, let's run a simple
container based on Red Hat UBI that is a set of official container images and extra
software based on RHEL. To run a UBI image, it only takes a single command, as
illustrated in the following code snippet:

[root@rhel8 ~]# podman run –it registry.access.redhat.com/ubi8/
ubi bash

[root@407ca121cbbb /]#

Tip
These tutorials run commands as root, but one of the benefits of Podman
is that it can run containers as a regular user without special permissions
or a running daemon in the system.

You now have a fully isolated environment to execute whatever you want. You can run
any commands you'd like in this container. It's isolated from the host and from other
containers that might be running, and you can even install software on it.

440 Managing Containers with Podman, Buildah, and Skopeo

Note
Red Hat UBI is based on software and packages from RHEL. This is the official
image for use with RHEL and provides a rock solid, enterprise-ready base for
your containers. UBI is used throughout this chapter.

Running a one-off container such as this is useful for testing new configuration changes
and new pieces of software without interfering with software directly on the host.

Let's take a look at the processes running in the container, as follows:

[root@ef3e08e4eac2 /]# ps -efa

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 13:50 pts/0 00:00:00 bash

root 12 1 0 13:52 pts/0 00:00:00 ps -efa

As you can see, the only processes running are the shell we are using and the command
we have just run. It is a completely isolated environment.

Now, exit the container by running the following command:

[root@407ca121cbbb /]# exit

[root@rhel8 ~]#

Now we have a working set of container tools and a UBI container image cached locally,
we're going to move on to some more basic commands.

Basic container management – pull, run, stop, and
remove
In this section, we'll run some basic commands to get familiar with using containers. First,
let's pull some more images, as follows:

[root@rhel8 ~]# podman pull registry.access.redhat.com/ubi8/
ubi-minimal

...

[root@rhel8 ~]# podman pull registry.access.redhat.com/ubi8/
ubi-micro

...

[root@rhel8 ~]# podman pull registry.access.redhat.com/ubi8/
ubi-init

...

Running a container using Podman and UBI 441

We now have several different images cached locally. Let's take a look at these here:

[root@rhel8 ~]# podman images

REPOSITORY TAG IMAGE ID
CREATED SIZE

registry.access.redhat.com/ubi8/ubi latest
613e5da7a934 2 weeks ago 213 MB

registry.access.redhat.com/ubi8/ubi-minimal latest
332744c1854d 2 weeks ago 105 MB

registry.access.redhat.com/ubi8/ubi-micro latest
75d0ed7e8b6b 5 weeks ago 38.9 MB

registry.access.redhat.com/ubi8/ubi-init latest
e13482c4e694 2 weeks ago 233 MB

Notice that we have four images cached locally. The Red Hat UBI actually comes in
multiple flavors, as outlined here:

• UBI Standard (ubi8/ubi): An RHEL-based container base image with
YellowDog Updater Modified (YUM)/Dandified YUM (DNF) in the image. It
can be used in a similar way to any other Linux base image. This image is targeted
at 80% of people's use cases and can easily be consumed from within a Dockerfile
or Containerfile. The trade-off with this image is that it is larger than some of the
other images.

• UBI Minimal (ubi8/ubi-minimal): This base image minimizes the size by
using a small package manager called microdnf that is written in C instead of
Python, like for standard YUM/DNF. This C implementation makes it smaller and
pulls fewer dependencies into a container image. This base image can be used in any
Dockerfile or Containerfile simply by using the microdnf command instead of
yum. This image saves about 80 megabytes (MB) in memory.

• UBI Micro (ubi8/ubi-micro): This base image is built without a package
manager. It cannot be used with a standard Dockerfile or Containerfile. Users
instead add software to this image using the Buildah tool on the container host.
This image is the smallest base image provided in RHEL.

• UBI Init (ubi8/ubi-init): Based on the RHEL standard image, this image also
supports the use of systemd in the container. This makes it easy to install a few
pieces of software, start them with systemd, and treat the container in a similar
way to a VM. This image is best for users who don't mind slightly larger images and
just want ease of use.

442 Managing Containers with Podman, Buildah, and Skopeo

Now that you understand the basics of the four types of base images, let's start a container
in the background so that we can inspect it while it's running. Start it in the background
with the following command:

[root@rhel8 ~]# podman run -itd --name background ubi8 bash

262fa3beb8348333d77381095983233bf11b6584ec1f
22090604083c0d94bc50

Notice that when we start the container, the shell returns to normal and we can't type
commands in the container. Our terminal doesn't enter a shell in the container. The
-d option specified that the container should run in the background. This is how most
server-based software such as web servers runs on a Linux system.

We can still connect our shell to a container running in the background if we need
to troubleshoot one, but we have to determine which container we want to connect to.
To do this, list all of the containers that are running with the following command:

[root@rhel8 ~]# podman ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES

262fa3beb834 registry.access.redhat.com/ubi8:latest bash
About a minute ago Up About a minute ago background

We could reference the container using the CONTAINER ID value, but we have started
the container with the name background to make it easier to reference. We can enter the
container and see what is going on inside it with the exec subcommand, as follows:

[root@rhel8 ~]# podman exec –it background bash

[root@262fa3beb834 /]#

After you type a few commands, exit the container by running the following command:

[root@262fa3beb834 /]# exit

Now, let's stop the containerized process by running the following command:

[root@262fa3beb834 /]# podman stop background
262fa3beb8348333d77381095983233bf11b6584ec1f
22090604083c0d94bc50

Check to make sure it's really stopped by running the following command:

[root@rhel8 ~]# podman ps -a

CONTAINER ID IMAGE COMMAND

Running a container using Podman and UBI 443

CREATED STATUS PORTS NAMES

262fa3beb834 registry.access.redhat.com/ubi8:latest
bash 7 minutes ago Exited (0) About a minute ago
background

Notice the state is Exited. This means the process has been stopped and is no longer in
memory, but the storage is still available on disk. The container could be restarted, or we
can delete it permanently with the following command:

[root@rhel8 ~]# podman rm background

262fa3beb8348333d77381095983233bf11b6584ec1f
22090604083c0d94bc50

This deleted the storage and the container has now gone forever. Verify this by running
the following command:

[root@rhel8 ~]# podman ps -a

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES

This section taught you some basic commands, but let's now move on to attaching storage.

Attaching persistent storage to a container
Remember that the storage in a container is ephemeral. Once the podman rm command
is executed, the storage is deleted. If you have data that you need to save after the
container is removed, you need to use a volume. To run a container with a volume,
execute the following command:

[root@rhel8 ~]# podman run –it --rm -v /mnt:/mnt:Z --name data
ubi8 bash

[root@12ad2c1fcdc2 /]#

The preceding command has mounted /mnt into the container, and the Z option has told
it to appropriately change the SELinux labels so that data can be written to it. The --rm
option ensures that the container is removed as soon as you exit the shell. You can now
save data on this volume, and it won't be removed when you exit the container. Add some
data by running the following command:

[root@12ad2c1fcdc2 /]# touch /mnt/test.txt

[root@12ad2c1fcdc2 /]# exit

444 Managing Containers with Podman, Buildah, and Skopeo

exit

[root@rhel8 ~]#

Now, inspect the test file you created by running the following command:

[root@rhel8 ~]# ls /mnt/data

test.txt

Notice the file is still on the system although the container has been removed, and its
internal storage has been deleted.

Deploying a container on a production system with
systemd
Since Podman is not a daemon, it relies on systemd to start a container when the system
boots. Podman makes it easy to start a container with systemd by creating a systemd
unit file for you. The process of running a container with systemd looks like this:

1. Run a container with Podman exactly how you want it to run in production.
2. Export a systemd unit file.
3. Configure systemd to use this unit file.

First, let's run an example container, as follows:

[root@rhel8 ~]# podman run -itd --name systemd-test ubi8 bash

D8a96d6a51a143853aa17b7dd4a827efa2755820c9967bee52
fccfeab2148e98

Now, let's export the systemd unit file that we'll use to start this container, as follows:

[root@rhel8 ~]# podman generate systemd --name --new systemd-
test > /usr/lib/systemd/system/podman-test.service

Enable and start the service by running the following command:

systemctl enable --now podman-test

Created symlink /etc/systemd/system/multi-user.target.wants/
podman-test.service → /usr/lib/systemd/system/podman-test.
service.

Created symlink /etc/systemd/system/default.target.wants/
podman-test.service → /usr/lib/systemd/system/podman-test.
service

Running a container using Podman and UBI 445

Test that the container is running by executing the following command:

[root@rhel8 ~]# systemctl status podman-test

● podman-test.service - Podman container-systemd-test.service
Loaded: loaded (/usr/lib/systemd/system/podman-test.service;
enabled; vendor preset: disabled)

Active: active (running) since Thu 2021-04-29 20:29:30 EDT;
13min ago

[output omitted]

...

Now, check that the container is running by using the podman command, as follows:

[root@rhel8 ~]# podman ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES

7cb55cc98e81 registry.access.redhat.com/ubi8:latest bash
About a minute ago Up About a minute ago systemd-test

This container will now start every time the system boots; even if you kill the container
with Podman, systemd will always make sure this container is running. Podman and
systemd make it easy to run containers in production. Now, let's stop the container with
systemctl and disable it, as follows:

systemctl stop podman-test

systemctl disable podman-test

Building a container image using a Dockerfile or
Containerfile
Now we know how to run containers, let's learn how to build our own container
images. Container images are commonly built with a file that serves as a blueprint
for how to build it the same way every time. A Dockerfile or Containerfile has all of
the information necessary to build container images. It makes it easy to script how a
container will get built. A Containerfile is just like a Dockerfile, but the name attempts
to make it more agnostic and not tied to the Docker tooling. Either type of file can be
used with the container tools that come with RHEL. First, start by creating a file called
Containerfile with the following content:

FROM registry.access.redhat.com/ubi8/ubi

RUN yum update -y

446 Managing Containers with Podman, Buildah, and Skopeo

This simple Containerfile pulls the UBI standard base image and applies all of the latest
updates to it. Now, let's build a container image by running the following command:

[root@rhel8 ~]# podman build –t test-build ./Containerfile

STEP 1: FROM registry.access.redhat.com/ubi8/ubi

STEP 2: RUN yum update –y

... [output omitted] ...

You now have a new image called test-build that has a new layer with all of the
updated packages from the Red Hat UBI repositories, as illustrated in the following code
snippet:

[root@rhel8 ~]# podman images

REPOSITORY TAG IMAGE ID
CREATED SIZE

localhost/test-build latest
6550a939d3ef 9 minutes ago 335 MB

... [output omitted] ...

The workflow for building images from a Dockerfile or Containerfile is nearly identical to
how Docker was in RHEL 7 or any other operating system. This makes it easy for system
administrators and developers to move to Podman.

Configuring Podman to search registry servers
Container registries are like file servers for container images. They allow users to build
and share container images, resulting in better collaboration. Often, it's useful to pull
container images from public registry servers that are located on the internet, but in many
instances, corporations have private registries that are not public. Podman makes it easy to
search multiple registries, including private registries, on your company's network.

Podman comes with a configuration file that allows users and administrators to select
which registries are searched by default. This makes it easy for users to find the container
images that administrators want them to find.

A set of default registries to search are defined in /etc/containers/registries.
conf. Let's take a quick look at this file by filtering all the comments in it, as follows:

[root@rhel8 ~]# cat /etc/containers/registries.conf | grep -v
^#

[registries.search]

registries = ['registry.access.redhat.com', 'registry.redhat.

Running a container using Podman and UBI 447

io', 'docker.io']

[registries.insecure]

registries = []

[registries.block]

registries = []

unqualified-search-registries = ["registry.fedoraproject.org",
"registry.access.redhat.com", "registry.centos.org", "docker.
io"]

As you can see, we have the registries.search section for secure registries that
includes the two main Red Hat registries, registry.access.redhat.com and
registry.redhat.io, as well as the docker.io Docker registry. All of these
registries are secured with Transport Layer Security (TLS) certificates, but Podman
can also be configured to pull images without encryption using the registries.
insecure section.

Separately from TLS, all images provided by Red Hat are signed and provide a signature
store that can be used to verify them. This is not configured by default and is beyond the
scope of this chapter.

To verify that Podman is using and searching the proper registries, run the following
command:

[root@rhel8 ~]# podman info | grep registries -A 4

registries:

 search:

 - registry.access.redhat.com

 - registry.redhat.io

 - docker.io

Tip
If you want to publish your own images, you can do this in the service that
Red Hat offers to do so: https://quay.io. You can also configure
registries.conf to search quay.io for images you store there.

https://quay.io

448 Managing Containers with Podman, Buildah, and Skopeo

Summary of Podman options
Let's review the options used with Podman in this chapter, as follows:

As you can see while reviewing the table, Podman includes options to manage the full
container life cycle. Most Podman commands are compatible with docker. Podman even
provides a package (podman-docker) that supplies an alias from podman to docker
so that users can continue to type a command they are familiar with. While Podman and
Docker feel quite similar to use, Podman can be run as a regular user and does not require
a daemon to be continuously running. Let's move on to the next section to explore some
advanced use cases.

When to use Buildah and Skopeo
Podman is a general-purpose container tool and should solve 95% of a user's needs.
Podman leverages Buildah and Skopeo as libraries and pulls these tools together under
one interface. That said, there are edge cases when a user may want to leverage Buildah
or Skopeo separately. We will explore two such use cases.

When to use Buildah and Skopeo 449

Building container images with Buildah
Building from a Dockerfile or Containerfile is quite easy, but it does come with some
trade-offs. For example, Buildah is good in the following situations:

• When you need granular control over committing image layers. This can be
necessary when you want two or three commands to run, and then commit
a single layer.

• When you have difficult-to-install software—for example, some third-party
software comes with standardized installers that don't understand they are being
run in a Dockerfile. Many of these install.sh installers assume they have access
to the entire filesystem.

• When a container image does not provide a package manager. UBI Micro builds
very small images because it does not have a Linux package manager installed, nor
any of the dependencies of a package manager.

For this example, let's build on top of UBI Micro to demonstrate why Buildah is such
a great tool. First, create a new container to work with, as follows:

[root@rhel8 ~]# buildah from registry.access.redhat.com/ubi8/
ubi-micro

ubi-micro-working-container

The preceding command created a reference to a new container called ubi-micro-
working-container. Once Buildah creates this reference, you can build upon it. To
make it easier, let's start over and save the reference in a shell variable, as follows:

microcontainer=$(buildah from registry.access.redhat.com/ubi8/
ubi-micro)

You can then mount the new container as a volume. This lets you modify the container
image by changing files in a directory. Run the following command to do this:

micromount=$(buildah mount $microcontainer)

Once the container storage is mounted, you can modify it in any way you would like.
These changes will eventually be saved as a new layer in the container image. This is where
you could run an installer (install.sh), but in the following example, we will use the
package manager on the host to install packages in UBI Micro:

yum install \

 --installroot $micromount \ --releasever 8 \ --setopt
install_weak_deps=false \ --nodocs -y \ httpd

450 Managing Containers with Podman, Buildah, and Skopeo

... [output omitted] ...

[root@rhel8 ~]# yum clean all \

 --installroot $micromount

... [output omitted] ...

When the package installation completes, we will unmount the storage and commit the
new image layer as a new container image called ubi-micro-httpd, as illustrated in
the following code snippet:

[root@rhel8 ~]# buildah umount $microcontainer

467403b1633fbcb42535e818929fd49a5e381b86733c99d
65cd8b141e9d64fff

[root@rhel8 ~]# buildah commit $microcontainer ubi-micro-httpd

Getting image source signatures

Copying blob 5f70bf18a086 skipped: already exists

Copying blob 8e7500796dee skipped: already exists

Copying blob 881a7504d0b5 skipped: already exists

Copying blob 771043083e15 done

Copying config 9579d04234 done

Writing manifest to image destination

Storing signatures

9579d0423482e766d72e3909f34e8c10d4258128d5cae394
c1f0816ac637eda0

You now have a new container image with httpd installed, built on UBI Micro. Only
a minimal set of dependencies have been pulled in. Look here at how small the image is:

[root@rhel8 ~]# podman images

localhost/ubi-micro-
httpd latest
9579d0423482 About a minute ago 152 MB

Buildah is a wonderful tool that gives you a lot of control over how builds are done. Now,
we will move on to Skopeo.

Summary 451

Inspecting a remote container with Skopeo
Skopeo is specifically designed and built to work on remote container repositories. With
the following command, you can easily remotely inspect the available tags for an image:

[root@rhel8 ~]# skopeo inspect docker://registry.access.redhat.
com/ubi8/ubi

{

 "Name": "registry.access.redhat.com/ubi8/ubi",

 "Digest":
"sha256:37e09c34bcf8dd28d2eb7ace19d3cf634f8a073058ed63ec6e
199e3e2ad33c33",

 "RepoTags": [

 "8.2-343-source",

 "8.1-328",

 "8.2-265-source",

... [output omitted] ...

Remote inspection is useful to determine if you want to pull an image, and if so, with
which tag. Skopeo can also be used to copy between two remote registry servers without
caching a copy in the local storage. For more information, see the skopeo man pages.

Summary
In this chapter, we have reviewed the basics of how to run, build, and share containers on
RHEL 8. You are prepared to create your own containers, run them, manage them, and
even use systemd to ensure they're always running in a production environment.

You are now ready to leverage the functionality and ease of deployment that containers
provide. While a deep dive into all of the intricacies of migrating software into containers
is outside the scope of this book, containers simplify packaging and delivery of
applications ready to be executed with all of their dependencies.

Containers are now a strong focus within the Information Technology (IT) industry.
Containers alone simplify the packaging and delivery of applications, but orchestration
platforms such as OpenShift (based on Kubernetes) make it easier to deploy, upgrade,
and manage containerized applications at scale.

Congratulations—you have come to the end of this chapter! It's now time to move to the
next chapter and take a self-assessment to ensure you've absorbed the material and to
practice your skills. There are two more chapters to go.

Section 4:
Practical Exercises

This section includes practical exercises to review what was learned in the previous
sections. It includes an intermediate practice and a more advanced one, allowing you to
assess your progress.

The following chapters are included in this section:

• Chapter 18, Practice Exercises – 1

• Chapter 19, Practice Exercises – 2

18
Practice

Exercises – 1
In this practice exercise, we will run a set of steps to check the knowledge you have
acquired throughout this book. As opposed to previous chapters, not all steps will be
indicated, and it's therefore left to your discretion to perform the steps required to
accomplish your desired goals. It is recommended to avoid referencing past chapters
for guidance. Instead, try to use your memory, or the tools available in the system. This
exercise, if performed correctly, will train you effectively for official exams.

It is strongly advised to start this exercise with a clock to keep track of time.

Technical requirements
All the practice exercise in this chapter requires the use of a virtual machine (VM),
running Red Hat Enterprise Linux 8 installed with the base installation. Additionally,
new virtual drives will be required for storage operations.

456 Practice Exercises – 1

For the exercises, it is assumed you possess the following:

• Red Hat Enterprise Linux 8 installed with the base operating system minimal
install software selection.

• Access to the Red Hat Customer Portal, with an active subscription.

• The VM must be expendable. This is because actions performed on it during the
exercise might render it unusable and require it to be reinstalled.

Tips for the exercise
This is a list of general recommendations for any test, and most fall under the category
of common sense, but it's always important to have them in our mind before performing
any such test:

• Read all the questions before starting the official exam or any test.

• Specific words have specific meanings that give hints about the requirements or
ways to accomplish the goals. This is why reading everything first might give you
multiple perspectives on how to complete the test.

• Make yourself comfortable. Install your favorite editor and run updatedb to have
a fresh database of packages and installed files ready for use. Define your keyboard
layout. Install tmux and learn how to use it, so that you can open new tabs and
name them without requiring extra windows.

• Locate dependencies between requests, as some goals depend on others for
completion. Find those dependencies to see how you can locate the solution
without later having to come back and redo some steps as a result of choosing
the wrong path.

• Use a timer. This is important to get an idea of what exercises will take you more
time to complete, in order to see the areas that you need to improve in.

• Don't remember specific command lines. Learn how to use the documentation
available in the system via man, /usr/share/docs or arguments like --help
for the commands required.

• Ensure that changes persist and are still active after a reboot. Some changes might
be active while you run them, but those must be persisted. Examples may include
firewall rules, services to start at boot, and so on.

• Remember to use dnf whatprovides /COMMAND" to find packages providing
a file you might be missing.

Practice exercise 1 457

• Check the following link: https://www.redhat.com/en/services/
training/ex200-red-hat-certified-system-administrator-
rhcsa-exam?=Objectives. This will provide you with the official EX200
exam objectives.

Practice exercise 1
Important note
The following exercise has, by design, been created so that there will be no
highlights on commands, packages, and so on. Remember what you've learned
so far in order to detect the keywords to see what needs to be done.

Don't jump into the walk-through too early. Try to remember what was covered.

Exercises
1. Configure the time zone to GMT.

2. Allow password-less login for the root user using SSH.

3. Create a user (named user) that can connect to the machine without a password.

4. The user user should change their password every week, with 2 days' warning
and 1 day of usage once expired.

5. The root user must be able to SSH as user without a password so that nobody can
connect remotely as root using a password.

6. The user user should be able to become root user without a password, and also
execute commands without a password.

7. When a user tries to log in over SSH, display a legal message about not allowing
unauthorized access to this system.

8. SSH must listen on port 22222, instead of the default one (22).

9. Create a group named devel.

10. Make user a member of devel.

11. Store user membership in a file named userids in the home folder for user.

12. The user user, and root user, should be able to connect to localhost via SSH
without specifying the port, and default to compression for the connection.

13. Find all man page names in the system, and put the names into a file named
manpages.txt.

https://www.redhat.com/en/services/training/ex200-red-hat-certified-system-administrator-rhcsa-exam?=Objectives
https://www.redhat.com/en/services/training/ex200-red-hat-certified-system-administrator-rhcsa-exam?=Objectives
https://www.redhat.com/en/services/training/ex200-red-hat-certified-system-administrator-rhcsa-exam?=Objectives

458 Practice Exercises – 1

14. Print usernames for users without logins permitted to the system. For each
username, print the user ID and groups for that user.

15. Monitor available system resources every 5 minutes. Do not use cron. Store as
/root/resources.log.

16. Add a per-minute job to report the available percentage of free disk space, and store
it in /root/freespace.log so that it shows both the filesystem and free space.

17. Configure the system to only leave 3 days of logs.

18. Configure the log rotation for /root/freespace.log and /root/resources.log.

19. Configure the time synchronization against pool.ntp.org, using fast sync.

20. Provide NTP server services for the subnet 172.22.0.1/24.

21. Configure system stats for collection every minute.

22. Configure the password length for users in the system to be 12 characters long.

23. Create a bot user named privacy, which will keep its files only visible to itself
by default.

24. Create a folder in shared that can be accessed by all users, and that defaults new files
and directories to still be accessible to users of the devel group.

25. Configure a network connection with IPv4 and IPv6 addresses named mynic, using
the following data:

Ip6: 2001:db8:0:1::c000:207/64 g

gateway 2001:db8:0:1::1

Ipv4 192.0.1.3/24

gateway 192.0.1.1

26. Allow the host to use a google hostname to reach www.google.com, and a redhat
hostname to reach www.redhat.com.

27. Report the files modified from those that the vendor distributed, and store them
in /root/altered.txt.

28. Make our system installation media packages available via HTTP under the /mirror
path for other systems to use as a mirror, configuring the repository in our system.
Remove the kernel packages from that mirror, so that other systems (even ours)
can't find new kernels. Prevent the glibc packages from being installed from this
repo without removing them.

29. While being user, make a copy of the /root folder in /home/user/root/ folder, and
keep it in sync every day, synchronizing additions and deletions.

https://www.google.com
https://www.redhat.com

Exercise 1 resolution 459

30. Check that our system conforms to the PCI-DSS standard.

31. Add a second hard drive of 30 GB to the system. However, use only 15 GB to move
the mirror to it, making it available at boot using compression and deduplication.
Make it available under /mirror/mirror.

32. As we plan to mirror custom sets of packages based on the same data, configure the
filesystem to report at least 1,500 GB to be used by our mirrors.

33. Create a second copy of the mirror under /mirror/mytailormirror, removing all
packages starting with the letter k*.

34. Create a new volume in the remaining space of the added hard drive (15 GB), and
use it to extend the root filesystem.

35. Create a boot entry that allows you to boot into emergency mode, in order to
change the root password.

36. Create a custom tuning profile that defines the readahead to be 4096 for the first
drive and 1024 for the second drive. This profile should also crash the system should
an OOM event occur.

37. Disable and remove the installed HTTP package. Then, set up the HTTP server
using the registry.redhat.io/rhel8/httpd-24 image.

For this section, we'll copy each item in the list of goals, and then provide an explanation
below it, using proper syntax highlighting and explanations.

Exercise 1 resolution
1. Configuring the time zone to GMT
We can check the current system date by executing the date command. At the very last
part of the line that is subsequently printed, the time zone will be shown. In order to
configure it, we can use the timedatectl command, or alter the /etc/localtime
symbolic link.

So, to achieve this goal, we can use one of the following:

• timedatectl set-timezone GMT

• rm –fv /etc/localtime; ln –s /usr/share/zoneinfo/GMT /etc/
localtime

Now date should report the proper time zone.

460 Practice Exercises – 1

2. Allowing password-less login to the root user
using SSH
Doing this will require the following:

• SSH must be installed and available (that means installed and started).

• The root user should have an SSH key generated and added to the list of authorized
keys.

First, let's tackle this with SSH, as seen in the following:

dnf –y install openssh-server; systemctl enable sshd; systemctl
start sshd

Now, let's generate an SSH key by pressing Enter to accept all defaults:

ssh-keygen

Now, let's add the generated key (/root/.ssh/id_rsa) to the authorized keys:

cd; cd .ssh; cat id_rsa.pub >> authorized_keys; chmod 600
authorized_keys

To validate this, we can execute ssh localhost date, after which we will be able
to get our current system's date and time without providing a password.

3. Creating a user named 'user' that can connect to the
machine without a password
This requires creating a user and an SSH key that is added in a similar fashion to the
root user. The next options will also be relevant to a user, but for the purposes of this
demonstration, we will tackle them as separate tasks:

useradd user

su – user

Now, let's generate an SSH key by pressing Enter to accept all defaults:

ssh-keygen

Exercise 1 resolution 461

Now, let's add the generated key (/root/.ssh/id_rsa) to the authorized keys:

cd; cd .ssh; cat id_rsa.pub >> authorized_keys; chmod 600
authorized_keys

To validate this, we can execute ssh localhost date, and we will be able to get the
current system date and time without providing a password.

Then, use logout to return to our root user.

4. The user 'user' should change their password every
week, with 2 days' warning and 1 day of usage once
expired
This requires us to tune the user restrictions, as follows:

chage –W 2 user

chage –I 1 user

chage -M 7 user

5. The root user must be able to SSH as 'user' without
a password, so that nobody can connect remotely as
the root user using a password
This requires two steps. The first is to enable user with the root's authorized key, and
then tune the sshd daemon, as follows:

cat /root/id_rsa.pub >> ~user/.ssh/authorized_keys

Edit the /etc/sshd/sshd_config file and add or replace the PermitRootLogin
line so that it looks like the following:

PermitRootLogin prohibit-password

Save and then restart the sshd daemon:

systemctl restart sshd

462 Practice Exercises – 1

6. The user 'user' should be able to become root and
execute commands without a password
This means configuring the /etc/sudoers file by adding the following line:

user ALL=(ALL) NOPASSWD:ALL

7. When a user tries to log in over SSH, display a legal
message about not allowing unauthorized access to
this system
Create a file, for example, /etc/ssh/banner, with the message to display. For example,
"Get out of here".

Modify /etc/ssh/sshd_config and set the line banner with /etc/ssh/banner,
then restart the sshd daemon with systemctl restart sshd.

8. SSH must listen on port 22222 instead of the
default one
This is a tricky one. The first step is to alter /etc/ssh/sshd_config and define port
22222. Once this is done, restart sshd with the following command:

systemctl restart sshd

This, of course, will fail... why?

The firewall must be configured:

firewall-cmd –-add-port=22222/tcp --permanent

firewall-cmd –-add-port=22222/tcp

SELinux must then be configured:

semanage port -a -t ssh_port_t -p tcp 22222

Now, the sshd daemon can be restarted:

systemctl restart sshd

Exercise 1 resolution 463

9. Creating a group named 'devel'
Use the following command:

groupadd devel

10. Making 'user' a member of 'devel'
Use the following command:

usermod –G devel user

11. Storing user membership in a file called 'userids,'
in a home folder for 'user'
Use the following command:

id user > ~user/userids

12. The user 'user' and root user should be able to
connect to the localhost via SSH, without specifying
the port, and default to compression for the
connection
We altered the default SSH port to be 22222.

Create a file named .ssh/config for both user and root, with the following contents:

Host localhost

Port 22222

 Compression yes

13. Finding all man page names in the system, and
putting the names into a file named 'manpages.txt'
Man pages are stored in /usr/share/man. Therefore, use the following command:

find /usr/share/man/ -type f > manpages.txt

464 Practice Exercises – 1

14. Printing usernames for users without a login,
so they can be permitted access to the system, and
printing the user ID and groups for each user
The following command first builds a list of users in the system with the nologin shell:

for user in $(cat /etc/passwd| grep nologin|cut -d ":" -f 1)

do

echo "$user -- $(grep $user /etc/group|cut -d ":" -f 1|xargs)"

done

From that list, check the membership in the /etc/group file, leaving only the group
name, and using xargs to concatenate them into a string to be printed.

The above example makes use of for loops and inline execution of commands, via $().

15. Monitoring available system resources every 5
minutes without using cron, and storing them as /
root/resources.log
The ideal way to monitor something would be cron, but as we're told not to use it, this
only leaves us with systemd timers. (You can check the files tested via the following link:
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-
Administration/tree/main/chapter-18-exercise1.

Create /etc/systemd/system/monitorresources.service with the following
contents:

[Unit]

Description=Monitor system resources

[Service]

Type=oneshot

ExecStart=/root/myresources.sh

Create /etc/systemd/system/monitorresources.timer with the following
contents:

[Unit]

Description=Monitor system resources

https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/tree/main/chapter-18-exercise1
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/tree/main/chapter-18-exercise1

Exercise 1 resolution 465

[Timer]

OnCalendar=*-*-* *:0,5,10,15,20,25,30,35,40,45,50,55:00

Persistent=true

[Install]

WantedBy=timers.target

Create /root/myresources.sh with the following contents:

#!/bin/bash

df > /root/resources.log

Enable the new timer, as follows:

systemctl daemon-reload

systemctl enable monitorresources.timer

Does it work? If not, journalctl –f will give some details. SELinux prevents us from
executing a root file, so let's convert it into a binary type and mark it as executable, as
shown in the following:

chcon –t bin_t /root/myresources.sh

chmod +x /root/myresources.sh

16. Adding a per-minute job to report the available
percentage of free disk space and storing it in /root/
freespace.log, so that it shows the filesystem and free
space
The df reports used disk space and available space, so we need to do some math.

This will report the mounted location, size, used space, and available space, with ;
as a separator. Refer to the following:

df|awk '{print $6";"$2";"$3";"$4}'

466 Practice Exercises – 1

Bash allows us to do some math operations, but these lack fractional parts. Luckily, we can
do a trick: we will be looping over it, as follows:

for each in $(df|awk '{print $6";"$2";"$3";"$4}'|grep -v
"Mounted")

do

 FREE=$(echo $each|cut -d ";" -f 4)

 TOTAL=$(echo $each|cut -d ";" -f 2)

 echo "$each has $((FREE*100/TOTAL)) free"

done

The for loop will check all the available data, grab some specific fields, separate them
with ;, and then run the loop for each line, stored in the $each variable.

We cut the output and then get the fourth field. This is the available space.

We cut the output and then we get the second field. This is the total number of blocks.

As bash can do integer divisions, we can multiply by 100 and then divide to get the
percentage and add a string as part of the output.

Alternatively (but not as illustrative), we could have discounted to 100 the percentage
of used already given by df and save some steps of the calculation.

We also need to store the output in a file. To do this, we can either wrap the whole loop
in a redirection or add it in the echo line so that it appends to a file.

And we also need to do it via cron, so the full solution will be as follows:

Create a /root/myfreespace.sh script with the following contents:

for each in $(df|awk '{print $6";"$2";"$3";"$4}'|grep -v
"Mounted")

do

 FREE=$(echo $each|cut -d ";" -f 4)

 TOTAL=$(echo $each|cut -d ";" -f 2)

 echo "$each has $((FREE*100/TOTAL)) free"

done

Then, use chmod 755 /root/myfreespace.sh to make it executable.

Run crontab -e to edit root's crontab, and add the following line:

*/1 * * * * /root/myfreespace.sh >> /root/freespace.log

Exercise 1 resolution 467

17. Configuring the system to only leave 3 days of logs
This can be done by editing /etc/logrorate.conf, with the following settings:

daily

rotate 3

Remove other occurrences of weekly, monthly, and so on, to leave only the one we want.

18. Configuring log rotation for /root/freespace.log
and /root/resources.log
Create a /etc/logrotate.d/rotateroot file, with the following contents:

/root/freespace.log {

 missingok

 notifempty

 sharedscripts

 copytruncate

}

/root/resources.log {

 missingok

 notifempty

 sharedscripts

 copytruncate

}

19. Configuring time synchronization against
pool.ntp.org with fast sync
Edit /etc/chrony.conf and add the following line:

pool pool.ntp.org iburst

Then, run the following:

systemctl restart chronyd

468 Practice Exercises – 1

20. Providing NTP server services for subnet
172.22.0.1/24
Edit /etc/chrony.conf, by adding the following line:

Allow 172.22.0.1/24

Then, run the following:

systemctl restart chronyd

21. Configuring system stats collection every minute
Run the following command:

dnf –y install sysstat

We now need to modify /usr/lib/systemd/system/sysstat-collect.timer.
Let's do this by creating an override, as follows:

cp /usr/lib/systemd/system/sysstat-collect.timer /etc/systemd/
system/

Edit /etc/systemd/system/sysstat-collect.timer by replacing the
OnCalendar value so that it looks like the following:

OnCalendar=*:00/1

Then, reload the units with the following command:

systemctl daemon-reload

22. Configuring the password length in the system for
users to be 12 characters
Edit /etc/login.defs with the following line:

PASS_MIN_LEN 12

Exercise 1 resolution 469

23. Creating a bot user called 'privacy,' which keeps its
files only visible to itself by default
To do this, run the following:

adduser privacy

su – privacy

echo "umask 0077" >> .bashrc

This resolution uses umask to remove permissions from others on all newly created files.

24. Creating a folder named /shared that can be
accessed by all users, and defaults new files and
directories to still be accessible to users of the 'devel'
group
To do this, run the following:

mkdir /shared

chown root:devel /shared

chmod 777 /shared

chmod +s /shared

25. Configuring a network connection with IPv4 and
IPv6 addressing named 'mynic,' using the provided
data Ip6, as follows: 2001:db8:0:1::c000:207/64 g
gateway 2001:db8:0:1::1 IPv4 192.0.1.3/24 gateway
192.0.1.1
See the following for how to accomplish this:

nmcli con add con-name mynic type ethernet ifname eth0 ipv6.
address 2001:db8:0:1::c000:207/64 ipv6.gateway 2001:db8:0:1::1
ipv4.address 192.0.1.3/24 ipv4.gateway 192.0.1.1

470 Practice Exercises – 1

26. Allowing the host to use a google hostname to
reach www.google.com, and a redhat hostname to
reach www.redhat.com
Run and record the IPs obtained, as shown here:

ping www.google.com

ping www.redhat.com

Note down the IPs obtained above.

Edit /etc/hosts by adding the following:

IPFORGOOGLE google

IPFORREDHAT redhat

Then, save and exit.

27. Reporting the files modified from those that the
vendor distributed, and storing them in /root/altered.
txt
See the following for how to accomplish this:

rpm -Va > /root/altered.txt

28. Making our system installation media packages
available via HTTP under the path /mirror for other
systems to use it as the mirror, and configuring
the repository in our system. Removing the kernel
packages from that mirror so that other systems
(even ours) can't find new kernels. Ignoring the glibc
packages from this repo to be installed without
removing them
This is a complex one, so let's examine it step by step.

Exercise 1 resolution 471

Install http and enable it using the following:

dnf –y install httpd

firewall-cmd --add-service=http --permanent

firewall-cmd --add-service=http

systemctl start httpd

systemctl enable httpd

Create a folder under /mirror, then copy the source media packages and make them
available over http:

mkdir /mirror /var/www/html/mirror

mount /dev/cdrom /mnt

rsync –avr –progress /mnt/ /mirror/

mount –o bind /mirror /var/www/html/mirror

chcon -R -t httpd_sys_content_t /var/www/html/mirror/

Remove the kernel packages:

find /mirror -name kernel* -exec rm '{}' \;

Create repository file metadata by using the following commands:

dnf –y install createrepo

cd /mirror

createrepo .

Create a repository file using the repository we created, and set it up on the system,
ignoring the glibc* packages from it.

Edit /etc/yum.repos.d/mymirror.repo by adding the following contents:

[mymirror]

name=My RHEL8 Mirror

baseurl=http://localhost/mirror/

enabled=1

gpgcheck=0

exclude=glibc*

472 Practice Exercises – 1

29. As 'user,' make a copy of the /root folder in the
/home/user/root/ folder, and keep it in sync every day,
synchronizing additions and deletions
See the following for how to accomplish this:

su – user

crontab –e

Edit crontab and add the following line:

@daily rsync -avr –-progress –-delete root@localhost:/root/ /
home/user/root/

30. Checking whether our system conforms to the PCI-
DSS standard
dnf –y install openscap scap-security-guide openscap-utils

oscap xccdf eval --report pci-dss-report.html --profile pci-dss
/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

31. Adding a second hard drive of 30 GB to the
system, but using only 15 GB to move the mirror to
it, making it available at boot using compression and
deduplication, and available under /mirror/mirror
Compression and deduplication in this sentence mean VDO. We need to move the mirror
we currently have to it and make the old mirror we had go there instead.

If we have the installation media, we can choose to copy it over and repeat the kernel
removal or transfer. To do so, first let's create the VDO volume in a partition in our new
hard drive (sdb):

fdisk /dev/sdb

n <enter>

p <enter>

1 <enter>

<enter>

+15G <enter>

Exercise 1 resolution 473

w <enter>

q <enter>

This will create a partition of 15 GB from the start. Let's create a VDO volume on it, by
using the following command:

dnf –y install vdo kmod-kvdo

vdo create –n myvdo –device /dev/sdb --force

pvcreate /dev/mapper/myvdo

vgcreate myvdo /dev/mapper/myvdo

lvcreate –L 15G –n myvol myvdo

mkfs.xfs /dev/myvdo/myvol

Let's umount cdrom if it was still mounted

umount /mnt

Mount vdo under /mnt and copy files over

mount /dev/myvdo/myvol /mnt

rsync –avr –progress /mirror/ /mnt/mirror/

Delete the original mirror once copy has finished

rm –Rfv /mirror

umount /mnt

mount /dev/myvdo/myvol /mirror

At this point, the old mirror was copied into a mirror folder on the VDO volume. This is
mounted under /mirror, hence it has the original mirror under /mirror/mirror as
requested. We might need to perform the following:

• Bind mount /mirror to /var/www/html/mirror/ to make the file available.

• Restore SELinux context to allow the httpd daemon to access to files in /var/
www/html/mirror/.

Adjust the repofile we created to point to the new path.

32. Configuring the filesystem to report at least
1,500 GB in size, to be used by our mirrors
See the following command:

vdo growLogical --name=myvdo --vdoLogicalSize=1500G

474 Practice Exercises – 1

33. Creating a second copy of the mirror under
/mirror/mytailormirror and removing all packages
starting with k*
See the following for how to accomplish this:

rsync –avr –progress /mirror/mirror/ /mirror/mytailormirror/

find /mirror/mytailormirror/ -name "k*" -type f –exec rm '{}'
\;

cd /mirror/mytailormirror/

createrepo .

34. Creating a new volume in the remaining space
(15 GB) of the hard drive and using it to extend the
root filesystem
See the following for how to accomplish this:

fdisk /dev/sdb

n <enter>

p <enter>

<enter>

<enter>

w <enter>

q <enter>

pvcreate /dev/sdb2

run vgscan to find out the volume name to use (avoid myvdo as
is the VDO from above)

vgextend $MYROOTVG /dev/sdb2

run lvscan to find out the LV storing the root filesystem and
pvscan to find the maximum available space

lvresize –L +15G /dev/rhel/root

Exercise 1 resolution 475

35. Creating a boot entry that allows us to boot
into emergency mode in order to change the root
password
See the following for how to accomplish this:

grubby --args="systemd.unit=emergency.target" --update-kernel=/
boot/vmlinuz-$(uname –r)

36. Creating a custom tuning profile that defines the
readahead to be 4096 for the first drive and 1024 for
the second drive – this profile should also crash the
system should an OOM event occur
Refer to the following command:

dnf –y install tuned

mkdir –p /etc/tuned/myprofile

Edit the /etc/tuned/myprofile/tuned.conf file by adding the following
contents:

[main]

summary=My custom tuned profile

[sysctl]

vm.panic_on_oom=1

[main_disk]

type=disk

devices=sda

readahead=>4096

[data_disk]

type=disk

devices=!sda

readahead=>1024

476 Practice Exercises – 1

37. Disabling and removing the installed httpd
package, and setting up the httpd server using the
registry.redhat.io/rhel8/httpd-24 image
See the following for how to accomplish this:

rpm –e httpd

dnf –y install podman

podman login registry.redhat.io # provide RHN credentials

podman pull registry.redhat.io/rhel8/httpd-24

podman run -d --name httpd –p 80:8080 -v /var/www:/var/www:Z
registry.redhat.io/rhel8/httpd-24

19
Practice Exercise – 2

In this second practice exercise chapter, we will run a set of exercises to check the knowledge
you've acquired throughout this book. In contrast with this book's chapters, not all the steps
will be specified; it's left up to your discretion to perform the steps required to accomplish
the necessary goals. It is recommended that you avoid checking back on the chapters for
guidance and instead try to use your memory or the tools available in the system. This
experience will be a key factor when you take on the official exams.

It is strongly advised that you start this exercise with a clock so that you know how long it
took for you to complete.

Technical requirements
All the practical exercises in this chapter require a virtual machine (VM) running Red
Hat Enterprise Linux 8 to be installed with the base installation. Additionally, new virtual
drives will be required for storage operations.

The exercises assume that you have the following:

• Red Hat Enterprise Linux 8 installed with a base operating system Minimal Install
software selection.

• Access to the Red Hat Customer Portal with an active subscription.

• The VM must be expendable; that is, actions that you perform on it might render it
unusable, so it will have to be reinstalled.

478 Practice Exercise – 2

Tips for the exercise
This is a list of general recommendations for any test, most of which are common sense,
but it's always interesting to keep them in mind:

• Read the questions in their entirety before starting the exam.

• Specific words have specific meanings that give hints about the requirements or
ways to accomplish the exercise. That's why, again, reading everything first might
add or remove possibilities.

• Make yourself comfortable: install your favorite editor, run updatedb so that you
have a fresh database of packages and files ready for you, and define your keyboard
layout. Install and learn the basics of how to use tmux so that you can open new
tabs and name them without requiring extra windows.

• Locate dependencies between requests. Some goals depend on others for
completion, so find those dependencies to see how you can build up the solution
without having to go back and redo some steps because of taking the wrong path.

• Use a timer. It's important to get an idea of what exercises took more time to
complete so that you can find areas to improve upon.

• Don't remember specific commands. Instead, learn how to use the documentation
available in the system by using man, /usr/share/docs arguments such as
--help for the commands, and so on.

• Ensure that changes persist and are still active after a reboot. Some changes might
be active while you run them, but those must be persisted: firewall rules, services
to start at boot, and so on.

• Remember that you can use dnf whatprovides "*/COMMAND" to find
packages regarding that file you might be missing.

• Check https://www.redhat.com/en/services/training/
ex200-red-hat-certified-system-administrator-rhcsa-
exam?=Objectives for the official EX200 exam objectives.

Practice exercise – 2
Important Note
By design, in the following exercise, commands, packages, and so on will not
be highlighted. Remember what you've learned so far to detect the keywords to
see what needs to be done.

https://www.redhat.com/en/services/training/ex200-red-hat-certified-system-administrator-rhcsa-exam?=Objectives
https://www.redhat.com/en/services/training/ex200-red-hat-certified-system-administrator-rhcsa-exam?=Objectives
https://www.redhat.com/en/services/training/ex200-red-hat-certified-system-administrator-rhcsa-exam?=Objectives

Practice exercise – 2 479

Don't jump into the solution too early; try to think and remember what was covered.

Exercises
1. Download the necessary file from this book's GitHub repository at https://raw.

githubusercontent.com/PacktPublishing/Red-Hat-Enterprise-
Linux-8-Administration/main/chapter-19-exercise2/users.txt.

2. Use the users.txt file to generate users in the system in an automated way using
the values provided, in the following order: username, placeholder, uid, gid,
name, home, shell.

3. Create a group named users and add that group as the primary group to all users,
leaving their own groups, named after each user, as secondary groups.

4. Change the home folders for the users so that they are group-owned.
5. Set up an HTTP server and enable a web page for each user with a small

introduction for each that is different between users.
6. Allow all users in the users group to become root without a password.
7. Create SSH keys for each user and add each key to root and the other users so that

each user can SSH like the other users; that is, without a password.
8. Disable password access to the system with SSH.
9. Set each user with a different password using /dev/random and store the

password in the users.txt file in the second field of the file.
10. If the number of letters in the username is a multiple of 2, add that fact to each user

description web page.
11. Create a container that runs the yq python package as the entry point.
12. Configure password aging for users that are not a multiple of 2 to so that they're

expiring.
13. Configure a daily compressed log rotation for a month of logs using date-named

files.
14. Save all the logs that have been generated in the day in /root/errors.log.
15. Install all the available updates for the system libraries.
16. Repair the broken rpm binary using a previously downloaded package available in

the /root folder.
17. Make all the processes that are executed by the user doe to run with a low priority

and the ones from john run with a higher priority (+/- 5).
18. Make the system run with the highest throughput and performance.

https://raw.githubusercontent.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/main/chapter-19-exercise2/users.txt
https://raw.githubusercontent.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/main/chapter-19-exercise2/users.txt
https://raw.githubusercontent.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/main/chapter-19-exercise2/users.txt

480 Practice Exercise – 2

19. Change the system network interface so that it uses an IP address that's higher than
the one it was using. Add another IPv6 address to the same interface.

20. Create and add /opt/mysystem/bin/ to the system PATH for all users.
21. Create a firewall zone, assign it to an interface, and make it the default zone.
22. Add a repository hosted at https://myserver.com/repo/ with a GPG key

from https://myserver.com/mygpg.key to the system since our server
might be down. Configure it so that it can be skipped if it's unavailable.

Answers to practice exercise 2
In this section, we'll copy each item from the list of goals, and explain them while using
proper syntax highlighting.

1. Download the necessary file from this book's
GitHub repository at https://raw.githubusercontent.
com/PacktPublishing/Red-Hat-Enterprise-Linux-8-
Administration/main/chapter-19-exercise2/users.txt
wget https://raw.githubusercontent.com/PacktPublishing/Red-Hat-
Enterprise-Linux-8-Administration/main/chapter-19-exercise2/
users.txt

2. Use the users.txt file to generate users in the system
in an automated way using the values provided, in
the following order: username, placeholder, uid, gid,
name, home, shell
First, let's examine the users.txt file with the following code:

cat users.txt

user;x;1000;1000;myuser1;/home/user1; /bin/false

john ;x ;1001 ;1001; John; /home/john ;/bin/false

doe ;x ;1001 ;1001; Doe; /home/doe ; /bin/csh

athena ;x ;1011 ;1011; Athena Jones; /home/ajones ; /bin/rsh

Answers to practice exercise 2 481

pilgrim ;x ;2011 ;2011; Scott Pilgrim; /home/spilgrim ; /bin/
rsh

laverne; x ; 2020;2020; LaVerne;/home/LaVerne;/bin/bash

As described in the request, the fields in that file are username, placeholder, uid,
gid, name, home, shell. The placeholder is not asked to create a user as it's usually the
password so that we can work with the other data while ignoring that.

As we can also see, each field is separated by at least a ; symbol, but some have extra
spaces before or after it. Since we also have surnames, we can't just remove all spaces; we
need to do this before and after the actual text we want.

We need to use cut with the ; field separator, but first, we need to read the file line by line.

We can achieve this with Bash's built-in read function:

cat users.txt|while read -r line; do echo ${line};done

Using this as a base, we can start building up everything we're going to need to create
the users. Let's start by working on the individual steps and then build up the full
command line.

We have lots of lines, so for each one, we need to define the fields and remove the
end/start spaces:

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1)

NEWUID=$(echo ${line}|cut -d ";" -f 3)

NEWGID=$(echo ${line}|cut -d ";" -f 4)

NEWNAME=$(echo ${line}|cut -d ";" -f 5)

NEWSHELL=$(echo ${line}|cut -d ";" -f 6)

In the preceding examples, we're echoing each line and cutting the field specified with
-f using the ; field delimiter. This allows us to select exactly the field containing the data
we're looking for. To make this easier, we can store each in a variable so that we can reuse
that snippet of code and still have a clear understanding of what each script will be doing.

The preceding code will work, but it will fail with the spaces, so we need to extend them to
just capture the actual text without the spaces. Let's use xargs for this:

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWUID=$(echo ${line}|cut -d ";" -f 3|xargs)

NEWGID=$(echo ${line}|cut -d ";" -f 4|xargs)

NEWNAME=$(echo ${line}|cut -d ";" -f 5|xargs)

482 Practice Exercise – 2

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

NEWSHELL=$(echo ${line}|cut -d ";" -f 7|xargs)

The next step is to build the command line for adding a user:

useradd --d "${NEWHOME}" --m --s "${NEWSHELL}" --u "${NEWUID}"
--g "${NEWGID}" --c "${NEWNAME}" "${NEWUSERNAME}"

Now that everything's ready, let's build the solution:

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWUID=$(echo ${line}|cut -d ";" -f 3|xargs)

NEWGID=$(echo ${line}|cut -d ";" -f 4|xargs)

NEWNAME=$(echo ${line}|cut -d ";" -f 5|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

NEWSHELL=$(echo ${line}|cut -d ";" -f 7|xargs)

useradd -d "${NEWHOME}" -m -s "${NEWSHELL}" -u "${NEWUID}" -g
"${NEWGID}" -c "${NEWNAME}" "${NEWUSERNAME}"

done

3. Create a group named users and add that group
as the primary group to all users, leaving their own
groups, named after each user, as secondary groups
In this case, we need to create the groups that we didn't create in the previous step. So, we
will loop over the users once the new group has been created, create new groups for each,
and then modify the user to get the users group and add their own as secondary groups:

groupadd users

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

groupadd -g ${NEWGID} ${NEWUSERNAME}

usermod -g users -G ${NEWUSERNAME} ${NEWUSERNAME}

done

Answers to practice exercise 2 483

4. Change the home folders for the users so that are
group owned
cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

chown -R ${NEWUSERNAME}:users ${NEWHOME}/

done

5. Set up an HTTP server and enable a web page for
each user, with a small introduction for each that is
different between users
dnf -y install httpd

firewall-cmd --add-service=http --permanent f

firewall-cmd --reload

-

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWUID=$(echo ${line}|cut -d ";" -f 3|xargs)

NEWGID=$(echo ${line}|cut -d ";" -f 4|xargs)

NEWNAME=$(echo ${line}|cut -d ";" -f 5|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

NEWSHELL=$(echo ${line}|cut -d ";" -f 7|xargs)

mkdir -p ${NEWHOME}/public_html/

echo "Hello, my name is ${NEWNAME} and I'm a user of this
system" > ${NEWHOME}/public_html/index.htm

Done

Finally, we'll need to enable homedirs by editing /etc/httpd/conf.d/userdir.
conf and disabling UserDir so that it becomes Userdir public_html:

service httpd start

484 Practice Exercise – 2

6. Allow all the users in the users group to become
root without a password
This can be done in several ways, but since all the users are in the users group, we can
add that group:

echo "%users ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

7. Create SSH keys for each user and add each key to
root and the other users so that each user can SSH like
the other users; that is, without a password
First, let's create the keys for each user and add the keys to root:

cat users.txt| while read -r line ; do

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

mkdir -p ${NEWHOME}/.ssh/

ssh-keygen -N '' -f ${NEWHOME}/.ssh/id_dsa

cat ${NEWHOME}/.ssh/id_dsa.pub >> /root/.ssh/authorized_keys

done

Now, let's copy the authorized keys for each user:

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

cp /root/.ssh/authorized_keys ${NEWHOME}/.ssh/ >>

chown -R ${NEWUSERNAME}:users ${NEWHOME}/.ssh/

Done

Validate that users can ssh just like any other user:

USERS=$(cat users.txt|cut -d ";" -f1|xargs)

for user in ${USERS};

do

for userloop in ${USERS};

do

su -c "ssh ${user}@localhost" ${userloop}

Answers to practice exercise 2 485

done

done

The preceding command should work for all the users because we copied authorized_
keys, right? This isn't the case as some users have their shell disabled.

8. Disable password access to the system with SSH
Edit /etc/ssh/sshd_config and replace any value of PasswordAuthentication
with no.

Then, restart sshd:

systemctl restart sshd

9. Set each user with a different password using /dev/
random and store the password in the users.txt file in
the second field of the file
From /dev/random, we can get random data, but it's binary, so it's probably not valid
if we want to use it for logging in later. We can use a hash function over the data we've
received and use that as the password:

MYPASS=$(dd if=/dev/urandom count=1024 2>&1|md5sum|awk '{print
$1}')

This will be the password, without the need for it to be encrypted.

With usermod, we can define a password from its encrypted seed, so we will be
combining both.

Additionally, we're told to store the generated password in users.text, so we will need
to edit the file.

But there's a problem: editing a specific field in the .txt file might not be easy, but we can
just rewrite it completely:

cat users.txt| while read -r line ; do

MYPASS=$(dd if=/dev/random count=12>&1|md5sum|awk '{print $1}')

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWUID=$(echo ${line}|cut -d ";" -f 3|xargs)

NEWGID=$(echo ${line}|cut -d ";" -f 4|xargs)

486 Practice Exercise – 2

NEWNAME=$(echo ${line}|cut -d ";" -f 5|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

NEWSHELL=$(echo ${line}|cut -d ";" -f 7|xargs)

echo "${NEWUSERNAME};${MYPASS};${NEWUID};${NEWGID};${NEWNAME};
${NEWHOME};${NEWSHELL}" >> newusers.txt

echo ${MYPASS} | passwd ${NEWUSERNAME} --stdin

done

cp newusers.txt users.txt

In this way, we've rewritten the users.txt file to a new file by adding all the fields we
had and overwritten users.txt with our new copy.

The last command in the loop reads the password from the variable and feeds it to the
passwd file, which will encrypt and store it while reading it from stdin.

10. If the number of letters in the username is a
multiple of 2, add that fact to each users description
web page
cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

LETTERSINNAME=$(($(echo ${NEWUSERNAME}|wc -m) - 1))

if ["$((${LETTERSINNAME} % 2))" == "0"]; then

echo "My name is multiple of 2" >> ${NEWHOME}/public_html/
index.htm

done

done

In this example, we repeat the same field calculation, but we add the wc command to get
the number of characters and remove one to adjust it to the number of letters.

In the comparison, we evaluate the remainder when dividing by 2, so that when there's no
remainder, this means that our number of letters is a multiple of 2.

Answers to practice exercise 2 487

11. Create a container that runs the yq Python
package
When we read "Python package," we should think about PIP. PIP is not recommended to
be used on systems directly as it might alter the system-provided Python libraries, and it's
better to use a virtual environment for it. Alternatively, you can use a container that will
keep it isolated.

As described in the Chapter 17, Managing Containers with Podman, Buildah, and Skopeo,
the easiest way to do this is by creating a file that defines the container creation steps.

For containers, it will be also required to install the podman package and the
container-tools modules if you don't have them in your system.

As this file is a Python package, we require a container that already has Python in it; for
example, https://catalog.redhat.com/software/containers/rhel8/
python-38/5dde9cb15a13461646f7e6a2.

So, let's create a Containerfile with the following contents (available at https://
github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-
Administration/blob/main/chapter-19-exercise2/ContainerFile):

FROM registry.access.redhat.com/ubi8/python-38

MAINTAINER RHEL8 Student <student@redhat.com>

LABEL name="yq image" \

maintainer="student _AT_ redhat.com" \

vendor="Risu" \

version="1.0.0" \

release="1" \

summary="yq execution container" \

description="Runs yq"

ENV USER_NAME=risu \

USER_UID=10001 \

LC_ALL=en_US.utf8

RUN pip3 install --upgrade pip --no-cache-dir && \

pip3 install --upgrade yq --no-cache-dir

USER 10001

VOLUME /data

ENTRYPOINT ["/opt/app-root/bin/yq"]

CMD ["-h"]

https://catalog.redhat.com/software/containers/rhel8/python-38/5dde9cb15a13461646f7e6a2
https://catalog.redhat.com/software/containers/rhel8/python-38/5dde9cb15a13461646f7e6a2
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-19-exercise2/ContainerFile
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-19-exercise2/ContainerFile
https://github.com/PacktPublishing/Red-Hat-Enterprise-Linux-8-Administration/blob/main/chapter-19-exercise2/ContainerFile

488 Practice Exercise – 2

When combined with podman build -t yq -f ContainerFile, it will pull the
ubi8 image with Python so that we can just run the pip3 install command to install
yq, which will be then assigned as our entrypoint.

For example, if we define an invalid entrypoint (because we might not know where the
program is installed), we can use podman run -it --entrypoint /bin/bash
<podmanid>. We can get the podman ID by running podman images and checking
the generation date for each of the available pods in our system.

The created container can be tested with podman run –it <podmanid>, where it will
output the information about what the yq command does.

Note that yq, as expressed in their repository at https://github.com/kislyuk/
yq, requires that we have installed the jq command, but we left it out on purpose to
demonstrate how to create the container.

12. Configure password aging for users that are not
a multiple of 2 so that they're expiring
cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

LETTERSINNAME=$(($(echo ${NEWUSERNAME}|wc -m) - 1))

if ["$((${LETTERSINNAME} % 2))" != "0"]; then

chage -M 30 ${NEWUSERNAME}

done

done

Here, we've reused the loop from question 10, but inverted the conditional. Since there's
no requirements regarding the kind of password aging we can use, we just need to define
the maximum number of days before a password change is required to be 30 days.

13. Configure the daily compressed log rotation for
a month of logs using date-named files
First, we need to make sure that logrotate is installed:

dnf -y install logrotate

https://github.com/kislyuk/yq
https://github.com/kislyuk/yq

Answers to practice exercise 2 489

Once installed, edit the /etc/logrotate.conf file so that it contains the following:

rotate 30

daily

compress

dateext

We need to ensure that no other period is defined (monthly, weekly, and so on).

14. Save all the logs generated in the day in /root/
errors.log
This has a trick to it: some programs will log to the journal, while some of them will log
to *.log files.

The date for today can be obtained with +%Y-%m-%d. This format, which uses the
year-month-day format, is commonly used in program logs:

grep "$(date '+%Y-%m-%d')" -Ri /var/log/*.log|grep -i error >
/root/errors.log

journalctl --since "$(date '+%Y-%m-%d')" >> /root/errors.log

By doing this, we combine both outputs. We could, of course, try to sort the entries by
date so that they correlate, but bear in mind that the first grep does a recursive search, so
the filename is being prepended, making it harder to sort.

15. Install all the available updates for system libraries
Usually, the system libraries contain the lib substring in them, so the update should be
a matter of running the following command:

dnf upgrade *lib*

As it will ask for confirmation, review the listed packages to make sure that no errors
occurred.

490 Practice Exercise – 2

16. Repair the broken rpm binary using a previously
downloaded package available in the /root folder
This is a tricky but useful knowledge check.

First, let's make sure that the rpm package is available:

yumdownloader rpm

Verify that the file exists with the following command:

ls –l rpm*.rpm

Check the file to make sure we have a way to go back in case we breack it beyond repair:

rpm -qip rpm*.rpm

Now, let's look at the destructive action that will help us validate we are solving the issue:

rm -fv /usr/bin/rpm

From here, it's like look ma, no hands... no RPM is available to install the rpm*.rpm
package, but we still need to install it to fix the issue.

rpm packages are compressed cpio archives, so what we can do is use the following
command:

rpm2cpio rpm*.rpm |cpio –idv

This will extract the compressed rpm contents (without the need to run a script).

Move the uncompressed rpm file back into /usr/bin:

mv usr/bin/rpm /usr/bin/rpm

Verify the installation and operation of rpm:

rpm –V rpm

It will complain. saying that at least the date has changed. However, it may have also
updated the sizes and md5sum if the downloaded file was newer.

Move the system to a sane state by reinstalling the rpm package:

rpm -i rpm*.rpm

Answers to practice exercise 2 491

This will make the system complain because the package was already installed (it will state
that it will overwrite rpm, rpm2archive, rpm2cpio, rpmdb, rpmkeys, and more).

If the rpm version differs, we can just upgrade it with the following command:

rpm -Uvh rpm*.rpm

Then, we can verify this with the following command:

rpm –V rpm

Nothing should be reported as changed regarding what the database contains. If we
cannot upgrade, we can run the installation with the --force argument to tell rpm that
it's OK to continue and overwrite the files.

Alternatively, once the rpm binary has been restored with cpio, we can use the following
command:

dnf –y reinstall rpm

Another approach for this could have been to scp the rpm binary from a similar system
or to use rescue media.

17. Make all the processes that are executed by the
user doe run with a low priority and the ones from
john run with a higher priority (+/- 5)
We have no way of making this a default, but we can combine a cron job to do so.

Execute crontab -e as root to edit the root's crontab and set up a job that runs every
minute:

*/1 * * * * pgrep -u doe |xargs renice +5

*/1 * * * * pgrep -u john|xargs renice -5

This will use pgrep for all the PIDs for john and doe and feed them via xargs to the
renice process.

Alternatively, we could use something like the following:

renice +5 $(pgrep -u doe)

This can be used as an alternative to the xargs command.

492 Practice Exercise – 2

18. Make the system run with the highest throughput
and performance
tuned is a system daemon we can install to automatically apply some well-known
parameters to our system, which will become the base for our specific optimizations later:

dnf -y install tuned

systemctl enable tuned

systemctl start tuned

tuned-adm profile throughput-performance

19. Change the system network interface so that it
uses an IP address that's higher than the one it was
using. Add another IPv6 address to the same interface
Using nmcli, check the current system IP's address:

nmcli con show

The output should be as follows:

Figure 19.1 – Output of nmcli con show

Answers to practice exercise 2 493

With this, we can find what system interface is being used and connected. Let's say it's
ens3, which is connected on the connection named Wired Connection.

Let's use nmcli con show "Wired Connection"|grep address to find the
current addresses.

If our address is, for example, 10.0.0.6, we can use the following code:

nmcli con mod "Wired Connection" ipv4.addresses 10.0.0.7

nmcli con mod "Wired Connection" ipv6.addresses
2001:db8:0:1::c000:207

Verify this with the following command:

nmcli con show "Wired Connection"|grep address

20. Create and add /opt/mysystem/bin/ to the system
PATH for all users
Edit the /etc/profile.d/mysystempath.sh file and place the following contents:

export PATH=${PATH}:/opt/mysystem/bin

To validate this, add the +x attribute to the file and create the folder with the following
commands:

chmod +x /etc/profile.d/mysystempath.sh

mkdir -p /opt/mysystem/bin

Relogging with the user should show the new path when executing the following
command:

echo ${PATH}

494 Practice Exercise – 2

21. Create a firewall zone, assign it to an interface,
and make it the default zone
This is a tricky question. In this book, we've explained how to query zones and how
to change the default one, and even shown screenshots of cockpit for managing the
firewall, so now that you're an experienced user, this shouldn't be hard.

The first thing you need to do when you don't know how to do something is check the
manual page:

man firewall-cmd

This doesn't show a lot of interesting information. However , toward the end of the man
pages, there's a section called SEE ALSO, where we can find out about firewalld.
zones(5). This means that we can check section 5 of the manual for firewalld.
zones.

We don't usually specify the section as there might not be a lot of duplicates, so we can
just run the following command:

man firewalld.zones

This instructs us to check the default ones in /usr/lib/firewalld/zones and /
etc/firewalld/zones, so let's do that:

cp /usr/lib/firewalld/zones/public.xml /etc/firewalld/zones/
dazone.xml

Now, let's edit the new copied file, called /etc/firewalld/zones/dazone.xml,
and change its name from Public to dazone. Then, we need to reload the firewall:

firewall-cmd -reload

Let's validate that the new zone is there with the following command:

firewall-cmd --get-zones

Let's make it the default zone:

firewall-cmd --set-default-zone=dazone

Now, add the default interface (ens3):

firewall-cmd --add-interface=ens3 --zone=dazone

Answers to practice exercise 2 495

It will fail. This is expected since ens3 has already been assigned to a zone (public). So,
let's use the following commands:

firewall-cmd -remove-interface=ens3 --zone=public

firewall-cmd -add-interface=ens3 --zone=dazone

As you can see, even without prior knowledge about creating new zones, we've been able
to use our system knowledge about finding information to accomplish this goal.

22. Add a repository hosted at https://myserver.
com/repo/ with GPG key from https://myserver.com/
mygpg.key to the system since our server might be
down. Configure it so that it can be skipped if it's
unavailable
If we don't remember the syntax for a repository, we can use one of the examples available
on the system. To do this, go to /etc/yum.repos.d/, list the available files, and pick
one to create a myserver.repo file with the following contents:

[myserver]

name=My server repository

baseurl=https://myserver.com/repo/

enabled=1

gpgcheck=1

gpgkey=https://myserver.com/mygpg.key

How do we skip it if it's unavailable? Let's check the man page for yum. Again, not much
information is provided here, but in the SEE ALSO section, man dnf.conf is specified.
This lists a Boolean that might help us, so let's add this to our repofile:

skip_if_unavailable=1

With that, we've completed our objectives.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://Packt.com
https://packt.com
https://customercare@packtpub.com
https://www.packt.com

498 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Linux Kernel Programming

Kaiwan N Billimoria

ISBN: 9781789953435

• Write high-quality modular kernel code (LKM framework) for 5.x kernels

• Configure and build a kernel from source

• Explore the Linux kernel architecture

• Get to grips with key internals regarding memory management within the kernel

• Understand and work with various dynamic kernel memory alloc/dealloc APIs

https://packt.link/9781789953435

Other Books You May Enjoy 499

• Discover key internals aspects regarding CPU scheduling within the kernel

• Gain an understanding of kernel concurrency issues

• Find out how to work with key kernel synchronization primitives

Mastering Embedded Linux Programming - Third Edition

Frank Vasquez, Chris Simmonds

ISBN: 9781789530384

• Use Buildroot and the Yocto Project to create embedded Linux systems

• Troubleshoot BitBake build failures and streamline your Yocto development
workflow

• Update IoT devices securely in the field using Mender or balena

• Prototype peripheral additions by reading schematics, modifying device trees,
soldering breakout boards, and probing pins with a logic analyzer

• Interact with hardware without having to write kernel device drivers

• Divide your system up into services supervised by BusyBox runit

• Debug devices remotely using GDB and measure the performance of systems using
tools such as perf, ftrace, eBPF, and Callgrind

https://packt.link/9781789530384

500

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Red Hat Enterprise Linux 8 Administration, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1800569823
https://packt.link/r/1800569823

Index

A
Access Vector Cache (AVC) 295
admin commands

running, with sudo 152, 153
administrative tasks

sudo access, configuring for 150
advanced remote management 261
Amazon Web Services (AWS) 152
Anaconda

about 18, 40
RHEL deployments,

automating with 40-45
Ansible 131, 327
attack surface 25
autocompletion 71

B
bash 68
bash autocomplete

about 71
commands, recovering 72

Basic Input/Output System
(BIOS) 334, 358, 402

BIOS booting 402
BIOS configuration 8

bootloader
working with 404, 405

boot process
about 402-404
intervening, to access system 413-415

boot sequence
with systemd 410-412

boot targets
managing 110-112

Bugzilla
reference link 307

Buildah
about 439
used, for building container

images 449, 450

C
Carrier-Grade Network Address

Translation (CGNAT) 174
 Central Processing Unit (CPU)

125, 126, 418, 437
chkconfig 109
chrony

about 118, 122
time synchronization, learning with 117

502 Index

cloud
Red Hat Enterprise Linux (RHEL),

deploying on 46-53
cockpit 130, 131, 269, 276
command interpreter 91
command line

about 68, 69
I/O redirection 75-78
used, for navigating through

filesystem 68
command prompt

about 60
using 60

Common Internet FileSystem (CIFS) 306
Common Platform Enumeration

(CPE) 322
configuration files 170-172
container

deploying, on production system
with systemd 444, 445

persistent storage, attaching to 443, 444
running, with Podman 439
running, with UBI 439

Containerfile
about 445
using, to build container image 445, 446

container image
building, with Buildah 449, 450
building, with Containerfile 445, 446
building, with Dockerfile 445, 446

container management 440
container registries 446
container tools

about 436
Buildah 439
installing 438, 439
Podman 439
Skopeo 439

Content Distribution Network (CDN) 32
context, for files

restoring, to default policy 303-305
continuous integration/continuous

delivery (CI/CD) 437
Control groups (Cgroups) 437
createrepo

used, for creating repositories 226-231
used, for syncing repositories 226-231

createrepo tool 226
cron

used, for scheduling tasks 113
cron Daemon 116
Cronie 113
crontab 113
custom tuned profile

creating 431-434

D
Dandified YUM (DNF) 441
DataStream (DS) 322
dependencies 215
deployments 437
deprecated 170
device mapper 368
df tool 124
dhcpv6-client 276
directories

about 82, 83
copying 82
creating 82
listing 82
moving 82

directory tree 70
Discretionary Access Controls

(DAC) 293, 307
disk dump (dd) 388

Index 503

Disk Operating System (DOS) 335
disk space 124
distribution 437
Dockerfile

about 445
using, to build container image 445, 446

DocumentRoot 300
domain names 169
Dynamic Host Configuration

Protocol (DHCP) 29, 42, 276
Dynamic Host Routing Protocol

(DHCP) 176

E
ebtables 268
environment variables

about 68, 69
usage 69
used, for navigating through

filesystem 68
epoch 146
exit code 96
eXtended File System (XFS) 343
extended partition 335
Extended Service Set Identification

(ESSID) 169
Extensible Configuration Checklist

Description Format (XCCDF) 322
Extensible Firmware Interface (EFI) 336

F
Fedora Media Writer tool 9
File Allocation Table (FAT) 335
file permissions

about 66-68
checking 155-162

modifying 155-162
reviewing 155-162

files
copying 82-86
creating 82
listing 82
moving 82-86
transferring, with OpenSSH

secure file copy 252, 253
transferring, with rsync 256-260
transferring, with sftp 254, 255

filesystem
command line, used for navigating 68
environment variables, used

for navigating 68
formatting 343-346
managing, with Stratis 387-391
mounting 343-346
navigating 70

filesystem hierarchy 73, 74
Filesystem Hierarchy Standard (FHS) 73
File Transfer Protocol (FTP) 251
firewall 190
firewall configuration

about 192-194
overview 190-192

firewalld
about 191, 268, 269
configuring, with web interface 284-288
enabling, in system 269-272
service definitions, creating for 282
zones 273, 274

firewalld, configurations types
permanent 272
running 272

firewalld, default configuration
reviewing 272-275

504 Index

firewalld ports
about 272
enabling 276-279
managing 280-282

firewalld service
about 272
cockpit 276
dhcpv6-client 276
enabling 276-279
Internet Printing Protocol

(IPP) client 276
managing 280-282
Multicast DNS (MDNS) 276
samba-client 276
Secure Shell Host (SSH) 276

firewalld zone 272, 276
firewall options

reviewing 275
firmware 402
for loop 92-94
Fourth Extended Filesystem (EXT4) 343
fstab

mounts, setting 346-349
options, setting 346-349

G
GID (Group Id) 65
globbing 84
GNOME 248
Grand Unified Bootloader (GRUB)

about 402
working with 404-410

grep command
used, for filtering output 78-81

grep command, options
ignore-case (-i) 80
invert match (-v) 80
recursive (-r) 80

groups 62, 65
groups, types

primary group 65
private group 65
supplementary group 65

GUID Partition Table (GPT) 336-343, 403
disk gzip command

using 88-90
gzip pattern 78

H
hard links

about 86, 87
copying 82
creating 82
listing 82
moving 82

Hardware Abstraction Layer (HAL) 170
home directory 69
hostname

configuring 186-190
hostname resolutions

configuring 186-190

I
if conditional 94, 95
InfiniBand 168
info pages 99
initial boot image 403
initial RAM disk (initrd) 402, 404, 409

Index 505

initrd system images
working with 404, 405

initscripts 109
input/output (I/O) 418, 437
Integrated Drive Electronics (IDE) 336
International Business

Machines (IBM) 335
Internet Control Message

Protocol (ICMP) 194
Internet Message Access

Protocol (IMAP) 261
Internet Of Things (IOT) 174
Internet Printing Protocol (IPP) client 276
internet SCSI (iSCSI) 348
Internet Service Providers (ISP) 174
interpreter 68
I/O redirection

in command line 75-78
iostat 127
IPv4

about 173
network interfaces, configuring with 173

IPv6
about 173
network interfaces, configuring with 173

J
journald

using 132

K
kernel 104
kernel scheduling parameters

for process management 424-427

key-based authentication
with SSH 244-248

KVM 11

L
layers 437
Libvirt 11
links

about 86
copying 82
creating 82
listing 82
moving 82

links, types
hard links 86
symbolic links 86

Linux Kernel
URL 260

Linux security modules 292
load average 126
local user accounts

creating 140-144
deleting 140-144
modifying 140-144

local user groups
creating 140-144
deleting 140-144
managing 144, 145
modifying 140-144

local user groups, assignments
reviewing 144, 145

log files
reading 132

Logical Volume Manager (LVM)
about 356
example 357

506 Index

Logical Volumes (LV) 356
Logical Volumes (LV), creating 365-368
Logical Volumes (LV),

extending 365-368
Physical Volumes (PV) 356
Physical Volumes (PV), combining

into volume group 363, 365
Physical Volumes (PV),

creating 357-363
Physical Volumes (PV), moving 357-363
Physical Volumes (PV),

removing 358-363
Volume Groups (VG) 356

Logical Volumes (LV)
extending 368-372
removing 374-379

logrotate 134, 135
log rotation 134-136
logs

used, for reviewing system
status 132-134

LVM commands
reviewing 379, 380

LVM volume
VDO volume, assigning 395

M
MAC address 169
make directory (mkdir) 82
Mandatory Access Control (MAC) 307
manual pages 97, 98
Master Boot Record (MBR)

43, 336-343, 402
megabytes (MB) 441
memory 123
memory usage

checking 418-423

modularity 223
mounts

setting, in fstab 346-349
Multicast DNS (MDNS) 276
Multi-Level Security (MLS) 294
multi-user environments

managing 58
multi-user system 60

N
namespaces 437
National Security Agency (NSA) 292
NetBIOS Extended User Interface

(NetBEUI) 168
netfilter 190
Network Address Translation (NAT) 29
Network Basic Input/Output

System (NetBIOS) 168
network configuration

exploring, in RHEL 168, 169
network connectivity

testing 194-196
Network File System (NFS)

about 306
network filesystems, using with 349

Network Interface Card (NIC) 169, 173
network interfaces

configuring, with IPv4 173
configuring, with IPv6 173

NetworkManager 170-172
network resources

monitoring tools 127-131
Network Time Protocol (NTP)

time synchronization, learning
with 117, 118

nft 190
nftables 190, 268

Index 507

nmcli
text-based user interface,

configuring with 180-183
nm-connection-editor

text-based user interface,
configuring with 177-179

nmtui
interfaces, configuring with 174-176

NTP client 118-121
NTP server 121, 122

O
OOM-Killer 123
Open Checklist Interactive

Language (OCIL) 322
Open Container Initiative (OCI)

about 436
standards 436
URL 436

OpenSCAP
about 314-321
using, with security profiles

for OSPP 321, 322
using, with security profiles

for PCI DSS 321, 322
OpenShift 438
OpenSSH

base configuration 238
overview 238

OpenSSH client 241
OpenSSH secure file copy

files, transferring with 252, 253
OpenSSH server 239, 240
Open Vulnerability Assessment

Language (OVAL) 320
operating system kernel 402, 403

operating system loader 402
Operating System Protection

Profile (OSPP)
about 321
OpenSCAP, using with security

profiles 321, 322
Oracle VirtualBox 11
OSPP compliance 324-327
other documentation resources 100
out-of-memory (OOM) 424
output

filtering, with grep command 78-81
filtering, with sed command 78-81

P
partitioning disks

about 336
GUID Partition Table (GPT)

disk 336-343
Master Boot Record (MBR)

disk 336-343
password hashes 145
password policies

adjusting 145-150
Payment Card Industry Data

Security Standard (PCI DSS)
OpenSCAP, using with security

profiles 321, 322
PCI DSS compliance 327-329
Peer-To-Peer (p2p) 169
permissions 62
Performance Co-Pilot (pcp) 129
persistent storage

attaching, to container 443, 444
Personal Computer (PC) 334, 402
physical server installation

preparing 8-11

508 Index

physical volume (PV)
about 395
removing 374-379

pipe operator (|) 75
Podman

about 439
configuring, to search registry

servers 446, 447
options 448
using, to run container 439

policy
about 293
tweaking, with semanage 300-302

pool 118
Portable Operating System

Interface (POSIX)
about 63
reference link 63

pre boot network execution (PXE) 402
primary partition 335
processes

identifying 418-423
killing 418-423

Process Identifier (PID) 410, 419
pull command 440
Python 18

Q
Qemu 11

R
ramdisk 104
random-access memory (RAM) 424
Red Hat Certified Engineer (RHCE) 302
Red Hat Certified System Administrator

(RHCSA) 99, 101, 239, 302

Red Hat Customer Portal
reference link 198

Red Hat Enterprise Linux 8 (RHEL8)
about 14
installing 8
physical server installation,

preparing 8-11
virtual server installation,

preparing 11-15
Red Hat Enterprise Linux ISO 12
Red Hat Enterprise Linux (RHEL)

about 169, 238, 343, 421
blueprints, types 54
deploying, on cloud 46-53
installing, best practices 53-55
miscellanea, types 55
network configuration,

exploring 168, 169
networking, types 54
reference link 343
security, types 55
software, types 54
storage, types 54, 55

Red Hat Enterprise Linux System
Design Guide, for RHEL8

reference link 320
Red Hat UBI 440
redirect and add operator (>>) 75
redirect operator (>) 75
redirect STDERR operator (2>) 75
redirect STDOUT operator (1>) 75
redirect to STDERR operator (>&2) 76
redirect to STDOUT operator (>&1) 76
Redundant Array of Inexpensive

Disks (RAIDs) 392
remote container

inspecting, with Skopeo 451

Index 509

Remote Direct Memory Access
(RDMA) 168

remote file management 251
remote systems

accessing, with SSH 242-244
remote terminals

with tmux 263-266
remove command 443
remove directory (rmdir) 82
repos 204
repositories

about 204
creating, with createrepo 226-231
creating, with reposync 226-231
managing, with YUM/DNF 206-215
syncing, with createrepo 226-231
syncing, with reposync 226-231

reposync
used, for creating repositories 226-231
used, for syncing repositories 226-231

reposync tool 229
reverse operator (<) 75
RHEL deployments

automating, with Anaconda 40-45
RHEL installation

localization 18-23
running 16-18
Software section 24, 25
System configuration section 25-33
user settings 33-38

RHEL software
obtaining 4-8

RHEL subscription
management 198-205
obtaining 4-8
registration 200-205

root account
using 59

root servers 190
RPM internals 232, 233
rsync

files, transferring with 256-260
run command 442
runlevels 107, 110

S
samba-client 276
sar 128
Satellite 131
SCAP components

reference link 322
Secure Shell Host (SSH)

about 276, 418
base configuration 238
key-based authentication with 244-248
overview 238
remote systems, accessing with 242-244

Security-Enhanced Linux (SELinux)
about 64, 131, 292, 437
common fixes 307-311
troubleshooting 307-311
used, in enforcing modes 292-295
used, in permissive modes 292-295

sed command
used, for filtering output 78-81

SELinux Boolean settings
used, for enabling services 305, 306

SELinux context
reviewing, for files 296-300
reviewing, for processes 296-300

semanage
policy, tweaking with 300-302

Serial Advanced Technology
Attachment (SATA) 348

510 Index

server 118
service definitions

creating, for firewalld 282
service definitions, for firewalld

using 283
setgid 67
Set-GID (sgid)

about 163, 164
applying 163

setuid 67
Set-UID (suid)

about 162
applying 162, 163

sftp
files, transferring with 254, 255

shell 68
shell scripts

about 90
creating 90-92
exit code 96
for loop 92-94
if conditional 94, 95

signatures
managing, with YUM/DNF 205-215

Simple Mail Transfer Protocol
(SMTP) 261

Skopeo
about 439
used, for inspecting remote

container 451
Small Computer System

Interface (SCSI) 336
Small Office - Home Office (SOHO) 176
sparse file 337
special permissions

using 162
SSH agent 248-251

SSH redirections 261-263
SSH tunnels 261-263
Standard Error (STDERR) 75
Standard Input (STDIN) 75, 78
Standard Output (STDOUT) 75
standard system installation

logs 133
sticky bit

about 67
using 164-166

stop command 442
storage

history 334, 335
storage pools

managing, with Stratis 387-391
Stratis

about 384, 385
enabling 385-387
installing 385-387
used, for managing filesystems 387-391
used, for managing storage

pools 387-391
Substitute User (su tool) 60
su command

used, for modifying user 60-62
sudo access

configuring, for administrative tasks 150
sudo configuration 151, 152
sudoers

configuring 154, 155
super-user do (sudo)

about 9, 150
using, to run admin commands 152, 153

symbolic links 86, 87
sysstat 127
system crash 123

Index 511

systemd
about 271, 402
reference link 104
units 106
used, for boot sequence 410-412
used, for deploying container on

production system 444, 445
used, for managing system

services 104-106
system documentation resources

info pages 99
manual pages 96-98
other documentation resources 100
using 96

systemd timers
used, for scheduling tasks 116, 117

systemd unit file
structure 107, 108

system resources
checking 122
CPU 125, 126
disk space 124
load average 126
memory 123

systems
preparing, to use Virtual Data

Optimizer (VDO) 391, 392
system services

disabling, at boot 109, 110
enabling, at boot 109, 110

system status
reviewing, with logs 132-134

system vulnerabilities
discovering 314-321

system-wide crontab
used, for scheduling tasks 114, 115

T
tar command

using 88-90
tasks

scheduling, with cron 113
scheduling, with systemd

timers 116, 117
scheduling, with

system-wide crontab 114, 115
scheduling, with user crontab 115, 116

text-based user interface
configuring, with nmcli 180-183
configuring, with nm-connection-

editor 177-179
configuring, with nmtui 174-176
configuring, with text files 183-186

text editor, in Linux
Emacs 91
Nano 91
Vim (vi-improved) 91

text files
text-based user interface,

configuring with 183-186
time synchronization

learning, with chrony 117
learning, with Network Time

Protocol (NTP) 117
tmux

remote terminals, using with 263-266
Transmission Control Protocol/

Internet Protocol (TCP/IP) 168
Transmission Control Protocol (TCP) 432
Transport Layer Security (TLS) 447
Trusted Platform Module (TPM) 315

512 Index

tuned profiles
installing 427-430

tuning profiles
managing 427-430

U
UBI

using, to run container 439
UBI Init 441
UBI Micro 441
UBI Minimal 441
UBI Standard 441
UEFI booting 402
UID (User ID) 63
UNetbootin tool 9
Unified Extensible Firmware

Interface (UEFI) 358, 403
Uniform Resource Locator (URL) 421
universally unique identifiers

(UUIDs) 348
Universal Serial Bus (USB) 348
USB thumb drive 10
user

about 62-64
logging in 58
modifying, with su command 60-62

user crontab
used, for scheduling tasks 115, 116

user, types
regular user 63
superuser 63
system user 63

UTC 23

V
VDO stats

reviewing 396-398
VDO volume

assigning, to LVM volume 395
creating 392-395
testing 396-398

Vim (vi-improved) 91
virsh 11
virtual CPU (vCPU) 437
Virtual Data Optimizer (VDO)

used, for preparing systems 391, 392
virtual hard drive (VHD) 337
Virtualization Software 29
Virtual Local Area Network (VLAN) 169
virtual machine (VM) 392, 437
Virtual Private Network (VPN) 169
virtual server installation

preparing 11-15
VMware Workstation Player 11
Volume Groups (VG)

disks, adding 368-372
removing 374-379

W
web interface

firewalld, configuring with 284-288

Index 513

Y
YellowDog Updater Modified (YUM) 441
YUM/DNF

repositories, managing with 205-215
rollbacks with 215-226
signatures, managing with 205-215
software installations with 215-226
updating with 215-226

	Cover
	Title Page
	Copyright and Credits
	Dedicated
	Contributors
	Table of Contents
	Preface
	Section 1:
Systems Administration – Software, User, Network, and Services Management
	Chapter 1: Installing RHEL8
	Technical requirements
	Obtaining RHEL software and a subscription
	Installing RHEL8
	Preparation for a physical server installation
	Preparation for a virtual server installation
	Running an RHEL installation

	Summary

	Chapter 2: RHEL8 Advanced Installation Options
	Technical requirements
	Automating RHEL deployments with Anaconda
	Deploying RHEL on the cloud
	Installation best practices
	Summary

	Chapter 3: Basic Commands and Simple
Shell Scripts
	Logging in as a user and managing multi-user environments
	Using the root account
	Using and understanding the command prompt

	Changing users with the su command
	Understanding users, groups, and basic permissions
	Users
	Groups
	File permissions

	Using the command line, environment variables, and navigating through the filesystem
	Command line and environment variables
	Navigating the filesystem
	Bash autocomplete
	Filesystem hierarchy

	Understanding I/O redirection in the command line
	Filtering output with grep and sed
	Listing, creating, copying, and moving files and directories, links, and hard links
	Directories
	Copying and moving
	Symbolic and hard links

	Using tar and gzip
	Creating basic shell scripts
	for loops
	if conditionals
	Exit codes

	Using system documentation resources
	Man pages
	Info pages
	Other documentation resources

	Summary

	Chapter 4: Tools for Regular Operations
	Technical requirements
	Managing system services with systemd
	Systemd unit file structure
	Managing services to be started and stopped at boot
	Managing boot targets

	Scheduling tasks with cron and systemd
	System-wide crontab
	User crontab
	Systemd timers

	Learning about time synchronization with chrony and NTP
	NTP client
	NTP server

	Checking for free resources – memory and disk (free and df)
	Memory
	Disk space
	CPU
	Load average
	Other monitoring tools

	Finding logs, using journald, and reading log files, including log preservation and rotation
	Log rotation

	Summary

	Chapter 5: Securing Systems with Users, Groups, and Permissions
	Creating, modifying, and deleting local user accounts and groups
	Managing groups and reviewing assignments
	Adjusting password policies
	Configuring sudo access for administrative tasks
	Understanding sudo configuration
	Using sudo to run admin commands
	Configuring sudoers

	Checking, reviewing, and modifying file permissions
	Using special permissions
	Understanding and applying Set-UID
	Understanding and applying Set-GID
	Using the sticky bit

	Summary

	Chapter 6: Enabling Network Connectivity
	Technical requirements
	Exploring network configuration in RHEL
	Getting to know the configuration files and NetworkManager
	Configuring network interfaces with IPv4
and IPv6
	IPv4 and IPv6... what does that mean?
	Configuring interfaces with nmtui
	Configuring interfaces with nm-connection-editor
	Configuring interfaces with nmcli
	Configuring interfaces with text files

	Configuring hostname and hostname resolutions (DNS)
	Overview of firewall configuration
	Configuring the firewall

	Testing network connectivity
	Summary

	Chapter 7: Adding, Patching, and Managing Software
	RHEL subscription registration and management
	Managing repositories and signatures with YUM/DNF
	Doing software installations, updates, and rollbacks with YUM/DNF
	Creating and syncing repositories with createrepo and reposync
	Understanding RPM internals
	Summary

	Section 2:
Security
with SSH, SELinux,
a Firewall, and
System Permissions
	Chapter 8: Administering Systems Remotely
	Technical requirements
	SSH and OpenSSH overview and base configuration
	OpenSSH server
	OpenSSH client

	Accessing remote systems with SSH
	Key-based authentication with SSH
	SSH agent

	SCP/rsync – remote file management
	Transferring files with an OpenSSH secure file copy
	Transferring files with sftp
	Transferring files with rsync

	Advanced remote management – SSH tunnels and SSH redirections
	Remote terminals with tmux
	Summary

	Chapter 9: Securing Network Connectivity with firewalld
	Introduction to the RHEL firewall – firewalld
	Enabling firewalld in the system and reviewing the default zones
	Reviewing the different configuration items under firewalld

	Enabling and managing services and ports
	Creating and using service definitions for firewalld
	Configuring firewalld with the web interface
	Summary

	Chapter 10: Keeping Your System Hardened with SELinux
	Technical requirements
	SELinux usage in enforcing and permissive modes
	Reviewing the SELinux context for files and processes
	Tweaking the policy with semanage
	Restoring changed file contexts to the default policy
	Using SELinux Boolean settings to enable services
	SELinux troubleshooting and common fixes
	Summary

	Chapter 11: System Security Profiles with OpenSCAP
	Getting started with OpenSCAP and discovering system vulnerabilities
	Using OpenSCAP with security profiles for OSPP and PCI DSS
	Scanning for OSPP compliance
	Scanning for PCI DSS compliance

	Summary

	Section 3:
Resource Administration – Storage, Boot Process, Tuning, and Containers
	Chapter 12: Managing Local Storage and Filesystems
	Technical requirements
	Let's start with a definition
	A bit of history

	Partitioning disks (MBR and GPT disks)
	Formatting and mounting filesystems
	Setting default mounts and options in fstab
	Using network filesystems with NFS
	Summary

	Chapter 13: Flexible Storage Management
with LVM
	Technical requirements
	Understanding LVM
	Creating, moving, and removing physical volumes
	Combining physical volumes into volume groups
	Creating and extending logical volumes
	Adding new disks to a volume group and extending a logical volume
	Removing logical volumes, volume groups,
and physical volumes
	Reviewing LVM commands
	Summary

	Chapter 14: Advanced Storage Management with Stratis and VDO
	Technical requirements
	Understanding Stratis
	Installing and enabling Stratis
	Managing storage pools and filesystems with Stratis
	Preparing systems to use VDO
	Creating a VDO volume
	Assigning a VDO volume to an LVM volume
	Testing a VDO volume and reviewing the stats
	Summary

	Chapter 15: Understanding the Boot Process
	Understanding the boot process – BIOS and UEFI booting
	Working with GRUB, the bootloader, and initrd system images
	Managing the boot sequence with systemd
	Intervening in the boot process to gain access to a system
	Summary

	Chapter 16: Kernel Tuning and Managing Performance Profiles with tuned
	Technical requirements
	Identifying processes, checking memory usage, and killing processes
	Adjusting kernel scheduling parameters to better manage processes
	Installing tuned and managing tuning profiles
	Creating a custom tuned profile
	Summary

	Chapter 17: Managing Containers with Podman, Buildah, and Skopeo
	Technical requirements
	Introduction to containers
	Installing container tools

	Running a container using Podman and UBI
	Basic container management – pull, run, stop, and remove
	Attaching persistent storage to a container
	Deploying a container on a production system with systemd
	Building a container image using a Dockerfile or Containerfile
	Configuring Podman to search registry servers
	Summary of Podman options

	When to use Buildah and Skopeo
	Building container images with Buildah
	Inspecting a remote container with Skopeo

	Summary

	Section 4:
Practical Exercises
	Chapter 18: Practice
Exercises – 1
	Technical requirements
	Tips for the exercise
	Practice exercise 1
	Exercise 1 resolution

	Chapter 19: Practice Exercise – 2
	Technical requirements
	Tips for the exercise
	Practice exercise – 2
	Answers to practice exercise 2

	About Packt
	Other Books You May Enjoy
	Index

