
		
			[image: Cover.png]
		

	
		
			Linux Service Management Made Easy with systemd

			Advanced techniques to effectively manage, control, and monitor Linux systems and services

			Donald A. Tevault

			[image:]

			BIRMINGHAM—MUMBAI

			Linux Service Management Made Easy with systemd

			Copyright © 2022 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Wilson D'souza

			Publishing Product Manager: Vijin Boricha

			Senior Editor: Arun Nadar

			Content Development Editor: Rafiaa Khan

			Technical Editor: Nithik Cheruvakodan

			Copy Editor: Safis Editing

			Project Coordinator: Shagun Saini

			Proofreader: Safis Editing

			Indexer: Manju Arasan

			Production Designer: Nilesh Mohite

			First published: February 2022

			Production reference: 2291221

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80181-164-4

			www.packt.com

			I'd like to thank the good folk at Packt Publishing for making the publishing of this book such a smooth process. I'd also like to thank my cats and my opossum for graciously allowing me to use their names in the demos.

			– Donnie

			Contributors

			About the author

			Donald A. Tevault – you can call him Donnie – got involved with Linux way back in 2006 and has been working with it ever since. He holds the Linux Professional Institute Level 3 Security certification and the GIAC Incident Handler certification. Donnie is a professional Linux trainer, and thanks to the magic of the internet, teaches Linux classes all over the world from the comfort of his living room. He's also a Linux security researcher for an IoT security company.

			About the reviewer

			Steve Shilling has worked in the IT industry commercially since 1987 but started with computers back in 1982, writing basic programs and debugging games programs written by others at a very early age. Steve has a broad knowledge covering Unix, Linux, Windows, and mainframe systems, but primarily works in the Unix/Linux space and has worked across many industries, including finance, retail, and insurance. Today, Steve provides training and consultancy in DevOps, SRE, production support, and anything to do with Linux automation or the automation of processes.

			He currently works at TPS Services Ltd, specializing in IT training and consultancy, life coaching, management training, and counseling. Steve is the author of The Grass Is Greener - Linux as a Desktop and has also reviewed Packt books in the past.

		

	
		
			Table of Contents

			Preface

			Section 1: Using systemd

			Chapter 1: Understanding the Need for systemd

			Technical requirements

			The history of Linux init systems

			The shortcomings of SysV Init and upstart

			The advantages of systemd

			systemd's simplicity

			systemd's consistency

			systemd's performance

			systemd security

			The systemd controversy

			Summary

			Questions

			Answers

			Further reading

			Chapter 2: Understanding systemd Directories and Files

			Technical requirements

			Understanding the systemd configuration files

			Understanding the systemd unit files

			Types of unit files

			Understanding the systemd executables

			Summary

			Questions

			Answers

			Further reading

			Chapter 3: Understanding Service, Path, and Socket Units

			Technical requirements

			Understanding service units

			Understanding the Apache service file

			Understanding the Secure Shell service file

			Understanding the timesyncd service file

			Understanding socket units

			Understanding path units

			Summary

			Questions

			Answers

			Further reading

			Chapter 4: Controlling systemd Services

			Technical requirements

			Verifying the status of a service

			Starting, stopping, and reloading services

			Enabling and disabling services

			Killing a service

			Masking a service

			Summary

			Questions

			Answers

			Further reading

			Chapter 5: Creating and Editing Services

			Technical requirements

			Editing an existing service

			Creating a partial edit to the [Install] section

			Creating a partial edit to the [Service] section

			Creating a full edit

			Creating a new service

			Changing the default systemd editor

			Creating a new container service with podman

			Summary

			Questions

			Answers

			Further reading

			Chapter 6: Understanding systemd Targets

			Technical requirements

			Understanding the purpose of systemd targets

			Understanding the structure of a target file

			Understanding the sockets.target file

			Understanding dependencies in the sshd.service file

			Comparing systemd targets to SysVinit runlevels

			Understanding target dependencies

			Changing the default target

			Temporarily changing the target

			Summary

			Questions

			Answers

			Further reading

			Chapter 7: Understanding systemd Timers

			Technical requirements

			Comparing systemd timers with cron

			Viewing timer information

			Understanding timer options

			Understanding monotonic timers

			Understanding real-time timers

			Understanding calendar events for real-time timers

			Creating timers

			Creating a system-level timer

			Creating a user-level timer

			Summary

			Questions

			Answers

			Further reading

			Chapter 8: Understanding the systemd Boot Process

			Technical requirements

			Comparing SysV bootup and systemd bootup

			Understanding SysV and systemd bootup similarities

			Understanding the SysV bootup process

			Understanding the systemd bootup process

			Analyzing bootup performance

			Some differences on Ubuntu Server 20.04

			Understanding systemd generators

			Understanding mount units

			Understanding backward compatibility

			Summary

			Questions

			Answers

			Further reading

			Chapter 9: Setting System Parameters

			Technical requirements

			Setting the locale parameter

			Understanding the locale

			Changing the default locale on the Alma machine

			Changing the default locale on Ubuntu

			Setting time and timezone parameters

			Setting the hostname and machine information

			Viewing the information

			Setting the information

			Summary

			Questions

			Answers

			Further reading

			Chapter 10: Understanding Shutdown and Reboot Commands

			Technical requirements

			Shutting down with systemctl

			Halting with systemctl

			Rebooting with systemctl

			Using shutdown instead of systemctl

			Running a job before shutting down

			Summary

			Questions

			Answers

			Further reading

			Section 2: Understanding cgroups

			Chapter 11: Understanding cgroups Version 1

			Technical requirements

			Understanding the history of cgroups

			Understanding the purpose of cgroups

			Understanding the structure of cgroups Version 1

			Understanding the cgroup filesystem

			Summary

			Questions

			Answers

			Further reading

			Chapter 12: Controlling Resource Usage with cgroups Version 1

			Technical requirements

			Understanding resource controllers

			Examining the resource controllers

			Preparing for the demos

			Controlling CPU usage

			Controlling Vicky's CPU usage

			Controlling CPU usage for a service

			Controlling memory usage

			Controlling blkio usage

			Setting a blkio limit for Vicky

			Setting a blkio limit for a service

			Understanding pam_limits and ulimit

			The ulimit command

			The pam_limits module

			Summary

			Questions

			Answers

			Further reading

			Chapter 13: Understanding cgroup Version 2

			Technical requirements

			Understanding the need for Version 2

			Version 1 complexity

			Version 1 attribute filenames

			No support for rootless containers

			Understanding the improvements in cgroup Version 2

			Setting resource limits on rootless containers

			Understanding cpuset

			Converting RHEL 8-type distros to cgroup version 2

			Summary

			Questions

			Answers

			Further reading

			Section 3: Logging, Timekeeping, Networking, and Booting

			Chapter 14: Using journald

			Technical requirements

			Understanding the pros and cons of rsyslog

			Understanding the pros and cons of journald

			Understanding journald on Ubuntu

			Understanding journald on RHEL-type systems

			Using journalctl

			Searching for and viewing log data with journalctl

			Sealing journald log files for security

			Setting up remote logging with journald

			Summary

			Questions

			Answers

			Further reading

			Chapter 15: Using systemd-networkd and systemd-resolved

			Technical requirements

			Understanding networkd and resolved

			Understanding Netplan on Ubuntu

			Viewing installer-generated Netplan configurations

			Creating Netplan configurations

			Understanding networkd and resolved on RHEL-type machines

			Using networkctl and resolvectl

			Viewing the networkd and resolved unit files

			Summary

			Questions

			Answers

			Further reading

			Chapter 16: Understanding Timekeeping with systemd

			Technical requirements

			Understanding the importance of accurate time

			Comparing NTP implementations

			Understanding chrony on the AlmaLinux machine

			The chronyd.service file

			The chrony.conf file

			Setting up a chronyd time server

			Using chronyc

			Understanding systemd-timesyncd

			The systemd-timesyncd.service file

			The timesyncd.conf file

			Using timedatectl

			Configuring Ubuntu to use chrony

			Understanding the Precision Time Protocol

			An overview of PTP

			Installing PTP

			Configuring PTP with software timestamping on AlmaLinux

			Configuring PTP with hardware timestamping on AlmaLinux

			Configuring PTP with software timestamping on Ubuntu

			Configuring PTP with hardware timestamping on Ubuntu

			Summary

			Questions

			Answers

			Further reading

			Chapter 17: Understanding systemd and Bootloaders

			Technical requirements

			Understanding the basic computer architecture

			Understanding GRUB2

			Comparing GRUB2 on BIOS and EFI/UEFI systems

			GRUB2 on BIOS-based and EFI/UEFI-based Ubuntu machines

			Understanding systemd-boot

			Understanding Secure Boot

			Summary

			Questions

			Answers

			Further reading

			Chapter 18: Understanding systemd-logind

			Technical requirements

			Understanding the need for a new login service

			Understanding systemd-logind.service

			The Alma Linux systemd-logind.service file

			The Ubuntu Server systemd-logind.service file

			Understanding logind.conf

			Virtual terminals

			Keeping user processes going after logout

			Power management directives

			The IdleAction directives

			Understanding loginctl

			Understanding polkit

			Summary

			Questions

			Answers

			Further reading

			Other Books You May Enjoy

		

	
		
			Preface

			Welcome, dear reader, to the world's first comprehensive book about systemd and its ecosystem. Although systemd has become the world's most prevalent Linux init system, not all that much has been written about it. There is, of course, the official systemd documentation that you can find online. But it's rather terse and doesn't give you much in the way of practical examples. There are also some good tutorials in the form of blog posts, but most of them just cover the basics. I've only been able to find two other books with systemd in the title. Both of them are outdated and also just cover the basics.

			My goal in writing this book has been to take you beyond the basics, to show you how to be a more effective Linux systems administrator. In every chapter, we'll be looking under the hood to see how systemd actually works. Rest assured, there will be plenty of hands-on demos to show you how to make systemd sing and dance just the way you want it to.

			Who this book is for

			If you're a Linux systems administrator, or if you're studying to become one, you can benefit from this book. It can also be a good study aid if you're preparing to take a Linux certification exam, such as the ones from CompTIA, the Linux Professional Institute, or the commercial Linux distro vendors.

			What this book covers

			Chapter 1, Understanding the Need for systemd, explores the history of Linux init systems and explains why the legacy init systems needed to be replaced with something a bit more robust. We'll also briefly look at the controversy that has surrounded the shift to systemd.

			Chapter 2, Understanding systemd Directories and Files, explores the various directories that contain systemd files. We'll also explore the various systemd unit files and configuration files, and will explain the purpose of each type. Finally, we'll briefly look at the executable files that are associated with systemd.

			Chapter 3, Understanding Service, Path, and Socket Units, examines the inner workings of the service, path, and socket unit files. We'll examine the parts that are in each, and look at some of the parameters that you can set. Along the way, I'll give you some pointers about how to find information about what the various parameters are doing for you.

			Chapter 4, Controlling systemd Services, explores how to control systemd services. We'll start by looking at how to list what services are on the system and what their states are. We'll then look at how to enable, disable, start, stop, and restart services.

			Chapter 5, Creating and Editing Services, looks at how to use systemctl to create and edit systemd service files. For those of you who need to work with Docker containers, I'll show you a cool method for using the new podman Docker replacement to easily turn your containers into services. We'll also look at how to reload a service file once it's been either added or changed.

			Chapter 6, Understanding systemd Targets, looks at the various systemd targets. We'll explain what they are and the structure of a target file. We'll then compare systemd targets to the old SysVinit runlevels, and then look at how to change a system from one target to another.

			Chapter 7, Understanding systemd Timers, looks at how to create systemd timers. We'll also compare systemd timers to the old cron system, to see which we like better.

			Chapter 8, Understanding the systemd Boot Process, looks at the systemd boot process and how it compares to the old SysVinit boot process.

			Chapter 9, Setting System Parameters, looks at how to use systemd utilities to set certain system parameters. Once you see how it's done with systemd, you just might agree that systemd makes it easier.

			Chapter 10, Understanding Shutdown and Reboot Commands, looks at how to use the systemctl utility to shut down and reboot a Linux system. After that, we'll see whether the old-fashioned shutdown command still works.

			Chapter 11, Understanding cgroups Version 1, looks at what cgroups are and a bit about their history. We'll then look at how cgroups can help make a Linux system more secure.

			Chapter 12, Controlling Resource Usage with cgroups Version 1, looks at using cgroups to control resource usage on a modern Linux system. This includes how to control memory and CPU usage, as well as how to allocate resources to users.

			Chapter 13, Understanding cgroups Version 2, looks at cgroups version 2. We'll see how it's different from version 1 and how it improves upon version 1. After that, we'll take a brief look at how to work with it. As an added bonus, we'll look at how we can easily do things with cgroup version 2 that we can't easily do with version 1, such as creating cpusets and assigning CPU cores to the proper non-uniform memory access (NUMA) node.

			Chapter 14, Using journald, looks at the basic usage of journald and how it differs from the legacy rsyslog. We'll also look at why we still need rsyslog. Most importantly, you'll learn how to extract and format the data you need from your system logs.

			Chapter 15, Using systemd-networkd and systemd-resolved, shows you why you might want to use systemd-networkd and systemd-resolved instead of the default Network Manager, and how to go about doing so. We'll give you an in-depth look at how to set up systemd-networkd for various scenarios and how the procedure differs for the Ubuntu- and Red Hat-type distros.

			Chapter 16, Understanding Timekeeping with systemd, looks at the various ways to maintain accurate time on systemd systems. We'll look at ntp, chrony, systemd-timesyncd, and the Precision Time Protocol. We'll discuss the pros and cons of each and how configure them.

			Chapter 17, Understanding systemd and Bootloaders, looks at using both GRUB2 and systemd-boot to set up a machine to use EFI/UEFI mode for booting. We'll then look at installing Pop!_OS Linux on a machine that's set up to use UEFI boot mode, and will briefly discuss the Secure Boot feature.

			Chapter 18, Understanding systemd-logind, looks at how to use and configure systemd-logind. We'll also learn how to use the loginctl utility to view information about user login sessions, to control the logind service, and to terminate sessions of troublesome users. We'll wrap up the chapter by taking a brief look at polkit, which is an alternate way of granting administrative privileges to certain users.

			To get the most out of this book

			To perform the demos in this book, you should have a good grasp of basic Linux command-line usage and should know how to create VirtualBox virtual machines. You can download VirtualBox from https://www.virtualbox.org/ and find the download sites for the various Linux distros at https://distrowatch.com/. When you create the virtual machines, allocate enough memory for the machines to run efficiently, and enough drive space to hold everything you need for the demos. (I recommend at least 2 GB of memory for text-mode virtual machines, and at least 4 GB for graphical-mode virtual machines, unless I specify otherwise for specific demos. Set the virtual drive to about 20 GB.)

			
				
					[image:]
				

			

			When you install an Ubuntu distro, you'll automatically be added to the sudo group, which gives you full sudo privileges. When you install AlmaLinux, you'll be given the chance to create a password for the root user. My recommendation is to not do that and instead just check the Make this user administrator box on the Create User screen of the installer.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Linux-Service-Management-Made-Easy-with-systemd. If there's an update to the code, it will be updated on the existing GitHub repository. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			Code in Action videos for this book can be viewed at https://bit.ly/31jQdi0.

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781801811644_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.

			Any command-line input or output is written as follows:

			donnie@ubuntu20-04:~$ sudo systemctl daemon-reload

			[sudo] password for donnie:

			donnie@ubuntu20-04:~$

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: Click Flash from Etcher to write the image.

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read Linux Service Management Made Easy with systemd, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	
		
			Section 1: Using systemd

			Upon completion of Part 1, you will know how to control system services, set environment parameters, and create new systemd units.

			This part of the book comprises the following chapters:

			
					Chapter 1, Understanding the Need for systemd

					Chapter 2, Understanding systemd Directories and Files

					Chapter 3, Understanding Service, Path, and Socket Units

					Chapter 4, Controlling systemd Services

					Chapter 5, Creating and Editing Services

					Chapter 6, Understanding systemd Targets

					Chapter 7, Understanding systemd Timers

					Chapter 8, Understanding the systemd Boot Process

					Chapter 9, Setting System Parameters

					Chapter 10, Understanding Shutdown and Reboot Commands

			

		

	
		
			Chapter 1: Understanding the Need for systemd

			In this first chapter, we'll first briefly look at the history of Linux init systems. We'll then look at the shortcomings of the legacy init systems and why certain Linux engineers felt the need to develop a new type of init system. Finally, we'll look at the controversy that has surrounded systemd. For easy reference, here's a list of the topics:

			
					The history of Linux init systems

					The shortcomings of SysV init and upstart

					The advantages of systemd

					The systemd controversy

			

			So, with the introductory comments out of the way, let's jump in.

			Technical requirements

			For this chapter, all you need is a Linux virtual machine that runs systemd. As you read through this chapter, you might want to look at some of the files on the virtual machine.

			The history of Linux init systems

			So, what is an init system? Well, init is short for initialization. An init system, then, initializes the operating system upon bootup. After the bootup has completed, the init system will continue working, managing system processes and services. Each system process is assigned a process ID number, or PID. The init process is always PID 1, and every other process that gets started on the system is either a child or a grandchild of the init process.

			For many years, the SysV Init system was the primary init system for Linux-based operating systems (SysV is short for System 5. The V is the Roman numeral for 5). SysV init was originally developed by Bell Labs engineers for the Unix operating system, all the way back in the early 1970s. (At that time, I was a young pup in junior high school, and I still had a full head of hair.)

			Note

			There are actually a few more Linux init systems besides the ones that I'm mentioning here. But these were the most commonly used ones in the pre-systemd days.

			SysV init worked well in its day, but it was never perfect. Nowadays, with new high-performance hardware, SysV init has shown both its age and its deficiencies. The first attempt to come up with something better occurred in July 2009, when Ubuntu engineers released the first version of the upstart init system. Although it was better than SysV, it still had its share of problems, especially the early versions which were quite buggy.

			The shortcomings of SysV Init and upstart

			The first problem with SysV is that of its rather lengthy boot-up times. When you boot up a SysV machine, all of its services have to start up in sequential order. That might not be so bad on a normal desktop machine, but it can be a bit problematic on a server that needs to run lots of services. In that case, each service would have to wait its turn to start, which could take a while.

			The next problem with SysV is its complexity. Instead of simple, easy-to-understand configuration files, SysV does everything with complex Bash shell scripts. The init scripts that control system services all have to be assigned a priority number, so that services will start and stop in the proper order. Take, for example, the init script that starts the Apache web server on a CentOS 5 machine. First, we can see that it's a fairly lengthy script, as shown here:

			[student@localhost init.d]$ pwd

			/etc/init.d

			[student@localhost init.d]$ ls -l httpd

			-rwxr-xr-x 1 root root 3523 Sep 16 2014 httpd

			[student@localhost init.d]$ wc -l httpd

			131 httpd

			[student@localhost init.d]$

			You can see from the wc -l output that it consists of 131 lines. As you can see here, 37 of those lines are comments, which still leaves us with 94 lines of actual code:

			[student@localhost init.d]$ grep ^# httpd | wc -l

			37

			[student@localhost init.d]$

			Look inside, and you'll see that it's quite complex and convoluted. Here's just the first part of it:

			
				
					[image:]
				

			

			Figure 1.1 – An old-fashioned SysV Init script

			Toward the end of the script, you'll see the code that stops, starts, restarts, and reloads the Apache daemon, as shown here:

			
				
					[image:]
				

			

			Figure 1.2 – The start, stop, restart, reload section of an init script

			This code, or code similar to this, has to be in every init script so that the human user can control the daemon. To complicate things even more, developers didn't always write this code consistently for different programs. So, for example, a status display for one daemon didn't always look the same as the status display for another daemon.

			Then, there's the problem of inconsistent implementation across the different families of Linux distros. With SysV, there were at least three different methods of implementation. Red Hat-type distros used one method, Debian-type distros used another method, and Slackware-type distros use yet another. For example, the Red Hat way of controlling services required using the service and chkconfig commands. When working with Debian-type systems, I always used to have to look up the service management commands, because I could never remember them. With Slackware, you don't have any service management commands. To enable or disable a service on a Slackware machine, you just set or remove the executable permission from the appropriate init script.

			Runlevels were also a source of confusion, because each family of distro had its own set of runlevel definitions. For example, here are the definitions for the graphical runlevel:

			
					The Red Hat family used runlevel 5.

					The Slackware family uses runlevel 4.

					The Debian family used no specific runlevel for either text mode or graphical mode. Instead, you enabled or disabled graphical mode by enabling or disabling the X server daemon.

			

			So, you can see that this was all quite confusing, especially for anyone who worked in a mixed environment. It should be fairly obvious that we needed something that was a bit less confusing.

			As if this weren't enough, there was also the issue of performance. SysV worked well in its day, when computing hardware was more primitive. But, on modern hardware with multiple CPUs that each have multiple cores, we need something a bit more robust. Ubuntu's upstart was supposed to fix this, but it didn't quite live up to its promise. Nowadays, Upstart is completely dead, but there are still some diehards who refuse to give up SysV. In the enterprise, systemd is king.

			The advantages of systemd

			We've just seen the problems with SysV and upstart. Now, let's look at what makes systemd better.

			systemd's simplicity

			In contrast to SysV, systemd is really quite simple to configure. For example, look at how short the Apache service file is on a CentOS 7 machine with systemd:

			[donnie@localhost ~]$ cd /lib/systemd/system

			[donnie@localhost system]$ ls -l httpd.service

			-rw-r--r--. 1 root root 752 Jun 26 2018 httpd.service

			[donnie@localhost system]$ wc -l httpd.service

			22 httpd.service

			[donnie@localhost system]$

			There are only 22 lines, and 5 of those lines are comments, as you can see here:

			
				
					[image:]
				

			

			Figure 1.3 – A systemd service file

			I'll explain everything in the systemd files later. For now, I just want to show you that a systemd service file is much simpler than a SysV init script. (As we'll soon see in the upcoming chapters, it's easier to learn how to use the systemd directives than it is to learn how to write shell-scripting code for init scripts.)

			systemd's consistency

			The next systemd advantage is its consistency. Yes, boys and girls, you no longer have to remember multiple sets of system management commands for multiple families of Linux distros. Instead, you'll now use the same commands on all Linux distros that use systemd. So, this eliminates a major source of frustration for administrators, and for anyone who's studying to take a Linux certification exam.

			systemd's performance

			In contrast to SysV, systemd can start services in parallel, rather than just one at a time in sequence. This makes for much quicker boot-up times than for SysV. Once the machine is booted, performance is more robust than that of SysV.

			With systemd, we have a much cleaner way of killing processes. For example, if you needed to use the kill command to forcefully terminate the Apache web server service on a SysV machine, you would only terminate the Apache process itself. If the web server process had spawned any child processes due to running CGI scripts, for example, those processes would continue on for a while longer as zombie processes. But, when you kill a service with systemd, all processes that are associated with that service will also get terminated.

			systemd security

			An added bonus is that you can configure systemd service files to control certain aspects of system security. Here are some of the things that you can do:

			
					You can create a systemd service that can restrict access to or from certain directories, or that can only access or be accessed from certain network addresses.

					By using namespaces, you can effectively isolate services from the rest of the system. This also allows you to create containers without having to run Docker.

					You can use cgroups to limit resource usage. This can help prevent certain types of denial-of-service attacks.

					You can specify which root-level kernel capabilities a service is allowed to have.

			

			With all this, you can make systemd somewhat emulate a mandatory access control system, such as SELinux or AppArmor.

			All the way around, systemd is much better than any init system that came before it. But it hasn't made everyone happy.

			The systemd controversy

			If you've been in the computer world for any length of time, you may have seen that we geeks can get quite passionate about our operating systems. In the early 1990s, I finally replaced my text mode-only 8088 machine with one that could run a graphical interface. I first gave Windows 3.1 a try, and quickly decided that I really hated it. So, I bought a copy of OS/2, which I liked much better and ran for quite a few years on my home-built 486 machine. But, all of my geek buddies at work were big Windows fans, and they kept arguing with me about how much better Windows is. I thought that they were all crazy, and we kept getting into some rather heated arguments.

			Then, when I got into Linux, I quickly learned that you don't want to go into any Linux forum and ask which Linux distro is the best for a newbie to start with. All that does is start fights, leaving the poor newbie more confused than ever. And now, the fight is over whether or not systemd is a good thing. Here are some of the objections:

			
					By trying to do too much, systemd violates the Unix concept of having each utility just do one thing but having it do it well.

					It's controlled by a large corporation (Red Hat).

					It's a security problem.

					Its journald component saves system logs to a binary format, which some people believe is more easily corrupted than the plain-text files that rsyslog creates.

			

			If you look at things objectively, you might see that the objections aren't so bad:

			
					Yes, the systemd ecosystem includes more than just the init system. It also includes network, bootloader, logging, and log-in components. But those components are all optional, and not all Linux distros use them in a default setup.

					It was created primarily by Red Hat, and the project leader is a Red Hat employee. But Red Hat released it under a free-as-in-speech software license, which means that no one company can ever take full control of it. Even if Red Hat were to suddenly decide that future versions of systemd were to be proprietary, the free code is still out there, and someone would fork it into a new free version.

					Yes, there have been some security bugs in systemd. But that's also true of OpenSSL, the Bash shell, and even the Linux kernel itself. To complain about systemd's security would only be valid if the bugs hadn't gotten fixed.

					The journald component does create log files in a binary format. But it's still possible to run rsyslog on systemd distros, and most do. Some distros, such as the Red Hat Enterprise Linux 8 family, use journald to gather system information and then just have journald pass the information to rsyslog in order to create normal text files. So, with RHEL 8, we have the best of both worlds.

			

			Soon after the release of systemd, some people who had never even tried it put up blog posts that explained why systemd was pure evil and that they would never use it. A few years ago, I created a systemd tutorial playlist on my BeginLinux Guru channel on YouTube. The first video is called Why systemd?. Quite a few people left comments about why they would never use systemd and said that they would change to either a non-systemd Linux distro or to a FreeBSD-type distro in order to avoid it.

			The bottom line is this: all enterprise-grade Linux distros now use systemd. So, I think that it might be here to stay.

			Summary

			In this first chapter, we've looked at the history of the most common Linux init systems. We've seen the ways in which the legacy init systems are deficient, and we've seen why systemd is a much better replacement. We wrapped things up by looking at the objections against systemd.

			One of the challenges of learning systemd is that, until now, there hasn't been any real comprehensive documentation about it. There's basic usage documentation on the Red Hat website, but it doesn't even cover all components of the systemd ecosystem. There are only two systemd-specific books that I could find, which are a few years old. (One book is specific to Fedora, the other is specific to Ubuntu.) Even those books leave some things out. So, the challenge I've set for myself is to create a comprehensive, hands-on guide for all things systemd. In the chapters that follow, I'll do my best to accomplish that goal.

			In the next chapter, we'll go on a quick tour of the systemd directories and files. I'll see you there.

			Questions

			
					Who created the original SysV init system?a. Bell Labs
b. Red Hat
c. Debian
d. Ubuntu

					Which of the following is true about SysV?a. It's a modern, robust init system.
b. When booting a machine, it can start services in parallel.
c. When booting a machine, it can only start services sequentially.
d. It has security features that systemd doesn't have.

					Which of the following is not true about systemd?a. It has security features that can somewhat emulate a mandatory access control system.
b. It can start services in parallel.
c. It can use cgroups to limit resource usage.
d. It's a legacy system that needs to be replaced.

			

			Answers

			
					A

					C

					D

			

			Further reading

			
					An overview of Linux init systems: https://www.tecmint.com/best-linux-init-systems/

					Why init needed to be replaced with systemd: https://www.tecmint.com/systemd-replaces-init-in-linux/

					Red Hat's systemd documentation: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/index

					Some arguments against systemd:https://textplain.net/blog/2015/problems-with-systemd-and-why-i-like-bsd-init/
https://www.theregister.com/2014/10/21/unix_greybeards_threaten_debian_fork_over_systemd_plan/

			

		

	
		
			Chapter 2: Understanding systemd Directories and Files

			In this chapter, we'll explore the various systemd unit files and configuration files and explain the purpose of several types. We'll briefly look at some of the executable files that are associated with systemd. Along the way, we'll also look at the directories where these files live.

			These are the topics we will cover in this chapter:

			
					Understanding the systemd configuration files

					Understanding the systemd unit files

					Understanding the systemd executables

			

			The topics in this chapter comprise basic foundational knowledge of systemd. We'll be building upon this foundation in the chapters to come.

			If you're ready, let's go.

			Technical requirements

			If you'd like to follow along with what I'm doing, you'll need a couple of virtual machines (VMs). Here, I'm using Ubuntu Server 20.04 for the Ubuntu side of things, and AlmaLinux 8 for the Red Hat side of things. (You'll also see me using Fedora to point out a couple of things, but you won't need a Fedora VM yourself.)

			Check out the following link to see the Code in Action video: https://bit.ly/3xL4os5

			Understanding the systemd configuration files

			In this section, we'll look at the configuration files that control how the various components of systemd operate. If you want to follow along with your own VM, it won't much matter which distro you have because things will be mostly the same across all systemd-enabled distros. Okay—so now you're yelling at me, saying:

			Mostly the same? Why, Donnie, you told us before that systemd is implemented consistently across all distros! What gives?

			Well, it is consistent, in that the management and control commands are the same across all distros, but the systemd ecosystem includes several different components besides just the init system. These components are optional, and some Linux distros don't use all of them in a default configuration. Several of these components have configuration files in the /etc/systemd/ directory, as you can see here:

			[donnie@localhost systemd]$ pwd

			/etc/systemd

			[donnie@localhost systemd]$ ls -l *.conf

			-rw-r--r--. 1 root root 720 May 31 2016 bootchart.conf

			-rw-r--r--. 1 root root 615 Mar 26 2020 coredump.conf

			-rw-r--r--. 1 root root 1041 Mar 26 2020 journald.conf

			-rw-r--r--. 1 root root 1042 Mar 26 2020 logind.conf

			-rw-r--r--. 1 root root 584 Mar 26 2020 networkd.conf

			-rw-r--r--. 1 root root 529 Mar 26 2020 pstore.conf

			-rw-r--r--. 1 root root 764 Mar 26 2020 resolved.conf

			-rw-r--r--. 1 root root 790 Mar 26 2020 sleep.conf

			-rw-r--r--. 1 root root 1762 Mar 26 2020 system.conf

			-rw-r--r--. 1 root root 677 Mar 26 2020 timesyncd.conf

			-rw-r--r--. 1 root root 1185 Mar 26 2020 user.conf

			[donnie@localhost systemd]$

			The timesyncd.conf file, which you see second from the bottom in the preceding code snippet, is one of those components that you won't see everywhere. It's for the service that synchronizes the machine's time to a trusted external source. You see it here, but you won't see it on either Red Hat Enterprise Linux (RHEL) or any of RHEL's free-of-charge derivatives. That's because RHEL-type distros use an alternate time-synchronization service called chronyd, and just because you see a configuration file here for a particular systemd component doesn't necessarily mean that that component is being used. On the Fedora machine from which I took the preceding code snippet, the networkd, resolved, and timesyncd components are all disabled. (As with the RHEL distros, Fedora uses chronyd for time-keeping, but it still has the timesyncd component installed.) On the other hand, if you look at the newest versions of Ubuntu Server, you'll see that these optional components are enabled by default. (We'll see later how to tell if a service is either enabled or disabled.)

			Okay—let's talk about what's in these configuration files. We'll start by looking at the system.conf file, which sets the configuration for the systemd init process. (For space reasons, I can only show part of the file here. You can view the whole file on your VM by doing less /etc/systemd/system.conf.) Here's a snippet:

			[Manager]

			#LogLevel=info

			#LogTarget=journal-or-kmsg

			#LogColor=yes

			#LogLocation=no

			. . .

			. . .

			#DefaultLimitNICE=

			#DefaultLimitRTPRIO=

			#DefaultLimitRTTIME=

			Now, I'm not going to explain this file line by line because I don't want you to hate me for boring you to death. But seriously, in normal circumstances, you might not ever have to change any of these configuration files. If you think that you might need to do anything with them, your best bet is to read their associated man pages, which will have a breakdown of what each of these parameters is doing for you. The trick is that for most of these files, you'll have to add the systemd- text string to the front of the filename to find its man page. For example, to look at the man page for the system.conf file, type the following:

			man systemd-system.conf

			Also, you might have noticed that in all of these configuration files, every line is commented out. That doesn't mean that those lines have no effect. Instead, it means that these are the default parameters that are compiled in. To change something, you would uncomment the line for the desired parameter and change its value.

			Pro tip

			You can use the apropos command to find all man pages with a specific text string in either the man page name or man page description. For example, to find all pages that match the systemd string, just type the following: apropos systemd.

			You can also type man -k systemd, which is a synonym for apropos systemd. (I got into the habit early on of always typing apropos, and I've never broken this habit.) If nothing comes up when you try this, you might have to rebuild the man page database, which you'll do by typing sudo mandb.

			All right—I think we've talked enough about the configuration files. Next up, we'll talk about the systemd unit files.

			Understanding the systemd unit files

			Instead of using a set of complex Bash shell scripts, the systemd init system controls system and service operations with various types of unit files. Each unit file has a filename with a filename extension that describes which type of unit it is. Before we look at these files, let's see where they live.

			The /lib/systemd/system/ directory is the default location for unit files that either come with the operating system or come with any packages that you might install. There might be times when you'll either need to modify some of these unit files or even create your own, but you won't do that in this directory. Instead, you'll do that in the /etc/systemd/system/ directory. Any unit files in this directory that have the same name as unit files in /lib/systemd/system/ take precedence.

			Tip

			You can read about unit files by typing the following: man systemd.unit.

			At the bottom of this man page, you'll see where it refers you to other man pages for each specific type of unit file. You'll soon see that the trickiest part about this is having to search through the various man pages whenever you need to look up something about a particular unit-configuration parameter. To make things easier, you can look up a specific directive in the systemd.directives man page, which will direct you to the man page that contains information about that directive.

			Now that you know where the unit files are, let's look at what they are.

			Types of unit files

			In the /lib/systemd/system directory, you'll see various types of unit files that each perform a different function. Here's a list of the more common types:

			
					service: These are the configuration files for services. They replace the old-fashioned init scripts that we had on the old System V (SysV) systems.

					socket: Sockets can either enable communication between different system services or they can automatically wake up a sleeping service when it receives a connection request.

					slice: Slice units are used when configuring cgroups. (We'll look at these in Part 2, Understanding cgroups.)

					mount and automount: These contain mount point information for filesystems that are controlled by systemd. Normally, they get created automatically, so you shouldn't have to do too much with them.

					target: Target units are used during system startup, for grouping units and for providing well-known synchronization points. (We'll cover these in Chapter 6, Understanding systemd Targets.)

					timer: Timer units are for scheduling jobs that run on a schedule. They replace the old cron system. (We'll work with these in Chapter 7, Understanding systemd Timers.)

					path: Path units are for services that can be started via path-based activation. (We'll cover service, path, and socket units in Chapter 3, Understanding Service, Path, and Socket Units.)

					swap: Swap units contain information about your swap partitions.That's about it for the basic description of our unit files. We'll go into the nitty-gritty details about them in subsequent chapters.

			

			Understanding the systemd executables

			Normally, we would search for a program's executable files in either a bin/ or an sbin/ directory, and you will indeed find some of the systemd utility executable files there, but most of the systemd executables are found instead in the /lib/systemd/ directory. To save space, here's just a partial listing:

			donnie@donnie-TB250-BTC:/lib/systemd$ ls -l

			total 7448

			-rw-r--r-- 1 root root 2367728 Feb 6 2020 libsystemd-shared-237.so

			drwxr-xr-x 2 root root 4096 Apr 3 2020 network

			-rw-r--r-- 1 root root 699 Feb 6 2020 resolv.conf

			-rwxr-xr-x 1 root root 1246 Feb 6 2020 set-cpufreq

			drwxr-xr-x 24 root root 36864 Apr 3 2020 system

			-rwxr-xr-x 1 root root 1612152 Feb 6 2020 systemd

			-rwxr-xr-x 1 root root 6128 Feb 6 2020 systemd-ac-power

			-rwxr-xr-x 1 root root 18416 Feb 6 2020 systemd-backlight

			-rwxr-xr-x 1 root root 10304 Feb 6 2020 systemd-binfmt

			-rwxr-xr-x 1 root root 10224 Feb 6 2020 systemd-cgroups-agent

			-rwxr-xr-x 1 root root 26632 Feb 6 2020 systemd-cryptsetup

			. . .

			. . .

			You see that the executable for systemd itself is here, as well as the executables for the services that systemd runs as part of its own system. On some Linux distros, you'll see symbolic links in either the /bin or /usr/bin directories that point to some of the executable files here. For the most part, you won't directly interact with these files, so let's move on to something that you will interact with.

			The systemctl utility is for controlling systemd, and you'll use it a lot. It's a multi-purpose tool that can do a lot of things for you. It lets you view the different units and the status of the units, and either enable them or disable them. For now, we'll look at some systemctl commands that allow you to view different types of information. Later, we'll talk about using systemctl to control and edit specific units. If you'd like to follow along, fire up a VM and start getting your hands dirty.

			One thing to notice is that some systemctl commands require root privileges, and others don't. If you're just looking at system or unit information, you can do that with your normal user permissions. If you need to change a configuration, you'll need to assume the awesome powers of root. Okay—let's get started.

			We'll first list the active units that systemd currently has in memory. We'll do that with the systemctl list-units command. It's a very long output, so I'll just show you the first few lines here:

			[donnie@localhost ~]$ systemctl list-units

			UNIT LOAD ACTIVE SUB DESCRIPTION

			proc-sys-fs-binfmt_misc.automount loaded active waiting Arbitrary Executable File Formats File System Automount Point

			sys-devices-pci0000:00-0000:00:17.0-ata3-host2-target2:0:0-2:0:0:0-block-sda-sda1.device loaded active plugged WDC_WDS250G2B0A-00SM50 1

			sys-devices-pci0000:00-0000:00:17.0-ata3-host2-target2:0:0-2:0:0:0-block-sda-sda2.device loaded active plugged WDC_WDS250G2B0A-00SM50 2

			sys-devices-pci0000:00-0000:00:17.0-ata3-host2-target2:0:0-2:0:0:0-block-sda.device loaded active plugged WDC_WDS250G2B0A-00SM50

			sys-devices-pci0000:00-0000:00:1b.2-0000:02:00.1-sound-card1.device loaded active plugged GP104 High Definition Audio Controller

			sys-devices-pci0000:00-0000:00:1b.3-0000:03:00.1-sound-card2.device loaded active plugged GP104 High Definition Audio Controller

			. . .

			. . .

			This is the automount section, which shows the various devices that have been mounted. As you can see, this covers more than just storage devices.

			Next, we have the mount, path, and scope units, as follows:

			. . .

			. . .

			-.mount loaded active mounted /

			boot.mount loaded active mounted /boot

			dev-hugepages.mount loaded active mounted Huge Pages File System

			dev-mqueue.mount loaded active mounted POSIX Message Queue File System

			home.mount loaded active mounted /home

			run-user-1000.mount loaded active mounted /run/user/1000

			sys-fs-fuse-connections.mount loaded active mounted FUSE Control File System

			sys-kernel-config.mount loaded active mounted Kernel Configuration File System

			sys-kernel-debug.mount loaded active mounted Kernel Debug File System

			tmp.mount loaded active mounted Temporary Directory (/tmp)

			var-lib-nfs-rpc_pipefs.mount loaded active mounted RPC Pipe File System

			cups.path loaded active running CUPS Scheduler

			systemd-ask-password-plymouth.path loaded active waiting Forward Password Requests to Plymouth Directory Watch

			systemd-ask-password-wall.path loaded active waiting Forward Password Requests to Wall Directory Watch

			init.scope loaded active running System and Service Manager

			session-1.scope loaded active abandoned Session 1 of user donnie

			session-3.scope loaded active abandoned Session 3 of user donnie

			session-4.scope loaded active running Session 4 of user donnie

			. . .

			. . .

			Note here that there's a mount unit for each partition on your drive.

			Keep scrolling down, and you'll see the same kind of display for the service, slice, socket, swap, target, and timer units. At the bottom, you'll see a brief explanation of the status codes and a short summary, as follows:

			LOAD = Reflects whether the unit definition was properly loaded.

			ACTIVE = The high-level unit activation state, i.e. generalization of SUB.

			SUB = The low-level unit activation state, values depend on unit type.

			182 loaded units listed. Pass --all to see loaded but inactive units, too.

			To show all installed unit files use 'systemctl list-unit-files'.

			lines 136-190/190 (END)

			Use the --all option to also see units that are not active, like so:

			[donnie@localhost ~]$ systemctl list-units --all

			 UNIT LOAD ACTIVE SUB DESCRIPTION

			● boot.automount not-found inactive dead boot.automount

			 proc-sys-fs-binfmt_misc.automount loaded active waiting Arbitrary Executable File Formats File System A

			 dev-block-8:2.device loaded active plugged WDC_WDS250G2B0A-00SM50 2

			 dev-disk-by\x2did-ata\x2dWDC_WDS250G2B0A\x2d00SM50_181202802064.device loaded active plugged WDC_WDS250G2B0A-00SM50

			 dev-disk-by\x2did-ata\x2dWDC_WDS250G2B0A\x2d00SM50_181202802064\x2dpart1.device loaded active plugged WDC_WDS250G2B0A-00SM50 1

			 dev-disk-by\x2did-ata\x2dWDC_WDS250G2B0A\x2d00SM50_181202802064\x2dpart2.device loaded active plugged WDC_WDS250G2B0A-00SM50 2

			. . .

			. . .

			That was luck. We found an inactive unit right at the very top.

			You can also view specific types of units with the -t option. For example, to see just the service units, run the following command:

			[donnie@localhost ~]$ systemctl list-units -t service

			UNIT LOAD ACTIVE SUB DESCRIPTION

			abrt-journal-core.service loaded active running Creates ABRT problems from coredumpctl messages

			abrt-oops.service loaded active running ABRT kernel log watcher

			abrt-xorg.service loaded active running ABRT Xorg log watcher

			abrtd.service loaded active running ABRT Automated Bug Reporting Tool

			alsa-state.service loaded active running Manage Sound Card State (restore and store)

			atd.service loaded active running Deferred execution scheduler

			auditd.service loaded active running Security Auditing Service

			avahi-daemon.service loaded active running Avahi mDNS/DNS-SD Stack

			. . .

			. . .

			You can view the other units in the same way.

			Now, let's say that we just want to see the services that are dead. We can do that with the --state option, like so:

			[donnie@localhost ~]$ systemctl list-units -t service --state=dead

			 UNIT LOAD ACTIVE SUB DESCRIPTION

			 abrt-vmcore.service loaded inactive dead Harvest vmcores for ABRT

			 alsa-restore.service loaded inactive dead Save/Restore Sound Card State

			 auth-rpcgss-module.service loaded inactive dead Kernel Module supporting RPCSEC_GSS

			● autofs.service not-found inactive dead autofs.service

			 blk-availability.service loaded inactive dead Availability of block devices

			 dbxtool.service loaded inactive dead Secure Boot DBX (blacklist) updater

			 dm-event.service loaded inactive dead Device-mapper event daemon

			 dmraid-activation.service loaded inactive dead Activation of DM RAID sets

			 dnf-makecache.service loaded inactive dead dnf makecache

			 dracut-cmdline.service loaded inactive dead dracut cmdline hook

			. . .

			. . .

			By running systemctl --state=help, you'll see a list of all of the different states that you can view for the different unit types.

			In addition to seeing the units that are currently in memory, you can also see the unit files that are installed on the system by running the following command:

			[donnie@localhost ~]$ systemctl list-unit-files

			UNIT FILE STATE

			proc-sys-fs-binfmt_misc.automount static

			-.mount generated

			boot.mount generated

			dev-hugepages.mount static

			dev-mqueue.mount static

			home.mount generated

			proc-fs-nfsd.mount static

			. . .

			. . .

			session-1.scope transient

			session-3.scope transient

			session-4.scope transient

			abrt-journal-core.service enabled

			abrt-oops.service enabled

			abrt-pstoreoops.service disabled

			abrt-vmcore.service enabled

			abrt-xorg.service enabled

			abrtd.service enabled

			. . .

			. . .

			Here, you see some things that may seem rather strange. At the top, you see some mount files that are in a generated state. These files live in the /run/systemd/units/ directory and are automatically generated by systemd. To create these mount files, systemd reads the /etc/fstab file every time you either boot the machine or manually reload the fstab file.

			Unit files in a static state are ones that you can neither enable nor disable. Rather, other units will call in these static units as dependencies.

			Unit files in a transient state deal with things that are, well, transient. Here, we see three scope units that are managing three user sessions. When a user logs out of a session, one of these units will disappear.

			And of course, units that are in an enabled state will automatically start upon booting the machine, and units that are in a disabled state won't.

			To see if just one individual unit is either enabled or active, you can use the is-enabled and is-active options with systemctl. A while back, I told you that the networkd, resolved, and timesyncd services were all disabled on my Fedora machine. Here's how to prove that:

			[donnie@localhost ~]$ systemctl is-enabled systemd-timesyncd

			disabled

			[donnie@localhost ~]$ systemctl is-enabled systemd-networkd

			disabled

			[donnie@localhost ~]$ systemctl is-enabled systemd-resolved

			disabled

			[donnie@localhost ~]$

			And here's how to prove that they're not active:

			[donnie@localhost ~]$ systemctl is-active systemd-timesyncd

			inactive

			[donnie@localhost ~]$ systemctl is-active systemd-resolved

			inactive

			[donnie@localhost ~]$ systemctl is-active systemd-timesyncd

			inactive

			[donnie@localhost ~]$

			On the other hand, the NetworkManager service is enabled and active on my Fedora machine, as you can see here:

			[donnie@localhost ~]$ systemctl is-enabled NetworkManager

			enabled

			[donnie@localhost ~]$ systemctl is-active NetworkManager

			active

			[donnie@localhost ~]$

			Now, I'll leave it to you to verify all of this on the Ubuntu machine.

			You can also see information about just one type of unit file. Here, we'll just look at information about the swap unit files:

			[donnie@localhost units]$ systemctl list-unit-files -t swap

			UNIT FILE STATE

			dev-mapper-fedora_localhost\x2d\x2dlive\x2dswap.swap generated

			1 unit files listed.

			[donnie@localhost units]$

			Just as it did with the mount unit files, systemd generated this file by reading the /etc/fstab file.

			Earlier, I showed you the /etc/systemd/system.conf file, which sets the global configuration for systemd. With the show option, you can see the actual running configuration by doing systemctl show. Here's the partial output:

			[donnie@localhost ~]$ systemctl show

			Version=v243.8-1.fc31

			Features=+PAM +AUDIT +SELINUX +IMA -APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT +GNUTLS +ACL +XZ +LZ4 +SECCOMP +BLKID +ELFUTILS +KMOD +IDN2 -IDN +PCRE2 default-hierarchy=unified

			Architecture=x86-64

			Tainted=local-hwclock

			FirmwareTimestampMonotonic=0

			LoaderTimestampMonotonic=0

			KernelTimestamp=Thu 2021-03-11 11:58:01 EST

			KernelTimestampMonotonic=0

			. . .

			. . .

			DefaultLimitRTPRIOSoft=0

			DefaultLimitRTTIME=infinity

			DefaultLimitRTTIMESoft=infinity

			DefaultTasksMax=4608

			TimerSlackNSec=50000

			DefaultOOMPolicy=stop

			Use the --property= option to view just one item, like so:

			[donnie@localhost ~]$ systemctl show --property=DefaultLimitSIGPENDING

			DefaultLimitSIGPENDING=15362

			[donnie@localhost ~]$

			There is a man page for systemctl, and you're welcome to peruse it. But if you just need a quick reference, run systemctl -h.

			All right—I think that's enough for now. So, let's wrap this chapter up and put a bow on it, shall we?

			Summary

			Okay—we've hit the ground running and have covered quite a few concepts. We covered the various types of configuration files and unit files and saw where they live. We ended by using the systemctl command to view information about our running system.

			In the next chapter, we'll expand on this by showing you the inner workings of the service, path, and socket unit files. I'll see you there.

			Questions

			
					Which of the following commands tells you what the running systemd configuration is?a. systemctl list
b. systemctl show
c. systemd show
d. systemd list

					Which of the following statements is true?a. To configure your drive partitions, you need to hand-configure the mount units.
b. The mount units for your drive partitions get generated automatically when systemd reads the fstab file.
c. The mount units for your drive partitions are static units.
d. No mount units are needed for your drive partitions.

					Which of the following will tell you if the NetworkManager service is running?a. systemctl active NetworkManager
b. systemd active NetworkManager
c. systemd enabled NetworkManager
d. systemctl is-enabled NetworkManager
e. systemctl is-active NetworkManager

			

			Answers

			
					b

					b

					e

			

			Further reading

			systemd units and unit files:

			https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-unit-files

		

	
		
			Chapter 3: Understanding Service, Path, and Socket Units

			In this chapter, we'll examine the inner workings of the service, path, and socket unit files. We'll examine the parts that are in each and look at some of the parameters that you can set. Along the way, I'll give you some pointers about how to find information about what the various parameters are doing for you.

			In this chapter, we will cover the following topics:

			
					Understanding service units

					Understanding socket units

					Understanding path units

			

			At some point in your Linux administrator career, you could be tasked with modifying existing units or creating new ones. The knowledge in this chapter can help you with that. So, if you're ready, let's go.

			Technical requirements

			As always, I'll be doing the demos on an Ubuntu Server 20.04 virtual machine and an Alma Linux 8 virtual machine. Feel free to fire up your own virtual machines to follow along.

			Check out the following link to see the Code in Action video: https://bit.ly/2ZQBHh6

			Understanding service units

			Service units are the equivalent of init scripts on old SysV systems. We'll use them to configure our various services, which we used to call daemons in the old days. A service can be pretty much anything that you want to start automatically and run in the background. Examples of services include Secure Shell, your web server of choice, a mail server, and various services that are required for proper system operation. While some service files can be short and sweet, others can be fairly lengthy, with more options enabled. To read about all of these options, just type the following:

			man systemd.directives

			The descriptions for all of the parameters that you can set are spread over several different man pages. This systemd.directives man page is an index that will direct you to the proper man page for each parameter.

			Rather than trying to explain every parameter that service files can use, let's look through a few example files and explain what they're doing.

			Understanding the Apache service file

			We'll start with the service file for the Apache web server. On my Ubuntu Server 20.04 virtual machine, it is the /lib/systemd/system/apache2.service file. The first thing to note is that service unit files are divided into three sections. The top section is the [Unit] section, which contains parameters that can be placed in any type of unit file. It looks like this:

			[Unit]

			Description=The Apache HTTP Server

			After=network.target remote-fs.target nss-lookup.target

			Documentation=https://httpd.apache.org/docs/2.4/

			Here, we see these three parameters:

			
					Description=: Okay, this one should be fairly self-explanatory. All it does is tell the human user what the service is. The systemctl status command pulls its description information from this line.

					After=: We don't want Apache to start until certain other things have happened. We haven't talked about target files yet, but that's okay. For now, just know that we want to prevent Apache from starting until after the network, any possible attached remote filesystems, and the Name Switch Service are available.

					Documentation=: Here's another one that's self-explanatory. It just shows where to find the Apache documentation.

			

			To read about the options that you can place in the [Unit] section of any unit file, just type the following:

			man systemd.unit

			Next, we have the [Service] section, where things get a bit more interesting. It contains parameters that can only be placed in a service unit file, and looks like this:

			[Service]

			Type=forking

			Environment=APACHE_STARTED_BY_SYSTEMD=true

			ExecStart=/usr/sbin/apachectl start

			ExecStop=/usr/sbin/apachectl stop

			ExecReload=/usr/sbin/apachectl graceful

			PrivateTmp=true

			Restart=on-abort

			In this particular file, we see these parameters:

			
					Type=: There are several different service types that you'll see described in the systemd.service man page. In this case, we have the forking type, which means that the first Apache process that starts will spawn a child process. When Apache startup is complete and the proper communication channels have been set up, the original process—the parent process—will exit and the child process will carry on as the main service process. When the parent process exits, the systemd service manager will finally recognize the service as having fully started. According to the man page, this is the traditional behavior for Unix services, and systemd just carries on the tradition.

					Environment=: This sets an environmental variable that affects the behavior of the service. In this case, it tells Apache that it was started by systemd.

					ExecStart=, ExecStop=, and ExecReload=: These three lines just point the way to the Apache executable file, and specify the command arguments for starting, stopping, and reloading the service.

					PrivateTmp=: Many services write temporary files for various reasons, and you're probably used to seeing them in the /tmp/ directory that everyone can access. Here though, we see a cool systemd security feature. When set to true, this parameter forces the Apache service to write its temporary files to a private /tmp/ directory that nobody else can access. So, if you're concerned that Apache might write sensitive information to its temporary files, you'll want to use this feature. (You can read more about this feature, as well as other security features, on the systemd.exec man page.) Also, note that if you leave this parameter out altogether, it will default to false, which means that you won't have this protection.

					Restart=: Sometimes, you might want a service to automatically restart if it stops. In this case, we're using the on-abort parameter, which just means that if the Apache service were to crash with an unclean signal, systemd would automatically restart it.

			

			Okay, that's it for the [Service] section. Let's move on to the [Install] section, which looks like this:

			[Install]

			WantedBy=multi-user.target

			The nomenclature for this seems a bit weird because it doesn't seem like we're installing anything here. What this actually does is control what happens when you enable or disable a unit. In this case, we're saying that we want the Apache service to be enabled for the multi-user.target unit, which will cause the service to automatically start when the machine boots into the multi-user target. (We'll cover targets and the boot-up process later. For now, just understand that the multi-user target is when the machine is fully booted and ready for use. For you SysV veterans, the target in this case is akin to a SysV runlevel.)

			Understanding the Secure Shell service file

			For something a bit different, let's look at the service file for the Secure Shell service, which on this Ubuntu machine is the /lib/systemd/system/ssh.service file. Here's the [Unit] section:

			[Unit]

			Description=OpenBSD Secure Shell server

			Documentation=man:sshd(8) man:sshd_config(5)

			After=network.target auditd.service

			ConditionPathExists=!/etc/ssh/sshd_not_to_be_run

			In the [Unit] section, we see the ConditionPathExists= parameter, which we didn't see before. It checks for either the existence or non-existence of a file. In this case, we see an exclamation point (!) in front of the path to the file, which means that we're checking for the non-existence of the named file. If systemd finds it there, it won't start the Secure Shell service. If we were to remove the exclamation point, then systemd would only start the service if the file were there. So, if we wanted to prevent the Secure Shell service from starting, all we'd have to do is create a dummy file in the /etc/ssh/ directory, like so:

			sudo touch /etc/ssh/sshd_not_to_be_run

			I'm not sure how useful this feature really is, because it's just as easy to simply disable the service if you don't want it to run. But, if you think that you might ever need this, it's there for you.

			Next up is the [Service] section:

			[Service]

			EnvironmentFile=-/etc/default/ssh

			ExecStartPre=/usr/sbin/sshd -t

			ExecStart=/usr/sbin/sshd -D $SSHD_OPTS

			ExecReload=/usr/sbin/sshd -t

			ExecReload=/bin/kill -HUP $MAINPID

			KillMode=process

			Restart=on-failure

			RestartPreventExitStatus=255

			Type=notify

			RuntimeDirectory=sshd

			RuntimeDirectoryMode=0755

			In the [Service] section, we see a few new parameters:

			
					EnvironmentFile=: This parameter causes systemd to read a list of environmental variables from the specified file. The minus sign (-) in front of the path to the file tells systemd that if the file doesn't exist, don't worry about it and start the service anyway.

					ExecStartPre=: This tells systemd to run a specified command before it starts the service with the ExecStart= parameter. In this case, we want to run the sshd -t command, which tests the Secure Shell configuration to ensure that it's valid.

					KillMode=: I've already told you that one of the beauties of systemd is its ability to stop all processes of a service if you have to send a kill signal to it. That's the default behavior if you don't include this parameter in your service file. Sometimes though, you might not want that. By setting this parameter to process, a kill signal will only kill the main process for the service. All other associated processes will remain running. (You can read more about this parameter on the systemd.kill man page.)

					Restart=: This time, instead of automatically restarting a stopped service on-abort, it will now restart it on-failure. So, in addition to restarting the service because of an unclean signal, systemd will also restart this service because of an unclean exit code, a timeout, or a watchdog event. (A watchdog, in case you're wondering, is a kernel feature that can restart a service upon some sort of unrecoverable error.)

					RestartPreventExitStatus=: This prevents the service from automatically restarting if a certain exit code is received. In this case, we don't want the service to restart if the exit code is 255. (For more information about exit codes, see the $EXIT_CODE, $EXIT_STATUS_ section of the systemd.exec man page.)

					Type=: For this service, the type is notify, instead of forking as we saw in the previous example. This means that the service will send a notification message when the service has finished starting. After it sends the notification message, systemd will continue loading the follow-up units.

					RuntimeDirectory= and RuntimeDirectoryMode=: These two directives create a runtime directory under the /run/ directory, and then set the permissions value for that directory. In this case, we're setting the 0755 permission on the directory, which means that it will have read, write, and execute permissions for the directory's owner. Everyone else will only have read and execute permissions.

			

			Finally, here's the [Install] section:

			[Install]

			WantedBy=multi-user.target

			Alias=sshd.service

			In the [Install] section, we see the Alias= parameter, which can be quite handy. That's because certain services can have different names on different Linux distros. For example, the Secure Shell service is sshd on Red Hat-type systems and just ssh on Debian/Ubuntu systems. By including this Alias=sshd.service line, we can control the service by specifying either name.

			Understanding the timesyncd service file

			For the last example, I want to show you the service file for the timesyncd service. This is the /lib/systemd/system/systemd-timesyncd.service file. First, the [Unit] section:

			[Unit]

			Description=Network Time Synchronization

			Documentation=man:systemd-timesyncd.service(8)

			ConditionCapability=CAP_SYS_TIME

			ConditionVirtualization=!container

			DefaultDependencies=no

			After=systemd-sysusers.service

			Before=time-set.target sysinit.target shutdown.target

			Conflicts=shutdown.target

			Wants=time-set.target time-sync.target

			For this file, I mainly just want to focus on the security-related parameters. In the [Unit] section, there's the ConditionCapability= parameter, which I'll explain in a moment. The Wants= line, which isn't security-related, defines the dependency units for this service. If these dependency units aren't running when this service gets started, then systemd will attempt to start them. If they fail to start, this service will still go ahead and start anyway.

			Next, we'll look at the [Service] section, where we'll see more security-related parameters. (For space reasons, I can only place part of the file here, so feel free to view it on your own virtual machine.):

			[Service]

			AmbientCapabilities=CAP_SYS_TIME

			CapabilityBoundingSet=CAP_SYS_TIME

			ExecStart=!!/lib/systemd/systemd-timesyncd

			LockPersonality=yes

			MemoryDenyWriteExecute=yes

			. . .

			. . .

			ProtectSystem=strict

			Restart=always

			RestartSec=0

			RestrictAddressFamilies=AF_UNIX AF_INET AF_INET6

			RestrictNamespaces=yes

			RestrictRealtime=yes

			RestrictSUIDSGID=yes

			RuntimeDirectory=systemd/timesync

			StateDirectory=systemd/timesync

			SystemCallArchitectures=native

			SystemCallErrorNumber=EPERM

			SystemCallFilter=@system-service @clock

			Type=notify

			User=systemd-timesync

			WatchdogSec=3min

			The AmbientCapabilities= and the CapabilityBoundingSet= parameters are all set to CAP_SYS_TIME, as is the ConditionCapability= parameter in the [Unit] section. Toward the end of the [Service] section, we see the User=systemd-timesync line, which tells systemd to run this service under a non-privileged account. But, setting the system time requires root privileges, which the systemd-timesync user doesn't have. We can fix that by assigning a root-level kernel capability to this user. In this case, we're allowing this user to set the system time, but nothing else. Some systems though, might not be able to implement the AmbientCapabilities= directive. So, the double-exclamation points (!!) in the ExecStart= line tell systemd to run the indicated service with minimum privileges. Be aware that this double-exclamation point option only takes effect if the system can't deal with the AmbientCapabilities= directive.

			Note

			You can read more about kernel capabilities by typing man capabilities. An important thing to understand about kernel capabilities is that they can vary across different CPU architectures. So, the set of capabilities that can be used with an ARM CPU won't be the same as the set of capabilities on an x86_64 CPU.

			Read down through the rest of the [Service] section, and you'll see a lot of parameters that are obviously for enhancing security. I'm not going to go over all of them, because for most of them, you can tell what they're doing just by looking at their names. For the few that aren't so obvious, I would encourage you to consult the man pages. These security settings are a powerful feature, and you can see here that they're pretty much doing the same job as a mandatory access control system.

			And finally, we have the [Install] section:

			[Install]

			WantedBy=sysinit.target

			Alias=dbus-org.freedesktop.timesync1.service

			The main thing to see here is that this service is wanted by the sysinit.target, which means that it will come up during the system initialization process.

			We've only scratched the surface for what we can do with service files. But there are so many different parameters that scratching the surface is all we can reasonably expect to do. Your best bet is to skim over the man pages to get a good feel for things and to consult the man pages whenever you have questions.

			Next, we'll cover socket units. (Fortunately, that section won't need to be quite as long.)

			Understanding socket units

			The socket unit files are also in the /lib/systemd/system/ directory, and their filenames end with .socket. Here's a partial list of them on one of my Ubuntu Server machines:

			donnie@ubuntu20-10:/lib/systemd/system$ ls -l *.socket

			-rw-r--r-- 1 root root 246 Jun 1 2020 apport-forward.socket

			-rw-r--r-- 1 root root 102 Sep 10 2020 dbus.socket

			-rw-r--r-- 1 root root 248 May 30 2020 dm-event.socket

			-rw-r--r-- 1 root root 197 Sep 16 16:52 docker.socket

			-rw-r--r-- 1 root root 175 Feb 26 2020 iscsid.socket

			-rw-r--r-- 1 root root 239 May 30 2020 lvm2-lvmpolld.socket

			-rw-r--r-- 1 root root 186 Sep 11 2020 multipathd.socket

			-rw-r--r-- 1 root root 281 Feb 2 08:21 snapd.socket

			-rw-r--r-- 1 root root 216 Jun 7 2020 ssh.socket

			. . .

			. . .

			-rw-r--r-- 1 root root 610 Sep 20 10:16 systemd-udevd-kernel.socket

			-rw-r--r-- 1 root root 126 Aug 30 2020 uuidd.socket

			donnie@ubuntu20-10:/lib/systemd/system$

			The socket units can do a couple of things for us. First, they can take the place of the legacy inetd and xinetd superserver daemons that were on the old SysV systems. This means that instead of having a server daemon run full-time, even when it isn't needed, we can leave it shut down most of the time, and only start it when the system detects an incoming network request for it. For a simple example, let's look at the ssh.socket file on an Ubuntu machine:

			[Unit]

			Description=OpenBSD Secure Shell server socket

			Before=ssh.service

			Conflicts=ssh.service

			ConditionPathExists=!/etc/ssh/sshd_not_to_be_run

			[Socket]

			ListenStream=22

			Accept=yes

			[Install]

			WantedBy=sockets.target

			Even though this socket file gets installed by default, it's not enabled by default. On a default configuration of Ubuntu, the Secure Shell service runs all the time. In the [Unit] section, we see these two interesting directives:

			
					Before=ssh.service: This tells systemd to start the socket before starting the Secure Shell service.

					Conflicts=ssh.service: This tells systemd to not allow the Secure Shell service to run normally if this socket is enabled. If you were to enable this socket, the normal SSH service would get shut down.

			

			In the [Socket] section, we see that the socket listens on port 22/tcp, which is the default port for Secure Shell. The Accept=yes line is a bit deceiving because it doesn't mean exactly what you would think. It really means that the service will spawn a new instance for every incoming connection. According to the systemd.socket man page, this setting should only be used for services that were designed to work under the old inetd and xinetd schemes. For better performance, new services should be designed to not behave like this.

			To demonstrate how this works, I first want to show you that the ssh service on my Ubuntu VM is running normally:

			donnie@ubuntu20-10:~$ sudo systemctl is-active ssh

			active

			donnie@ubuntu20-10:~$

			So, it's active, which means that it's running as a normal daemon. Now, let's enable ssh.socket, and then look at the difference:

			donnie@ubuntu20-10:~$ sudo systemctl enable --now ssh.socket

			Created symlink /etc/systemd/system/sockets.target.wants/ssh.socket → /lib/systemd/system/ssh.socket.

			donnie@ubuntu20-10:~$ sudo systemctl is-active ssh

			inactive

			donnie@ubuntu20-10:~$

			So, as soon as I enable this socket, the Conflicts= line automatically shuts down the ssh service. But I can still connect to this machine because the socket will automatically start the SSH service just long enough to service the connection request. When the service is no longer needed, it will automatically go back to sleep.

			Secondly, note that this socket doesn't mention which service to start, or where its executable file is. That's because the socket, when activated, will just pull that information from the ssh.service file. You don't have to tell it to do that, because the default behavior for any socket file is to get its information from a service file that has the same prefix in the filename.

			Finally, socket units can enable communication between operating system processes. For example, a socket can take messages from various system processes and pass them to the logging system, as we see here in this systemd-journald.socket file:

			[Unit]

			Description=Journal Socket

			Documentation=man:systemd-journald.service(8) man:journald.conf(5)

			DefaultDependencies=no

			Before=sockets.target

			. . .

			. . .

			IgnoreOnIsolate=yes

			[Socket]

			ListenStream=/run/systemd/journal/stdout

			ListenDatagram=/run/systemd/journal/socket

			SocketMode=0666

			PassCredentials=yes

			PassSecurity=yes

			ReceiveBuffer=8M

			Service=systemd-journald.service

			We see here that instead of listening to a network port, this socket listens for TCP output from /run/systemd/journal/stdout, and for UDP output from /run/systemd/journal/socket. (The ListenStream= directive is for TCP sources, and the ListenDatagram= directive is for UDP sources. The systemd.socket man page doesn't make that clear, so you have to do some DuckDuckGo searching to find this out.)

			There's no Accept=yes directive here, because, unlike the Secure Shell service that we saw earlier, the journald service doesn't need to spawn a new instance for every incoming connection. By leaving this setting out, it defaults to a value of no.

			The PassCredentials=yes line and the PassSecurity=yes line cause the sending process to pass security credentials and security context information to the receiving socket. These parameters also default to no if you leave them out. To enhance performance, the ReceiveBuffer= line sets aside 8 MB of buffer memory.

			Finally, the Service= line specifies the service. According to the systemd.socket man page, this can only be used if Accept=no is set. The man page also says that this usually isn't needed, because by default the socket will still reference the service file that has the same name as the socket. But if you do use this, it might pull in some extra dependencies that it might not otherwise pull in.

			Understanding path units

			You can use a path unit to have systemd monitor a certain file or directory to see when it changes. When systemd detects that the file or directory has changed, it will activate the specified service. We'll use the Common Unix Printing System (CUPS) as an example.

			In the /lib/systemd/system/cups.path file, we see this:

			[Unit]

			Description=CUPS Scheduler

			PartOf=cups.service

			[Path]

			PathExists=/var/cache/cups/org.cups.cupsd

			[Install]

			WantedBy=multi-user.target

			The PathExists= line tells systemd to monitor a specific file for changes, which in this case is the /var/cache/cups/org.cups.cupsd file. If systemd detects any changes to this file, it will activate the printing service.

			Summary

			All right, we've made it through another chapter, which is a good thing. In this chapter, we examined the structure of the service, socket, and path unit files. We saw the three sections of each type of unit and looked at some of the parameters that we can define for each of those sections. Of course, it's pretty much impossible to explain every single available parameter, so I've just shown you a few examples. And I'll show you more examples in the next few chapters.

			An important skill for any IT administrator is knowing how to look up things that you don't know. That can be a bit of a challenge with systemd, because things are spread out over quite a few man pages. I've given you some tips on how to use the man pages to find what you need, which will hopefully be of some help.

			The next skill you'll want to acquire is that of controlling service units, which is the topic of the next chapter. I'll see you there.

			Questions

			
					Which kind of unit monitors files and directories for changes?a. system
b. file
c. path
d. timer
e. service

					A socket unit can: a. automatically notify the user if a network request comes in
b. automatically set up communication between Linux and Windows machines
c. listen for network connections, and act as a firewall
d. automatically start a network service when it detects a connection request for that service

					What is the purpose of the [Install] section?a. It defines what other packages are to be installed when you install a service.
b. It defines what happens when you enable or disable a unit.
c. It defines parameters that are specific to an install unit.
d. It defines parameters that are specific to a service unit.

			

			Answers

			
					c

					d

					b

			

			Further reading

			Systemd socket units:

			https://www.linux.com/training-tutorials/end-road-systemds-socket-units/

			The difference between ListenStream= and ListenDatagram=:

			https://unix.stackexchange.com/questions/517240/systemd-socket-listendatagram-vs-listenstream

			Monitoring paths and directories:

			https://www.linux.com/topic/desktop/systemd-services-monitoring-files-and-directories/

		

	
		
			Chapter 4: Controlling systemd Services

			Now that we've seen what systemd services are, it's time to learn how to control them. In this chapter, we're going to do just that. Specifically, we'll cover the following skills:

			
					Verifying the status of a service

					Starting, stopping, and reloading services

					Enabling and disabling services

					Killing a service

					Masking services

			

			These are good skills to have, because you'll be practicing them a lot in your routine as a Linux server administrator. So, if you're ready, let's get started.

			Technical requirements

			All you need for this chapter is a virtual machine of some sort, with full sudo privileges for your own user account. For my demos, I'll be using the brand-new AlmaLinux 8 for the Red Hat (RHEL) side of things and Ubuntu Server 20.04 for the Ubuntu side.

			Check out the following link to see the Code in Action video: https://bit.ly/3oev29P

			A word about CentOS Linux

			I know, you're probably used to seeing CentOS Linux for these demos. But, at the end of 2020, the Red Hat company announced that they would end support for the enterprise-ready version of CentOS 8 at the end of 2021. Its replacement, CentOS Stream, is a rolling-release distro that you might not want to use in the enterprise. Fortunately, there are suitable enterprise-ready replacements for CentOS 8 from other organizations, which include Oracle Enterprise Linux 8, Springdale Linux 8, and Alma Linux 8. At the time of writing, Rocky Linux 8 is in the planning stages and will eventually be released by a founder of the original CentOS project. At this point, it's impossible to know which one will become the most popular replacement for CentOS. (Of course, there's also Red Hat Enterprise Linux 8 (RHEL 8), but you'll need to purchase a subscription in order to do anything meaningful with it.)

			This is going to be hands-on, folks. So, if you're feeling spry, fire up a virtual machine and follow my lead.

			Verifying the status of a service

			I'll be using Alma Linux for this first demo, for a reason that will become clear in just a moment. First, let's install the Apache web server by doing the following:

			sudo dnf install httpd

			Before you can start using Apache, you'll want to know whether it's enabled, so that it will automatically start when you reboot the machine. You'll also want to know whether it's active, which just means that it's running.

			To see whether it's enabled, do the following:

			[donnie@localhost ~]$ systemctl is-enabled httpd

			[sudo] password for donnie:

			disabled

			[donnie@localhost ~]$

			Here, you see why I'm using a RHEL-type distro for this. When you install a service on any RHEL-type machine, it's normally disabled by default. When you install a service on Ubuntu, it's normally enabled by default. So, by doing this on Alma Linux, I can give you more to look at.

			Next, let's see whether Apache is running, by doing the following:

			[donnie@localhost ~]$ systemctl is-active httpd

			inactive

			[donnie@localhost ~]$

			Okay, it isn't. Now, let's look at both things at once:

			[donnie@localhost ~]$ systemctl status httpd

			 httpd.service - The Apache HTTP Server

			 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled; vendor preset: disabled)

			 Active: inactive (dead)

			 Docs: man:httpd.service(8)

			[donnie@localhost ~]$

			There are a couple of things that I want you to note about these commands. Firstly, if you just want to view information about services, you don't need sudo privileges. Secondly, if you want to do anything with a service, you don't need to append the .service filename extension. I mean, you can if you want to, and it won't hurt anything, but you don't have to. If there are multiple types of unit files with the same name, systemctl will always invoke the .service unit by default. For example, the Common Unix Printing System (CUPS) has a .service unit, a .path unit, and a .socket unit, as you can see here:

			[donnie@localhost ~]$ ls -l /lib/systemd/system/cups.*

			-r--r--r--. 1 root root 142 Aug 27 2020 /lib/systemd/system/cups.path

			-r--r--r--. 1 root root 248 Aug 27 2020 /lib/systemd/system/cups.service

			-r--r--r--. 1 root root 136 Aug 27 2020 /lib/systemd/system/cups.socket

			[donnie@localhost ~]$

			Without a filename extension, systemctl will show information about cups.service, as shown next:

			[donnie@localhost ~]$ systemctl status cups

			cups.service - CUPS Scheduler

			 Loaded: loaded (/usr/lib/systemd/system/cups.service; enabled; vendor preset: enabled)

			 Active: active (running) since Tue 2021-03-30 16:37:18 EDT; 33min ago

			 Docs: man:cupsd(8)

			 Main PID: 989 (cupsd)

			 Status: "Scheduler is running..."

			 Tasks: 1 (limit: 11274)

			 Memory: 3.2M

			 CGroup: /system.slice/cups.service

			 └─989 /usr/sbin/cupsd -l

			Mar 30 16:37:18 localhost.localdomain systemd[1]: Starting CUPS Scheduler...

			Mar 30 16:37:18 localhost.localdomain systemd[1]: Started CUPS Scheduler.

			Mar 30 16:38:14 localhost.localdomain cupsd[989]: REQUEST localhost - - "POST / HTTP/1.1" 200 362 Create-Printer-Subscriptions successful-ok

			[donnie@localhost ~]$

			This shows a lot more information about a running service than what the is-active option does. The cups.service - CUPS Scheduler line at the top comes from the Description=CUPS Scheduler line in the [Unit] section of the cups.service file, and information about the man page comes from the Documentation=man:cupsd(8) line. The Main PID: line shows that the main CUPS process has a Process Identification Number (PID) of 989. Verify that with this handy ps aux command:

			[donnie@localhost ~]$ ps aux | grep 'cups'

			root 989 0.0 0.5 340316 10196 ? Ss 16:37 0:00 /usr/sbin/cupsd -l

			donnie 8352 0.0 0.0 221904 1072 pts/1 R+ 18:02 0:00 grep --color=auto cups

			[donnie@localhost ~]$

			Yes indeed, it is PID 989.

			Don't worry about that CGroup: line for now. We'll talk about cgroups later.

			The final thing you see is system log entries that got created when the service started. On a RHEL-type system, you'll see them in the /var/log/messages file. On Debian and its offspring, such as Ubuntu, you'll see them in the /var/log/syslog file.

			To see information about the other types of units, you'll need to append the filename extension, as shown:

			[donnie@localhost ~]$ systemctl status cups.path

			 cups.path - CUPS Scheduler

			 Loaded: loaded (/usr/lib/systemd/system/cups.path; enabled; vendor preset: enabled)

			 Active: active (running) since Tue 2021-03-30 16:37:12 EDT; 1h 16min ago

			Mar 30 16:37:12 localhost.localdomain systemd[1]: Started CUPS Scheduler.

			[donnie@localhost ~]$

			This makes for a shorter display, since there's less to show about .path units.

			All right, we're off to a good start. Let's get back to that Apache service and see what we can do with it.

			Starting, stopping, and reloading services

			We've already seen that when you install a service on a RHEL-type distro, such as Alma Linux, the service is normally disabled and not active by default. So now, I'll give you three guesses about what the command is to start a service.

			Give up? Okay, here's how we start Apache:

			[donnie@localhost ~]$ sudo systemctl start httpd

			[sudo] password for donnie:

			[donnie@localhost ~]$

			Well, that's easy enough. Let's take a look at the status. Here's the first part of the command output:

			[donnie@localhost ~]$ sudo systemctl status httpd

			 httpd.service - The Apache HTTP Server

			 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled; vendor preset: disabled)

			 Active: active (running) since Tue 2021-03-30 18:35:05 EDT; 1min 8s ago

			 Docs: man:httpd.service(8)

			 Main PID: 8654 (httpd)

			 Status: "Running, listening on: port 80"

			. . .

			. . .

			You see here that the service is active, but that it's also still disabled. This means that if I were to reboot the machine, the service won't automatically start. To see more information, use the ps aux command, as follows:

			[donnie@localhost ~]$ ps aux | grep httpd

			root 8654 0.0 0.6 275924 11196 ? Ss 18:35 0:00 /usr/sbin/httpd -DFOREGROUND

			apache 8655 0.0 0.4 289796 8160 ? S 18:35 0:00 /usr/sbin/httpd -DFOREGROUND

			apache 8656 0.0 0.5 1347588 10032 ? Sl 18:35 0:00 /usr/sbin/httpd -DFOREGROUND

			apache 8657 0.0 0.5 1347588 10032 ? Sl 18:35 0:00 /usr/sbin/httpd -DFOREGROUND

			apache 8658 0.0 0.6 1478716 12080 ? Sl 18:35 0:00 /usr/sbin/httpd -DFOREGROUND

			donnie 8924 0.0 0.0 221904 1044 pts/1 R+ 18:39 0:00 grep --color=auto httpd

			[donnie@localhost ~]$

			The first process listed here as PID 8654 belongs to the root user and is the main process that we see in the systemctl status output. The next four processes, with PIDs 8655 through 8658, are used whenever someone connects to a website on this server and belong to the non-privileged apache user. This is a security feature that's been built into Apache for pretty much forever and has nothing to do with systemd. Running these processes under a non-privileged user account helps prevent attackers from taking over the system for their own nefarious purposes.

			Note

			If you want to see what the rest of the ps output means, view the ps man page by doing:

			man ps

			To stop the Apache service, just do sudo systemctl stop httpd. (Yeah, I bet you didn't see that one coming.)

			If you change the configuration of a running service, you'll need to reload it. You can do that with the restart option, which will restart the service and cause the new configuration to be reloaded. Certain services, such as Apache, also have the reload option. This will read in the new configuration without interrupting the running service. Be aware, though, that you can't always use reload. With Apache, for example, you can use reload to reload changes to website configuration files, but you'll need to use restart to read in certain changes to the Apache configuration, such as when you enable or disable an Apache module. To see whether reload works for any particular service, try consulting the documentation for that service.

			The specific commands to start, stop, restart, or reload a service can be defined in its associated .service file. Here are the relevant lines from the httpd.service file on the Alma machine:

			[Service]

			. . .

			. . .

			ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND

			ExecReload=/usr/sbin/httpd $OPTIONS -k graceful

			. . .

			. . .

			For now, don't worry about what the start and reload options you see here mean, because that knowledge is specific to Apache, rather than to systemd. What I do want you to notice is the ExecReload= line. We see here that Apache has its own built-in way of reloading its configuration. Contrast that with what you see in this sshd.service file, which is also from the Alma machine:

			[Service]

			. . .

			. . .

			ExecStart=/usr/sbin/sshd -D $OPTIONS $CRYPTO_POLICY

			ExecReload=/bin/kill -HUP $MAINPID

			. . .

			. . .

			Here, we see that the Secure Shell service doesn't have its own internal mechanism for reloading its configuration. Instead, it relies on the old-fashioned kill utility that's been in Linux almost forever. Realize though that kill doesn't always mean to kill. When you use the kill utility, it sends a signal to a process to make it do something. Normally, you would send a signal that really would kill the process. But you can also use it to send the HUP signal to a service, which will cause the service to reload its configuration without service interruption. (In case you're wondering, HUP is an acronym for Hang Up. The original purpose of this signal was to inform running programs when a serial line was dropped. However, the purpose of the HUP signal has since been changed to what it is now.) The $MAINPID instance that you see is an environmental variable that systemd uses to access the PID number of the main Secure Shell process.

			Optionally, you can have a line that defines what happens when you issue a stop command. You don't see that here on Alma Linux, but you do see it in the apache2.service file on Ubuntu as shown here:

			[Service]

			. . .

			. . .

			ExecStart=/usr/sbin/apachectl start

			ExecStop=/usr/sbin/apachectl stop

			ExecReload=/usr/sbin/apachectl graceful

			. . .

			. . .

			You haven't seen an ExecRestart= parameter, because there isn't one. Restarting a service just consists of stopping it, and then starting it again.

			Next up, we'll look at how to enable and disable services.

			Enabling and disabling services

			It's all well and good that we have Apache running, but if we were to reboot our Alma Linux machine, Apache won't start until you start it manually. To begin this demo, first stop Apache with this:

			sudo systemctl stop httpd

			Now, enable it by doing this:

			[donnie@localhost ~]$ sudo systemctl enable httpd

			Created symlink /etc/systemd/system/multi-user.target.wants/httpd.service → /usr/lib/systemd/system/httpd.service.

			[donnie@localhost ~]$

			When we enable the Apache service, we create a symbolic link in the /etc/systemd/system/multi-user.target.wants/ directory that points back to the httpd.service file. Now, I've been telling you all along that the unit files are in the /lib/systemd/system/ directory. But the eagle-eyed among you will notice that the symbolic link points to the service file in the /usr/lib/systemd/system/ directory. That's because the newer versions of many Linux distros have gotten rid of certain top-level directories and now just use the corresponding directories that have always been under the /usr/ directory. But the Linux gurus in the sky have been nice enough to accommodate old codgers like me who are used to having those top-level directories. They did this by creating symbolic links in the root level of the filesystem, which you can see here:

			[donnie@localhost /]$ pwd

			/

			[donnie@localhost /]$ ls -l lib*

			lrwxrwxrwx. 1 root root 7 Aug 14 2020 lib -> usr/lib

			lrwxrwxrwx. 1 root root 9 Aug 14 2020 lib64 -> usr/lib64

			[donnie@localhost /]$

			So, if you're like me and keep forgetting that those top-level directories are no longer there, it's okay. The symbolic links work just fine. But, I digress.

			Go into the /etc/systemd/system/multi-user.target.wants/ directory, and you'll see the symbolic link that got created with our systemctl enable command, as shown here:

			[donnie@localhost ~]$ cd /etc/systemd/system/multi-user.target.wants/

			[donnie@localhost multi-user.target.wants]$ ls -l httpd.service

			lrwxrwxrwx. 1 root root 37 Mar 30 19:22 httpd.service -> /usr/lib/systemd/system/httpd.service

			[donnie@localhost multi-user.target.wants]$

			Okay, so you're now wondering what that multi-user.target.wants thing is all about. Well, I'll cover the .target concept in detail later. For now, just accept that the multi-user target is the runlevel in which the operating system is fully booted and is ready for normal operations. The /etc/systemd/system/multi-user.target.wants/ directory contains the symbolic links for units that will automatically start whenever the operating system goes into multi-user mode. This directory mostly contains symbolic links to service units, but it can sometimes have links to other types of units. On this Alma Linux machine, there's also a link to the cups.path unit, as shown here:

			[donnie@localhost multi-user.target.wants]$ ls -l cups*

			lrwxrwxrwx. 1 root root 33 Feb 11 18:14 cups.path -> /usr/lib/systemd/system/cups.path

			lrwxrwxrwx. 1 root root 36 Feb 11 18:14 cups.service -> /usr/lib/systemd/system/cups.service

			[donnie@localhost multi-user.target.wants]$

			To determine where a symbolic link should be created, the systemctl enable command pulls in the setting from the [Install] section of the service file. At the bottom of the httpd.service file on the Alma machine, you see this:

			. . .

			. . .

			[Install]

			WantedBy=multi-user.target

			At the bottom of the accounts-daemon.service file, you'll see this:

			. . .

			. . .

			[Install]

			WantedBy=graphical.target

			The symbolic link for this service, when it's enabled, is in the /etc/systemd/system/graphical.target.wants/ directory.

			Be aware that when you enable a service that isn't already running, the service doesn't automatically start until you reboot the machine. You can see that here:

			[donnie@localhost multi-user.target.wants]$ systemctl is-enabled httpd

			enabled

			[donnie@localhost multi-user.target.wants]$ systemctl is-active

			 httpd

			inactive

			[donnie@localhost multi-user.target.wants]$

			You can issue a separate start command to start the service, or you can use the enable --now option to enable and start the service with just a single command, as shown here:

			[donnie@localhost multi-user.target.wants]$ sudo systemctl enable --now httpd

			Created symlink /etc/systemd/system/multi-user.target.wants/httpd.service → /usr/lib/systemd/system/httpd.service.

			[donnie@localhost multi-user.target.wants]$

			When you disable a unit, the symbolic link for it gets removed. We can see that here with the Apache service:

			[donnie@localhost multi-user.target.wants]$ sudo systemctl disable httpd

			[sudo] password for donnie:

			Removed /etc/systemd/system/multi-user.target.wants/httpd.service.

			[donnie@localhost multi-user.target.wants]$ ls -l httpd*

			ls: cannot access 'httpd*': No such file or directory

			[donnie@localhost multi-user.target.wants]$

			If the service is running, it will remain running after you issue the disable command. You can issue a separate stop command or use the disable --now option to disable and stop the service at the same time.

			Now, for you Ubuntu fans, here's the command to install Apache on your Ubuntu machine:

			sudo apt install apache2

			If you look at the official documentation on the Apache website, you'll see that the official way of doing business is to have httpd as the name of the Apache service. For some strange reason that I've never figured out, Debian developers have always marched to the beat of a different drummer in a few different ways. Ubuntu is derived from Debian, so Ubuntu developers generally carry on with Debian traditions. At any rate, you can try out the preceding commands on an Ubuntu machine and just replace httpd with apache2. The only real difference you'll see is that after you initially install Apache on Ubuntu, the service will already be enabled and running.

			Another cool thing you can do is to disable the manual start, stop, and restart functions of a service. The best example of this is the auditd service on RHEL-type machines. In the [Unit] section of the auditd.service file on my Alma machine, we see the line that does that:

			[Unit]

			. . .

			. . .

			RefuseManualStop=yes

			. . .

			. . .

			Trying to restart the service gives me the following error message:

			[donnie@localhost ~]$ sudo systemctl restart auditd

			Failed to restart auditd.service: Operation refused, unit auditd.service may be requested by dependency only (it is configured to refuse manual start/stop).

			See system logs and 'systemctl status auditd.service' for details.

			[donnie@localhost ~]$

			Curiously, though, I can manually stop or restart the auditd service just fine if I use the old-fashioned service command from the SysV days, as we see here:

			[donnie@localhost ~]$ sudo service auditd restart

			Stopping logging: [OK]

			Redirecting start to /bin/systemctl start auditd.service

			[donnie@localhost ~]$

			I can understand why we'd want to restrict the ability to stop or restart auditd, since it is related to system security. But I've never understood why RHEL maintainers prevent users from doing it with systemctl, yet still allow us to do it with service. It's just one of those things that makes you go Hmmmmm. It's also interesting to note that when you install auditd on Ubuntu, you won't see the line that disables these functions. So, on Ubuntu, you can stop and restart auditd with systemctl in the normal manner.

			Next, let's look at the proper way to kill a service.

			Killing a service

			It's sad, I know, but even on Linux things can sometimes crash. A great example is the Firefox web browser. Have you ever accidentally landed on a malicious web page that completely locked up your browser? I mean, you can't close the tab, there's an obnoxious noise blaring out of your computer speakers, and you can't close the browser in the normal way. You're just stuck. (Don't be embarrassed about it if you have, it's happened to all of us.) On a Linux machine, you'd get out of that by opening a terminal, using ps aux | grep firefox to find the PID for Firefox, and then issuing a kill command. For example, let's say that the PID for Firefox is 3901. To kill it, just do:

			kill 3901

			By default, this will send a number 15, or SIGTERM, signal to Firefox, which will give the process a chance to clean up after itself by shutting down any associated files or network connections. Sometimes, if a process is locked up really badly, the number 15 signal won't do the trick. For times like these, you'll need to pop the cork off a bottle of strong medicine and use the number 9, or SIGKILL, signal, like so:

			kill -9 3901

			The number 9 signal is something you don't want to use unless you absolutely have to. It stops processes dead in their tracks, without giving them time to clean up after themselves.

			Note

			For more information about the various Linux signals, you'll want to look at the signal man page on your Ubuntu machine. (For some reason, the man page on the Alma Linux machine doesn't have nearly as much information.) The command is:

			man signal

			Back in the SysV days, you would use the same method to kill troublesome services, except that you'd need sudo privileges to do it, because services don't run under your own user account. The problem with that is that some services spawn more than one active process, and a normal kill command might not shut them all down. Those services might linger on as zombie processes until the operating system finally reaps them and gets rid of them. (When I say reaps, think of the Grim Reaper who drives stakes into the hearts of zombies to finally kill them off. Oh, wait. The stake in the heart thing is for vampires, so never mind.) A good example of this would be the Apache service. We've already seen that the Apache service spawns multiple processes when it starts, and that's just on a machine that isn't yet running active websites. On an actual production web server, Apache might spawn multiple other processes for CGI scripts, PHP scripts, or whatever else. If you ever need to kill Apache, you'll want to make sure that those script processes also get killed, especially if they might be doing something malicious. On my Ubuntu machine with systemd, I'll do that with the sudo systemctl kill apache2 command. The results should look like this:

			donnie@ubuntu2004:~$ systemctl is-active apache2

			active

			donnie@ubuntu2004:~$ sudo systemctl kill apache2

			donnie@ubuntu2004:~$ systemctl is-active apache2

			inactive

			donnie@ubuntu2004:~$

			As with the normal kill command, this sends a number 15, or SIGTERM, signal by default. If you need to send another signal, use the -s option along with the signal name. To see what happens with that, I'll start Apache back up on my Ubuntu machine, and send it the number 9, or SIGKILL signal, like this:

			donnie@ubuntu2004:~$ systemctl is-active apache2

			active

			donnie@ubuntu2004:~$ sudo systemctl kill -s SIGKILL apache2

			donnie@ubuntu2004:~$ systemctl is-active apache2

			active

			donnie@ubuntu2004:~$

			Oh, dear. That didn't do anything for us, did it? To see why, let's look in the apache2.service file. In the [Service] section, you'll find the answer:

			[Service]

			. . .

			. . .

			Restart=on-abort

			The last line in the [Service] section, the Restart=on-abort line, causes Apache to automatically restart if it receives an unclean kill signal. It so happens that SIGKILL is considered unclean. You can see the explanation for this in the systemd.service man page. Open the page and scroll down to Table 2, and you'll find the different options for the Restart= parameter as follows:

			
				
					[image:]
				

			

			Figure 4.1 – Table 2 from the systemd.service man page

			In the paragraphs just above and just below Table 2, you'll see explanations for the different options and how they affect using the various kill signals.

			Back on the Alma Linux machine, things are a bit different. In its httpd.service file, there's no Restart= line. Instead, we see these lines:

			[Service]

			. . .

			. . .

			# Send SIGWINCH for graceful stop

			KillSignal=SIGWINCH

			KillMode=mixed

			The KillSignal= line changes the default kill action from SIGTERM to SIGWINCH. This is curious, because SIGWINCH is supposed to kill a process only if the terminal window from which the process is running gets resized. Apache normally doesn't run from a terminal window. Still, somebody at Red Hat apparently decided that SIGWINCH would be the appropriate signal for killing Apache gracefully, so that's how it is. The KillMode=mixed line tells systemd to send a SIGTERM signal to the main Apache process but to send SIGKILL to the remaining processes in the Apache control group. The systemd.kill man page doesn't say what this line does when the preceding KillSignal= line is set to SIGWINCH, but I would assume that it will replace SIGTERM with SIGWINCH. Anyway, let's try to kill Apache on the Alma machine, just to see what happens:

			[donnie@localhost ~]$ systemctl is-active httpd

			active

			[donnie@localhost ~]$ sudo systemctl kill httpd

			[sudo] password for donnie:

			[donnie@localhost ~]$ systemctl is-active httpd

			inactive

			[donnie@localhost ~]$

			It looks just the same as it did on the Ubuntu machine. Send Apache a SIGKILL though, and you'll see something different as shown here:

			[donnie@localhost ~]$ sudo systemctl kill -s SIGKILL httpd

			[donnie@localhost ~]$ systemctl is-active httpd

			failed

			[donnie@localhost ~]$

			Without the Restart=on-abort line that Ubuntu has in its apache2.service file, the Apache service on Alma won't automatically restart when it receives the SIGKILL signal. Note that the is-active output shows failed rather than inactive, as it does when you use SIGTERM or SIGWINCH. Either way, the service isn't running, so the end result is the same.

			Okay, that's all good. But what if you want to prevent a service from ever running? Well, you'd mask it, which is what we'll look at next.

			Masking a service

			Now, let's say that you have a service that you never want to start, either manually or automatically. You can accomplish this by masking the service, like this:

			[donnie@localhost ~]$ sudo systemctl mask httpd

			Created symlink /etc/systemd/system/httpd.service → /dev/null.

			[donnie@localhost ~]$

			This time, instead of creating a symbolic link that points back to the service file, we've created one that points to the /dev/null device. Let's try to start our masked Apache service to see what happens:

			[donnie@localhost ~]$ sudo systemctl start httpd

			Failed to start httpd.service: Unit httpd.service is masked.

			[donnie@localhost ~]$

			If you change your mind, just use the unmask option.

			Summary

			We've covered a good bit of ground in this chapter, and even got to do some cool hands-on stuff. We looked at how to start, stop, restart, and reload services. We also looked at how to enable and disable services and looked at the symbolic links that get created when we enable a service. We wrapped things up by showing how to kill a service, and then how to mask a service. As a side benefit, we saw what some service parameters can do for us and how the maintainers of different Linux distros can set up services to behave differently on different distros.

			But what if you don't like the way that a service is set up on the distro that you're using? No worries. We'll discuss that in the next chapter, when we talk about editing and creating service unit files. I'll see you there.

			Questions

			
					When you run the sudo systemctl enable httpd command, what will that do for you?a. It will start the httpd service.
b. It will cause httpd to start when you boot the machine and will also do an immediate start.
c. It will only cause httpd to start when you reboot the machine.
d. It creates a symbolic link in the /lib/systemd/system/ directory.

					What is the effect of using the normal kill command on a service?a. It will shut down the service cleanly.
b. It will shut down the main service process, but it might not shut down the spawned processes.
c. It won't shut down a service.
d. You can use kill without sudo privileges to shut down a service.

					What is the SIGTERM signal?a. It kills a process dead in its tracks without giving it a chance to clean up after itself.
b. It kills a process when it detects that a terminal window has been resized.
c. It restarts a process.
d. It kills a process gracefully, giving it time to clean up after itself.

					How would you enable and start the httpd service with just one command?a. You can't
b. sudo systemctl enable httpd
c. sudo systemctl start httpd
d. sudo systemctl start --now httpd
e. sudo systemctl enable --now httpd

					What does the ExecRestart= parameter do for us?a. It defines how to restart the service.
b. It defines how to reload the service configuration.
c. Nothing, because this parameter doesn't exist.
d. It defines how to start a service.

			

			Answers

			
					c

					b

					d

					e

					c

			

			Further reading

			My Managing Services video: https://youtu.be/IuDmg75n6FU

			How to manage systemd services: https://www.howtogeek.com/216454/how-to-manage-systemd-services-on-a-linux-system/

		

	
		
			Chapter 5: Creating and Editing Services

			We've just seen what systemd services are and how to control them. Sometimes though, you might need to either alter the behavior of a service or create a completely new one. In this chapter, we'll look at the proper way to edit services. Then, we'll look at how to create a new one. The specific topics of this chapter are as follows:

			
					Editing an existing service

					Creating a new service

					Changing the default systemd editor

					Creating a new container service with podman

			

			So, if you're ready, let's jump in.

			Technical requirements

			As before, I'll be using an Alma Linux 8 virtual machine and an Ubuntu Server 20.04 virtual machine. To perform the Secure Shell exercise, you'll need to go into the VirtualBox network settings for both virtual machines and choose Bridged Adapter from the Attached to drop-down list. Then, expand the Advanced menu and choose Allow All from the Promiscuous Mode drop-down list. When you boot up the virtual machine, obtain its IP address by opening a terminal and typing ip a. That way, you'll be able to remotely log into your virtual machines from the command line of your host machine.

			Check out the following link to see the Code in Action video: https://bit.ly/3xP0yOH

			Editing an existing service

			We've seen that the unit files for our services live in the /lib/systemd/system/ directory, so your first instinct might be to go there and edit files in your favorite text editor. You don't want to do that though, even though it would work. If you were to do a system update, it might overwrite the files that you edited, and you'd lose your changes.

			The proper way to do this is to create edited versions of your service files in the /etc/systemd/system/ directory. You can do that with your favorite text editor, the same as you would with any other configuration file. Indeed, that's the way that you used to have to do it. When Red Hat released RHEL 7.2, they added an edit function to the systemctl command, which makes life much easier. (Of course, that edit function is now available on all Linux distros that run systemd.)

			Note

			It has been brought to my attention that some people prefer to add their own custom unit files to the /lib/systemd/system/ directory so that they'll be alongside the unit files that get installed by the operating system. If you're one of those people, please understand that this is not good practice. By doing this, you risk getting your custom unit files either deleted or overwritten when you do a system update. Also, keeping your custom unit files in the /etc/systemd/system/ directory will make it much easier for you to keep track of which unit files you've added, and which ones were installed by the operating system.

			Now, you might be wondering how you can know what changes you can make to a service file. The most simplistic answer is to read the man pages for the various unit types and look at all the parameters and options that you can add, delete, or modify. If you're like me though, you'll start reading these man pages and soon find that they're the perfect cure for insomnia. Don't get me wrong, the man pages are definitely useful. But if you want to really learn how to make services sing and dance the way you want them to, the most painless way to do it is to look at the service files that are already on your system and see how they're set up. Then, look at the parameters that are listed in those files, and look them up in the appropriate man pages to see what they're doing for you. As we go through this chapter, I'll give you plenty of examples of what I'm talking about.

			When you use the systemctl edit function, you can either partially edit the file or edit the entire file. By default, you'll do a partial edit. Let's begin with the simplest example I can think of.

			Creating a partial edit to the [Install] section

			Let's fire up the Ubuntu server virtual machine and add an Alias= line to the apache2.service file. Start by doing this:

			sudo systemctl edit apache2

			What you'll get looks something like this:

			
				
					[image:]
				

			

			Figure 5.1 – The systemd service editor on Ubuntu

			Yeah, that doesn't look like much, does it? It's just an empty file opened in the nano text editor. Don't worry, though. All we're going to do here is to add one parameter, and we don't need to see the whole service file to do that. Since we're working with Ubuntu, the name of the Apache service is apache2. Let's say that you've just come over from the Red Hat world, and you're used to always using httpd as the Apache service name. Consequently, you get frustrated when you always instinctively type the wrong service name on the Ubuntu machine. It's kind of like if you've been used to driving with a standard transmission all your life, and then you start stomping around for a clutch when you get into a car with an automatic transmission. (Well, that's what I do, anyway.) We can easily fix that, but let's first look at an example that we already have.

			In another window, look at the [Install] section of the ssh.service file on the Ubuntu machine, as shown here:

			. . .

			. . .

			[Install]

			WantedBy=multi-user.target

			Alias=sshd.service

			That Alias= line at the end is our example. Now, over in the nano window, type this:

			[Install]

			Alias=httpd.service

			Save the file and exit the editor by doing a Ctrl + X sequence. When it asks if you want to save the modified buffer, hit the y key. Then, just hit the Enter key to accept the default filename. Next, look inside the /etc/systemd/system/ directory. You'll see that we've just created a new apache2.service.d directory:

			donnie@ubuntu20-04:/etc/systemd/system$ ls -l

			total 104

			drwxr-xr-x 2 root root 4096 Apr 5 16:55 apache2.service.d

			. . .

			. . .

			Inside that directory, you'll see the following override.conf file:

			donnie@ubuntu20-04:/etc/systemd/system/apache2.service.d$ ls -l

			total 4

			-rw-r--r-- 1 root root 30 Apr 5 16:55 override.conf

			donnie@ubuntu20-04:/etc/systemd/system/apache2.service.d$

			This file contains the parameter that we've just added, which looks like this:

			[Install]

			Alias=httpd.service

			That's it – the entire file. When we start Apache, this parameter will get added to what's already in the original service file. The beauty of this is that if the original service file were to get replaced by a system update, you'd get the changes that were made by the update, and you'd still have this modification.

			But, before you can use this modification, you'll need to load it into the system. Do that by doing:

			donnie@ubuntu20-04:~$ sudo systemctl daemon-reload

			[sudo] password for donnie:

			donnie@ubuntu20-04:~$

			Any time you modify or add a service file, you'll need to do a daemon-reload. When you add an Alias=, you'll also need to create a symbolic link for it in the /etc/systemd/system/ directory. You can create it manually with an ln -s command, but you don't have to. When you add an Alias= line to the [Install] section of a service file, the link will get created automatically when you enable the service. On the Ubuntu machine, the Apache service is already enabled and running, so we'll just disable it and enable it again. (Note that there's no need to stop the service.) So, let's first disable Apache, like this:

			donnie@ubuntu20-04:/etc/systemd/system$ sudo systemctl disable apache2

			Synchronizing state of apache2.service with SysV service script with /lib/systemd/systemd-sysv-install.

			Executing: /lib/systemd/systemd-sysv-install disable apache2

			Removed /etc/systemd/system/multi-user.target.wants/apache2.service.

			donnie@ubuntu20-04:/etc/systemd/system$

			Now, we'll enable it again, like this:

			donnie@ubuntu20-04:/etc/systemd/system$ sudo systemctl enable apache2

			Synchronizing state of apache2.service with SysV service script with /lib/systemd/systemd-sysv-install.

			Executing: /lib/systemd/systemd-sysv-install enable apache2

			Created symlink /etc/systemd/system/httpd.service → /lib/systemd/system/apache2.service.

			Created symlink /etc/systemd/system/multi-user.target.wants/apache2.service → /lib/systemd/system/apache2.service.

			donnie@ubuntu20-04:/etc/systemd/system$

			You can see in the output that the enable command reads in the Alias= line that we inserted into the [Install] section, and creates an httpd.service link that points back to the original apache2.service file. We can verify that with this ls -l command as follows:

			donnie@ubuntu20-04:/etc/systemd/system$ ls -l httpd.service

			lrwxrwxrwx 1 root root 35 Apr 5 17:39 httpd.service -> /lib/systemd/system/apache2.service

			donnie@ubuntu20-04:/etc/systemd/system$

			Now comes the moment of truth. Can we now control Apache on our Ubuntu machine by invoking the httpd service name? Let's see:

			donnie@ubuntu20-04:~$ systemctl status httpd

			• apache2.service - The Apache HTTP Server

			 Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor preset: enabled)

			 Drop-In: /etc/systemd/system/apache2.service.d

			 └─override.conf

			 Active: active (running) since Mon 2021-04-05 17:19:08 UTC; 34min ago

			. . .

			. . .

			Oh, yeah. It works like a champ. (Don't you just love it when a plan comes together?) To see the service file along with your new edit, use systemctl cat, like this:

			donnie@ubuntu20-04:~$ systemctl cat apache2

			# /lib/systemd/system/apache2.service

			[Unit]

			Description=The Apache HTTP Server

			. . .

			. . .

			[Install]

			WantedBy=multi-user.target

			# /etc/systemd/system/apache2.service.d/override.conf

			[Install]

			Alias=httpd.service

			donnie@ubuntu20-04:~$

			The top part of the output shows the original service file, and the bottom part shows the override.conf file that you created.

			Of course, you can also go the opposite way with this. If you're used to doing things the Ubuntu way and suddenly find yourself administering Apache on a RHEL-type machine, you can add an Alias=apache2.service line to the httpd.service file, and then disable and re-enable Apache in order to create the link. The only difference in the procedure is that on the Ubuntu machine, systemctl edit invokes the nano text editor, and on RHEL-type machines, it might invoke the vi text editor. (The RHEL-type distros just recently switched from vi to nano as the default systemd editor.)

			Pro tip

			Remember that whatever changes you make to the [Install] section of a service file affects what happens whenever you enable or disable that service.

			Okay, now that we've added a cool option to the [Install] section, let's add a few to the [Service] section.

			Creating a partial edit to the [Service] section

			Let's continue on with our Ubuntu Server virtual machine, and just add to what we've already done. This time, we'll add a few options to the [Service] section that will beef up security a bit. Before we do that though, let's see how secure Apache really is. We'll do that with the systemd-analyze utility.

			On the systemd-analyze man page, you'll see that there are quite a few uses for this utility. For now, we'll just cover the security option. Let's start by checking the overall security profile for the services on our Ubuntu VM by doing:

			donnie@ubuntu20-04:~$ systemd-analyze security

			UNIT EXPOSURE PREDICATE HAPPY

			accounts-daemon.service 9.6 UNSAFE 😨

			apache2.service 9.2 UNSAFE 😨

			apport.service 9.6 UNSAFE 😨

			. . .

			. . . 🙂

			systemd-udevd.service 8.4 EXPOSED 🙁

			thermald.service 9.6 UNSAFE 😨

			unattended-upgrades.service 9.6 UNSAFE 😨

			user@1000.service 9.4 UNSAFE 😨

			uuidd.service 4.5 OK 🙂

			vgauth.service 9.5 UNSAFE 😨

			donnie@ubuntu20-04:~$

			This command checks the security and sandboxing settings for each service and assigns an EXPOSURE score to each. The higher the score, the less safe the service is. So, this is like the game of golf, where you want to get the lowest score possible. The HAPPY column is supposed to show little face emoticons with varying degrees of happy or sad expressions, but the faces don't show when pasted into this book. That's okay though, because you can see them for yourself on your virtual machine.

			Now, before you get too excited about seeing that a service is marked as UNSAFE, as we see here for the Apache service, you need to understand that this only examines the security settings in the service files. It doesn't account for any security settings that might be in the service's own configuration files, security options that are encoded into the service executable file, or any Mandatory Access Control (MAC) options that might be in effect. Still, though, this is a useful tool for suggesting ways to enhance your security settings.

			Next, let's look at some suggestions for the Apache service:

			donnie@ubuntu20-04:~$ systemd-analyze security apache2

			 NAME DESCRIPTION EXPOSURE

			✗ PrivateNetwork= Service has access to the host's network 0.5

			✗ User=/DynamicUser= Service runs as root user 0.4

			✗ CapabilityBoundingSet=~CAP_SET(UID|GID|PCAP) Service may change UID/GID identities/capabilities 0.3

			✗ CapabilityBoundingSet=~CAP_SYS_ADMIN Service has administrator privileges 0.3

			✗ CapabilityBoundingSet=~CAP_SYS_PTRACE Service has ptrace() debugging abilities 0.3

			. . .

			. . .

			There's too much output to show here in its entirety, but that's okay. Let's scroll down a bit and show some settings that are a bit more relevant to what we want to do:

			. . .

			. . .

			✓ PrivateMounts= Service cannot install system mounts

			✓ PrivateTmp= Service has no access to other software's temporary files

			✗ PrivateUsers= Service has access to other users 0.2

			✗ ProtectClock= Service may write to the hardware clock or system clock 0.2

			✗ ProtectControlGroups= Service may modify the control group file system 0.2

			✗ ProtectHome= Service has full access to home directories 0.2

			. . .

			. . .

			✗ ProtectSystem= Service has full access to the OS file hierarchy 0.2

			. . .

			. . .

			When you see an X in front of an entry, it means that an unsafe setting is in effect. Having a checkmark in front of an entry means that that parameter is configured with a safe setting. But, if you go in all willy-nilly and change the unsafe settings to safe ones, you'll break the service so that it will no longer run. Some of these supposedly unsafe settings are necessary for the service to do its job. Take the User=/DynamicUser= setting, for example. We see here that not having that parameter allows the Apache service to run with root privileges. Is that bad? Not really, because the Apache service needs root privileges to do certain things that it has to do. If you set this option to a non-root user, Apache will fail to start. And besides, the Apache developers have already accounted for this. They set it up so that only the first Apache process runs with root privileges, and all other Apache processes—the ones to which web browsers connect—run without root privileges. We've already seen that on a RHEL-type distro, such as Alma Linux, the Apache processes run under the apache user account. On Ubuntu, we see here that they run under the www-data account:

			donnie@ubuntu20-04:/etc/apache2$ ps aux | grep apache

			root 2290 0.0 0.2 6520 4480 ? Ss 18:40 0:00 /usr/sbin/apache2 -k start

			www-data 2291 0.0 0.2 752656 4344 ? Sl 18:40 0:00 /usr/sbin/apache2 -k start

			www-data 2292 0.0 0.2 752656 4344 ? Sl 18:40 0:00 /usr/sbin/apache2 -k start

			donnie 2554 0.0 0.0 6432 724 pts/0 S+ 19:55 0:00 grep --color=auto apache

			donnie@ubuntu20-04:/etc/apache2$

			This non-root user is defined in the Apache configuration files. Let's see if our good friend grep can help us find where this is set:

			donnie@ubuntu20-04:/etc/apache2$ grep -r 'USER' *

			apache2.conf:User ${APACHE_RUN_USER}

			envvars:export APACHE_RUN_USER=www-data

			donnie@ubuntu20-04:/etc/apache2$

			So, on the Ubuntu machine, the non-root www-data user is defined in the /etc/apache2/envvars file and invoked in the /etc/apache2/apache2.conf file. (I'll leave it to you to find where this is set on the Alma Linux machine.) Anyway, that's enough about the settings that we can't change. Let's look at some settings that we can change.

			Tip:

			On RHEL-type machines, everything I'm about to show you is already covered by SELinux. But, you can still use these settings if you want double protection. Ubuntu and SUSE use AppArmor instead of SELinux. Unfortunately, AppArmor provides almost no protection at all for Apache unless you jump through the hoops of creating your own custom AppArmor profile. Setting up this protection in systemd is much easier.

			Let's first look at protecting users' home directories. We'll once again use the sudo systemctl edit apache2 command, which will open the override.conf file that we created previously. The [Install] section will still be there, so we'll just add a [Service] section, as follows:

			[Service]

			ProtectHome=yes

			ProtectSystem=strict

			[Install]

			Alias=httpd.service

			By default, the Apache service can read from or write to any place in the filesystem. The ProtectHome=yes setting prevents Apache from accessing the /root/, /home/, and the /run/user/ directories, even if they're set up with world-readable permissions. We can also set this to read-only if users want to serve web content out of their own home directories while preventing Apache from writing to them.

			The ProtectSystem=strict setting causes Apache to have read-only access to the entire filesystem, except for the /dev/, /proc/, and /sys/ directories. Let's save the file and restart Apache to see what we've got:

			donnie@ubuntu20-04:~$ sudo systemctl daemon-reload

			donnie@ubuntu20-04:~$ sudo systemctl restart apache2

			Job for apache2.service failed because the control process exited with error code.

			See "systemctl status apache2.service" and "journalctl -xe" for details.

			donnie@ubuntu20-04:~$

			Oh, dear. This isn't good. Let's look at the status to see what the problem could be:

			donnie@ubuntu20-04:~$ sudo systemctl status apache2

			. . .

			. . .

			Apr 10 21:52:20 ubuntu20-04 apachectl[3848]: (30)Read-only file system: AH00091: apache2: could not open error log file /var/log/apache2/error.log.

			Apr 10 21:52:20 ubuntu20-04 apachectl[3848]: AH00015: Unable to open logs

			Apr 10 21:52:20 ubuntu20-04 apachectl[3836]: Action 'start' failed.

			Apr 10 21:52:20 ubuntu20-04 apachectl[3836]: The Apache error log may have more information.

			. . .

			. . .

			donnie@ubuntu20-04:~$

			So, Apache wants to write to its log file in the /var/log/apache2/ directory, but it can't. Let's change the ProtectSystem setting to see if that helps:

			[Service]

			ProtectHome=yes

			ProtectSystem=full

			[Install]

			Alias=httpd.service

			Setting ProtectSystem= to full causes Apache to have read-only access to the /boot/, /usr/, and /etc/ directories. Apache normally doesn't need to write to any of those directories, so it should now work. Let's try it and see:

			donnie@ubuntu20-04:~$ sudo systemctl daemon-reload

			donnie@ubuntu20-04:~$ sudo systemctl restart apache2

			donnie@ubuntu20-04:~$

			There are no error messages, so that's good. Let's check the status:

			donnie@ubuntu20-04:~$ sudo systemctl status apache2

			● apache2.service - The Apache HTTP Server

			 Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor preset: enabled)

			 Drop-In: /etc/systemd/system/apache2.service.d

			 └─override.conf

			 Active: active (running) since Sat 2021-04-10 21:58:22 UTC; 4s ago

			. . .

			. . .

			Yeah, that's good. So, yee-haw! We're golden, baby! But seriously, look in the systemd.exec man page, and you'll see a lot more security settings that you could possibly use.

			Note

			You can see here that I inadvertently used sudo to just look at a service status. Using sudo with systemctl is a force of habit with me, but fortunately, it doesn't hurt anything if I use it when it's not needed.

			Just for fun, let's add in a few more security options, and then check the security status again. This time, we'll make our [Service] section look like this:

			[Service]

			ProtectHome=yes

			ProtectSystem=full

			PrivateDevices=yes

			ProtectKernelTunables=yes

			ProtectKernelModules=yes

			ProtectControlGroups=yes

			SystemCallFilter=@system-service

			SystemCallErrorNumber=EPERM

			NoNewPrivileges=yes

			I'll leave it to you to read about these new parameters in the systemd.exec man page.

			Once you've finished the edit, restart Apache to ensure that it will start properly. Then, run systemd-analyze security apache2.service again. You should see that the overall security score looks somewhat better than it did before.

			There are a lot more security-related parameters that you can set in your service files. Remember though, that most services require that some settings be left in an UNSAFE mode for them to function correctly. Your best bet is to play around with these settings for various services on a virtual machine. That way, you can get a good idea of which settings work for the various services. And for goodness' sake, thoroughly test any service modifications you want to make before you put them into production.

			Next, let's look at doing full edits for the Secure Shell service.

			Creating a full edit

			Doing partial edits works great when all you want to do is add a parameter that isn't already in the service file. But, it doesn't work if you need to delete a parameter, change the value of a parameter, or add a parameter that conflicts with some other existing parameter. To do any of these things, you'll need to do a full edit. The other reason for doing full edits is just that you might want to have the full file in front of you so that you can see what you're really doing. To do a full edit of the ssh.service file, for example, just use the --full option, like this:

			donnie@ubuntu20-04:~$ sudo systemctl edit --full ssh.service

			This time, you'll see the entire ssh.service file, as shown here:

			
				
					[image:]
				

			

			Figure 5.2 – Editing a service file with the --full option

			For our demo this time, let's set up access control for our Secure Shell service.

			Pro tip

			If you've been on the Linux scene for a while, you might be familiar with the concept of tcpwrappers. It's a strange name, but the concept is simple. You would just configure the IP addresses that you'd want to allow to access a particular network service in the /etc/hosts.allow file, and then deny all other IP addresses in the /etc/hosts.deny file. This still works for Ubuntu, but the Red Hat folk have removed tcpwrappers from RHEL 8. So, if you want to configure access control on any RHEL 8-type distro, such as the Alma Linux 8 that we're using, you'll need to do it by configuring the service files. On Ubuntu, you can use either method.

			So, let's say that you want to allow SSH logins to your server from only one particular desktop machine. To do that, we'll use the IPAddressAllow= and the IPAddressDeny= parameters in the [Service] section of the ssh.service file. (Of course, that would be the sshd.service file if you want to try this on the Alma Linux machine.) Open the file for editing as I've just shown you and add two lines to the end of the [Service] section, using the IP address of your own host machine in the IPAddressAllow= line. The lines should look something like this:

			IPAddressAllow=192.168.0.222

			IPAddressDeny=any

			The whole file should now look something like this:

			
				
					[image:]
				

			

			Figure 5.3 – The ssh.service file after editing

			If you just insert the IPAddressAllow= line and don't insert the IPAddressDeny= line, you'll find that nothing gets blocked. So, any time you want to set up an access whitelist, you'll need to use both of these lines together.

			Save the file and do sudo systemctl daemon-reload. Then, restart or reload the Secure Shell service. Assuming that you used the correct IP address for your host machine, you should be able to log in via SSH. To really test this feature out, edit the file again, and use an incorrect IP address for your host. This time, you should be blocked from doing an SSH login. Note though, that you won't have to do another daemon-reload command. This new setting will take effect immediately upon saving the file. So, if you're doing this remotely, you will get locked out if you've entered an incorrect IP address for your host. In real life, you'd have to fix it by entering the server room and configuring things correctly from the server's local terminal.

			When you do a full edit, a complete new modified copy of the original service file will get saved in the /etc/systemd/system/ directory, as we can see here:

			donnie@ubuntu20-04:~$ cd /etc/systemd/system/

			donnie@ubuntu20-04:/etc/systemd/system$ ls -l ssh.service

			-rw-r--r-- 1 root root 586 Apr 11 20:07 ssh.service

			donnie@ubuntu20-04:/etc/systemd/system$

			As long as this file exists, it will always override the original file in the /lib/systemd/system/ directory.

			Next, let's look at creating a brand new service.

			Creating a new service

			To create a brand new service from scratch, use the --force and --full options together, like this:

			donnie@ubuntu20-04:~$ sudo systemctl edit --force --full timestamp.service

			This will create a new service file in the /etc/systemd/system/ directory, just as we saw previously.

			For this demo, we'll create a service that will place a periodic timestamp into our system log file. Our timestamp.service file will look like this:

			[Unit]

			Description=Service Creation Demo

			Wants=network.target

			After=syslog.target network-online.target

			[Service]

			ExecStart=/usr/local/bin/timestamp.sh

			Restart=on-failure

			RestartSec=20

			KillMode=process

			[Install]

			WantedBy=multi-user.target

			Here, we see the RestartSec= parameter, which we haven't seen before. This works with the Restart= line and just says to wait for the designated number of seconds before restarting a crashed service. Here, we're saying to wait for 20 seconds. We don't see a Type= line here, because we don't need it. Without this line, systemd will just go with the default of Type=simple, which is what we want. (I'll leave it to you to read about the simple Type in the systemd.service man page.)

			Next, we'll create the timestamp.sh script, which will place a timestamp into the system log file every 60 seconds. Let's make it look like this:

			#!/bin/bash

			echo "Starting the timestamp service" | systemd-cat -p info

			while :

			do

			 echo "timestamp.service: The current time is $(date '+%m-%d-%Y %H:%M:%S')" | systemd-cat -p info

			 sleep 60

			done

			As you can see, it's just a simple while loop that pipes the current time into the systemd-cat utility every 60 seconds. In turn, systemd-cat sends the timestamp message to the system log file. The -p info option marks the message with an info level priority.

			Next, make the script file executable, and copy it to the /usr/local/bin/ directory. Then, start the service:

			donnie@ubuntu20-04:~$ chmod u+x timestamp.sh

			donnie@ubuntu20-04:~$ sudo cp timestamp.sh /usr/local/bin

			donnie@ubuntu20-04:~$ sudo systemctl start timestamp

			donnie@ubuntu20-04:~$

			You can enable the service if you really want to, but for now, we don't need to.

			The status should look like this:

			donnie@ubuntu20-04:~$ systemctl status timestamp

			● timestamp.service - Service Creation Demo

			 Loaded: loaded (/etc/systemd/system/timestamp.service; disabled; vendor preset: enabled)

			 Active: active (running) since Sun 2021-04-11 21:57:26 UTC; 13min ago

			 Main PID: 14293 (timestamp.sh)

			 Tasks: 2 (limit: 2281)

			 Memory: 820.0K

			 CGroup: /system.slice/timestamp.service

			 ├─14293 /bin/bash /usr/local/bin/timestamp.sh

			 └─14411 sleep 60

			Apr 11 22:00:26 ubuntu20-04 cat[14335]: timestamp.service: The current time is 04-11-2021 22:00:26

			. . .

			. . .

			To see the timestamps in the log file, do:

			donnie@ubuntu20-04:~$ journalctl -xe

			Or, you can see them getting added in real time by doing sudo tail -f /var/log/syslog on the Ubuntu machine, or sudo tail -f /var/log/messages on the Alma machine. When you've seen enough, just do Ctrl + C to quit.

			Changing the default systemd editor

			So far, I've been showing you how to do all of this in the nano text editor, which is the default systemd editor for most modern Linux distros. But, what if you don't like nano, and would prefer to use something else? Let's say that Vim is your favorite text editor, and you want to use it instead of nano.

			One way to use an alternate text editor is to specify the alternate editor each time you run a systemctl edit command, like this:

			[donnie@localhost ~]$ sudo EDITOR=vim systemctl edit --full sshd

			[donnie@localhost ~]$

			That works, but doing it every time you want to run a systemctl edit command could get a bit tiresome. Fortunately, changing the default editor is easy, once you know how to do it.

			First, edit the .bashrc file that's in your own home directory. At the very bottom of the file, add this line:

			export SYSTEMD_EDITOR=vim

			After saving the file, reload the new configuration:

			[donnie@localhost ~]$ source .bashrc

			[donnie@localhost ~]$

			Next, open the sudoers file:

			[donnie@localhost ~]$ sudo visudo

			Scroll down to where you see the Defaults lines, and then add this line:

			Defaults env_keep += "SYSTEMD_EDITOR"

			Save the file, and try running a systemctl edit command. You should now see vim instead of nano.

			We've seen some cool stuff, but we're just getting started. For the ultimate in cool, let's look at using podman to automatically create container service files for us.

			Creating a new container service with podman

			Containers have been around for a long time, but they never became all that popular until Docker arrived on the scene with its new container management system. The original Docker system is cool, all right. But, it has some shortcomings, especially with security. For that reason, the good folk at Red Hat developed their own Docker replacement, which they call podman. podman comes with greatly enhanced security, and with cool features that aren't in Docker. The only problem is that podman is still only available on RHEL-type and Fedora distros, and everyone else still uses Docker. So, we'll perform these demos on the Alma Linux machine.

			To install podman on your Alma machine, do:

			[donnie@localhost ~]$ sudo dnf install podman-docker

			This will install the podman package along with a shell script that invokes podman whenever you accidentally type docker. (Actually, that might not be by accident. You might have shell scripts that invoke docker commands, and installing the podman-docker package will prevent you from having to modify them to use podman commands.) To avoid confusion, I'll just be showing you podman commands in this demo.

			The podman utility normally doesn't need root privileges, which is one of its advantages over Docker. But, in order to make this work, we'll need to create our Docker container under the root user account. We can do that either by going to the root user shell and doing everything there or by staying in the normal user shell and prefacing the podman commands with sudo. Since I normally like to avoid going to the root shell unless I absolutely have to, we'll do this with sudo.

			Let's create a wordpress container, like this:

			[donnie@localhost ~]$ sudo podman run -d -p 8080:80 --name wordpress wordpress

			WordPress is a free open source blogging platform. Here, we're running a wordpress container in detached, or background, mode with the -d switch. Instead of exposing the default port 80 to the network, we're exposing port 8080. (Note that if this fails to start, you might already have something listening on port 8080. If that's the case, try again with another port.) The --name switch sets the container name that we'll soon be using in the command to create the service file.

			We'll verify that it's running with sudo podman ps:

			[donnie@localhost ~]$ sudo podman ps

			CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

			cc06c35f21ce docker.io/library/wordpress:latest apache2-foregroun... 2 minutes ago Up 2 minutes ago 0.0.0.0:8080->80/tcp wordpress

			[donnie@localhost ~]$

			You can also try to access WordPress from your host machine's web browser, but you'll first need to open port 8080/tcp on the Alma machine's firewall, like this:

			[donnie@localhost ~]$ sudo firewall-cmd --permanent --add-port=8080/tcp

			success

			[donnie@localhost ~]$ sudo firewall-cmd --reload

			success

			[donnie@localhost ~]$

			Then, go to the web browser of your host machine and navigate to port 8080 of the IP address of your Alma machine. The URL should look something like this:

			http://192.168.0.9:8080/

			This should pull up the opening WordPress screen, which will lead you through the setup process.

			Okay, that's great, except that when you reboot the machine, the container won't start back up automatically. To fix that, we'll use the sudo podman generate systemd command to create the service file, as follows:

			[donnie@localhost ~]$ sudo podman generate systemd wordpress | sudo tee /etc/systemd/system/wordpress-container.service

			Note that using sudo to do a normal redirection with the > symbol doesn't work well in the /etc/ directory, but piping the output into the tee utility does. As you'll see, the tee utility sends output to both the screen and to a specified file.

			Doing systemctl cat wordpress-container will show you the generated service file:

			
				
					[image:]
				

			

			Figure 5.4 – The podman-generated service file

			Now, if that isn't slick, I don't know what is. Let's enable the service and reboot, just to see what happens:

			[donnie@localhost ~]$ sudo systemctl daemon-reload

			[donnie@localhost ~]$ sudo systemctl enable wordpress-container

			Created symlink /etc/systemd/system/multi-user.target.wants/wordpress-container.service → /etc/systemd/system/wordpress-container.service.

			Created symlink /etc/systemd/system/default.target.wants/wordpress-container.service → /etc/systemd/system/wordpress-container.service.

			[donnie@localhost ~]$ sudo shutdown -r now

			When the reboot is complete, a sudo podman ps command should show you that the container is running:

			[donnie@localhost ~]$ sudo podman ps

			[sudo] password for donnie:

			CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

			cc06c35f21ce docker.io/library/wordpress:latest apache2-foregroun... 12 minutes ago Up About a minute ago 0.0.0.0:8080->80/tcp wordpress

			[donnie@localhost ~]$

			(You'll need to use sudo here only because the container is running under the root user's account.)

			And of course, systemctl status should also show you that it's running:

			[donnie@localhost ~]$ systemctl status wordpress-container

			● wordpress-container.service - Podman container-cc06c35f21cedd4d2384cf2c048f013748e84cabdc594b110a8c8529173f4c81.service

			 Loaded: loaded (/etc/systemd/system/wordpress-container.service; enabled; vendor preset: disabled)

			 Active: active (running) since Wed 2021-04-14 15:27:37 EDT; 2min 38s ago

			. . .

			. . .

			Okay, that's all good. But, what if you need to create a container service that you want to run from your own user account without root privileges? Well, we've got you covered there, too. Just create the service file in your own home directory, and run it from there.

			We'll start as we did before, except with a different container name and from our normal user shell, like so:

			[donnie@localhost ~]$ podman run -d -p 9080:80 --name wordpress-noroot wordpress

			We're using a different network port this time, so that it won't conflict with what we've already done. For now, let's stop the container:

			[donnie@localhost ~]$ podman container stop wordpress-noroot

			a6e2117dd4d5148d01a55d64ad8753c03436bfd9a573435e95d927f74 dc48f9e

			[donnie@localhost ~]$

			We'll next create a subdirectory within the user's own normal home directory:

			[donnie@localhost ~]$ mkdir -p .config/systemd/user/

			[donnie@localhost ~]$

			We'll generate the service file, the same as we did before:

			[donnie@localhost ~]$ podman generate systemd wordpress-noroot > .config/systemd/user/wordpress-noroot.service

			[donnie@localhost ~]$

			I forgot to point out before that there's a slight difference in the [Install] section of these generated service files. Instead of seeing only one target listed, you'll see two, as shown here:

			. . .

			. . .

			[Install]

			WantedBy=multi-user.target default.target

			Default.target is needed whenever you want to run a service from your own user account. From here on out, the management commands are mostly the same, except that you won't need sudo and you'll need to use the --user option to tell systemd that the service unit file is in your own home directory. Let's load the new service file, and check the status:

			[donnie@localhost ~]$ systemctl --user daemon-reload

			[donnie@localhost ~]$ systemctl --user status wordpress-noroot

			● wordpress-noroot.service - Podman container-a6e2117dd4d5148d01a55d64ad8753c03436bfd9a573435e95d927f74dc48f9e.service

			 Loaded: loaded (/home/donnie/.config/systemd/user/wordpress-noroot.service; disabled; vendor preset: enabled)

			 Active: inactive (dead)

			. . .

			. . .

			Let's enable it and start it, and check the status again:

			[donnie@localhost ~]$ systemctl --user enable --now wordpress-noroot

			Created symlink /home/donnie/.config/systemd/user/multi-user.target.wants/wordpress-noroot.service → /home/donnie/.config/systemd/user/wordpress-noroot.service.

			Created symlink /home/donnie/.config/systemd/user/default.target.wants/wordpress-noroot.service → /home/donnie/.config/systemd/user/wordpress-noroot.service.

			[donnie@localhost ~]$ systemctl --user status wordpress-noroot

			● wordpress-noroot.service - Podman container-a6e2117dd4d5148d01a55d64ad8753c03436bfd9a573435e95d927f74dc48f9e.service

			 Loaded: loaded (/home/donnie/.config/systemd/user/wordpress-noroot.service; enabled; vendor preset: enabled)

			 Active: active (running) since Wed 2021-04-14 15:44:26 EDT; 12s ago

			. . .

			. . .

			If you have root privileges, you can open port 9080/tcp on the firewall and access WordPress from an external machine, just as we did before.

			As things stand now, our rootless WordPress service won't automatically start when you boot the machine. But, it will start when you log into the machine and will stop when you log out. Fix that by doing the following for your own user account:

			[donnie@localhost ~]$ loginctl enable-linger donnie

			[donnie@localhost ~]$

			Now, the container service will remain running when I log out and will automatically start when I reboot the machine.

			Summary

			In this chapter, we looked at how to edit and create service unit files. Along the way, we looked at various parameters that we can set, including several security-related ones. We also saw the importance of testing any changes that we make to the service files before putting them into production. And of course, there's that one thing that I keep pointing out, about the importance of knowing how to use the systemd man pages.

			In the next chapter, we'll look at systemd targets. I'll see you there.

			Questions

			
					How would you do a partial edit of the ssh.service file?a) sudo systemctl edit --partial ssh.service
b) sudo systemctl edit ssh.service
c) sudo systemedit ssh.service
d) sudo systemedit --partial ssh.service

					How would you create a brand-new service?a) sudo systemctl edit --new newservice.service
b) sudo systemctl edit --full newservice.service
c) sudo systemctl edit --full --force newservice.service
d) sudo systemctl edit newservice.service

					How would you create an access whitelist for a service?a) Just insert an IPAddressAllow= directive into the [Service] section.
b) Insert both an IPAddressAllow= directive and an IPAddressDeny= directive in the [Service] section.
c) Just insert an IPAddressAllow= directive into the [Unit] section.
d) Insert both an IPAddressAllow= directive and an IPAddressDeny= directive in the [Unit] section.

			

			Answers

			b

			c

			b

			Further reading

			
					How to create systemd service files: https://linuxconfig.org/how-to-create-systemd-service-unit-in-linux

					Securing and sandboxing applications and services: https://www.redhat.com/sysadmin/mastering-systemd

					Managing containers in podman with systemd unit files: https://youtu.be/AGkM2jGT61Y

			

		

	
		
			Chapter 6: Understanding systemd Targets

			In this chapter, we'll look at what systemd targets are, and what they can do for us. Now, I have to tell you that there is a bit of confusion that surrounds this topic, and I hope to clear that up.

			Specific topics covered in this chapter include the following:

			
					Understanding the purpose of systemd targets

					Understanding the structure of a target file

					Comparing systemd targets to SysVinit run levels

					Understanding target dependencies

					Changing the default target

					Temporarily changing the target

			

			Understanding targets is important and can help you out either in the server room or in your own home. If you're ready, let's get started.

			Technical requirements

			For this chapter, you'll need a virtual machine that's running with a graphical desktop environment. I'll be using my AlmaLinux virtual machine, which is running with the Gnome 3 desktop.

			Check out the following link to see the Code in Action video: https://bit.ly/3Dgar9d

			As always, this is hands-on, so feel free to follow along.

			Understanding the purpose of systemd targets

			The legacy SysVinit system has runlevels, which define which services are to automatically start when the operating system enters a certain run state. For example, entering the graphical runlevel would bring up all of the services that allow the graphical mode to properly function. In systemd, we have targets instead of runlevels. Several of these targets perform the same function that runlevels used to. That part is easy to understand.

			Where the confusion comes in is that targets are more than just runlevels. As we'll soon see, there are many different targets, all with their own specific purposes. In systemd, a target is a unit that groups together other systemd units for a particular purpose. The units that a target can group together include services, paths, mount points, sockets, and even other targets.

			By doing a systemctl list-units -t target command, you can see all of the active targets on your system, which should look like this:

			
				
					[image:]
				

			

			Figure 6.1 – Active targets on AlmaLinux

			Add the --inactive option to see the inactive targets:

			
				
					[image:]
				

			

			Figure 6.2 – Inactive targets on AlmaLinux

			You can probably figure out what a lot of these targets are doing just by looking at their names. For the ones that aren't so obvious, either just look in the systemd.special man page or search for a man page with a particular target name.

			Next, let's peek inside a few of these target files to see what we can see.

			Understanding the structure of a target file

			As I've said before, the best way to learn systemd is to look at examples of the various unit files. In this section, we'll look at some .target files.

			Understanding the sockets.target file

			Let's start with the sockets.target file, which is one of the simplest targets we have:

			[Unit]

			Description=Sockets

			Documentation=man:systemd.special(7)

			Yeah, that's it, the entire file. The [Unit] section is the only section it has, and it only consists of the Description= line and the Documentation= line. At first glance, you would think that this can't possibly be doing anything for us. But that's where you'd be wrong. Look in the /etc/systemd/system/sockets.target.wants directory, and you'll see that this target is just a group of all the sockets that we need to have running:

			[donnie@localhost sockets.target.wants]$ ls -l

			total 0

			lrwxrwxrwx. 1 root 43 May 1 17:27 avahi-daemon.socket -> /usr/lib/systemd/system/avahi-daemon.socket

			lrwxrwxrwx. 1 root 35 May 1 17:31 cups.socket -> /usr/lib/systemd/system/cups.socket

			. . .

			. . .

			lrwxrwxrwx. 1 root 39 May 1 17:34 sssd-kcm.socket -> /usr/lib/systemd/system/sssd-kcm.socket

			lrwxrwxrwx. 1 root 40 May 1 17:27 virtlockd.socket -> /usr/lib/systemd/system/virtlockd.socket

			lrwxrwxrwx. 1 root 39 May 1 17:27 virtlogd.socket -> /usr/lib/systemd/system/virtlogd.socket

			[donnie@localhost sockets.target.wants]$

			To see how this works, let's look inside the cups.socket file:

			[Unit]

			Description=CUPS Scheduler

			PartOf=cups.service

			[Socket]

			ListenStream=/var/run/cups/cups.sock

			[Install]

			WantedBy=sockets.target

			You can see in the [Install] section that this socket is wanted by sockets.target. In other words, this socket for the Common Unix Printing System (CUPS) will be activated whenever sockets.target is activated. Of course, sockets.target is already active by default on pretty much any Linux system, so you normally won't have to worry about activating it yourself. cups.socket is also normally active by default, but you might not always need it. Let's say that you're running a text-mode server, and you know for a fact that you'll never need to print anything from it. You can disable cups.socket the same way that you'd disable a service:

			[donnie@localhost ~]$ sudo systemctl disable --now cups.socket

			[sudo] password for donnie:

			Removed /etc/systemd/system/sockets.target.wants/cups.socket.

			[donnie@localhost ~]$

			When you do this, the associated cups.service is still running, so you'll also need to stop and disable it. If you change your mind, you can always re-enable the service and the socket.

			Understanding dependencies in the sshd.service file

			We've already looked at the sshd.service file, but it's worthwhile to look at it again. To save space, I'll just show the [Unit] and [Install] sections, which are the only two sections that we need to look at.

			The [Unit] and [Install] sections

			Here are the [Unit] and [Install] sections of the sshd.service file:

			[Unit]

			Description=OpenSSH server daemon

			Documentation=man:sshd(8) man:sshd_config(5)

			After=network.target sshd-keygen.target

			Wants=sshd-keygen.target

			. . .

			. . .

			[Install]

			WantedBy=multi-user.target

			We've already seen the WantedBy=multi-user.target line in the [Install] section, which means that the secure shell service will automatically start when the machine boots into multi-user mode.

			In the [Unit] section of the sshd.service file, we see that sshd.service won't start until after network.target and sshd-keygen.target have started.

			Now, let's see what's in the network.target file.

			Understanding passive targets

			The network.target file looks like this:

			[Unit]

			Description=Network

			Documentation=man:systemd.special(7)

			Documentation=https://www.freedesktop.org/wiki/Software/systemd/NetworkTarget

			After=network-pre.target

			RefuseManualStart=yes

			One interesting thing here is the RefuseManualStart=yes line that we see at the end. This just means that this target will start automatically and that we can't start it ourselves. This is why we consider network.target as a passive target. We also see that network.target will start after network-pre.target, which is also a passive target.

			What's even more interesting, and a bit curious, is that this network.target doesn't appear to be doing anything for us. I mean, there's no code here that's really doing anything; it doesn't appear to be starting any services, and there's no .wants directory under the /etc/systemd/system/ directory that would allow us to add services to it. We can see that here:

			[donnie@localhost system]$ pwd

			/etc/systemd/system

			[donnie@localhost system]$ ls -l network.target.wants

			ls: cannot access 'network.target.wants': No such file or directory

			[donnie@localhost system]$

			So, what's going on here? Well, this is one of those things that takes a bit of detective work to find out, because the developers of systemd don't document it well. The answer is that several targets are hardcoded into the systemd executable file. network.target is one example. To get a bit of a clue about this, we can use the strings utility to view any text strings that might be in the systemd executable file. The command to use it is:

			[donnie@localhost systemd]$ pwd

			/lib/systemd

			[donnie@localhost systemd]$ strings systemd | grep '\.target'

			The output should look something like this:

			
				
					[image:]
				

			

			Figure 6.3 – Targets that are hardcoded into the systemd executable

			Understand that not all of these hardcoded targets are passive targets. For example, at the top of the list, you see several targets that have to do with powering down the machine, rebooting the machine, or rescuing the machine. (I'm talking about everything down to emergency.target.) These are targets that we can definitely invoke ourselves.

			Passive targets are automatically started during the system initialization portion of the boot process. network.target gets activated when the machine is able to reach the network. By placing After=network.target in the [Unit] section of the sshd.service file, we ensure that the Secure Shell service won't start until after the network is activated and available.

			Understanding service templates

			To refresh our memories, let's take another look at the [Unit] section of our sshd.service file:

			[Unit]

			Description=OpenSSH server daemon

			Documentation=man:sshd(8) man:sshd_config(5)

			After=network.target sshd-keygen.target

			Wants=sshd-keygen.target

			We see that sshd.service wants sshd-keygen.target, and is not to start until after sshd-keygen.target has started. Let's peek inside the sshd-keygen.target file:

			[Unit]

			Wants=sshd-keygen@rsa.service

			Wants=sshd-keygen@ecdsa.service

			Wants=sshd-keygen@ed25519.service

			PartOf=sshd.service

			We see that sshd.target wants sshd-keygen@.service three different times. The @ symbol in the filename indicates that this is a service template. When we invoke a service template, we'll place the value of a variable after the @ symbol, which allows us to run a service multiple times with different parameters. To see what I'm talking about, let's look inside the sshd-keygen@.service file:

			[Unit]

			Description=OpenSSH %i Server Key Generation

			ConditionFileNotEmpty=|!/etc/ssh/ssh_host_%i_key

			[Service]

			Type=oneshot

			EnvironmentFile=-/etc/sysconfig/sshd

			ExecStart=/usr/libexec/openssh/sshd-keygen %i

			[Install]

			WantedBy=sshd-keygen.target

			The first thing to note is the %i variable. In the sshd-keygen.target file, we see that the three values for this variable are rsa, ecdsa, and ed25519. These values represent the three types of secure shell keys that we want on our system.

			The ConditionFileNotEmpty=|!/etc/ssh/ssh_host_%i_key line verifies whether or not these three key files already exist. On my AlmaLinux system, the keys look like this:

			[donnie@localhost ~]$ cd /etc/ssh

			[donnie@localhost ssh]$ ls -l *key

			-rw-r-----. 1 root ssh_keys 492 Feb 11 18:29 ssh_host_ecdsa_key

			-rw-r-----. 1 root ssh_keys 387 Feb 11 18:29 ssh_host_ed25519_key

			-rw-r-----. 1 root ssh_keys 2578 Feb 11 18:29 ssh_host_rsa_key

			[donnie@localhost ssh]$

			In this ConditionFileNotEmpty= line, the ! means that we're looking for the absence of these three key files. The pipe symbol (|) that's before the ! is the trigger symbol. When you put both of these symbols together, it means that nothing will happen if the three key files already exist. But if the key files don't exist, the | symbol will cause this service to run in order to create them.

			In the [Service] section, we see the ExecStart=/usr/libexec/openssh/sshd-keygen %i line. This will cause the sshd-keygen command to run once for every value of the %i variable that's defined in sshd-keygen.target. Each time it runs, it will create one of the three key files that we need.

			The last thing to look at here is the Type=oneshot line, which is also in the [Service] section. This causes the service to just run as a normal script that performs some specified one-time task, instead of as a continuously running daemon. After the specified commands have run, the service shuts down.

			Okay, we've seen what targets are, and we've seen a few simple examples. Now, let's look at the targets that have replaced the old-fashioned runlevels.

			Comparing systemd targets to SysVinit runlevels

			The old SysV runlevels defined which services would run when the operating system reached a certain state. It was a simple concept, except that there were four different sets of runlevel definitions that a Linux user would have to know. There was the generic set, which was created by the big Linux gurus at the Linux Foundation as part of the Linux Standard Base. The Red Hat definitions were almost identical to the generic ones. The Slackware and Debian developers basically came out of left field and created their own definitions that didn't look anything like the generic ones. (Of course, Slackware and Debian are the two oldest surviving Linux distros, so it's possible that they might have created their own definitions before the Linux Foundation gurus created the generic definitions.) This made things a bit confusing for new Linux users, especially for those of us who had to study for the Linux Professional Institute certification exam. It also made things a bit difficult for developers who needed to create new services that would run on all the different families of Linux distros. Fortunately, all we need to consider for now is the generic definitions, and how they compare to the systemd targets. Let's look at the following table:

			
				
					[image:]
				

			

			In systemd, there are some runlevel-type targets that have no SysV counterparts:

			
					emergency.target is like rescue.target, except that filesystems are mounted as read-only.

					hibernate.target saves the system state and then powers down the machine.

					suspend.target just puts the system to sleep without powering it down.

			

			hibernate.target and suspend.target, which aren't needed on server implementations of Linux, are a big help to the growing numbers of people who use Linux on laptop and desktop computers. Prior to systemd, there was no good, standardized way of implementing these features.

			Note that in the official generic definition set, runlevel 2 and runlevel 4 don't exactly correspond to the multi-user target. For some reason, every explanation of runlevels versus targets always places runlevels 2 and 4 here, and I'm not sure why.

			A big difference between SysV and systemd is that on SysV, each runlevel is its own independent unit. So, if you had a machine set up to boot into runlevel 5, it would go directly to runlevel 5. On systemd, one target can depend upon another target, which in turn might depend upon yet another target. Take, for example, this graphical.target unit file:

			[Unit]

			Description=Graphical Interface

			Documentation=man:systemd.special(7)

			Requires=multi-user.target

			Wants=display-manager.service

			Conflicts=rescue.service rescue.target

			After=multi-user.target rescue.service rescue.target display-manager.service

			AllowIsolate=yes

			The Requires=multi-user.target line means that graphical.target will fail to start unless multi-user.target is already running. All of the services that get started in multiuser mode will continue to run in graphical mode. The Wants=display-manager.service line means that it wants to start the display manager, but it won't fail if the display manager doesn't start.

			The Conflicts=rescue.service rescue.target line tells systemd to shut down graphical.target if either rescue.service or rescue.target gets started, or to shut down rescue.service or rescue.target if graphical.target gets started. Of course, shutdown.target is also a conflict, but we don't need to list it. The Conflicts=shutdown.target parameter is already implied.

			The After= line seems a bit strange, doesn't it? I mean, it does make sense that graphical.target can't run until after multi-user.target and display-manager.service have completed starting up. But what about rescue.service and rescue.target? Why would we need these rescue units to run before starting graphical.target? Well, we actually don't. It's just that the After= directive also affects what happens when you shut down a target. In this case, the directive says that if you decide to switch from graphical.target to rescue.target, rescue.target and rescue.service won't start until after graphical.target shuts down. So, by switching from graphical mode to rescue mode, the After= line operates in an inverse fashion.

			The last line is AllowIsolate=yes. This just means that we can switch from this target to another, if we so desire. For example, if we need to drop out of graphical mode to a pure command-line mode, we can isolate to multi-user.target. (Yeah, the terminology is a bit strange, but that's just the way it is.) Before we move on to that, let's talk a bit more about dependencies.

			Understanding target dependencies

			In this graphical.target file, the Requires=multi-user.target line means that multi-user.target has to be running before graphical.target can start. So, multi-user.target is a dependency for graphical.target. Now, let's peek into the multi-user.target file:

			[Unit]

			Description=Multi-User System

			Documentation=man:systemd.special(7)

			Requires=basic.target

			Conflicts=rescue.service rescue.target

			After=basic.target rescue.service rescue.target

			AllowIsolate=yes

			Here, we see that multi-user.target requires basic.target. So, let's look at the basic.target file to see what it requires:

			[Unit]

			Description=Basic System

			Documentation=man:systemd.special(7)

			Requires=sysinit.target

			Wants=sockets.target timers.target paths.target slices.target

			After=sysinit.target sockets.target paths.target slices.target tmp.mount

			Okay, basic.target requires sysinit.target. So, let's see what sysinit.target requires:

			[Unit]

			Description=System Initialization

			Documentation=man:systemd.special(7)

			Conflicts=emergency.service emergency.target

			Wants=local-fs.target swap.target

			After=local-fs.target swap.target emergency.service emergency.target

			sysinit.target doesn't require anything, but it does want local-fs.target and swap.target. Some of these chained targets have their own .wants directories in the /etc/systemd/system/ directory that contain symbolic links to the services that will start for those targets. Here, for example, is the contents of the /etc/systemd/system/sysinit.target.wants/ directory:

			[donnie@localhost sysinit.target.wants]$ ls -l

			total 0

			lrwxrwxrwx. 1 root 44 May 1 17:22 import-state.service -> /usr/lib/systemd/system/import-state.service

			lrwxrwxrwx. 1 root 44 May 1 17:27 iscsi-onboot.service -> /usr/lib/systemd/system/iscsi-onboot.service

			. . .

			. . .

			lrwxrwxrwx. 1 root 56 May 1 17:21 selinux-autorelabel-mark.service -> /usr/lib/systemd/system/selinux-autorelabel-mark.service

			[donnie@localhost sysinit.target.wants]$

			Trying to figure out all of a target's dependencies might seem like a complex operation, but it really isn't. To see the dependencies for graphical.target, we'll just do systemctl list-dependencies graphical.target, like this:

			[donnie@localhost ~]$ systemctl list-dependencies graphical.target

			graphical.target

			● ├─accounts-daemon.service

			● ├─gdm.service

			● ├─rtkit-daemon.service

			● ├─systemd-update-utmp-runlevel.service

			● ├─udisks2.service

			● └─multi-user.target

			● ├─atd.service

			● ├─auditd.service

			● ├─avahi-daemon.service

			. . .

			. . .

			The whole output is too long to list here, but you get the idea.

			The --after and --before options show the dependencies that must start either before or after a target starts. (No, I didn't do that backward. The --after option indicates that the target must start after the listed dependencies, and the --before option indicates that the target must start before the listed dependencies.) For a simple example, let's see what must start before network.target can start:

			[donnie@localhost ~]$ systemctl list-dependencies --after network.target

			network.target

			● ├─NetworkManager.service

			● ├─wpa_supplicant.service

			● └─network-pre.target

			● ├─firewalld.service

			● └─nftables.service

			[donnie@localhost ~]$

			If you like, you can also create a graphical representation of a target's dependencies. To do that, you'll first need to install the graphviz package. The command to do that on the AlmaLinux machine is:

			sudo dnf install graphviz

			Next, let's use systemd-analyze to create the graphics file that shows the dependencies for graphical.target. The command looks like this:

			[donnie@localhost ~]$ systemd-analyze dot graphical.target | dot -Tsvg > graphical.svg

			 Color legend: black = Requires

			 dark blue = Requisite

			 dark grey = Wants

			 red = Conflicts

			 green = After

			[donnie@localhost ~]$

			Finally, open the resultant graphical.svg file in Firefox. Either resize the image to fit the screen or use the slider bar at the bottom to view different parts of the image:

			
				
					[image:]
				

			

			Figure 6.4 – The graphical.target dependencies

			(Note that your graphic might not look exactly like mine. I don't know why, but that's how it is.)

			The point I'm trying to make here is that targets can have an entire chain of dependencies. This allows us to have a more modular setup, so that we don't have to create each individual target file with its own complete list of dependencies. This is the opposite of how SysV works. With SysV, each runlevel has its own directory of symbolic links that point to all of the services that are to be started for the specified runlevel.

			Now that we've seen what targets are and how they're constructed, let's see how to set the default target.

			Changing the default target

			When you install a Linux operating system, the installer will configure either multi-user.target or graphical.target as the default, depending upon whether or not you choose to install a graphical desktop environment. When you boot up a Linux machine, it can be quite obvious what the default target is. If a graphical desktop shows up, you can rest assured that graphical.target is set as the default:

			
				
					[image:]
				

			

			Figure 6.5 – AlmaLinux with the Gnome 3 desktop

			However, if a graphical desktop doesn't show up, it doesn't necessarily mean that the machine is set up with multi-user.target as its default. It could be that graphical.target is the default, and that the graphical display manager has failed to start. (I've seen that happen a few times when a video card driver is configured incorrectly.)

			To see which target is set as the default, use systemctl get-default:

			[donnie@localhost system]$ systemctl get-default

			graphical.target

			[donnie@localhost system]$

			You can also see the default setting by looking at the /etc/systemd/system/default.target symbolic link, which looks like this:

			[donnie@localhost system]$ ls -l default.target

			lrwxrwxrwx. 1 root 40 May 4 18:30 default.target -> /usr/lib/systemd/system/graphical.target

			[donnie@localhost system]$

			We see that the symbolic link points to the graphical.target file.

			Now, let's say that you no longer want this machine to boot into graphical mode. Just set it to multiuser mode, like this:

			[donnie@localhost system]$ sudo systemctl set-default multi-user

			[sudo] password for donnie:

			Removed /etc/systemd/system/default.target.

			Created symlink /etc/systemd/system/default.target → /usr/lib/systemd/system/multi-user.target.

			[donnie@localhost system]$

			You can see that the default.target symbolic link now points to the multi-user.target file. When you reboot this machine now, the graphical desktop won't start up. After you've rebooted the machine to verify that this works, go ahead and change it back to graphical mode by doing:

			[donnie@localhost ~]$ sudo systemctl set-default graphical

			Removed /etc/systemd/system/default.target.

			Created symlink /etc/systemd/system/default.target → /usr/lib/systemd/system/graphical.target.

			[donnie@localhost ~]$

			Then, reboot the machine to get back into graphical mode.

			All right, this is all good. But there might be times when we'll just want to change to another target temporarily without changing the default. Let's look at that.

			Temporarily changing the target

			You can also change from one target to another without changing the default. This can come in handy for a few reasons. For example, let's say that you're setting up a gaming computer with an Nvidia graphics card. Now, if all you want to do with your Linux computer is just surf the web or do normal office work, the open source Nvidia drivers that come with your Linux distro work fine. For gaming though, the open source drivers might not give you the gaming performance that you really crave. To get around that, you'll go to the Nvidia website and download their proprietary driver. The first step in the installation procedure is to drop the machine out of graphical mode, into text mode. To do that with systemd, we'll use the systemctl isolate option, like this:

			[donnie@localhost ~]$ sudo systemctl isolate multi-user

			This will shut down the graphics server and bring you back to a text-mode login prompt:

			
				
					[image:]
				

			

			Figure 6.6 – Text-mode login on Alma Linux

			To get back to graphical mode, you can reboot the machine, assuming that you still have graphical.target set as the default. Or, you can just run the isolate command again, like this:

			[donnie@localhost ~]$ sudo systemctl isolate graphical

			Be aware though that isolating back to graphical mode can sometimes be a bit quirky, so you might find it better to just reboot. Besides, if you're installing a video driver, you'll need to reboot in any case.

			Now, if you're an old-as-dirt codger like me, you might be so used to the old way of doing things that you can't do things the new way. Well, I have good news. You can still use the old SysV commands to change targets if you really want to. To allow this to happen, the systemd developers created symbolic runlevel links that point to the corresponding targets. Here's what they look like:

			[donnie@localhost ~]$ cd /lib/systemd/system

			[donnie@localhost system]$ ls -l runlevel*.target

			lrwxrwxrwx. 1 root 15 Apr 7 04:46 runlevel0.target -> poweroff.target

			lrwxrwxrwx. 1 root 13 Apr 7 04:46 runlevel1.target -> rescue.target

			lrwxrwxrwx. 1 root 17 Apr 7 04:46 runlevel2.target -> multi-user.target

			lrwxrwxrwx. 1 root 17 Apr 7 04:46 runlevel3.target -> multi-user.target

			lrwxrwxrwx. 1 root 17 Apr 7 04:46 runlevel4.target -> multi-user.target

			lrwxrwxrwx. 1 root 16 Apr 7 04:46 runlevel5.target -> graphical.target

			lrwxrwxrwx. 1 root 13 Apr 7 04:46 runlevel6.target -> reboot.target

			[donnie@localhost system]$

			The legacy init and telinit commands are also still there, so you can still use either of them to change runlevels. For example, you can drop from graphical mode down to multiuser mode with either of these two commands:

			sudo init 3

			sudo telinit 3

			To get back to graphical mode, just run either of these commands again, replacing the 3 with a 5.

			All jokes aside, it's great that they included the backward-compatibility stuff for those who really need it. Still though, you'll want to get used to the modern systemctl isolate way of doing things, because the systemd developers could pull this backward-compatibility stuff out at any time.

			All righty, I think that about covers things. Let's wrap this chapter up and put a bow on it.

			Summary

			As we always do, we've covered a lot of ground and seen a lot of cool stuff. We looked at the purpose of systemd targets and how they're structured. Then, we looked at how systemd targets compare to the old SysVinit runlevels, and at how to view a target's dependencies. We finished by looking at how to set the default runlevel, and how to temporarily change the runlevel.

			In the next chapter, we'll look at systemd timers. I'll see you there.

			Questions

			
					What is a target?a) It's just another name for the old-fashioned runlevels.
b) It's a unit that groups together other units for a specific purpose.
c) It's a unit that starts a service.
d) It's a unit that listens for incoming network connections.

					What is a passive target?a) It's a target that you can't start yourself.
b) It's a placeholder target that doesn't do anything.
c) A passive target is configured with the TargetMode=passive line.
d) It's a target that just runs in the background.

					How would you change from graphical mode to text mode?a) sudo systemctl isolate text-mode
b) sudo systemctl 3
c) sudo systemctl isolate multi-user
d) sudo runlevel multi-user

					What is a major difference between SysV runlevels and systemd targets?a) SysV runlevels depend upon each other. systemd targets are self-contained units.
b) systemd targets depend upon each other. Each SysV runlevel has its own complete list of services to run.
c) SysV runlevels run more efficiently than systemd targets.
d) There is no real difference.

					Which of the following commands shows you the default target?a) systemctl show-target
b) systemctl show-default
c) systemctl default
d) systemctl get-default

			

			Answers

			
					b

					a

					c

					b

					d

			

			Further reading

			An explanation of network.target:

			https://www.freedesktop.org/wiki/Software/systemd/NetworkTarget/

			Booting CentOS into emergency or rescue mode:

			https://www.thegeekdiary.com/how-to-boot-into-rescue-mode-or-emergency-mode-through-systemd-in-centos-rhel-7-and-8/

			Booting Ubuntu into emergency or rescue mode:

			https://linuxconfig.org/how-to-boot-ubuntu-18-04-into-emergency-and-rescue-mode

		

	
		
			Chapter 7: Understanding systemd Timers

			Busy system administrators like to find ways to make their lives easier. One way to do that is to automate as many of their routine tasks as possible by setting them up to automatically run on a set schedule. In this chapter, we'll look at how to do this with systemd timers. The specific topics that we'll look at include the following:

			
					Comparing systemd timers with cron

					Understanding timer options

					Creating timers

			

			If you're ready, let's get started.

			Technical requirements

			As always, we'll be using an Ubuntu Server 20.04 virtual machine and an Alma Linux 8 virtual machine for our demonstrations. It's all hands-on, so feel free to follow along with your own virtual machines.

			Check out the following link to see the Code in Action video: https://bit.ly/31pQdfS

			Comparing systemd timers with cron

			The cron family of scheduling utilities has been a part of Unix and Unix-like operating systems since May 1975. In the 1980s, as part of Richard Stallman's new free software movement, several free-as-in-speech versions of cron were created. Paul Vixie, a member of the Internet Hall of Fame, created his own free version in 1987. Vixie's version became the most widely used version in the Linux world. (In fact, if you look at the cron man page, you'll still see Paul Vixie's name in the Authors section at the bottom.)

			A big advantage of cron is its sheer simplicity. All it takes to create a cron job is one simple line of code, which would look something like this:

			
				
					[image:]
				

			

			Figure 7.1 – An example of a cron job

			In this very simple example, which I took from one of my ancient CentOS 6 virtual machines, I'm running a simple task at 25 minutes and 55 minutes past every hour of every day. Twice every hour, this cron job inserts a message into the system log file. Any non-privileged user who needs to can create a cron job to perform some non-privileged task and anyone with the proper root-level privileges can create a system-level job. Jobs can be set up to run on a particular day of the week, a particular day of the month, at particular times of the day, or upon rebooting the machine. There's a lot of flexibility here, and it's all very simple to set up.

			Another advantage of cron is that it's everywhere in the world of Unix and Unix-like operating systems, while systemd only exists in the world of Linux. If you're a system administrator in a large shop with a mix of both Unix and Linux servers, you might find it easier to stick with cron.

			Setting up systemd timers isn't hard, but it does take a bit more time and effort. To begin with, you can't directly access a command or a script from a systemd timer. You first have to create a systemd service, then call that service from the timer. However, there are quite a few advantages of using systemd timers, so learning how to use them could be well worth the effort.

			With systemd timers, you have a lot more flexibility and accuracy in the way you set up task schedules. The services that you create to go along with your timers can take advantage of resource management, security, and all of the other goodness that comes with using systemd. You can create timers that trigger upon some predefined event, or you can specify the calendar and clock time for when you want to trigger the timer. As an added bonus, systemd will log the completion of a timer event in the system log file. With cron jobs, you don't have any of that.

			So, you're now wondering which of these two task-scheduling systems you should use. Well, cron does still come installed on modern Linux systems. If you just need to quickly create a simple job, there's certainly nothing wrong with using cron. But, if you need to set up something a bit fancier, then definitely go with a systemd timer. Even if you do just need something simple, it might still be worth your while to set up a timer in order to get familiar with the process.

			Okay, that's probably enough for the introduction. Let's look at how to view information about the systemd timers on your system.

			Viewing timer information

			When you first install a Linux operating system, you'll see that there are already some active timers that take care of certain administrative tasks. You can see them by using the systemctl list-unit-files -t timer command. On your Alma Linux machine, the output should look something like this:

			
				
					[image:]
				

			

			Figure 7.2 – Timers on Alma Linux

			We see that 12 timers are installed, but only two are enabled. Two are static, which means that they can't be either enabled or disabled, and all the rest are disabled.

			On the Ubuntu server machine, we see that quite a few more timers are enabled:

			
				
					[image:]
				

			

			Figure 7.3 – Timers on Ubuntu server

			The systemctl list-timers command shows you six fields of information, which look like this:

			
				
					[image:]
				

			

			Figure 7.4 – systemctl list-timers

			The six fields are as follows:

			
					NEXT: This shows the next time that the timer is scheduled to run.

					LEFT: This shows how much time is left before the timer runs again.

					LAST: This shows the time at which the timer last ran.

					PASSED: This shows how much time has elapsed since the timer last ran.

					UNIT: This is the name of the unit file for the timer.

					ACTIVATES: This is the name of the service that the timer runs. This will normally be the same name as the timer, but it doesn't have to be.

			

			You can view some of this information with systemctl status, like this:

			[donnie@localhost ~]$ systemctl status dnf-makecache.timer

			• dnf-makecache.timer - dnf makecache --timer

			 Loaded: loaded (/usr/lib/systemd/system/dnf-makecache.timer; enabled; vendor preset: enabled)

			 Active: active (waiting) since Thu 2021-05-20 12:29:35 EDT; 2h 55min ago

			 Trigger: Thu 2021-05-20 15:39:35 EDT; 14min left

			May 20 12:29:35 localhost.localdomain systemd[1]: Started dnf makecache --timer.

			[donnie@localhost ~]$

			Just as you can do with services and targets, you can view the dependency tree for a timer, as follows:

			[donnie@localhost ~]$ systemctl list-dependencies dnf-makecache.timer

			dnf-makecache.timer

			• ├─network-online.target

			• │ └─NetworkManager-wait-online.service

			• └─sysinit.target

			• ├─dev-hugepages.mount

			• ├─dev-mqueue.mount

			• ├─dracut-shutdown.service

			• ├─import-state.service

			• ├─iscsi-onboot.service

			• ├─kmod-static-nodes.service

			• ├─ldconfig.service

			. . .

			. . .

			We've seen several ways to view information about the timers on your system. Let's move on and look at some of the configuration options.

			Understanding timer options

			The best way to start explaining the timer options is to look at some examples of timers that are already on our systems. We'll begin by looking at a timer on the Alma Linux machine.

			Understanding monotonic timers

			There are two ways to specify the time at which you want a service to automatically run. In this section, we'll look at the monotonic method. This means that instead of configuring the job to run at a specific calendar and clock time, you'll instead configure the job to run after some sort of event that serves as a starting point. A starting point can be system bootup, timer activation, the time since a timer's associated service last ran, or any of several other things (you can see all of the monotonic starting points by looking at the systemd.timer man page). For an example of a monotonic timer, let's look at dnf-makecache.timer on the Alma Linux machine.

			Red Hat-type operating systems, such as Alma Linux, use the dnf utility to perform update and package management. As with all Linux package management systems, dnf maintains a local cache of information about what is in the distro's package repositories. Periodically, the cache needs to be refreshed. We could do that manually with a sudo dnf makecache command, but Red Hat-type systems all come with a timer to do it automatically. Here's what the timer looks like:

			[Unit]

			Description=dnf makecache --timer

			ConditionKernelCommandLine=!rd.live.image

			# See comment in dnf-makecache.service

			ConditionPathExists=!/run/ostree-booted

			Wants=network-online.target

			[Timer]

			OnBootSec=10min

			OnUnitInactiveSec=1h

			Unit=dnf-makecache.service

			[Install]

			WantedBy=timers.target

			In the [Unit] section, we see:

			
					ConditionKernelCommandLine=!rd.live.image: This prevents the timer from running if the machine is booted from some sort of live media, such as a live DVD.

					ConditionPathExists=!/run/ostree-booted: This looks for the /run/ostree-booted directory, and prevents the timer from running if this directory is found. (According to the ostree man page, you would use ostree to manage different versions of filesystem trees. These filesystem trees are mounted as read-only, so trying to update the cache on them wouldn't do much good.)

					Wants=network-online.target: This prevents the timer from running until after network services are available. (Already, you're seeing things you can do with systemd timers that you can't do with cron.)

			

			Next, we see the [Timer] section, with two examples of monotonic timer settings. As I've already mentioned, monotonic timers are defined relative to a certain starting point, rather than by calendar and clock time:

			
					OnBootSec=10min: As we'll see in a moment, this timer activates the dnf-makecache.service. This line causes the service to run 10 minutes after the system has booted up.

					OnUnitInactiveSec=1h: This line says that the timer will run the dnf-makecache.service again one hour after the last time it ran. In other words, this line causes the service to run approximately every hour.

					Unit=dnf-makecache.service: In this case, it's not necessary to have this line. By default, a timer will activate a service that has the same name as the timer. The only time you really have to have this line is if the timer activates a service with a different name. Still though, some people like to use this parameter in any case, and there's nothing wrong with that.Note
You can see the rest of the monotonic timer parameters on the systemd.timer man page.

			

			The [Install] section is fairly standard stuff. All we see there is the WantedBy=timers.target line, which causes this timer to run when the timers.target starts.

			While we're at it, we might as well look at the dnf-makecache.service that this timer activates:

			[Unit]

			Description=dnf makecache

			ConditionPathExists=!/run/ostree-booted

			After=network-online.target

			[Service]

			Type=oneshot

			Nice=19

			IOSchedulingClass=2

			IOSchedulingPriority=7

			Environment="ABRT_IGNORE_PYTHON=1"

			ExecStart=/usr/bin/dnf makecache --timer

			In the [Service] section, we see a few things that we haven't seen in service files before:

			
					Type=oneshot: Okay, we actually have seen this one before. I just want to show here that you need to use the oneshot type for services that are called by timers. (It really makes sense when you think about it.)

					Nice=19: This causes the service to run with a niceness value of 19, which means that the service will run with the lowest possible priority. (Niceness values range from -20 to positive 19. Although it seems counterintuitive, -20 denotes the highest priority that can be assigned to a process, and positive 19 denotes the lowest.) This setting helps prevent this service from bogging down other processes that might be more important.

					IOSchedulingClass=2: This sets the type of input/output scheduler scheme that we want to use. A value of 2 means that we want to use the best-effort type scheduling class. (You can see the other IOSchedulingClass types in the systemd.exec man page.)

					IOSchedulingPriority=7: IOSchedulingPriority values range from 0 through 7, with 0 as the highest priority and 7 as the lowest. This is just another way to keep this service from bogging down the rest of the system.

					ExecStart=/usr/bin/dnf makecache --timer: The --timer option here has nothing to do with systemd timers. Instead, this is an option that goes along with the dnf command. According to the dnf man page, --timer causes dnf to be more resource-aware, so that it won't run if the computer is running on battery power. It also causes the dnf makecache command to immediately abort if it has already been run recently.

			

			The [Install] section of this service file is conspicuous by its absence. Not having the [Install] section makes this a static type of service that you can't enable. Instead, it will just run whenever the dnf-makecache.timer activates it.

			Okay, that about does it for this example. Next, we'll look at the other ways to specify when to run a job.

			Understanding real-time timers

			You can use a real-time timer to run a job on whatever calendar day and at whatever clock time you want it to run. For our first simple example, let's look at the fstrim.timer on the Alma machine:

			[Unit]

			Description=Discard unused blocks once a week

			Documentation=man:fstrim

			[Timer]

			OnCalendar=weekly

			AccuracySec=1h

			Persistent=true

			[Install]

			WantedBy=timers.target

			Here's the breakdown:

			
					OnCalendar=weekly: You'll use the OnCalendar parameter to specify the time at which you want the job to run. Setting this job up to run weekly means that it will run every Monday morning at midnight. (We'll see in a bit where these parameters are defined.)

					AccuracySec=1h: This defines the amount of time by which the job is allowed to be delayed. A one-hour delay means that this job could run at any time from midnight to one o'clock on Monday morning. If you leave this line out, the default delay will be one minute. If you want the job to run exactly at midnight on Monday, you can change the 1h to 1us, which gives the greatest accuracy.

					Persistent=true: So, what happens if your machine is shut down at midnight on Monday morning? Without this line, this job will just be skipped. With this line, the job will run the next time you boot up the machine.

			

			As you can see, there's no Unit= line in this timer, as there was in the previous example. So, by default, this fstrim.timer will activate the fstrim.service, which clears out unused blocks on your storage drives. Here's what the service looks like:

			[Unit]

			Description=Discard unused blocks

			[Service]

			Type=oneshot

			ExecStart=/usr/sbin/fstrim -av

			Okay, so there's nothing new here. It's just a standard static, oneshot type of service, as we saw in the previous example.

			The fstrim.timer is disabled by default on the Alma machine, as we see here:

			[donnie@localhost ~]$ systemctl is-enabled fstrim.timer

			disabled

			[donnie@localhost ~]$

			The fstrim.timer comes in handy if you're running either a solid-state drive or thinly provisioned storage. If you need to enable the timer, just do it the same way that you'd enable a service, as shown here:

			[donnie@localhost ~]$ sudo systemctl enable --now fstrim.timer

			[sudo] password for donnie:

			Created symlink /etc/systemd/system/timers.target.wants/fstrim.timer → /usr/lib/systemd/system/fstrim.timer.

			[donnie@localhost ~]$

			On the Ubuntu machine, you'll see that the fstrim.timer is enabled by default:

			donnie@ubuntu2004:~$ systemctl is-enabled fstrim.timer

			enabled

			donnie@ubuntu2004:~$

			Next, let's take a closer look at how to define the OnCalendar times.

			Understanding calendar events for real-time timers

			Okay, here's where things can get a bit sticky. I mean, configuring times for cron jobs is easy and straightforward. Understanding how to set up times for a systemd timer takes a bit of getting used to. Your best bet is to open the systemd.time man page, and scroll down to the CALENDAR EVENTS section. The explanation there isn't as clear as it could be, but you can pretty much figure it out by looking at the examples. Let's see if we can make any sense of it.

			In the fstrim.timer example that we just looked at, we saw the OnCalendar=weekly line, which causes the job to run at midnight every Monday morning. In the CALENDAR EVENTS section of the systemd.time man page, you'll see the complete list of predefined event times:

			minutely → *-*-* *:*:00

			hourly → *-*-* *:00:00

			daily → *-*-* 00:00:00

			monthly → *-*-01 00:00:00

			weekly → Mon *-*-* 00:00:00

			yearly → *-01-01 00:00:00

			quarterly → *-01,04,07,10-01 00:00:00

			semiannually → *-01,07-01 00:00:00

			Most of these are easy to figure out. The only ones that might throw you a bit are quarterly and semiannually. A quarterly job will run at midnight on the first day of January, April, July, and October, as denoted by the 01,04,07,10 part. A semiannually job will run at midnight on the first day of January and July, as denoted by the 01,07 part.

			Scroll down the systemd.time page a bit more and you'll see a whole big list of examples of how you can set up your job times. Rather than try to show you the whole list, I'll just show you one example, and then break it down for you. Here we go:

			2003-03-05 → 2003-03-05 00:00:00

			The left-hand side shows you the date and time as a human would normally write it. The right-hand side shows you the value that you'd use as an OnCalendar= parameter. I chose this example because it uses all of the fields. (And yes, I know that 2003 is in the past, but this is what's in the man page.) To create a job that would have run at midnight on March 3, 2003, the OnCalendar= line would look like this:

			OnCalendar=2003-03-05 00:00:00

			Since that's several years in the past, let's fix this so that it will run in the future:

			OnCalendar=2525-03-05 00:00:00

			Ah, yes. In the year 2525, if man is still alive, and if woman can still survive. . . (Who besides me is old enough to remember that silly song?)

			Seriously though, this isn't near as hard as it first seems to be. We have Year-Month-Date, followed by Hour:Minute:Second in 24-hour format. So yeah, it's actually quite easy-peasy. Now, let's say that we want this to run every day at 6:15 in the evening. We'll just replace the Year-Month-Date fields with the standard wildcard symbol (*), and change the time:

			OnCalendar=*-*-* 18:15:00

			That's good, but I've changed my mind about running it every single day. I think I'll change it so that it will only run on the fifth day of every month, like so:

			OnCalendar=*-*-05 18:15:00

			Nah, that's not often enough. Let's make it run on the fifth, tenth, and fifteenth days of every month:

			OnCalendar=*-*-05,10,15 18:15:00

			The Day-of-Week field is optional. Let's make the job run on the fifth, tenth, and fifteenth days of the month, but only if they happen to fall on either a Monday or a Wednesday:

			OnCalendar=Mon,Wed *-*-05,10,15 18:15:00

			Better yet, let's just make it run every Monday and Wednesday:

			OnCalendar=Mon,Wed *-*-* 18:15:00

			You can use the tilde (~) symbol to count a specified number of days back from the end of a month. To have the job run on the third from last day of every February, just do this:

			OnCalendar=*-02~03 18:15:00

			Now, let's make the job run on the last Monday of every May:

			OnCalendar=Mon *-05~07/1 18:15:00

			Finally, let's get really crazy and make the job run every ten minutes:

			OnCalendar=*:00/10

			Okay, that should be enough to give you a clue. If you need to see any more examples, just look at the systemd.time man page.

			Creating timers

			Creating your own timer is a two-stage process. You'll first create the service that you want to run, and then you'll create and enable the timer.

			Creating a system-level timer

			Let's say that you're a security-conscious soul who suspects that someone might try to plant some rootkits on your machines. You want to set up Rootkit Hunter so that it will run every day after work hours.

			Note

			I wanted to do this with both Ubuntu and Alma Linux. Unfortunately, there's a bug in the Rootkit Hunter package for Ubuntu that prevents Rootkit Hunter from updating its signature database. That's not too surprising, because Ubuntu quality control has always been somewhat less than perfect. So, for this example, we'll just go with Alma.

			Because there's a bug in the Rootkit Hunter package in Ubuntu, we'll just do this on the Alma machine. Rootkit Hunter isn't in the normal Alma repositories, so you'll first need to install the EPEL repository, like so:

			sudo dnf install epel-release

			sudo dnf update

			sudo dnf install rkhunter

			Create the rkhunter.service file by doing:

			sudo systemctl edit --full --force rkhunter.service

			Make the file look like this:

			[Unit]

			Description=Rootkit Hunter

			[Service]

			Type=oneshot

			ExecStartPre=/usr/bin/rkhunter --propupd

			ExecStartPre=/usr/bin/rkhunter --update

			ExecStart=/usr/bin/rkhunter -c --cronjob --rwo

			Before we do the actual scan, we want to create the rkhunter.dat file to store file properties and update the database of rootkit signatures. We'll do that with the two ExecStartPre= lines. In the ExecStart= line, we have three options, as follows:

			
					-c: This is the check option, which does the actual scan.

					--cronjob: Normally, Rootkit Hunter will pause several times during a scan and wait for user input. This option causes Rootkit Hunter to complete its run without pausing.

					--rwo: This option causes Rootkit Hunter to only report any problems that it finds.

			

			Before creating the timer, it's a good idea to start the service manually to verify that it works. We'll do that with:

			[donnie@localhost ~]$ sudo systemctl start rkhunter

			When it's finished running, look at the /var/log/rkhunter/rkhunter.log file to verify that there aren't any problems. If everything looks good, we're ready to create the timer. Do that with:

			[donnie@localhost ~]$ sudo systemctl edit --full --force rkhunter.timer

			For demonstration purposes, set the OnCalendar= time to just a few minutes into the future. That way, you won't have to wait long for it to run. When you're done, the file should look something like this:

			[Unit]

			Description=Rootkit Hunter

			[Timer]

			OnCalendar=*-*-* 17:50:00

			Persistent=true

			[Install]

			WantedBy=timer.target

			Do a daemon-reload, and then enable the timer:

			[donnie@localhost ~]$ sudo systemctl daemon-reload

			[donnie@localhost ~]$ sudo systemctl enable --now rkhunter.timer

			Created symlink /etc/systemd/system/timer.target.wants/rkhunter.timer → /etc/systemd/system/rkhunter.timer.

			[donnie@localhost ~]$

			Now it's just a matter of waiting for the timer to run to see whether it works. After it has finished, you can view the results in the /var/log/rkhunter/rkhunter.log file.

			Next, let's allow a normal, non-privileged user to create a timer.

			Creating a user-level timer

			You can try this demonstration on either the Ubuntu or the Alma virtual machine. I haven't shown much love to the Ubuntu machine for a while, so I'll go with that one.

			Now, let's say that you're just a normal user who wants to back up your home directory to one of those handy-dandy portable drives. You'll plug it into the USB port of your computer, and the system will automatically mount it under the /media/backup/ directory.

			Note

			If you don't have a portable backup drive, you can simulate this by manually creating a backup directory, and setting the permissions so that normal users can write to it, like this:

			sudo mkdir /media/backup

			sudo chmod 777 /media/backup

			Now it's just a matter of creating the service and the timer. Any non-privileged user can do that by using the --user option switch.

			As before, we'll start by creating the service, like this:

			donnie@ubuntu2004:~$ systemctl edit --user --full --force backup.service

			This will automatically create the necessary files and directories under the /home/donnie/.config/ directory. I'll use rsync to do the backup, so my backup.service file will look like this:

			[Unit]

			Description=Backup my home directory

			[Service]

			Type=oneshot

			ExecStart=/usr/bin/rsync -a /home/donnie /media/backup

			I want to make sure that this works, so I'll do a daemon-reload and then try running the service manually before I create the timer:

			donnie@ubuntu2004:~$ systemctl daemon-reload --user

			donnie@ubuntu2004:~$ systemctl start --user backup.service

			donnie@ubuntu2004:~$

			If it runs successfully, I should see a donnie/ directory under /media/backup/:

			donnie@ubuntu2004:~$ ls -l /media/backup/

			total 20

			drwxr-xr-x 6 donnie donnie 4096 May 21 15:58 donnie

			drwx------ 2 root root 16384 May 22 15:34 lost+found

			donnie@ubuntu2004:~$

			So far, so good. Let's see what's in that donnie/ directory:

			donnie@ubuntu2004:~$ ls -la /media/backup/donnie/

			total 44

			drwxr-xr-x 6 donnie donnie 4096 May 21 15:58 .

			drwxrwxrwx 4 root root 4096 May 22 15:49 ..

			-rw------- 1 donnie donnie 3242 May 21 22:07 .bash_history

			-rw-r--r-- 1 donnie donnie 220 Feb 25 2020 .bash_logout

			-rw-r--r-- 1 donnie donnie 3771 Feb 25 2020 .bashrc

			drwx------ 2 donnie donnie 4096 Jan 6 01:47 .cache

			drwxr-xr-x 4 donnie donnie 4096 May 21 20:30 .config

			-rw------- 1 donnie donnie 263 Apr 3 19:00 .lesshst

			drwxrwxr-x 3 donnie donnie 4096 May 21 15:58 .local

			-rw-r--r-- 1 donnie donnie 807 Feb 25 2020 .profile

			-rw-r--r-- 1 donnie donnie 0 Jan 6 01:47 .sudo_as_admin_successful

			drwxr-xr-x 3 donnie donnie 4096 Jan 6 01:56 snap

			donnie@ubuntu2004:~$

			Nice. The backup service works, and I have achieved coolness. Now, it's time to create the timer:

			donnie@ubuntu2004:~$ systemctl edit --user --full --force backup.timer

			I'll just have it run daily at midnight, so I'll make it look like this:

			[Unit]

			Description=Back up my home directory

			[Timer]

			OnCalendar=daily

			Persistent=true

			[Install]

			WantedBy=timer.target default.target

			Of course, if you don't want to wait around until midnight to see whether this works, just set the OnCalendar= time to whatever you want.

			Note that when we use the --user option, we need to have the default.target in the WantedBy= line.

			Next, I'll do a daemon-reload and enable the timer:

			donnie@ubuntu2004:~$ systemctl daemon-reload --user

			donnie@ubuntu2004:~$ systemctl enable --user --now backup.timer

			Created symlink /home/donnie/.config/systemd/user/timer.target.wants/backup.timer → /home/donnie/.config/systemd/user/backup.timer.

			Created symlink /home/donnie/.config/systemd/user/default.target.wants/backup.timer → /home/donnie/.config/systemd/user/backup.timer.

			donnie@ubuntu2004:~$

			I can also use the --user switch to view information about this timer:

			donnie@ubuntu2004:~$ systemctl list-timers --user

			NEXT LEFT LAST PASSED UNIT ACTIVATES

			Sun 2021-05-23 00:00:00 UTC 7h left Sat 2021-05-22 15:47:05 UTC 41min ago backup.timer backup.service

			1 timers listed.

			Pass --all to see loaded but inactive timers, too.

			donnie@ubuntu2004:~$

			As things stand now, this timer will only run while I'm actually logged in to the system. To ensure that it runs even when I'm not logged in, I'll enable the linger function for myself:

			donnie@ubuntu2004:~$ loginctl enable-linger donnie

			donnie@ubuntu2004:~$

			Okay, I think that does it for this chapter. Let's go ahead and wrap it up.

			Summary

			In this chapter, we've looked at systemd timers, and compared them to the legacy cron system. We looked at different timer options, and at different ways to specify when a timer should run. Finally, we looked at how to create timers for both system-level and user-level jobs.

			In the next chapter, we'll take a brief look at the bootup process under systemd. I'll see you there.

			Questions

			
					How do cron and systemd timers differ?a. It's much easier to set up systemd timers.
b. Non-privileged users can set up their own cron jobs, but they can't set up their own timers.
c. A cron job can run a command or script directly, but a systemd timer can only run an associated service.
d. Non-privileged users can set up their own systemd timers, but they can't set up their own cron jobs.

					What are the two ways of specifying when a job will run? (Choose two.)a. monotonic
b. wallclock
c. calendartime
d. realtime

					Which of the following man pages would tell you how to format times for the OnCalendar= parameter?a. systemd.time
b. systemd.timer
c. systemd.unit
d. systemd.exec

					Which of the following time configurations equates to the monthly setting?a. *-01-01 00:00:00
b. *-*-* 00:00:00
c. *-*-01 00:00:00
d. *-01-01 00:00:00

			

			Answers

			
					c

					a, d

					a

					c

			

			Further reading

			
					Comparing systemd timers with cron:https://trstringer.com/systemd-timer-vs-cronjob/
https://medium.com/horrible-hacks/using-systemd-as-a-better-cron-a4023eea996d

					Using systemd timers with Docker:https://matthiasadler.info/blog/running-scheduled-tasks-in-docker-containers-with-systemd/

					Using systemd timers as a cron replacement:https://www.maketecheasier.com/use-systemd-timers-as-cron-replacement/

			

		

	
		
			Chapter 8: Understanding the systemd Boot Process

			In this chapter, we'll take a brief look at the systemd boot process. Now, you might think that this would be a bit dull, but I can assure you that it won't be. Rather than lead you through a dull slog about all that happens during bootup, my aim is to give you practical information that can make bootups run more efficiently. After that, I'll show you some ways in which systemd has been made somewhat backward-compatible with the legacy System V (SysV) stuff. Specific topics in this chapter include the following:

			
					Comparing SysV bootup and systemd bootup

					Analyzing bootup performance

					Some differences on Ubuntu Server 20.04

					Understanding systemd generators

			

			Note that we won't be talking about bootloaders in this chapter because we're saving that for later.

			All right—if you're ready, let's get started.

			Technical requirements

			The technical requirements are the same as always—just have an Ubuntu and an Alma virtual machine (VM) fired up so that you can follow along.

			Check out the following link to see the Code in Action video: https://bit.ly/3phdZ6o

			Comparing SysV bootup and systemd bootup

			Computer bootups all start pretty much the same way, regardless of which operating system is running. You turn on the power switch, then the machine's Basic Input/Output System (BIOS) or Unified Extensible Firmware Interface (UEFI) initializes the hardware and then pulls the operating system boot information from the master boot record (MBR) of the machine's drive. After that, things are different for the various operating systems. Let's first look at what's common for the SysV and systemd bootup sequence.

			Understanding SysV and systemd bootup similarities

			Once the machine can access the MBR of the machine's drive, the operating system begins to load. In the /boot/ directory, you'll see a compressed Linux kernel file that generally has vmlinuz in its filename. You'll also see an initial RAM (random-access memory) disk image that will normally have either initramfs or initrd in its filename. The first step of this process is for the Linux kernel image to get uncompressed and loaded into the system memory. At this stage, the kernel still can't access the root filesystem because it can't access the proper drivers for it. These drivers are in the initial RAM disk image. So, the next step is to load this initial RAM disk image, which will establish a temporary root filesystem that the kernel can access. Once the kernel has loaded the proper drivers, the image will unload. The boot process will then continue by accessing whatever it needs to access on the machine's root filesystem.

			After this, things get different. To show how, let's take a whirlwind tour of the SysV bootup process.

			Understanding the SysV bootup process

			I'm not going to go deep into the details of the SysV bootup process because there's no need to. All I want to do is to show you enough information so that you can understand how it differs from the systemd bootup.

			The init process, which is always process identifier 1 (PID 1), is the first process to start. This init process will control the rest of the boot sequence with a series of complex, convoluted bash shell scripts in the /etc/ directory. At some point, the init process will obtain information about the default run level from the /etc/inittab file. Once the basic system initialization has been completed, system services will get started from bash shell scripts in the /etc/init.d/ directory, as determined by what's enabled for the default runlevel.

			Bootups on a SysV machine can be rather slow because everything gets started in a serial mode—in other words, SysV can only start one service at a time during bootup. Of course, I may have made SysV sound worse than it really is. Although it's outdated by today's standards, it did work well for the hardware of its time. I mean, when you're talking about a server that's running with a pair of single-core 750 megahertz (MHz) Pentium III processors and 512 megabytes (MB) of memory, there's not much you can do to speed it up in any case. (I still have a few of those old machines in my collection, but I haven't booted them up in ages.)

			As I said, this is a whirlwind tour. For our present purposes, this is all you need to know about SysV bootup. So, let's leave this topic and look at how the systemd bootup process works.

			Understanding the systemd bootup process

			With systemd, the systemd process is the first process to start. It also runs as PID 1, as you can see here on the Alma machine:

			[donnie@localhost ~]$ ps aux

			USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

			root 1 1.9 0.8 186956 15088 ? Ss 14:18 0:07 /usr/lib/systemd/systemd --switched-root --system --deserialize 17

			. . .

			. . .

			Curiously, PID 1 still shows up as the init process on the Ubuntu machine, as we see here:

			donnie@ubuntu20-04:~$ ps aux

			USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

			root 1 1.2 0.5 101924 11308 ? Ss 18:26 0:04 /sbin/init maybe-ubiquity

			. . .

			. . .

			This is because the Ubuntu developers, for some bizarre reason, created an init symbolic link that points to the systemd executable, as we see here:

			donnie@ubuntu20-04:~$ cd /sbin

			donnie@ubuntu20-04:/sbin$ ls -l init

			lrwxrwxrwx 1 root root 20 Mar 17 21:36 init -> /lib/systemd/systemd

			donnie@ubuntu20-04:/sbin$

			I have no idea why the Ubuntu developers thought they needed to do that. It works though, so it's all good.

			Instead of running complex bash shell scripts to initialize the system, systemd runs targets. It starts by looking at the default.target file to see if it's set to graphical or multi-user. As I pointed out in Chapter 6, Understanding systemd Targets, there's a chain of dependencies that begins with whatever the default target is and stretches backward. Let's say that our machine has the graphical target set as its default. In the graphical.target file, we see the following line:

			Requires=multi-user.target

			This means that the graphical target can't start until after the multi-user target has started. In the multi-user.target file, we see this line:

			Requires=basic.target

			Now, if we keep tracing this chain back to its origin, we'll see that the basic target Requires the sysinit.target file, which in turn Wants the local-fs.target file, which in turn starts after the local-fs-pre.target file.

			So, what does all this mean? Well, it's just that once the systemd process has determined what the default target is, it starts loading the bootup targets in the following order:

			
					local-fs-pre.target

					local-fs.target

					sysinit.target

					basic.target

					multi-user.target

					graphical.target (if enabled)

			

			Okay—I know. You're now yelling: But Donnie. You said that systemd starts its processes in parallel, not in sequence. Indeed, systemd does start its bootup processes in parallel. Remember what I told you before. A target is a collection of other systemd units that are grouped together for a particular purpose. Within each target, processes start up in parallel.

			Note

			You can see a graphical representation of this bootup chain on the bootup man page.

			I've also pointed out before that some of these targets are hardcoded into the systemd executable file. This means that some of these targets don't have their own .target files, and others have .target files that seem to not do anything. There are a few ways to see what's going on with these hardcoded targets. The first way is to look at a target with systemctl list-dependencies. Here's what we see when we look at the local-fs.target file:

			[donnie@localhost ~]$ systemctl list-dependencies local-fs.target

			local-fs.target

			 ├─-.mount

			 ├─boot.mount

			 ├─ostree-remount.service

			 └─systemd-remount-fs.service

			[donnie@localhost ~]$

			This target starts the services that mount the filesystems. We see that it mounts the boot partition, which is represented by boot.mount. It then mounts the root filesystem, which is represented by -.mount.

			I showed you before how to look at a list of targets that are hardcoded into the systemd executable file. We can also look for information that's specific to just one target. Here's how that looks for the local-fs.target file:

			[donnie@localhost systemd]$ strings /lib/systemd/systemd | grep -A 100 'local-fs.target'

			local-fs.target

			options

			fstype

			Failed to parse /proc/self/mountinfo: %m

			Failed to get next entry from /proc/self/mountinfo: %m

			. . .

			. . .

			mount_process_proc_self_mountinfo

			mount_dispatch_io

			mount_enumerate

			mount_enumerate

			mount_shutdown

			[donnie@localhost systemd]$

			By default, grep only shows the line in which it finds the search term that you specify. The -A option makes it show a specified number of lines that come after the line in which the search term is found. The -A 100 option that I'm using here tells grep to show me the next 100 lines that follow the line that contains local-fs.target. We don't see the exact program code like this, but the embedded text strings do give us some sense of what's going on. My choice of 100 lines was completely arbitrary, but you can keep increasing that if you like, until you start seeing lines that have nothing to do with mounting filesystems.

			A third way to get information about these hardcoded targets is to look at the bootup and the systemd.special man pages. Neither of these man pages gives much detail, but you still might learn a little something from them.

			Now, with this out of the way, let's look at how to analyze bootup problems.

			Analyzing bootup performance

			Let's say that your server is taking longer than you think it should to boot up, and you want to know why. Fortunately, systemd comes with the built-in systemd-analyze tool that can help.

			Let's start by looking here at how long it took to boot up my AlmaLinux machine with its GNOME 3 desktop:

			[donnie@localhost ~]$ systemd-analyze

			Startup finished in 2.397s (kernel) + 19.023s (initrd) + 1min 26.269s (userspace) = 1min 47.690s

			graphical.target reached after 1min 25.920s in userspace

			[donnie@localhost ~]$

			If you don't specify an option, systemd-analyze just uses the time option. (You can type in systemd-analyze time if you really want to, but you'll get the same results that you see here.) The first line of output shows how long it took for the kernel, the initial RAM disk image, and the user space to load. The second line shows how long it took for the graphical target to come up. In reality, the total bootup time doesn't look too bad, especially when you consider the age of the host machine that I'm using to run this VM. (This host machine is a 2009-or-so vintage Dell, running with an old-fashioned Core 2 Quad central processing unit (CPU).) If I were either running this VM on a newer model host or running Alma on bare metal, the bootup time could possibly be a bit quicker. There's also the fact that this VM is running with the GNOME 3 desktop environment, which is somewhat resource-intensive. I personally prefer lighter-weight desktops, which could possibly cut the bootup time down a bit. Unfortunately, Red Hat Enterprise Linux 8 (RHEL 8) and all of its free-of-charge offspring only come with GNOME 3. (It is possible to install the lightweight XForms Common Environment (XFCE) desktop if you have the third-party Extra Packages for Enterprise Linux (EPEL) repository installed, but that's beyond the scope of this book.)

			Now, let's say that the bootup process on this machine really is too slow, and you want to speed it up if possible. First, let's use the blame option to see who we want to blame:

			[donnie@localhost ~]$ systemd-analyze blame

			 1min 4.543s plymouth-quit-wait.service

			 58.883s kdump.service

			 32.153s wordpress-container.service

			 32.102s wordpress2-container.service

			 18.200s systemd-udev-settle.service

			 14.690s dracut-initqueue.service

			 13.748s sssd.service

			 12.638s lvm2-monitor.service

			 10.781s NetworkManager-wait-online.service

			 10.156s tuned.service

			 9.504s firewalld.service

			. . .

			. . .

			This blame option shows you all of the services that got started during the bootup, along with the time it took to start each service. The services are listed in descending order of how long it took each one to start. Look through the whole list, and see if there are any services that you can safely disable. For example, further down the list, you'll see that the wpa_supplicant.service is running, as I show you here:

			[donnie@localhost ~]$ systemd-analyze blame | grep 'wpa_supplicant'

			 710ms wpa_supplicant.service

			[donnie@localhost ~]$

			That's great if you're working with either a desktop machine or a laptop where you might need to use a wireless adapter, but it's not necessary on a server that doesn't have wireless. So, you might consider disabling this service. (Of course, this service only took 710 milliseconds (ms) to start, but that's still something.)

			Note

			Disabling unnecessary services is good for both performance and security. A basic tenet of security that's been around forever is that you should always minimize the number of running services on your system. This provides potential attackers with fewer attack vectors.

			If you want to see how long it took for each target to start during bootup, use the critical-chain option, like this:

			[donnie@localhost ~]$ systemd-analyze critical-chain

			The time after the unit is active or started is printed after the "@" character.

			The time the unit takes to start is printed after the "+" character.

			graphical.target @2min 1.450s

			. . .

			. . .

			 └─local-fs-pre.target @26.988s

			 └─lvm2-monitor.service @4.022s +12.638s

			 └─dm-event.socket @3.973s

			 └─-.mount

			 └─system.slice

			 └─-.slice

			[donnie@localhost ~]$

			For formatting reasons, I can only show you a small portion of the output, so try it for yourself to see how the whole thing looks.

			These commands work the same on an Ubuntu machine as they do here on the Alma machine, but there are a few differences with how the default target is set up on Ubuntu Server 20.04. So, let's look at that.

			Some differences on Ubuntu Server 20.04

			My Ubuntu Server 20.04 machine, which runs purely in text mode, boots considerably faster, as you can see here:

			donnie@ubuntu20-04:~$ systemd-analyze

			Startup finished in 8.588s (kernel) + 44.944s (userspace) = 53.532s

			graphical.target reached after 38.913s in userspace

			donnie@ubuntu20-04:~$

			I must confess that I haven't worked that much with Ubuntu Server 20.04 since it's been out, and I still encounter some new things about it that surprise me. Before I set up the VMs for this chapter, I had never before noticed that Ubuntu Server 20.04 comes with graphical.target as the default, even though no graphical interface is installed. The explanation for that is that the accounts-daemon.service file gets started by the graphical target, not by the multi-user target, as we can see here:

			donnie@ubuntu20-04:/etc/systemd/system/graphical.target.wants$ ls -l

			total 0

			lrwxrwxrwx 1 root 43 Feb 1 17:27 accounts-daemon.service -> /lib/systemd/system/accounts-daemon.service

			donnie@ubuntu20-04:/etc/systemd/system/graphical.target.wants$

			If you look in the graphical.target file, you'll see that it only Wants the display-manager.service file and doesn't Require it, as evidenced by this line:

			Wants=display-manager.service

			So, even though the display manager doesn't exist on this VM, it still goes into the graphical.target just fine. But, let's get back to that accounts-daemon.service file. What is it, exactly? Well, according to the official documentation at https://www.freedesktop.org/wiki/Software/AccountsService/, "AccountsService is a D-Bus service for accessing the list of user accounts and information attached to those accounts." Yeah, I know—that isn't much of an explanation. A better explanation is that it's a service that allows you to manage users and user accounts from graphical user interface (GUI)-type utilities. So, why do we have it enabled on Ubuntu Server when there's no graphical interface? That's a good question, to which I don't have a good answer. It's not something that we need running on a text-mode server. That's okay, though. We'll take care of that in just a bit.

			So now, what's D-Bus?

			D-Bus, which is short for Desktop Bus, is a messaging protocol that allows applications to communicate with each other. It also allows the system to launch daemons and applications on demand, whenever they're needed. Once the D-Bus protocol starts a service, the service continues to run until you either stop it manually or shut down the machine. The accounts-daemon.service file is one service that's meant to be started by D-Bus messages. We can see that here in the Type=dbus line of the [Service] section of the accounts-daemon.service file:

			[Service]

			Type=dbus

			BusName=org.freedesktop.Accounts

			ExecStart=/usr/lib/accountsservice/accounts-daemon

			Environment=GVFS_DISABLE_FUSE=1

			Environment=GIO_USE_VFS=local

			Environment=GVFS_REMOTE_VOLUME_MONITOR_IGNORE=1

			However, we see here in the [Install] section that we're still going to start this service during the bootup process for performance reasons:

			[Install]

			# We pull this in by graphical.target instead of waiting for the bus

			# activation, to speed things up a little: gdm uses this anyway so it is nice

			# if it is already around when gdm wants to use it and doesn't have to wait for

			# it.

			WantedBy=graphical.target

			(The gdm that's mentioned here stands for GNOME Display Manager, which handles user login operation for systems with the GNOME 3 desktop.)

			As I said before, we don't need this accounts-daemon.service file to run on a text-mode server. So, let's set the default.target file to multi-user for this Ubuntu machine, which will prevent the accounts-daemon.service file from automatically starting when we boot up the machine. As you might remember, this is the command to do that:

			donnie@ubuntu20-04:~$ sudo systemctl set-default multi-user

			When you reboot the machine now, you should see it boot a bit faster. On the off-chance that the accounts-daemon.service ever is needed, a D-Bus message would start it.

			Out of curiosity, I created a new AlmaLinux VM without the GNOME desktop, to see if it would also default to graphical.target. It turned out that that Alma without GNOME defaults to multi-user.target and doesn't even install the AccountsService package. (So, without GUI-type user management utilities, the accounts-daemon.service file isn't even needed.)

			Next, let's generate some real excitement with systemd generators.

			Understanding systemd generators

			systemd generators can make life somewhat easier for a busy administrator and also provide some backward compatibility with legacy SysV stuff. Let's first look at how generators make disk and partition configuration easier.

			Understanding mount units

			Look in the /lib/systemd/system/ directory of either VM, and you'll see several mount unit files that got created when you installed the operating system, as shown here on this Alma machine:

			[donnie@localhost system]$ ls -l *.mount

			-rw-r--r--. 1 root 750 Jun 22 2018 dev-hugepages.mount

			-rw-r--r--. 1 root 665 Jun 22 2018 dev-mqueue.mount

			-rw-r--r--. 1 root 655 Jun 22 2018 proc-sys-fs-binfmt_misc.mount

			-rw-r--r--. 1 root root 795 Jun 22 2018 sys-fs-fuse-connections.mount

			-rw-r--r--. 1 root root 767 Jun 22 2018 sys-kernel-config.mount

			-rw-r--r--. 1 root root 710 Jun 22 2018 sys-kernel-debug.mount

			-rw-r--r--. 1 root root 782 May 20 08:24 tmp.mount

			[donnie@localhost system]$

			All of these mount units, except for the tmp.mount file, are for kernel functions and have nothing to do with the drives and partitions that we want to mount. Unlike Ubuntu, Alma mounts the /tmp/ directory on its own partition, which is why you don't see the tmp.mount file on the Ubuntu machine. Let's peek inside the tmp.mount file to see what's there. Here's the [Unit] section:

			[Unit]

			Description=Temporary Directory (/tmp)

			Documentation=man:hier(7)

			Documentation=https://www.freedesktop.org/wiki/Software/systemd/APIFileSystems

			ConditionPathIsSymbolicLink=!/tmp

			DefaultDependencies=no

			Conflicts=umount.target

			Before=local-fs.target umount.target

			After=swap.target

			The ConditionPathIsSymbolicLink=!/tmp line prevents the system from mounting /tmp/ if /tmp is found to be a symbolic link instead of the actual mount point directory. (Remember that the ! sign negates an operation.) We then see that this mount unit Conflicts with the umount.target file, which means that a umount operation will unmount /tmp/.

			Next, let's see what's in the [Mount] section:

			[Mount]

			What=tmpfs

			Where=/tmp

			Type=tmpfs

			Options=mode=1777,strictatime,nosuid,nodev

			The What= and Type= lines denote this as a temporary filesystem. The Where= line defines the mountpoint directory. Finally, there's the Options= line, with the following options:

			
					mode=1777: This sets the permissions value for the mountpoint directory. The 777 part sets full read, write, and execute permissions for everybody. The 1 part sets the sticky bit, which prevents users from deleting each others' files.

					strictatime: This causes the kernel to maintain full access-time (atime) updates on all files on this partition.

					nosuid: If any files on this partition have the Set User ID (SUID) bit set, this option prevents SUID from doing anything. (The SUID bit is a way to escalate privileges for non-privileged users and can be a security problem if it's set on files that shouldn't have it.)

					nodev: This security feature prevents the system from recognizing any character device or block device files that might be on this partition. (You should only see device files in the /dev/ directory.)

			

			Finally, we have the [Install] section, which looks like this:

			[Install]

			WantedBy=local-fs.target

			So, this partition gets mounted by the local-fs.target file, right at the beginning of the bootup process.

			Okay—you now have a basic understanding of what a mount unit file looks like. You're now wondering: Where are the mount unit files for our normal disk partitions? Ah, I'm glad you asked.

			It is possible to manually create mount unit files for your normal disk partitions, but it isn't necessary. In fact, the systemd.mount man page recommends against this. Under the FSTAB section of this man page, you'll see that it's both possible and recommended to configure partitions in the /etc/fstab file, just like you've always done. A systemd generator will dynamically create the appropriate mount unit files, based on the information that's in the fstab file. For example, here's the fstab file from the Alma machine:

			/dev/mapper/almalinux-root / xfs defaults 0 0

			UUID=42b88c40-693d-4a4b-ac60-ae042c742562 /boot xfs defaults 0 0

			/dev/mapper/almalinux-swap none swap defaults 0 0

			The two /dev/mapper lines indicate that the root filesystem partition and the swap partition are mounted as logical volumes. We also see that the root partition is formatted as an xfs partition. The UUID= line indicates that the /boot/ partition is mounted as a normal partition that's designated by its universally unique identifier (UUID) number. (That makes sense because Linux systems can't boot from a logical volume.)

			Okay—the SysV system would just take the information from the fstab file and use it directly. As I've already indicated, systemd will take this information and use it to dynamically generate the mount unit files under the /run/systemd/generator/ directory, as we see here:

			[donnie@localhost ~]$ cd /run/systemd/generator/

			[donnie@localhost generator]$ ls -l

			total 12

			-rw-r--r--. 1 root root 254 Jun 15 14:16 boot.mount

			-rw-r--r--. 1 root root 235 Jun 15 14:16 'dev-mapper-almalinux\x2dswap.swap'

			drwxr-xr-x. 2 root root 80 Jun 15 14:16 local-fs.target.requires

			-rw-r--r--. 1 root root 222 Jun 15 14:16 -.mount

			drwxr-xr-x. 2 root root 60 Jun 15 14:16 swap.target.requires

			[donnie@localhost generator]$

			It's fairly obvious which of these files correspond to the /boot/ and swap partitions. What isn't so obvious is that the -.mount file corresponds to the root filesystem partition. Let's peek into the boot.mount file to see what's there:

			# Automatically generated by systemd-fstab-generator

			[Unit]

			SourcePath=/etc/fstab

			Documentation=man:fstab(5) man:systemd-fstab-generator(8)

			Before=local-fs.target

			[Mount]

			Where=/boot

			What=/dev/disk/by-uuid/42b88c40-693d-4a4b-ac60-ae042c742562

			Type=xfs

			From what you've already seen in the previous example and in the fstab file, you should be able to figure out what's going on here.

			You might want to see what's in the -.mount file, but you can't do that the normal way. If you try it, you'll get this:

			[donnie@localhost generator]$ cat -.mount

			cat: invalid option -- '.'

			Try 'cat --help' for more information.

			[donnie@localhost generator]$

			This will happen regardless of which command-line utility you try. That's because the – sign that's in the prefix of the filename makes the Bash shell think that we're dealing with an option switch. To make this work, just precede the filename with ./ so that you'll be working with an absolute path. The command will look like this:

			[donnie@localhost generator]$ cat ./-.mount

			# Automatically generated by systemd-fstab-generator

			[Unit]

			SourcePath=/etc/fstab

			Documentation=man:fstab(5) man:systemd-fstab-generator(8)

			Before=local-fs.target

			[Mount]

			Where=/

			What=/dev/mapper/almalinux-root

			Type=xfs

			[donnie@localhost generator]$

			Okay—I think that covers it for the mount units. Let's shift over to the Ubuntu Server 20.04 machine and check out one of the backward-compatibility features of systemd.

			Understanding backward compatibility

			You can also use systemd generators to control services from old-fashioned SysV init scripts. You won't see much of that with Red Hat-type systems, but you will with Debian and Ubuntu systems. (For some strange reason, the Debian and Ubuntu maintainers still haven't converted all of their services over to native systemd services.) To demonstrate, disable and stop the normal ssh service on the Ubuntu machine by doing:

			donnie@ubuntu20-04:~$ sudo systemctl disable --now ssh

			Next, install Dropbear, which is a lightweight replacement for the normal OpenSSH package. Do that with the following two commands:

			sudo apt update

			sudo apt install dropbear

			When the installation completes, you should see that the Dropbear service is already enabled and running:

			donnie@ubuntu20-04:~$ systemctl status dropbear

			 dropbear.service - LSB: Lightweight SSH server

			 Loaded: loaded (/etc/init.d/dropbear; generated)

			 Active: active (running) since Tue 2021-06-15 16:15:40 UTC; 3h 40min ago

			. . .

			. . .

			So far, everything looks normal, except for the part about how it loaded the service from the /etc/init.d/dropbear init script. If you look for a dropbear.service file in the /lib/systemd/system/ directory, you won't find it. Instead, you'll see the dropbear init script in the /etc/init.d/ directory:

			donnie@ubuntu20-04:~$ cd /etc/init.d

			donnie@ubuntu20-04:/etc/init.d$ ls -l dropbear

			-rwxr-xr-x 1 root root 2588 Jul 27 2019 dropbear

			donnie@ubuntu20-04:/etc/init.d$

			When the Dropbear service starts, systemd will generate a dropbear.service file in the /run/systemd/generator.late/ directory, as you see here:

			donnie@ubuntu20-04:/run/systemd/generator.late$ ls -l dropbear.service

			-rw-r--r-- 1 root root 513 Jun 15 16:16 dropbear.service

			donnie@ubuntu20-04:/run/systemd/generator.late$

			This file isn't permanently saved to disk and only lasts as long as the system is running. Look inside, and you'll see that it's just a normal service unit file:

			
				
					[image:]
				

			

			Figure 8.1 – A generated service file for the Dropbear service

			Okay—maybe it's not completely normal. (I have no idea why it lists the Before=multi-user.target line three different times.) Also, it's missing the [Install] section because this is actually meant to be a static service.

			If you really want to, you can trick the system into creating a normal dropbear.service file in the /etc/systemd/system/ directory, just by doing a normal sudo systemctl edit --full dropbear command. Delete the SourcePath=/etc/init.d/dropbear line from the [Unit] section because you no longer need it. Next, insert the following line into the [Service] section:

			EnvironmentFile=-/etc/default/dropbear

			This will allow you to set certain Dropbear parameters in the /etc/default/dropbear file, which is already there. (Look at the Dropbear man page to see which options you can set.)

			Then, add the [Install] section, which will look like this:

			[Install]

			WantedBy=multi-user.target

			Save the file and do a sudo systemctl daemon-reload command. Then, enable Dropbear and reboot the VM to verify that it works. Finally, look in the /run/systemd/generator.late/ directory. You'll see that the dropbear.service file is no longer there because systemd is no longer using the dropbear init script. Instead, it's using the dropbear.service file that you just created in the /etc/systemd/system/ directory. If you need to, you can now edit this service file the same way that you'd edit any other service file.

			Summary

			Yes indeed, ladies and gents, we've once again covered a lot of ground and looked at some cool stuff. We started with an overview of the SysV and systemd boot processes, and then looked at some ways to analyze bootup performance. We then looked at an oddity about the Ubuntu Server bootup configuration. Finally, we wrapped things up by looking at two uses for systemd generators.

			In the next chapter, we'll use some systemd utilities to set certain system parameters. I'll see you there.

			Questions

			
					How does systemd handle a service that still uses an old-fashioned init script?a. It just uses the init scripts directly.
b. It creates and saves a service unit file in the /etc/systemd/system/ directory.
c. It dynamically generates a service unit file in the /run/systemd/generator.late/ directory.
d. It won't run a service that only has an init script.

					What is the recommended way of configuring disk partitions on a systemd machine?a. Manually create a mount unit file for each partition.
b. Edit the /etc/fstab file as you normally would.
c. Manually create partition device files in the /dev/ directory.
d. Use the mount utility.

					Which of the following files represents the root filesystem?a. root.mount
b. -.mount
c. /.mount
d. rootfs.mount

					Which of the following commands would show you how long each service takes to start during bootup?a. systemctl blame
b. systemctl time
c. systemd-analyze
d. systemd-analyze time
e. systemd-analyze blame

			

			Answers

			
					c

					b

					b

					e

			

			Further reading

			D-Bus documentation:

			https://www.freedesktop.org/wiki/Software/dbus/

			AccountsService documentation:

			https://www.freedesktop.org/wiki/Software/AccountsService/

			Cleaning up the Linux startup process:

			https://www.linux.com/topic/desktop/cleaning-your-linux-startup-process/

		

	
		
			Chapter 9: Setting System Parameters

			In this chapter, we'll look at how to use systemd utilities to set certain parameters that you used to have to set by either editing configuration files or creating symbolic links. We'll also look at the services that get involved when you use these utilities.

			In this chapter, we will cover the following topics:

			
					Setting the locale parameter

					Setting time and time zone parameters

					Setting the hostname and machine information

			

			If you're ready, let's jump in!

			Technical requirements

			The technical requirements are the same as in the previous chapters. So, fire up your Ubuntu server and AlmaLinux virtual machines and follow along.

			Check out the following link to see the Code in Action video: https://bit.ly/3xKA7K0

			Setting the locale parameter

			Computers are used all over the world, by people of many different cultures and languages. (I know that you already knew that, but I'm telling you anyway.) Fortunately, all major operating systems have ways to accommodate users of almost all languages on Earth. On Unix and Linux systems, the locale set of parameters helps us out with that. Let's start by taking a closer look at it.

			Understanding the locale

			locale is a set of parameters that define lots of things that could be important to a user. There are parameters for the user's preferred language, character encoding, currency formats, and several other things.

			Normally, locale is set when you install the operating system, and you won't have to mess around with it afterward. Linux installers don't have a screen that specifically says Choose your locale, but they do have a screen for you to choose a keyboard layout and another for you to choose your time zone. In my case, I would choose the US English keyboard layout and the US Eastern time zone. From that, the installer can figure out that I want to use a locale with settings for the United States.

			There are a few differences in how locale is implemented on Debian/Ubuntu and Red Hat systems. One difference is in where locale is defined. On Red Hat-type systems, such as my Alma virtual machine, and on the openSUSE host machine that I'm using to write this, it's set in the /etc/locale.conf file, as we see here:

			[donnie@localhost ~]$ cd /etc

			[donnie@localhost etc]$ ls -l locale.conf

			-rw-r--r--. 1 root root 19 May 6 19:06 locale.conf

			[donnie@localhost etc]$

			Inside the locale.conf file, we only see this one line:

			LANG="en_US.UTF-8"

			So, locale is set by the LANG= parameter, which consists of two parts. The first part (en_US) defines the language and region that I want to use, while the second part (UTF-8) defines the character set that I want to use.

			Okay, the language and region part are self-explanatory. But what's a character set? Well, it's just the set of characters that the operating system can display. A character set consists of alphanumeric characters, punctuation characters, and other miscellaneous special characters. Just like everything else on a computer, a character – also known as a code point – consists of a combination of ones and zeros. A character set defines the combinations of ones and zeros that make up each character. Early characters sets, such as the old EBCDIC and ASCII sets, were limited in the number of characters that they could display. Making things worse is that the design of the EBCDIC set contains flaws that make it hard for programmers to use. UTF-8 was designed to address these shortcomings.

			On Ubuntu Server, locale is set in the /etc/default/locale file. If the Ubuntu installer worked correctly – I'll comment more about that in a few moments – the file should look something like this:

			donnie@ubuntu2:~$ cat /etc/default/locale

			LANG=en_US.UTF-8

			donnie@ubuntu2:~$

			The only difference is that in the Ubuntu file, the locale specification isn't surrounded by double quotes as it is on the Alma machine.

			Next, let's take a look at what's in the locale setting. We'll do that with the locale utility, like this:

			[donnie@localhost ~]$ locale

			LANG=en_US.UTF-8

			LC_CTYPE="en_US.UTF-8"

			LC_NUMERIC=en_US.UTF-8

			LC_TIME="en_US.UTF-8"

			LC_COLLATE="en_US.UTF-8"

			LC_MONETARY="en_US.UTF-8"

			. . .

			. . .

			LC_ADDRESS="en_US.UTF-8"

			LC_TELEPHONE="en_US.UTF-8"

			LC_MEASUREMENT="en_US.UTF-8"

			LC_IDENTIFICATION="en_US.UTF-8"

			LC_ALL=

			[donnie@localhost ~]$

			To see what these settings are all about, you'll need to consult a locale man page. The only catch is that there are several locale man pages, as you can see here:

			[donnie@localhost ~]$ whatis locale

			locale (7) - description of multilanguage support

			locale (1) - get locale-specific information

			locale (5) - describes a locale definition file

			locale (1p) - get locale-specific information

			locale (3pm) - Perl pragma to use or avoid POSIX locales for built-in operations

			[donnie@localhost ~]

			We want the number 5 man page in this case. Open it by doing:

			[donnie@localhost ~]$ man 5 locale

			Only because I can read your mind, I already know what your next question is. Exactly what do these locale settings affect? Ah, I'm glad you asked. (And I hope it doesn't seem too creepy that I can read your mind.)

			The various locale settings affect how utilities such as awk, grep, and sort display their output. On desktop machines, they might be used by the display manager for login purposes. Finally, as I'm about to demonstrate, they're also used by certain shell programming functions. I'll demonstrate this on the Alma machine since it already has several different locales available for use. The Bash shell's printf function provides us with the perfect demo. (Note that you might have to modify this demo a bit for your particular locale.)

			On the command line of the Alma machine, let's see how printf works with the default en_US.UTF-8 locale set by trying to print out a decimal number:

			[donnie@localhost ~]$ printf "%.2f\n" 3.14

			3.14

			[donnie@localhost ~]$

			This works because in the US, the period (.) is the decimal point symbol. In most of Europe, though, the comma (,) is the decimal point symbol. We can change just one individual locale setting, so let's temporarily change the LC_NUMERIC setting to a European one, just to see what happens:

			[donnie@localhost ~]$ export LC_NUMERIC="en_DK.utf8"

			[donnie@localhost ~]$ printf "%.2f\n" 3.14

			-bash: printf: 3.14: invalid number

			0,00

			[donnie@localhost ~]$

			This time, printf gives us an invalid number error. That's because it's now expecting to see a European number format. If we try this again with a comma, it should work. Let's see if it does:

			[donnie@localhost ~]$ printf "%.2f\n" 3,14

			3,14

			[donnie@localhost ~]$

			Yeah, it works like a champ. And don't worry about that LC_NUMERIC setting – it will go away as soon as you log out of the terminal window.

			So far, we've only used the legacy locale utility, which has been around forever. To bring this back to the systemd topic, let's use localectl to see what the default locale setting is:

			[donnie@localhost ~]$ localectl

			 System Locale: LANG=en_US.UTF-8

			 VC Keymap: us

			 X11 Layout: us

			[donnie@localhost ~]$

			It works, but it doesn't give us as much information as the legacy locale tool.

			Next, let's learn how to change the default locale.

			Changing the default locale on the Alma machine

			We'll continue using the Alma machine for this since it already has several locales installed.

			Before you change the default locale, you need to see whether the locale you want is installed on your system. You can do that with either the locale -a command or with the localectl list-locales command. Either way, you'll get the same output, which will look something like this:

			[donnie@localhost ~]$ localectl list-locales

			C.utf8

			en_AG

			en_AU

			en_AU.utf8

			. . .

			. . .

			en_ZA.utf8

			en_ZM

			en_ZW

			en_ZW.utf8

			[donnie@localhost ~]$

			There are two ways to change the locale setting. You could just open the /etc/locale.conf file in your text editor and change the setting, but where's the fun in that? Instead, let's use our handy-dandy localectl tool to do this, like so:

			[donnie@localhost ~]$ sudo localectl set-locale en_CA.utf8

			[sudo] password for donnie:

			[donnie@localhost ~]$ cat /etc/locale.conf

			LANG=en_CA.utf8

			[donnie@localhost ~]$

			So, I've set the machine to Canadian English.

			Curiously, the double quotes that were there are now gone. So, I'm guessing that they aren't really needed. Also, note that this setting won't take effect until we log out of the machine and then log back in. Once we do, we'll see that the locale setting has changed, but that the keymap setting hasn't:

			[donnie@localhost ~]$ localectl

			 System Locale: LANG=en_CA.utf8

			 VC Keymap: us

			 X11 Layout: us

			[donnie@localhost ~]$

			The localectl list-keymaps command shows us what keymap settings are available. Let's say that I want to change the keymap to Canadian, to match my locale. I'll do it like this:

			[donnie@localhost ~]$ sudo localectl set-keymap ca

			[donnie@localhost ~]$ sudo localectl set-x11-keymap ca

			[donnie@localhost ~]$

			After logging out and logging back in again, the localectl status will look something like this:

			[donnie@localhost ~]$ localectl

			 System Locale: LANG=en_CA.utf8

			 VC Keymap: ca

			 X11 Layout: ca

			[donnie@localhost ~]$

			Whenever you use localectl to change any settings, it's systemd-localed.service that does the work. I can't show you the entire systemd-localed.service file due to formatting reasons, so I'll just show you the relevant part:

			[Unit]

			Description=Locale Service

			Documentation=man:systemd-localed.service(8) man:locale.conf(5) man:vconsole.conf(5)

			Documentation=https://www.freedesktop.org/wiki/Software/systemd/localed

			[Service]

			ExecStart=/usr/lib/systemd/systemd-localed

			BusName=org.freedesktop.locale1

			. . .

			. . .

			SystemCallArchitectures=native

			LockPersonality=yes

			ReadWritePaths=/etc

			I'd like for you to note two things here. First, in the [Service] section, note the BusName=org.freedesktop.locale1 line. There's no Type=dbus line, but that's okay. Just having a BusName= line automatically makes this a dbus type of service. Also, note that there's no [Install] section, which makes this a static type of service that we can't enable. Instead, any time that you use localectl to change a setting, localectl will start the service by sending it a dbus message.

			Once you've seen what you want to see, feel free to go back to your normal settings.

			Next, let's look at how the process is different on Ubuntu.

			Changing the default locale on Ubuntu

			Ubuntu comes with a variety of locale definitions, but you have to build them before you can use them. In the /etc/locale.gen file, you'll see a list of locales that you can build. Here's what the top part of the file looks like:

			donnie@ubuntu20-04:/etc$ cat locale.gen

			# This file lists locales that you wish to have built. You can find a list

			# of valid supported locales at /usr/share/i18n/SUPPORTED, and you can add

			# user defined locales to /usr/local/share/i18n/SUPPORTED. If you change

			# this file, you need to rerun locale-gen.

			# aa_DJ ISO-8859-1

			# aa_DJ.UTF-8 UTF-8

			# aa_ER UTF-8

			# aa_ER@saaho UTF-8

			# aa_ET UTF-8

			# af_ZA ISO-8859-1

			. . .

			. . .

			If the Ubuntu installer worked correctly, you should see that all but one of the locale listings in the file have been commented out. The one that isn't commented out is the one that was built on your system. On the Ubuntu machine that I showed you previously, the en_US.UTF-8 locale is the only one that isn't commented out, as we see here:

			. . .

			. . .

			# en_US ISO-8859-1

			# en_US.ISO-8859-15 ISO-8859-15

			en_US.UTF-8 UTF-8

			# en_ZA ISO-8859-1

			# en_ZA.UTF-8 UTF-8

			# en_ZM UTF-8

			. . .

			. . .

			So, this locale is the only one that was built.

			Now, remember, I said that this would be the case if the Ubuntu installer worked properly. This virtual machine is the second Ubuntu machine that I set up for this chapter, and the installer did work properly in this instance. When I set up the first Ubuntu virtual machine, the installer did not work properly, and no locales were built. When I look at the /etc/default/locale file on it, I see this:

			donnie@ubuntu20-04:~$ cat /etc/default/locale

			LANG=C.UTF-8

			donnie@ubuntu20-04:~$

			In this /etc/locale.gen file, all the locale listings are commented out, which tells me that no locales were built. So, this Ubuntu machine defaults to the generic C locale, which may or may not work in all situations. To change that, I'll open the /etc/locale.gen file in my text editor and remove the comment symbol at the front of the en_US.UTF-8 UTF-8 line. Next, I'll generate the locale, like this:

			donnie@ubuntu20-04:~$ sudo locale-gen

			Generating locales (this might take a while)...

			 en_US.UTF-8... done

			Generation complete.

			donnie@ubuntu20-04:~$

			Finally, I'll set the default locale and keymap settings the same way that I did on the Alma machine:

			donnie@ubuntu20-04:~$ sudo localectl set-locale en_US.UTF-8

			donnie@ubuntu20-04:~$ sudo localectl set-keymap us

			donnie@ubuntu20-04:~$ sudo localectl set-x11-keymap us

			donnie@ubuntu20-04:~$

			After I logged out and logged back in, everything was as it should be, as we see here:

			donnie@ubuntu20-04:~$ localectl

			 System Locale: LANG=en_US.UTF-8

			 VC Keymap: us

			 X11 Layout: us

			donnie@ubuntu20-04:~$

			Now, I have to say that I have no idea why the Ubuntu installer didn't set the locale correctly for this machine. All I know is that with Ubuntu, I've come to expect an occasional bit of weirdness.

			Okay, I think that that about covers it for locale. Now, let's talk about setting time and timezone information.

			Setting time and timezone parameters

			Back in the Stone Age of computing, maintaining accurate time on a computer wasn't all that important. To set the time on my old 8088-powered Sanyo PC clone, I just typed in whatever my watch said. That wasn't the most accurate way of doing things, but it didn't matter. The only real reason to set the computer time at all was to have somewhat accurate timestamps on the files that I created.

			Nowadays, accurate timekeeping on computers is vitally important for a lot of reasons. Fortunately, we now have the Network Time Protocol (NTP), which is a lot more accurate than what my old-fashioned wind-up wristwatch was. The systemd suite comes with the timedatectl utility and systemd-timedated.service to help us out. In this chapter, we'll talk about timedatectl, but we'll save discussing systemd-timedated.service until Chapter 17, Understanding systemd and Bootloaders.

			To see the status of your machine's timekeeping, just use timedatectl, as I show you here:

			[donnie@localhost ~]$ timedatectl

			 Local time: Sun 2021-06-20 17:34:08 EDT

			 Universal time: Sun 2021-06-20 21:34:08 UTC

			 RTC time: Sun 2021-06-20 21:33:06

			 Time zone: America/New_York (EDT, -0400)

			System clock synchronized: yes

			 NTP service: active

			 RTC in local TZ: no

			[donnie@localhost ~]$

			Local time is the time for my timezone, which is Eastern Daylight Time (EDT). This is the time that's set in the operating system.

			Universal time (UTC) is the time in Greenwich, England, which is the timezone that's used as a worldwide reference. (UTC used to be known as Greenwich Mean Time, or GMT.)

			RTC, which stands for Real-Time Clock, is the time that's set in the computer's hardware clock. You can see that the RTC time nearly matches the UTC time. Of the two, UTC will normally be more accurate, because it periodically fetches the current time from time servers that are either on the Internet or the local network. Somewhat less periodically, the operating system updates the RTC time from UTC. It is possible to configure the RTC time to update from local time, but that will cause problems with setting timezones and knowing when to switch to and from Daylight Savings Time.

			We can also see that the system clock is synchronized, that the NTP service is active, and that RTC has not been set to local time.

			In the timedatectl man page, you'll find directions on how to manually change the system's time. Years ago, when I first got into Linux, I used to have to do this all the time, because the older NTP services wouldn't automatically set the time if the machine's clock was more than a few minutes off. The modern NTP services work much better. Now, as long as an NTP server is available when you boot the machine, the NTP service will set the time properly, regardless of how far off the machine's clock is. So, there's a good chance that you'll never need to set the time manually.

			You also might not ever need to set the timezone manually, because that's normally set up when you install the operating system. However, there might be times when you will, such as if you ever have to move a server from one timezone to another. To do this, you'll have to look at the list of available timezones, like this:

			[donnie@localhost ~]$ timedatectl list-timezones

			Africa/Abidjan

			Africa/Accra

			Africa/Addis_Ababa

			Africa/Algiers

			Africa/Asmara

			. . .

			. . .

			That's a very long list, so let's use our good friend grep to narrow it down. Let's say that I'm only interested in US timezones. My grep filter will look like this:

			[donnie@localhost ~]$ timedatectl list-timezones | grep 'America'

			America/Adak

			America/Anchorage

			America/Anguilla

			America/Antigua

			America/Araguaina

			America/Argentina/Buenos_Aires

			America/Argentina/Catamarca

			America/Argentina/Cordoba

			America/Argentina/Jujuy

			. . .

			. . .

			Okay; that doesn't narrow things down as much as I'd like since America covers timezones in both North and South America. Also, instead of choosing the actual name of a timezone, we have to choose a city that's in the desired timezone. In my case, even though I'm down in the southeast corner of Georgia, USA, I have to choose America/New_York for my zone because New York just happens to be here in the Eastern timezone. Let's say that for some crazy reason, I've decided to move to the west coast. To change the timezone on my computer, I would do:

			[donnie@localhost ~]$ sudo timedatectl set-timezone America/Los_Angeles

			[sudo] password for donnie:

			[donnie@localhost ~]$

			The status would now look like this:

			[donnie@localhost ~]$ timedatectl

			 Local time: Sun 2021-06-20 15:13:41 PDT

			 Universal time: Sun 2021-06-20 22:13:41 UTC

			 RTC time: Sun 2021-06-20 22:12:40

			 Time zone: America/Los_Angeles (PDT, -0700)

			System clock synchronized: yes

			 NTP service: active

			 RTC in local TZ: no

			[donnie@localhost ~]$

			So, I'm now set up for Pacific Daylight Savings Time.

			In the timedatectl man page, you'll see a couple of commands that work on Ubuntu but don't work on Alma. That's because Ubuntu is configured to use systemd-timesyncd.service as its timekeeping service, and Alma is configured to use chronyd. On an Ubuntu machine, you can view the status of the timekeeping service like this:

			donnie@ubuntu20-04:~$ timedatectl timesync-status

			 Server: 91.189.94.4 (ntp.ubuntu.com)

			Poll interval: 34min 8s (min: 32s; max 34min 8s)

			 Leap: normal

			 Version: 4

			 Stratum: 2

			 Reference: 83BC03DC

			 Precision: 1us (-23)

			Root distance: 52.680ms (max: 5s)

			 Offset: -417us

			 Delay: 116.531ms

			 Jitter: 5.671ms

			 Packet count: 14

			 Frequency: -5.210ppm

			donnie@ubuntu20-04:~$

			That pretty much covers it for timekeeping. Let's move on to setting hostname and machine information.

			Setting the hostname and machine information

			Setting a proper hostname on a computer is very useful in the business world. It allows the computer to be registered in a Domain Name Service (DNS) zone, which allows users and administrators to reach the computer via its hostname. After all, it's a lot easier to remember a computer's hostname than to remember its IP address, especially if it's an IPv6 address. (Has anyone in history ever memorized an IPv6 address?) Before we look at how to set this information, let's learn how to view it. (Note that this hostname can be automatically registered either by using Dynamic Domain Name Service (DDNS) or by using orchestration tools such as Puppet, Chef, or Ansible.)

			Viewing the information

			A computer's hostname is set in the /etc/hostname file, as we see here on my Alma machine:

			[donnie@localhost ~]$ cd /etc

			[donnie@localhost etc]$ cat hostname

			localhost.localdomain

			[donnie@localhost etc]$

			The installers for most Linux operating systems allow you to set your own custom hostname during system installation. I didn't do that for this virtual machine, so it just uses the default localhost.localdomain. In this case, we're using a Fully Qualified Domain Name (FQDN), which consists of two parts. The localhost part is the actual hostname, while the localdomain part is the network domain to which the computer belongs. On a for-real network, the domain part would be the same for every computer on the network, and the hostname part would be unique for each computer. On a home network, or any other time that a whole FQDN isn't required, you could just have a hostname without a domain name.

			On an old SysV machine, all you have is just the hostname or FQDN that's been set in the /etc/hostname file. With systemd, there's a whole lot more. On the Alma machine, let's look at the extra information that the hostnamectl command gives us:

			[donnie@localhost ~]$ hostnamectl

			 Static hostname: localhost.localdomain

			 Icon name: computer-vm

			 Chassis: vm

			 Machine ID: 3a17f34dc2694acda37caa478a339408

			 Boot ID: 37c1204df0ea439388727dce764f322f

			 Virtualization: oracle

			 Operating System:]8;;https://almalinux.org/AlmaLinux 8.3 (Purple Manul)]8;;

			 CPE OS Name: cpe:/o:almalinux:almalinux:8.3:GA

			 Kernel: Linux 4.18.0-240.22.1.el8_3.x86_64

			 Architecture: x86-64

			[donnie@localhost ~]$

			Here's the breakdown:

			
					Static hostname: This is the hostname or FQDN that's set in the /etc/hostname file.

					Icon name: Certain graphical applications will represent a computer as an icon. Icon name is the name that will show up with the icon for this computer. I haven't set Icon name on this virtual machine, so it just defaults to computer-vm. (The system automatically detected that this is a virtual machine, which explains the vm part.)

					Chassis: This denotes the type of computing device that we're using. I didn't set this one either, so it just defaults to vm, for virtual machine. (Most of the time, systemd can automatically detect the correct Chassis type.)

					Machine ID: This hexadecimal number is a unique number that gets assigned to the computer either during system installation or the first bootup. According to the machine-id man page, this ID number should be treated as confidential information, and should never be exposed to an untrusted network. This ID number is stored in the /etc/machine-id file.

					Boot ID: This number changes every time you boot the machine. The hostnamectl command pulls this number from the /proc/sys/kernel/random/boot_id file.

					Virtualization: This line only shows up for virtual machines. I'm running this virtual machine under Oracle VirtualBox, so the parameter shows up here as oracle.

					Operating System: Information about the operating system comes from the /etc/os-release file.

					CPE OS Name: This is the name of the operating system in Common Platform Enumeration (CPE) format. (I won't go into the details about CPE here, but you can read about it by following the link in the Further reading section, at the end of this chapter.)

					Kernel: This is the version of the running Linux kernel. You can see the same information by using the uname -r command.

					Architecture: This shows the type of CPU that's in the computer. You can see the same information by using the uname -m command.

			

			Just for fun, let's look at the hostnamectl output from my host machine, which is running openSUSE 15.2:

			donnie@localhost:~> hostnamectl

			 Static hostname: n/a

			Transient hostname: localhost.localdomain

			 Icon name: computer-desktop

			 Chassis: desktop

			 Machine ID: 3d824afd08e94e34afeefca4f6fe0c95

			 Boot ID: 32a49640e4fb4bc293b7cf312b80a2d7

			 Operating System: openSUSE Leap 15.2

			 CPE OS Name: cpe:/o:opensuse:leap:15.2

			 Kernel: Linux 5.3.18-lp152.78-default

			 Architecture: x86-64

			donnie@localhost:~>

			There are a few differences here that I want you to note. First, there's no Static hostname value. Unlike the AlmaLinux installer, the openSUSE installer doesn't put anything into the /etc/hostname file if you don't assign a hostname during installation. The file is there, but there's nothing in it, as you can see here:

			donnie@localhost:~> cat /etc/hostname

			donnie@localhost:~>

			Instead of a Static hostname value, we have a Transient hostname value. This Transient hostname value is a dynamic hostname that's maintained by the Linux kernel. It's normally pulled in from the Static hostname property that's set in the /etc/hostname file. If nothing is in the hostname file, Transient hostname will default to localhost.localdomain, unless a hostname is assigned by either a DHCP or mDNS server.

			Finally, Icon name and Chassis reflect the fact that this is a desktop machine, running on bare metal. (Today, that bare metal is a 2009 vintage Hewlett-Packard workstation, running with a pair of AMD Opteron quad-core processors. It's old, but it still gets the job done.) Again, the system automatically detected the correct Chassis value, just as it did with the virtual machine.

			Note

			To see the other available Chassis types, look at the machine-info man page.

			Now that we've viewed how to view the hostname and machine information, let's learn how to set it.

			Setting the information

			There are three types of hostnames on systemd machines, and you've already seen two of them. In addition to Static hostname and Transient hostname, there's also Pretty hostname. To explain the pretty concept, let's look at the criteria for Static hostname and Transient hostname.

			In the man page for the hostname file, which you can access with the man 5 hostname command, you'll see the criteria for creating hostnames. Here's a breakdown of what it says:

			
					Requirement: The hostname cannot be more than 64 characters in length.

					Recommendations: 	Only use characters from the old 7-bit ASCII character set. (See the link in the Further reading section to see which characters belong to this set.)
	All letters should be in lowercase.
	Do not have spaces or dots in the hostname. (The only dots should be between the name of the host and the domain name, and between the two parts of the domain name.)
	Use a format that's compatible with DNS domain name labels.

			

			So, you're somewhat limited with how you create traditional hostnames. Now, with Pretty hostname, you can create a hostname that's more human-friendly, such as Donnie's Computer. (Okay, I didn't use a lot of imagination with that one, but you get the point.)

			When you use hostnamectl to set a hostname, the default is to set all three hostname types at once. For example, let's say that I want my computer to be Donnie's Computer. Here's the command that I would use:

			[donnie@localhost ~]$ sudo hostnamectl set-hostname "Donnie's Computer"

			[sudo] password for donnie:

			[donnie@localhost ~]$

			Now, let's view the hostnamectl information:

			[donnie@localhost ~]$ hostnamectl

			 Static hostname: DonniesComputer

			 Pretty hostname: Donnie's Computer

			 Icon name: computer-vm

			 Chassis: vm

			 Machine ID: 3a17f34dc2694acda37caa478a339408

			 Boot ID: 7dae067e901a489580025ebdbec19211

			 Virtualization: oracle

			 Operating System:]8;;https://almalinux.org/AlmaLinux 8.3 (Purple Manul)]8;;

			 CPE OS Name: cpe:/o:almalinux:almalinux:8.3:GA

			 Kernel: Linux 4.18.0-240.22.1.el8_3.x86_64

			 Architecture: x86-64

			[donnie@localhost ~]$

			Here, you can see that hostnamectl automatically converted Pretty hostname into the proper format for Static hostname, except that it still allows uppercase letters. After I log out and log back in, the new Static hostname value will show up in the command prompt, which will look like this:

			[donnie@localhost ~]$ exit

			logout

			Connection to 192.168.0.9 closed.

			donnie@localhost:~> ssh donnie@192.168.0.9

			donnie@192.168.0.9's password:

			Last login: Wed Jun 23 13:31:57 2021 from 192.168.0.222

			[donnie@DonniesComputer ~]$

			Okay, that's great for a home computer, but it's not so good for a business network. This time, let's create an FQDN that's suitable for use with DNS. Let's say that my local network has been set up as the tevault.com domain and that I want to name this computer development-1. My command to create the FQDN would look like this:

			[donnie@DonniesComputer ~]$ sudo hostnamectl set-hostname development-1.tevault.com

			[sudo] password for donnie:

			[donnie@DonniesComputer ~]$

			Use hostnamectl again, and you'll see that Pretty hostname is now gone:

			[donnie@DonniesComputer ~]$ hostnamectl

			 Static hostname: development-1.tevault.com

			 Icon name: computer-vm

			 Chassis: vm

			 Machine ID: 3a17f34dc2694acda37caa478a339408

			 Boot ID: 7dae067e901a489580025ebdbec19211

			 Virtualization: oracle

			 Operating System:]8;;https://almalinux.org/AlmaLinux 8.3 (Purple Manul)]8;;

			 CPE OS Name: cpe:/o:almalinux:almalinux:8.3:GA

			 Kernel: Linux 4.18.0-240.22.1.el8_3.x86_64

			 Architecture: x86-64

			[donnie@DonniesComputer ~]$

			After I log out and log back in again, I'll see the proper DNS-friendly hostname in the command prompt:

			[donnie@DonniesComputer ~]$ exit

			logout

			Connection to 192.168.0.9 closed.

			donnie@localhost:~> ssh donnie@192.168.0.9

			donnie@192.168.0.9's password:

			Last login: Wed Jun 23 14:34:24 2021 from 192.168.0.222

			[donnie@development-1 ~]$

			If I just want to set a Pretty hostname value, I can do it like this:

			[donnie@development-1 ~]$ sudo hostnamectl set-hostname --pretty "Development 1"

			[sudo] password for donnie:

			[donnie@development-1 ~]$

			There are several other things that you can set with hostnamectl, which you can see on the machine-info man page. The hostnamectl man page shows you the commands for setting these extra parameters. For example, let's set the location of this virtual machine to my current location, which is the teeming metropolis of Saint Marys, Georgia:

			[donnie@development-1 ~]$ sudo hostnamectl set-location "Saint Marys GA"

			[donnie@development-1 ~]$

			The location will now show up in the output of hostnamectl. Also, the first time you use hostnamectl to add any of these additional parameters, it will create the /etc/machine-info file, which wasn't there previously. Here's what mine looks like now that I've added a Pretty hostname value and location:

			[donnie@development-1 ~]$ cat /etc/machine-info

			PRETTY_HOSTNAME="Development 1"

			LOCATION="Saint Marys GA"

			[donnie@development-1 ~]$

			Cool. Saint Marys, Georgia, is now world-famous.

			As we've already seen with localectl, using hostnamectl to change a parameter invokes a dbus-type service. In this case, it's systemd-hostnamed.service. Here's what it looks like:

			
				
					[image:]
				

			

			Figure 9.1 – The systemd-hostnamed.service file

			Note that a lot of security-related parameters have been set, which gives this service pretty much the same protection as a good mandatory access control system such as SELinux. The ProtectHome=yes line and the ProtectSystem=strict line make most of this machine's filesystem inaccessible to this service, but the ReadWritePaths=/etc line at the bottom provides an exception. The ReadWritePaths=/etc line allows the service to read from or write to files in the /etc/ directory. (systemd-localed.service, which we looked at in the Changing the default locale on the Alma machine section, is set up the same way, but I neglected to point that out at the time.)

			Okay, I think that pretty much wraps it up for this chapter. Let's summarize and then move on.

			Summary

			As always, we've seen some cool stuff in this chapter. We started by looking at what locales are and how to set the default locale on a systemd system. Then, we saw how to set the time and timezones, and finished up by setting hostnames and machine information. In the next chapter, we'll give your brain a bit of a rest by looking at something a bit easier – that is, we'll look at the various ways to shut down or reboot your system. I'll see you there!

			Questions

			
					Which of the following commands shows you what locales are installed on your system?	systemctl list-locales
	locale list-locales
	localectl list-locales
	localectl -a

					What type of service gets invoked when you use either localectl or hostnamectl to set a parameter?	dbus
	oneshot
	notify
	forking

					What happens if your computer has nothing in its hostname file?	It sets the default Static hostname value to localhost.localdomain or to whatever it might get from a local DHCP or mDNS server.
	The computer will have no hostname.
	It sets Pretty hostname to localhost.localdomain.
	It sets the default Transient hostname value to localhost.localdomain or to whatever it might get from a local DHCP or mDNS server.

					What time does the computer's hardware clock normally show?	Local time
	UTC time

			

			Answers

			
					C

					A

					D

					B

			

			Further reading

			To learn more about the topics that were covered in this chapter, take a look at the following resources:

			
					Setting the locale:https://www.tecmint.com/set-system-locales-in-linux/

					Defining the locale and language settings:https://www.shellhacks.com/linux-define-locale-language-settings/

					Eric S. Raymond's Jargon File entry for EBCDIC:http://www.catb.org/jargon/html/E/EBCDIC.html

					The ASCII character set:http://www.asciitable.com/

					Common Platform Enumeration (CPE):https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe

					Configuring hostnames:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/ch-configure_host_names#sec-Recommended_Naming_Practices

			

		

	
		
			Chapter 10: Understanding Shutdown and Reboot Commands

			By this point in your career, you most likely know the basic commands for shutting down or rebooting a text-mode Linux server. In this chapter, we'll look at some things that are more specific to the systemd method. So, bear with me. There's a chance that you might learn something that you didn't know before.

			Specific topics in this chapter include the following:

			
					Shutting down with systemctl

					Halting with systemctl

					Rebooting with systemctl

					Using shutdown instead of systemctl

			

			If you're ready, let's go.

			Technical requirements

			Although either of your virtual machines will work equally well for this, all you need is a text-mode virtual machine, so there's no need to fire up the Alma desktop virtual machine if you don't want to. Toward the end of the chapter, we'll be working with some shell scripts. If you don't want to type them in yourself, simply download them from our Git repository.

			Check out the following link to see the Code in Action video: https://bit.ly/3G6nbkD

			Note

			Throughout this book, I've been using AlmaLinux 8 as a replacement for the soon-to-be discontinued CentOS 8. (Of course, depending upon when you're reading this, CentOS 8 may have already been discontinued.)

			A few days before I started writing this chapter, the stable release of Rocky Linux 8 finally became available. Using it is the same as using AlmaLinux, or any other RHEL 8 clone for that matter. However, if security is your thing, Rocky does have one huge advantage. Unlike the other RHEL 8 clones, Rocky comes with a set of OpenSCAP profiles that you can apply either during or after the installation of the operating system. As things stand now, Rocky Linux is the only RHEL 8 clone that fully supports OpenSCAP. (If you want to learn more about OpenSCAP, be sure to check out my other book, Mastering Linux Security and Hardening, also from Packt Publishing.)

			All right, if you're ready, let's get cracking.

			Shutting down with systemctl

			Shutting down a systemd system is really easy, but there are a few options that you might not know about. Let's start with the basic command to shut down and power off a machine, which looks like this:

			donnie@ubuntu20-04:~$ sudo systemctl poweroff

			So, what exactly is happening here? If you open the systemctl man page and scroll down to the poweroff item, you'll see that this command starts poweroff.target, which looks like this:

			[Unit]

			Description=Power-Off

			Documentation=man:systemd.special(7)

			DefaultDependencies=no

			Requires=systemd-poweroff.service

			After=systemd-poweroff.service

			AllowIsolate=yes

			JobTimeoutSec=30min

			JobTimeoutAction=poweroff-force

			[Install]

			Alias=ctrl-alt-del.target

			In the [Unit] section, you see that this requires systemd-poweroff.service, which means that this service will now get started. At the bottom of the [Unit] section, you will see two new parameters. The JobTimeoutSec=30min line gives systemd plenty of time to gracefully shut down all running services before it turns off the power. The JobTimeoutAction=poweroff-force line means that if all of the services haven't gracefully shut down within that 30-minute window, then systemd will turn off the power regardless. In the [Install] section, we see the Alias=ctrl-alt-del.target line. That seems a bit odd because the Ctrl + Alt + Del key sequence is for rebooting a machine, not for shutting it down. It's not just an Ubuntu oddity this time – it's the same way on the Alma machine. However, this is easy to explain. It's just that if the system hangs hard during a shutdown, doing the Ctrl + Alt + Del key sequence 7 times within 2 seconds will force the machine to do a reboot. You can then just boot to the GRUB command prompt, and shut the machine down from there. (You can read more about Ctrl + Alt + Del under the SIGINT section of the systemd man page.)

			Remember, using Ctrl + Alt + Del to reboot a machine doesn't require root privileges. That's not normally a problem, because mission-critical servers should be locked away in a secure room where only authorized personnel can get to them. Even so, you might want to place restrictions on the ability to reboot servers. If this is the case, disable the Ctrl + Alt + Del reboot feature by masking ctrl-alt-del.target. The command to do that is:

			donnie@ubuntu20-04:~$ sudo systemctl mask ctrl-alt-del.target

			Now, you can do Ctrl + Alt + Del key sequences until the end of time, and nothing will happen.

			On a desktop machine with a graphical interface, the Ctrl + Alt + Del key sequence is controlled by the desktop configuration, which might be different across various desktop environments. On the Alma machine with its Gnome 3 environment, doing Ctrl + Alt + Del brings up the normal shutdown menu, which looks like this:

			
				
					[image:]
				

			

			Figure 10.1 – The Gnome 3 Power Off menu on the Alma machine

			Masking ctrl-alt-del.target on a desktop machine does not affect this behavior.

			systemd-poweroff.service only has a [Unit] section, which we see here:

			[Unit]

			Description=Power-Off

			Documentation=man:systemd-halt.service(8)

			DefaultDependencies=no

			Requires=shutdown.target umount.target final.target

			After=shutdown.target umount.target final.target

			SuccessAction=poweroff-force

			This service requires shutdown.target, umount.target, and final.target. If we look in the unit files for these targets, we can see that they don't appear to do anything. For example, here's what the shutdown.target file looks like:

			[Unit]

			Description=Shutdown

			Documentation=man:systemd.special(7)

			DefaultDependencies=no

			RefuseManualStart=yes

			Our good friend strings shows us that shutdown.target is defined in the systemd executable file, as we see here:

			donnie@ubuntu20-04:/lib/systemd$ strings systemd | grep 'shutdown.target'

			shutdown.target

			donnie@ubuntu20-04:/lib/systemd$

			The same thing is true of umount.target, as we see here:

			donnie@ubuntu20-04:/lib/systemd$ strings systemd | grep 'umount.target'

			umount.target

			donnie@ubuntu20-04:/lib/systemd$

			Finally, we have final.target, as we see here:

			[Unit]

			Description=Final Step

			Documentation=man:systemd.special(7)

			DefaultDependencies=no

			RefuseManualStart=yes

			After=shutdown.target umount.target

			Although it also doesn't appear to be doing anything, it's not defined in the systemd executable file, as we see here:

			donnie@ubuntu20-04:/lib/systemd$ strings systemd | grep 'final.target'

			donnie@ubuntu20-04:/lib/systemd$

			So, I don't know where final.target is defined, but that's okay. For our current topic, it's not important. I also couldn't find any information about what final.target actually does, other than this short blurb in the systemd.special man page:

			"A special target unit that is used during the shutdown logic and may be used to pull in late services after all normal services are already terminated and all mounts unmounted."

			I don't know what those late services are supposed to be, but again, that's okay. For our present discussion, it doesn't matter.

			According to the systemctl man page, a systemctl poweroff command is supposed to send a wall message to all users who are logged into the system. However, that is incorrect. No message gets sent out, and there's no option switch to make it happen.

			Normally, a systemctl poweroff command would shut down running services and unmount all mounted filesystems in an orderly manner. Using the --force option would shut down the system without taking time to shut down the services first. This could be handy if you have a service that's hung up and refuses to stop normally. Using the --force option twice would shut down the system without taking time to either shut down services normally or to unmount any mounted filesystems. Of course, this isn't recommended unless it's an absolute emergency, because it could corrupt your filesystem and cause data loss. On the other hand, using --force --force could be handy if the systemd process has crashed. This is because --force --force allows the systemctl executable to shut down the system without having to contact the systemd process.

			Okay, let's power off the discussion about poweroff. Let's now talk briefly about halting a system.

			Halting with systemctl

			Using a sudo systemctl halt command halts the operating system, but it doesn't power down the computer. Because I can read your mind, I know that you're saying, But Donnie. Why would I want to halt the operating system but leave the computer running? Well, I don't know. That's something that I've never figured out in my entire Linux career.

			But seriously, halt.target works pretty much the same as poweroff.target. So, I'll leave it to you to look at the associated unit files, if you really want to.

			All right, let's reboot this discussion by talking about rebooting.

			Rebooting with systemctl

			You'll never guess what the command is to reboot a system. Okay, if you said sudo systemctl reboot, then you win today's grand prize. (Sadly, the grand prize consists of absolutely nothing, except for the good feeling that comes with giving a correct answer.)

			Again, I'll leave it to you to look at the associated reboot.target files, because this also works pretty much the same as poweroff.target. One difference to note is that this time, the Alias=ctrl-alt-del.target line in the [Install] section actually does something for us. On a text mode machine, doing a Ctrl + Alt + Del sequence at the local terminal will reboot the machine. So yes, that old three-finger salute is still with us. (You don't even need to enter an admin password to make this work. So, fortunately, doing Ctrl + Alt + Del from a remote terminal doesn't work.) If you want to try this on your VirtualBox virtual machine, you'll need to click on the virtual machine's Input menu, click on Keyboard, and then click on Insert Ctrl-Alt-Del.

			Once again, I'm reading your mind. I know that you're saying, But Donnie. These systemctl commands don't give us the cool options that we used to have with the old shutdown commands. Yeah, you're right, which is why I still use the old shutdown commands. So, let's talk about them next, shall we?

			Using shutdown instead of systemctl

			The old shutdown commands that we used on SysV systems came with some cool options. We could schedule a shutdown or reboot for some time in the future, cancel a scheduled shutdown, and broadcast a message about an impending shutdown or reboot to all users who were logged into the system. With the systemctl commands, you can't do any of that. Fortunately, the old shutdown options are still with us, in the form of a symbolic link that points to the systemctl executable, as we see here:

			donnie@ubuntu20-04:~$ cd /usr/sbin/

			donnie@ubuntu20-04:/usr/sbin$ ls -l shutdown

			lrwxrwxrwx 1 root root 14 May 27 11:16 shutdown -> /bin/systemctl

			donnie@ubuntu20-04:/usr/sbin$

			Even though you can't use the old shutdown options with systemctl, you can use them with the shutdown link that points to systemctl. (Strange, but true.) Now, I realize that you old-timers might know these shutdown commands already, and that's okay. You won't hurt my feelings if you're tempted to just skim over this. On the other hand, if you bear with me until the end, you'll see some cool stuff that you might not currently know about. If you're a Linux newbie, you're almost sure to find some useful information here. So, let's go.

			Whenever you do a shutdown command, you can specify the time at which you want the shutdown to occur. For example, to perform an immediate shutdown, just do:

			donnie@ubuntu20-04:~$ sudo shutdown now

			On an old SysV system, this command would have just halted the operating system. To power down the machine, you would have had to use the -h option. On a systemd machine, this command powers off the machine, so the -h option switch is no longer necessary. (Curiously, the -h switch is still mentioned in the shutdown man page, even though it no longer does anything.)

			You can also specify the time at which you want the shutdown to occur, using the 24-hour time format. For example, to shut down the machine at 6:00 P.M., do:

			donnie@ubuntu20-04:~$ sudo shutdown 18:00

			Shutdown scheduled for Sun 2021-06-27 18:00:00 EDT, use 'shutdown -c' to cancel.

			donnie@ubuntu20-04:~$

			At about 25 minutes before the scheduled shutdown time, the system will start sending broadcast messages to all logged-in users, as we see here for Goldie:

			goldie@ubuntu20-04:~$

			Broadcast message from root@ubuntu20-04 on pts/0 (Sun 2021-06-27 17:50:00 EDT):

			The system is going down for poweroff at Sun 2021-06-27 18:00:00 EDT!

			Broadcast message from root@ubuntu20-04 on pts/0 (Sun 2021-06-27 17:51:00 EDT):

			The system is going down for poweroff at Sun 2021-06-27 18:00:00 EDT!

			The system will continue sending out this broadcast message until the shutdown actually occurs. The frequency with which the message gets sent out depends upon how soon the shutdown is scheduled to occur. Within the last ten minutes, the message will get sent out every minute. Fortunately, Goldie can regain use of the command prompt by just hitting the Enter key, which will allow her to finish what she's doing. (In case you're wondering, Goldie is the name of my youngest kitty. You'll never guess what color she is.)

			If you change your mind and want to cancel the shutdown, use the -c option switch, as shown here:

			donnie@ubuntu20-04:~$ sudo shutdown -c

			donnie@ubuntu20-04:~$

			You can also send out your own customized broadcast message by simply placing it after the shutdown command:

			donnie@ubuntu20-04:~$ sudo shutdown 18:45 "At 6:45 PM, this server will go down for maintenance. So, get your work done and log off."

			Shutdown scheduled for Sun 2021-06-27 18:45:00 EDT, use 'shutdown -c' to cancel.

			donnie@ubuntu20-04:~$

			At five minutes before the scheduled shutdown time, a nologin file will get created in the /run/ directory, as we see here:

			donnie@ubuntu20-04:/run$ ls -l no*

			-rw-r--r-- 1 root root 121 Jun 27 18:40 nologin

			donnie@ubuntu20-04:/run$

			This will prevent any other users from logging in. The next time you boot up this system, this nologin file will get deleted.

			Any time you schedule a future shutdown job, a scheduled file gets created in the /run/systemd/shutdown/ directory. Look inside the file, and you'll see something like this:

			donnie@ubuntu20-04:/run/systemd/shutdown$ cat scheduled

			USEC=1624917600000000

			WARN_WALL=1

			MODE=poweroff

			donnie@ubuntu20-04:/run/systemd/shutdown$

			The USEC= line specifies the time for the scheduled shutdown, in Unix epoch format. If you don't know when the system is scheduled to shut down and you want to find out, you can use a shell script to translate this to human-readable format. The first example of this type of script uses a perl command to do the actual translation. Here's what it looks like:

			#!/usr/bin/bash

			if [-f /run/systemd/shutdown/scheduled]; then

			 perl -wne 'm/^USEC=(\d+)\d{6}$/ and printf("Shutting down at: %s\n", scalar localtime $1)' < /run/systemd/shutdown/scheduled

			else

			 echo "No shutdown is scheduled."

			fi

			exit

			Save the file as scheduled_shutdown_1.sh, and set the executable permission, like this:

			donnie@ubuntu20-04:~$ chmod u+x scheduled_shutdown_1.sh

			donnie@ubuntu20-04:~$

			Schedule a shutdown for whatever time you want, and then run the script. The output should look something like this:

			donnie@ubuntu20-04:~$./scheduled_shutdown_1.sh

			Shutting down at: Tue Jun 29 19:05:00 2021

			donnie@ubuntu20-04:~$

			If perl isn't installed on your system or if you'd prefer to not use perl, then you can use awk to perform the translation. The script with awk looks like this:

			#/bin/bash

			if [-f /run/systemd/shutdown/scheduled]; then

			 date -d "@$(awk -F '=' '/USEC/{ $2=substr($2,1,10); print $2 }' /run/systemd/shutdown/scheduled)"

			else

			 echo "No shutdown is scheduled."

			fi

			exit

			Both of these scripts are set up to search for the scheduled file, and to only run the translation command if the scheduled file exists. If the file doesn't exist, the script will inform you of that, and then exit gracefully.

			To reboot a machine, just use shutdown with the -r option, like this:

			donnie@ubuntu20-04:~$ sudo shutdown -r now

			You can schedule a reboot and send custom broadcast messages the same way that you would do for a shutdown operation.

			Note

			You old-timers might remember that on SysV systems, there was also an f option that you could use with the -r option. Doing a sudo shutdown -rf now command would reboot the machine, and would cause an fsck operation to be performed on the machine's filesystems before mounting them. That f option is now gone, because systemd systems are set up to always do an fsck operation on all supported filesystems every time you boot the machine. This happens because systemd-fsckd.service runs as part of the boot-up process if any supported filesystems are detected. (By supported filesystems, I mean that fsck works on the ext4 filesystem that's the default for Ubuntu, but it doesn't work on the xfs filesystem, which is the default for RHEL and RHEL clones. So, don't be too disappointed if you see that systemd-fsckd.service doesn't run on your Alma machine.)

			In Chapter 7, Understanding systemd Timers, we learned how to set up a job to automatically run when you boot up your machine. Now, let's see how to set up a job to run when you shut down the machine.

			Running a job before shutting down

			Let's say that you want to have a job automatically run every time you shut down your computer. (I'll let you use your imagination about what kind of job that could be.) To set that up, just create your own custom service that's WantedBy the shutdown.target. Let's check out how.

			We'll demonstrate this by creating a dummy shell script that goes along with our new service. In the /usr/local/bin/ directory, create the script.sh file with the following contents:

			#!/bin/bash

			# Run script with systemd only at shutdown, and not for reboot.

			systemctl list-jobs | egrep -q 'reboot.target.*start' && echo "Testing myscript.service for reboot" > /root/reboot_test.txt

			systemctl list-jobs | egrep -q 'shutdown.target.*start' && echo "Testing myscript.service for shutdown" > /root/shutdown_test.txt

			The first systemctl list-jobs command will search through the list of running jobs, looking for the reboot.target.*start* text string. If the text string is found, the && operator will cause the echo command to run. The echo output will go to the reboot_test.txt file in the /root/ directory. However, this will never actually happen, because this service will only get activated by shutdown.target, and not by reboot.target. The next line is the same, except it's looking for the shutdown.target.*start* text string. If that text string is found, the echo command will send its output to the /root/shutdown_test.txt file. After you've saved the file, set the executable permission by doing:

			donnie@ubuntu20-04:/usr/local/bin$ sudo chmod u+x script.sh

			Next, use sudo systemctl edit --full --force myscript.service to create the service. Add the following contents:

			[Unit]

			Description=Run this service only when shutting down

			DefaultDependencies=no

			Conflicts=reboot.target

			Before=poweroff.target halt.target shutdown.target

			Requires=poweroff.target

			[Service]

			Type=oneshot

			ExecStart=/usr/local/bin/script.sh

			RemainAfterExit=yes

			[Install]

			WantedBy=shutdown.target

			The ExecStart= line activates our shell script. In the [Install] section, we see that this service is WantedBy the shutdown.target.

			Once you've saved this file, do the normal sudo systemctl daemon-reload and sudo systemctl enable myscript.service operations. To test things out, first shut the machine down and then start it back up. You should now see the shutdown_test.txt file in the /root/ directory:

			donnie@ubuntu20-04:~$ sudo ls -l /root/

			[sudo] password for donnie:

			total 8

			-rw-r--r-- 1 root root 38 Jun 29 18:19 shutdown_test.txt

			drwxr-xr-x 3 root root 4096 Jun 3 20:20 snap

			donnie@ubuntu20-04:~$ sudo cat /root/shutdown_test.txt

			Testing myscript.service for shutdown

			donnie@ubuntu20-04:~$

			Next, reboot the machine. This time, you'll see that no file gets created, proving that this service will run only for a shutdown, and not for a reboot.

			Okay, I think that's about it. Let's wrap this baby up.

			Summary

			As usual, we've seen some cool stuff in this chapter. We started out by looking at the systemctl commands for shutting down, halting, or rebooting a machine. We then saw that the old-style shutdown commands still work, and will allow you to use the scheduling and messaging features that you've always been used to using. We ended by creating a service that would run a job whenever you shut down the machine.

			I realize that a lot of you might already have been familiar with a lot of what I presented in this chapter, but I did present some cool things at the end, and I hope that you enjoyed it.

			This concludes part 1 of Mastering systemd. In part 2, we'll delve into the mysteries of cgroups. I'll see you there.

			Questions

			
					What is the command for rebooting a Linux machine?a) sudo shutdown now
b) sudo systemctl -r now
c) sudo systemctl reboot now
d) sudo systemctl reboot
e) sudo shutdown --reboot

					What happens 5 minutes before a scheduled shutdown time?a) The scheduled file gets created in the /run/systemd/shutdown/ directory.
b) The scheduled file gets created in the /run/ directory.
c) The nologin file gets created in the /run/systemd/shutdown/ directory.
d) The nologin file gets created in the /run/ directory.

					When you schedule a future shutdown, which of the following happens?a) A nologin file gets created in the /run/systemd/shutdown/ directory.
b) A scheduled file gets created in the /run/systemd/shutdown/ directory.
c) A nologin file gets created in the /run/systemd/ directory.
d) A scheduled file gets created in the /run/ directory.

					What could happen if you do a sudo systemctl poweroff --force --force command?a) Using the --force option twice would result in an error message.
b) The system will ignore the second --force option.
c) You could damage your filesystem, which could result in data loss.
d) If the first --force doesn't ensure that the power off command works, the second one surely will.

			

			Answers

			
					d

					d

					b

					c

			

			Further reading

			Run a script on a systemd system at shutdown: Note that the script doesn't work as it's shown in this article. This is because it has you create the script and save the output files in the /tmp/ directory, which gets cleaned out every time you shut down the machine:

			https://www.golinuxcloud.com/run-script-with-systemd-at-shutdown-only-rhel/

			How to check the time for a delayed shutdown: You can find the answers to lots of your Linux admin questions with simple DuckDuckGo searches, as I did with this. Learn how to use DuckDuckGo. It can be a Linux administrator's best friend:

			https://unix.stackexchange.com/questions/229745/systemd-how-to-check-scheduled-time-of-a-delayed-shutdown

		

	
		
			Section 2: Understanding cgroups

			In this part, you will learn what cgroups are and how they can help control resource usage and enhance security.

			This part of the book comprises the following chapters:

			
					Chapter 11, Understanding cgroups Version 1

					Chapter 12, Controlling Resource Usage with cgroups Version 1

					Chapter 13, Understanding cgroups Version 2

			

		

	
		
			Chapter 11: Understanding cgroups Version 1

			In this chapter, we'll introduce you to Control Groups, more commonly called cgroups. (More specifically, we'll be looking at cgroups Version 1.) You'll learn what cgroups are, how they're constructed, and how you can benefit by taking advantage of them. We'll also briefly look at the history of cgroups.

			Now, I have to tell you that discussing cgroups can become quite complex and convoluted. You might have already seen some online cgroups tutorials that do nothing but make your head hurt. My goal is to strip away as much complexity as possible and provide you with just enough information to help you manage resources on a systemd machine.

			Specific topics include:

			
					Understanding the history of cgroups

					Understanding the purpose of cgroups

					Understanding the structure of cgroups Version 1

					Understanding the cgroup Version 1 filesystem

			

			All right – if you're ready, let's get started!

			Technical requirements

			To make things more interesting, we'll use the same Alma virtual machine that we set up in Chapter 5, Creating and Editing Services. You might remember that on that virtual machine, we set up one WordPress container service that's running in system mode, and another WordPress container service that running in user mode. If you don't have that virtual machine, go back to Chapter 5, Creating and Editing Services, and follow the steps for creating the WordPress container services. As always, this chapter will be hands-on. So fire up that virtual machine, and let's dig in.

			Check out the following link to see the Code in Action video: https://bit.ly/3ltmKsO

			Understanding the history of cgroups

			This might shock you, but the cgroups technology didn't start as a part of systemd, and it wasn't invented by Red Hat. It's actually a component in the Linux kernel that can run on non-systemd Linux distros. A pair of Google engineers started cgroups development back in 2006, four years before Red Hat engineers started developing systemd. The first enterprise-grade Linux distro to include cgroups technology was Red Hat Enterprise Linux 6, which ran a hybrid upstart/SysV setup instead of systemd. Using cgroups on RHEL 6 was optional, and you had to jump through some hoops to set them up.

			Nowadays, cgroups are enabled by default on all of the major enterprise-type Linux distros and are tightly integrated with systemd. RHEL 7 was the first enterprise distro to use systemd and was also the first enterprise distro to always have cgroups enabled.

			There are currently two versions of the cgroups technology. Version 1 works well for the most part, but it does have some flaws, which I won't get into here. Version 2 was developed in 2013, primarily by an engineer at Facebook. In this chapter, I'll confine the discussion to Version 1. Even though Version 2 might be much better, it still hasn't been widely adopted, and many container technologies still depend upon Version 1. The current versions of all enterprise-grade Linux distros run with Version 1 by default.

			Note

			Fedora, Arch, and Debian 11 are the only Linux distros of which I'm aware that run cgroups Version 2 by default. I've also seen some speculation that the next non-LTS version of Ubuntu, Ubuntu 21.10, is supposed to come with Version 2. (Of course, you'll likely know that for sure by the time you read this.) So, which one should you learn about? Well, if you're an administrator working with any of the major enterprise-grade Linux distros, you'll want to concentrate on learning Version 1. If you're a developer, you'll probably want to start learning Version 2, because Version 2 is the future.

			Now that we've covered the history of cgroups, I suppose that I should now make some history by explaining what they are and why we need them. So, allow me to do just that.

			Understanding the purpose of cgroups

			Back in the days of single-core CPUs, resource management wasn't such a big deal. Servers generally came with anywhere from one to four single-core CPUs installed, so they were already limited in the number of services that could run simultaneously. All we needed for resource management back then were simple tools such as nice, renice, and ulimit.

			Nowadays, it's an entirely different story. Servers now come with one or more multi-core CPUs and gobs of memory. (The current king-of-the-hill server CPU is the AMD Epyc, which now comes in a 64-core variety that can run 128 simultaneous threads. Yeah, that's enough to make us hard-core geeks salivate.) Although it might seem counter-intuitive, resource management on these beasts is more important than it was on the old systems. That's because one server can now run multiple services, multiple virtual machines, multiple containers, and multiple user accounts all at the same time. A whole roomful of the old physical servers that could only run one or two services can now be replaced by just one physical server. Those simple resource management tools that we used to use still have their uses, but we also now need something a lot more powerful to ensure that all processes and users play nice with each other. Enter cgroups.

			With cgroups, an administrator can:

			
					Manage resource usage by either processes or users.

					Keep track of resource usage by users on multi-tenant systems to provide accurate billing.

					More easily isolate running processes from each other. This not only makes for better security but also allows us to have better containerization technologies than we had previously.

					Run servers that are densely packed with virtual machines and containers due to better resource management and process isolation.

					Enhance performance by ensuring that processes always run on the same CPU core or set of CPU cores, instead of allowing the Linux kernel to move them around to different cores.

					Whitelist or blacklist hardware devices.

					Set up network traffic shaping.

			

			Now that we've seen the purpose of cgroups, my own purpose now is to show you the structure of cgroups.

			Understanding the structure of cgroups Version 1

			To understand the structure of cgroups, you'll need to understand some of the cgroups terminology. Let's start with just a few terms that you need to know:

			
					cgroups: The term cgroup has two different meanings. What concerns us most is that a cgroup is a collection of processes. The processes within each cgroup are bound to limits and parameters that are defined within the cgroup filesystem. (We'll talk more about the cgroup filesystem in a bit.) The term cgroup can also refer to the Linux kernel code that implements cgroups technology.

					services: These are groups of processes that are started by systemd, and that are configured by the different unit configuration files. The individual processes in a service are started and stopped as one set. An example of a service would be the Apache web server service, which would be called httpd.service or apache2.service. (Okay, you already knew this, but I told you again anyway.)

					scopes: A scope is a group of processes that are started by some external means. Virtual machines, containers, and user sessions are examples of scopes.

					slices: A slice does not contain any processes. Rather, it's a group of hierarchically organized units. A slice manages processes that are running in either scopes or services. The four default slices are as follows:	-.slice: This is the root slice, which is the root of the whole slice hierarchy. Normally, it won't directly contain any other units. However, you can use it to create default settings for the entire slice tree.
	system.slice: By default, system services that have been started by systemd would go here.
	user.slice: By default, user-mode services would go here. An implicit slice is assigned to each logged-in user.
	machine-slice: If you're running containers or virtual machines, their services will show up here.

			

			In addition, the system administrator can define custom slices, and assign scopes and services to them.

			To see a more graphical representation of all this, use the systemd-cgls command as a normal user. Just for fun, let's look at the Alma 8 virtual machine that we used to create the WordPress containers back in Chapter 5, Creating and Editing Services. The output of systemd-cgls should look something like this:

			Control group /:

			-.slice

			├─user.slice

			│ └─user-1000.slice

			│ ├─user@1000.service

			│ │ ├─wordpress-noroot.service

			│ │ │ ├─ 918 /usr/bin/podman

			│ │ │ ├─1013 /usr/bin/slirp4netns --disable-host-loopback --mtu 65520 --enabl>

			│ │ │ ├─1019 containers-rootlessport

			. . .

			. . .

			I don't have a desktop environment installed on this virtual machine, so we can't see any of the Gnome stuff that you would see on a machine that does have a desktop. However, we do see the user-mode WordPress container service that we created in Chapter 5, Creating and Editing Services. (If you have Gnome on your virtual machine, that's fine. It just means that you'll have to scroll down a bit more to see your WordPress container service.)

			The systemd-cgls tool shows us a hierarchical listing of the cgroups that are running on the system. The first one listed is the / cgroup, which is how the root cgroup is designated. The second line begins the listing for the root slice (-.slice), and directly under it is user.slice. Next, we can see user-1000.slice, which is a child of user.slice. In this case, I'm the only user who's logged into the system, so this slice belongs to me. The user-1000.slice designation corresponds to my User ID number, which is 1000. Following that, we can see the services that are running in my slice, which we'll get to in just a bit.

			Note

			If you want to see user slices, you'll need to run the systemd-cgls command from outside of the cgroup filesystem. If you cd into the /sys/fs/cgroup/ directory, you won't see the user slices. The further down you go into the cgroup filesystem, the less you'll see with systemd-cgls.

			The user.slice is defined by the /lib/systemd/system/user.slice unit file, which looks like this:

			[Unit]

			Description=User and Session Slice

			Documentation=man:systemd.special(7)

			Before=slices.target

			Here, we can see that this slice has to finish starting before the slices.target can start. The slices.target file looks like this:

			[Unit]

			Description=Slices

			Documentation=man:systemd.special(7)

			Wants=-.slice system.slice

			After=-.slice system.slice

			According to the systemd.special man page, slices.target is responsible for setting up the slices that are to run when you boot up your machine. By default, it starts up system.slice and the root slice (-.slice), as we see here in the Wants= line, and the After= line. We can also add more slices to that list, as we've just seen in the user.slice file. We'll look at -.slice and system.slice in a moment. For now, let's get back to user.slice.

			In my user-1000.slice, the first listed service is user@1000.service. This service is responsible for all the other services that run within my slice. It's set up by the user@.service template. The [Unit] section of the user@.service file looks like this:

			[Unit]

			Description=User Manager for UID %i

			After=systemd-user-sessions.service

			After=user-runtime-dir@%i.service

			Requires=user-runtime-dir@%i.service

			When this service runs, the %i variable will be replaced with a User ID number. The [Service] section of the file looks like this:

			[Service]

			User=%i

			PAMName=systemd-user

			Type=notify

			ExecStart=-/usr/lib/systemd/systemd --user

			Slice=user-%i.slice

			KillMode=mixed

			Delegate=pids memory

			TasksMax=infinity

			TimeoutStopSec=120s

			Here's the breakdown:

			
					ExecStart=: This line causes systemd to start a new systemd session for each user who logs in.

					Slice=: This line creates a separate slice for each user.

					TasksMax=: This line is set to infinity, which means that there's no limit to the number of processes that a user can run.

					Delegate=: We'll discuss this directive in Chapter 12, Controlling Resource Usage with cgroups Version 1.

			

			The next thing we see in the output of systemd-cgls is that all of the services that are running in my user slice are children of the user@1000.service. When I scroll down, I'll eventually get past the list of services, and will see the scope for my login session. In this case, my login session at the local terminal is designated as session-2.scope, and my remote login session is designated as session-3.scope. Here's what this looks like:

			. . .

			. . .

			├─session-2.scope

			│ │ ├─ 794 login -- donnie

			│ │ └─1573 -bash

			│ └─session-3.scope

			│ ├─ 1644 sshd: donnie [priv]

			│ ├─ 1648 sshd: donnie@pts/0

			│ ├─ 1649 -bash

			│ ├─11493 systemd-cgls -l

			│ └─11494 systemd-cgls -l

			. . .

			. . .

			According to the systemd.scope man page, scopes can't be created by creating unit files. Instead, they're created programmatically at runtime. So, don't expect to see any .scope files in the /lib/systemd/system/ directory.

			Further down in the systemd-cgls output, we finally get past my user slice. The next thing we can see after my user slice is the init.scope and the system.slice, as we see here:

			. . .

			├─init.scope

			│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 18

			├─system.slice

			│ ├─rngd.service

			│ │ └─732 /sbin/rngd -f --fill-watermark=0

			│ ├─systemd-udevd.service

			│ │ └─620 /usr/lib/systemd/systemd-udevd

			│ ├─wordpress-container.service

			│ │ └─1429 /usr/bin/conmon --api-version 1 -c cc06c35f21cedd4d2384cf2c048f01374>

			│ ├─polkit.service

			│. . .

			Here, we can see system services that have nothing to do with my user session. One service that we see here is the WordPress container service that's running in system mode.

			The fact that I have a system-mode container service running means that there's something in machine.slice, as we see here:

			. . .

			. . .

			└─machine.slice

			 └─libpod-cc06c35f21cedd4d2384cf2c048f013748e84cabdc594b110a8c8529173f4c81.sco>

			 ├─1438 apache2 -DFOREGROUND

			 ├─1560 apache2 -DFOREGROUND

			 ├─1561 apache2 -DFOREGROUND

			 ├─1562 apache2 -DFOREGROUND

			 ├─1563 apache2 -DFOREGROUND

			 └─1564 apache2 -DFOREGROUND

			The libpod branch of this machine.slice tree represents our podman-docker container. (Note that the user-mode container service only shows up directly under the user slice, and doesn't show up here under the machine slice.)

			Okay, let's shift back to an Alma machine that's running with the Gnome desktop. As we see here, there's a lot more going on with the output of systemd-cgls:

			Control group /:

			-.slice

			├─user.slice

			│ └─user-1000.slice

			│ ├─user@1000.service

			│ │ ├─gvfs-goa-volume-monitor.service

			│ │ │ └─2682 /usr/libexec/gvfs-goa-volume-monitor

			│ │ ├─xdg-permission-store.service

			│ │ │ └─2563 /usr/libexec/xdg-permission-store

			│ │ ├─tracker-store.service

			│ │ │ └─3041 /usr/libexec/tracker-store

			│ │ ├─evolution-calendar-factory.service

			│ │ │ ├─2725 /usr/libexec/evolution-calendar-factory

			. . .

			. . .

			On any desktop machine, you'll always have a lot more running services than you'd have on a strictly text-mode machine.

			Next, create a new user account for Frank. Then, have Frank log in to this machine via a remote SSH session. The top part of the output of systemd-cgls now looks like this:

			Control group /:

			-.slice

			├─user.slice

			│ ├─user-1001.slice

			│ │ ├─session-10.scope

			│ │ │ ├─8215 sshd: frank [priv]

			│ │ │ ├─8250 sshd: frank@pts/1

			│ │ │ └─8253 -bash

			│ │ └─user@1001.service

			│ │ ├─pulseaudio.service

			│ │ │ └─8248 /usr/bin/pulseaudio --daemonize=no --log-target=journal

			│ │ ├─gvfs-daemon.service

			. . .

			. . .

			Frank now has his own user slice, which is user-1001.slice. We see that he's logged in remotely, as well as the name of the virtual terminal that he used to log in. (In case you're wondering, Frank is the name of my formerly feral Flame Point Siamese kitty, who has been with me for many years. Until just a moment ago, he was sleeping on the computer table where my keyboard should be, which was making it quite awkward for me to type.)

			If you don't want to see the entire cgroups tree, you can use systemctl status to see just one part of it. For example, to just see the user.slice, I'd do systemctl status user.slice. The output would look something like this:

			
				
					[image:]
				

			

			Figure 11.1 – user.slice on Alma Linux with the Gnome desktop

			Here, we see that Frank has logged out and that I'm now the only user who is logged in. (After all, Frank is a cat, which means that he spends most of his time sleeping.) We can also view information about the other slices, as well as about scopes. For example, doing systemctl status session-3.scope shows me information about the session scope that's running under my user slice, which would look like this:

			
				
					[image:]
				

			

			Figure 11.2 – Session scope on Alma Linux

			All right, that pretty much covers it for the basic structure of cgroups. Now, let's move on and look at the cgroup filesystem.

			Understanding the cgroup filesystem

			On any system that runs cgroups, you'll see a cgroup directory under the /sys/fs/ virtual filesystem, as shown here:

			[donnie@localhost ~]$ cd /sys/fs

			[donnie@localhost fs]$ ls -ld cgroup/

			drwxr-xr-x. 14 root root 360 Jul 3 15:52 cgroup/

			[donnie@localhost fs]$

			As with all virtual filesystems, the cgroup filesystem only exists in memory at runtime and disappears when you shut down the machine. There's no permanent copy of it on the machine's drive.

			When you look inside the /sys/fs/cgroup/ directory, you'll see something like this:

			
				
					[image:]
				

			

			Figure 11.3 – cgroupfs on Alma Linux

			Each of these directories represents a cgroup susbsystem. (You'll also see them referred to as either controllers or resource controllers.) Inside each of these directories is a set of files that represent the cgroup's tunables. These files hold information about any resource control or tuning parameters that you would set. (We'll talk more about that in Chapter 12, Controlling Resource Usage with cgroups Version 1.) For example, here's what we have in the blkio directory:

			
				
					[image:]
				

			

			Figure 11.4 – The blkio filesystem

			Each of these files represents a parameter that can be custom-tuned for the best performance. Toward the bottom, we also see directories for init.scope, machine.slice, system.slice, and user.slice. Each also has its own set of tunable parameters.

			When we use the mount command and pipe it through grep, we'll see that each of these resource controllers is mounted on its own virtual partition. Here's what that looks like:

			[donnie@localhost ~]$ mount | grep 'cgroup'

			tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,seclabel,mode=755)

			cgroup on /sys/fs/cgroup/systemd type cgroup (rw,nosuid,nodev,noexec,relatime,seclabel,xattr,release_agent=/usr/lib/systemd/systemd-cgroups-agent,name=systemd)

			. . .

			. . .

			cgroup on /sys/fs/cgroup/freezer type cgroup (rw,nosuid,nodev,noexec,relatime,seclabel,freezer)

			[donnie@localhost ~]$

			Okay, I think that that should do it for our basic introduction to cgroups Version 1. So, let's wrap up this chapter and move on!

			Summary

			In this chapter, we looked at the history of the cgroups technology, what cgroups are, and why we need them. We then looked at the structure of cgroups and the cgroup filesystem.

			A major challenge that comes with learning about cgroup technology is that there isn't much available documentation about it. I mean, you'll see a lot of blog posts and YouTube videos about it, but much of it either isn't very comprehensive or is woefully out of date. Hopefully, I've been able to give you a better understanding of cgroup technology and how it works together with systemd.

			In the next chapter, we'll look at controlling resource usage with cgroups Version 1. I'll see you there.

			Questions

			
					What is the default location of the cgroup filesystem?a. /proc/fs/cgroup/
b. /sys/cgroup/
c. /sys/fs/cgroup/
d. /proc/cgroup/

					What must you do to see user slices with systemd-cgls?a. Run the command only from the local terminal.
b. Run the command only from outside the cgroup filesystem.
c. Run the command with root privileges.
d. You can't. User slices never show up.

					How can you create your own cgroup scope?a. Use systemctl edit --full --force, just as you would with other systemd units.
b. Manually create a unit file in the /etc/systemd/system/ directory.
c. You can't. Scopes are created programmatically, and there are no .scope unit files.
d. Manually create a unit file in the /lib/systemd/system/ directory.

					What does a slice do?a. It directly manages user mode processes.
b. It directly manages system mode processes.
c. It manages processes that are in either scopes or services.
d. It manages user login sessions.

			

			Answers

			
					c

					b

					c

					c

			

			Further reading

			Take a look at the following links for more information about cgroups:

			
					A Linux sysadmin's introduction to cgroups:https://www.redhat.com/sysadmin/cgroups-part-one

					cgroups documentation at kernel.org:https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

			

		

	
		
			Chapter 12: Controlling Resource Usage with cgroups Version 1

			Now that we've seen what cgroups are and how they're structured, it's time to look at how to actually use them. In this chapter, we'll cover these specific topics:

			
					Understanding resource controllers

					Controlling CPU usage

					Controlling memory usage

					Controlling blkio usage

					Understanding pam_limits and ulimit

			

			Learning how to control resource usage with cgroups can help you make your data center run more securely and efficiently. So, buckle your seat belts and let's get going.

			Technical requirements

			To get the most out of this chapter, you'll want to use a somewhat new host computer with a multi-core CPU and plenty of memory. In my case, I'm using a fairly late-model Dell workstation with a hexacore Xeon CPU and 32 GB of RAM. Hyperthreading is enabled, which gives me a total of 12 CPU cores to play with.

			Set your virtual machines to run with at least two CPU cores and a decent amount of RAM. I'm setting mine to use four cores, as you see here:

			
				
					[image:]
				

			

			Figure 12.1 – Setting the CPU cores in VirtualBox

			I'm also setting my virtual machines to run with eight GB of RAM, as you see here:

			
				
					[image:]
				

			

			Figure 12.2 – Setting the RAM in VirtualBox

			As usual, I'll be using my Ubuntu Server 20.04 and AlmaLinux 8 virtual machines for the demos.

			Check out the following link to see the Code in Action video: https://bit.ly/3xJ61qi

			Now that we have everything set up, let's dig in.

			Understanding resource controllers

			There are a few different names for this cgroups feature. I prefer to use the term resource controllers. In other documentation, you may see these resource controllers referred to as either subsystems or just as controllers. All of these terms refer to the same thing, which is the cgroups technology that allows us to control the resource usage of the various running processes. Before we start getting our hands too dirty, let's see what resource controllers we have.

			Examining the resource controllers

			The best way to see what resource controllers we have is to install some cgroup tools. On the Ubuntu machine, do:

			donnie@ubuntu2004:~$ sudo apt install cgroup-tools

			On the Alma machine, do:

			[donnie@localhost ~]$ sudo dnf install libcgroup-tools

			On either machine, we can now use lssubsys to view our active resource controllers, like this:

			donnie@ubuntu2004:~$ lssubsys

			cpuset

			cpu,cpuacct

			blkio

			memory

			devices

			freezer

			net_cls,net_prio

			perf_event

			hugetlb

			pids

			rdma

			donnie@ubuntu2004:~$

			Here's a brief description of each of them:

			
					cpuset: If you're running a system with multiple CPU cores, this allows you to assign a process to one specific CPU core or a set of CPU cores. This enhances performance by forcing a process to use a portion of the CPU cache that's already been filled with the data and the instructions that the process needs. By default, the Linux kernel scheduler can move processes around from one CPU core to another, or from one set of CPU cores to another. Every time this happens, the running process must access the main system memory to refill the CPU cache. This costs extra CPU cycles, which can hurt performance.

					cpu,cpuacct: There used to be two separate controllers for cpu and cpuacct. Now, they've been combined into one single controller. This controller lets you control CPU usage for either processes or users. On a multi-tenant system, it allows you to monitor users' CPU usage, which is handy for billing purposes.

					blkio: This is short for Block Input/Output. This controller allows you to set limits on how fast processes and users can read from or write to block devices. (A block device is something such as a hard drive or a hard drive partition.)

					memory: As you might have guessed, this one allows you to set limits on the amount of system memory that a process or user can use.

					devices: This allows you to control access to system devices.

					freezer: This one has a strange name, but its purpose is simple. It allows you to suspend running processes in a cgroup. This can be handy for when you need to move processes from one cgroup to another. When you're ready, just resume the processes.

					net_cls,net_prio: This allows you to place class identifier (classid) tags on network packets. The Linux traffic controller and the Linux firewall can use these tags to control and prioritize network traffic for the various cgroups.

					perf_event: This allows you to monitor cgroups with the perf tool.

					hugetlb: This one allows your cgroups to use huge virtual memory pages, and to place limits upon their use. (This is a bit beyond the scope of this book, so we won't say anything more about it.)

					pids: This allows you to place a limit on the number of processes that can run in a cgroup.

					rdma: Remote direct memory access allows one computer to directly access the memory of another computer without having to involve either computer's operating system. This is mainly used for parallel computing clusters, which is also beyond the scope of this book.

			

			On the cgroups man page, you'll see a brief mention of these controllers under the Cgroups version 1 controllers section. To see a detailed description of them, you'll need to look at the documentation that comes packaged with the Linux kernel source code. On the Alma machine, you can install that documentation as a separate package by doing:

			[donnie@localhost ~]$ sudo dnf install kernel-doc

			In the /usr/share/doc/kernel-doc-4.18.0/Documentation/cgroup-v1/ directory, you'll now find text files that contain more detailed explanations about the resource controllers. (I also looked for that documentation package on the Ubuntu machine, but couldn't find it.) Of course, it's only fair to warn you that these documentation pages are mainly written for Linux kernel programmers, so you might not get much out of them. But then, who knows? Go ahead and give them a quick glance to see whether there's anything there that can help you. (You might also find that they're a great sleeping aid, for those nights when you have a severe case of insomnia.)

			When you look in the /sys/fs/cgroup/ directory, you'll see that each of these resource controllers has its own directory. Here's what that looks like on the Ubuntu machine:

			
				
					[image:]
				

			

			Figure 12.3 – Resource controllers on Ubuntu

			For now, we'll ignore the two directories at the bottom of the screen. (The systemd directory is for the root cgroup, and the unified directory is for Version 2 controllers.) Even though we're running cgroups Version 1 here, it's still possible to use Version 2 controllers. (You won't see the unified directory on the Alma machine, because the RHEL 8-type distros don't have Version 2 controllers enabled by default.) Note that we'll only talk about Version 1 controllers in this chapter.

			Also, note that we have four symbolic links that point to two different directories. That's because the cpu and cpuacct controllers used to be two separate controllers, but they're now combined into just one controller. The same is true of the net_cls and net_prio controllers. The symbolic links provide us with some backward compatibility.

			Note

			Space doesn't permit me to cover all of these resource controllers in detail. So, we'll just focus on the big three that you'll be most likely to use. These are the cpu, memory, and blkio controllers. That's just as well, because with cgroups Version 1, these are the only three resource controllers that you can directly configure via systemd. (To use any of the other Version 1 resource controllers, you'll have to jump through some hoops and use some non-systemd management utilities.)

			All right, enough theory for now. Let's start getting our hands dirty.

			Preparing for the demos

			For the first few demos, we'll use the stress-ng tool to simulate some real-world problems. On the Ubuntu machine, install it by doing:

			donnie@ubuntu2004:~$ sudo apt install stress-ng

			To install it on the Alma machine, you'll first need to have the EPEL repository installed. If you haven't already, install it by doing:

			[donnie@localhost ~]$ sudo dnf install epel-release

			Then, install the stress-ng package by doing:

			[donnie@localhost ~]$ sudo dnf install stress-ng

			Next, create a new, non-privileged user account. (I've created an account for Vicky, who is my teenage solid gray kitty.)

			Then, open a terminal on your host machine and have your new user log in to a remote session on the virtual machine. Open a second terminal on the host machine, and log in to your own account on the virtual machine. Keep the virtual machine's local terminal off to the side, because you'll be using it, too.

			Now that we're all set up, let's talk about the cpu resource controller.

			Controlling CPU usage

			You can control resource usage either by using the systemctl set-property command or by editing systemd unit files. For the first demo, we'll have Vicky put some stress on the virtual machine's CPUs. We'll deal with it by using systemctl set-property to configure the cpu resource controller.

			Controlling Vicky's CPU usage

			By default, all users on a Linux system have unlimited use of the system resources. That could be problematic on a system with multiple users. Any user could decide to hog all the resources, which could effectively cause a Denial-of-Service situation for all the other users. In real life, a user could cause trouble by doing something completely innocent, such as rendering a large video file. An authorized user could also cause a Denial-of-Service by doing something they aren't supposed to do, such as using server resources to do some cryptocurrency mining. In any case, we want to limit the resources that a user can use. We'll do that by assigning limits to the user's slice.

			So, let's say that Vicky is logged in remotely and is hogging all the CPU time from the other users. Simulate that by having Vicky do:

			vicky@ubuntu2004:~$ stress-ng -c 4

			The -c 4 option in this command indicates that Vicky is doing a stress test on four cores of the CPU. Change that number to however many cores you've assigned to your own virtual machine.

			In the remote terminal where you're logged in to your own account, open the top utility. It should look something like this:

			
				
					[image:]
				

			

			Figure 12.4 – The top display with Vicky's stress test

			At the top of the top display, we see that Vicky is hogging nearly 100% of all four CPU cores. Do I have to tell you that that isn't good?

			Keep top going on your own remote terminal, and go to the virtual machine's local terminal. To get proper results, make sure that you're not anywhere within the /sys/fs/cgroup/ filesystem. Use systemd-cgls to find Vicky's user slice, which should look like this:

			
				
					[image:]
				

			

			Figure 12.5 – Vicky's user slice

			We see that she's user number 1001, and we want to show her who's the boss around here. We're just not going to let her get away with hogging the CPU like this. So, on the local terminal, reduce her CPUQuota to 10% by doing:

			donnie@ubuntu2004:~$ sudo systemctl set-property user-1001.slice CPUQuota=10%

			This command creates some new files in the /etc/systemd/ directory, which means that you'll need to do sudo systemctl daemon-reload, just as you'd do when creating a new unit file. You should now see Vicky's CPU usage go down to practically nothing, as we see here:

			
				
					[image:]
				

			

			Figure 12.6 – After reducing Vicky's CPUQuota

			Okay, maybe reducing Vicky's CPUQuota down to only 10% is a bit too radical. In real life, you could adjust CPUQuota to whatever you need it to be. On a machine with multiple cores, there's a trick to this that you should know about. It's that whatever quota you give to Vicky is spread across all available CPU cores. So, in this case, we're not giving Vicky 10% of each core. Instead, we're spreading that 10% across four cores, which allows her to consume only about 2.5% of the CPU cycles from each core, as you can see in Figure 12.6. Also, setting Vicky's CPUQuota to 100% doesn't give her 100% usage of each core. Instead, she would have only about 25% usage of each core. To allow her to have 50% usage of each core, set CPUQuota to 200%. The maximum setting that we can have on this machine with four cores is 400%, which would give her 100% usage of each core.

			Note

			Keep in mind that the figures I've just given you are based on having four cores assigned to the virtual machine. These figures will differ if you've assigned a different number of cores to your own virtual machine.

			The first time you execute a systemctl set-property command, you'll create the system.control/ directory under the /etc/systemd/ directory, which looks like this:

			 donnie@ubuntu2004:/etc/systemd$ ls -ld system.control/

			drwxr-xr-x 3 root root 4096 Jul 14 19:59 system.control/

			donnie@ubuntu2004:/etc/systemd$

			Under that directory, you'll see a directory for Vicky's user slice. Under her user slice directory, you'll see the configuration file for Vicky's CPUQuota, as you see here:

			donnie@ubuntu2004:/etc/systemd/system.control$ ls -l

			total 4

			drwxr-xr-x 2 root root 4096 Jul 14 20:25 user-1001.slice.d

			donnie@ubuntu2004:/etc/systemd/system.control$ cd user-1001.slice.d/

			donnie@ubuntu2004:/etc/systemd/system.control/user-1001.slice.d$ ls -l

			total 4

			-rw-r--r-- 1 root root 143 Jul 14 20:25 50-CPUQuota.conf

			donnie@ubuntu2004:/etc/systemd/system.control/user-1001.slice.d$

			Here you see that I've just set Vicky's quota up to 200%:

			donnie@ubuntu2004:/etc/systemd/system.control/user-1001.slice.d$ cat 50-CPUQuota.conf

			# This is a drop-in unit file extension, created via "systemctl set-property"

			# or an equivalent operation. Do not edit.

			[Slice]

			CPUQuota=200%

			donnie@ubuntu2004:/etc/systemd/system.control/user-1001.slice.d$

			Now, be aware that you'll only need to do a daemon-reload when you first create this file. Any subsequent changes you make to this file with the systemctl set-property command will take effect immediately.

			In the cgroup filesystem, under Vicky's user slice directory, you'll see her current CPUQuota setting in the cpu.cfs_quota_us file. Here's what it looks like when set to 200%:

			donnie@ubuntu2004:/sys/fs/cgroup/cpu/user.slice/user-1001.slice$ cat cpu.cfs_quota_us

			200000

			donnie@ubuntu2004:/sys/fs/cgroup/cpu/user.slice/user-1001.slice$

			To get the actual 200% figure, just chop the last three zeros off from the 200000 that you see.

			Okay, we're through with this demo. In Vicky's window, do a Ctrl + C to stop the stress test.

			Next, let's see how to limit CPU usage for a service.

			Controlling CPU usage for a service

			For this demo, perform the commands at the virtual machine's local terminal, and keep top going on your own remote terminal.

			The first step of this demo is to create cputest.service at the virtual machine's local terminal, like this:

			donnie@ubuntu2004:~$ sudo systemctl edit --full --force cputest.service

			The contents of the file will look like this:

			[Unit]

			Description=CPU stress test service

			[Service]

			ExecStart=/usr/bin/stress-ng -c 4

			You see that there's nothing fancy here. It's just enough to get the job done. As you did before, change the -c option to reflect the number of cores that you've assigned to your own virtual machine. Next, do a daemon-reload and then start the service:

			donnie@ubuntu2004:~$ sudo systemctl daemon-reload

			donnie@ubuntu2004:~$ sudo systemctl start cputest.service

			donnie@ubuntu2004:~$

			In the top display, you should see cputest.service hogging 100% of the CPU:

			
				
					[image:]
				

			

			Figure 12.7 – cputest.service with no limits

			Next, let's set the CPUQuota for this service from the command line.

			Setting CPUQuota from the command line

			Setting the CPUQuota for a service is no different from setting it for a user. Let's say that we only want to allow a 90% CPUQuota for this service. Let's set that from the command line, just as we did when we set this for Vicky:

			donnie@ubuntu2004:~$ sudo systemctl set-property cputest.service CPUQuota=90%

			[sudo] password for donnie:

			donnie@ubuntu2004:~$

			Doing this creates another directory in the /etc/systemd/system.control/ directory:

			donnie@ubuntu2004:/etc/systemd/system.control$ ls -l

			total 8

			drwxr-xr-x 2 root root 4096 Jul 15 19:15 cputest.service.d

			drwxr-xr-x 2 root root 4096 Jul 15 17:53 user-1001.slice.d

			donnie@ubuntu2004:/etc/systemd/system.control$

			Inside the /etc/systemd/system.control/cputest.service.d/ directory, you'll see the 50-CPUQuota.conf file, which is set up the same as the one that we created for Vicky:

			donnie@ubuntu2004:/etc/systemd/system.control/cputest.service.d$ cat 50-CPUQuota.conf

			# This is a drop-in unit file extension, created via "systemctl set-property"

			# or an equivalent operation. Do not edit.

			[Service]

			CPUQuota=90%

			donnie@ubuntu2004:/etc/systemd/system.control/cputest.service.d$

			This allows cputest.service to use only about 22.5% of each CPU core, as we see here:

			
				
					[image:]
				

			

			Figure 12.8 – cputest with 90% CPUQuota

			Here, in the cgroup filesystem, we see that CPUQuota is indeed set to 90%:

			donnie@ubuntu2004:/sys/fs/cgroup/cpu/system.slice/cputest.service$ cat cpu.cfs_quota_us

			90000

			donnie@ubuntu2004:/sys/fs/cgroup/cpu/system.slice/cputest.service$

			Note that this limit is only placed on the service, and not on the root user who owns the service. The root user can still run other programs and services without any limits.

			Next, let's set CPUQuota in the cputest.service file.

			Setting CPUQuota in the service file

			First, stop cputest.service, like this:

			donnie@ubuntu2004:~$ sudo systemctl stop cputest.service

			donnie@ubuntu2004:~$

			Next, delete the cputest.service.d/ directory that you created with the systemctl set-property command:

			donnie@ubuntu2004:/etc/systemd/system.control$ sudo rm -rf cputest.service.d/

			donnie@ubuntu2004:/etc/systemd/system.control$

			Do systemctl daemon-reload and then start cputest.service. You should see that the service now hogs the CPU, as it did at first. Stop the service, and then edit the unit file by doing:

			donnie@ubuntu2004:~$ sudo systemctl edit --full cputest.service

			Add the CPUQuota=90% line, so that the file now looks like this:

			[Unit]

			Description=CPU stress test service

			[Service]

			ExecStart=/usr/bin/stress-ng -c 4

			CPUQuota=90%

			Save the file and start the service. You should see in the top display that the new setting has taken effect.

			That's all there is to it. Easy, right?

			Note

			The systemd.resource-control man page explains the various directives you can use to control resource usage. When you read through it, take note of which ones are for cgroups Version 1 and which ones are for cgroups Version 2. Also, take note of the directives that are marked as deprecated. For example, many cgroups tutorials that you'll find on the web tell you to use the CPUShares directive, which is listed on this man page as deprecated. (In Linux-speak, something that has been deprecated still works for now, but it will quit working at some point in the future. In this case, these deprecated directives work for Version 1, but they won't work for Version 2.)

			We won't need cputest.service anymore, so go ahead and stop it. Let's move on to see how to control Vicky's memory usage.

			Controlling memory usage

			Let's start by having Vicky do something that will hog all of the system memory. As before, we'll use the stress-ng utility to simulate that, like this:

			vicky@ubuntu2004:~$ stress-ng --brk 4

			Wait a few moments, and you'll see some fairly ugly things in the top display:

			
				
					[image:]
				

			

			Figure 12.9 – The top display for Vicky's memory usage

			Yeah, only 98.9 bytes of free memory, and super-high load averages. In fact, after about 2 minutes or so, this virtual machine is completely unresponsive to any commands. Ouch!

			Now, understand that I still have the 200% CPUQuota set for Vicky. So, CPU usage isn't the problem here. The load average is a representation of how many tasks are waiting to be serviced by the CPU. In the top part of the top display, as shown in Figure 12.9, the 53.51 that you see is the 1-minute average, 46.38 is the 5-minute average, and 25.00 is the 15-minute average. These load averages are spread across all available CPU cores. This means that the more cores you have, the higher the load averages can go without hurting system performance. With only four cores, my virtual machine can't even begin to handle load averages like these. By hogging all of the system memory, Vicky is preventing the CPU from servicing tasks in a timely manner.

			In order to shut down Vicky's program on this unresponsive virtual machine, I had to close down her remote terminal window by clicking on the x button in the top corner, which in turn closed down her stress-ng session. I mean, there was just no other way to do it. If this were to happen in real life on the local terminal of a physical server, you'd likely have to take the drastic step of either hitting the power switch or pulling the power cord. Even doing a kill command on this stress-ng process won't work, because the system won't be able to execute it.

			To prevent this from happening again, let's set a 1GB memory limit for Vicky, like this:

			donnie@ubuntu2004:~$ sudo systemctl set-property --runtime user-1001.slice MemoryMax=1G

			[sudo] password for donnie:

			donnie@ubuntu2004:~$

			MemoryMax, eh? That could be the name of a memory-enhancing nutritional supplement for us senior citizens.

			Seriously though, you see that I'm using the --runtime option, which I didn't use before. This option makes the setting temporary, so that it will disappear when I reboot this machine. Instead of creating a permanent configuration file in the /etc/systemd/system.control/user-1001.slice.d/ directory, this handy-dandy --runtime option created a temporary configuration file in the /run/systemd/system.control/user-1001.slice.d/ directory, which looks like this:

			donnie@ubuntu2004:/run/systemd/system.control/user-1001.slice.d$ cat 50-MemoryMax.conf

			# This is a drop-in unit file extension, created via "systemctl set-property"

			# or an equivalent operation. Do not edit.

			[Slice]

			MemoryMax=1073741824

			donnie@ubuntu2004:/run/systemd/system.control/user-1001.slice.d$

			To make the setting permanent, just run the command again without the --runtime option, and then do daemon-reload.

			Now, when Vicky runs her evil memory-hogging program, she won't be able to lock up the system.

			Controlling blkio usage

			In this scenario, Vicky is once again trying to hog system resources for herself. This time, she's reading so much from the system hard drive that nobody else can use it. Before we get to that, you'll need to install iotop on your virtual machines, so that you can measure the amount of bandwidth that Vicky is using. On the Ubuntu machine, do:

			sudo apt install iotop

			On the Alma machine, do:

			sudo dnf install iotop

			In the remote login window where you're running top, quit top and then do:

			sudo iotop -o

			Now that we have things set up, let's see about setting a blkio limit for Vicky.

			Setting a blkio limit for Vicky

			In Vicky's remote login window, have her use our good friend dd to create a dummy file, like this:

			vicky@ubuntu2004:~$ dd if=/dev/zero of=afile bs=1M count=10000

			10000+0 records in

			10000+0 records out

			10485760000 bytes (10 GB, 9.8 GiB) copied, 17.4288 s, 602 MB/s

			vicky@ubuntu2004:~$

			Cool. Vicky has created a 10 GB file full of nothing but zeros. Next, let's have Vicky use dd to copy the contents of the file over to the /dev/null device, while watching the iotop -o display in our own remote login window. The command looks like this:

			vicky@ubuntu2004:~$ dd if=afile of=/dev/null

			20480000+0 records in

			20480000+0 records out

			10485760000 bytes (10 GB, 9.8 GiB) copied, 69.2341 s, 151 MB/s

			vicky@ubuntu2004:~$

			So, it appears that she read this file at an average rate of 151 MB per second. The iotop display looks like this:

			
				
					[image:]
				

			

			Figure 12.10 – Vicky's read bandwidth with no restrictions

			To limit her read bandwidth, we first need to know where she is reading the file from. We can use the lsblk utility to get a clue, like this:

			donnie@ubuntu2004:~$ lsblk

			NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

			loop0 7:0 0 99.4M 1 loop /snap/core/11316

			. . .

			. . .

			sda 8:0 0 1T 0 disk

			├─sda1 8:1 0 1M 0 part

			├─sda2 8:2 0 1G 0 part /boot

			└─sda3 8:3 0 1T 0 part

			 └─ubuntu--vg-ubuntu--lv 253:0 0 200G 0 lvm /

			sdb 8:16 0 10G 0 disk

			└─sdb1 8:17 0 10G 0 part /media/backup

			sr0 11:0 1 1024M 0 rom

			donnie@ubuntu2004:~$

			We know that Vicky's file is in her own home directory. We see here that the /home/ directory isn't mounted separately. So, it must be in the root partition, which is mounted as a logical volume on the /dev/sda drive. Let's now say that we want to limit Vicky's read bandwidth to only one MB per second for this logical volume. The command would look like this:

			donnie@ubuntu2004:~$ sudo systemctl set-property user-1001.slice BlockIOReadBandwidth="/dev/sda 1M"

			[sudo] password for donnie:

			donnie@ubuntu2004:~$

			Note how the device name and the rate limit setting both have to be surrounded by a pair of double quotes. Also, note that we set bandwidth limits for the entire drive, not just for a specific partition or logical volume. Of course, we've created a new set file in the /etc/systemd/system.control/ directory, so be sure to do a daemon-reload.

			Next, have Vicky repeat her dd if=afile of=/dev/null command. Be aware that with her reduced bandwidth, this will take a while to complete. While it's running, note Vicky's reduced speed in the iotop window:

			
				
					[image:]
				

			

			Figure 12.11 – Vicky's reduced bandwidth

			Yeah, she's just under one MB per second, just where we want her to be. By the way, don't feel bad if you want to abort this operation before it finishes. At this one MB per second rate, it will be a long time before it finishes on its own.

			Finally, while Vicky is still logged in, look at the attribute file that this command modified in the cgroup filesystem:

			donnie@ubuntu2004:/sys/fs/cgroup/blkio/user.slice/user-1001.slice$ cat blkio.throttle.read_bps_device

			8:0 1000000

			donnie@ubuntu2004:/sys/fs/cgroup/blkio/user.slice/user-1001.slice$

			In this blkio.throttle.read_bps_device file, the 8:0 represents the major and minor numbers of the /dev/sda device, as you can see here:

			donnie@ubuntu2004:/dev$ ls -l sda

			brw-rw---- 1 root disk 8, 0 Aug 19 14:01 sda

			donnie@ubuntu2004:/dev$

			Setting a blkio limit for a service

			Of course, you can also set the BlockIOReadBandwidth parameter for a service. For example, let's use the set-property option to set it for the Apache web server. On the Ubuntu machine, the command is:

			donnie@ubuntu2004:~$ sudo systemctl set-property apache2.service BlockIOReadBandwidth="/dev/sda 1M"

			On the AlmaLinux machine, the command is:

			[donnie@localhost ~]$ sudo systemctl set-property httpd.service BlockIOReadBandwidth="/dev/sda 1M"

			If you want to set this BlockIOReadBandwidth parameter in a service file, there's a bit of a trick that you need to know about. When you set this on the command line, you had to surround the /dev/sda 1M part with a pair of double quotes. When you set this in a service file, you do not surround the /dev/sda 1M within double quotes. To demonstrate, let's set up an FTP server and set a blkio limit on it. On the Ubuntu machine, install the FTP server by doing:

			donnie@ubuntu2004:~$ sudo apt install vsftpd

			On the AlmaLinux machine, do:

			[donnie@localhost ~]$ sudo dnf install vsftpd

			On either machine, edit the service file by doing:

			donnie@ubuntu2004:~$ sudo systemctl edit --full vsftpd

			In the [Service] section, add the new parameter, but without the double quotes:

			[Service]

			. . .

			.. .

			BlockIOReadBandwidth=/dev/sda 1M

			Do a daemon-reload and restart the vsftpd service. You should see the new setting show up in the cgroup filesystem:

			donnie@ubuntu2004:/sys/fs/cgroup/blkio/system.slice/vsftpd.service$ cat blkio.throttle.read_bps_device

			8:0 1000000

			donnie@ubuntu2004:/sys/fs/cgroup/blkio/system.slice/vsftpd.service$

			There are a lot more resource management directives than what we can cover here. To see more, just consult the systemd.resource-management man page.

			Before we close this chapter, let's commit a bit of sacrilege by talking about pam_limits and ulimit, which have nothing at all to do with either systemd or cgroups.

			Understanding pam_limits and ulimit

			Before the cgroup and systemd technologies were invented, we had other methods for controlling resource usage. These methods are still with us, and we can do some things with them that we can't do with cgroups. To demonstrate, let's briefly look at two of these older methods.

			The ulimit command

			The ulimit command allows us to dynamically control resource usage for a shell session and for any processes that get started by the shell session. Let's use the -a option to see what the default settings are for my current shell session:

			
				
					[image:]
				

			

			Figure 12.12 – The default ulimit settings

			As you can see, doing ulimit -a also shows us the option switches that we'd use to set the various limits. The trick is that you can either set or lower limits as a normal user, but you need sudo privileges to increase any limits. For example, let's say that we want to limit the size of any new files to only ten MB. We'll use the -f option, and specify the file size in terms of the number of 1,024-byte blocks. Ten MB works out to be 10,240 blocks, so our command looks like this:

			donnie@ubuntu2004:~$ ulimit -f 10240

			donnie@ubuntu2004:~$

			The new limit shows up in the ulimit -a output:

			donnie@ubuntu2004:~$ ulimit -a

			. . .

			. . .

			file size (blocks, -f) 10240

			. . .

			. . .

			Now, watch what happens when I try to increase this limit:

			donnie@ubuntu2004:~$ ulimit -f 20000

			-bash: ulimit: file size: cannot modify limit: Operation not permitted

			donnie@ubuntu2004:~$

			So, a normal user can set a limit that hasn't been set before, but sudo privileges are needed to increase an existing limit. But you can reset everything back to the default settings by either closing the terminal window and opening a new one or by logging out and logging back in. Then, just set a new limit to whatever you want it to be.

			Now, when I try to create a ten MB size file, things work fine:

			donnie@ubuntu2004:~$ dd if=/dev/zero of=afile bs=1M count=10

			10+0 records in

			10+0 records out

			10485760 bytes (10 MB, 10 MiB) copied, 0.0440278 s, 238 MB/s

			donnie@ubuntu2004:~$

			But things don't work so fine when I try to create an eleven MB file:

			donnie@ubuntu2004:~$ dd if=/dev/zero of=afile bs=1M count=11

			File size limit exceeded (core dumped)

			donnie@ubuntu2004:~$

			The ulimit command can come in handy for developers who need to test new software, or for anyone who needs to set resource limits from within a shell script. To read more about ulimit, open the bash-builtins man page and search for ulimit.

			Next, let's talk about using a configuration file to set limits.

			The pam_limits module

			The pam_limits module is part of the Pluggable Authentication Modules system, which most people just know as PAM. It allows you to set non-volatile limits on either users or groups. You'll do this by either editing the /etc/security/limits.conf file or by creating new drop-in files in the /etc/security/limits.d/ directory. To get an idea of how this works, open the /etc/security/limits.conf file and look at the commented-out examples. For a more detailed explanation of things, look at the limits.conf man page.

			Let's say that we want to prevent Pogo from creating any files that are larger than 20 MB. We'll do that by adding a line to the bottom of the /etc/security/limits.conf file, which will look like this:

			. . .

			. . .

			#<domain> <type> <item> <value>

			#

			. . .

			. . .

			pogo hard fsize 20480

			# End of file

			Log in as Pogo, and let him try to create a file:

			pogo@ubuntu2004:~$ dd if=/dev/zero of=afile bs=1M count=19

			19+0 records in

			19+0 records out

			19922944 bytes (20 MB, 19 MiB) copied, 0.0989717 s, 201 MB/s

			pogo@ubuntu2004:~$

			Keep repeating this command with a larger count= number until you get an error.

			All right, I think that this about covers things for this chapter. Let's wrap this baby up.

			Summary

			In this chapter, we looked at the basics of using cgroups Version 1 to control resources. A lot of information you've likely seen in your web searches is out of date and somewhat confusing. My goal for this chapter has been to bring you up-to-date information and present it in an understandable manner.

			We started by looking at the cgroups Version 1 controllers and giving a brief explanation of each one. After that, we saw how to control CPU usage, memory usage, and block device bandwidth usage for both users and services. We wrapped up by showing you the old, non-cgroup way of setting limits, which is still useful.

			In the next chapter, we'll look at cgroups Version 2. I'll see you there.

			Questions

			
					Your computer has six CPU cores. What would Vicky's CPUQuota setting be if you want to limit her to only 16.66% for each CPU core?A. 16.66%
B. 33.00%
C. 100%
D. 200%

					According to the systemd.resource-control man page, which of the following directives represents the most modern way of limiting someone's memory usage?A. MemoryLimit
B. MemoryMax
C. LimitMemory
D. MaxMemory

					What does the --runtime option for systemctl set-property do?A. It makes the new setting permanent.
B. Nothing, because it's already the default behavior.
C. It makes the new setting temporary.
D. It makes the command run faster.

					Which of the following is true about CPU load averages?A. Machines with more CPU cores can handle higher CPU load averages.
B. CPU load averages have nothing to do with how many CPU cores a machine has.
C. Excessive memory usage won't cause CPU load averages to go too high.
D. High CPU load averages have no effect on any machine.

			

			Answers

			
					C

					B

					C

					A

			

			Further reading

			
					Using control groups Version 1 with systemd:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/using-control-groups-version-1-with-systemd_managing-monitoring-and-updating-the-kernel

					The Linux kernel Completely Fair Scheduler:https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html

					For anyone who still needs to work with RHEL 7 or RHEL 7 clones on machines with multiple CPUs, here's a procedure for using the cpuset controller:https://www.redhat.com/en/blog/world-domination-cgroups-part-6-cpuset

					How to set a ulimit value permanently:https://linuxhint.com/permanently_set_ulimit_value/

			

		

	
		
			Chapter 13: Understanding cgroup Version 2

			In this chapter, we'll look at cgroup Version 2. We'll see how it's different from cgroups Version 1, and how it improves upon Version 1. After that, we'll take a brief look at how to work with it. We'll wrap up by converting the AlmaLinux machine to use cgroup Version 2. Learning how to use cgroup Version 2 will be very helpful to developers of new software, as well as to Linux administrators who want to be prepared for the future.

			By the way, that's not a typo that you see in the chapter title. One of the Version 2 changes is in the official name of the technology. So, we have cgroups Version 1, and cgroup Version 2. Strange, but true. (I didn't explain this before, because I didn't want to create more confusion).

			Specific topics in this chapter include:

			
					Understanding the need for Version 2

					Understanding the improvements in Version 2

					Setting resource limits on rootless containers

					Understanding cpuset

					Converting RHEL 8-type distros to cgroup version 2

			

			With the introduction out of the way, let's get started.

			Technical requirements

			This time, we'll use a Fedora virtual machine that's set to use as many CPU cores and as much memory as you can spare. (I'll still have mine set to use four CPU cores and eight GB of memory.) So, download your favorite spin of Fedora, and create a virtual machine from it.

			For the Understanding cpuset section, it would be helpful to have a host computer with at least two physical CPUs. I realize that not many people will have access to a machine like that, and that's okay. I do have such a machine, so I can show you what you need to see.

			We'll also use the AlmaLinux machine for a couple of brief demos.

			All right, let's get with it.

			Check out the following link to see the Code in Action video: https://bit.ly/3xJNcDx

			Understanding the need for Version 2

			As good as cgroups Version 1 is, it does have a few rather serious flaws. Let's take a quick look.

			Version 1 complexity

			To begin with, Version 1 has too many resource controllers and too many attributes per controller. Very few people use more than just the Big Three controllers that we covered in Chapter 12, Controlling Resource Usage with cgroups Version 1. Some unnecessary controllers have been removed from Version 2.

			There's also too much complexity with the Version 1 hierarchy, which makes it a bit confusing to use and can hurt performance. To see what I mean, think back about what we saw in the Version 1 cgroup filesystem. You saw that each resource controller has its own subdirectory, as we see here:

			
				
					[image:]
				

			

			Figure 13.1 – The resource controllers for version 1 on Ubuntu

			In Chapter 12, Controlling Resource Usage with cgroups Version 1, we also saw that when we set a CPUQuota for Vicky, it appeared in her user-1001.slice subdirectory that's under the cpu/user.slice subdirectory, like this:

			vicky@ubuntu2004:/sys/fs/cgroup/cpu/user.slice/user-1001.slice$ cat cpu.cfs_quota_us

			200000

			vicky@ubuntu2004:/sys/fs/cgroup/cpu/user.slice/user-1001.slice$

			Then, when we set a MemoryMax restriction, it showed up under the memory subdirectory, like this:

			vicky@ubuntu2004:/sys/fs/cgroup/memory/user.slice/user-1001.slice$ cat memory.max_usage_in_bytes

			30994432

			vicky@ubuntu2004:/sys/fs/cgroup/memory/user.slice/user-1001.slice$

			Okay, you'll never guess what happened when we set Vicky's BlockIOReadBandwidth parameter. That's right, it shows up under the blkio subdirectory, like this:

			vicky@ubuntu2004:/sys/fs/cgroup/blkio/user.slice/user-1001.slice$ cat blkio.throttle.read_bps_device

			8:0 1000000

			vicky@ubuntu2004:/sys/fs/cgroup/blkio/user.slice/user-1001.slice$

			So you see, Vicky's settings are in three different places, which means that the operating system has to look in all three places to get them all.

			Note

			I accidentally used Vicky's login window instead of my own for these screenshots, but that's okay. It shows you that Vicky can see the settings in her own cgroup files. Of course, she can't change the settings, because she doesn't have the correct root privileges.

			Version 1 attribute filenames

			Another problem with Version 1 is that there's no consistent naming convention for the attribute files of the different resource controllers. For example, setting MemoryMax on Version 1 places a value in the memory.max_usage_in_bytes file, as we see here for Vicky:

			donnie@ubuntu2004:/sys/fs/cgroup/memory/user.slice/user-1001.slice$ cat memory.max_usage_in_bytes

			30789632

			donnie@ubuntu2004:/sys/fs/cgroup/memory/user.slice/user-1001.slice$

			However,Vicky's CPUQuota setting shows up in the cpu.cfs_quota_us file, as we see here:

			donnie@ubuntu2004:/sys/fs/cgroup/cpu/user.slice/user-1001.slice$ cat cpu.cfs_quota_us

			200000

			donnie@ubuntu2004:/sys/fs/cgroup/cpu/user.slice/user-1001.slice$

			As we'll see in a few moments, naming conventions are a lot more consistent with Version 2.

			Okay, let's get to the real root of the problem by talking about rootless containers.

			No support for rootless containers

			As you saw in Chapter 5, Creating and Editing Services, we can use Red Hat's new podman to create and run Docker containers without either root privileges or membership in the docker group. However, with cgroups Version 1, it's not possible for a non-privileged user to set runtime resource limits when creating a container. For example, let's go to the AlmaLinux machine and create a new user account for my buddy, Pogo, by doing:

			[donnie@localhost ~]$ sudo useradd pogo

			[donnie@localhost ~]$ sudo passwd pogo

			Look at what happens to the poor guy when he tries to create a container with a 50% CPUQuota:

			[pogo@localhost ~]$ podman run -it --cpu-period=100000 --cpu-quota=50000 ubuntu /bin/bash

			Error: OCI runtime error: container_linux.go:367: starting container process caused: process_linux.go:495: container init caused: process_linux.go:458: setting cgroup config for procHooks process caused: cannot set cpu limit: container could not join or create cgroup

			[pogo@localhost ~]$

			Alas, poor Pogo doesn't have root privileges. So, he can create and run podman containers, but he can't set any resource limits for them.

			Note

			Actually, with cgroups Version 1, it is possible for a non-privileged user to set runtime resource limits on rootless podman containers. But, it requires that you delegate this ability to non-root users. With cgroups Version 1, that constitutes a security hazard because it could allow someone to create a container that could freeze your system. So, we're not going to do it (We'll talk more about delegation in just a bit).

			Now, let's contrast that with what we see on the Fedora machine, which is running a pure cgroup Version 2 environment.

			Understanding the improvements in cgroup Version 2

			Version 2 is a bit more streamlined and simpler to understand. At the time of writing, Fedora, Arch, and Debian 11 are the only three Linux distros of which I know that run cgroup Version 2 by default (that will likely change by the time you read this).

			Note

			It is possible to convert RHEL 8-type distros, such as Alma and Rocky, over to a pure Version 2 setup. Unfortunately, the RHEL-type distros use an older implementation of Version 2 that still doesn't have all of the resource controllers that we need enabled. So, to see everything that we need to see, we'll use Fedora.

			To begin, let's log in to the Fedora machine and create a user account for my buddy Pogo (Pogo is the awesome opossum who comes in through my cat door at night to chow down on the cat food – Yes,seriously.) Then,Then, have Pogo log in from a remote terminal (Note that on Fedora, you might have to start and enable the sshd service first.) On your own local terminal, look at the cgroup filesystem, which looks like this:

			
				
					[image:]
				

			

			Figure 13.2 – The cgroup filesystem on Fedora

			The attribute files that we see here are for the global settings, which we don't really care about for now. What I really want you to see is under the system.slice and user.slice subdirectories. Let's look at the user.slice subdirectory first.

			Under the user.slice subdirectory, you'll see lots of files for things that can be set at the user slice level. At the bottom, we see the subdirectories for both Pogo and me, as we see here:

			[donnie@fedora user.slice]$ ls -l

			total 0

			-r--r--r--. 1 root root 0 Jul 30 16:55 cgroup.controllers

			. . .

			. . .

			-rw-r--r--. 1 root root 0 Jul 30 16:55 pids.max

			drwxr-xr-x. 5 root root 0 Jul 30 17:24 user-1000.slice

			drwxr-xr-x. 4 root root 0 Jul 30 17:09 user-1001.slice

			[donnie@fedora user.slice]$

			Each of these user slice subdirectories contains attribute files for all of the resource controllers, as we see here:

			
				
					[image:]
				

			

			Figure 13.3 – Resource controllers for user-1001.slice

			So now, all of the applicable settings for a particular user would be contained in the user slice directory for that user. The operating system now only has to look in one place to get all of the settings for a user.

			Next, have Pogo log in from a remote terminal. Then, in your own terminal window, set CPUQuota for Pogo. The good news is that the command to do that is exactly the same as it was in Version 1. If you don't remember, the command is:

			[donnie@fedora ~]$ sudo systemctl set-property user-1001.slice CPUQuota=40%

			[sudo] password for donnie:

			[donnie@fedora ~]$

			Then, do a daemon-reload. Once that's done, look at the cpu.max file in Pogo's user slice directory, which should look like this:

			[donnie@fedora ~]$ cd /sys/fs/cgroup/user.slice/user-1001.slice/

			[donnie@fedora user-1001.slice]$ cat cpu.max

			40000 100000

			[donnie@fedora user-1001.slice]$

			The 40000 figure represents the 40% CPUShare, and 100000 represents the time interval over which CPUShare is measured. The default time setting, which you see here, is 100 milliseconds (you can change that time interval, but you'll likely never need to).

			You would also set Pogo's memory limit the same you did with Version 1, as we see here:

			[donnie@fedora user-1001.slice]$ sudo systemctl set-property user-1001.slice MemoryMax=1G

			[sudo] password for donnie:

			[donnie@fedora user-1001.slice]$

			This time, the setting shows up in Pogo's memory.max file, as we see here:

			[donnie@fedora user-1001.slice]$ cat memory.max

			1073741824

			[donnie@fedora user-1001.slice]$

			Now, understand that this MemoryMax setting is a hard limit. In other words, Pogo absolutely cannot use more memory than what MemoryMax allocates. If you look in the systemd.resource-control man page, you'll see other options that are available for Version 2 and that aren't available for Version 1. (Note that this man page always refers to cgroup Version 2 as the unified control group hierarchy.) One such parameter is MemoryHigh, which is more of a soft limit. MemoryHigh would allow Pogo to exceed his memory allocation if it's unavoidable, but his processes would be throttled until his memory usage goes back down to within his allocation. This makes it easier for a system to deal with temporary spikes in memory usage for any given process or user.

			Version 2 also has the MemoryLow and MemoryMin parameters, which cause a process to reclaim memory from unprotected processes if the amount of free memory for the protected process drops to the specified threshold. If you want to control swap memory usage, Version 2 lets you do that with the MemorySwapMax parameter.

			Setting limits on block I/O usage is a bit different, because the parameter names have changed. To limit Pogo's read bandwidth, we'll first use df to see what drive devices we have, as we see here:

			[donnie@fedora ~]$ df -h | grep -v tmpfs

			Filesystem Size Used Avail Use% Mounted on

			/dev/sda2 21G 2.6G 18G 13% /

			/dev/sda2 21G 2.6G 18G 13% /home

			/dev/sda1 976M 256M 654M 29% /boot

			[donnie@fedora ~]$

			The desktop versions of Fedora now use the btrfs filesystem by default, which is why we just see regular drive partitions instead of logical volumes. (There's no need to use logical volumes with btrfs because it has its own built-in drive pooling mechanism.) If you're using Fedora Server though, you'll still see ext4 and logical volumes. Anyway, we see that the /home/ directory is mounted on the /dev/sda drive, which of course is where Pogo's home directory is. (As we saw with version 1, you can set a rate limit on an entire drive, but not on a specific partition of that drive.)

			We'll now use the IOReadBandwidthMax parameter to limit the rate at which Pogo can transfer files, like this:

			[donnie@fedora ~]$ sudo systemctl set-property user-1001.slice IOReadBandwidthMax="/dev/sda 1M"

			[sudo] password for donnie:

			[donnie@fedora ~]$

			Note that because there's a blank space in the /dev/sda 1M parameter, you have to surround it with a pair of double-quotes ("") when you set this from the command line.

			Next, look at the io.max file in Pogo's user slice directory, which should look like this:

			[donnie@fedora user-1001.slice]$ cat io.max

			8:0 rbps=1000000 wbps=max riops=max wiops=max

			[donnie@fedora user-1001.slice]$

			Here, we see another benefit of using Version 2. Instead of having four separate attribute files for the four available parameter settings, as we had with Version 1, Version 2 places the IOReadBandwidthMax, IOWriteBandwidthMax, IOReadIOPSMax, and IOWriteIOPSMax settings all in one file.

			Also, note that the 8:0 we see at the beginning of the line in this io.max file represents the major and minor numbers of the entire sda drive, as we see here:

			[donnie@fedora dev]$ pwd

			/dev

			[donnie@fedora dev]$ ls -l sd*

			brw-rw----. 1 root disk 8, 0 Jul 31 14:30 sda

			brw-rw----. 1 root disk 8, 1 Jul 31 14:30 sda1

			brw-rw----. 1 root disk 8, 2 Jul 31 14:30 sda2

			[donnie@fedora dev]$

			Okay, if you really want to, you can play around with stress-ng for Pogo as you did for Vicky in Chapter 12, Controlling Resource Usage with cgroups Version 1, but I'm not going to repeat the directions for that here.

			The main thing to know about setting limits on services is that each system service has its own subdirectory under the /sys/fs/cgroup/system.slice/ directory, as we see here:

			[donnie@fedora system.slice]$ pwd

			/sys/fs/cgroup/system.slice

			[donnie@fedora system.slice]$ ls -l

			total 0

			drwxr-xr-x. 2 root root 0 Jul 31 14:30 abrtd.service

			drwxr-xr-x. 2 root root 0 Jul 31 14:30 abrt-journal-core.service

			drwxr-xr-x. 2 root root 0 Jul 31 14:30 abrt-oops.service

			drwxr-xr-x. 2 root root 0 Jul 31 14:30 abrt-xorg.service

			drwxr-xr-x. 2 root root 0 Jul 31 14:30 alsa-state.service

			drwxr-xr-x. 2 root root 0 Jul 31 14:31 atd.service

			drwxr-xr-x. 2 root root 0 Jul 31 14:30 auditd.service

			. . .

			. . .

			Within each of these subdirectories, you'll see the same attribute files that you saw for Pogo. Also, the procedure for setting limits on services is the same as it was for Version 1, so I also won't repeat any of that.

			Note

			Be aware that certain parameters that you may be used to using under cgroups Version 1 have been renamed for cgroup Version 2. Specifically, the CPUShares, StartupCPUShares, and MemoryLimit parameters in Version 1 have been replaced by CPUWeight, StartupCPUWeight, and MemoryMax, respectively. Also, all Version 1 parameter names that have the BlockIO prefix have been replaced with parameter names that have the IO prefix.

			All righty, now that we know about the cgroup Version 2 filesystem, let's see if we can let Pogo set some resource limits on a rootless container.

			Setting resource limits on rootless containers

			A few moments ago, I told you about the concept of delegation. Normally, you need root privileges in order to set any resource limits. However, you can delegate this chore to non-privileged users. The best news is that unlike delegation under cgroups Version 1, delegation under cgroup Version 2 is perfectly safe.

			To see the default setting, open the /lib/systemd/system/user@.service file, and look for the Delegate= line in the [Service] section. The applicable lines should look like this:

			[Service]

			. . .

			. . .

			Delegate=pids memory

			. . .

			. . .

			By default, Fedora only allows non-privileged users to set resource limits for memory and for the maximum number of running processes. We need to edit that to include the cpu, cpuset, and io resource controllers, like this:

			[donnie@fedora ~]$ sudo systemctl edit --full user@.service

			Edit the Delegate= line so that it will look like this:

			Delegate=pids memory io cpu cpuset

			Save the file and do a daemon-reload. Note that if any users are logged in, they might have to log out and log back in again for this to take effect.

			Keep Pogo's original login window open, and then open a second one for him. He'll create a container in one window, and look at the container information in the second window. Have Pogo create an Ubuntu container, like this:

			[pogo@fedora ~]$ podman run -it --cpu-period=100000 --cpu-quota=50000 ubuntu /bin/bash

			root@207a59e45e9b:/#

			Pogo is setting a CPUQuota of 50% over a 100-millisecond time interval. In Pogo's other login window, have him view the information about his container. He'll first do a podman ps, like this:

			[pogo@fedora ~]$ podman ps

			CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

			207a59e45e9b docker.io/library/ubuntu:latest /bin/bash 55 minutes ago Up 55 minutes ago funny_zhukovsky

			[pogo@fedora ~]$

			Pogo didn't assign a name to this container, so podman randomly assigned the name funny_zhukovsky. (Remember that Pogo is a opossum, so don't be too hard on him for forgetting to assign a name.) Now, have Pogo inspect the inner workings of this container, using whatever container name that came up for you:

			[pogo@fedora ~]$ podman inspect funny_zhukovsky

			There's a lot of output here, but you only need to look at two lines. Keep scrolling down, and you should find them. They should look like this:

			"CpuPeriod": 100000,

			"CpuQuota": 50000,

			So far, so good. But, here's where things get a bit tricky. It's just that the attribute file for this container is buried deep within the cgroup filesystem where it's hard to find. Fortunately, Pogo is a more clever opossum than I thought he was, so he found a way to cheat. He knew that the 50000 text string would only show up in one of the attribute files under his user slice directory, so he used grep to find it, like this:

			[pogo@fedora ~]$ cd /sys/fs/cgroup/user.slice/user-1001.slice/

			[pogo@fedora user-1001.slice]$ grep -r '50000' *

			user@1001.service/user.slice/libpod-207a59e45e9b14c3397d9904b41ba601dc959d85962e6ede45a1b54463ae731b.scope/container/cpu.max:50000 100000

			[pogo@fedora user-1001.slice]$

			At last, Pogo found the attribute file:

			[pogo@fedora container]$ pwd

			/sys/fs/cgroup/user.slice/user-1001.slice/user@1001.service/user.slice/libpod-207a59e45e9b14c3397d9904b41ba601dc959d85962e6ede45a1b54463ae731b.scope/container

			[pogo@fedora container]$ cat cpu.max

			50000 100000

			[pogo@fedora container]$

			That wraps it up for rootless containers. So now, let's get set to talk about cpuset.

			Understanding cpuset

			When you're dealing with a server that's running lots of containers and processes, it's sometimes beneficial to assign a container or a process to a certain CPU core or set of CPU cores. On a machine with more than one physical CPU, it might also be beneficial to assign a memory node, as well. To see what I'm talking about, install numactl on your Fedora machine, like this:

			[donnie@fedora ~]$ sudo dnf install numactl

			Use the -H option to look at the hardware list, like this:

			[donnie@fedora ~]$ numactl -H

			available: 1 nodes (0)

			node 0 cpus: 0 1 2 3

			node 0 size: 7939 MB

			node 0 free: 6613 MB

			node distances:

			node 0

			 0: 10

			[donnie@fedora ~]$

			There's one NUMA node, which is node 0, and which is associated with four CPUs. Well, in reality, there's only one CPU that has four CPU cores. We also see the amount of memory that is assigned to this node.

			So, now you're saying, But Donnie, what is this NUMA business, and why should I care?. Okay, NUMA stands for non-uniform memory access. It has to do with how the operating system deals with memory on machines with more than one physical CPU. On systems with only a single CPU, such as your Fedora virtual machine, NUMA doesn't do anything for us, because there's only one memory node. On machines with more than one CPU, each CPU has its own associated memory node. For example, check out this photo of one of my junk motherboards:

			
				
					[image:]
				

			

			Figure 13.4 – A dual-CPU motherboard

			There are two CPU sockets, each with its own bank of memory sockets. Each bank of memory constitutes a NUMA node. Now, let's look at one of my running multi-CPU systems, which is an old Hewlett-Packard workstation that's running with two quad-core AMD Opterons and Fedora 34:

			[donnie@fedora-teaching ~]$ numactl -H

			available: 2 nodes (0-1)

			node 0 cpus: 0 2 4 6

			node 0 size: 7959 MB

			node 0 free: 6982 MB

			node 1 cpus: 1 3 5 7

			node 1 size: 8053 MB

			node 1 free: 7088 MB

			node distances:

			node 0 1

			 0: 10 20

			 1: 20 10

			[donnie@fedora-teaching ~]$

			So, we see two NUMA nodes this time. The even-number CPU cores are assigned to node 0, and the odd-number CPU cores are assigned to node 1.

			By default, most processes run under a randomly chosen CPU core or set of CPU cores upon startup. Sometimes, the operating system might move a running process from one core or set of cores to another. On a normal workstation like I'm running here, that doesn't matter. But, it might matter on a server that's running lots of processes. You could possibly improve efficiency and performance by assigning certain processes to their own dedicated CPU cores and NUMA nodes. If you're dealing with cgroups Version 1, you'll need to jump through hoops and perform unnatural acts to make this work, because the Version 1 cpuset controller doesn't directly work with systemd. With cgroup Version 2, it's a breeze. It's just a matter of either using systemctl set-property to set the AllowedCPUs= and AllowedMemoryNodes= parameters, or setting them in the [Service] section of the service file.

			Now, even though you only have one CPU for your Fedora virtual machine, you can still try this to see what it looks like. First, install the Apache web server by doing:

			[donnie@fedora ~]$ sudo dnf install httpd

			[donnie@fedora ~]$ sudo systemctl enable --now httpd

			Next, assign the Apache service to CPU cores 0 and 2, like this:

			sudo systemctl set-property httpd.service AllowedCPUs="0 2"

			Reminder

			As before, remember to surround any set of parameters that contains a blank space with a pair of double-quotes.

			Now, pretend that this virtual machine has more than one NUMA node, and assign the Apache service to NUMA node 0, like this:

			sudo systemctl set-property httpd.service AllowedMemoryNodes=0

			These two commands will affect the cpuset.cpus and cpuset.mems attribute files, as you see here:

			[donnie@fedora httpd.service]$ pwd

			/sys/fs/cgroup/system.slice/httpd.service

			[donnie@fedora httpd.service]$ cat cpuset.cpus

			0,2

			[donnie@fedora httpd.service]$ cat cpuset.mems

			0

			[donnie@fedora httpd.service]$

			On my trusty dual-CPU Hewlett-Packard, I instead modified the httpd.service file to add these two parameters. The two new lines look like this:

			. . .

			. . .

			[Service]

			. . .

			. . .

			AllowedCPUs=0 2

			AllowedMemoryNodes=0

			. . .

			. . .

			So, in both examples, I'm allowing Apache to use CPU cores 0 and 2, which are both associated with NUMA node 0.

			Pro Tip

			You can separate the core numbers in your list with either a comma or a blank space, or use a dash (-) to list a range of CPU cores. Also, note that you do not surround the 0 2 in double-quotes when you add this AllowedCPUs= parameter to the unit file.)

			After a daemon-reload and restart of the Apache service, we should see the appropriate attribute files show up in the /sys/fs/cgroup/system.slice/httpd.service/ directory. Again, here's what the cpuset.cpus file looks like:

			[donnie@fedora-teaching httpd.service]$ cat cpuset.cpus

			0,2

			[donnie@fedora-teaching httpd.service]$

			Cool. Apache is running on CPU cores 0 and 2, just like we want. Now, let's look in the cpuset.mems file:

			[donnie@fedora-teaching httpd.service]$ cat cpuset.mems

			0

			[donnie@fedora-teaching httpd.service]$

			Again, it's just what we want to see. Apache can now only use NUMA node 0. So, thanks to cgroup Version 2, we have achieved coolness with the bare minimum of effort.

			Note

			NUMA doesn't mean that a process that's running on one CPU can't access memory that's in the NUMA node for another CPU. By default, any process can access all system memory on all NUMA nodes. You would use the AllowedMemoryNodes parameter to change that.

			So, now you're wondering, "Can I use cgroup Version 2 on my RHEL 8-type machine?". Well, let's take a look.

			Converting RHEL 8-type distros to cgroup version 2

			It's an easy matter to convert a Red Hat Enterprise Linux 8-type distro to cgroup Version 2. Step 1 is to edit the /etc/default/grub file on your AlmaLinux machine. Find the line that starts with GRUB_CMDLINE_LINUX=. At the end of that line, add systemd.unified_cgroup_hierarchy=1. The whole line should now look like this:

			GRUB_CMDLINE_LINUX="crashkernel=auto resume=/dev/mapper/vl-swap rd.lvm.lv=vl/root rd.lvm.lv=vl/swap rhgb quiet systemd.unified_cgroup_hierarchy=1"

			Next, rebuild the GRUB configuration, like this:

			[donnie@localhost ~]$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg

			Reboot the machine, and then look in the /sys/fs/cgroup/ directory. You should now see the same filesystem that you see on the Fedora machine. However, don't be too disappointed if you can't get all of the previous labs to work. It's just that the RHEL 8-type distros all use an older version of the Linux kernel, which doesn't yet have all of the cgroup resource controllers enabled. Will they ever be enabled in the RHEL 8 distros? Well, maybe. Red Hat's policy is to stick with one certain kernel version for the whole ten-year lifespan of each major release of RHEL. So, all of the RHEL 8-type distros will be stuck on the old kernel version 4.18 until they reach end-of-life in 2029. Sometimes, Red Hat will backport features from newer kernels into their older RHEL kernel, but there's no guarantee that they'll do this with any newer cgroup Version 2 code. At any rate, once you've seen what you need to see on your AlmaLinux machine, feel free to delete the edit that you made to the grub file, and rebuild the GRUB configuration. This will convert the machine back to using cgroups Version 1.

			So, have you seen enough about cgroups? Hopefully not, because it's something that's worthwhile learning in depth. But, there's lots more that we need to cover, so let's go do that.

			Summary

			In this chapter, we've learned a lot about cgroup Version 2. We started with a discussion about the deficiencies in cgroups Version 1, and how cgroup Version 2 is better. Then, we looked at how to allow non-privileged users to set resource limits on their containers, and how to use the cpuset resource controller. Finally, we took a brief look at how to convert a RHEL 8-type machine to use cgroup Version 2.

			Once again, I'm reading your mind, and you're wondering why cgroup Version 2 hasn't yet been universally adopted if it's so good. Well, it's just that certain critical programs and services, especially containerization services, are still hardcoded to use Version 1. Fortunately, the situation is improving, and it's a safe bet that Version 2 will become the standard within our lifetimes.

			All right, this concludes Part 2 of this tome. Let's start Part 3 with a discussion of journald. I'll see you there.

			Questions

			
					Which of the following statements is true?A. You can safely use podman under cgroups Version 1 to set resource limits on rootless containers.
B. You can safely use podman under cgroup Version 2 to set resource limits on rootless containers.
C. You can't set resource limits on podman containers.
D. No special privileges are required to set resource limits on rootless podman containers.

					What is the difference between MemoryMax and MemoryHigh?A. MemoryMax is a hard limit, and MemoryHigh is a soft limit.
B. MemoryHigh is a hard limit, and MemoryMax is a soft limit.
C. They both do the same thing.
D. Neither one does anything.

					Which of the following statements is true about delegation?A. It's perfectly safe for both cgroups Version 1 and cgroup Version 2.
B. It's only safe for cgroups Version 1.
C. It's never safe to use delegation.
D. It's only safe for cgroup Version 2.

					What is the first step for converting a RHEL 8-type system to cgroup Version 2?A. Edit the /etc/grub.cfg file.
B. Edit the /etc/default/grub file.
C. Edit the /boot/grub2/grub.cfg file.
D. Edit the /boot/grub file.

			

			Answers

			
					B

					A

					D

					B

			

			Further reading

			A Red Hat blog post about cgroup Version 2:

			https://www.redhat.com/en/blog/world-domination-cgroups-rhel-8-welcome-cgroups-v2

			An Oracle blog post about why Version 2 is better than Version 1:

			https://blogs.oracle.com/linux/post/cgroup-v2-checkpoint

			Comparing Version 1 and Version 2:

			https://chrisdown.name/talks/cgroupv2/cgroupv2-fosdem.pdf

			Using cgroup Version 2 for rootless Docker containers:

			https://rootlesscontaine.rs/getting-started/common/cgroup2/

			The current adoption status of cgroup v2 in containers:

			https://medium.com/nttlabs/cgroup-v2-596d035be4d7

		

	
		
			Section 3: Logging, Timekeeping, Networking, and Booting

			In this section, we'll look at the logkeeping, timekeeping, and networking components of the systemd ecosystem, and compare them to their non-systemd counterparts. We'll then look at using the GRUB2 and systemd-boot bootloaders, and wrap up by looking at how to use systemd-logind and polkit to help manage users.

			This part of the book comprises the following chapters:

			
					Chapter 14, Using journald

					Chapter 15, Using systemd-networkd and systemd-resolved

					Chapter 16, Understanding Timekeeping with systemd

					Chapter 17, Understanding systemd and Bootloaders

					Chapter 18, Understanding systemd-logind

			

		

	
		
			Chapter 14: Using journald

			In this chapter, we will turn our attention to a new way of logging. Although the journald logging system isn't part of systemd's init system, it is part of the systemd ecosystem. The journald system has its advantages over the old rsyslog system. However, there are also a couple of big reasons why we still haven't completed the transition to journald. Still, journald is an important tool that can help a busy Linux administrator easily see what's going on.

			Specific topics in this chapter include:

			
					Understanding the pros and cons of rsyslog

					Understanding the pros and cons of journald

					Understanding journald on Ubuntu

					Using journalctl

					Sealing journald log files for security

					Setting up remote logging with journald

			

			Technical requirements

			All you need for this chapter is your normal Ubuntu Server 20.04 and Alma Linux 8 virtual machines. (You'll need both because journald is implemented differently on each.) Now, let's start by looking at the old rsyslog.

			Check out the following link to see the Code in Action video: https://bit.ly/3dbJmJR

			Understanding the pros and cons of rsyslog

			Fedora was the first Linux distro to come with rsyslog as its default logging system, way back in 2007. It has quite a few improvements over the old syslog, and it eventually replaced syslog as the standard logging system on Linux, Unix, and Unix-like operating systems. Despite now having journald, rsyslog is still with us, as we'll see in just a bit.

			One of the best features of rsyslog is also its biggest weakness. That is, it stores log files in plaintext format. That's great in a way because you can use your normal text search and viewing utilities to view the log files and find whatever information that you need to find. The less, head, tail, awk, and grep utilities are your friends when it comes to working with these plaintext log files. This also makes it very easy to write shell scripts to extract and parse information automatically.

			But there are a few problems with using plaintext log files. The first one is that plaintext files can become quite large and eventually consume a lot of disk space. To deal with this, Linux distros all come with the logrotate system, which automatically deletes all the log files except the ones for the previous four weeks. If you need to keep log files for longer than that, you'll need to either edit the /etc/logrotate.conf file or transfer the older log files to another location before logrotate automatically deletes them. This can also make it a bit awkward to find things. If you search through the current log file soon after a log rotation has taken place, you'll see that the file is mostly empty. Then, you'll have to search through the archive files to find what you need.

			The second problem, according to the journald developers at least, is that there's no built-in way to structure the view of rsyslog log files, as shown in the following snippet from the AlmaLinux messages file:

			Jul 30 16:31:02 localhost rsyslogd[1286]: [origin software="rsyslogd" swVersion=

			"8.1911.0-7.el8_4.2" x-pid="1286" x-info="https://www.rsyslog.com"] rsyslogd was

			 HUPed

			Jul 30 17:10:55 localhost journal[3086]: Could not delete runtime/persistent state file: Error removing file /run/user/1000/gnome-shell/runtime-state-LE.:0/screenShield.locked: No such file or directory

			Jul 30 17:10:56 localhost NetworkManager[1056]: <info> [1627679456.0025] agent-manager: agent[24ffba3d1b1cfac7,:1.270/org.gnome.Shell.NetworkAgent/1000]: agent registered

			Jul 30 17:26:17 localhost systemd[1]: Starting dnf makecache...

			Jul 30 17:26:17 localhost dnf[4951]: Metadata cache refreshed recently.

			Jul 30 17:26:17 localhost systemd[1]: dnf-makecache.service: Succeeded.

			You see here that every entry begins with the date, timestamp, hostname/IPaddress, and subsystem[PID] fields. The last field is unstructured free-form text, so you'd need to use external programs to create any kind of structured view. These external programs include the text manipulation utilities that are already installed on your Linux distro, as well as various third-party utilities. By default, journald displays log data in rsyslog-compatible format. However, journald also includes an API that allows developers to define custom fields for log messages, and the journalctl utility allows you to view log data in many different ways.

			Another argument against rsyslog is its security. Any hacker who breaks into your system and gains root privileges could easily alter plaintext log files to delete any record of his or her malicious deeds. The theory is that the binary log files that journald creates are harder for an attacker to alter. Is it impossible, though? Well, perhaps not, because a bit later we'll see how to verify if journald log files have been altered. Also, the lastlog, utmp, wtmp, and btmp binary log files have been in Linux for many years, and it is possible to alter them. It might be a bit harder, but not impossible.

			The final problem with rsyslog is that there are no built-in search capabilities. Yeah, it's good that we can use tools such as awk, grep, and the built-in search function of less to search for text strings or text string patterns. But, wouldn't it be nice to have a built-in function that could make those searches a bit easier? As we'll soon see, we have that capability with journald.

			Note

			I must mention that not everyone agrees that not having searching and formatting capabilities built into rsyslog is a problem. The journald developers do see it as a problem, of course. But, a lot of text manipulation and search utilities come installed on pretty much every Linux distro, and it's not hard to use them. Even a shell-scripting beginner could easily whip up a script that would automate the process of finding and formatting pertinent information from plaintext log files. For example, several years ago, I wrote such a shell script to help out one of my buddies. (It was for Apache log files, but the principle still applies.) Anyway, you can check out the article that I wrote about it here:

			http://beginlinux.com/blog/2009/08/detect-cross-site-scripting-attacks-with-a-bash-shell-script/.

			(It says at the top that the article was posted by Mike, but if you scroll to the bottom, you'll see that I wrote it.)

			Having said all this, I should also mention that some things are still a bit difficult to do with plaintext files, such as converting them into JSON format. As we'll see shortly, journald is much better for that.

			Another advantage of rsyslog is that it's extremely easy to set up a central rsyslog server that can receive log files from other machines on the network. Of course, configuring the server to separate the files from different machines into their own sets of log files is a bit awkward, but it isn't that complex once you know how to do it.

			Understanding the pros and cons of journald

			In contrast to rsyslog, journald stores its log files in binary format. This allows us to store more data in a smaller amount of disk space, which reduces the need to constantly rotate the log files. Reducing the need for rotation allows us to keep log files for the long term, without having to worry about moving them elsewhere.

			Using binary files also gives us an extra bit of security. It's harder for an attacker to alter binary files, and there's also a way to see if the files have been altered.

			The journalctl utility comes with built-in filtering and viewing functions. We can even view the log information in JSON format, which makes it easier to export log data into other log-parsing programs.

			Yet another cool thing about journald is that it stores system log files and user log files separately. Each user has his or her own set of log files. A user with administrative privileges can view files for the system and all users, and a non-privileged user can just view his or her log files. With rsyslog, only users with administrator privileges can view any of these log files.

			Unfortunately, this cloud's silver lining does have a bit of tarnish. It is possible to set up a central log server that can receive journald logs from other machines, but this feature is still in development and isn't considered production-ready. So, because of that and the fact that most third-party log aggregation tools still expect to see plaintext rsyslog files, rsyslog is still with us, and likely will be with us for quite some time to come. At the time of this writing, I don't know of any Linux distros that have completely transitioned to journald. Every Linux distro that I know of runs both journald and rsyslog together.

			Note

			It's just been pointed out to me that the Fedora team initially had Fedora 21 running with nothing but journald. However, they received so many complaints about it that they had to do an update that brought back rsyslog. I didn't know this, because I had abandoned Fedora quite a few years ago due to its instability issues. I didn't start working with it again until Fedora 23, after the instability issues had gotten worked out. Anyway, you can read a bit more about this drama here:

			https://www.linuxquestions.org/questions/linux-newbie-8/where-are-var-log-dmesg-and-var-log-messages-4175533513/.

			However, there are differences between how the various distros do this. In the next section, we'll look at how Ubuntu does it.

			Understanding journald on Ubuntu

			On Ubuntu systems, the journald and rsyslog services are both enabled by default, and they both run as completely independent entities. The journald logs are persistent, which means that they are permanently stored on disk, instead of getting deleted every time you shut down the machine. The rsyslog log files are also present, and they get rotated every week.

			Two things make the journald log files persistent. First, is the very first configuration option in the /etc/systemd/journald.conf file, which looks like this:

			[Journal]

			#Storage=auto

			. . .

			. . .

			When you look at this whole file, you'll see that every line in it is commented out. This just means that all of these options have been set to their default values. To change something, just uncomment the line and change the value. However, we don't need to do anything with this #Storage=auto line. The auto here means that if the /var/log/journal/ directory exists, then journald will permanently store its log files there. If the /var/log/journal/ directory doesn't exist, a transient set of log files will be created in the /run/log/journal/ directory every time you boot the machine. When you shut the machine down, these transient log files will be deleted. On Ubuntu machines, the /var/log/journal/ directory is already there for you, which means that the log files are persistent. To show you how persistent the journald log files are, let's take a quick look at what I have on the host machine that I'm using to write this. This machine is running Lubuntu 18.04, which is just Ubuntu with an alternate desktop environment. I'll use the journalctl command without any options, like this:

			donnie@siftworkstation: ~

			$ journalctl

			-- Logs begin at Wed 2018-11-21 17:38:02 EST, end at Mon 2021-08-09 16:42:10 EDT. --

			Nov 21 17:38:02 lubuntu1a kernel: microcode: microcode updated early to revision 0x713, date = 2018-01-26

			. . .

			. . .

			Here, we can see that the logs begin in November 2018, which is almost three years ago. (I'm writing this in August 2021.) Surely, three years of logs would take up lots of disk space, right? Well, let's use the journalctl --disk-usage command to find out:

			donnie@siftworkstation: ~

			$ journalctl --disk-usage

			Archived and active journals take up 904.1M in the file system.

			donnie@siftworkstation: ~

			$

			So, three years' worth of journald log files doesn't even take up a whole GB of disk space. That's a lot less space than what three years' worth of rsyslog text files would require. To see the actual journald log files, go into the /var/log/journal/ directory. There, you'll see a directory with a rather long hexadecimal number as its directory name, like this:

			donnie@siftworkstation: ~

			$ cd /var/log/journal/

			donnie@siftworkstation: /var/log/journal

			$ ls

			92fe2206f513462da1869220d8191c1e

			donnie@siftworkstation: /var/log/journal

			$

			Within that directory, you'll see the log files:

			donnie@siftworkstation: /var/log/journal

			$ cd 92fe2206f513462da1869220d8191c1e/

			donnie@siftworkstation: /var/log/journal/92fe2206f513462da1869220d8191c1e

			$ ls -l

			total 925888

			-rw-r-----+ 1 root systemd-journal 16777216 Nov 28 2018 system@00057bbf27f5178e-5ed563c9fd14588f.journal~

			. . .

			. . .

			-rw-r-----+ 1 root systemd-journal 8388608 Aug 9 13:12 user-1000.journal

			donnie@siftworkstation: /var/log/journal/92fe2206f513462da1869220d8191c1e

			We can use wc -l to easily count how many files there are, like this:

			donnie@siftworkstation: /var/log/journal/92fe2206f513462da1869220d8191c1e

			$ ls -l | wc -l

			75

			donnie@siftworkstation: /var/log/journal/92fe2206f513462da1869220d8191c1e

			$

			So, there are 75 journald log files on this machine. That's because journald is configured to store information in lots of smaller files instead of storing everything in one big honkin' monolithic file.

			Note

			When those of us in the southern United States say that something is big honkin', we mean that it's really big.

			The coolest part is that when you use journalctl to view the files, it will automatically open all of these files as necessary, instead of making you open each file with a separate command. (This is another huge advantage that journald has over rsyslog.)

			If you ever do need to limit the amount of disk space that journald uses for log file storage, you can set the proper parameters in the /etc/systemd/journald.conf file. (See the journald.conf man page for details.) Also, the journalctl man page shows you how to rotate log files and then delete old archived log files with the --vacuum-size=, --vacuum-time=, and --vacuum-files= options. Let's look at an example of how to do that.

			First, shut down the virtual machine and take a snapshot of it. (You'll need to have plenty of log files for the upcoming demos.) Then, restart the virtual machine and ensure that the persistent logs are up-to-date with the transient logs, like this:

			donnie@ubuntu2004:~$ sudo journalctl --flush

			donnie@ubuntu2004:~$

			Next, combine the --rotate and --vacuum-time options to archive the current log files, create new empty log files, and delete all the archived log files that are older than five days, like this:

			donnie@ubuntu2004:~$ sudo journalctl --rotate --vacuum-time=5d

			Deleted archived journal /var/log/journal/55520bc0900c428ab8a27f5c7d8c3927/system@a2d77617383f477da0a4d539e137b488-0000000000000001-0005b8317f856d88.journal (8.0M).

			Deleted archived journal /var/log/journal/55520bc0900c428ab8a27f5c7d8c3927/user-1000@d713d47989e84072bc1445c9829a0c1f-0000000000000415-0005b8318153a5b1.journal (8.0M)

			. . .

			. . .

			Vacuuming done, freed 2.1G of archived journals from /var/log/journal/55520bc0900c428ab8a27f5c7d8c3927.

			Vacuuming done, freed 0B of archived journals from /var/log/journal.

			Vacuuming done, freed 0B of archived journals from /run/log/journal.

			donnie@ubuntu2004:~$

			Finally, shut down the virtual machine, restore from the snapshot, and restart the virtual machine.

			Note

			If you don't want your Ubuntu machine to persistently store journald log files, either delete the /var/log/journal/ directory or go into the /etc/systemd/journald.conf file and change the #Storage=auto line to Storage=volatile.

			The final thing I want to mention about Ubuntu is that when you install the operating system, the user that gets created by the installer is a member of both the sudo and adm groups. Members of the sudo group have full sudo privileges, as you probably already know. On most other distros, you'd need to use sudo to view system log files. On Ubuntu machines, members of the adm group can view all rsyslog or journald logs without sudo privileges.

			Okay, that does it for journald on Ubuntu. Now, let's move on and look at journald on RHEL-type systems.

			Understanding journald on RHEL-type systems

			There are a few big differences in how things are done in the Red Hat world. First, on your AlmaLinux machine, you'll see that there is no /var/log/journal/ directory, which means that journald log files will only be created in the /run/log/journal/ directory and will disappear every time you shut down or reboot the machine. If you want to change that, all you have to do is create that journal subdirectory, like this:

			[donnie@localhost ~]$ sudo mkdir /var/log/journal

			You'll immediately see that the journald log files are now persistent.

			Note

			Before you make the journald log files persistent on a production machine, evaluate whether or not you need to.

			The other big difference is that on RHEL-type systems, journald and rsyslog work together, instead of independently. Instead of having both journald and rsyslog gather information from the rest of the operating system, only journald does. Then, rsyslog obtains the information from journald and stores it in the normal rsyslog text files. We can see how that's enabled in the top portion of the /etc/rsyslog.conf file:

			#### MODULES ####

			. . .

			. . .

			module(load="imjournal" # provides access to the systemd journal

			 StateFile="imjournal.state") # File to store the position in the journal

			. . .

			. . .

			Unlike the old syslog service that rsyslog replaced, you can extend the capabilities of rsyslog by adding new modules to it. Here, we can see the imjournal module, that allows rsyslog to receive data from the journald service. So, on RHEL 8-type machines, journald gathers the data from the rest of the system and passes it to rsyslog.

			The final big difference is that on RHEL-type systems, you'll need the proper sudo privileges to view all of the log files. The adm group is there, but adding yourself to it doesn't do anything for you.

			Now that we've seen the differences between how journald is set up on Ubuntu and RHEL, let's look at how to use journalctl, which works the same across all distros.

			Using journalctl

			The journalctl utility is cool because it has so much flexibility. Let's start by looking at the various ways to search for and display log data. We'll do this on the Ubuntu machine because Ubuntu's persistent journald logs will give us more to look at.

			Searching for and viewing log data with journalctl

			The simplest command for viewing log files is just journalctl. As we see here, this will show you pretty much the same information that you'd see when you open a normal rsyslog file in less. You'll also see that the journalctl output is automatically piped into less:

			donnie@ubuntu2004:~$ journalctl

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-10 14:23:17 ED>

			Jan 05 20:46:55 ubuntu2004 kernel: Linux version 5.4.0-59-generic (buildd@lcy01>

			Jan 05 20:46:55 ubuntu2004 kernel: Command line: BOOT_IMAGE=/vmlinuz-5.4.0-59-g>

			Jan 05 20:46:55 ubuntu2004 kernel: KERNEL supported cpus:

			Jan 05 20:46:55 ubuntu2004 kernel: Intel GenuineIntel

			Jan 05 20:46:55 ubuntu2004 kernel: AMD AuthenticAMD

			Jan 05 20:46:55 ubuntu2004 kernel: Hygon HygonGenuine

			. . .

			. . .

			Jan 05 20:46:55 ubuntu2004 kernel: BIOS-e820: [mem 0x00000000fffc0000-0x0000000>

			Jan 05 20:46:55 ubuntu2004 kernel: BIOS-e820: [mem 0x0000000100000000-0x0000000>

			Jan 05 20:46:55 ubuntu2004 kernel: NX (Execute Disable) protection: active

			Jan 05 20:46:55 ubuntu2004 kernel: SMBIOS 2.5 present.

			lines 1-26

			A big difference from what you're used to with rsyslog is that long lines don't wrap around. Instead, they extend beyond the right-hand side of the visible window. To see the rest of these lines, you'll need to use the right cursor key. Other than that, you can use the same search and navigation commands that you'd normally use with the less utility. For example, to go directly to the bottom of the journalctl output, just use the Shift + G key combination. (Be patient, though, because journalctl has to read through all of those files that I showed you earlier, which takes a while.) To go to a specific line, just enter the line number followed by the lowercase g. To search for a text string, hit the / key and enter the search term. When you're done, just hit the Q key to quit.

			Note

			I should point out that since I'm using the Ubuntu virtual machine for this, where I'm a member of the adm group, I don't need sudo privileges to view all system logs. If you decide to try this on the AlmaLinux machine, you'll need to use sudo. Otherwise, you'll only see your user logs.

			If you look at the journalctl man page, you'll see a wide selection of display and search options. I can't demonstrate all of them to you, but we can look at a few examples.

			On a machine with persistent journald log files, you might just want to see the log entries from the current boot-up session. Now, to make this work, reboot your machine a few times so that you'll have more to see. Then, use journalctl -b, like this:

			donnie@ubuntu2004:~$ journalctl -b

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-10 15:03:43 ED>

			Aug 10 14:20:38 ubuntu2004 kernel: Linux version 5.4.0-80-generic (buildd@lcy01>

			Aug 10 14:20:38 ubuntu2004 kernel: Command line: BOOT_IMAGE=/vmlinuz-5.4.0-80-g>

			. . .

			. . .

			Here, you can see that the logs began in January 2021, but the first entry it shows here is for the current date of August 10 at 2:20 P.M., which is when I last booted this virtual machine. To see the log entries from the previous boot-up session, just add a -1, like this:

			donnie@ubuntu2004:~$ journalctl -b -1

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-10 15:07:27 ED>

			Aug 10 13:36:44 ubuntu2004 kernel: Linux version 5.4.0-80-generic (buildd@lcy01>

			Aug 10 13:36:44 ubuntu2004 kernel: Command line: BOOT_IMAGE=/vmlinuz-5.4.0-80-g>

			. . .

			. . .

			So, it looks like I had booted this machine earlier today, at 1:36 P.M. You can also view files from earlier boot-up sessions by specifying a different number. For example, you can use -2 to display files from two boot-up sessions ago, -10 to show files from 10 boot-up sessions ago, and so on.

			To see a list of all bootups, use the --list-boots option:

			donnie@ubuntu2004:~$ journalctl --list-boots

			-46 7c611db8974b4cdb897853c4367048cf Tue 2021-01-05 20:46:55 EST—Tue 2021-01-05 20:57:29 EST

			-45 643f70296ebf4b5c8e798f8f878c0ac5 Thu 2021-02-11 16:16:06 EST—Thu 2021-02-11 20:03:42 EST

			-44 139f7be3bc3d43c69421c68e2a5c76b8 Mon 2021-03-15 15:36:01 EDT—Mon 2021-03-15 16:42:32 EDT

			. . .

			. . .

			-1 9a4781c6b0414e6e924cc391b6129185 Wed 2021-08-25 17:24:56 EDT—Wed 2021-08-25 21:48:06 EDT

			 0 354575e3e3d747039f047094ffaaa0d2 Mon 2021-08-30 16:28:29 EDT—Mon 2021-08-30 16:39:49 EDT

			donnie@ubuntu2004:~$

			It looks like I've booted this virtual machine 47 times since I've created it. The long hexadecimal number you can see in the second field is the ID number of the boot-up session.

			The -g option allows you to grep for either specific text strings or Perl-compatible regular expressions. If your search term consists only of lowercase letters, then the search will be case-insensitive. If the search term includes any uppercase letters, then the search is case-sensitive. For example, using journalctl -g fail shows you all the entries that contain some form of fail, regardless of whether fail contains lowercase, uppercase, or both upper and lowercase letters. But if you use journalctl -g Fail, you'll only see entries that contain the specific specific string, Fail. If your search term consists of only lowercase letters and you want to make the search case-sensitive, just use the --case-sensitive= option, like this:

			donnie@ubuntu2004:~$ journalctl -g fail --case-sensitive=true

			The priority levels for journald log messages are the same as for the ryslog log messages. The only difference is that you can now use either the name or the number of the priority level in your searches. In order of descending importance, the priority levels are:

			
					0 or emerg: This is the emergency level, for things such as kernel panics. (Hopefully, you'll rarely ever see these.)

					1 or alert: These aren't quite an emergency, but they're still bad news.

					2 or crit: Don't be too surprised if you see some critical messages. These can be caused by something as simple as a user fumble-fingering his or her password. They could also be caused by someone trying to brute-force a password, so it's worth your while to pay attention to these.

					3 or err: These could be caused by a service that fails to start, a program that runs out of memory, problems with accessing a hardware device, and so forth.

					4 or warning: You'll see lots of these, but most are nothing to worry about. Normally, most of them will be kernel messages from when you boot up the machine.

					5 or notice: These don't constitute an emergency, but you still want to take notice of them. (See what I did there?)

					6 or info: Most log messages you see should be of the info level.

					7 or debug: This is is the lowest priority. It's not enabled by default on rsyslog, but it is on journald.

			

			Now, let's say that you want to only see the emerg (emergency) messages. Use the -p option with either the number or the name of the priority level, like this:

			donnie@ubuntu2004:~$ journalctl -p 0

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-31 14:50:38 EDT. --

			-- No entries --

			donnie@ubuntu2004:~$ journalctl -p emerg

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-31 14:50:39 EDT. --

			-- No entries --

			donnie@ubuntu2004:~$

			So, there are no emergency messages, which is a good thing. What about alert messages? Let's see:

			donnie@ubuntu2004:~$ journalctl -p 1

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-31 14:51:35 EDT. --

			-- No entries --

			donnie@ubuntu2004:~$

			Cool. There are none of them, either. But from priority level 2 (crit) on down, it's a different story, as we see here:

			donnie@ubuntu2004:~$ journalctl -p 2

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-31 14:51:38 EDT. --

			Apr 03 17:09:22 ubuntu2004 sudo[185694]: pam_unix(sudo:auth): auth could not identify password for [donnie]

			-- Reboot --

			Jul 23 15:16:14 ubuntu2004 sudo[48285]: pam_unix(sudo:auth): auth could not identify password for [donnie]

			-- Reboot --

			Jul 27 15:27:54 ubuntu2004 sudo[156593]: pam_unix(sudo:auth): auth could not identify password for [donnie]

			-- Reboot --

			Aug 17 17:10:51 ubuntu2004 sudo[222044]: pam_unix(sudo:auth): auth could not identify password for [donnie]

			donnie@ubuntu2004:~$

			So, there are a few critical messages. Now, things get a bit trickier. It's just that when you specify a priority level, you'll see messages from that priority up through all of the upper priorities that also have messages. So, if I were to specify level 3 (err) right now, I'd also see the level 2 (crit) messages. To see nothing but level 3 messages, specify a range with level 3 as both the starting point and the ending point, like this:

			donnie@ubuntu2004:~$ journalctl -p 3..3

			Curiously, the journalctl man page tells you that you can specify ranges, but it doesn't tell you that you have to use two dots for it. I had to do a DuckDuckGo search to find out.

			Another carryover from rsyslog is the concept of facilities. Different Linux subsystems create different types, or facilities, of messages. The standard facilities are:

			
					auth: Messages generated by the authorization system, login, su, and so on.

					authpriv: Messages generated by the authorization system but only readable by selected users.

					cron: Messages generated by the cron service.

					daemon: Messages generated by all system daemons (sshd, ftpd, and so on),

					ftp: Messages generated by a File Transfer Protocol (FTP) service.

					kern: Messages generated by the Linux kernel.

					lpr: Messages generated by the line printer spooling.

					mail: Messages generated by the operating system's internal mail system.

					mark: These are periodic timestamps that can be inserted into the logs.

					news: This facility deals with messages from Usenet newsgroup services, which have pretty much died off. So, you'll likely never see any of these messages.

					syslog: Messages that are generated by rsyslog.

					user: Messages generated by users.

					uucp: Messages from the Unix-to-Unix copy system. This system also has pretty much died off, so you'll likely never see any of these messages, either.

					local0 through local7: You can use these to define custom facilities.

			

			To see messages from one specific facility, use the --facility option, like this:

			donnie@ubuntu2004:~$ journalctl --facility uucp

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-31 15:46:58 EDT. --

			-- No entries --

			donnie@ubuntu2004:~$

			Okay, I did tell you that there would likely be no uucp messages. For a more realistic example, let's look at auth and authpriv messages, and compare the difference between them:

			donnie@ubuntu2004:~$ journalctl --facility authpriv

			. . .

			. . .

			donnie@ubuntu2004:~$ journalctl --facility auth

			For our final example, let's get fancy. Let's look at priority 4 daemon messages that have come up since yesterday:

			donnie@ubuntu2004:~$ journalctl --facility daemon -p 4..4 -S yesterday

			All right, that about covers it for priorities and facilities.

			Note

			To see a list of all of the available facilities, just do:

			journalctl --facility=help

			You can also view log entries for a certain user. To do that, you must obtain the user's UID, like this:

			donnie@ubuntu2004:~$ id frank

			uid=1002(frank) gid=1002(frank) groups=1002(frank)

			donnie@ubuntu2004:~$

			So, Frank's UID is 1002. Now, let's view his log entries:

			donnie@ubuntu2004:~$ journalctl _UID=1002

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-10 15:47:17 ED>

			Jul 23 15:10:01 ubuntu2004 systemd[40881]: Reached target Paths.

			Jul 23 15:10:01 ubuntu2004 systemd[40881]: Reached target Timers.

			. . .

			. . .

			Okay, that's good. But all I want to see is his log entries for today. I can use either the -S or --since option for this:

			donnie@ubuntu2004:~$ journalctl _UID=1002 -S today

			-- Logs begin at Tue 2021-01-05 20:46:55 EST, end at Tue 2021-08-10 15:49:27 ED>

			-- No entries --

			lines 1-2/2 (END)

			Okay, Frank hasn't logged in today, which isn't surprising. Remember that Frank is a cat, which means that he spends most of his time sleeping.

			Now, let's say that you want to view information about the Apache web server service, but you want to see it in JSON format. All right, let's do this:

			donnie@ubuntu2004:~$ journalctl -u apache2 -o json

			{"_EXE":"/usr/lib/systemd/systemd","SYSLOG_IDENTIFIER":"systemd","_CMDLINE":"/s>

			{"__CURSOR":"s=a2d77617383f477da0a4d539e137b488;i=37181;b=88df3ae40cb9468a8d13a>

			{"_HOSTNAME":"ubuntu2004","JOB_ID":"3311","__CURSOR":"s=a2d77617383f477da0a4d53>

			. . .

			. . .

			Is this output not pretty enough for you? No problem; we can make it pretty:

			donnie@ubuntu2004:~$ journalctl -u apache2 -o json-pretty

			{

			 "_UID" : "0",

			 "_CMDLINE" : "/sbin/init maybe-ubiquity",

			 "_CAP_EFFECTIVE" : "3fffffffff",

			 "JOB_TYPE" : "start",

			 "_PID" : "1",

			 "_GID" : "0",

			 "CODE_FILE" : "src/core/job.c",

			 "__CURSOR" : "s=a2d77617383f477da0a4d539e137b488;i=3717c;b=88df3ae40cb9>

			. . .

			. . .

			Note that more data fields show up in JSON format than in the standard default format. That's because the default output format for journalctl is meant to emulate the standard rsyslog format.

			Now, let's say that you just want to see Apache information from yesterday, and you want to save it to a JSON file and view the output on the screen at the same time. The --no-pager option allows you to pipe the journalctl output into another utility, as we're doing here with the tee utility:

			donnie@ubuntu2004:~$ journalctl -u apache2 -S yesterday -U today -o json --no-pager | tee apache2.json

			You can also use --no-pager to pipe output into the standard Linux text filtering and manipulation utilities, such as grep or awk. This can be handy if you need to write shell scripts for use in Nagios or Icinga plugins, for example.

			I could give you a lot more examples, but you get the idea. Besides, this is one of those rare instances in the world of free-as-in-speech software where the documentation that other people have written is so good that I can't improve upon their efforts. So, if you want to see more, I'll direct your attention to the journalctl man page and the resources in the Further reading section.

			Sealing journald log files for security

			I've already told you how easy it is for a malicious person to tamper with the text-mode rsyslog files to delete his or her nefarious activities. The journald log files are already harder to tamper with because they're in binary format. We can make it even harder to tamper with them by sealing them. (Of course, this only works if you have persistent journald logs.)

			The first step is to create a set of Forward Secure Sealing (FSS) keys, like this:

			donnie@ubuntu2004:~$ sudo journalctl --setup-keys

			This command creates two keys. The sealing key is named fss and is stored in the same directory as the journald log files, as we see here:

			donnie@ubuntu2004:~$ cd /var/log/journal/55520bc0900c428ab8a27f5c7d8c3927/

			donnie@ubuntu2004:/var/log/journal/55520bc0900c428ab8a27f5c7d8c3927$ ls -l fss

			-rw-------+ 1 root systemd-journal 482 Aug 10 16:50 fss

			donnie@ubuntu2004:/var/log/journal/55520bc0900c428ab8a27f5c7d8c3927$

			The verification key only appears as a text string on your screen, as we see here:

			
				
					[image:]
				

			

			Figure 14.1 – Creating the Forward Secure Sealing (FSS) keys

			It says to write this key down, but I'd rather cheat by copying and pasting it into a text file that I can store in a secure location. (For this demo, you can just store the text file in your home directory.)

			Now, you can periodically run a verify operation to ensure that nobody has tampered with your log files. Just copy and paste the verification key into the command, like this:

			donnie@ubuntu2004:~$ sudo journalctl --verify --verify-key=43e654-62c3e2-519f3b-7d2850/1b9cb3-35a4e900

			PASS: /var/log/journal/55520bc0900c428ab8a27f5c7d8c3927/user-1000@3ebae2fd52f7403bac3983eb8a90d2ef-0000000000052181-0005beefb66cbef3.journal

			PASS: /var/log/journal/55520bc0900c428ab8a27f5c7d8c3927/user-1000@53aedefe543040f48dd89ba98d7f9aae-00000000000a33c1-0005c704cacbdd12.journal

			. . .

			. . .

			That's about it for sealing your log files. Now, let's talk very briefly about setting up remote logging with journald.

			Setting up remote logging with journald

			Sometimes, it's handy to set up a central log collection server and have all the other machines on the network send their log files to it.

			As I've already said, journald remote logging is still in a proof-of-concept phase and isn't considered ready for production use. Also, most third-party log-aggregation utilities are still set up to use plaintext rsyslog files. So, if you have remote logging on your site or if you need to set up remote logging, you'll most likely use rsyslog.

			However, I do realize that some of you might be interested in playing around with a remote journald logging setup. If that's the case, I'd like to direct your attention to the procedure that's linked in the Further reading section. However, be aware that you'll need to install security certificates on the journald log server and all of the clients. This procedure has you install certificates from Let's Encrypt, which requires you to have your machines in a domain that's registered on the public Domain Name Service (DNS) servers. If the Let's Encrypt installer can't find your machines on a public DNS server, the install operation will abort.

			Fortunately, if you just want to set up centralized journald logging for an internal LAN, you can modify the procedure so that it uses certificates that you create locally from a local Certificate Authority server. (Showing you how to set up a local Certificate Authority is beyond the scope of this book, but you can read about it in my other book, Mastering Linux Security and Hardening.)

			Well, I think that that should do it for journald. Let's wrap things up and move on.

			Summary

			In this chapter, we covered the journald logging system and compared it to the tried-and-true rsyslog. First, we looked at the pros and cons of both rsyslog and journald. Then, we saw how the two logging systems are implemented in both Ubuntu and RHEL distros. After that, we saw the various viewing, searching, and formatting options that we can use with the journalctl utility. We wrapped up by learned how to make our journald log files more tamper-resistant and briefly discussed setting up a centralized journald log server.

			In the next chapter, we'll look at using systemd's own network services. I'll see you there!

			Questions

			Answer the following questions to test your knowledge of this chapter:

			
					What is the major difference between journald and rsyslog?A. journald stores files in plaintext format, while rsyslog stores files in binary format.
B. There is no difference.
C. rsyslog stores files in plaintext format, while journald stores files in binary format.

					Which of the following statements is true?A. Modern systemd-based Linux distros come with either rsyslog or journald, but not both.
B. journald and rsyslog always work independently of each other.
C. Modern systemd-based Linux distros come with both rsyslog and journald.
D. journald and rsyslog can never work independently of each other.

					What are two major differences in how journald is implemented on Ubuntu and RHEL? (Choose 2.)A. journald logs are persistent on RHEL, but not on Ubuntu.
B. On RHEL, journald works completely independently of rsyslog. On Ubuntu, they work together.
C. On RHEL, journald and rsyslog work together. On Ubuntu, they work independently.
D. On Ubuntu, journald logs are persistent. On RHEL, they are not.
E. There is no difference.

					Which of the following commands would delete all but the most recent one GB worth of journald log files?A. sudo journalctl --vacuum-size=1G
B. sudo journalctl --rotate
C. sudo journalctl --size=1G
D. sudo journalctl --clean=1G

			

			Answers

			
					C

					C

					C, D

					A

			

			Further reading

			The rocket-fast syslog server (the rsyslog project page):

			
					https://www.rsyslog.com/

					Why journald?

					https://www.loggly.com/blog/why-journald/

					Understanding journald:

					https://linuxconcept.com/tutorial/understanding-journald/

					How to use journalctl to view and manipulate systemd logs:

					https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs

					Did you know that journald can give JSON output?

					https://ailogs.design.blog/2020/02/01/linux-logs-did-you-know-systemd-journald-can-give-json-output/

					Logging with journald:

					https://sematext.com/blog/journald-logging-tutorial/

					How to centralize logs with journald on Ubuntu 20.04:

					https://www.digitalocean.com/community/tutorials/how-to-centralize-logs-with-journald-on-ubuntu-20-04

			

		

	
		
			Chapter 15: Using systemd-networkd and systemd-resolved

			The systemd ecosystem has its own networking components. Using these components is purely optional, and you might even find that you'll never need to use them. However, there are times when using systemd's networking components might help you do things that you can't do with the traditional Linux NetworkManager.

			In this chapter, we will cover the following topics:

			
					Understanding networkd and resolved

					Understanding Netplan on Ubuntu

					Understanding networkd and resolved on RHEL-type machines

					Using networkctl and resolvectl

					Viewing the networkd and resolved unit files

			

			All right, let's jump in!

			Technical requirements

			We'll start with the Ubuntu Server virtual machine. (Note that you need to use Ubuntu Server because the desktop versions of Ubuntu still use the old NetworkManager by default.) Later in this chapter, we'll work with AlmaLinux.

			So, let's start by providing a brief explanation of networkd and resolved.

			Check out the following link to see the Code in Action video: https://bit.ly/31mmXXZ

			Understanding networkd and resolved

			The traditional NetworkManager has been around for quite some time, and it's still the most appropriate solution for most Linux desktops and laptops. The main reason that Red Hat developed it was to enable Linux-powered laptops to instantly switch back and forth between wired and wireless networks, or from one wireless domain to another. NetworkManager also still works well for just normal Linux servers. All RHEL-type distros and all desktop versions of Ubuntu still use NetworkManager by default.

			Note

			I'm not always going to type systemd-networkd or systemd-resolved. Unless I'm typing actual commands, I'm just going to shorten the names to networkd and resolved, which is what most people do anyway.

			You already know that I have this creepy habit of reading your mind. So, I know that you're thinking, But Donnie, if NetworkManager is so good, why do we need networkd and resolved? Ah, I'm glad you asked. It's just that you can do certain things with networkd and resolved that you can't do quite as easily with NetworkManager. For example, you can use networkd to set up a bridged network for running containers. This allows you to directly assign IP addresses to your containers so that they can be directly accessed from the outside world. With resolved, you can set up split DNS resolution, obtain DNS server addresses from either a DHCP server or an IPv6 router advertisement, and use DNSSEC, MulticastDNS, and DNS-over-TLS. On the other hand, NetworkManager is still the best solution for normal desktop and laptop usage, due to its ability to instantly switch between networks whenever needed.

			On a system that's running a pure networkd environment, the network configuration would be stored in one or more .network files in the /etc/systemd/network/ directory. However, as I've already said, the RHEL distros don't use networkd by default, so at this point, there are no .network files on the AlmaLinux machine to show you. Ubuntu Server does use networkd by default, but the Ubuntu engineers have done something that makes things a bit more interesting. Instead of configuring either networkd or NetworkManager in the normal way, they created Netplan, which we'll look at next.

			Understanding Netplan on Ubuntu

			Netplan is the new network configuration tool for Ubuntu. On a desktop machine, it doesn't do much except tell the system to use NetworkManager. On a server, you would create the networkd configuration in a .yaml file in the /etc/netplan/ directory. Netplan will take this .yaml file and translate its contents into networkd format.

			Viewing installer-generated Netplan configurations

			To begin, I'd like to show you the default configuration on an Ubuntu desktop machine. (Yeah, I know. I didn't tell you that you'd need an Ubuntu desktop virtual machine, but that's okay. This is the only time we'll need it, so you can just look at what I'm showing you here.) In the /etc/netplan/ directory, we have the default configuration file that was created when I created the virtual machine:

			donnie@donald-virtualbox:~$ cd /etc/netplan/

			donnie@donald-virtualbox:/etc/netplan$ ls -l

			total 4

			-rw-r--r-- 1 root root 104 Feb 3 2021 01-network-manager-all.yaml

			donnie@donald-virtualbox:/etc/netplan$

			Inside the 01-network-manager-all.yaml file, we have this:

			# Let NetworkManager manage all devices on this system

			network:

			 version: 2

			 renderer: NetworkManager

			Here's the breakdown:

			
					The network: line is flush with the left-hand side of the screen, which means that this is a new node. The next two lines are indented by one space, which means that they are part of this node definition.

					What the version: 2 line means is unclear. The netplan man page says that it's a network mapping, but doesn't explain it further, other than to indicate that it might have something to do with the version of YAML that Netplan uses. Or, it could be the syntax version of the netplan configuration. It's hard to say for sure because there appears to be no documentation that clears up the mystery. At any rate, the man page does indicate that this version: 2 line always has to be present in the definition for a network: node.

					The renderer: line tells the system to use NetworkManager, and all the other configuration is done within the normal NetworkManager files. Since this is a desktop machine, most people would just use the GUI management utilities to reconfigure the network. (Most GUI-type utilities are self-explanatory, so we won't say anything more about them.) If no renderer: line is present, then the system will use networkd instead of NetworkManager.Note
When creating or editing .yaml files, remember that proper indentation is very important. If the indentation isn't correct, things won't work. Also, tab characters aren't allowed in .yaml files, so you'll need to use the spacebar to do the indentation.

			

			In contrast, Ubuntu Server is configured to use networkd. So, the Netplan configuration that was created by the Ubuntu Server installer looks like this:

			donnie@ubuntu2004:/etc/netplan$ ls

			00-installer-config.yaml

			donnie@ubuntu2004:/etc/netplan$ cat 00-installer-config.yaml

			# This is the network config written by 'subiquity'

			network:

			 ethernets:

			 enp0s3:

			 dhcp4: true

			 version: 2

			donnie@ubuntu2004:/etc/netplan$

			The network: node is always the top-level node. Under that, we see the ethernets: node, which defines the network interface. (In this case, the interface's name is enp0s3.) The dhcp4: true line tells the system to obtain an IPv4 address from a DHCP server. (In this case, the DHCP server is built into my internet gateway router.)

			When the network starts, Netplan will take this .yaml file and translate it into networkd format. However, it doesn't store a permanent copy of the .network file. Instead, it creates a transient .network file in the /run/systemd/network/ directory, as we see here:

			donnie@ubuntu2004:/run/systemd/network$ ls -l

			total 4

			-rw-r--r-- 1 root root 102 Aug 13 15:33 10-netplan-enp0s3.network

			donnie@ubuntu2004:/run/systemd/network$

			Inside this file, we can see this:

			[Match]

			Name=enp0s3

			[Network]

			DHCP=ipv4

			LinkLocalAddressing=ipv6

			[DHCP]

			RouteMetric=100

			UseMTU=true

			At long last, we get to see what an actual networkd configuration file looks like, and we see that's it's divided into the [Match], [Network], and [DHCP] sections. As I mentioned previously, though, this isn't a permanent file. It will disappear when you shut down or reboot the machine, and reappear when the machine boots back up. (On a non-Ubuntu machine that doesn't use Netplan, you would have a permanent copy of this file in the /etc/systemd/network/ directory.) Most of this file is self-explanatory, but there are a couple of interesting things. Under the [Network] section, we see that IPv6 LinkLocalAddressing is enabled, even though there's nothing about it in the Netplan .yaml file. Under the [DHCP] section, we see that the value for the Maximum Transmission Unit for this network link will be obtained from the DHCP server. (Most of the time, that value will be set to 1500.) RouteMetric=100 defines the priority that will be given to this network link. (Of course, there's only one network link here, so this isn't doing anything for us.)

			To show what a static IP address configuration looks like, I created a new Ubuntu Server machine and told the installer to create a static configuration. The Netplan .yaml file on that machine looks like this:

			donnie@ubuntu2004-staticip:/etc/netplan$ cat 00-installer-config.yaml

			# This is the network config written by 'subiquity'

			network:

			 ethernets:

			 enp0s3:

			 addresses:

			 - 192.168.0.49/24

			 gateway4: 192.168.0.1

			 nameservers:

			 addresses:

			 - 192.168.0.1

			 - 8.8.8.8

			 version: 2

			donnie@ubuntu2004-staticip:/etc/netplan$

			The generated transient .network file looks like this:

			donnie@ubuntu2004-staticip:/run/systemd/network$ cat 10-netplan-enp0s3.network

			[Match]

			Name=enp0s3

			[Network]

			LinkLocalAddressing=ipv6

			Address=192.168.0.49/24

			Gateway=192.168.0.1

			DNS=192.168.0.1

			DNS=8.8.8.8

			donnie@ubuntu2004-staticip:/run/systemd/network$

			This time, all we have is just the [Match] and [Network] sections. Since we're not using DHCP on this machine, there's no [DHCP] section.

			Now, keep in mind that you don't have to use the default Netplan configuration that was created when you installed the operating system. You can edit or replace the default .yaml configuration file as your needs dictate. Let's look at that next.

			Creating Netplan configurations

			Now, let's say that we want to convert our first Ubuntu Server machine from DHCP addressing into static addressing. The first thing I'll do is rename the current .yaml file to keep it as a backup in case I ever want to revert back:

			donnie@ubuntu2004:/etc/netplan$ sudo mv 00-installer-config.yaml 00-installer-config.yaml.bak

			[sudo] password for donnie:

			donnie@ubuntu2004:/etc/netplan$

			Next, I'll create the new 00-static-config.yaml file, like this:

			donnie@ubuntu2004:/etc/netplan$ sudo vim 00-static-config.yaml

			donnie@ubuntu2004:/etc/netplan$

			Let's make this new file look like this:

			network:

			 ethernets:

			 enp0s3:

			 addresses:

			 - 192.168.0.50/24

			 gateway4: 192.168.0.1

			 nameservers:

			 addresses:

			 - 192.168.0.1

			 - 8.8.8.8

			 - 208.67.222.222

			 - 208.67.220.220

			 version: 2

			Okay, I'll confess that I cheated a bit by copying and pasting this from the other virtual machine. I then changed the IP address and added the addresses for two other DNS servers. For the record, the DNS servers I'm using here are:

			
					192.168.0.1: This is the address of my internet gateway router. This router has been configured to use the DNS servers that are run by my ISP, which is TDS Telecom. So, the 192.168.0.1 address isn't the real DNS server.

					8.8.8.8: This is one of the addresses for Google's DNS servers.

					208.67.222.222 and 208.67.220.220: These addresses are for the DNS servers that are maintained by the OpenDNS organization.

			

			So, the more the merrier when it comes to nameservers: addresses. If one nameserver goes down, we'll just use another one, which eliminates one single-point-of network failure.

			After saving the new file, you need to apply it, like so:

			donnie@ubuntu2004:/etc/netplan$ sudo netplan apply

			Be aware that if you do this from a remote terminal, you might not ever see the command prompt come back, which will make you think that things got stuck. It's not that, it's just that if you assign a different IP address from what the machine had to begin with, you'll break the SSH connection. (In fact, that's what just happened for me.) So, in real life, you might want to do this from the server's local terminal instead of remotely.

			When you use the apply operation, you're generating the new networkd configuration and restarting the networkd service. The generated networkd configuration should now look something like this:

			donnie@ubuntu2004:/run/systemd/network$ cat 10-netplan-enp0s3.network

			[Match]

			Name=enp0s3

			[Network]

			LinkLocalAddressing=ipv6

			Address=192.168.0.50/24

			Gateway=192.168.0.1

			DNS=192.168.0.1

			DNS=8.8.8.8

			DNS=208.67.222.222

			DNS=208.67.220.220

			donnie@ubuntu2004:/run/systemd/network$

			Now, let's try something else. Let's pretend that our virtual machine has multiple network interfaces, and we want to make doubly sure that this network configuration always gets applied to the correct interface. We'll do that by assigning this configuration to the MAC address of the desired interface. First, we'll use ip a to get the MAC address, like this:

			donnie@ubuntu2004:~$ ip a

			. . .

			. . .

			2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000

			 link/ether 08:00:27:f2:c1:7a brd ff:ff:ff:ff:ff:ff

			 inet 192.168.0.50/24 brd 192.168.0.255 scope global enp0s3

			 valid_lft forever preferred_lft forever

			 inet6 fe80::a00:27ff:fef2:c17a/64 scope link

			 valid_lft forever preferred_lft forever

			. . .

			. . .

			As you likely already know, the hardware address of a network interface goes by many names. Most of us know it as the MAC address. It's also known as the physical address, the hardware address, or, as we see here, the link/ether address. Anyway, let's copy that address so that we can paste it into the .yaml file. Under the enp0s3: node of the configuration file that we just created, we'll insert a new match: node with the macaddress: property of the desired network interface. The modified file should now look like this:

			network:

			 ethernets:

			 enp0s3:

			 match:

			 macaddress: 08:00:27:f2:c1:7a

			 addresses:

			 - 192.168.0.50/24

			 gateway4: 192.168.0.1

			 nameservers:

			 addresses:

			 - 192.168.0.1

			 - 8.8.8.8

			 - 208.67.222.222

			 - 208.67.220.220

			 version: 2

			This time, instead of using an apply operation, we'll try a try operation, like this:

			donnie@ubuntu2004:/etc/netplan$ sudo netplan try

			Warning: Stopping systemd-networkd.service, but it can still be activated by:

			 systemd-networkd.socket

			Do you want to keep these settings?

			Press ENTER before the timeout to accept the new configuration

			Changes will revert in 110 seconds

			Configuration accepted.

			donnie@ubuntu2004:/etc/netplan$

			The netplan try command does the same thing as netplan apply, except that it gives you a chance to revert back to the old configuration if the new one doesn't work.

			Okay, I've shown you a few examples of how to set up networking with the combination of Netplan and networkd. There's a lot more to this, of course. If you want to see some more complex network setups, your best bet is to consult the netplan man page. Toward the bottom, you'll see some really good examples.

			Okay, let's move on and learn how to use networkd in the Red Hat world.

			Understanding networkd and resolved on RHEL-type machines

			We've already established that all RHEL-type machines, such as our AlmaLinux machine, use NetworkManager by default. Now, let's say that we have an AlmaLinux server and that we need the added capabilities of networkd. The systemd-networkd package isn't installed by default, and it isn't in the normal Alma repositories. However, it is in the third-party EPEL repository, so we'll install it by doing:

			[donnie@localhost ~]$ sudo dnf install epel-release

			Now, we can install the systemd-networkd package, which includes both networkd and resolved:

			[donnie@localhost ~]$ sudo dnf install systemd-networkd

			Next, disable NetworkManager and enable networkd and resolved. Note that I'm not stopping NetworkManager or starting networkd and resolved just yet (I'm logged in remotely and don't want to break my network connection. Besides, I still haven't created a networkd configuration):

			[donnie@localhost ~]$ sudo systemctl disable NetworkManager

			. . .

			[donnie@localhost ~]$ sudo systemctl enable systemd-networkd systemd-resolved

			When configuring networkd, we can't use the systemctl edit command because it will create the .network files in the wrong location. Instead, we'll just cd into the /etc/systemd/network/ directory and use a normal text editor. Let's name this file 99-networkconfig.network and add the following content:

			[Match]

			Name=enp0s3

			[Network]

			DHCP=yes

			IPv6AcceptRA=yes

			The networkd .network files are set up the same way as any other systemd unit file. Instead of having to worry about proper indentation as you would with the Netplan .yaml files, you just place all the parameters into the proper sections. In the [Match] section, we have the name of the network adapter. In the [Network] section, we're saying that we want to get an IP address from DHCP and accept IPv6 router advertisements.

			The next step is to get rid of the static /etc/resolv.conf file and create a symbolic link to the one that gets generated by resolved. We'll do that with these two commands:

			[donnie@localhost ~]$ cd /etc

			[donnie@localhost etc]$ sudo rm resolv.conf

			[sudo] password for donnie:

			[donnie@localhost etc]$ sudo ln -s /run/systemd/resolve/resolv.conf /etc/resolv.conf

			[donnie@localhost etc]$

			If you do an ls -l /etc/resolv.conf command at this point, it will appear that the symbolic link is broken. That's because we haven't started systemd-resolved.service yet. So, resolved still hasn't generated the dynamic resolv.conf file in the /run/systemd/resolve/ directory.

			The final step is to reboot the machine and then test for proper network operation.

			Now, let's say that we want to convert this machine into a static configuration, and we also want to add a few features. Let's edit the /etc/systemd/network/99-networkconfig.network file and make it look like this:

			[Match]

			Name=enp0s3

			MACAddress=08:00:27:d2:fb:23

			[Network]

			Address=192.168.0.51/24

			DNSSEC=yes

			DNSOverTLS=opportunistic

			Gateway=192.168.0.1

			DNS=192.168.0.1

			DNS=8.8.8.8

			DNS=208.67.222.222

			DNS=208.67.220.220

			IPv6AcceptRA=yes

			In the [Match] section, I've added the MACAddress= equal line to ensure that this configuration will always apply to this specific network adapter. As I did previously, I obtained the MAC address by doing an ip a command.

			In the [Network] section, I assigned the IP address with its netmask, the default gateway address, and four DNS server addresses. I'm also forcing this machine to use DNSSEC, as well as to use DNSOverTLS whenever it's available. Once you save this file, either reboot the machine or do a sudo networkctl reload command. Then, verify that the networking works. (Note that you don't need to do a daemon-reload when configuring networkd.)

			Before we move on, I want to talk about those two strange DNS options that you can see here. DNS Security Extensions (DNSSEC) is a fairly new feature that helps prevent DNS cache poisoning attacks. It does this by attaching a cryptographic signature to DNS records so that the DNS resolver on your local machine can verify them before accepting them. If you choose to set this parameter to yes, be sure to test things thoroughly to ensure that you can access everything that you need to access. So far, it's working well here. That surprises me because most websites still aren't set up with DNSSEC cryptographic keys. However, the public DNS root servers and the top-level domain servers are set up with DNSSEC keys, so we can at least verify the responses from them.

			Note

			To get a good idea of how widely DNSSEC is used on the public internet, go to https://dnssec-analyzer.verisignlabs.com/ and enter a domain name of a website. This will show you a simple graphic of what uses DNSSEC and what doesn't.

			The DNSOverTLS feature aims to ensure that all the queries and responses to and from DNS servers are encrypted with the same type of TLS that websites use. It's supposed to protect user privacy, but it's also somewhat controversial. Yeah, it can prevent people from sniffing your DNS queries, and it can prevent an attacker from intercepting the queries and sending back wrong responses. However, in an enterprise environment, it makes it difficult or impossible for network administrators to monitor the websites that employees visit, as well as control access to those websites. Most public DNS servers aren't set up to use TLS, so I set this to opportunistic, which allows this machine to use it if it's available. (Your IT team will need to get together with company management to determine if the advantages of DNSOverTLS outweigh the disadvantages.)

			When you use networkd without Netplan, there will be no dynamic .network file in the /run/systemd/network/ directory, as you saw on the Ubuntu machine. However, resolved will create a dynamic resolv.conf file in the /run/systemd/resolve/ directory. We don't need to go there to see it because we created a symbolic link for it in the /etc/ directory. Let's see what's in it:

			[donnie@localhost etc]$ cat resolv.conf

			. . .

			. . .

			nameserver 192.168.0.1

			nameserver 8.8.8.8

			nameserver 208.67.222.222

			# Too many DNS servers configured, the following entries may be ignored.

			nameserver 208.67.220.220

			[donnie@localhost etc]$

			Oh, dear. It appears that resolved only wants to see up to three DNS servers in its configuration. For now, that's okay. This will enable us to see something else that we need to see a bit later.

			Okay, I've shown you a couple of simple examples of what you can do with networkd and resolved. If you want to be truly amazed, open the systemd.network man page and look at all that's there. (And yes, that is systemd.network, without the d after network.) You can create some very complex setups, and you can view some examples toward the bottom of the man page. What I find especially interesting is that with networkd, you can do some things that you used to have to do with either iptables or nftables. It seems to me that doing these things with networkd would be somewhat simpler. You'll also see that by adding a [DHCPSERVER] section, networkd can function as a simple DHCP server. Adding a [CAN] section allows you to control the Control Area Network (CAN) for automotive systems. Setting up a [BRIDGE] configuration allows you to assign normal IP addresses to containers so that the outside world can access them without having to use port forwarding. Well, the list of what you can do with networkd is quite long, and there's no way that I can cover it all here.

			Finally, I'd like you to open the netplan man page on your Ubuntu Server machine. Even though Netplan is supposed to be a frontend for networkd, you'll see that what you can do with Netplan is only a subset of what you can do when working directly with networkd.

			Now that we've seen the basics of configuring networkd and resolved, let's look at a pair of network diagnostic utilities.

			Using networkctl and resolvectl

			On both the Ubuntu and the Alma machines, you can try out two cool utilities that can help you see what's going on with your network configuration. To see the list of network links and their statuses, use either networkctl or networkctl list. (The list option is the default, so you don't have to type it.) What you will see on the Alma machine should look something like this:

			[donnie@localhost ~]$ networkctl

			IDX LINK TYPE OPERATIONAL SETUP

			 1 lo loopback carrier unmanaged

			 2 enp0s3 ether routable configured

			2 links listed.

			[donnie@localhost ~]$

			On this machine, we only have two links. The OPERATIONAL status of the loopback link shows as carrier, which means that this link is operational but that it's not routable. SETUP shows that the loopback is unmanaged, which means that we can't reconfigure it. The enp0s3 link is our normal Ethernet link, which shows as routable and configured.

			On the Ubuntu Server machine, things are a bit more interesting. As shown here, there are a few more links:

			donnie@ubuntu2004:~$ networkctl

			IDX LINK TYPE OPERATIONAL SETUP

			 1 lo loopback carrier unmanaged

			 2 enp0s3 ether routable configured

			 3 docker0 bridge no-carrier unmanaged

			 4 cali659bb8bc7b1 ether degraded unmanaged

			 7 vxlan.calico vxlan routable unmanaged

			5 links listed.

			donnie@ubuntu2004:~$

			In addition to the two normal links, we have three links that were created when the docker package was installed. The docker0 link is an unmanaged bridge that's currently in a no-carrier OPERATIONAL status. I don't have any containers running, so nothing is using it. The bottom two links are for Kubernetes, which is an orchestration manager for Docker containers. (The calico reference comes from Project Calico, the maintainer of this Kubernetes networking code.) The cali659bb8bc7b1 link is listed as degraded, which means that it is online with a carrier, but it's only valid for link-local addresses.

			The status option shows you the links with their associated IP addresses, the default gateway address, and the addresses of the DNS servers that we want to use. Here's what that looks like on the Ubuntu Server machine:

			donnie@ubuntu2004:~$ networkctl status

			● State: routable

			 Address: 192.168.0.50 on enp0s3

			 172.17.0.1 on docker0

			 10.1.89.0 on vxlan.calico

			 fe80::a00:27ff:fef2:c17a on enp0s3

			 fe80::ecee:eeff:feee:eeee on cali659bb8bc7b1

			 fe80::648c:87ff:fe5f:94d5 on vxlan.calico

			 Gateway: 192.168.0.1 (Actiontec Electronics, Inc) on enp0s3

			 DNS: 192.168.0.1

			 8.8.8.8

			 208.67.222.222

			 208.67.220.220

			. . .

			. . .

			Of course, we've already seen how to reload a modified network configuration. On Ubuntu with Netplan, you'd do either sudo netplan apply or sudo netplan try. On the Alma machine, you'd do sudo networkctl reload.

			To look at DNS server information, we'd use resolvectl. The main thing to note here is that the output is divided into sections. First, there's the Global section, which shows the settings from the /etc/systemd/resolved.conf file. On the Alma machine, these settings look like this:

			[donnie@localhost ~]$ resolvectl

			Global

			 LLMNR setting: yes

			MulticastDNS setting: yes

			 DNSOverTLS setting: no

			 DNSSEC setting: allow-downgrade

			 DNSSEC supported: yes

			 DNSSEC NTA: 10.in-addr.arpa

			 16.172.in-addr.arpa

			. . .

			. . .

			After the Global section, each link has its own settings, which can override the Global settings. Here are the settings for the enp0se link on the Alma machine:

			. . .

			. . .

			Link 2 (enp0s3)

			 Current Scopes: DNS LLMNR/IPv4 LLMNR/IPv6

			 LLMNR setting: yes

			MulticastDNS setting: no

			 DNSOverTLS setting: opportunistic

			 DNSSEC setting: yes

			 DNSSEC supported: yes

			 Current DNS Server: 192.168.0.1

			 DNS Servers: 192.168.0.1

			 8.8.8.8

			 208.67.222.222

			 208.67.220.220

			Look carefully, and you'll see a few Link settings that override the Global settings. Previously, we saw that the resolv.conf file for this machine has a warning about how we've listed too many nameservers, and that resolved might ignore the fourth one. But we see all four nameservers here, so everything is good.

			There are lots more options for both networkctl and resolvectl. I'll let you read about them in the networkctl and resolvectl man pages.

			Next, let's take a brief look at the networkd and resolved unit files.

			Viewing the networkd and resolved unit files

			Before we go, I'd like you to take a quick look at the unit files for networkd and resolved. Here's the list of them:

			[donnie@localhost system]$ pwd

			/lib/systemd/system

			[donnie@localhost system]$ ls -l *networkd*

			-rw-r--r--. 1 root root 2023 Jun 6 22:26 systemd-networkd.service

			-rw-r--r--. 1 root root 640 May 15 12:33 systemd-networkd.socket

			-rw-r--r--. 1 root root 752 Jun 6 22:26 systemd-networkd-wait-online.service

			[donnie@localhost system]$ ls -l *resolved*

			-rw-r--r--. 1 root root 1668 Aug 10 17:19 systemd-resolved.service

			[donnie@localhost system]$

			I'm not going to take the time to trace through them for you because by now, you should be able to do that yourself. I mean, it's mainly a matter of looking everything up in the systemd.directives man page, as we've done quite a few times before. Once you've done that, we'll wrap this baby up.

			Summary

			As always, we've covered a lot of ground in this chapter. We started by comparing NetworkManager to systemd-networkd and systemd-resolved. Next, we looked at how to deal with the Netplan tool on Ubuntu. The RHEL-type distros use NetworkManager by default and don't use Netplan, so we looked at how to convert your Alma machine over to use networkd and resolved. After that, we worked with a couple of diagnostic utilities, and then wrapped things up by briefly looking at the networkd and resolved unit files.

			Now, it's time to talk about time, which we'll do in the next chapter. I'll see you there!

			Questions

			Answer the following questions to test your knowledge of this chapter:

			
					Which of the following statements is true?A. NetworkManager is better for servers because it can instantly switch between networks.
B. NetworkManager is better for servers because it's more versatile.
C. NetworkManager is better for desktops and laptops because it can instantly switch between networks.
D. networkd is better for desktops and laptops because it can instantly switch between networks.

					True or False: If there's no renderer: line in a Netplan .yaml file, the system will default to using NetworkManager.

					On an Ubuntu Server machine, which of the following would you do after you've edited the network configuration file?A. sudo netplan reload
B. sudo networkctl reload
C. sudo netplan restart
D. sudo networkctl restart
E. sudo netplan apply

					What does it mean when a networkctl command shows a link as degraded?A. The link is offline.
B. The link is online, but not operating at full speed.
C. The link is online, but is only valid for link-local addresses.
D. The link is unreliable.

			

			Answers

			
					C

					False

					E

					C

			

			Further reading

			Configuring the network with Netplan on Ubuntu:

			
					https://ubuntu.com/server/docs/network-configuration

					How to configure networking on Ubuntu 20.04 with Netplan:

					https://www.serverlab.ca/tutorials/linux/administration-linux/how-to-configure-networking-in-ubuntu-20-04-with-netplan/

					YAML Tutorial:

					https://www.tutorialspoint.com/yaml/index.htm

					YAML for Beginners:

					https://www.redhat.com/sysadmin/yaml-beginners

					systemd-resolved: Introduction to split DNS:

					https://fedoramagazine.org/systemd-resolved-introduction-to-split-dns/

					Multicast DNS: Name resolution on a small scale:

					https://www.ionos.com/digitalguide/server/know-how/multicast-dns/

					DNS over TLS: An improved security concept:

					https://www.ionos.com/digitalguide/server/security/dns-over-tls/

					Project Calico:

					https://www.tigera.io/project-calico/

			

		

	
		
			Chapter 16: Understanding Timekeeping with systemd

			On modern computer systems, it's vitally important to maintain accurate time. To do that, our computers obtain the current time from a time server while using some implementation of the Network Time Protocol (NTP). In this chapter, we'll look at these various implementations and discuss the pros and cons of each.

			In this chapter, we will cover the following topics:

			
					Understanding the importance of accurate time

					Comparing NTP implementations

					Understanding chrony

					Understanding systemd-timesyncd

					Understanding the Precision Time Protocol (PTP)

			

			All right, it's time to get started!

			Technical requirements

			Timekeeping is done differently in the Ubuntu and RHEL worlds. So, we'll be using both Ubuntu Server and two AlmaLinux virtual machines to look at both of these.

			Check out the following link to see the Code in Action video: https://bit.ly/3Dh4byf

			Understanding the importance of accurate time

			Accurate timekeeping on computers wasn't always real important. My very first computer job involved working with a pair of transistorized computers that were each the size of a refrigerator, and that had orders of magnitude less processing power than a modern smartphone. There was no hardware clock, and there was no NTP. Every time we rebooted these beasts, we just looked at our notoriously inaccurate wall clock and manually entered the time from it. Things didn't change much with the early personal computers. I mean, you still had to set the time manually, but they did eventually come with battery-powered hardware clocks that would still keep time when you shut the computers down.

			Nowadays, it's critically important for computers to maintain accurate time. Scientific computing, log keeping, database updating, and financial transactions all require it. Certain security protocols, such as Kerberos, DNSSEC, and Transport Layer Security (TLS) also require it. Modern stock exchanges use automated trading bots that require it. For these reasons and others besides, mankind invented the NTP.

			The basic concept of NTP is easy to understand. Every modern operating system includes an NTP client. Every time you boot your computer, the NTP client obtains the correct time from a highly accurate NTP server that's someplace on the internet. To ensure even greater time accuracy, some organizations might use a local time source, which could be either a local server or something such as a GPS clock.

			There are several software implementations of NTP. Let's do a quick comparison of them.

			Comparing NTP implementations

			The Original Guy (OG), or reference implementation, of the NTP world is ntpd. It was created way back in the 1980s and served us well for a long time. You can use it on client machines to keep their time synchronized, or you can set it up as a time server. However, it does have several shortcomings, including numerous security problems that were found during a code audit in 2017.

			The chrony implementation, which can also be used as either a client or a server, was created from scratch to fix the shortcomings of ntpd. Unlike ntpd, chrony has the following features:

			
					It works well on computers that have unstable network connections or that get turned off for long periods.

					It works better with virtual machines.

					It can adjust itself better when the speed of the hardware clock oscillator fluctuates due to a temperature change.

					It can achieve sub-microsecond accuracy by using hardware timestamping and a hardware reference clock.

			

			RHEL 7 and its clones were the first Linux distros to ship with chrony instead of ntpd. The RHEL 8 and SUSE distros also use chrony by default.

			Another alternative is systemd-timesyncd, which is part of the systemd ecosystem. Unlike ntpd and chrony, systemd-timesyncd is an implementation of the lighter-weight Simple Network Time Protocol (SNTP), instead of the full-blown NTP. SNTP requires less processing power, which makes it better for low-resource computers. The downside is that SNTP and systemd-timesyncd lack some of the bells and whistles that NTP has. For example, you can't use them to set up a time server, and you can't use them with either hardware timestamping or hardware reference clocks. So, you can forget about getting that good sub-microsecond accuracy with systemd-timesyncd. On the other hand, SNTP and systemd-timesyncd might be all you need for most situations. Ubuntu uses systemd-timesyncd by default, and it will work fine for you most of the time. If it doesn't, it's easy to switch your machine over to chrony.

			The Precision Time Protocol (PTP) isn't an implementation of NTP. Rather, it's an entirely different protocol that's designed for extreme – and I do mean extreme – timekeeping accuracy. To use it, you must have a precision time source on the local network, and you must have switches and routers that can work with it. It uses hardware timestamping and hardware reference clocks to achieve picosecond accuracy.

			Okay, that does it for our overview. Now, let's talk a bit about chrony. We'll look at it on the AlmaLinux machine since Alma uses it by default.

			Understanding chrony on the AlmaLinux machine

			There are two components in the chrony system. We have chronyd as the daemon and chronyc as the user interface. The chronyd component can run in either client or server mode. First, let's look at the unit file for chonyd.

			The chronyd.service file

			There are a few interesting things to look at in the /lib/systemd/system/chronyd.service file. In the [Unit] section, we have this:

			[Unit]

			Description=NTP client/server

			Documentation=man:chronyd(8) man:chrony.conf(5)

			After=ntpdate.service sntp.service ntpd.service

			Conflicts=ntpd.service systemd-timesyncd.service

			ConditionCapability=CAP_SYS_TIME

			The Conflicts= line indicates that we can't run multiple NTP implementations together on the same machine. If systemd detects that either ntpd or systemd-timesyncd is running, then chronyd will fail to start. The ConditionCapability= line indicates that this service runs under a non-privileged account, even though no non-privileged user account is configured in either this unit file or in the /etc/chrony.conf file. Instead, chronyd is hardcoded to run under the non-privileged chrony account. We can confirm this with a simple ps aux command, like so:

			[donnie@localhost ~]$ ps aux | grep chrony

			chrony 727 0.0 0.1 128912 3588 ? S 15:23 0:00 /usr/sbin/chronyd

			donnie 1901 0.0 0.0 12112 1092 pts/0 R+ 16:44 0:00 grep --color=auto chrony

			[donnie@localhost ~]$

			Because chronyd does run under a non-privileged user account, we need to set the CAP_SYS_TIME capability for that non-privileged user account so that it can set the system time.

			Next, let's look at the [Service] section of the chronyd.service file:

			[Service]

			Type=forking

			PIDFile=/run/chrony/chronyd.pid

			EnvironmentFile=-/etc/sysconfig/chronyd

			ExecStart=/usr/sbin/chronyd $OPTIONS

			ExecStartPost=/usr/libexec/chrony-helper update-daemon

			PrivateTmp=yes

			ProtectHome=yes

			ProtectSystem=full

			The ExecStart= line starts chronyd with options that it obtained from the file that's referenced in the EnvironmentFile= line. If we go there, we'll see that no options have been configured:

			[donnie@localhost system]$ cd /etc/sysconfig/

			[donnie@localhost sysconfig]$ cat chronyd

			# Command-line options for chronyd

			OPTIONS=""

			[donnie@localhost sysconfig]$

			The chrony-helper program that's referenced in the ExecStartPost= line is a shell script that obtains the addresses of NTP servers from either a DHCP or a DNS server. At the moment, this line doesn't do anything for us. This is because chronyd is currently configured to contact a pool of NTP servers that is listed in the /etc/chrony.conf file, as shown here:

			[donnie@localhost sysconfig]$ cd /etc/

			[donnie@localhost etc]$ cat chrony.conf

			# Use public servers from the pool.ntp.org project.

			# Please consider joining the pool (http://www.pool.ntp.org/join.html).

			pool 2.cloudlinux.pool.ntp.org iburst

			. . .

			. . .

			At the bottom of the [Service] section, we can see the PrivateTmp=yes, ProtectHome=yes, and ProtectSystem=full lines, which add a measure of security.

			Finally, there's the [Install] section of the chronyd.service file:

			[Install]

			WantedBy=multi-user.target

			Okay, there's nothing exciting here. It's just the standard WantedBy= line that makes this service run in multi-user mode.

			Next, let's look at the chrony.conf file.

			The chrony.conf file

			Most chronyd configuration is done in the /etc/chrony.conf file. (The only exception would be on those rare occasions where you might want to configure some options in the /etc/sysconfig/chronyd file.) I'm not going to cover every option in the file because you can read about them by going to the chrony.conf man page. However, I will point out a couple of things that you might need to reconfigure.

			By default, chrony.conf is configured to obtain the current time from a pool of time servers that are out on the internet, as we see here:

			pool 2.cloudlinux.pool.ntp.org iburst

			The iburst option at the end allows chronyd to update the clock a bit faster when you first boot up the machine. Large organizations might have local timeservers to prevent all machines on their network from going out to the internet to obtain the time. In those cases, you would need to configure this line with the IP address of the local timeserver. (We'll look at this a bit later when we set up a time server.)

			For increased timekeeping accuracy, you can enable hardware timestamping by removing the # symbol from the beginning of the following line:

			#hwtimestamp *

			The only catch is that the network interface adapters in your computer must support hardware timestamping. To verify that, use the ethtool -T command, followed by the name of your network interface adapter. Here's what that looks like on one of my old 2009-model Hewlett-Packard machines:

			donnie@localhost:~> sudo ethtool -T eth1

			Time stamping parameters for eth1:

			Capabilities:

			 software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)

			 software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)

			 software-system-clock (SOF_TIMESTAMPING_SOFTWARE)

			PTP Hardware Clock: none

			Hardware Transmit Timestamp Modes: none

			Hardware Receive Filter Modes: none

			donnie@localhost:~>

			Well, that's not good. There's no PTP hardware clock, and there's no hardware timestamping. Let's see if things look any better on my Dell Precision workstation, which is several years newer:

			
				
					[image:]
				

			

			Figure 16.1 – Hardware timestamping on my Dell Precision T3610 workstation

			Yes, this does look better. We see a PTP hardware clock and hardware timestamping. The bad part is that at the moment, I can't take advantage of this, because this machine is running Lubuntu Linux. Lubuntu, just like Ubuntu, runs systemd-timesyncd, which can't take advantage of hardware timestamping. But that's okay for now. If I were to ever feel the need to, I could easily switch this machine over to chrony. (I'll show you how to do that in just a bit.)

			Now, let's skip to the bottom of the chrony.conf file, where we see these lines:

			# Specify directory for log files.

			logdir /var/log/chrony

			# Select which information is logged.

			#log measurements statistics tracking

			Here, we can see that it's configured to store chronyd logs in the /var/log/chrony/ directory. But if we were to go there now, we'd see nothing but an empty directory. That's because the line at the bottom, which tells chronyd what information to log, is commented out. To change that, just remove the # symbol from the beginning of the line so that it now looks like this:

			log measurements statistics tracking

			Then, restart chronyd:

			[donnie@localhost ~]$ sudo systemctl restart chronyd

			[donnie@localhost ~]$

			You should now see log files in the /var/log/chrony/ directory:

			[donnie@localhost ~]$ cd /var/log/chrony/

			[donnie@localhost chrony]$ ls -l

			total 12

			-rw-r--r--. 1 chrony chrony 2603 Aug 24 14:29 measurements.log

			-rw-r--r--. 1 chrony chrony 1287 Aug 24 14:29 statistics.log

			-rw-r--r--. 1 chrony chrony 792 Aug 24 14:29 tracking.log

			[donnie@localhost chrony]$

			This pretty much covers the basics. Let's get a bit fancier by setting up a chronyd time server.

			Setting up a chronyd time server

			For this demo, you'll need two Alma virtual machines. We'll set up one as the time server and the other to use the time server. (Ideally, we'd want the time server to have a static IP address, but we won't worry about that for now.)

			On the time server machine, edit the /etc/chrony.conf file. Here's the line that you'll change:

			#allow 192.168.0.0/16

			Remove # from the beginning of the line and change the network address so that it matches your own. For me, the network address is correct, but the netmask is wrong. So, I'll change the line so that it looks like this:

			allow 192.168.0.0/24

			Next, restart chronyd:

			[donnie@localhost ~]$ sudo systemctl restart chronyd

			[donnie@localhost ~]$

			The final step for setting up the time server is to open the appropriate firewall ports:

			[donnie@localhost ~]$ sudo firewall-cmd --permanent --add-service=ntp

			success

			[donnie@localhost ~]$ sudo firewall-cmd --reload

			success

			[donnie@localhost ~]$

			Now, switch over to the other Alma virtual machine and edit the /etc/chrony.conf file on it. Comment out the pool line and add a line that points to the IP address of the time server virtual machine. The two lines should now look something like this:

			#pool 2.cloudlinux.pool.ntp.org iburst

			server 192.168.0.14 iburst

			Save the file and restart the chronyd service. When you look at the status of chronyd, you should see that this machine now obtains its time from your time server. It should look something like this:

			[donnie@logserver ~]$ systemctl status chronyd

			● chronyd.service - NTP client/server

			 Loaded: loaded (/usr/lib/systemd/system/chronyd.service; enabled; vendor preset: enabled)

			 Active: active (running) since Tue 2021-08-24 14:59:43 EDT; 55s ago

			 . . .

			. . .

			Aug 24 14:59:48 logserver chronyd[15558]: Selected source 192.168.0.14

			Aug 24 14:59:48 logserver chronyd[15558]: System clock TAI offset set to 37 seconds

			[donnie@logserver ~]$

			Note

			Sometimes need to preface this command with sudo in order to see information about the network time sources.

			That's all there is to it. Let's change gears now and look at the chronyc client utility.

			Using chronyc

			You can use the chronyc utility to either look at information about the chronyd service or to dynamically configure certain aspects of the chronyd service. Let's start by looking at tracking information on our time server:

			[donnie@localhost ~]$ chronyc tracking

			Reference ID : 32CDF46C (50-205-244-108-static.hfc.comcastbusiness.net)

			Stratum : 3

			Ref time (UTC) : Tue Aug 24 19:16:00 2021

			System time : 0.000093940 seconds fast of NTP time

			Last offset : -0.000033931 seconds

			RMS offset : 0.000185221 seconds

			Frequency : 10909.050 ppm fast

			Residual freq : +0.002 ppm

			Skew : 0.344 ppm

			Root delay : 0.016927114 seconds

			Root dispersion : 0.018588312 seconds

			Update interval : 128.6 seconds

			Leap status : Normal

			[donnie@localhost ~]$

			Rather than go over everything here, I'm going to let you read about it by going to the chronyc man page. However, I do want to talk about the Reference ID line at the top.

			The Reference ID line just tells us the hostname or the IP address of the remote time server that this local timeserver is synchronized to. We see that this local time server is synchronized to a remote time server that's operated either by Comcast or by an organization that uses Comcast hosting. Note that this remote time server is a member of the pool that's configured in the chrony.conf file.

			Now, let's look at the Alma machine that we set up as a client of this local time server:

			[donnie@logserver ~]$ chronyc tracking

			Reference ID : C0A8000E (192.168.0.14)

			. . .

			. . .

			[donnie@logserver ~]$

			As expected, we see the IP address of the local time server.

			The sources command will show you all of the time servers that our machine can access. Here are the time servers that are in the default pool for the Alma machines:

			[donnie@localhost ~]$ chronyc sources

			210 Number of sources = 4

			MS Name/IP address Stratum Poll Reach LastRx Last sample

			===

			^* 50-205-244-108-static.hf> 2 9 377 349 -551us[-384us] +/- 43ms

			^+ clock.nyc.he.net 2 8 377 13 +1084us[+1084us] +/- 51ms

			^+ t2.time.gq1.yahoo.com 2 9 377 92 +576us[+576us] +/- 49ms

			^+ linode.appus.org 2 8 377 23 +895us[+895us] +/- 70ms

			[donnie@localhost ~]$

			As before, I'll let you look at the chronyc man page to see what all the fields are.

			So far, we've been able to look at everything with normal user privileges. Looking at other types of information might require sudo privileges, as we see here on the time server:

			[donnie@localhost ~]$ sudo chronyc clients

			[sudo] password for donnie:

			Hostname NTP Drop Int IntL Last Cmd Drop Int Last

			===

			192.168.0.7 29 0 8 - 129 0 0 - -

			localhost 0 0 - - - 8 0 8 287

			[donnie@localhost ~]$

			Very cool. We see the IP address of the virtual machine that we set up as a client of this local time server.

			Just for fun, let's see how much work our local time server has been doing:

			[donnie@localhost ~]$ sudo chronyc serverstats

			NTP packets received : 84

			NTP packets dropped : 0

			Command packets received : 20

			Command packets dropped : 0

			Client log records dropped : 0

			[donnie@localhost ~]$

			This shows the number of NTP packets and command packets that were received from the clients.

			There's a whole lot more to this command than what I can show you here. Your best bet is to read all about it by going to the chronyc man page.

			That's about it for chronyd and chronyc. So, let's shift over to the Ubuntu machine and look at systemd-timesyncd.

			Understanding systemd-timesyncd

			Ubuntu uses systemd-timesyncd by default. It's a simple, lightweight system that's easy to configure. Before we get to that, let's take a quick look at the systemd-timesyncd.service file.

			The systemd-timesyncd.service file

			The [Unit] section of the /lib/systemd/system/systemd-timesyncd.service file looks like this:

			[Unit]

			Description=Network Time Synchronization

			Documentation=man:systemd-timesyncd.service(8)

			ConditionCapability=CAP_SYS_TIME

			ConditionVirtualization=!container

			DefaultDependencies=no

			After=systemd-sysusers.service

			Before=time-set.target sysinit.target shutdown.target

			Conflicts=shutdown.target

			Wants=time-set.target time-sync.target

			Note the ConditionVirtualization=!container line. The ConditionVirtualization= part checks to see if the operating system is running in a virtualized environment. In this case, it wants to see whether it's running in a container. The ! in front of container denotes a negation. In other words, if systemd detects that this operating system is running in a container, then the systemd-timesyncd service won't start.

			In the [Service] section, you'll see a lot more security-related parameters than you saw in the chronyd.service file on the Alma machine. There are so many that I can only show you some of them here:

			[Service]

			AmbientCapabilities=CAP_SYS_TIME

			CapabilityBoundingSet=CAP_SYS_TIME

			ExecStart=!!/lib/systemd/systemd-timesyncd

			LockPersonality=yes

			MemoryDenyWriteExecute=yes

			NoNewPrivileges=yes

			. . .

			. . .

			SystemCallFilter=@system-service @clock

			Type=notify

			User=systemd-timesync

			WatchdogSec=3min

			This makes sense, considering that Ubuntu uses AppArmor as its mandatory access control system instead of SELinux, which is what the Alma machine uses. A default configuration of AppArmor doesn't provide near as much protection as a default configuration of SELinux, so it makes sense to include more security directives in this service file. Also, note the User=systemd-timesync line, which configures the non-privileged user account for this service.

			The [Install] section is a bit different from what we're used to:

			[Install]

			WantedBy=sysinit.target

			Alias=dbus-org.freedesktop.timesync1.service

			Instead of getting started as part of multi-user.target, systemd-timesyncd gets started as part of sysinit.target. So, it gets started much earlier in the boot process.

			Next, let's briefly look at how to configure systemd-timesyncd.

			The timesyncd.conf file

			When I said that we'll briefly cover this, I really did mean briefly. That's because there's not a whole lot to configure. Here's the entirety of the /etc/systemd/timesyncd.conf file:

			[Time]

			#NTP=

			#FallbackNTP=ntp.ubuntu.com

			#RootDistanceMaxSec=5

			#PollIntervalMinSec=32

			#PollIntervalMaxSec=2048

			Everything is commented out, which means that everything is set with its default values. The first thing to notice is that there's nothing set for the NTP= line and that the FallbackNTP= line points to a pool of time servers at ntp.ubuntu.com. So, this machine will only obtain its time from one of the time servers that's in that pool. The remaining three parameters are set with sane values that you'll likely never have to change. (I'll let you read about them in the timesyncd.conf man page.)

			That's enough about this file for now. Now, let's look at a couple of timedatectl options.

			Using timedatectl

			Two timedatectl viewing options are specific to systemd-timesyncd. The timesync-status option looks like this:

			donnie@ubuntu2004-staticip:/etc/systemd$ timedatectl timesync-status

			 Server: 91.189.94.4 (ntp.ubuntu.com)

			Poll interval: 32s (min: 32s; max 34min 8s)

			 Leap: normal

			 Version: 4

			 Stratum: 2

			 Reference: 8CCBCC4D

			 Precision: 1us (-23)

			Root distance: 45.074ms (max: 5s)

			 Offset: -336.094ms

			 Delay: 101.668ms

			 Jitter: 1.560ms

			 Packet count: 214

			 Frequency: -500.000ppm

			donnie@ubuntu2004-staticip:/etc/systemd$

			At the top, we see the remote time server that this machine accesses, and we see that it's a member of the ntp.ubunutu.com pool. Further down, we see that Rootdistance from the time servers comes in at 45.07 milliseconds, which is well within the five seconds that's set in the timesyncd.conf file.

			The other timedatectl option is show-timesync, which looks something like this:

			donnie@ubuntu2004-staticip:~$ timedatectl show-timesync

			FallbackNTPServers=ntp.ubuntu.com

			ServerName=ntp.ubuntu.com

			ServerAddress=91.189.89.198

			RootDistanceMaxUSec=5s

			PollIntervalMinUSec=32s

			PollIntervalMaxUSec=34min 8s

			PollIntervalUSec=32s

			NTPMessage={ Leap=0, Version=4, Mode=4, Stratum=2, Precision=-23, RootDelay=1.129ms, RootDispersion=30.349ms, Reference=11FD227B, OriginateTimestamp=Tue 2021-08-24 17:16:48 EDT, ReceiveTimestamp=Tue 2021-08-24 17:16:48 EDT, TransmitTimestamp=Tue 2021-08-24 17:16:48 EDT, DestinationTimestamp=Tue 2021-08-24 17:16:48 EDT, Ignored=no PacketCount=1, Jitter=0 }

			Frequency=-32768000

			donnie@ubuntu2004-staticip:~$

			This shows the same information that's in the timesync-status option, except that it's now in a machine-readable format.

			Next, let's edit the /etc/systemd/timesyncd.conf file so that this machine will obtain its time from our local AlmaLinux time server. We'll just uncomment the #NTP= line and add the IP address of the Alma machine. It should now look something like this:

			NTP=192.168.0.14

			After restarting the systemd-timesyncd service, we should see that this machine now obtains its time from our local time server, as we see here:

			donnie@ubuntu2004-staticip:~$ timedatectl timesync-status

			 Server: 192.168.0.14 (192.168.0.14)

			Poll interval: 32s (min: 32s; max 34min 8s)

			 Leap: normal

			 Version: 4

			 Stratum: 3

			 Reference: 32CDF46C

			 Precision: 1us (-25)

			Root distance: 27.884ms (max: 5s)

			 Offset: -279.517ms

			 Delay: 470us

			 Jitter: 0

			 Packet count: 1

			 Frequency: -500.000ppm

			donnie@ubuntu2004-staticip:~$

			There's an excellent chance that systemd-timedatectl is all you'll ever need. But what if you really need the extra features and precision that come with chrony? Well, let's see if we can switch our Ubuntu machine over to chrony.

			Configuring Ubuntu to use chrony

			The first step is to stop and disable systemd-timesyncd, like this:

			donnie@ubuntu2004-staticip:~$ sudo systemctl disable --now systemd-timesyncd

			Removed /etc/systemd/system/dbus-org.freedesktop.timesync1.service.

			Removed /etc/systemd/system/sysinit.target.wants/systemd-timesyncd.service.

			donnie@ubuntu2004-staticip:~$

			Now, install the chrony package, like this:

			donnie@ubuntu2004-staticip:~$ sudo apt install chrony

			Since this is Ubuntu, the chronyd service will be enabled and started automatically when the installation completes. The only difference from what you saw on the Alma machine is that the chrony.conf file on Ubuntu is in the /etc/chrony/ directory.

			Sometimes, you just need to be precise. So, let's talk a bit about PTP.

			Understanding the Precision Time Protocol

			For many financial, scientific, and enterprise applications, you've just got to have the most accurate time possible. In these instances, getting the time from a remote time server on the Internet just doesn't meet your needs. So, you need something better. With proper hardware, PTP can keep your network time synchronized to picosecond accuracy. The whole explanation of PTP is rather complex, so allow me to simplify things a bit.

			An overview of PTP

			Unlike NTP, PTP cannot obtain its time from a remote time server that's out on the internet. Instead, PTP can only be used within a Local Area Network (LAN) and will obtain its time from a local source. This local time source, which is usually called the Grandmaster Clock, will most likely obtain its time from a Global Positioning System (GPS) satellite, and will then synchronize the clocks on the other network devices to the GPS time. To do this, the Grandmaster Clock sends sync messages out to the network. The client devices will respond by sending back delay request messages, and the Grandmaster Clock will respond with delay response messages. The network packets that carry these messages all have timestamps that will be used in the calculations for figuring out how to adjust the time on the network devices. To make this all work, your network must be set up with switches and routers that can transfer these messages.

			In addition to the Grandmaster Clock, there are three other types of clocks that can be found on a PTP network:

			
					Ordinary clocks: These clocks are on the end user devices such as servers, desktop clients, IoT devices, and so forth.

					Transparent clocks: These are the network switches that transfer the messages between the Grandmaster Clock and the ordinary clocks. Transparent clocks can't send messages beyond their VLAN boundaries.

					Boundary clocks: These are optional and are only needed if you need to divide your network into different VLANs. Instead of just transferring messages between the Grandmaster and the ordinary clocks, a boundary clock synchronizes with the Grandmaster, and then sends out sync messages to the ordinary clocks on its VLAN. The advantage of using boundary clocks is that it helps prevent the Grandmaster from getting overwhelmed with delay request messages.

			

			It is possible to set up a Linux server as a boundary clock, but you probably won't. Most likely, your organization will obtain its transparent clocks and boundary clocks from its preferred network equipment vendor, such as Cisco or Juniper. So, how would you use PTP with Linux? Mostly, you'd just set up PTP on your servers, desktop machines, and IoT devices so that they would obtain their time from a PTP server rather than from an NTP server. Let's check it out.

			Installing PTP

			To set up either a Linux server, a Linux desktop, or a Linux IoT device to obtain its time from a PTP source, you'll have to install the linuxptp package. On the Alma machine, you'd do:

			[donnie@logserver ~]$ sudo dnf install linuxptp

			On the Ubuntu machine, you'd do:

			donnie@ubuntu2004:~$ sudo apt install linuxptp

			Next, stop and disable whichever timekeeping service your machine is running. If your machine is running chroynd, the command would be:

			[donnie@logserver ~]$ sudo systemctl disable --now chronyd

			If your machine is running systemd-timesyncd, the command would be:

			donnie@ubuntu2004:~$ sudo systemctl disable --now systemd-timesyncd

			Installing the linuxptp package installs two different services, which are the ptp4l service and the phc2sys service. Before we can enable or start the PTP services, we'll need to configure them. Let's look at how to do this on the Alma machine.

			Configuring PTP with software timestamping on AlmaLinux

			The first step is to edit the /etc/sysconfig/ptp4l file. When you first open the file, you'll see this:

			OPTIONS="-f /etc/ptp4l.conf -i eth0"

			This default configuration is for a master server, and it has the wrong network adapter name. We'll add the -s option to make this run in client mode and change the network adapter's name. You won't have hardware timestamping available on your virtual machines, even if it is available on the network adapter of your host computer. To deal with that, we'll also add the -S option to make it use software timestamping. The edited line should look something like this:

			OPTIONS="-f /etc/ptp4l.conf -S -s -i enp0s3"

			(Of course, use your own network adapter's name in place of mine.)

			Now, enable and start the ptp4l service:

			[donnie@logserver ~]$ sudo systemctl enable --now ptp4l

			The service does run, even though there's no PTP time source on my network. Regardless, the last line of the systemctl status output shows that the ptp4l service has selected the best master clock. I have no idea where that clock is, but it doesn't matter. In a real-life scenario, you would know because you'd be dealing with a real clock:

			[donnie@logserver ~]$ systemctl status ptp4l

			● ptp4l.service - Precision Time Protocol (PTP) service

			 Loaded: loaded (/usr/lib/systemd/system/ptp4l.service; enabled; vendor preset: disabled)

			 Active: active (running) since Wed 2021-08-25 18:16:26 EDT; 8s ago

			 Main PID: 1841 (ptp4l)

			 Tasks: 1 (limit: 4938)

			 Memory: 276.0K

			 CGroup: /system.slice/ptp4l.service

			 └─1841 /usr/sbin/ptp4l -f /etc/ptp4l.conf -S -s -i enp0s3

			. . .

			. . .

			Aug 25 18:16:33 logserver ptp4l[1841]: [5697.998] selected local clock 080027.fffe.94a66f as best master

			[donnie@logserver ~]$

			Okay, we're good with the software timestamping. Now, let's look at hardware timestamping.

			Configuring PTP with hardware timestamping on AlmaLinux

			Using hardware timestamping gives you the most precise timekeeping that you can get. The only catch is that the network interface adapters on your machine have to be capable of doing hardware timestamping. Fortunately, that shouldn't be a problem with newer computers. (In the Understanding chrony section, I showed you how to verify whether your network adapter does support hardware timestamping.)

			The first step is to edit the /etc/sysconfig/ptp4l file, as you did previously. This time, leave out the -S option so that the edited line looks like this:

			OPTIONS="-f /etc/ptp4l.conf -s -i enp0s3"

			Next, you'll need to configure and enable the phc2sys service so that the computer clock can synchronize with the PTP hardware clock that's in the network adapter. The first step is to configure the /etc/sysconfig/phc2sys file. By default, the file looks like this:

			OPTIONS="-a -r"

			Change that line so that it looks something like this:

			OPTIONS="-c CLOCK_REALTIME -s enp0s3 -w"

			Here's the breakdown:

			
					-c CLOCK_REALTIME: The -c option specifies the clock that is to be synchronized. CLOCK_REALTIME is the normal computer clock.

					-s enp0s3: In this file, -s specifies the device that will be used for synchronization. In this case, we're using the PTP hardware clock that's in the enp0s3 network adapter to synchronize the normal system clock.

					-w: This tells the phc2sys service to wait until the ptp4l service is in a synchronized state before attempting to synchronize the system clock.

			

			The final step is to restart the ptp4l service and to enable and start the phc2sys service. Note that this will fail on your virtual machine because the VirtualBox network adapter doesn't have a PTP hardware clock. When you've seen what you need to see, disable the ptp4l and phc2sys services and re-enable the chronyd service.

			Next, let's look at how to do all of this on Ubuntu.

			Configuring PTP with software timestamping on Ubuntu

			There are no supplementary PTP configuration files on Ubuntu, so you'll need to edit the ptp4l.service file. Start by doing:

			donnie@ubuntu2004:~$ sudo systemctl edit --full ptp4l

			In the [Service] section, you'll need to change the ExecStart line, which looks like this:

			ExecStart=/usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf -i eth0

			Change it so that it looks something like this:

			ExecStart=/usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf -S -s -i enp0s3

			Finally, enable and start the ptp4l service, as you did previously on the Alma machine.

			Now, let's wrap this up by configuring hardware timestamping on Ubuntu.

			Configuring PTP with hardware timestamping on Ubuntu

			Again, start by editing the ptp4l.service file. This time, enable hardware timestamping by leaving out the -S option so that the ExecStart line will look like this:

			ExecStart=/usr/sbin/ptp4l -f /etc/linuxptp/ptp4l.conf -s -i enp0s3

			Next, edit the phc2sys.service file by doing:

			donnie@ubuntu2004:~$ sudo systemctl edit --full phc2sys

			In the [Service] section, make the ExecStart line look something like this:

			ExecStart=/usr/sbin/phc2sys -c CLOCK_REALTIME -s enp0s3 -w

			The final step is to restart the ptp4l service and to enable and start the phc2sys service. Alas, that will also fail this time, due to not having the PTP hardware clock in the VirtualBox network adapter. When you've seen what you want to see, change the virtual machine back to whichever timekeeping service that you were using before.

			All right, that's it for timekeeping. I think it's time to wrap this baby up.

			Summary

			As always, we've covered a lot of ground and had a bit of fun in the process. We started by discussing why accurate timekeeping is so important and then did a quick overview of the various implementations of timekeeping software. We then took a detailed look at chrony and systemd-timesyncd. We wrapped up with a quick look at PTP.

			In the next chapter, we'll look at systemd's relationship with boot managers and bootloaders. I'll see you there.

			Questions

			Answer the following questions to test your knowledge of this chapter:

			
					In the chrony.conf file, which of the following lines will allow chronyd to function as a time server?A. network 192.168.0.0/24
B. allow 192.168.0.0/24
C. permit 192.168.0.0/24
D. listen 192.168.0.0/24

					How would you set up systemd-timesyncd to function as a time server? (We will assume that we're on the 192.168.0.0/24 network.)A. Add a network 192.168.0.0/24 line to the timesyncd.conf file.
B. Add a permit 192.168.0.0/24 line to the timesyncd.conf file.
C. Add an allow 192.168.0.0/24 line to the timesyncd.conf file.
D. You can't.

					For dealing with PTP, which of the following clock types allows messages to flow between the PTP master clock and the client machines on the same VLAN?A. Boundary clocks
B. Grandmaster clocks
C. Router clocks
D. Transparent clocks

					When dealing with PTP, which service causes a machine's system clock to synchronize with the PTP hardware clock in the network adapter?A. phc2sys
B. ptp4l
C. ptp
D. clock

			

			Answers

			
					B

					D

					D

					A

			

			Further reading

			To learn more about the topics covered in this chapter, take a look at the following resources:

			
					GPS clocks: https://timetoolsltd.com/category/gps-clocks/

					chrony versus systemd-timesyncd: https://unix.stackexchange.com/questions/504381/chrony-vs-systemd-timesyncd-what-are-the-differences-and-use-cases-as-ntp-cli

					chrony versus ntp: https://chrony.tuxfamily.org/comparison.html

					PTP versus NTP: https://www.masterclock.com/support/library/network-timing-ntp-vs-ptp

					Red Hat's official chrony documentation: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/using-chrony-to-configure-ntp

					Introduction to the Precision Time Protocol: https://youtu.be/ovzt3IUFbyo

					Precision Time Protocol Clock Types: https://youtu.be/rbb9DcIGLKY

			

		

	
		
			Chapter 17: Understanding systemd and Bootloaders

			A bootloader is necessary for any operating system, including Linux. In this chapter, we'll look at the GRUB2 and systemd-boot bootloaders, and we'll discuss the differences between them. Becoming familiar with the material in this chapter can help you choose which bootloader is best suited for your needs, and to troubleshoot things that might go wrong.

			In this chapter, we will cover the following topics:

			
					Understanding the basic computer architecture

					Understanding GRUB2

					Understanding systemd-boot

					Understanding Secure Boot

			

			Note that there are several different bootloaders in use, some of which are specific to embedded and IoT devices. In this chapter, we'll only concentrate on GRUB2 and systemd-boot, which are used on servers and normal workstations.

			Now, let's get started!

			Technical requirements

			We'll start with the same Ubuntu Server and Alma virtual machines that we have been using throughout. We'll use these to look at a normal BIOS-based GRUB2 configuration.

			To see how the GRUB2 bootloader works on an EFI-based machine, you'll need to create another pair of Alma and Ubuntu Server virtual machines with the EFI feature enabled. To do that, create the initial VirtualBox setup for the Alma and Ubuntu machines as you always do. Then, before you start up the machines to install the operating system, open the Settings dialog box. Under the System menu, click the Enable EFI checkbox, as shown here:

			
				
					[image:]
				

			

			Figure 17.1 – Checking the Enable EFI box

			Then, install the operating system as you normally would.

			To look at a systemd-boot environment, you'll need to create a virtual machine with Pop!_OS Linux. Enable the EFI feature as you did for the Alma and Ubuntu machines, and install the operating system as you normally would.

			Note

			Pop!_OS Linux is built from Ubuntu source code by the System76 computer vendor. Pop!_OS is the only Linux distro I know of that uses systemd-boot by default. You can set up Clear Linux and Arch Linux with either GRUB2 or systemd-boot, but installing either of them involves more complexity than we want to deal with now.

			You can download Pop!_OS from here:

			https://pop.system76.com/

			Now that you have your virtual machines, let's briefly define a few terms that we need to know about.

			Check out the following link to see the Code in Action video: https://bit.ly/3pkVA8D

			Understanding the basic computer architecture

			Before we can talk about bootloaders, we need to define a few terms that describe the basic computer architecture:

			
					Bootloader: The bootloader is the first software program that runs when a computer is booted. Its job is to load the Linux kernel and to start the init system.

					Boot manager: When you first power on your computer, a boot manager will present you with a boot menu. If you have multiple operating systems installed, the boot manager will allow you to choose which one to boot. If a Linux distro has multiple kernels installed, the boot manager will allow you to choose which kernel to boot.

					BIOS: The Basic Input/Output System (BIOS) is firmware that resides in a chip on a computer motherboard. It contains the basic instructions that start up a computer. After the computer is started, the BIOS will perform a Power-on Self Test (POST) to verify that the hardware is working properly. Then, the BIOS will start the bootloader. It worked well for its time but is now outdated. One problem is that it can't deal with drives of more than two terabytes in size. I mean, if you were to install a three-Terabyte drive in a BIOS-based machine, you'd be able to use the drive, but one Terabyte of drive space would go to waste. BIOS also can't deal with the Secure Boot feature.

					EFI/UEFI: This was originally called the Extensible Firmware Interface (EFI), but the name was changed to Unified Extensible Firmware Interface (UEFI) for the Version 2 variant. It has replaced BIOS on newer computers. Unlike BIOS, EFI/UEFI works very well with very large drives. It also works with the Secure Boot feature.

					MBR: There are two general categories of partition types. The Master Boot Record (MBR) type is the older type. Its main flaw is that it doesn't work with partitions that are larger than two terabytes. Even if you have an EFI/UEFI-based machine that can work with large drives, MBR still limits you to these smaller partitions. What's a bit confusing is that the term MBR also refers to the first 512-byte sector of a drive, which is where the bootloader gets installed on BIOS-based machines.

					GPT: The GUID Partition Table (GPT) type of partition has replaced the old MBR type. It works well with partitions that are larger than two Terabytes. (The exact maximum partition size depends on which filesystem you've used to format the partition.) On EFI/UEFI machines, you need to install the bootloaders in a GPT partition instead of in an MBR. (I'll explain why I've said bootloaders instead of bootloader later.)

					GRUB2: The Grand Unified Bootloader Version 2 (GRUB2) is currently the most popular bootloader on laptops, desktops, and servers. It works well on machines with multiple installed operating systems. It's not part of the systemd ecosystem, but it can be used on systemd machines.

					systemd-boot: This bootloader is part of the systemd ecosystem. It isn't widely used just yet, but it could be someday. It's lighter-weight and simpler to configure than GRUB2, and it also works well for machines with multiple operating systems installed.

			

			Okay, now that we have the terminology nailed down, let's look at GRUB2.

			Understanding GRUB2

			The original GRUB, which is now referred to as GRUB Legacy, first came on the scene in 1995 as a replacement for the old LILO bootloader. It was easy to work with because it was easy to configure and it was implemented consistently on all Linux distros that used it. Unlike LILO, it can boot non-Linux operating systems. So, you can install Windows and Linux on the same computer, and GRUB lets you choose which one to boot up. GRUB Legacy worked well on the old BIOS-based computers, but it doesn't work with the newer EFI/UEFI computers. (Well, actually, the Fedora team did create a forked version of GRUB Legacy that would work with EFI/UEFI, but they abandoned it in favor of GRUB2 in 2013.)

			GRUB2 isn't an update of GRUB Legacy. Instead, it's a whole new bootloader that was created from scratch. Now, I have to tell you that there are both good things and bad things about it. The good thing is that it can work with the new EFI/UEFI computers. The bad things are that it's a lot more complicated to configure, and different Linux distros implement it differently. So, things can get a bit confusing when you have to work with multiple distros.

			Almost all Linux distros, including the Ubuntu and Alma distros that we've been using, use GRUB2. On a BIOS-based machine, GRUB2 gets installed into the primary drive's MBR, which is the first 512-byte sector of the drive. On an EFI/UEFI machine, GRUB2 gets installed into a special EFI partition, which always has to be a GPT-type partition. (This special partition is referred to as the EFI System Partition or ESP.)

			Now, here's where things get a bit confusing. As I said, unlike GRUB Legacy, GRUB2 isn't implemented in the same way across all Linux distros, as we'll see in a bit. To see how this all works, let's begin by comparing the GRUB2 setup on our BIOS-based and EFI/UEFI-based AlmaLinux virtual machines.

			Comparing GRUB2 on BIOS and EFI/UEFI systems

			On both BIOS-based and EFI/UEFI-based machines, the Linux kernel and the initramfs files get installed in the /boot partition. But this is where the similarities end. Let's see how it's done with BIOS.

			GRUB2 on a BIOS-based Alma 8 machine

			On a BIOS-based machine, the /boot partition is normally /dev/sda1, as we see here:

			[donnie@alma-bios ~]$ mount | grep 'boot'

			/dev/sda1 on /boot type xfs (rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,noquota)

			[donnie@alma-bios ~]$

			We also see that the /boot partition is formatted with just a normal Linux filesystem. On RHEL-type machines, this would normally be xfs. On Ubuntu machines, this would normally be ext4.

			The Master Boot Record, where the bootloader is installed, isn't a partition. Rather, the MBR is just the first 512 bytes of the drive. The GRUB2 configuration file (grub2.cfg) is in the /boot/grub2/ directory. On RHEL-type machines, the /etc/grub.cfg symbolic link points to the actual configuration file, as we see here:

			[donnie@alma-bios etc]$ sudo ls -l grub2.cfg

			lrwxrwxrwx. 1 root root 22 Mar 15 14:28 grub2.cfg -> ../boot/grub2/grub.cfg

			[donnie@alma-bios etc]$

			Understand though, that if you ever need to reconfigure GRUB2, you'll never edit this grub.cfg file. Instead, you'll edit the /etc/default/grub file. Then, you'll rebuild the grub.cfg file by doing:

			[donnie@alma-bios ~]$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg

			There is an efi/ directory within the /boot/ directory, but it isn't used. It contains a nest of subdirectories, but there are no files, as we see here:

			[donnie@alma-bios ~]$ sudo ls -l /boot/efi/EFI/almalinux

			total 0

			[donnie@alma-bios ~]$

			Whenever we boot the machine, we see a boot menu with our different boot-up choices:

			
				
					[image:]
				

			

			Figure 17.2 – The GRUB2 boot menu on AlmaLinux

			The configuration files for these menu choices are in the /boot/loader/entries/ directory. This directory requires root privileges to enter. So, let's make things easier on ourselves by going to the root shell:

			[donnie@alma-bios ~]$ sudo su -

			[sudo] password for donnie:

			Last login: Sat Aug 28 18:09:25 EDT 2021 on pts/0

			[root@alma-bios ~]# cd /boot/loader/entries/

			[root@alma-bios entries]#

			Now, let's see what we have:

			[root@alma-bios entries]# ls -l

			total 16

			-rw-r--r--. 1 root root 388 Apr 5 12:09 3a17f34dc2694acda37caa478a339408-0-rescue.conf

			-rw-r--r--. 1 root root 368 Apr 5 13:20 3a17f34dc2694acda37caa478a339408-4.18.0-240.15.1.el8_3.x86_64.conf

			-rw-r--r--. 1 root root 368 Apr 11 18:23 3a17f34dc2694acda37caa478a339408-4.18.0-240.22.1.el8_3.x86_64.conf

			-rw-r--r--. 1 root root 316 Apr 5 12:09 3a17f34dc2694acda37caa478a339408-4.18.0-240.el8.x86_64.conf

			[root@alma-bios entries]#

			These configuration files are known as BootLoaderSpec (BLS) files. Whenever you boot your machine, GRUB2 will take information from these BLS files and use it to populate the boot menu. A new BLS file will be generated automatically every time a new Linux kernel is installed, even if it's a kernel that you've compiled yourself. If you do a system update and dnf removes any older kernels, the BLS files for those older kernels will be deleted. Let's peek inside one of these files to see what's there:

			[root@alma-bios entries]# cat 3a17f34dc2694acda37caa478a339408-4.18.0-240.22.1.el8_3.x86_64.conf

			title AlmaLinux (4.18.0-240.22.1.el8_3.x86_64) 8.3 (Purple Manul)

			version 4.18.0-240.22.1.el8_3.x86_64

			linux /vmlinuz-4.18.0-240.22.1.el8_3.x86_64

			initrd /initramfs-4.18.0-240.22.1.el8_3.x86_64.img $tuned_initrd

			options $kernelopts $tuned_params

			id almalinux-20210409120623-4.18.0-240.22.1.el8_3.x86_64

			grub_users $grub_users

			grub_arg --unrestricted

			grub_class kernel

			[root@alma-bios entries]#

			As we see here, this file defines which kernel and initramfs images to load, along with the various kernel options. But we don't see specific kernel options here. Instead, we see variable names preceded by a $. This just means that the kernel option information will be pulled in from the /boot/grub2/grub.cfg file and the /boot/grub2/grubenv file.

			If you install Linux alongside an already existing installation of another operating system, the boot menu entry for that operating system should also be created automatically. (This works even if the other operating system is Windows.) The /etc/grub.d/30_os-prober script is what finds the other operating systems for you.

			Note

			This is different from what you might be used to. Older Linux distros, such as the RHEL 7-type distros, don't use BLS files. Instead, all boot menu information is listed in the grub.cfg file. Red Hat first introduced BLS files in Fedora 30, and they're now used in all RHEL 8-type distros. (As we'll see later, even the newest Ubuntu distros still don't use them.)

			Now, let's look at an EFI/UEFI machine.

			GRUB2 on an EFI/UEFI-based Alma machine

			On our EFI/UEFI machine, the /boot/ partition is mounted on /dev/sda2, while the /boot/efi/ partition is mounted on /dev/sda1, as we see here:

			[donnie@alma-efi ~]$ mount | grep 'boot'

			/dev/sda2 on /boot type xfs (rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,noquota)

			/dev/sda1 on /boot/efi type vfat (rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=ascii,shortname=winnt,errors=remount-ro)

			[donnie@alma-efi ~]$

			The /boot/efi/ partition is where the bootloaders reside. We can also see that the normal boot partition is formatted with the normal xfs Linux filesystem, but that the /boot/efi/ partition is formatted with the vfat filesystem. The efi partition must always be formatted with vfat because nothing else works.

			Next, we see that the symbolic link in the /etc/ directory has a different name and that it points to the grub.cfg file in a different location:

			[donnie@alma-efi etc]$ sudo ls -l grub2-efi.cfg

			lrwxrwxrwx. 1 root root 34 Mar 15 14:28 grub2-efi.cfg -> ../boot/efi/EFI/almalinux/grub.cfg

			[donnie@alma-efi etc]$

			As before, the directories that we want to explore require root privileges to enter. Let's make things a bit easier by going to a root shell:

			[donnie@alma-efi ~]$ sudo su -

			Last login: Sat Aug 28 17:52:08 EDT 2021 on pts/0

			[root@alma-efi ~]#

			There's still a /boot/grub2/ directory, but the only thing it contains is a symbolic link that points to the GRUB environmental settings file:

			[root@alma-efi ~]# cd /boot/grub2/

			[root@alma-efi grub2]# ls -l

			total 0

			lrwxrwxrwx. 1 root root 28 Mar 15 14:28 grubenv -> ../efi/EFI/almalinux/grubenv

			[root@alma-efi grub2]#

			Almost everything else of importance is in the /boot/efi/ directory:

			[root@alma-efi ~]# cd /boot/efi

			[root@alma-efi efi]# ls

			EFI

			[root@alma-efi efi]# cd EFI/

			[root@alma-efi EFI]# ls

			almalinux BOOT

			[root@alma-efi EFI]#

			At the bottom of this nest, we see the /boot/efi/EFI/almalinux/ and /boot/efi/EFI/BOOT/ directories. Let's look in the BOOT/ directory:

			[root@alma-efi EFI]# ls -l BOOT/

			total 1568

			-rwx------. 1 root root 1237503 Mar 15 14:44 BOOTX64.EFI

			-rwx------. 1 root root 362968 Mar 15 14:44 fbx64.efi

			[root@alma-efi EFI]#

			The BOOTX64.EFI file is part of the shim system, which allows Linux to boot on machines that have the Secure Boot feature enabled. (We'll talk about Secure Boot at the end of this chapter.) The fbx64.efi file is the fallback bootloader. Its job is to recreate the boot manager options that are built into the firmware in case they somehow get deleted. It does this by scanning the BOOTX64.CSV files that are in the subdirectories for any operating systems that are installed.

			Now, here's what we see in the almalinux/ directory:

			[root@alma-efi EFI]# ls -l almalinux/

			total 5444

			-rwx------. 1 root root 122 Mar 15 14:44 BOOTX64.CSV

			drwx------. 2 root root 4096 Mar 15 14:28 fonts

			-rwx------. 1 root root 6572 Aug 26 18:13 grub.cfg

			-rwx------. 1 root root 1024 Aug 28 17:51 grubenv

			-rwx------. 1 root root 1900112 Mar 15 14:28 grubx64.efi

			-rwx------. 1 root root 1171320 Mar 15 14:44 mmx64.efi

			-rwx------. 1 root root 1240144 Mar 15 14:44 shimx64-almalinux.efi

			-rwx------. 1 root root 1237503 Mar 15 14:44 shimx64.efi

			[root@alma-efi EFI]#

			In addition to the normal GRUB2 files that we'd see on a BIOS-based machine, we see several files that are specific to EFI/UEFI machines:

			
					grubx64.efi: This is what makes GRUB2 work on an EFI/UEFI machine.

					shim64-almalinux.efi and shimx64.efi: These files go along with the BOOTX64.EFI file to make Alma work on a Secure Boot machine.

					mmx64.efi: This is part of the Machine Owner Key system, which also helps out with Secure Boot.

					BOOTX64.CSV: This file works with the fallback bootloader and contains a boot menu entry for this installation of Alma. (If multiple operating systems were installed, they would all have their own BOOTX64.CSV files.) If you peek inside this file, you'll see this:[root@alma-efi almalinux]# cat BOOTX64.CSV
´´shimx64.efi,AlmaLinux,,This is the boot entry for AlmaLinux
[root@alma-efi almalinux]#
Note
Something to keep in mind is that the BOOTX64.CSV file is not an ASCII text file as most Linux configuration files are. (That would explain those two funny-looking questions marks that you see in this code.) Instead, it's a UTF-16 Unicode file, as we see here:
[root@alma-efi ~]# cd /boot/efi/EFI/almalinux/
[root@alma-efi almalinux]# file BOOTX64.CSV
BOOTX64.CSV: Little-endian UTF-16 Unicode text, with no line terminators
[root@alma-efi almalinux]#
Normal text editors save files in ASCII format. So, if you ever need to manually create or edit a BOOTX64.CSV file, you'll need to convert it into UTF-16 format. Let's say that you've created a boot.csv file in your home directory. You can convert it with the iconv tool, like this:
[donnie@alma-efi ~]$ iconv -t UTF-16 < ~/boot.csv > BOOTX64.CSV
[donnie@alma-efi ~]$
Now, you're ready to copy the file to its proper location.

			

			Next, we have the BLS files for the boot menu choices, just as we had on the BIOS machine:

			[donnie@alma-efi ~]$ sudo ls -l /boot/loader/entries/

			[sudo] password for donnie:

			total 8

			-rw-r--r--. 1 root root 388 Aug 26 18:10 5a1e1f5e83004e9eb0f6e2e0a346d4e7-0-rescue.conf

			-rw-r--r--. 1 root root 316 Aug 26 18:10 5a1e1f5e83004e9eb0f6e2e0a346d4e7-4.18.0-240.el8.x86_64.conf

			[donnie@alma-efi ~]$

			When we boot an EFI/UEFI machine, we'll see that the boot menu looks somewhat different than what it does on a BIOS machine:

			
				
					[image:]
				

			

			Figure 17.3 – The boot menu on an EFI/UEFI machine

			We now see a System setup choice, which takes us into the EFI management utility we see here:

			
				
					[image:]
				

			

			Figure 17.4 – The EFI management utility

			This can do several things for us. If we select Boot Maintenance Manager, we'll see the Boot Options option. If we select that, we'll see that we can add or delete boot options, or change the default boot order:

			
				
					[image:]
				

			

			Figure 17.5 – The Boot Options screen

			This could come in handy if we ever need to boot from a DVD or USB device rather than from the default device.

			Under the Boot Manager option, we see the EFI Internal Shell option:

			
				
					[image:]
				

			

			Figure 17.6 – The Boot Manager screen

			This internal shell can help you troubleshoot boot-up problems and looks like this:

			
				
					[image:]
				

			

			Figure 17.7 – The EFI internal shell

			To see the commands that you can run from this shell, just type help. I'm not going to cover this shell in detail because it's not something that you'll use very often. However, I've linked to a good tutorial in the Further reading section.

			Okay, that covers it for GRUB2 on the AlmaLinux machine. Now, let's look at how things are a bit different on the Ubuntu machine.

			GRUB2 on BIOS-based and EFI/UEFI-based Ubuntu machines

			The biggest difference is that Ubuntu doesn't use BootLoaderSpec files, as the RHEL 8-type distros do. Instead, all menu entries are defined within the /boot/grub/grub.cfg file. To see these menu entries, open the file and search for stanzas that begin with menuentry. Here's a snippet from one such menu entry:

			menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-34969a2a-6e3f-4806-8260-e62b948678e3' {

			 recordfail

			 load_video

			 gfxmode $linux_gfx_mode

			 insmod gzio

			. . .

			. . .

			 linux /boot/vmlinuz-5.4.0-81-generic root=UUID=34969a2a-6e3f-4806-8260-e62b948678e3 ro

			 initrd /boot/initrd.img-5.4.0-81-generic

			}

			The only other real difference is that there's no symbolic link to the grub.cfg file in the /etc/ directory.

			Next, let's reboot to get to the good stuff. Let's look at systemd-boot.

			Understanding systemd-boot

			The first thing to note here is the name, systemd-boot. It's shocking, I know. We have a systemd component whose name does not end in the letter d. But seriously, systemd-boot is a component of systemd that has some cool features. Compared to GRUB2, it's lighter-weight, easier to configure, boots faster, and works well with the modern implementations of Secure Boot. Contrary to popular belief, systemd-boot is a boot manager, not a bootloader. It can automatically probe for other operating systems on the machine and add them to the boot menu. (GRUB2 only does this when you first install the operating system, while systemd-boot does this each time you boot the machine.) Once you've booted the machine and have chosen your desired boot option, systemd-boot hands the boot operation over to a real bootloader.

			So, why isn't it more widely used? Well, it's just that systemd-boot only works on EFI/UEFI systems. There are still a lot of older BIOS-based computers in use, and all of them would become unusable if all operating systems were to switch to EFI/UEFI-only bootloaders.

			Note

			You can read about the various features of systemd-boot on the systemd-boot man page.

			For our demos, we'll use Pop!_OS Linux, which is a product of the System76 company. System76 is a computer vendor, so it made sense for them to produce an operating system that would only run on newer machines. It's based on Ubuntu, so you can use the same Ubuntu commands that you're used to using, other than any commands that deal with the bootloader. (At the time of writing, it was based on Ubuntu 21.04.)

			When I created the Pop!_OS virtual machine, I just accepted the installer's default partition setup. Here's what it looks like:

			donnie@pop-os:~$ mount | grep 'sda'

			/dev/sda3 on / type ext4 (rw,noatime,errors=remount-ro)

			/dev/sda2 on /recovery type vfat (rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=iso8859-1,shortname=mixed,errors=remount-ro)

			/dev/sda1 on /boot/efi type vfat (rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=iso8859-1,shortname=mixed,errors=remount-ro)

			donnie@pop-os:~$

			Here, we see that /dev/sda1 is mounted as /boot/efi/, which is the EFI system partition where the bootloaders reside. We also see a /recovery/ partition, which is something I've never before seen on any Linux machine. This /recovery/ partition contains a live version of Pop!_OS. Boot from this partition if you ever need to repair or even reinstall the operating system without losing users' files.

			Unlike GRUB2, systemd-boot does not have any configuration files in the /etc/ directory. Instead, they're all in the /boot/efi/ directory. As we did previously, we'll make things easier by going to a root shell:

			donnie@pop-os:~$ sudo su -

			[sudo] password for donnie:

			root@pop-os:~#

			Here's what's inside the /boot/efi/ directory:

			root@pop-os:~# cd /boot/efi

			root@pop-os:/boot/efi# ls -l

			total 8

			drwx------ 7 root root 4096 Aug 27 14:15 EFI

			drwx------ 3 root root 4096 Sep 1 17:11 loader

			root@pop-os:/boot/efi#

			Let's look in the loader/ subdirectory first:

			root@pop-os:/boot/efi/loader# ls -l

			total 12

			drwx------ 2 root root 4096 Sep 1 15:45 entries

			-rwx------ 1 root root 23 Sep 1 17:11 loader.conf

			-rwx------ 1 root root 512 Aug 27 14:15 random-seed

			root@pop-os:/boot/efi/loader#

			We'll come back to the two files in just a bit. First, let's look into the entries/ subdirectory:

			root@pop-os:/boot/efi/loader/entries# ls -l

			total 12

			-rwx------ 1 root root 256 Sep 1 15:48 Pop_OS-current.conf

			-rwx------ 1 root root 274 Sep 1 15:48 Pop_OS-oldkern.conf

			-rwx------ 1 root root 299 Aug 27 10:13 Recovery-9C63-930A.conf

			root@pop-os:/boot/efi/loader/entries#

			These three BootLoaderSpec files represent the three choices that will come up on the boot menu when you boot up your machine. (I know that you haven't seen the boot menu yet, but that's okay. We'll fix that shortly.) Just for fun, let's peek inside the Pop_OS-current.conf file:

			root@pop-os:/boot/efi/loader/entries# cat Pop_OS-current.conf

			title Pop!_OS

			linux /EFI/Pop_OS-bc156c8a-fcb8-4a74-b491-089c77362828/vmlinuz.efi

			initrd /EFI/Pop_OS-bc156c8a-fcb8-4a74-b491-089c77362828/initrd.img

			options root=UUID=bc156c8a-fcb8-4a74-b491-089c77362828 ro quiet loglevel=0 systemd.show_status=false splash

			root@pop-os:/boot/efi/loader/entries#

			Unlike GRUB2, there are no other files for storing the kernel options. So, they all have to be stored here. What you might think of as a bit unusual is that the kernel file that this BLS file calls in has a .efi filename extension. I'll explain why that is in just a few moments.

			The /boot/efi/loader/random-seed file stores a random seed value. (I bet you would never have guessed that.) This allows the machine to boot with a fully initialized entropy pool, which allows the /dev/urandom device to create better random numbers. This makes security better by allowing the system to create security keys that are harder to crack. (Note though, that this feature doesn't work on virtual machines.)

			Next, let's look at the /boot/efi/loader/loader.conf file:

			root@pop-os:/boot/efi/loader# cat loader.conf

			default Pop_OS-current

			root@pop-os:/boot/efi/loader#

			Wait a minute. That's all there is to it? Well yeah. (Didn't I tell you that systemd-boot is much easier to configure than GRUB2?) I do see a slight problem here, though. It's just that the boot menu won't show up unless you quickly press the proper key after you turn on the machine. Let's edit this file to have the boot menu show for five seconds. The edited file should look like this:

			default Pop_OS-current

			timeout 5

			Okay, that was tough. I just hope that you were able to handle it. Seriously, though, there are a few more options that you can read about on the loader.conf man page and they're all very easy to configure. (By the way, don't reboot the machine just yet. We'll make one more change in just a bit, and then you can reboot.)

			In the /boot/efi/EFI/ directory, we see these subdirectories:

			root@pop-os:/boot/efi/EFI# ls -l

			total 20

			drwx------ 2 root root 4096 Aug 27 14:15 BOOT

			drwx------ 2 root root 4096 Aug 27 14:15 Linux

			drwx------ 2 root root 4096 Sep 1 15:45 Pop_OS-bc156c8a-fcb8-4a74-b491-089c77362828

			drwx------ 2 root root 4096 Aug 27 14:13 Recovery-9C63-930A

			drwx------ 2 root root 4096 Aug 27 14:15 systemd

			root@pop-os:/boot/efi/EFI#

			The Linux/ subdirectory is empty, so we won't bother looking into it. In the BOOT/ subdirectory, we only see one file:

			root@pop-os:/boot/efi/EFI/BOOT# ls -l

			total 92

			-rwx------ 1 root root 94079 Jul 20 14:47 BOOTX64.EFI

			root@pop-os:/boot/efi/EFI/BOOT#

			As we saw on the Alma and Ubuntu machines, we have the BOOTX64.EFI file, which makes this machine work with Secure Boot. However, we don't have the fallback bootloader file.

			In the systemd/ subdirectory, we see the executable file that makes systemd-boot work:

			root@pop-os:/boot/efi/EFI/systemd# ls -l

			total 92

			-rwx------ 1 root root 94079 Jul 20 14:47 systemd-bootx64.efi

			root@pop-os:/boot/efi/EFI/systemd#

			Finally, let's look inside the Pop_OS-bc156c8a-fcb8-4a74-b491-089c77362828/ subdirectory:

			root@pop-os:/boot/efi/EFI/Pop_OS-bc156c8a-fcb8-4a74-b491-089c77362828# ls -l

			total 240488

			-rwx------ 1 root root 167 Sep 1 15:48 cmdline

			-rwx------ 1 root root 108913836 Sep 1 15:48 initrd.img

			-rwx------ 1 root root 107842809 Sep 1 15:48 initrd.img-previous

			-rwx------ 1 root root 14750528 Sep 1 15:48 vmlinuz.efi

			-rwx------ 1 root root 14739488 Sep 1 15:48 vmlinuz-previous.efi

			root@pop-os:/boot/efi/EFI/Pop_OS-bc156c8a-fcb8-4a74-b491-089c77362828#

			This is much different than what you saw on the GRUB2 machines. Here, we're using the EFI Stub Loader feature that's built into the Linux kernel. The vmlinuz.efi file is just a copy of the /boot/vmlinuz-5.11.0-7633-generic file, which is the newest installed Linux kernel. By renaming this kernel file with a .efi filename extension, systemd-boot effectively turned this kernel file into its own bootloader. (Pretty slick, eh?) The vmlinuz-previous.efi file is a copy of the /boot/vmlinuz-5.11.0-7620-generic file, which is the second oldest installed kernel. Every time we install a new kernel on this systemd-boot machine, the original copy will go into the top-level /boot/ directory, and a copy with the .efi filename extension will go into this directory.

			Another thing to note here is that there are no shimx64*.efi files, as we saw on the Alma and Ubuntu machines. That's because systemd-boot doesn't need the shim system to work with Secure Boot. (I'll explain this in more detail in the Understanding Secure Boot section.)

			Okay, we don't need the root shell anymore, so type exit to get back to your normal user shell.

			The final systemd-boot component I want to show you is the bootctl tool. To see the status of systemd-boot, run the command without any options:

			donnie@pop-os:~$ sudo bootctl

			System:

			 Firmware: UEFI 2.70 (EDK II 1.00)

			 Secure Boot: disabled

			 Setup Mode: user

			 Boot into FW: supported

			Current Boot Loader:

			 Product: systemd-boot 247.3-3ubuntu3.4pop0~1626806865~21.04~19f7a6d

			 Features: P Boot counting

			 P Menu timeout control

			. . .

			. . .

			Use the list option to view all of the boot menu entries:

			donnie@pop-os:~$ sudo bootctl list

			Boot Loader Entries:

			 title: Pop!_OS (Pop_OS-current.conf) (default)

			 id: Pop_OS-current.conf

			 source: /boot/efi/loader/entries/Pop_OS-current.conf

			 linux: /EFI/Pop_OS-bc156c8a-fcb8-4a74-b491-089c77362828/vmlinuz.efi

			 initrd: /EFI/Pop_OS-bc156c8a-fcb8-4a74-b491-089c77362828/initrd.img

			 options: root=UUID=bc156c8a-fcb8-4a74-b491-089c77362828 ro quiet loglevel=0 systemd.show_status=false splash

			. . .

			. . .

			title: Reboot Into Firmware Interface

			 id: auto-reboot-to-firmware-setup

			 source: /sys/firmware/efi/efivars/LoaderEntries-4a67b082-0a4c-41cf-b6c7-440b29bb8c4f

			Use the set-default option to permanently change the default boot option, or the set-oneshot option to set the default boot option for only the next boot-up. Take the ID of the boot option that you want to use from the list output and specify it with either option, like this:

			donnie@pop-os:~$ sudo bootctl set-oneshot Pop_OS-oldkern.conf

			donnie@pop-os:~$

			Now, go ahead and reboot the machine. This time, you'll see the boot menu come up. After the five-second menu timer expires, you'll see the machine boot up on the alternate kernel that you chose with this bootctl set-oneshot command.

			There's more that you can do with bootctl, but I'll let you read all about it in the bootctl man page.

			Let's wrap this chapter up by briefly look at the Secure Boot feature.

			Understanding Secure Boot

			Secure Boot is an EFI/UEFI feature that prevents computers from loading any operating system, operating system modules, or device drivers that haven't been signed by an authorized security key. It helps prevent computers from loading various types of malware, such as rootkits. To enable or disable it, boot your machine to its setup screen, as you see here on my late-model Acer machine:

			
				
					[image:]
				

			

			Figure 17.8 – UEFI setup screen with Secure Boot enabled

			For some strange reason, it's still called the BIOS Setup Utility, even though this machine has a UEFI. What I want you to notice is the TPM Support option, which shows as [Enabled]. TPM stands for Trusted Platform Module and is the firmware chip on the motherboard that contains the signing keys that the Secure Boot option needs.

			On a Windows machine, Secure Boot is a big deal, because Windows has traditionally been very susceptible to malware infections. Linux is much less susceptible, although Secure Boot could be useful even for it. Ever since Microsoft introduced Windows 8, all new computers that come with Windows have Secure Boot enabled by default. For now, it's possible to disable Secure Boot on a Windows machine if you need to. With Windows 11, that will no longer be an option.

			When Secure Boot first came on the market, it caused much wailing and gnashing of teeth among the Linux faithful. That's because Secure Boot works by looking at the cryptographic signature of the machine's bootloader, and then compares it to the signature list that's in the computer's TPM. Okay, that doesn't sound so bad. What is bad is that the necessary signatures and signing keys are loaded into the TPM when the computer is manufactured, and Microsoft pretty much controls which signatures and keys get loaded. So, at first, Windows was the only operating system that was guaranteed to boot on a machine with Secure Boot enabled. Linux developers had to come up with a way to make Linux work with Secure Boot. The Linux faithful wailed and gnashed their teeth even more when they learned that this would have to involve letting Microsoft issue the signing keys for Linux bootloaders. (Yeah, the same Microsoft whose CEO at the time once stated that Linux is a cancer.)

			In this chapter, although you don't realize it yet, we've seen how GRUB2 and systemd-boot handle the Secure Boot feature in different ways. GRUB2 works with the shim system, which uses pre-signed shim files. On the Alma machine, these are the shimx64.efi and shimx64-almalinux.efi files, which we saw in the /boot/efi/EFI/almalinux/ directory. On the Ubuntu Server machine, all we have is the shimx64.efi file in the /boot/efi/EFI/ubuntu/ directory. So, why do we have this shim system, instead of just signing the GRUB2 bootloader files? Well, there are two reasons. One is that GRUB2 is already rather bloated and adding the Secure Boot code to it would bloat it even more. The other reason is that the GRUB2 code is licensed under the GPL3 free-as-in-speech software license. For some reason that I don't know, Microsoft refuses to issue signing keys for anything that's under GPL3. For that reason, systemd-boot is licensed under GPL2, which Microsoft seems to like better.

			When we looked at Pop!_OS Linux, I pointed out that it doesn't have any shimx64*.efi files. Since systemd-boot is under GPL2, Microsoft will sign its files, making the shim system unnecessary.

			Okay, I'm reading your mind again, hopefully for the final time. You're thinking, But, Donnie. What if I've created a kernel module, and I need it to load on a Secure Boot machine? And what if I install Linux on a Secure Boot machine, and then decide that I don't trust any signing keys that are issued by Microsoft? What can I do?

			Well, in both cases, it is possible to create signing keys and load them into the TPM yourself. It's a long procedure that I can't go into here, so I'll refer you to the Managing EFI bootloaders for Linux site that's linked in the Further reading section. In its Table of Contents, you'll see a link to the Secure Boot page, where you'll find the procedure.

			And that, guys and gals, is it for the bootloader chapter. Let's summarize and then wrap this baby up in swaddling clothes.

			Summary

			As always, we've covered much ground in this chapter. We started by providing an overview of the computer architecture and then discussed how the GRUB2 bootloader works on both BIOS-based and EFI/UEFI-based computers. Then, we covered systemd-boot on the Pop!_OS Linux machine, and wrapped up with a discussion of Secure Boot.

			In the next chapter, which will be our final one, we'll talk about systemd-logind. I'll see you there.

			Questions

			To test your knowledge of this chapter, answer the following questions:

			
					Which of the following statements is true?A. Only GPT partitions can be used on BIOS-based computers.
B. Only a GPT partition can be used to install GRUB2.
C. Only a GPT partition can be used to install systemd-boot.
D. Only an MBR partition can be used to install systemd-boot.

					How does GRUB2 work with Secure Boot?A. It uses the shim system.
B. Its files are directly signed by Microsoft.
C. GRUB2 doesn't work with Secure Boot.

					How does systemd-boot work?A. It uses the grubx64.efi file to activate the bootloader.
B. It copies the kernel file over to a file with a .efi filename extension so that the kernel can act as its own bootloader.
C. It directly calls in the Linux kernel from the /boot/ directory.
D. It doesn't work at all.

					What is necessary to make Secure Boot work?A. Nothing. It works on all computers.
B. That the machine has a BIOS chip, and that TPM is enabled.
C. That the machine has an EFI/UEFI, and that TPM is enabled.
D. Nothing. It never works.

			

			Answers

			
					C

					A

					B

					C

			

			Further reading

			To learn more about the topics that were covered in this chapter, take a look at the following resources:

			
					The 15 best bootloaders for home and embedded systems: https://www.ubuntupit.com/best-linux-bootloader-for-home-and-embedded-systems/

					The UEFI Interactive Shell: https://linuxhint.com/use-uefi-interactive-shell-and-its-common-commands/

					What is vmlinux.efi?: https://askubuntu.com/questions/330541/what-is-vmlinuz-efi

					How to modify systemd-boot: https://www.techrepublic.com/article/how-to-modify-systemd-boot-on-linux/

					Pop!_OS recovery partition: https://support.system76.com/articles/pop-recovery

					Secure Boot overview: https://www.dell.com/support/kbdoc/en-us/000145423/secure-boot-overview

					An explanation of Secure Boot: https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot

					Secure Boot Linux: https://linuxhint.com/secure-boot-linux/

					Installing Linux with Secure Boot: https://www.linux.org/threads/installing-linux-with-secure-boot-and-friends.29454/

					Changing to BootLoaderSpec files: https://fedoraproject.org/wiki/Changes/BootLoaderSpecByDefault

					Managing EFI bootloaders for Linux: https://www.rodsbooks.com/efi-bootloaders/index.html

					Ballmer: Linux is a cancer: https://www.theregister.com/2001/06/02/ballmer_linux_is_a_cancer/

			

		

	
		
			Chapter 18: Understanding systemd-logind

			Yes, it's true – there's even a new way of managing user logins and user sessions in systemd. In this chapter, we'll delve into the mysteries of systemd-logind, and show you some fairly nifty user management tricks. Knowing these tricks can definitely help you out in a business environment. Specific topics in this chapter include:

			
					Understanding the need for a new login service

					Understanding systemd-logind.service

					Understanding logind.conf

					Understanding loginctl

					Understanding polkit

			

			All right, let's get started.

			Technical requirements

			We won't need anything fancy for this chapter. Just use your normal Alma and Ubuntu Server virtual machines, and it will all be good. Well, let me rephrase that. You'll want to use Ubuntu Server for the logind.conf demos, because restarting the systemd-logind service is problematic on graphical mode machines (I'll explain more about that in a bit). At the end of the chapter, there will be a couple of demos for which it will be handy to have a desktop interface, so you'll want an Alma machine with the Gnome 3 desktop for them.

			All right, let's begin by looking at the systemd-logind.service file.

			Check out the following link to see the Code in Action video: https://bit.ly/3EiIHSD

			Understanding the need for a new login service

			I know, you're wondering, Why do we even need a new login service? One reason is because of the tight integration between systemd and cgroups. The systemd-logind service does several things for us, but its main job is to create cgroup slices and scopes for everyone who logs into a system. As we go through this chapter, we'll look at a few other things that systemd-logind also does for us. (To read a short description about all of the things that systemd-logind does, see the systemd-logind man page.)

			Understanding systemd-logind.service

			There's a considerable difference in how this unit file is set up on RHEL-type systems and Ubuntu. Let's first look at the RHEL-type setup on the Alma machine.

			The Alma Linux systemd-logind.service file

			On the Alma machine, the [Unit] section of the /lib/systemd/system/systemd-logind.service file looks like this:

			[Unit]

			Description=Login Service

			Documentation=man:systemd-logind.service(8) man:logind.conf(5)

			Documentation=https://www.freedesktop.org/wiki/Software/systemd/logind

			Documentation=https://www.freedesktop.org/wiki/Software/systemd/multiseat

			Wants=user.slice

			After=nss-user-lookup.target user.slice

			# Ask for the dbus socket.

			Wants=dbus.socket

			After=dbus.socket

			Here's the breakdown:

			
					Wants=user.slice: This makes total sense. Due to systemd's tight integration with cgroups, a user slice must be created for every user who logs in.

					After=nss-user-lookup.target: The Name Service Switch (NSS) determines where the system is to look for various types of information, including user authentication information. This is configured in the /etc/nsswitch.conf file, which we'll discuss next.

					Wants=dbus.socket and After=dbus.socket: There's no [Install] section of this service file, so this service won't automatically start when we reach either the multi-user or graphical target. Instead, a dbus message will get generated when the first user logs in for the first time, which will automatically start the service.

			

			Okay, let's look at the relevant lines of the /etc/nsswitch.conf file. Open it and look for these four lines:

			passwd: sss files systemd

			shadow: files sss

			group: sss files systemd

			. . .

			. . .

			gshadow: files

			In the passwd:, shadow:, and group: lines of the file, the sss means that user and group information will be pulled from the System Security Services Daemon (SSSD). The sssd allows you to use LDAP, FreeIPA, or even Microsoft Active Directory as a means of user authentication. If you're not using any of these three authentication methods, then authentication information will be pulled from files, which are the /etc/passwd, /etc/group, /etc/shadow, and /etc/gshadow files. If the system can't find information about the user who's logging in in either sss or files, then it will go to systemd. The systemd setting allows the system to authenticate a dynamic user that might be configured in a service unit file, and that wouldn't have an entry in either the /etc/passwd or /etc/shadow files.

			Note

			Dynamic users, to which I alluded in the preceding paragraph, aren't for normal human users who would log into a computer. They're system accounts that are used for running services with reduced privileges. A dynamic user gets created on-the-fly whenever a service that uses one starts, and gets destroyed whenever the service stops. You'll never see an entry for a dynamic user in the /etc/passwd, /etc/group, /etc/gshadow, or /etc/shadow files.

			Now, let's get back to the systemd-logind.service file, and look at the [Service] section. I can't show it all to you at once, so here's the top part:

			[Service]

			ExecStart=/usr/lib/systemd/systemd-logind

			Restart=always

			RestartSec=0

			BusName=org.freedesktop.login1

			WatchdogSec=3min

			CapabilityBoundingSet=CAP_SYS_ADMIN CAP_MAC_ADMIN CAP_AUDIT_CONTROL CAP_CHOWN CAP_KILL CAP_DAC_READ_SEARCH CAP_DAC_OVERRIDE CAP_FOWNER CAP_SYS_TTY_CONFIG

			. . .

			. . .

			It's mainly the standard stuff that we've gone over before, so you should have a good handle on it already. The main thing I want you to notice is the CapabilityBoundingSet= line, which grants a lot of root-level capabilities to this service. The second part of the [Service] section consists of a lot of security and resource control directives:

			. . .

			MemoryDenyWriteExecute=yes

			RestrictRealtime=yes

			RestrictNamespaces=yes

			RestrictAddressFamilies=AF_UNIX AF_NETLINK

			RestrictSUIDSGID=yes

			SystemCallFilter=@system-service

			SystemCallErrorNumber=EPERM

			SystemCallArchitectures=native

			LockPersonality=yes

			FileDescriptorStoreMax=512

			# Increase the default a bit in order to allow many simultaneous logins since we keep one fd open per session.

			LimitNOFILE=16384

			As always, I'll leave it to you to look these directives up in the systemd.directives man page.

			All right, that's it for the systemd-logind.service file on the Alma machine. Let's look at the one on the Ubuntu machine.

			The Ubuntu Server systemd-logind.service file

			The systemd-logind.service file on the Ubuntu machine is considerably different from the one on the Alma machine. Let's look at the [Unit] section first:

			[Unit]

			Description=Login Service

			Documentation=man:systemd-logind.service(8) man:logind.conf(5)

			Documentation=https://www.freedesktop.org/wiki/Software/systemd/logind

			Documentation=https://www.freedesktop.org/wiki/Software/systemd/multiseat

			Wants=user.slice modprobe@drm.service

			After=nss-user-lookup.target user.slice modprobe@drm.service

			ConditionPathExists=/lib/systemd/system/dbus.service

			# Ask for the dbus socket.

			Wants=dbus.socket

			After=dbus.socket

			. . .

			The first difference we see is that the Wants= line calls in the modprobe@.service to load the Direct Rendering Manager (DRM) (drm) kernel module. I'm not sure why that is, because this seems like something that should get loaded when you boot the machine. In fact, this seems to be the case on the Alma machine, as we see here:

			[donnie@localhost ~]$ lsmod | grep drm

			drm_kms_helper 233472 1 vmwgfx

			syscopyarea 16384 1 drm_kms_helper

			sysfillrect 16384 1 drm_kms_helper

			sysimgblt 16384 1 drm_kms_helper

			fb_sys_fops 16384 1 drm_kms_helper

			drm 569344 4 vmwgfx,drm_kms_helper,ttm

			[donnie@localhost ~]$

			For some reason that I don't know, the Ubuntu developers decided to load the drm module when the systemd-logind service starts, instead of at boot-up.

			The [Service] section on the Ubuntu machine is much larger, because it contains more security directives than what you saw on the Alma machine. Why? Well remember, the Alma machine is running SELinux, which gives comprehensive system protection right out of the box. Ubuntu Server is running AppArmor, which isn't nearly as good, at least not in its out-of-the-box configuration. So, the extra security directives in the systemd-logind.service file give us some good Mandatory Access Control protection that AppArmor doesn't give us. Here's a snippet of the [Service] section, which shows some of the extra directives for Ubuntu:

			[Service]

			BusName=org.freedesktop.login1

			CapabilityBoundingSet=CAP_SYS_ADMIN CAP_MAC_ADMIN CAP_AUDIT_CONTROL CAP_CHOWN CAP_DAC_READ_SEARCH CAP_DAC_OVERRIDE CAP_FOWNER CAP_SYS_TTY_CONFIG CAP_LINUX_IMMUTABLE

			DeviceAllow=block-* r

			DeviceAllow=char-/dev/console rw

			DeviceAllow=char-drm rw

			DeviceAllow=char-input rw

			…

			…

			# Increase the default a bit in order to allow many simultaneous logins since

			# we keep one fd open per session.

			LimitNOFILE=524288

			As always, I'll let you read about these security directives in the man pages.

			Next, let's look at the configuration file for systemd-logind.service.

			Understanding logind.conf

			The /etc/systemd/logind.conf file is the configuration file for the systemd-logind service. Now, before we get too far, I want to recommend that you use a text-mode virtual machine for this section. The demos will have you make several changes to the logind.conf file, and you'll need to restart the systemd-logind service after each one. If you do that on a graphical mode machine, you'll get logged out of the desktop, and will have to log back in. The desktop doesn't always come back up correctly, and you'll end up having to restart the machine. With a text-mode machine, that isn't a problem. So, since the Ubuntu Server machine is already in text mode, we'll use it for the demos.

			The good news is that the logind.conf file is identical on both the Ubuntu machine and the Alma machine. Here's what it looks like:

			
				
					[image:]
				

			

			Figure 18.1 – The logind.conf file

			As is the case with all of the configuration files in /etc/systemd/, all directives are commented out. The values shown are the default ones that are compiled into the systemd-logind executable. You can probably figure out what many of these directives do just by looking at their names, and you can consult the logind.conf man page to read about the ones that aren't so obvious. So, rather than cover each directive in detail, I just want to go over a few of the more interesting ones. Let's start with the virtual terminals setting.

			Virtual terminals

			At the top, we see the #NAutoVTs=6 line. This sets the number of available virtual terminals. Virtual terminals don't do much for you on a desktop machine, because you can just open multiple terminal emulators from the Start menu. But, they're extremely handy on a text-mode machine. In fact, I use them all the time here on one of my text-mode, Linux-powered GPU mining rigs. While the mining software is running in the default virtual terminal, I can do a Ctrl + Alt + Function key sequence to bring up another terminal so that I can do something else there. So, to bring up virtual terminal 2, I would do Ctrl + Alt + F2 and log into a new session. I can bring up a total of six virtual terminals by using function keys F1 through F6. (Doing Ctrl + Alt + F1 gets you back to the default terminal.) That's cool because while the mining software runs in the F1 terminal, I can have a text-mode cryptocoin wallet running in the F2 terminal, edit a file in the F3 terminal, and ssh into my other GPU mining rig from the F4 terminal. On a graphical mode desktop machine, one virtual terminal is reserved for the desktop. (It's usually the F1 terminal, but that could vary with different distros.) You can try this on your virtual machine, but there's a bit of a trick to it. If your host machine is running Windows, just do the Ctrl-Alt-Function key sequence from your normal keyboard, as you'd do on a bare-metal Linux machine. But, if your host machine is running Linux, you'll need to open the VirtualBox Input/Keyboard menu and bring up the Soft Keyboard:

			
				
					[image:]
				

			

			Figure 18.2 – The VirtualBox Soft Keyboard

			Then, do your Ctrl-Alt-Function key sequence by clicking on the soft keyboard. If you try to do it the normal way with your normal keyboard, the key sequence will be intercepted by the host machine.

			You'll likely never edit this line, because six virtual terminals are enough for most people. But if you ever do need more, you can add them here. For example, let's say that you need to have eight virtual terminals instead of just six. Just change the #NAutoVTs=6 line to #NAutoVTs=8. Then, restart the systemd-logind service:

			donnie@ubuntu20-04:/etc/systemd$ sudo systemctl restart systemd-logind

			donnie@ubuntu20-04:/etc/systemd$

			You can see the extra two virtual terminals by doing Ctrl + Alt + F7 and Ctrl + Alt + F8.

			Next, let's see how users can keep processes going after they log out.

			Keeping user processes going after logout

			These next three lines work together:

			#KillUserProcesses=no

			#KillOnlyUsers=

			#KillExcludeUsers=root

			If you're an old-timer like me, you'll likely remember how this worked in the old SysV days. You'd log into a Linux server, start a process from the command line, and then log out while the process was still going. The problem was that the process would stop as soon as you logged out. If you logged in remotely and started a process, it would stop if you accidentally closed the remote terminal of your local machine or if the local machine were to reboot. In order to keep the process on the remote machine going if any of those things happened, you'd need to start the process with either screen or nohup. Now though, you don't have to worry about that as long as these three lines stay as you see them here. To demonstrate, create an account on the text-mode Ubuntu machine for Frank, if you haven't done so already:

			donnie@ubuntu20-04:~$ sudo adduser frank

			Then, have him remotely log in. Have him create the loop.sh shell script in his own home directory, like this:

			#!/bin/bash

			i=0

			for i in {0..100000}

			do

			 echo $i >> number.txt

			 sleep 5

			done

			exit

			It's a silly little loop that does nothing but create an entry in a text file every five seconds. That's okay though, because it serves our purpose. (Also, note that I didn't upload this script to GitHub, because it would take longer for you to download it than it would to just type it yourself.) Next, have Frank set the executable permission on the loop.sh file:

			frank@ubuntu20-04:~$ chmod u+x loop.sh

			frank@ubuntu20-04:~$ ls -l

			total 4

			-rwxr--r-- 1 frank 83 Sep 9 16:29 loop.sh

			frank@ubuntu20-04:~$

			Now, have Frank start the script as a background process:

			frank@ubuntu20-04:~$./loop.sh &

			[1] 2446

			frank@ubuntu20-04:~$

			Verify that the script is running by doing tail -f number.txt:

			frank@ubuntu20-04:~$ tail -f number.txt

			10

			11

			12

			13

			14

			15

			16

			17

			18

			Do a Ctrl + C to stop the tail -f process. Then, have Frank log out by typing exit.

			Next, have Frank log in again, and again have him do tail -f number.txt. You should see that the number list keeps incrementing, which means that the process kept going after Frank logged out. To stop the process, use ps aux to get the PID number, and then use that PID number in a kill command:

			frank@ubuntu20-04:~$ ps aux | grep loop.sh

			frank 2446 0.1 1.5 32012 31120 ? S 16:35 0:00 /bin/bash ./loop.sh

			frank 2598 0.0 0.0 3304 736 pts/2 S+ 16:46 0:00 grep --color=auto loop.sh

			frank@ubuntu20-04:~$ kill 2446

			frank@ubuntu20-04:~$

			Then, have Frank log out by typing exit.

			Now, let's say that we don't want Frank to keep his processes going after he logs out. In your own terminal, open the /etc/systemd/logind.conf file in your text editor. Change the #KillOnlyUsers= line so that it looks like this:

			KillOnlyUsers=frank

			Save the file and restart the systemd-logind service:

			donnie@ubuntu20-04:/etc/systemd$ sudo systemctl restart systemd-logind

			donnie@ubuntu20-04:/etc/systemd$

			Note that there's no reload option for this service.

			Go back to Frank's terminal, and have him log back in. Have him start the loop.sh script in the background, as you did before. When you do a tail -f number.txt command this time, you should see that the number list no longer increments.

			Okay, we're through with Frank for now, so go ahead and have him log out.

			Note

			A few days ago, the day that I started writing this chapter, Frank the cat decided to help out. He pressed some keys on my keyboard and deleted a whole paragraph, replacing it with a string of dashes. (Thank goodness for the Undo feature.)

			Next, let's look at a few power management directives.

			Power management directives

			Further down in the /etc/systemd/logind.conf file, you'll see the HandlePowerKey=, HandleSuspendKey=, HandleHibernateKey=, HandleLidSwitch=, HandleLidSwitchExternalPower=, and the HandleLidSwitchDocked= power management directives. You can probably figure out what these directives do just by looking at their names, and you can see the default settings in the logind.conf file. To see the other settings that you can use for these directives, just consult the logind.conf man page. It's a good write-up, so I won't repeat any of that here. But, I will offer one example.

			Let's say you have a laptop, and you need it to keep running when you shut the lid. Just look for this line:

			#HandleLidSwitch=suspend

			Change it to look like this:

			HandleLidSwitch=ignore

			I'm going to assume that you're running your laptop in graphical mode. (Doesn't everyone?) Since restarting systemd-logind.service doesn't work well on graphical mode machines, your best bet would be to just reboot the machine so that the new setting can take effect. Now, instead of suspending the laptop when you close the lid, it will continue running as merrily as it did with the lid open. (You can try this on your virtual machine if you really want to. But, since your virtual machine doesn't have a lid, you won't see anything happen.).

			For our last example, let's do some Idle Action.

			The IdleAction directives

			IdleAction, eh? Boy, if that isn't an oxymoron, I don't know what is. But seriously, you can configure these next two directives to control what happens when you leave the computer sitting idle for a specified period of time:

			#IdleAction=ignore

			#IdleActionSec=30min

			By default, the machine will just keep running until you shut it down. Just for fun, change these two lines so that they look like this:

			IdleAction=poweroff

			IdleActionSec=3min

			Restart systemd-logind.service, and then just wait, without touching the virtual machine. After three minutes, you should see the machine automatically shut down. Of course, you don't want to leave the virtual machine with this configuration, so boot it up again and change these settings back to their default values. Then, restart systemd-logind.service.

			There are still a few directives that I didn't cover, but you can read about them in the logind.conf man page. Let's move on to the loginctl management utility.

			Understanding loginctl

			Another bit of good news is that loginctl works identically on both Ubuntu and Alma. You can use it to keep an eye on what other users are doing, change certain settings for a user's login environment, or even as a security tool to get rid of malicious users.

			Note

			For this section, we'll continue with the Ubuntu Server machine. Create user accounts for Pogo, Vicky, and Frank, if you haven't already done so. Log yourself in from the local terminal, and again from a remote terminal. Do Ctrl-Alt-F2 on the virtual machine to get to the second virtual terminal, and have Vicky log in there. Then, have Pogo and Frank log in from their own remote terminals.

			Before we get into the real meat of the matter, we need to define a couple of terms:

			
					session: A session gets created whenever a user logs into the system. Each session is assigned a decimal number as its ID.

					seat: A seat consists of all of the hardware that is assigned to a specific workstation. Each seat has an assigned text-string name that consists of from 1 to 255 characters. A user who logs into a computer at the local console will always be assigned a seat. Users who log in remotely will not be assigned a seat. In a default setup, seat0 is the only seat that you will ever see. Creating new seats involves configuring udev rules, which is beyond the scope of this book.

			

			Doing either loginctl without any options or loginctl list-sessions shows you who is logged in and where they've logged in from:

			donnie@ubuntu20-04:~$ loginctl

			SESSION UID USER SEAT TTY

			 10 1001 frank pts/1

			 14 1003 vicky seat0 tty2

			 16 1004 pogo pts/2

			 3 1000 donnie seat0 tty1

			 6 1000 donnie pts/0

			5 sessions listed.

			donnie@ubuntu20-04:~$

			You see that Vicky and I are the only ones with assigned seats, while Frank and Pogo have to remain standing. (Yeah I know, bad joke.) But seriously, Vicky and I were assigned to seat0 because we're both logged in at the local terminal. I logged in from tty1, which is the default virtual terminal. Then, I did Ctrl-Alt-F2 to get to the second virtual terminal (tty2), and had Vicky log in there. It's probably not real likely that you'll have two people log into two different virtual terminals of the same local machine, but it could happen. I did it now to show you that more than one user can be assigned to the same seat. You also see that I have two sessions going for myself, because I'm logged in from both the local terminal and from a remote ssh session on the pts/0 terminal. Frank and Pogo are only logged in remotely, which is why they don't have seats. Also, note that every session has its own assigned ID number in the first column.

			Note

			I've just shown you how the list-sessions option works on Ubuntu. On a RHEL 8-type distro such as Alma, the SEAT and TTY columns will both be empty for any users who have logged in remotely. (I have no idea why.) However, you will see the pts information for a user when you use either a user-status or a session-status option, which I'll explain next.

			Use the user-status option to see detailed information about a user. If you don't specify a username, you'll see information about your own user account. Right now, let's see what kind of mischief our intrepid opossum, Pogo, is up to:

			donnie@ubuntu20-04:~$ loginctl user-status pogo

			pogo (1004)

			 Since: Sat 2021-09-11 16:50:45 EDT; 24min ago

			 State: active

			 Sessions: *16

			 Linger: no

			 Unit: user-1004.slice

			 ├─session-16.scope

			 │ ├─2211 sshd: pogo [priv]

			 │ ├─2302 sshd: pogo@pts/2

			 │ └─2303 -bash

			 └─user@1004.service

			. . .

			Sep 11 16:50:45 ubuntu20-04 systemd[2226]: Startup finished in 125ms.

			donnie@ubuntu20-04:~$

			To see slightly less information, we'll look at Pogo's session-status. We see that he's in session number 16, so the command and output will look like this:

			donnie@ubuntu20-04:~$ loginctl session-status 16

			16 - pogo (1004)

			 Since: Sat 2021-09-11 16:50:45 EDT; 39min ago

			 Leader: 2211 (sshd)

			 TTY: pts/2

			 Remote: 192.168.0.51

			 Service: sshd; type tty; class user

			 State: active

			 Unit: session-16.scope

			 ├─2211 sshd: pogo [priv]

			 ├─2302 sshd: pogo@pts/2

			 └─2303 -bash

			Sep 11 16:50:45 ubuntu20-04 systemd[1]: Started Session 16 of user pogo.

			donnie@ubuntu20-04:~$

			We've seen examples of how to get information about users and sessions. Let's look at how to get information about seats. A list-seat command shows you all of the available seats:

			donnie@ubuntu20-04:~$ loginctl list-seats

			SEAT

			seat0

			1 seats listed.

			donnie@ubuntu20-04:~$

			Unless you've configured one or more udev rules, seat0 is the only one you'll ever see. Now, use the seat-status option to see the hardware that this seat includes:

			donnie@ubuntu20-04:~$ loginctl seat-status seat0

			seat0

			 Sessions: *14 3

			 Devices:

			 ├─/sys/devices/LNXSYSTM:00/LNXPWRBN:00/input/input0

			 │ input:input0 "Power Button"

			 ├─/sys/devices/LNXSYSTM:00/LNXSLPBN:00/input/input1

			 │ input:input1 "Sleep Button"

			 ├─/sys/devices/LNXSYSTM:00/LNXSYBUS:00/PNP0A03:00/LNXVIDEO:00/input/input4

			 │ input:input4 "Video Bus"

			 ├─/sys/devices/pci0000:00/0000:00:01.1/ata2/host1/target1:0:0/1:0:0:0/block/sr0

			 │ block:sr0

			. . .

			There are several more options for getting information about users, sessions, and seats, but you get the idea. Besides, you can get more information from the loginctl man page.

			Next, let's say that for whatever reason, you want to kick Frank out of his session. Just use the terminate-session option, followed by Frank's session ID number, like this:

			donnie@ubuntu20-04:~$ sudo loginctl terminate-session 10

			[sudo] password for donnie:

			donnie@ubuntu20-04:~$

			Here, you see that Frank's session really has been terminated:

			frank@ubuntu20-04:~$ Connection to 192.168.0.49 closed by remote host.

			Connection to 192.168.0.49 closed.

			donnie@siftworkstation: ~

			$

			If a user is logged into multiple sessions and you want to shut down all of their sessions, use the terminate-user option, like this:

			donnie@ubuntu20-04:~$ sudo loginctl terminate-user pogo

			donnie@ubuntu20-04:~$

			There are a few other management commands that you might find useful. They're easy to understand, and there's a good write-up about them in the loginctl man page.

			Next, let's cover a cool tool that can replace sudo in some instances.

			Understanding polkit

			PolicyKit and polkit aren't part of the systemd ecosystem, but systemd-logind does provide access to polkit functionality. PolicyKit was a Red Hat innovation that came on the scene quite a few years ago, and it could be used on various Unix-like operating systems. In 2012, a new version was released with the brand new name, polkit. The developers changed the name as a reminder that this is a whole new code base that isn't compatible with the older version.

			The polkit service is similar to sudo in that it allows a normally non-privileged user to perform certain privileged tasks. There is, however, a big difference between the two.

			The sudo utility is quite easy to configure, and you can easily grant pretty much any admin privilege or privileges to any user. When you install the operating system, you'll have full sudo privileges for yourself, and nobody else will have any. On the other hand, polkit comes pre-configured with a set of administrative tasks for which it can grant root privileges. You can add more tasks, and there might be times when you'll want to. Keep in mind though, that writing rules and actions for polkit is more complex than writing rules for sudo. So, you'll want to study the examples that are already on the system and read the documentation before you try to write your own. Before we look at these rules and actions, let's see how polkit grants root privileges.

			We'll start with the Alma Linux machine. We need root privileges to peek into some of the polkit directories, so let's just go to the root shell:

			[donnie@localhost ~]$ sudo su -

			[sudo] password for donnie:

			[root@localhost ~]#

			Now, look in the /etc/polkit-1/rules.d/ directory:

			[root@localhost ~]# cd /etc/polkit-1/rules.d/

			[root@localhost rules.d]# ls

			49-polkit-pkla-compat.rules 50-default.rules

			[root@localhost rules.d]#

			The file we want is the 50-default.rules file, which looks like this:

			[root@localhost rules.d]# cat 50-default.rules

			/* -*- mode: js; js-indent-level: 4; indent-tabs-mode: nil -*- */

			// DO NOT EDIT THIS FILE, it will be overwritten on update

			//

			// Default rules for polkit

			//

			// See the polkit(8) man page for more information

			// about configuring polkit.

			polkit.addAdminRule(function(action, subject) {

			 return ["unix-group:wheel"];

			});

			[root@localhost rules.d]#

			Take note of the final stanza:

			polkit.addAdminRule(function(action, subject) {

			return ["unix-group:wheel"];

			This means that if polkit detects someone trying to perform an administrative task without using sudo, it will look in the wheel group to see if anyone is there. If there is someone in the wheel group, then it will prompt the user to enter the password of that person. If the wheel group has no members, that means that the root user has an assigned password. If that's the case, polkit will prompt for the root user password.

			On the Ubuntu machine, the files we need to see are in the /etc/polkit-1/localauthority.conf.d/ directory, and we don't need root privileges to enter it:

			donnie@ubuntu20-04:~$ cd /etc/polkit-1/localauthority.conf.d/

			donnie@ubuntu20-04:/etc/polkit-1/localauthority.conf.d$ ls -l

			total 8

			-rw-r--r-- 1 root 267 Aug 16 2019 50-localauthority.conf

			-rw-r--r-- 1 root root 65 Aug 16 2019 51-ubuntu-admin.conf

			donnie@ubuntu20-04:/etc/polkit-1/localauthority.conf.d$

			The 50-localauthority.conf file looks like this:

			donnie@ubuntu20-04:/etc/polkit-1/localauthority.conf.d$ cat 50-localauthority.conf

			# Configuration file for the PolicyKit Local Authority.

			#

			# DO NOT EDIT THIS FILE, it will be overwritten on update.

			#

			# See the pklocalauthority(8) man page for more information

			# about configuring the Local Authority.

			#

			[Configuration]

			AdminIdentities=unix-user:0

			donnie@ubuntu20-04:/etc/polkit-1/localauthority.conf.d$

			There's only one important line here, which looks for the root user. (That's the unix-user with UID 0.) The other file looks for members of the sudo or admin groups:

			donnie@ubuntu20-04:/etc/polkit-1/localauthority.conf.d$ cat 51-ubuntu-admin.conf

			[Configuration]

			AdminIdentities=unix-group:sudo;unix-group:admin

			donnie@ubuntu20-04:/etc/polkit-1/localauthority.conf.d$

			The biggest difference between the Red Hat and Ubuntu worlds so far is that on Red Hat-type systems, members of the wheel group have full sudo privileges. On Ubuntu systems, members of either the sudo group or the admin group have full sudo privileges. Now, let's see how this works.

			On the Ubuntu machine, try to reload the ssh service without using sudo:

			donnie@ubuntu20-04:~$ systemctl reload ssh

			==== AUTHENTICATING FOR org.freedesktop.systemd1.manage-units ===

			Authentication is required to reload 'ssh.service'.

			Authenticating as: Donald A. Tevault (donnie)

			Password:

			==== AUTHENTICATION COMPLETE ===

			donnie@ubuntu20-04:~$

			As you see, polkit asks for my password because I'm the only member of the sudo group. Now, let's try using polkit to look at the firewall configuration:

			donnie@ubuntu20-04:~$ iptables -L

			Fatal: can't open lock file /run/xtables.lock: Permission denied

			donnie@ubuntu20-04:~$

			It failed, because polkit isn't configured to work with the iptables command.

			Next, let's see what happens if Pogo tries to use polkit. For it to work though, his password will need to be different from your own password. If it's the same, change it to something else:

			donnie@ubuntu20-04:~$ sudo passwd pogo

			New password: Retype new password:

			passwd: password updated successfully

			donnie@ubuntu20-04:~$

			Now, let's have Pogo try to reload ssh:

			pogo@ubuntu20-04:~$ systemctl reload ssh

			==== AUTHENTICATING FOR org.freedesktop.systemd1.manage-units ===

			Authentication is required to reload 'ssh.service'.

			Authenticating as: Donald A. Tevault (donnie)

			Password:

			polkit-agent-helper-1: pam_authenticate failed: Authentication failure

			==== AUTHENTICATION FAILED ===

			Failed to reload ssh.service: Access denied

			See system logs and 'systemctl status ssh.service' for details.

			pogo@ubuntu20-04:~$

			As before, polkit asks for my password, because I'm a member of the sudo group and Pogo isn't. Pogo doesn't know my password, so he can't perform this command.

			While we're still on the Ubuntu machine, let's see what some of these rules look like. We'll cd into the /usr/share/polkit-1/rules.d/ directory and peek inside the systemd-networkd.rules file:

			// Allow systemd-networkd to set timezone, get product UUID,

			// and transient hostname

			polkit.addRule(function(action, subject) {

			 if ((action.id == "org.freedesktop.hostname1.set-hostname" ||

			 action.id == "org.freedesktop.hostname1.get-product-uuid" ||

			 action.id == "org.freedesktop.timedate1.set-timezone") &&

			 subject.user == "systemd-network") {

			 return polkit.Result.YES;

			 }

			});

			Here, we're assigning root privileges to the systemd-networkd system user account so that it can perform these three tasks without prompting for a password. (The return polkit.Result.YES; line is what prevents it from asking for a password.)

			For something a bit more complex, let's cd into the /usr/share/polkit-1/actions/ directory and peek inside one of its files. We'll choose the com.ubuntu.languageselector.policy file, since it's the shortest. The only part that we need to look at is the action id= section, which looks like this:

			. . .

			 <action id="com.ubuntu.languageselector.setsystemdefaultlanguage">

			 <description gettext-domain="language-selector">Set system default language</description>

			 <message gettext-domain="language-selector">System policy prevented setting default language</message>

			 <defaults>

			 <allow_any>auth_admin</allow_any>

			 <allow_inactive>no</allow_inactive>

			 <allow_active>auth_admin_keep</allow_active>

			 </defaults>

			 </action>

			. . .

			The <default> stanza at the bottom is where we define who can perform this action. Here's the breakdown:

			
					<allow_any>: This tag sets authorizations for any client machine. The auth_admin setting requires the user to enter the administrative password before the action can be performed.

					<allow_inactive>: This tag sets authorizations for clients in inactive sessions on the local console. It's set to no here, which prevents these clients from having any authorization.

					<allow_active>: This is for clients in an active session on the local console. The auth_admin_keep value requires that the user enter the admin password. It also allows the user to maintain authorization for a short period of time.

			

			The other action files are set up in a similar manner, and I'll leave it to you to peruse through them. For more details on the rules and actions, see the polkit man page.

			The polkit service is activated by a dbus message whenever someone tries to perform an administrative action that's configured in polkit, as we see by the Type=dbus line in its unit file:

			donnie@ubuntu20-04:~$ cd /lib/systemd/system

			donnie@ubuntu20-04:/lib/systemd/system$ cat polkit.service

			[Unit]

			Description=Authorization Manager

			Documentation=man:polkit(8)

			[Service]

			Type=dbus

			BusName=org.freedesktop.PolicyKit1

			ExecStart=/usr/lib/policykit-1/polkitd --no-debug

			donnie@ubuntu20-04:/lib/systemd/system$

			Okay, that does it for the Ubuntu machine. Things are pretty much the same on the Alma machine, except that you need root privileges to cd into the rules.d/ directory, as we see here:

			[donnie@localhost system]$ cd /usr/share/polkit-1/

			[donnie@localhost polkit-1]$ ls -l

			total 8

			drwxr-xr-x. 2 root 4096 Jul 23 15:51 actions

			drwx------. 2 polkitd root 287 Jul 12 17:51 rules.d

			[donnie@localhost polkit-1]$

			Now, let's shift over to the local graphical terminal of the Alma virtual machine. If you're still in the root shell, type exit to get back to your own shell. Now, try to reload sshd, and you'll see a dialog box pop up to ask for the admin password:

			
				
					[image:]
				

			

			Figure 18.3 – The graphical polkit password dialog box

			Okay, I think that that's about it for polkit. Let's summarize what we've learned and wrap things up.

			Summary

			As always, we've seen some cool stuff in this chapter. We began with a discussion about the systemd-logind.service file, and saw how it's set up differently on the Ubuntu and Alma machines. We then looked at the logind.conf file, and played with some of its configuration options. After that, we played with loginctl and wrapped up with a discussion of polkit.

			And that, guys and gals, wraps things up not only for this chapter, but also for the whole book. I hope that you've enjoyed our journey through the idyllic land of systemd as much as I have. Take care, and I hope to see you again soon.

			Questions

			
					How does the systemd-logind service get activated?A. As part of the multi-user target
B. As part of the graphical target
C. When it receives a dbus message
D. As part of the sysinit target

					What happens when two different users remotely log into a Linux server?A. They both get assigned to seat0.
B. One gets assigned to seat0 and the other gets assigned to seat1.
C. They both get assigned to seat1.
D. Neither of them gets an assigned seat.

					In which of the following files does systemd-logind look to find out how to do user authentication?A. /etc/nsswitch.conf
B. /etc/default/nsswitch.conf
C. /etc/sysconfig/nsswitch.conf
D. /etc/authenticate.conf

					Which of the following statements is true about polkit?A. In its default configuration, it works with only a pre-defined set of administrative commands.
B. In its default configuration, it works with all administrative commands, just as sudo does.
C. It only works with the root user password.
D. It can only be used on text-mode machines.

			

			Answers

			
					C

					D

					A

					A

			

			Further reading

			
					The SSSD home page: https://sssd.io/

					An explanation of seats and sessions: https://www.man7.org/linux/man-pages/man3/sd-login.3.html

					The polkit reference manual: https://www.freedesktop.org/software/polkit/docs/latest/polkit.8.html

			

		

	
		
			[image:]

			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			[image: Mastering Adobe Photoshop Elements

]

			Red Hat Enterprise Linux 8 Administration

			Miguel Pérez Colino, Pablo Iranzo Gómez, Scott McCarty

			ISBN: 978-1-80056-982-9

			
					Deploy RHEL 8 in different footprints, from bare metal and virtualized to the cloud

					Manage users and software on local and remote systems at scale

					Discover how to secure a system with SELinux, OpenSCAP, and firewalld

					Gain an overview of storage components with LVM, Stratis, and VDO

					Master remote administration with passwordless SSH and tunnels

					Monitor your systems for resource usage and take actions to fix issues

					Understand the boot process, performance optimizations, and containers

			

			[image: Mastering Adobe Captivate 2019 - Fifth Edition]

			Linux Kernel Programming

			Kaiwan N Billimoria

			ISBN: 978-1-78995-343-5

			
					Write high-quality modular kernel code (LKM framework) for 5.x kernels

					Configure and build a kernel from source

					Explore the Linux kernel architecture

					Get to grips with key internals regarding memory management within the kernel

					Understand and work with various dynamic kernel memory alloc/dealloc APIs

					Discover key internals aspects regarding CPU scheduling within the kernel

					Gain an understanding of kernel concurrency issues

					Find out how to work with key kernel synchronization primitives

			

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Share Your Thoughts

			Now you've finished Linux Service Management Made Easy with systemd, we'd love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	OEBPS/image/Figure_6.1_B17491.jpg
[donnie@localhost ~]$ systemctl list-units -t target
LoAD

UNIT ACTIVE SUB___DESCRIPTION
basic.target Toaded active active Basic System

cryptsetup. target loaded active active Local Encrypted Volumes
getty. target loaded active active Login Prompts

graphical . target loaded active active Graphical Interface
Tocal-fs-pre.target loaded active active Local File Systems (Pre)
local-fs. target loaded active active Local File Systems
multi-user. target loaded active active Multi-User System
network-online. target loaded active active Network is Online
network-pre.target loaded active active Network (Pre)

network. target loaded active active Network

nfs-client. target loaded active active NFS client services
nss-user-lookup. target loaded active active User and Group Name Lookups
paths. target loaded active active Paths
remote-fs-pre.target loaded active active Remote File Systems (Pre)
remote-fs. target loaded active active Remote File Systems
rpc_pipefs. target loaded active active rpc_pipefs.target
rpcbind. target loaded active active RPC Port Mapper

slices. target loaded active active Slices

sockets. target loaded active active Sockets

sound. target loaded active active Sound Card
sshd-keygen.target loaded active active sshd-keygen. target

swap. target loaded active active Swap

sysinit.target loaded active active System Initialization
timers. target loaded active active Timers

LOAD
ACTIVE
suB

Reflects whether the

unit definition was properly loaded.

The high-level unit activation state, i.e. generalization of SUB.
The low-level unit activation state, values depend on unit type.

24 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use ‘systemctl list-unit-files'.

[donnie@localhost ~1$ I

OEBPS/image/Figure_17.1_B17491.jpg
General

Storage

Audio

@
=]
[pisplay
O

[Network
£ serial Ports
& uss

[7] shared Folders
[

User Interface

Alma

ux-UEFI - Settings —

System

Motherboard | Processor | Acceleration

Base Memory:

Boot Order:

Chipset:

Pointing Device:

Extended Features:

. (1096 MB_ |3]

32768 MB.

v/ () optical

vI[2) Hard pisk
& Network
2 PIX3 -

| PS/2 Mouse

VI Enable I/O APIC
V! Enable EFI (special OSes only)
VI Hardware Clock in UTC Time

 cancel

OEBPS/image/Figure_12.8_B17491.jpg
donnie@ubuntu200.

top - 10:18:45 up 1:57, 4 users, load average: 2.21, 3.71, 3.15
Tasks: 189 total, 5 running, 184 sleeping, @ stopped, @ zombie

%Cpu(s): 24.1 us, 3.9 sy, 0.0 ni, 71.3 id, 0.2 wa, 0.0 hi, 0.4 si, 0.0 st
MiB Mem 7961.7 total, 5267.1 free, 1233.9 used, 1460.8 buff/cache

MiB Swap: 3936.0 total, 3712.3 free, 223.7 used. 6689.2 avail Mem

PID USER PR NI VIRT RES SHR S PU_ %MEM TIME+ COMMAND
129648 root 20 50192 7192 3700 R 22. N, stress-ng-cpu
129649 root 20 50192 7192 3760 R 22.5 0. stress-ng-cpu
129650 root 20 50192 7192 3760 R 21.9 0. . stress-ng-cpu

]
9
%

[]
]
]
]

129651 root 20 50192 7192 3760 R 21.5 stress-ng-cpu
3628 root 20 0 2628344 783248 56748 S 8.6 kube-apiserver
3831 root 20 0 1853284 83592 44336 S 4.6 kubelet

OEBPS/image/Figure_17.4_B17491.jpg
Select Language

» Device Manager
» Boot Manager
» Boot Maintenance Manager

Continue
Reset

Ti=Move Highlight <Enter>=Select Entry

OEBPS/image/B17491_Figure_18.1.jpg
[Login]

#NAUtoVTs=6

#ReservevT=6
#KillUuserProcesses=no
#Kkillonlyusers=
#Ki11ExcludeUsers=root
#InhibitDelayMaxsec=5
#HandlePowerKey=poweroff
#HandlesuspendKkey=suspend
#HandleHibernatekey=hibernate
#HandleLidswitch=suspend
#HandleLidswitchExternalPower=suspend
#HandleLidswitchDocked=ignore
#PowerkeyIgnoreInhibited=no
#suspendKeyIgnoreInhibited=no
#HibernateKkeyIgnoreInhibited=no
#LidswitchIgnoreInhibited=yes
#HoldoffTimeoutsec=30s
#IdleAction=ignore
#1dleActionsec=30min
#RuntimeDirectorysize=10%
#RemoveIPC=yes
#InhibitorsMax=8192
#sessionsMax=8192

OEBPS/image/Figure_13.1_B17491.jpg
donnie@ubuntu2004: /sys/fs/cgroup
donnie@ubuntu2004:~$ cd /sys/fs/cgroup/
donnie@ubuntu2004:/sys/fs/cgroup$ ls -1

total ©

dr-xr-xr-x 7 root root © Jul 14 17:31 blkio

lrwxrwxrwx 1 root root 11 Jul 14 17:31 cpu -> cpu,cpuacct
dr-xr-xr-x 7 root root © Jul 14 17:31 cpu,cpuacct

lrwxrwxrwx 1 root root 11 Jul 14 17:31 cpuacct -> cpu,cpuacct
dr-xr-xr-x 4 root root © Jul 14 17:31 cpuset

dr-xr-xr-x 6 root root © Jul 14 17:31 devices

dr-xr-xr-x 6 root root © Jul 14 17:31 freezer

dr-xr-xr-x 4 root root © Jul 14 17:31 hugetlb

dr-xr-xr-x 7 root root © Jul 14 17:31 memory

lrwxrwxrwx 1 root root 16 Jul 14 17:31 net_cls -> net_cls,net_prio
dr-xr-xr-x 4 root root © Jul 14 17:31 net_cls,net_prio

Trwxrwxrwx 1 root root 16 Jul 14 17:31 net_prio -> net_cls,net_prio
dr-xr-xr-x 4 root root © Jul 14 17:31 perf_event

dr-xr-xr-x 7 root root 0 Jul 14 17:31 pids

dr-xr-xr-x 2 root root © Jul 14 17:31 rdma

dr-xr-xr-x 7 root root © Jul 14 17:31 systemd

dr-xr-xr-x 5 root root © Jul 14 17:31 unified

donnie@ubuntu2004:/sys/fs/cgroups [

OEBPS/image/Figure_6.4_B17491.jpg
Ihome/donnie/graphicalsvg X | Welcome to AlmaLinux x |+
<« Cc @ @ file:///home/donnie/graphical.svg

£ Almalinux £ Documentation £ Blog £ Bug tracker £ GitHub organization

shutdown.target

graphical.target

nNo & =

adm.service

accounts-daemon.service

udisks2.ser

OEBPS/image/Figure_13.4_B17491.jpg

OEBPS/image/9781789953435_Cover.jpg
Linux Kernel
Programming

A comprehensive guide to kernel internals, writing.
kernel modules, and kernel synchronization

ey

Kaiwan N Billimoria)

OEBPS/image/B17491_Figure_18.3.jpg
AlmaLinux8g [Running]
File Machine View Input Devices Help

VM VirtualBox

o= Authentication Required

Authentication is required to reload 'sshd.service"

v Donald A. Tevault

Password: ||

Cancel Authenticate

OEBPS/image/Figure_12.5_B17491.jpg
Ubuntu 20.04 Server [Running]

File Machine View Input Devices Help
Contral group
—.slice

2447 bpfilter_unh
user.slice
user-1001.slice
Usera1001.service
“init.scope
82209 /1ib/sustend/systend --user
82212 (sd-pam)
session-5.scape
62063 vicky [priv
82305 vickyepts/1
82306

82753 stress-ng -c 4
82754 stress-ng-cpu
82755 stress-ng-cpu

82756 stress-ng-cpu
82757 stress-ng-cpu

OEBPS/image/Cover.png
£

Linux Service Management
Made Easy with systemd

Advanced techniques to effectively manage, control,
and monitor Linux systems and services

Donald A. Tevault

OEBPS/image/Figure_17.7_B17491.jpg
UEFI Interactive Shell v2.2
EDK TT
UEFT v2.70 (EDK II, 6x00010000)
Mapping table
FS0: Alias(s) :HD1a65535a1: :BLK2:
PciRoot (6x0) /Pci (8D, 0x0) /Sata (60, 0xFFFF , 0x0) /HD (1, 6PT , 7ADI5869-F 1EE-47DA-3B44-5764872CFIDD , 0x800,0x12C000)
BLKO: Alias(s) :
PciRoot (0x0) /Pci (0x1,0x1) /Aita (0x0)
BLKL: Alias(s) :
PciRoot (6x0) /Pci (0D, 0x0) /Sata (0x0, 0xFFFF ,0x0)
BLK3: Alias(s) :
PciRoot (0x0) /Pci (8D, 0x0) /Sata (60, 0xFFFF , 0x0) /HD (2, 6PT ,AEAE7A19-DICE-461C-B10D-F5C7E6 1B485B., 0x 120800, 0x200000)
BLK4: Alias(s) :
PciRoot (6x0) /Pci (0D, 0x0) /Sata (6x0, 0xFFFF , 0x0) /HD (3, 6PT , FBOID38F-B51D-4508-8FE0-CE2E6BABBES6 , 0x32C800,0x28D7000)
Press ESC in 2 seconds to skip startup.nsh or any other key to contine.
Shell>

OEBPS/image/Figure_12.10_B17491.jpg
-
File Edit Tabs Help
Total DISK READ 145.54 M/s | Total DISK WRITE 161.92 K/s
Current DISK READ 145.54 M/s | Current DISK WRITE 204.33 K/s

TID PRIO USER DISK READ DISK WRITE SWAPIN 10> COMMAND

325 be/3 root 00 B/s 19.28 K/s 0.00 35 % [jbd2/dm-0-8
[kworker~fficient]
systemd-journald
containe~nerd.sock|
containe~nerd.sock|
dd if=af~/dev/null|
containe~nerd.sock|
containe~nerd.sock|

92107 be/4 root 00 B/s 0.00 B/s 00 01
405 be/3 root 00 B/s 134.93 K/s 00 00
4648 be/4 root .00 B/s .86 K/s 00 00
4969 be/4 root 00 B/s 86 K/s 00 00
100987 be/4 vicky 54 M/s 00 B/s 00 00
4653 be/4 root 00 B/s 00 B/s 00 00
4978 be/4 root 00 B/s 00 B/s 00 00

B PP PP R R R

OEBPS/image/Figure_7.1_B17491.jpg
[donnie@centos6-vm ~]$ crontab -1
25,55 * * * * /usr/bin/logger "This is a demo of the cron system."
[donnie@centos6-vm ~]1$

OEBPS/image/Figure_5.1_B17491.jpg
File Edit Tabs Help

Get Help
Exit

write out Where Ts
Read File Replace

cut Text Justify cur Pos Undo
Paste Text (8] To spell Go To Line Redo

OEBPS/image/Figure_9.1_B17491.jpg
[Unit]

Description=Hostname Service

Documentation=man:systemd-hostnamed.service(8) man:hostname(5) man:machine-info(5)
Documentation=https://www. freedesktop.org/wiki/Software/systemd/hostnamed

[Service]
ExecStart=/usr/lib/systemd/systemd-hostnamed
BusName=org. freedesktop.hostnamel
WatchdogSec=3min
CapabilityBoundingSet=CAP_SYS_ADMIN
PrivateTmp=yes

PrivateDevices=yes
PrivateNetwork=yes
ProtectSystem=strict
ProtectHome=yes
ProtectControlGroups=yes
ProtectKernelTunables=yes
ProtectKernelModules=yes
MemoryDenyWriteExecute=yes
RestrictRealtime=yes
RestrictNamespaces=yes
RestrictAddressFamilies=AF_UNIX
RestrictSUIDSGID=yes
SystemCallFilter=@system-service sethostname
SystemCallErrorNumber=EPERM
SystemCallArchitectures=native
LockPersonality=yes
ReadWritePaths=/etc

OEBPS/image/B17491_Preface_Table.jpg
Software/hardware covered in the book

OS requirements

VirtualBox

Windows, macOS, or Linux (any)

An AlmaLinux 8 . iso image file

An Ubuntu Server 20.04 . iso image file

A Pop!_OS Linux . iso image file

OEBPS/toc.xhtml

		

		Contents

			

						Linux Service Management Made Easy with systemd

						Contributors

						About the author

						About the reviewer

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Code in Action

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

					

				

						Section 1: Using systemd

						Chapter 1: Understanding the Need for systemd

					

								Technical requirements

								The history of Linux init systems

								The shortcomings of SysV Init and upstart

								The advantages of systemd

							

										systemd's simplicity

										systemd's consistency

										systemd's performance

										systemd security

							

						

								The systemd controversy

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 2: Understanding systemd Directories and Files

					

								Technical requirements

								Understanding the systemd configuration files

								Understanding the systemd unit files

							

										Types of unit files

							

						

								Understanding the systemd executables

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 3: Understanding Service, Path, and Socket Units

					

								Technical requirements

								Understanding service units

							

										Understanding the Apache service file

										Understanding the Secure Shell service file

										Understanding the timesyncd service file

							

						

								Understanding socket units

								Understanding path units

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 4: Controlling systemd Services

					

								Technical requirements

								Verifying the status of a service

								Starting, stopping, and reloading services

								Enabling and disabling services

								Killing a service

								Masking a service

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 5: Creating and Editing Services

					

								Technical requirements

								Editing an existing service

							

										Creating a partial edit to the [Install] section

										Creating a partial edit to the [Service] section

										Creating a full edit

							

						

								Creating a new service

								Changing the default systemd editor

								Creating a new container service with podman

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 6: Understanding systemd Targets

					

								Technical requirements

								Understanding the purpose of systemd targets

								Understanding the structure of a target file

							

										Understanding the sockets.target file

										Understanding dependencies in the sshd.service file

							

						

								Comparing systemd targets to SysVinit runlevels

								Understanding target dependencies

								Changing the default target

								Temporarily changing the target

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 7: Understanding systemd Timers

					

								Technical requirements

								Comparing systemd timers with cron

							

										Viewing timer information

							

						

								Understanding timer options

							

										Understanding monotonic timers

										Understanding real-time timers

										Understanding calendar events for real-time timers

							

						

								Creating timers

							

										Creating a system-level timer

										Creating a user-level timer

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 8: Understanding the systemd Boot Process

					

								Technical requirements

								Comparing SysV bootup and systemd bootup

							

										Understanding SysV and systemd bootup similarities

										Understanding the SysV bootup process

										Understanding the systemd bootup process

							

						

								Analyzing bootup performance

								Some differences on Ubuntu Server 20.04

								Understanding systemd generators

							

										Understanding mount units

										Understanding backward compatibility

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 9: Setting System Parameters

					

								Technical requirements

								Setting the locale parameter

							

										Understanding the locale

										Changing the default locale on the Alma machine

										Changing the default locale on Ubuntu

							

						

								Setting time and timezone parameters

								Setting the hostname and machine information

							

										Viewing the information

										Setting the information

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 10: Understanding Shutdown and Reboot Commands

					

								Technical requirements

								Shutting down with systemctl

								Halting with systemctl

								Rebooting with systemctl

								Using shutdown instead of systemctl

								Running a job before shutting down

								Summary

								Questions

								Answers

								Further reading

					

				

						Section 2: Understanding cgroups

						Chapter 11: Understanding cgroups Version 1

					

								Technical requirements

								Understanding the history of cgroups

								Understanding the purpose of cgroups

								Understanding the structure of cgroups Version 1

								Understanding the cgroup filesystem

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 12: Controlling Resource Usage with cgroups Version 1

					

								Technical requirements

								Understanding resource controllers

							

										Examining the resource controllers

										Preparing for the demos

							

						

								Controlling CPU usage

							

										Controlling Vicky's CPU usage

										Controlling CPU usage for a service

							

						

								Controlling memory usage

								Controlling blkio usage

							

										Setting a blkio limit for Vicky

										Setting a blkio limit for a service

							

						

								Understanding pam_limits and ulimit

							

										The ulimit command

										The pam_limits module

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 13: Understanding cgroup Version 2

					

								Technical requirements

								Understanding the need for Version 2

							

										Version 1 complexity

										Version 1 attribute filenames

										No support for rootless containers

							

						

								Understanding the improvements in cgroup Version 2

								Setting resource limits on rootless containers

								Understanding cpuset

								Converting RHEL 8-type distros to cgroup version 2

								Summary

								Questions

								Answers

								Further reading

					

				

						Section 3: Logging, Timekeeping, Networking, and Booting

						Chapter 14: Using journald

					

								Technical requirements

								Understanding the pros and cons of rsyslog

								Understanding the pros and cons of journald

								Understanding journald on Ubuntu

								Understanding journald on RHEL-type systems

								Using journalctl

							

										Searching for and viewing log data with journalctl

							

						

								Sealing journald log files for security

								Setting up remote logging with journald

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 15: Using systemd-networkd and systemd-resolved

					

								Technical requirements

								Understanding networkd and resolved

								Understanding Netplan on Ubuntu

							

										Viewing installer-generated Netplan configurations

										Creating Netplan configurations

							

						

								Understanding networkd and resolved on RHEL-type machines

								Using networkctl and resolvectl

								Viewing the networkd and resolved unit files

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 16: Understanding Timekeeping with systemd

					

								Technical requirements

								Understanding the importance of accurate time

								Comparing NTP implementations

								Understanding chrony on the AlmaLinux machine

							

										The chronyd.service file

										The chrony.conf file

										Setting up a chronyd time server

										Using chronyc

							

						

								Understanding systemd-timesyncd

							

										The systemd-timesyncd.service file

										The timesyncd.conf file

										Using timedatectl

										Configuring Ubuntu to use chrony

							

						

								Understanding the Precision Time Protocol

							

										An overview of PTP

										Installing PTP

										Configuring PTP with software timestamping on AlmaLinux

										Configuring PTP with hardware timestamping on AlmaLinux

										Configuring PTP with software timestamping on Ubuntu

										Configuring PTP with hardware timestamping on Ubuntu

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 17: Understanding systemd and Bootloaders

					

								Technical requirements

								Understanding the basic computer architecture

								Understanding GRUB2

							

										Comparing GRUB2 on BIOS and EFI/UEFI systems

										GRUB2 on BIOS-based and EFI/UEFI-based Ubuntu machines

							

						

								Understanding systemd-boot

								Understanding Secure Boot

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 18: Understanding systemd-logind

					

								Technical requirements

								Understanding the need for a new login service

								Understanding systemd-logind.service

							

										The Alma Linux systemd-logind.service file

										The Ubuntu Server systemd-logind.service file

							

						

								Understanding logind.conf

							

										Virtual terminals

										Keeping user processes going after logout

										Power management directives

										The IdleAction directives

							

						

								Understanding loginctl

								Understanding polkit

								Summary

								Questions

								Answers

								Further reading

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

			

		

	

OEBPS/image/Figure_12.7_B17491.jpg
donnie@ubuntu2004: ~
File Edit Tabs Help
top - 19:12:28 up 1:51, 3 users, load average: 5.41, 4.68, 2.90
Tasks: 186 total, 5 running, 181 sleeping, @ stopped, @ zombie
%Cpu(s): 94.5 us, 4.4 sy, 0.0 ni, 0.1id, 0.0 wa, 0.0 hi, 1.0 si, 0.8 st
MiB Mem 7961.7 total, 5290.5 free, 1225.9 used, 1445.3 buff/cache
MiB Swap: 3936.0 total, 3710.1 free, 225.9 used. 6697.8 avail Mem

PID USER PR NI VIRT RES SHR S & Ef
129650 root 20 50192 7192 3700 R 97. ® .76 stress-ng-cpu
129648 root 20 50192 7192 3760 R 96. i 5 stress-ng-cpu
129651 root 20 50192 7192 3760 R 96. . " stress-ng-cpu
129649 root 20 50192 7192 3700 R 94. i 8 stress-ng-cpu
3628 root 20 2628088 783256 56756 S 8 kube-apiserver
7076 root 20 816844 103828 63272 S 1 kube-controller

[]
]
]
]
]
]

OEBPS/image/Figure_11.3_B17491.jpg
3 Activities Jul5 17:11 &0

= donnie@localhost:/sys/fs/cgroup

File Edit View Search Terminal Help

[donnie@localhost cgroupl$ s -1
total ©

dr-xr-xr-x. 6 root root © Jul 5 14:22 blkio

Lrwxrwxrwx. 1 root root 11 Jul 5 14:22 cpu -> cpu,cpuacct
Lrwxrwxrwx. 1 root root 11 Jul 5 14:22 cpuacct -> cpu,cpuacct
dr-xr-xr-x. 6 root root © Jul 5 14:22 cpu,cpuacct

dr-xr-xr-x. 3 root root © Jul 5 14:22 cpuset

dr-xr-xr-x. 6 root root © Jul 5 14:22 devices

dr-xr-xr-x. 3 root root © Jul 5 14:22 freezer

dr-xr-xr-x. 3 root root © Jul 5 14:22 hugetlb

dr-xr-xr-x. 6 root root © Jul 5 14:22 memory

Lrwxrwxrwx. 1 root root 16 Jul 5 14:22 net cls -> net cls,net prio
dr-xr-xr-x. 3 root root © Jul 5 14:22 net cls,net prio

Lrwxrwxrwx. 1 root root 16 Jul 5 14:22 net prio -> net cls,net prio
dr-xr-xr-x. 3 root root © Jul 5 14:22 perf event

dr-xr-xr-x. 6 root root © Jul 5 14:22 pids

dr-xr-xr-x. 2 root root © Jul 5 14:22 rdna

dr-xr-xr-x. 6 root root © Jul 5 14:22 systemd

[donnie@localhost cgroupl$ [l

OEBPS/image/B17491_06_Table_01.jpg
SysV runlevel

systemd target

What it does

runlevel 0

poweroff.target

It shuts down the operating system.

runlevel 1

rescue. target

It prevents all services from running and
prevents all users except for the root user
from logging in to the system. All filesystems
are mounted normally. It's just a root shell for
performing maintenance operations.

runlevel 2
runlevel 3

runlevel 4

multi-user.target

The operating system is fully operational,
without a graphical interface.

runlevel 5

graphical.target

The operating system is fully operational,
with a graphical interface.

runlevel 6

reboot . target

This is for rebooting the system.

OEBPS/image/Figure_17.5_B17491.jpg
» 6o Back To Main Page

[dd Boot Optio
» Delete Boot Option
» Change Boot Order

Ti=Hove Highlight <Enter>=Select Entry Esc=Exit

OEBPS/image/Figure_5.4_B17491.jpg
[# /etc/systemd/system/wordpress-container.service
¢ container-cco6c3sfalceddad2384cf2c048f013748e84cabdc504b110a8C8529173F4c8 1. service
¢ autogenerated by Podman 2.2.1
¢ Wed Apr 14 15:22:43 EDT 2021

[unit]

Description=podnan container-cco6c35f21ceddad2384c2c0487013748e84cabdc594b110a8c8529173F4c81. service
Docunentation=nan: podnan-generate-systemd (1

wants=network. target

IAfter=network-online. target

[service]
[Envi ronment=PODMAN_SYSTEND_UNLT:
Restart=on-failure

Execstart=/usr/bin/podman start cco6c35f21ceddad2384cf2c0487013748e84cabdc594b110a88529173F4c81
[Execstop=/usr/bin/podnan stop -t 10 ccc35f21cedddd2384cac048f013748e84cabdc594b110a8c8529173F4c81

ExecstopPost=/usr /bin/podman stop -t 10 cce6c35f21cedd4d2384cf2c048013748e84cabdc594b110a8c8529173F4c81
PIDFile=/var/run/containers/storage/overlay-containers/cco6c35f21ceddad2384c F2c048013748e84cabdc594b110a8c85291734c81 /userdata/conmon. pid
killHode=none

IType=forking

[Tnstall]
WantedBy=nulti-user. target default.target

OEBPS/image/Figure_7.4_B17491.jpg
[donnie@localhost
NEXT

Thu 2021-05-20 15:
Fri 2021-05-21 00:
Fri 2021-05-21 12:

3 timers listed.

Pass --all to see
[donnie@localhost
NEXT

Thu 2021-05-20 15:
Fri 2021-05-21 00:
Fri 2021-05-21 12:

3 timers listed.
Pass --all to see
[donnie@localhost

~]$ systemctl list-timers

LEFT LAST
39:35 EDT 55min left Thu 2021-05-20
00:00 EDT 9h left Thu 2021-05-20
44:16 EDT 21h left Thu 2021-65-20

loaded but inactive timers, too.
~]$ systemctl list-timers

LEET LAST
39:35 EDT 46min left Thu 2021-05-20
00:00 EDT 9h left Thu 2021-05-20
44:16 EDT 21h left Thu 2021-65-20

loadid but inactive timers, too.

14:39:
12:29:
12:44:

14:39:
12:29:
12:44:

34
35
16

34
35
16

EDT
EDT
EDT

EDT
EDT
EDT

PASSED

4min 45s ago
2h 1l4min ago
2h Omin ago

PASSED

19min ago
2h 29min ago
2h 15min ago

UNIT ACTIVATES
dnf-makecache.timer dnf-makecache.service
unbound-anchor.timer unbound-anchor.service
systemd-tmpfiles-clean.timer systemd-tmpfiles-clean

UNIT ACTIVATES
dnf-makecache.timer dnf-makecache.service
unbound-anchor.timer unbound-anchor.service
systemd-tmpfiles-clean.timer systemd-tmpfiles-clean

.service

.service

OEBPS/image/Figure_17.3_B17491.jpg
System setup

OEBPS/image/Figure_12.9_B17491.jpg
donnie@ubuntu2004: ~

File Edit Tabs Help

top - 20:22:01 up 3:01, 4 users, load average: 53.51, 46.38, 25.00
Tasks: 198 total, 1 running, 197 sleeping, @ stopped, @ zombie

%Cpu(s): 31.4 us, 6.9 sy, 0.6 ni, 0.0 id, 60.2 wa, 0.0 hi, 1.5 si, 0.0 st
MiB Mem 7961.7 total, 98.9 free, 7695.5 used, 167.4 buff/cache
MiB Swap 3936.0 total, 1685.8 free, 2250.2 used 46.8 avail Mem

PID USER PR NI VIRT RES SHR S PU EM TIME+ COMMAND
901 root 20 0 1299596 360 56 S 54.2 0.0 0:30.70 snapd

OEBPS/image/Figure_13.3_B17491.jpg
donnie@fedora:, cgroup/user.slice/us

[donnie@fedora user-1001.slicel$ 1s
total 0

root root Jul 30 17: controllers

cgroup.

root root @ Jul 3@ 17:07 pids.max
druxr-xr-x. 2 root root @ Jul 30 17:07 session-3.scope
druxr-xr-x. 5 pogo pogo © Jul 30 17:12 user@l60l.service

[donnie@fedora user-1001.slicels i

s B]
. 1 root root © Jul 30 17:07 cgroup.events
. 1 root root © Jul 30 17:07 cgroup.freeze
1 root root 6 Jul 36 17:07 cgroup.max.depth
1 root root 6 Jul 3@ 17:07 cgroup.max.descendants
. 1 root root © Jul 36 17:07 cgroup.procs
. 1 root root © Jul 30 17:07 cgroup.stat
1 root root 6 Jul 3@ 17:42 cgroup.subtree control
1 root root 6 Jul 36 17:07 cgroup.threads
. 1 root root © Jul 30 17:07 cgroup.type
. 1 root root © Jul 30 17:09 cpu.max
1 root root 6 Jul 30 17:07 cpu.pressure
1 root root 06 Jul 36 17:07 cpu.stat
1 root root 6 Jul 30 17:09 cpu.weight
1 root root 6 Jul 30 17:09 cpu.weight.nice
1 root root 6 Jul 30 17:07 io.pressure
. 1 root root © Jul 30 17:07 memory.current
. 1 root root © Jul 30 17:07 memory.events
1 root root 6 Jul 3@ 17:07 memory.events.local
1 root root 6 Jul 3@ 17:07 memory.high
1 root root 6 Jul 3@ 17:07 memory.low
. 1 root root © Jul 30 17:07 memory.max
1 root root 6 Jul 3@ 17:07 memory.min
1 root root 6 Jul 36 17:07 memory.numa stat
1 root root © Jul 36 17:07 memory.oom.group
. 1 root root © Jul 30 17:07 memory.pressure
1 root root 6 Jul 3@ 17:07 memory.stat
1 root root 6 Jul 3@ 17:07 memory.swap.current
1 root root 6 Jul 3@ 17:07 memory.swap.events
1 root root 6 Jul 36 17:07 memory.swap.high
1 root root 6 Jul 30 17:07 memory.swap.max
. 1 root root © Jul 30 17:07 pids.current
. 1 root root © Jul 30 17:07 pids.events
i [
2 [
5 [

OEBPS/image/Figure_1.2_B17491.jpg
f secthoupeespereycaled.
case "$1"
start)
start

stop)
stop

status)
Status -p ${pidfile} Shttpd
RETVAL=$§7

restart)
stop
start

condrestart|try-restart)
if status -p ${pidfile} $Shttpd >&/dev/null; then

fi

force-reload| reload)
reloa

graceful|help|configtest|fullstatus)
Sapachect] $¢
RETVAL=$?
5 .
echo $"Usage: Sprog {start|stop|restart|condrestart|try-restart|force-reload|reload|status|fullstatus|graceful |help|configtest}"
RETVAL=2
esac

OEBPS/image/Figure_5.3_B17491.jpg
File Edit

Tabs Help

penBSD Secure shell server
Documentation=man:sshd(8) man:sshd_config(s:
|After=netuork. target auditd.service
conditionPathExists=! /etc/ssh/sshd_not_to_be_run

[service]
EnvironmentFile=-/etc/default/ssh
Execstartpre=/usr/sbin/sshd -t
Execstart=/usr/sbin/sshd -D $SSHD_OPTS
ExecReload=/usr/sbin/sshd -t
[ExecReload=/bin/kill -HUP SHAINPID
killMode=process
Restart=on-failure
RestartPreventExitstatus=255
Type=notify

[Runtinedirectory=sshd
RuntineDirectoryhode=0755
1PAddressAllow=192.168.0.222
1PAddressDeny=any

[Install]

WantedBy=nulti-user. target
|Alias=sshd. service

Get Help write out [where 1s [cut Text Justify cur Pos
Exit Read File [Replace @ Paste Text [l To spell Go To Line

OEBPS/image/Figure_7.3_B17491.jpg
donnie@ubuntu2004:~$ systemctl list-unit-files -t timer

UNIT FILE STATE VENDOR PRESET
apt-daily-upgrade.timer enabled enabled
apt-daily.timer enabled enabled
e2scrub_all.timer enabled enabled
fstrim.timer enabled enabled
fwupd-refresh.timer enabled enabled
logrotate.timer enabled enabled
man-db.timer enabled enabled
mdadm-last-resort@.timer static enabled
mdcheck continue.timer enabled enabled
mdcheck_start.timer enabled enabled
mdmonitor-oneshot.timer enabled enabled
motd-news.timer enabled enabled
snapd.snap-repair.timer enabled enabled
systemd-tmpfiles-clean.timer static enabled
ua-messaging.timer enabled enabled
xfs_scrub_all.timer disabled enabled

16 unit files listed.
donnie@ubuntu2004:~$ |

OEBPS/image/Figure_17.2_B17491.jpg
x86_64) 8.3 (Purple Manul)
AlmaLinux (4.18.0-240.15.1.e18_3.xB6_64) 8.3 (Purple Manul)
AlmaLinux (4.18.0-240.e18.x86_64) 8

AlmaLinux (0-rescue-3a1?7f34dcZ694acda3?caad?8a339408) 8

Use the T and 4 keys to change the selection.

Press 'e’ to edit the selected item, or ’c’ for a command prompt.

OEBPS/image/Figure_5.2_B17491.jpg
File Edit Tabs Help

Description=0penssD Secure Shell server
Documentation=man:sshd(8) man:sshd_config(s:
|After=netuork. target auditd.service
conditionPathExists=! /etc/ssh/sshd_not_to_be_run

[service]
EnvironmentFil
Execstartpre=/usr/sbin/sshd -t
Execstart=/usr/sbin/sshd -D $SSHD_OPTS
ExecReload=/usr/sbin/sshd -t
[ExecReload=/bin/kill -HUP SHAINPID
killMode=process

Restart=on-failure
RestartPreventExitstatus=255
Type=notify

[Runtinedirectory=sshd
RuntineDirectoryhode=0755

Jetc/default/ssh

[Install]
wantedsy=nul ti-user . target
[Alias=sshd.service

Get Help
Exit

d write out iwhere Is

cut Text Justify
Read File [@ Replace

l paste Text [l To Spell

cur Pos
Go To Line

OEBPS/image/Figure_11.2_B17491.jpg
3 Activities

(=]

Terminal v Jul 5 15:29 &0 O~

donnie@localhost:

File Edit View Search Terminal Help
o session-3.scope - Session 3 of user donnie

Loaded:
Transient:
Active
Tasks
Memory:
CGroup:

lin

loaded
yes
active
156
368.0M

(/run/systemd/transient/session-3.scope; transient)

(running) since Mon 2021-07-05 14:34:45 EDT; 54min ago

/user.slice/user-1000.slice/session-3.scope

f-2526
{2543
{2549
{2554
2633
{2657
{2680
{2684
{2685
{2688
2798
2799
{2801
{2802
{2803
{2806
{2809
{2816
{2819
{2828

gdm-session-worker [pam/gdn-password]
Jusr/bin/gnome-keyring-daemon --daemonize --login
/usr/libexec/gdm-wayland-session --register-session gnome-session
/usr/libexec/gnome-session-binary

/usr/bin/gnome-shell

/usr/bin/Xwayland :0 -rootless -terminate -accessx -core -listen 4 -§
ibus-daemon --xim --panel disable

/usr/libexec/ibus-dconf

/usr/libexec/ibus-extension-gtk3

Jusr/libexec/ibus-x11 --kill-daemon

/usr/libexec/gsd-power

/usr/libexec/gsd-print-notifications

/usr/libexec/gsd-rfkill

/usr/libexec/gsd-screensaver-proxy

/usr/libexec/gsd-sharing

/usr/libexec/gsd-smartcard

/usr/libexec/gsd-xsettings

/usr/libexec/gsd-sound

/usr/libexec/gsd-wacom

/usr/libexec/gsd-account

OEBPS/image/Figure_1.1_B17491.jpg
[#!/bin/bash

httpd Startup script for the Apache HTTP Server

chkconfig: - 85 15

description: Apache is a World Wide Web server. It is used to serve \
HTML files and CGI.

processname: httpd

config: /etc/httpd/conf/httpd.conf

(Dnﬁ'?. Jetc/sysconfig/httpd

pidfile:’ /var/run/httpd.pid

Source function Tibrary.
. /etc/rc.d/init.d/functions

EBEEEETEETETY

if [-f /et(/sys(nnﬁ'?/httpd 1; then
i /etc/sysconfig/httpd
il

start httpd in the C Tocale by default.
HTTPD_LANG=$ {HTTPD_LANG-"C"}

This will prevent initlog from swallowing up a pass-phrase prompt if
mod_ss1 needs a pass-phrase from the user.
INITLOG_ARGS=""

Set HTTPD=/usr/sbin/httpd.worker in /etc/sysconfig/httpd to use a server
with the thread-based "worker" MPM; BE WARNED that some modules may not
work correctly with a thread-based MPM; notably PHP will refuse to start

Path to the apachectl s(riqt, server binary, and short-form for messages.
apachectl=/usr/sbin/apachect

httpd=${HTTPD-/usr/sbin/httpd}

prog httpd

idfile=${PIDFILE-/var/run/httpd.pid}

ockfile=$ {LOCKFILE-/var/lock/subsys/httpd}

RETVA
STOP_TIMEOUT=${STOP_TIMEOUT-10}

check for 1.3 configuration
check13 O {
CONFF
‘GONE:

=/etc/httpd/conf/httpd. conf
ServerType|BindAddress [Port|AddModule |ClearModuleList|"
{GONE}AgentLog |RefererLog|RefererIgnore |FancyIndexing|"
{GONE}AccessConfig|ResourceConfig)
if LANG=C grep -Eiq "A[[:space:]]*(SGONE)" SCONFFILE; then

echo
echo 1>& " Apache 1.3 configuration directives found"
echo 1>& " please read /usr/share/doc/httpd-2.2.3/migration.htm1"
failure "Apache 1.3 config directives test"

echo
exit 1
i
b
The semantics of these two functions differ from the way apachect] does
things —- attempting to start while running is a failure, and shutdown

when not running is also a failure. So we just do it thé way init scripts
are expected to behave here.
start() {
echo -n $"Starting $prog:
check13 || exit 1
LANG=SHTTPD_LANG daemon --pidfile=${pidfile} Shttpd SOPTIONS
RETVAL=$7

OEBPS/image/Figure_7.2_B17491.jpg
[donnie@localhost ~]$ systemctl list-unit-files -t timer

UNIT FILE STATE
chrony-dnssrv@.timer disabled
dnf-makecache.timer enabled
fstrim.timer disabled
fwupd-refresh.timer disabled
mdadm-last-resort@.timer static
mdcheck continue.timer disabled
mdcheck_start.timer disabled
mdmonitor-oneshot.timer disabled
mlocate-updatedb.timer disabled
podman-auto-update.timer disabled
systemd-tmpfiles-clean.timer static
unbound-anchor.timer enabled

12 unit files listed.
[donnie@localhost ~1$ I

OEBPS/image/Figure_13.2_B17491.jpg
donnie@fedora

[donnie@fedora ~]$ cd /sys/fs/cgroup/
[donnie@fedora cgroupls ls -1
total 0

-r--r--r--. 1 root root ® Jul 30 16:55 cgroup.controllers
~rw-r--r--. 1 root root @ Jul 38 16:56 cgroup.max.depth
~rw-r--r--. 1 root root © Jul 30 16:56 cgroup.max.descendants
-rw-r--r--. 1 root root @ Jul 3@ 16:55 cgroup.procs

= Fose 1 root root 6 Jul 30 16:56 cgroup.stat

-rw-r--r--. 1 root root ® Jul 30 17:42 cgroup.subtree control
-rw-r--r--. 1 root root © Jul 30 16:56 cgroup.threads
-rw-r--r--. 1 root root ® Jul 30 16:56 cpu.pressure

CpEpEr 1 root root 6 Jul 30 16:56 cpuset.cpus.effective
-r--r--r--. 1 root root ® Jul 30 16:56 cpuset.mems.effective
-r--r--r--. 1 root root @ Jul 30 16:56 cpu.stat

druxr-xr-x. 2 root root 0 Jul 3@ 17:39 dev-hugepages.mount
druxr-xr-x. 2 root root @ Jul 3@ 17:39 dev-mqueue.mount
druxr-xr-x. 2 root root @ Jul 3@ 16:55 init.scope

Srw-r--r 1 root root 6 Jul 3 16:56 io.cost.model

~TW= = 1 root root 6 Jul 30 16:56 io.cost.qos

-rw-r--r--. 1 root root @ Jul 30 16:56 io.pressure

-r--r--r--. 1 root root ® Jul 30 16:56 io.stat

-r--r--r--. 1 root root @ Jul 30 16:56 memory.numa_stat
STMireer 1 root root 6 Jul 30 16:55 memory.pressure
-r--r--r--. 1 root root @ Jul 30 16:56 memory.stat

-r--r--r--. 1 root root ® Jul 30 16:56 misc.capacity
druxr-xr-x. 2 root root @ Jul 3@ 17:39 sys-fs-fuse-connections.mount
druxr-xr-x. 2 root root 0 Jul 3@ 17:39 sys-kernel-config.mount
druxr-xr-x. 2 root root @ Jul 3@ 17:39 sys-kernel-debug.mount
druxr-xr-x. 2 root root @ Jul 3@ 17:39 sys-kernel-tracing.mount
druxr-xr-x. 47 root root @ Jul 30 17:41 system.slice

druxr-xr-x. 4 root root 0 Jul 3@ 17:39 user.slice

[donniegfedora cgroupls il

OEBPS/image/Figure_8.1_B17491.jpg
donnie@ubuntu20-04:/run/systemd/generator.late$ cat dropbear.service
Automatically generated by systemd-sysv-generator

[unit]

Documentation=man: systemd-sysv-generator (8)
SourcePath=/etc/init.d/dropbear
Description=LSB: Lightweight SSH server
Before=multi-user.target

Before=multi-user. target
Before=multi-user. target
Before=graphical.target
After=remote-fs.target

[service]

Type=Forking

Restart=no

TimeoutSec=5min

IgnoreSIGPIPE=no

KillMode=process

GuessMainPID=no

RemainAfterExit=yes
SuccessExitstatus=5 6
ExecStart=/etc/init.d/dropbear start
ExecStop=/etc/init.d/dropbear stop
donnie@ubuntu20-04: /run/systemd/generator.late$ |

OEBPS/image/Figure_11.1_B17491.jpg
3 Activities

Jul5 15:20 &0 O~
= donnie@localhost:~ x

File Edit View Search Terminal Help

e user.slice - User and Session Slice
Loaded: loaded (/usr/lib/systemd/system/user.slice; static; vendor preset: disabled)
Active: active since Mon 2021-07-85 14:23:02 EDT; 52min ago

Docs: man:systemd.special(7)
Tasks: 262
Memory: 679.5M
CGroup: /user.slice
Luser-1000.slice

|-session-3.scope

[-2526 gdm-session-worker [pam/gdm-password]

{2543 /usr/bin/gnome-keyring-daemon --daemonize --login

{2549 /usr/libexec/gdm-wayland-session --register-session gnome-session

[~2554 /usr/libexec/gnome-session-binary

{2633 /usr/bin/gnome-shell

{-2657 /usr/bin/Xwayland :0 -rootless -terminate -accessx -core -listen

{2680 ibus-daemon --xim --panel disable

{2684 /usr/libexec/ibus-dconf

[~2685 /usr/Libexec/ibus-extension-gtk3

{2688 /usr/libexec/ibus-x11 --kill-daemon

{2798 /usr/libexec/gsd-power

{2799 /usr/libexec/gsd-print-notifications

{2801 /usr/libexec/gsd-rfkill

{2802 /usr/libexec/gsd-screensaver-proxy

{2803 /usr/libexec/gsd-sharing

{2806 /usr/libexec/gsd-smartcard

{2809 /usr/libexec/gsd-xsettings

[-2816 /usr/libexec/gsd-sound

OEBPS/image/Figure_11.4_B17491.jpg
£ Activities

erminal ~ Jul5 17:24 &0
] donnie@localhost:/sys/fs/cgroup/blkio

File Edit View Search Terminal Help

dr-xr-xr-x. 6 root root © Jul 5 14:22 systemd
[donnie@localhost cgroupl$ cd blkio/
[donnie@localhost blkiol$ s -1

total 0
1 root root © Jul 5 15:45 blkio.bfq.io_service bytes
1 root root © Jul 5 15:45 blkio.bfq.io_service bytes recursive
1 root root © Jul 5 15:45 blkio.bfq.io_serviced
1 root root © Jul 5 15:45 blkio.bfq.io_serviced recursive
1 root root © Jul 5 15:45 blkio.reset stats
1 root root © Jul 5 15:45 blkio.throttle.io_service bytes
1 root root © Jul 5 15:45 blkio.throttle.io_service bytes recursive
1 root root © Jul 5 15:45 blkio.throttle.io_serviced
1 root root © Jul 5 15:45 blkio.throttle.io_serviced recursive
1 root root © Jul 5 15:45 blkio.throttle.read bps_device
1 root root © Jul 5 15:45 blkio.throttle.read iops_device
1 root root © Jul 5 15:45 blkio.throttle.write bps_device
1 root root © Jul 5 15:45 blkio.throttle.write iops device
1 root root © Jul 5 15:45 cgroup.clone children
1 root root © Jul 5 15:45 cgroup.procs
-r--r--r--. 1 root root 6 Jul 5 15:45 cgroup.sane_behavior
druxr-xr-x. 2 root root @ Jul 5 15:45 init.scope
druxr-xr-x. 4 root root 0 Jul 5 14:24 machine.slice
-rw-r--r--. 1 root root 6 Jul 5 15:45 notify on_release
-rw-r--r--. 1 root root 0 Jul 5 15:45 release agent
drwxr-xr-x. 2 root root 0 Jul 5 15:09 system.slice
-rw-r--r--. 1 root root 0 Jul 5 15:45 tasks
druxr-xr-x. 2 root root @ Jul 5 15:45 user.slice

[donnie@localhost blkiol$ I

[OJR4

OEBPS/image/9781800569829_Cover.png
- WY S

Red Hat
Enterprise Linux 8
Administration

Master Linux administration skills and prepare for the
RHCSA certification exam

= 4
PR N
Faoan

Miguel Pérez Colino | Pablo Iranzo Gémez | Scott McCarty)

OEBPS/image/Figure_12.11_B17491.jpg
File Edit Tabs Help

Total DISK READ 980.04 K/s | Total DISK WRITE 65.08 K/s
Current DISK READ 980.04 K/s Current DISK WRITE 133 K/s
TID PRIO USER DISK READ DISK WRITE SWAPIN 10> .OMMAND
93433 be/4 vicky 980.04 K/s 0.00 B/s 0.00 % 99.47 % dd i dev/null
325 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.38 % [jbd2/dm-0-8]

59666 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.08 % [kworker~0-events]

OEBPS/image/Figure_1.3_B17491.jpg
[unit]

DescriptionfThe Apache HTTP Server

[After=network. target remote-fs.target nss-lookup.target
Documentation=man:httpd(8)

Documentation=man: apachect1(8)

[service]
Type=notify

EnvironmentFile=/etc/sysconfig/httpd

ExecStart=/usr/sbin/httpd SOPTIONS -DFOREGROUND

ExecReload=/usr/sbin/httpd SOPTIONS -k graceful

bin/kill -WINCH ${MAINPID}

we want s¥stemd to give httpd some time to finish gracefully, but still want
it to kill httpd after TimeoutStopSec if something went wrong during the

graceful stop. Mnrmaﬂ{, Systemd sends SIGTERM signal right after the

Execstop, which would ki1l httpd. We are sending useless SIGCONT here to give
httpd time to finish.

Ki1151gnal=SIGCONT

PrivateTn

[Install]

wantedsﬂlﬂt ser. target

OEBPS/image/Figure_12.6_B17491.jpg
top - 20:03:46 up 1:25, 4 users, load average: 1.21, 3.69, 3.59
Tasks: 190 total, 5 running, 185 sleeping, © stopped, @ zombie

%Cpu(s): 6.9 us, 2.5 sy, 0.6 ni, 88.8 id, 1.5 wa, 0.6 hi, 0.3 si, 0.0 st
MiB Mem : 7961.7 total, 4768.1 free, 1183.4 used, 2010.2 buff/cache
MiB Swap: 3936.0 total, 3936.0 free, 0.0 used. 6546.1 avail Mem

USER S %CPU % TIME+
3565 root 20 0 2421896 622400 75916 S 11.6 7.6 9:28.58 kube-ap+
105375 root 20 0 745112 41148 26248 S 540! 0.5 0:00.15 kubectl
4832 root 20 0 1340948 45312 32048 S 2T 0.6 2:41.58 calico-+
82754 vicky 20] 50196 7032 3600 R 2.7 0.1 16:18.12 stress-+
82757 vicky 20] 50196 7056 3628 R 2.7 0.1 16:19.32 stress-+
908 root 20 0 816844 108672 65532 S 23 L3 2:04.04 kube-co+
3682 root 20 0 1779232 102204 66216 S 23 A3 2:08.24 kubelet
82755 vicky 20] 50196 7040 3596 R 2.3 0.1 16:19.29 stress-+
82756 vicky 20] 50196 7052 3624 R 2.3 0.1 16:17.60 stress-+
3304 root 20 0 1269192 57432 27260 S 0.7 0.7 0:53.19 contain+
4742 root 20 0 712284 11248 5808 S 0.7 .1 0:18.75 contain+
1 root 20 0 103612 13344 8408 S 0.3 0.2 0:25.32 systemd
325 root 20]]] oS 0.3 0.0 0:03.57 jbd2/dm+
639 root rt 0 280200 17992 8200 S 0.3 0.2 0:00.75 multipa+
859 message+ 20] 7624 4712 4044 s 0.3 9.1 0:05.70 dbus-da+
884 root 20 0 1271120 86016 47400 S 0.3 L.l 0:18.59 dockerd
915 root 20 © 748544 52512 35528 S 0.3 0.6 0:17.27 kube-sc+

OEBPS/image/Figure_6.6_B17491.jpg
AlmaLinux 8.3 (Purple Manul)
Jkernel 4.18.8-248.22.1.€18_3.x86_64 on an xB6_64

localhost login:

activate the web console with: systemctl emable --now cockpit.socket

OEBPS/image/Figure_17.6_B17491.jpg
Almalinux]
UEFT UBDX CD-ROM UB2-01700376
UEFT UBOX HARDDISK UB9eB835654-e46feBl6

EFI Internal Shell

Ti=Hove Highlight

OEBPS/image/B17491_Figure_18.2.jpg
Ubuntu Server-staticIP - Soft Keyboard

EI@II]@IEI @Iﬁl@- = [@ﬂ@

E] EEEEI BEmE EIE}@ IRl

P 0 S i = Iy =
-DDDE]DDDDDDD.- B DDE]D
5 o o
[EEEDDDEEDDD i
EEE EEETE .B. DD

Layout: Us B B B

B O%& oL Ei U@ right ctrl

OEBPS/image/Figure_17.8_B17491.jpg
Supervisor Password

User Password

Change Supervisor Password
TPM Device Selection

TPM Operation
SHA-1 PCR Bank
SHA256 PCR Bank

Not Installed
Not Installed
[Press Enter]
[PTT]

[Nonel
[Enabled]
[Disabled]

Disabl
for se
not sh
(E]=A0 ol e
interf
availa

OEBPS/image/Figure_16.1_B17491.jpg
donnie@siftworkstatio
$ sudo ethtool -T enp®s25
[sudo] password for donnie

Time stamping parameters for enp0s25

Capabilities:
hardware-transmit
software-transmit
hardware-receive
software-receive
software-system-clock
hardware-raw-clock

PTP Hardware Clock: ©

(SOF_TIMESTAMPING TX HARDWARE)
(SOF_TIMESTAMPING TX SOFTWARE)
(SOF_TIMESTAMPING RX HARDWARE)
(SOF_TIMESTAMPING RX SOFTWARE)
(SOF_TIMESTAMPING SOFTWARE)
(SOF_TIMESTAMPING RAW_HARDWARE)

Hardware Transmit Timestamp Modes:

of f
on

Hardware Receive Filter Modes:
none
atl
ptpvl-14-sync
ptpvl-14-delay-req
ptpv2-14-sync
ptpv2-14-delay-req
ptpv2-12-sync
ptpv2-12-delay-req
ptpv2-event
ptpv2-sync
ptpv2-delay-req

donnie@siftworkstation: —

|

(HWTSTAMP_TX_OFF)
(HWTSTAMP_TX_ON)

(HWTSTAMP_FILTER NONE)
(HWTSTAMP_FILTER ALL)
(HWTSTAMP_FILTER PTP V1 L4 SYNC)
(HWTSTAMP_FILTER PTP V1 L4 DELAY REQ)
(HWTSTAMP_FILTER PTP V2 L4 SYNC)
(HWTSTAMP_FILTER PTP V2 L4 DELAY REQ)
(HWTSTAMP_FILTER PTP V2 L2 SYNC)
(HWTSTAMP_FILTER PTP V2 L2 DELAY REQ)
(HWTSTAMP_FILTER PTP V2 EVENT)
(HWTSTAMP_FILTER PTP V2 SYNC)
(HWTSTAMP FILTER PTP V2 DELAY REQ)

OEBPS/image/Figure_14.1_B17491.jpg
donnie@ubuntu2604:~$ sudo journalctl --setup-keys

Generating seed.

Generating key pair...

Generating sealing key...

Failed to set file attributes: Operation not supported

The new key pair has been generated. The secret sealing key has been written to

the following local file. This key file is automatically updated when the

sealing key is advanced. It should not be used on multiple hosts.
/var/log/journal/55520bce900c428ab8a27 f5c7d8c3927/ Fss

Please write down the following secret verification key. It should be stored
at a safe location and should not be saved locally on disk.

43e654-62c3e2-5193b-7d2850/1b9ch3-35a4e900
The sealing key is automatically changed every 15min.
The keys have been generated for host ubuntu2004/55520bc8900c428ab8a27f5c7d8c392)

7.
donnie@ubuntu2004:~$ [l

OEBPS/image/Figure_12.4_B17491.jpg
[

top - 19:46:54 up 1:08, 3 users, load average: 4.73, 2.52, 1.61

[Tasks: 184 total, 5 running, 179 sleeping, @ stopped, © zombie
%Cpu(s): 94.5 us, 3.7 sy, 0.6 ni, 0.0 id, 0.6 wa, 0.0 hi, 1.8 si, 0.0 st
MiB Mem : 7961.7 total, 4841.4 free, 1152.4 used, 1967.9 buff/cache
[MiB Swap: 3936.0 total, 3936.0 free, 0.0 used. 6578.8 avail Mem
5
vicky] 50196 7040 R .0 0.1 4. stress-+
82754 vicky 20] 50196 7032 3600 R 98.0 0.1 :14.62 stress-+
82757 vicky 20] 50196 7056 3628 R 98.0 0.1 5.09 stress-+
82756 vicky 20] 50196 7052 3624 R 97.0 0.1 4.09 stress-+
3565 root 20 0 2421896 621780 75944 S 3.0 7.6 0.46 kube-ap+
4832 root 20 0 1340948 45096 32048 S 1.0 0.6 6.06 calico-+
908 root 20 0 816844 108488 65532 S 0.7 1.3 1.88 kube-co+
3682 root 20 0 1779232 102204 66216 S 8.5 1.3 4.07 kubelet
1 root 20 0 102304 11880 8408 S 0.3 0.1 0:21.04 systemd
915 root 20 O 748544 52512 35528 S 9.3 0.6 5.47 kube-sc+
85386 donnie 20] 8032 3808 3160 R 0.3 0.0 0.02 top
2 root 20 0 o 0 6S 0.0 0.0 0.00 kthreadd
3 root 0 -20]] oI 0.0 0.0 0.00 rcu_gp
4 root 0 -20]] oI 0.0 0.0 0.00 rcu_par+
6 root 0 -20]] oI 0.0 0.0 0.00 kworker+
8 root 0 -20]] oI 0.0 0.0 :00.00 mm_perc+
9 root 20]]] 0Ss 0.0 0.0 0.28 ksoftir+

OEBPS/image/Figure_10.1_B17491.jpg
Activities Jul12 16:39 oW o~

Power Off
The system will power off automatically in 60 seconds.

% AlmaLinux

OEBPS/image/Figure_6.5_B17491.jpg
5 AlmaLinux

OEBPS/image/Figure_12.1_B17491.jpg
Ubuntu 20.04 Server - Settings -+ X

(9 ceneral

System

Motherboard | Processor | Acceleration

[oisplay

@ storage

Do Audio

&P Network

£ serial Ports
& uss

[shared Folders
[EZ] user interface

Processor(s):

1CPU 12CPUs

Execution Cap:

1%
Extended Features: [| Enable PAE/NX
O Enable Nested VT-x/AMD-V

OEBPS/image/Packt_Logo_Orange__f36f26.png
Packb

OEBPS/image/B17491_4.1_Table.jpg
Table 2. Exit causes and the effect of the Restarts settings on them

[Restart
settings/exit

s

on-tatture

“on-abnorsal

“on-abort

“on-vatchdog

[Clean extt cose or
sona’

incteon extt cose

[inctean signat

[Fimeout

[Ratcndos

OEBPS/image/Figure_12.12_B17491.jpg
donnie@ubuntu2004: ~

File Edit He

donnie@ubuntu2004:~% ulimit -a

core file size (blocks, -c) ©

data seg size (kbytes, -d) unlimited
scheduling priority (-e) O

file size (blocks, -f) unlimited
pending signals (-1) 31493

max locked memory (kbytes, -1) 65536

max memory size (kbytes, -m) unlimited
open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -qgq) 819200
real-time priority (-r) 0

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited
max uUser processes (-u) 31493
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

donnie@ubuntu2004:~$ JJ

OEBPS/image/Figure_12.3_B17491.jpg
donnie@ubuntu2004: /sys/fs/cgroup

buntu2604:~$ cd /sys/fs/cgroup/

donnie@ul

donnie@ubuntu2004:/sys/fs/cgroup$ ls -1

total ©

dr-xr-xr-x 7 root root © Jul 14 17:31 blkio

lrwxrwxrwx 1 root root 11 Jul 14 17:31 cpu -> cpu,cpuacct
dr-xr-xr-x 7 root root © Jul 14 17:31 cpu,cpuacct

lrwxrwxrwx 1 root root 11 Jul 14 17:31 cpuacct -> cpu,cpuacct
dr-xr-xr-x 4 root root © Jul 14 17:31 cpuset

dr-xr-xr-x 6 root root © Jul 14 17:31 devices

dr-xr-xr-x 6 root root © Jul 14 17:31 freezer

dr-xr-xr-x 4 root root © Jul 14 17:31 hugetlb

dr-xr-xr-x 7 root root © Jul 14 17:31 memory

lrwxrwxrwx 1 root root 16 Jul 14 17:31 net_cls -> net_cls,net_prio
dr-xr-xr-x 4 root root © Jul 14 17:31 net_cls,net_prio

Trwxrwxrwx 1 root root 16 Jul 14 17:31 net_prio -> net_cls,net_prio
dr-xr-xr-x 4 root root © Jul 14 17:31 perf_event

dr-xr-xr-x 7 root root 0 Jul 14 17:31 pids

dr-xr-xr-x 2 root root © Jul 14 17:31 rdma

dr-xr-xr-x 7 root root © Jul 14 17:31 systemd

dr-xr-xr-x 5 root root © Jul 14 17:31 unified

donnie@ubuntu2004:/sys/fs/cgroups [

OEBPS/image/Figure_6.3_B17491.jpg
[donnie@localhost ~]$ cd /lib/systemd/
[donnie@localhost systemd]$ strings systemd | grep '\.target'
default.target

rescue. target

Falling back to rescue target: rescue.target
reboot . target

poweroff.target

shutdown. target

emergency. target

basic.target

STATUS=Reached basic.target
ctri-alt-del.target
exit.target

Kbrequest. target
sigpwr.target

halt.target

kexec.target

paths.target

sysinit.target

sockets. target

timers. target

time-sync. target
umount . target
local-fs-pre.target
remote-fs-pre.target

network. target
network-online.target

swap. target

remote-fs.target
local-fs.target
[donnie@localhost systemd]s ll

OEBPS/image/Packt_Logo_Orange__f36f261.png
Pack

OEBPS/image/Figure_12.2_B17491.jpg
@ Ubuntu 20.04 Server - Settings -+ x
5] General | system

Motherboard | Processor | Acceleration |
5 oisplay B ase MO e e [a192MB |

Storage

4MB 32768 MB.

OEBPS/image/Figure_6.2_B17491.jpg
[donnie@localhost ~]$ systemctl list-units -t target --state inactive

UNIT LOAD ACTIVE SUB DESCRIPTION
emergency. target Toaded inactive dead Emergency Mode
getty-pre. target loaded inactive dead Login Prompts (Pre)
initrd-fs. target loaded inactive dead Initrd File Systems
initrd-root-device.target loaded inactive dead Initrd Root Device
initrd-root-fs.target loaded inactive dead Initrd Root File System
initrd-switch-root.target loaded inactive dead Switch Root
initrd. target loaded inactive dead Initrd Default Target
nss-lookup. target loaded inactive dead Host and Network Name Lookups
rescue. target loaded inactive dead Rescue Mode
shutdown. target loaded inactive dead Shutdown

o syslog. target not-found inactive dead syslog. target
time-sync. target loaded inactive dead System Time Synchronized
umount . target loaded inactive dead Unmount AL Filesystens

LOAD
ACTIVE
suB

Reflects whether the unit definition was properly loaded.
The high-level unit activation state, i.e. generalization of SUB.
The low-level unit activation state, values depend on unit type.

13 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

[donnie@localhost ~1$ [

