

Fedora Linux
System Administration

Install, manage, and secure your Fedora Linux environments

Alex Callejas

BIRMINGHAM—MUMBAI

Fedora Linux System Administration
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Neha Sharma
Senior Editor: Sayali Pingale
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Manager: Ashwin Kharwa
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Vijay Kamble
Marketing Coordinators: Marylou De Mello and Shruthi Shetty

First published: November 2023

Production reference: 1271023

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-80461-840-0

www.packtpub.com.

http://www.packtpub.com

To Mayra, my beloved sidekick and wife –

thank you for being there and being the right spark.

To Angel and Gael – never stop dreaming.

To Mom, Dad, and my brothers forever.

– Alex Callejas

Contributors

About the author
Alex Callejas is a services content architect at Red Hat, the world’s leading provider of enterprise open
source solutions, including Linux, the cloud, containers, and Kubernetes. He is based in Mexico City
and is a free and open source software contributor. With more than 20 years of experience as a system
administrator, he has strong expertise in infrastructure hardening and automation. An enthusiast of
open source solutions, he supports the community by sharing his knowledge at different public-access
and university events.

Geek by nature, Linux by choice, and Fedora of course.

About the reviewers
Ben Cotton has been active in Fedora and other open source communities for over a decade. His
career has taken him through the public and private sector in roles that include desktop support,
high-performance computing administration, marketing, and program management. Ben is the author
of Program Management for Open Source Projects, and he has contributed to the book Human at a
Distance and to articles for The Next Platform, Opensource.com, Scientific Computing, and others.

Jose “Kaz” Casimiro Rios has been working with Linux since 1994. He has been a jack-of-all-trades in
the IT industry, covering roles as diverse as system administrator, DBA, developer, support engineer,
and instructor. Kaz currently works for Red Hat as a systems design engineer for the Certification
team, helping them with the building, development, and support for the certification exams.

I want to thank my wife for always bringing her support and understanding into my life. I’d also like to
thank my cats for making my life fun every day.

Iván Chavero

Preface� xiii

Part 1: The Fedora Project�

1
Linux and Open Source Projects� 3

A brief history of Linux� 3
Understanding Linux distributions� 5
The Fedora Project� 7
The Red Hat contribution path� 8
Fedora’s mission and foundations� 9
Contributing to the project� 10
Fedora as a system administration tool� 15

The command-line interface� 16
The basics� 17
Guided example – releasing space in the
filesystem� 30

Desktop environments� 34
Summary� 34
Further reading� 35

Part 2: Workstation Configuration�

2
Best Practices for Installation� 39

Technical requirements� 39
Creating the boot media� 40
Fedora Media Writer� 40
Booting� 46

Partitioning local storage� 51
The first startup� 54

Package management� 64
Extra package selection� 69
Summary� 72
Further reading� 72

Table of Contents

Table of Contentsviii

3
Tuning the Desktop Environment� 73

Technical requirements� 73
Initial system tuning� 74
Tuning the swappiness value� 74
Tuning the desktop experience� 75
GNOME Tweak Tool� 78

Customizing the panel and the taskbar� 84
The taskbar� 88

Making tasks easy with widgets� 94
Conky� 97

Handy applications with docks� 104
Summary� 106
Further reading� 107

4
Optimizing Storage Usage� 109

Technical requirements� 109
Understanding file formats and
filesystems� 110
Creating a Btrfs filesystem� 111

Optimizing storage space size� 117
Space allocation check� 120
Using the btrfs-usage-report command� 124

Deep diving into Logical Volume
Manager� 127
Differences between snapshots� 129

Discovering Stratis storage� 131
Creating a Stratis pool� 132

Summary� 136
Further reading� 137

5
Network and Connectivity� 139

Technical requirements� 139
Walking through the basics� 140
NetworkManager command-line interface
(nmcli)� 141

Tuning wireless connectivity� 149
Identifying the device� 149
Finding the best quality network connection� 153
nm-connection-editor� 157

What about security?� 161

Improving network connectivity
using a VPN� 165
IPSec-based VPN� 166
OpenVPN� 166
Configuring a VPN client with the Control
Center� 167

Table of Contents ix

Network performance monitoring� 175
nmon� 175
bpytop� 177

Summary� 178
Further reading� 179

Part 3: Productivity Tools�

6
Sandbox Applications� 183

Technical requirements� 183
Inspecting sandbox applications� 184
SELinux sandbox� 184

Diving deep into AppImage apps� 189
Running an AppImage� 189
Developing AppImages� 194

Examining Flatpak applications� 196
Using Flatpak applications� 197
Building Flatpak applications� 213

Summary� 218
Further reading� 218

7
Text Editors� 219

Technical requirements� 219
Text editors and the command line� 220
Emacs overview� 221
The basics� 223
Mastering GNU Emacs� 228

Nano basics� 244

The mighty vim� 246
The basics� 247
Mastering vim� 251

Summary� 269
Further reading� 269

8
LibreOffice Suite� 271

Technical requirements� 271
Exploring office tools on Fedora
Linux� 272
WPS Office� 272

ONLYOFFICE� 272
Calligra� 273
Fonts� 274
LibreOffice� 276

Table of Contentsx

Getting used to Writer and Calc� 279
Writer� 280
Calc� 291

Creating slides and image
management� 294
Summary� 298
Further reading� 299

9
Mail Clients and Browsers� 301

Technical requirements� 302
Mailing with Evolution� 302
Mailing with Thunderbird� 315
Trusty old Firefox� 327
Customizing Firefox� 335

Expanding browsing with Google
Chrome� 344
Summary� 365
Further reading� 365

Part 4: System Administration Tools�

10
System Administration� 369

Technical requirements� 369
The three laws of the SysAdmin� 370
The KISS principle� 370
Knowing the basic tasks� 371

A little bit of Git and programming� 373
Bash scripting� 373
Git� 386
The basics� 388

Don’t forget to back up� 400
Archiving and compression� 400
Version management with Git� 405

Automating with Ansible� 414
The basics� 415
First steps� 416

Never-ending study� 424
Summary� 428

Table of Contents xi

11
Performance Tuning Best Practices� 429

Technical requirements� 429
Understanding kernel tuning� 430
Tuning kernel parameters� 430

Main tuning – CPU and memory� 435
Overview of monitoring tools� 435
Improving CPU usage� 441
Improving memory usage� 448

Don’t ignore storage tuning� 452
Improving storage space usage� 454

Boosting performance with network
tuning� 462
Analyzing metrics� 463

Summary� 474

12
Untangling Security with SELinux� 475

Technical requirements� 475
Learning about mandatory access
control� 476
Labeling and type enforcement� 477
How SELinux works� 478

How to troubleshoot SELinux issues� 483
Labeling� 485

SELinux needs to know� 486
Policy bugs� 488
Hack attack� 488

Summary� 489
Further reading� 489

13
Virtualization and Containers� 491

Technical requirements� 491
Virtualization with QEMU, KVM,
and libvirt� 492
Management tools� 492
Streamlining the creation of virtual machines� 494

Using GNOME Boxes� 501
Discovering OCI containers
with Podman� 512
Summary� 527
Further reading� 527

Index� 529

Other Books You May Enjoy� 538

Preface

Linux system administration is a job that requires you to always be on the cutting edge. That is why
you need to have the right tools to perform properly.

Fedora Linux, being a distribution based on the development of Red Hat Enterprise Linux, provides
the tools that can help us with this task.

In this book, I will share with you how to use Fedora Linux as a workstation operating system to
manage Linux systems.

Through advice, best practices, tips, and even some tricks based on my 20 years of experience as
a system administrator, I will help you set up a workstation that allows you to optimize a system
administrator’s tasks.

Who this book is for
This book is for all those who want to start using Fedora Linux as a workstation to perform daily
tasks as a system administrator. It will also help you learn how to optimize the distribution’s tools for
administration tasks.

You need to understand the basics of Linux and system administration, but extensive knowledge is
not required.

This book provides a real-world context to use workstations for the most common system
administration tasks.

What this book covers
Chapter 1, Linux and Open Source Projects, introduces the most popular open source projects and
Linux distributions in use today, highlighting their main uses and differences.

Chapter 2, Best Practices for Installation, examines the best practices for installing Fedora Linux and
optimizing its use as a workstation.

Chapter 3, Tuning the Desktop Environment, provides an overview of the different applets and plug-ins
that enhance the usability of the working environment.

Chapter 4, Optimizing Sorage Usage, offers an analysis of the different types of local storage as well as
their configurations to optimize performance.

Prefacexiv

Chapter 5, Network and Connectivity, provides an overview of network connectivity management as
well as performance monitoring tools.

Chapter 6, Sandbox Applications, explores the use and configuration of desktop sandbox applications.

Chapter 7, Text Editors, summarizes the features of the most popular and widely used text editors
included in Fedora Linux.

Chapter 8, LibreOffice Suite, offers an overview of the office tools of the LibreOffice suite and summarizes
the main options for each application in the suite – Writer for word processing , Calc for spreadsheets,
Impress for slides, and Draw for images.

Chapter 9, Mail Clients and Browsers, explores the internet productivity tools, mail clients, and browsers
included in Fedora Linux, such as Evolution, Thunderbird, Firefox, and Google Chrome.

Chapter 10, System Administration, provides the basics of system administration, plus some useful
tricks and shortcuts. It also looks at the basics of applying best practices.

Chapter 11, Performance Tuning Best Practices, explores the best practices for operating system tuning
as a method of improving system administration performance.

Chapter 12, SELinux, introduces the basics of policy-based access control as a security enforcement
module in Fedora Linux.

Chapter 13, Virtualization and Containers, offers an overview of the different Fedora Linux virtualization
resources. It provides the basics of virtualization and the methods available in Fedora Linux –
virtualization based on KVM/libvirt or containers with Podman.

To get the most out of this book
Although basic knowledge of Linux is required to administer systems, no in-depth knowledge is
needed to follow the installation and configuration guides shown in each chapter.

Operating system Download link

Fedora Linux workstation
https://fedoraproject.org/workstation/
download/

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

https://fedoraproject.org/workstation/download/
https://fedoraproject.org/workstation/download/

Preface xv

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Fedora-Linux-System-Administration. If there’s an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

for <variable> in <list>
do
command <variable>
done

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

if <condition>;
then

<statement 1>
...
<statement n>
else
<statement alternative>
fi

Any command-line input or output is written as follows:

$ sudo grep -E 'svm|vmx' /proc/cpuinfo
$ sudo dnf install qemu-kvm virt-manager virt-viewer guestfstools
virt-install genisoimage

Bold: Indicates a new term, an important word, or words that you see on screen. For instance,
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the
Administration panel.”

https://github.com/PacktPublishing/Fedora-Linux-System-Administration
https://github.com/PacktPublishing/Fedora-Linux-System-Administration
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexvi

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Fedora Linux System Administration, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto: customercare@packtpub.com
mailto: customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
https://packt.link/r/1804618403
https://packt.link/r/1804618403

Preface xvii

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80461-840-0

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80461-840-0

Part 1:
The Fedora Project

This part introduces you to today’s most popular open source projects and Linux distributions,
highlighting their main uses and differences. It focuses on the benefits of the Fedora Project and how
you can collaborate with it.

This part contains the following chapter:

•	 Chapter 1, Linux and Open Source Projects

1
Linux and Open Source Projects

System administration is a job that requires the right tools to achieve the required process optimization. To
administrate GNU/Linux-based systems, you must have a workstation that facilitates this aforementioned
optimization. A Linux workstation provides many advantages in this regard. In my experience, Fedora
Linux, a community-developed distribution sponsored by Red Hat, has a recommended set of tools
for Linux-based system administration.

Before learning how to configure a workstation for system administration, we’ll review the history of
this operating system so that we have a better context and, above all, know how we can help develop
the distribution so that we can improve it.

In this chapter, we will learn a little more about the following:

•	 A brief history of Linux

•	 Understanding Linux distributions

•	 The Fedora Project

•	 The command-line interface

•	 Desktop environments

Let’s get started!

A brief history of Linux
Before getting into the subject, I would like to provide a little background on the history of the operating
system. As we know, the history of personal computing is somewhat short – only about 50 years, and,
speaking of GNU/Linux in particular, a little less than that.

It was dark times at the end of the 1960s when Ken Thompson wrote the first version of Unix on a
PDP-7 minicomputer based on Multics, composed of a kernel, a shell, an editor, and an assembler.

In 1970, the development of the operating system continued at AT&T Bell Labs. Now on a PDP-11
machine, Brian Kernighan suggested the name Uniplexed Information & Computing Service (UNICS).

Linux and Open Source Projects4

However, the BCPL and B languages that were used presented several implementation problems on
the new platform. In 1972, Denis Ritchie, using both languages, developed a new high-level language,
now known as the C language, adding data typing and other powerful functions. With that, the Unix
system was born.

Software development for this platform continues, with important additions to the operating system. In
1976, Richard Stallman, a student at MIT, while working in a group that used free software exclusively,
wrote the first version of Emacs in Text Editor & Corrector (TECO).

In the early 1980s, almost all software was proprietary because technology companies focused their
efforts individually, without thinking about collaborative development. This led Stallman to create
the GNU Project (meaning GNU is not Unix) in 1983, which pursued the creation of a free operating
system that was based on Unix. This was because the general design was already proven and portable,
bringing back the spirit of cooperativity that had prevailed in the computer community in earlier days.

Stallman started GNU Emacs by distributing the code for 150 USD. He then used this money to
fund the creation of the Free Software Foundation in 1985. Emacs was distributed under the Emacs
General Public License, which allowed it to be distributed and used freely while preserving its copyright
and restricting him to preserve it even through modifications or additions to the code that could be
made later.

Under this same concept, in 1989, the first version of the GNU General Public License (GPL) was
released, extending the use and distribution of free software to all programming developments that
adopted it as part of the GNU Project.

The second version of the license was published in 1991, with the main difference being that the
license’s obligations couldn’t be separated due to conflicting obligations. This provision was intended
to discourage any party from using a claim of patent infringement or other litigation to prejudice the
freedom of users to use the earlier version.

In the same year, Linus Torvalds, a Finnish student, used Tanenbaum’s 1987 book [Operating Systems:
Design and Implementation], Bach’s 1986 book [Design of the UNIX Operating System. Bach, Maurice
J. Pearson Education. 1986], and the Jolitz articles [Porting UNIX to the 386: A Practical Approach.
William Jolitz. Dr. Dobb’s Journal, Volume 16, Issue 1, Jan. 1991. pp 16–46.], to port some basic tools
to create a (free) operating system … for 386(486) AT clones as a hobby and asked for help on the
Usenet group comp.os.minix (https://groups.google.com/g/comp.os.minix/c/
dlNtH7RRrGA/m/SwRavCzVE7gJ), which became what we know today as Linux:

https://groups.google.com/g/comp.os.minix/c/dlNtH7RRrGA/m/SwRavCzVE7gJ
https://groups.google.com/g/comp.os.minix/c/dlNtH7RRrGA/m/SwRavCzVE7gJ

Understanding Linux distributions 5

Figure 1.1 – Original post by Linus Torvalds in the Usenet group comp.os.minix

Linux was not always open source. The first Linux licenses prohibited commercial redistribution.
It was with version 0.12, released in early 1992, that the Linux kernel was released under the GPL.
According to Linus Torvalds, open sourcing Linux was the best thing he ever did.

Inspired by the success of this effort, various new software development projects emerged to boost
the newly created operating system. These developments provided new functionalities and tools that
complemented and facilitated the use of Linux, besides expanding the use of the platform to different
areas such as business and personal use.

The use of the GPL was the driving force behind the development based on the cooperative nature
of the computing community.

This spirit of collaboration founded the basis of what we know today as Linux, but it took a push to
make the fruits of these efforts reach everyone. This came with Linux distributions, known as distros.

Understanding Linux distributions
The GNU Project experienced some problems implementing the kernel it had officially developed.
Known as Hurd, this kernel is a collection of protocols that formalizes how different components
should interact with each other (https://www.gnu.org/software/hurd/index.html).
The tools worked well but did not have the right cohesion to integrate with the operating system.

https://www.gnu.org/software/hurd/index.html

Linux and Open Source Projects6

When Linus Torvalds released the Linux kernel, many enthusiastic developers ported the GNU code,
including the compiler to run on it. These efforts filled in the remaining gaps to get a completely free
operating system.

In 1992, Linux and the GNU Project joined forces (http://laurel.datsi.fi.upm.es/~ssoo/
IG/download/timeline.html), and Richard Stallman urged to call it GNU/Linux since many of
its tools were integrated from the GNU project. This led to the creation of new projects that integrated
these GNU tools and the Linux kernel into what we know today as Linux distributions.

Distributions consist of the Linux kernel, the GNU tools, and a lot of other packages; many distributions
also provide an installation system like that of other modern operating systems. Distributions are
usually segmented into packages, some of which provide only the kernel binary, compilation tools, and
an installer. Packages come as compiled code, with the installation and removal of packages handled
by a package management system (PMS) rather than a simple file archiver.

Some distributions are even delivered as embedded operating systems on some devices, except for
mobile distributions, which are based on Android. These distributions are created separately for
mobile phones.

Throughout the years, there have been different GNU/Linux distribution projects, with the ones
that have lasted over time being the most important. Besides that, they have led to the birth of new
distributions, including the following:

•	 Slackware: Released in 1993, it was originally named Softlanding Linux System (SLS) and
included the X Window System. It was the most complete distribution for a short period (1992).
With the newest tools of the time, Slackware Linux offered both new and experienced users a
full-featured system, suited for use for any need, as a desktop workstation or as a server. Web,
FTP, and email services were ready to go out of the box, as was a wide selection of popular
desktop environments. A full range of development tools, editors, and libraries was included for
users wishing to develop or compile additional software. It was the first distribution to benefit
from the work of millions of developers around the world.

•	 Debian: In 1993, Ian Murdock, disappointed with the poor maintenance and the prevalence of
bugs in SLS (later known as Slackware), released what he initially called the Debian Linux Release.
Debian is a portmanteau (a blend of words in which parts of several words are combined into
a new word) of his then-girlfriend Debra Lynn’s first name and his name. The stable branch of
Debian is the most used in personal computers and servers. The release included the Debian
Linux Manifesto, with Murdock’s vision for his operating system, in which he called to keep it
“open in the spirit of Linux and GNU.” Debian releases are codenamed based on characters from
the Toy Story movies. Debian is also the basis for many other distributions, with Ubuntu being
the most notable of them. Debian uses dpkg (Debian Package) as a package management
system, as well as its numerous derivations.

http://laurel.datsi.fi.upm.es/~ssoo/IG/download/timeline.html
http://laurel.datsi.fi.upm.es/~ssoo/IG/download/timeline.html

The Fedora Project 7

•	 Red Hat: Also in 1993, Marc Ewing was creating, debugging, and circulating his own Linux
distribution on CD from his home in Raleigh, North Carolina. The name Red Hat came from
his computer lab days in college; he always wore a red hat and users would say. “If you need
help, look for the guy in the red hat.” Bob Young met him at a tech conference and started
buying his CDs for resale due to the growing interest in Linux. In 1995, they joined forces to
create Red Hat Software. Red Hat uses rpm (named Red Hat Package Manager initially; as it
became popular among various Linux distributions, it changed to RPM Package Manager) as
a package management system, as well as its numerous derivations.

Now, it is time to learn about the distribution we use, which has several interesting precepts.

The Fedora Project
Red Hat Linux was released every 6 months and was even available at Best Buy. After several releases, it
began to have large enterprise customers, partly thanks to the monopoly lawsuit suffered by Microsoft
around 2000, but it did not have a defined support cycle to meet these customers’ needs. The company
realized that they were trying to develop their product on two different fronts – on the one hand,
looking for the stability required by the industry, while on the other hand, looking for innovation
using the latest open source developments.

Thus, they opted to split their efforts into two fundamentally separate entities – Red Hat Enterprise
Linux (RHEL) and the Fedora Project – each of which addressed its own problems as best it could.

For RHEL, the job was to make it a solid, stable platform that its customers and partners could count
on for 5 to 7-year support cycles. Red Hat first offered an enterprise Linux support subscription for
Red Hat Linux 6.1. This was not a standalone product; rather, the subscription offering was called
Red Hat 6.2E. Subsequently, Red Hat began building a standalone product with commercial service-
level agreements and a longer life cycle based on Red Hat Linux.

Fedora Linux is developed by the Fedora Project (originally named Fedora.us) and sponsored by Red
Hat. It follows its own release schedule, with a new version every 6 months (in April and October).
Fedora provides a modern Linux operating system that uses many of the latest technologies.

To create a new version of RHEL, most development happens in upstream projects. This new version
is then integrated into Fedora Linux, with additional “productization” happening in CentOS Stream,
which becomes RHEL.

This process, known as Red Hat’s contribution path, is important to delve into to understand the
distribution’s development flow. It will also help us understand the importance of the distribution in
that flow.

Linux and Open Source Projects8

The Red Hat contribution path

In December 2020, Red Hat announced the discontinuation of the development of the CentOS Project,
a project it had sponsored since 2014 and which, in its version 2 of 2004, was forked from RHEL
2.1AS, which from that moment on was integrated as CentOS Stream, to the RHEL development
contribution path.

The development of RHEL starts in community projects, where the latest and most innovative
technologies in the industry are developed. Fedora’s role is to take these technologies and adapt them
in each new release of the distribution.

Every 3 years, a new major version of RHEL is released. When the next major release of RHEL is
about 1 year away, these innovations reach an optimal level of development, fueled by feedback
between Fedora Project developers and integrators and independent software and hardware vendors,
providing the stability required by the industry. CentOS Stream then branches from Fedora Linux.
The CentOS Stream code becomes the next release of RHEL, meaning that users can contribute to the
product and test their workloads before it is released. This becomes a continuous integration of RHEL
development, thus shortening the feedback loop that should be considered in future RHEL releases.

The following figure shows this flow:

Figure 1.2 – The Red Hat contribution path

The role of Fedora Linux is essential in the development of RHEL, as described previously, but Fedora
Linux is a usable operating system in its own right, with the most modern and innovative tools in the
industry. As a side result, it is also widely used in enterprise environments to manage RHEL-based
systems. This is due to the facilities provided by the Red Hat contribution path, described above.

The Fedora Project 9

Fedora’s mission and foundations

The Fedora Project works to build a free and open source software platform that collaborates and
shares end user-focused solutions.

Since the Fedora community includes thousands of individuals with different views and approaches,
they base their cooperativeness on what they call the four foundations:

Figure 1.3 – The four foundations of Fedora

Let’s look at them in detail:

•	 Freedom

“We are dedicated to free software and content.”

(https://docs.fedoraproject.org/en-US/project/)

The goal is to produce a usable operating system that includes only free software. Avoid proprietary
or patented content and use free alternatives that allow you to provide a distribution that can
bring the most innovative software to everyone so that anyone can use it, legally.

•	 Friends

“We are a strong, caring community.”

(https://docs.fedoraproject.org/en-US/project/)

The Fedora community is multidisciplinary and diverse with a common goal: pushing free
software forward. Anyone who wants to help, regardless of their skills, can have a place in the
community, a friendly and collaborative environment, so long as they believe in its core values.

•	 Features

“We care about excellent software.”

(https://docs.fedoraproject.org/en-US/project/)

https://docs.fedoraproject.org/en-US/project/
https://docs.fedoraproject.org/en-US/project/
https://docs.fedoraproject.org/en-US/project/

Linux and Open Source Projects10

Many of the features that have empowered Linux come from the Fedora community, making
it flexible and useful for many people around the world. The Fedora community is a fervent
believer in free software development, whether it’s used or not in the distribution. It allows
features to be developed clearly and transparently, making them available to anyone who wants
to take part in the distribution.

•	 First

“We are committed to innovation.”

(https://docs.fedoraproject.org/en-US/project/)

The Fedora Project offers the latest in stable and robust free software and is a platform that showcases
the future of operating system usage. It advances such software to demonstrate collaborative technical
progress. Fedora always thinks about providing for the future before anything else.

Besides these four foundations, the Fedora Project has a very clear vision and mission.

Vision

“The Fedora Project envisions a world where everyone benefits from free and open
source software built by inclusive, welcoming, and open-minded communities.”

(https://docs.fedoraproject.org/en-US/project/#_our_vision)

Fedora’s vision follows the precepts of the GNU Project, where the benefit of using free and open
source software extends to all those who need to use it, in a way that is inclusive of all communities
and open to all possibilities.

Mission

“Fedora creates an innovative platform for hardware, clouds, and containers that
enables software developers and community members to build tailored solutions for

their users.”

(https://docs.fedoraproject.org/en-US/project/#_our_mission)

Fedora’s mission focuses on innovating and adapting technology on existing and future platforms for
solutions that enhance the end user experience.

Contributing to the project

The Fedora community contributes to building and developing free and open source software and
making advances of importance to the community in general. It quickly and regularly incorporates
these advances into the distribution or even into other GNU/Linux distributions. Fedora integrates
the free and open source approach and ease of use in the short term.

https://docs.fedoraproject.org/en-US/project/
https://docs.fedoraproject.org/en-US/project/#_our_vision
https://docs.fedoraproject.org/en-US/project/#_our_mission

The Fedora Project 11

Software development not only involves programmers – it also requires designers, artists, writers,
speakers, translators, system administrators, and others. Coordinating all this effort requires leadership
throughout the community, which allows for decision-making without excessive dragging.

Important
You don’t have to be a contributor to use Fedora Linux. In the following chapters, you will
learn how to use Fedora Linux for system administration. But, if you want to contribute to the
project, here’s how!

The leadership of the project is provided by the Fedora Council, which is made up of eight positions,
two of which are held by elected community contributors. Besides the council, there are several
leadership groups:

•	 Fedora Engineering Steering Committee (FESCo): Manages the technical features of the
Fedora distribution and specific implementations of the policy in the Fedora Project.

•	 Fedora Mindshare Committee: Represents leadership for user and contributor community
growth and support.

Besides working groups, where various editions of the distribution are developed, such as Workstation,
Server, IoT, Cloud, and CoreOS, some subprojects develop opportunity areas under the Fedora model.
There are also other interest groups (SIGs) that are more informal, where they adopt a framework or
lightweight desktop for the distribution.

Code of Conduct

Fedora aims for the best interaction between its collaborators and members of its community through
a set of guidelines contained in a document known as the Code of Conduct, whose decisions are
applied using all the information and context available in pursuit of having the best environment for
its members. It does not intend to restrict expressions or penalize any member of the community; it
only details the type of behavior that is considered acceptable or unacceptable.

Note
For the full Code of Conduct, refer to the Fedora Docs at https://docs.fedoraproject.
org/en-US/project/code-of-conduct/.

https://docs.fedoraproject.org/en-US/project/code-of-conduct/
https://docs.fedoraproject.org/en-US/project/code-of-conduct/

Linux and Open Source Projects12

Getting started with Fedora

To contribute to the Fedora Project, follow these steps:

1.	 The first step is to create a user account at https://accounts.fedoraproject.org/:

Figure 1.4 – Fedora Accounts

2.	 After filling out the registration form, the system will ask you to verify the registered email address:

Figure 1.5 – Fedora Accounts – Account creation

https://accounts.fedoraproject.org/

The Fedora Project 13

3.	 Upon clicking on the link you received via mail, the system will ask you to create a password:

Figure 1.6 – Fedora Accounts – set password

4.	 Once you’ve accessed your profile, click on the Agreements tab to sign the Fedora Project
Contributor Agreement document:

Figure 1.7 – Fedora Accounts – profile settings

Linux and Open Source Projects14

5.	 Click on the Sign button to sign the agreement:

Figure 1.8 – Fedora Accounts – Fedora Project Contributor Agreement

After signing the agreement, continue to the profile configuration area and join a development or
collaboration group of interest.

If needed, Fedora provides an online tool at https://whatcanidoforfedora.org/ that
guides you to the appropriate group(s) that match your interests, based on the questions you ask:

Figure 1.9 – What can I do for Fedora?

https://whatcanidoforfedora.org/

The Fedora Project 15

Note
This page, although very useful for a first approach, is already deprecated by the documentation
of the project. For further reference, please refer to a group of interest (SIG) at https://
docs.fedoraproject.org/en-US/project/join/.

Now that we know how to contribute to the Fedora project, let’s learn how to use the distribution to
administrate Linux-based systems.

Fedora as a system administration tool

Using Fedora Linux as the main distribution, in work or study, also supports the development of the
Fedora Project, as an end user. You can contribute with feedback on the use of the tools and services
included in the distribution, and also take advantage of these innovations to become more productive
and efficient in day-to-day activities.

One of the most important activities in the IT industry is system administration, where the main
responsibility is to maintain, configure, and ensure the reliable operation of computer systems,
especially multi-user computers such as servers. The system administrator tries to ensure that the
uptime, performance, resources, and security of the computers that are managed meet the needs of
the users, without exceeding a set target budget during this process.

Managing Linux systems using a Linux workstation provides many advantages that lead to a high
level of efficiency and productivity since, from the host operating system, you can automate tasks or
perform functional tests based on an operating system, such as the one being managed.

Fedora, given its privileged position within the contributory development of RHEL, becomes a highly
profitable tool in the administration of similar platforms, such as its variants (CentOS Stream, Rocky,
and AlmaLinux), as well as any distribution that uses rpm packages.

At the same time, when using this approach for Linux system administration, it is possible to contribute
to the development of the distribution since continuously testing the platform and its various packages
and projects within it takes place here.

So, if you wish to use Fedora Linux to manage Linux-based systems, you could support the Fedora
Project by reporting unexpected behaviors or contributing to the improvement of system performance.
This includes making suggestions for new features. Before reporting a bug, it is recommended to
consult the Ask Fedora website at https://ask.fedoraproject.org/, the community
support forum, in case this unexpected behavior has occurred before:

https://docs.fedoraproject.org/en-US/project/join/
https://docs.fedoraproject.org/en-US/project/join/
https://ask.fedoraproject.org/

Linux and Open Source Projects16

Figure 1.10 – Ask Fedora

Note
For more information on how to file a bug, refer to the Fedora Docs at https://docs.
fedoraproject.org/en-US/quick-docs/howto-file-a-bug/.

Before we customize the distribution as our system administration workstation, let’s review how to
use our main tool.

The command-line interface
As the development of graphical user interfaces progressed, the use of the command line was often
discarded. However, it is the main tool for operating system administration in general, whether it’s
for system administrators or Advanced and Power users. Apart from Linux-based systems, the CLI is
also used on Windows or Mac systems. The use of the command line extends system management
and administration capabilities.

Achieving the fluency necessary for maximum efficiency requires practice at every opportunity. Using
Linux as a workstation allows us to practice this skill so that we can improve our productivity and
efficiency when performing daily tasks.

https://docs.fedoraproject.org/en-US/quick-docs/howto-file-a-bug/
https://docs.fedoraproject.org/en-US/quick-docs/howto-file-a-bug/

The command-line interface 17

The default command-line interpreter (shell) in Fedora Linux is Bourne Again Shell (Bash) and can
be accessed through different Terminal emulators available with the distribution:

•	 xterm: This is the original terminal emulator program for the X Window System.

•	 Konsole: The terminal emulator program for the Konsole Desktop Environment (KDE).

•	 gnome-terminal: The terminal emulator program for the GNOME desktop environment.

•	 Alacritty: This is a lightweight, OpenGL-based terminal emulator program that focuses
on performance.

•	 yakuake (guake): This is a drop-down terminal emulator program that can easily be accessed
via a keyboard shortcut. guake is the version that’s used for the GNOME desktop environment.

•	 Terminator: This is based on gnome-terminal. It provides multiple instances of the
terminal emulator in a single window, generating a terminal console that fills the size of the
screen area and divides it into a resizable grid.

Now that we know about the different terminal emulator options, let’s dive into the topics that will
help us get into system administration.

The basics

Practice is the only way to develop our console skills, but there is a path that can help with such
improvement. This path consists of four sections with three levels each; following it as a guide while
practicing should help you develop fluency in the console.

1. Ask the one who knows

Upon encountering an unexpected behavior or requiring a tool to make a task more efficient, it is a
very common mistake to first look it up on the internet; it has even become a common term: Google
it. But open source projects offer us reference material (that is, man and info pages) explaining the
options, and, in most cases, the use of the packages, commands, processes, and services that follow
it. The flow of information search is the first paradigm we have to break to develop efficiency as a
system administrator.

Basic level

Use the built-in help command. If you do not know or remember how to use a command, use the
built-in help module. To do so, add the --help or -h parameter or even run the command without
parameters. The command may have one of these basic help options.

Note
Not all commands have a built-in help option. In some cases, they may offer one or two. Just
test which one comes with the command. If not, use the next level.

Linux and Open Source Projects18

Let’s look at an example of each of them:

•	 A command run with the built-in help module:

Figure 1.11 – Built-in help module

•	 A command run with the -h parameter:

Figure 1.12 – Command run with the -h parameter

The command-line interface 19

•	 A command run without parameters:

Figure 1.13 – Command run without parameters

These are the basic recommended options included in most of the commands. Now let’s look at a more
elaborate type of help. Unfortunately, sometimes it is not included as part of the package or requires
a separate package to be installed to get this help. In each case, there is mention of it.

Intermediate level

man is your friend. Most of the commands, besides the built-in help command, come with a user
manual, which details the use of each of the options and parameters that are available with it. To
consult the manual, run the man <command> command:

Linux and Open Source Projects20

Figure 1.14 – Command user manual

In some cases, the commands may include info pages. These may reference the same man pages or,
in some cases, have more detailed information on the usage and options of the command. To consult
the info pages, run the info <command> command.

Advanced level

The operating system provides a directory where the documentation for packages and services resides
– for example, in /usr/share/doc. You should consider installing the kernel documentation,
which includes documentation for the drivers shipped with the kernel, and references to various
configuration options. The kernel-doc package contains the kernel documentation for installing
and running several tasks as a root user:

[root@workstation ~]# dnf -y install kernel-doc
...output omitted…

[root@workstation ~]# ls /usr/share/doc/kernel-doc-6.0.9-300/
Documentation/
ABI atomic_t.txt crypto  features  ia64  kernel-hacking memory-
barriers.txt
...output omitted...

[root@workstation ~]# cat \
> /usr/share/doc/kernel-doc-6.0.9-300/Documentation/networking/
bonding.rst

The command-line interface 21

...output omitted...
Introduction
============

The Linux bonding driver provides a method for aggregating
multiple network interfaces into a single logical "bonded" interface.
The behavior of the bonded interfaces depends upon the mode; generally
speaking, modes provide either hot standby or load balancing services.
Additionally, link integrity monitoring may be performed.
...output omitted...

After exhausting the options that the operating system contains, you can access the different online
options. The community is very helpful if you haven’t found a suitable solution. To do so, you can
access mailing lists, telegram channels, and IRC sites such as Reddit, Stack Overflow, or the ones provided
by the Fedora Project itself, such as Ask Fedora. Using these options, you can get in touch with the
community, which will always offer a helping hand.

2. Use the console

Having a Linux-based workstation brings with it the ability to use the console in all circumstances,
even in your free time. The idea is to take advantage of any opportunity to use it to launch applications
or tasks and reduce the use of the mouse and graphic solutions as much as possible.

The use of the console depends on the privileges of the users who use it. A privileged account is a user
account that has more privileges than regular users. Privileged accounts can, for example, install or
remove software, update the operating system, or change system or application settings. They might
also have access to files that non-privileged users can’t access.

The command prompt provides information on the privileges of the user using it.

If, upon opening the console, the prompt shows $, this means that the user is logged on to this system
as a non-privileged user. The $ prompt is the default for normal users:

[user@workstation ~]$

The root user’s prompt is #. Logging in as a root user can be done in two ways:

•	 By logging in with the root user’s username and password

•	 By switching to the root user

This last point could involve the same username and password of the privileged user. Use the su –
command to become the root user:

[user@workstation ~]$ su -
Password: [root password]
[root@workstation ~]#

Linux and Open Source Projects22

Alternatively, we can use the sudo (Super User DO) command, which is a program that helps us
provide privileges to normal users.

Most Linux distributions have sudo installed by default. In some cases, even root access is turned
off. When this happens, we can only access it through the sudo command.

While installing the operating system, when creating the user, we can choose to add them as part of
the system administration group. This will allow them to switch to the root user by using the sudo
command and their own password.

To find out if your user has access to different privileges with sudo, run the following code:

[user@workstation ~]$ sudo -l
Password: [user password]
Matching Defaults entries for user on workstation:
...output omitted...

User user may run the following commands on workstation:
    (ALL) PASSWD: ALL
...output omitted...

(ALL) PASSWD: ALL indicates that the user can gain access to any command of the operating system
by using the sudo command and their password. To switch to the root user, run the following code:

[user@workstation ~]$ sudo -i
Password: [user password]
[root@workstation ~]#

So, now that we know how to use the console, depending on our activities and privileges, let’s learn
how to improve our console skills.

Basic level

Just use it. Type as much as you can to list, search for, and open applications.

Intermediate level

Chain, redirect, and concatenate. After typing commands and understanding the result of their output,
we can start playing with them and put them together in such a way that they simplify tasks. By using
pipes (|) and redirecting the output and input with > and <, we can generate a string of commands that
we know as one-liners. Bash-one-liners are famous in the computer world, and it is even considered
an art to be able to chain commands for certain tasks. There are many internet sites and even social
networks where we can find them. Some of them use such redirection to interpret pattern processing
written in the AWK programming language as output.

The command-line interface 23

Example: Send the output of the following command to a new file:

[user@workstation ~]$ ip link show > link.txt
[user@workstation ~]$ cat link.txt
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel
state UP mode DEFAULT group default qlen 1000
    link/ether 52:54:00:f9:69:14 brd ff:ff:ff:ff:ff:ff

Example: Get the open and listening TCP ports and the processes related to them, separated by commas:

[root@workstation ~]# ss -tulpn | grep tcp | awk '{ print
$1","$2","$5","$7 }'
tcp,LISTEN,0.0.0.0:22,users:(("sshd",pid=844,fd=3))
tcp,LISTEN,127.0.0.54:53,users:(("systemd-resolve",pid=707,fd=19))
tcp,LISTEN,0.0.0.0:5355,users:(("systemd-resolve",pid=707,fd=11))
tcp,LISTEN,127.0.0.1:6010,users:(("sshd",pid=1514,fd=9))
tcp,LISTEN,127.0.0.53%lo:53,users:(("systemd-resolve",pid=707,fd=17))
tcp,LISTEN,127.0.0.1:631,users:(("cupsd",pid=842,fd=7))
tcp,LISTEN,[::]:22,users:(("sshd",pid=844,fd=4))
tcp,LISTEN,[::]:5355,users:(("systemd-resolve",pid=707,fd=13))
tcp,LISTEN,[::1]:6010,users:(("sshd",pid=1514,fd=8))
tcp,LISTEN,[::1]:631,users:(("cupsd",pid=842,fd=6))

Advanced level

If you typed it twice, you should have scripted it once.

In system administration, it is very common for tasks to become repetitive. The first step in automating
them, and with this, reducing the time taken to perform them, is to put them together and turn them
into a series of instructions, known as a shell script. This script or series of instructions can contain
the commands to run complex tasks, such as using outputs as variable settings and reusing them in
the same execution.

Linux and Open Source Projects24

There is a lot of documentation on how to create shell scripts. They should have a structure similar
to the following:

#!/bin/bash ← [1]
#
IDENTITY ← [2]
#

VARIABLES ← [3]

COMMANDS ← [4]

Let’s look at what the highlighted text indicates in each section:

•	 [1]: Shebang. This indicates the command-line interpreter that uses the instructions; the
functional tests of the script must confirm its use.

•	 [2]: The script must contain identification information – what it works for, who the author
is, what version is being used, and even the date of creation and the changes it has undergone.
This documentation will help you use it and identify its scope.

•	 [3]: In this section, the variables used to execute the instructions are set.

•	 [4]: In this section, you will find the instructions that will be executed.

3. Edit text files

On Linux, everything is a file. Thus, we must use a text editor to help us perform configuration or
administration tasks. Knowing about the editor of choice in more depth helps make this activity more
efficient, especially if some of them have specialized add-ons or plugins for cases such as identifying
or validating syntax in files written in diverse programming languages or formats.

Basic level

GNU Nano is a simple, lightweight, open source command-line text editor written in C. Developed
as part of the GNU Project, it emulates the Pico text editor, part of the Pine mail client:

The command-line interface 25

Figure 1.15 – The Nano editor

GNU Nano does not have many add-ons, but it does have built-in features, such as one to highlight
different programming languages.

Intermediate level

Vim is an open source command-line text editor (licensed under its charityware license), written in
C and with a scripting language called Vim (or VimL). It was developed in the 1970s as the visual
mode (vi, its base) of the ex line editor. The original vi was a modal text editor that had no syntax
highlighting, was written in C, and had only a command-line interface. Later, in the 1980s, vim
was released as a clone of the vi text editor for personal computers, ported as Vi IMproved (Vim).
Eventually, Vim got a graphical user interface (along with a CLI) called gVim, syntax highlighting,
a scripting language (to customize and extend it), and support for many more computer platforms:

Linux and Open Source Projects26

Figure 1.16 – The Vim editor

vim has many add-ons and plugins to enhance its use. It is even possible to create special add-ons
for specific or special needs.

Advanced level

GNU Emacs is a free, open source, extensible, self-documenting text editor written in C and its own
Lisp programming language (Emacs Lisp). It was developed by Richard Stallman and Guy L.
Steele Jr.. Its initial release was in 1985 and it has been ported to all major operating systems. Developed
as part of the GNU Project, its use is extended through plugins written in Emacs Lisp, which
are available in the official Fedora repositories. It also runs on Fedora via an AppImage package
(sandboxed application):

The command-line interface 27

Figure 1.17 – The GNU Emacs editor

4. Handle regular expressions

The bash command interpreter has many ways to handle regular expressions, which it does by expanding
the power of the command line.

Basic level

At a basic level, it is important to use pattern matching (wildcards), loops, and exit codes. With
wildcards, it is easier to handle many files. By using metacharacters as wildcards that expand to match
the filenames and paths searched for, commands act on one set of files at a time.

Linux and Open Source Projects28

The following table shows the characters that are used as wildcards in terms of basic usage:

Character Description

* Matches any number of characters – for example, list all .txt files
in a directory:

$ ls *.txt

? Matches any single character – for example, list the .sh files that start
with the compar string:

$ ls compar*.sh

compare.sh

[] Matches one of the characters between the brackets – for example, list
files in a directory and filter out files starting with letters:

$ ls | grep ^[a-z]

compare.sh

conkyrc

labkey

labkey.pub

{ } Contains a comma-separated list of strings or a sequence. If so, use
double-dot syntax. An example is to create five empty files and list them:

$ touch file{1..5}
$ ls file?
file1  file2  file3  file4  file5

~ Match the current user’s home directory – for example, list the
Downloads directory in the user’s home directory:

$ ls ~/Downloads/

$ Denotes a string as a variable – for example, print the user’s PATH
variable on the screen:

$ echo $PATH
/home/user/.local/bin:/home/user/bin::/
usr/local/bin:/usr/local/sbin:/usr/bin:/
usr/sbin

The command-line interface 29

Loops help us perform repetitive tasks simply. In Bash, a for loop is built from the following syntax:

for <variable> in <list>
do
command <variable>
done

You could add a condition to these loops so that they run different actions, depending on the situation:

if <condition>;
   then
       <statement 1>
       ...
       <statement n>
   else
       <statement alternative>
fi

Running a script provides an output and passes control to the calling process. The script may exit
before finishing if it encounters an error condition, for example. The exit command shown in the
following code, with an optional argument between 0 and 255, represents an exit code:

[user@workstation ~]$ cat test.sh
#!/bin/bash
echo "Hello, I'm a test"
exit 0
[user@workstation ~]$./test.sh
Hello, I'm a test
[user@workstation ~]$ echo $?
0

In the output, the exit code’s value of 0 indicates that the script ran successfully with no errors; any
other value indicates an error output.

Intermediate level

Regular expressions provide a pattern-matching mechanism that helps you search for specific content.
The grep, less, and vim commands support regular expressions in their use. Most programming
languages also support them, although the syntax in each may differ. As mentioned previously, these
commands can be chained and converted into a search for more complex structures.

At the end of this section, you will find a guided example that better illustrates this level.

Linux and Open Source Projects30

Advanced level

Write scripts with regular expressions and patterns in an optimized way.

Be careful when handling regular expressions within scripts since chained commands use a certain
amount of memory and CPU processing that should not be underestimated. The battery and functional
testing phase should be planned carefully and never on a productive server; at this point, it is highly
profitable to have a Linux workstation to manage our servers. We can recreate the production
environment in an instance based on a local virtual machine and perform the first functional tests
of our super-script.

“This is the way.”

“Patience, young Padawan.”

It may seem a very laborious journey, but it is not. A lot of it depends on practice, incorporating the
characteristics mentioned, and thus, developing the necessary skills. It is not a matter of 1 day of
practice – it requires effort and dedication, so you must go one step at a time.

Next, we will perform a guided exercise where I will show, step by step, how to go from a simple
command to a chained command with a defined purpose. This will show you how the tools shown
below can be incorporated as the need arises.

Guided example – releasing space in the filesystem

Description: A ticket gets assigned to us because a managed server shows the root filesystem at 92%
disk use. It is necessary to determine various responsibilities and provide evidence so that we can
document the issue and resolve it so that we can close it.

Analysis: Since the server has no separate directories in the filesystems, it is necessary to determine
which directory or directories have used the most disk space and identify which application or service
it is relative to.

Solution:

1.	 As root, switch to the root directory (/) and list the available directories:

[root@workstation ~]# cd /
[root@workstation /]# ls
afs  bin  boot  dev  etc  home  lib  lib64  lost+found  media  
mnt  opt  proc  root  run  sbin  srv  sys  tmp  usr  var

2.	 Run the following command to list the directories. Use the -l parameter to run a long list and
identify the directories only:

[root@workstation /]# ls -l | grep ^d
dr-xr-xr-x.   1 root root    0 Aug  9 08:27 afs

The command-line interface 31

dr-xr-xr-x.   6 root root 4096 Nov 22 13:12 boot
drwxr-xr-x.  21 root root 4000 Nov 22 13:12 dev
drwxr-xr-x.   1 root root 5186 Nov 22 13:12 etc
drwxr-xr-x.   1 root root   18 Nov 21 21:41 home
drwx------.   1 root root    0 Nov  5 02:18 lost+found
drwxr-xr-x.   1 root root    0 Aug  9 08:27 media
drwxr-xr-x.   1 root root    0 Aug  9 08:27 mnt
drwxr-xr-x.   1 root root    0 Aug  9 08:27 opt
dr-xr-xr-x. 329 root root    0 Nov 22 13:12 proc
dr-xr-x---.   1 root root  188 Nov 22 01:45 root
drwxr-xr-x.  58 root root 1580 Nov 22 13:14 run
drwxr-xr-x.   1 root root    0 Aug  9 08:27 srv
dr-xr-xr-x.  13 root root    0 Nov 22 13:12 sys
drwxrwxrwt.  20 root root  460 Nov 23 00:06 tmp
drwxr-xr-x.   1 root root  168 Nov  5 02:4.0 usr
drwxr-xr-x.   1 root root  200 Nov  5 03:15 var

3.	 Use awk to select only the names of the directories (column 9):

[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }'
afs
boot
dev
etc
home
lost+found
media
mnt
opt
proc
root
run
srv
sys
tmp
usr
var

4.	 Determine the disk space used by each directory with the xargs and du commands:

[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' |
xargs du -sk
0    afs
293680    boot
0    dev

Linux and Open Source Projects32

33212    etc
176728    home
0    lost+found
0    media
0    mnt
0    opt
du: cannot read directory 'proc/3945/task/3945/net': Invalid
argument
du: cannot read directory 'proc/3945/net': Invalid argument
du: cannot read directory 'proc/3946/task/3946/net': Invalid
argument
du: cannot read directory 'proc/3946/net': Invalid argument
du: cannot access 'proc/7762/task/7762/fd/3': No such file or
directory
du: cannot access 'proc/7762/task/7762/fdinfo/3': No such file
or directory
du: cannot access 'proc/7762/fd/3': No such file or directory
du: cannot access 'proc/7762/fdinfo/3': No such file or
directory
0    proc
32    root
du: cannot access 'run/user/1000/doc': Permission denied
1632  run
0    srv
0    sys
8    tmp
8371056    usr
6576996    var

5.	 To avoid confusion, send the standard error output (stderr) to /dev/null:

[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' | \
> xargs du -sk 2> /dev/null
0    afs
293680    boot
0    dev
33212    etc
176728    home
0    lost+found
0    media
0    mnt
0    opt
0    proc
32    root
1632    run

The command-line interface 33

0    srv
0    sys
8    tmp
8371056    usr
6576996    var

6.	 Sort the results:

[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' | \
> xargs du -sk 2> /dev/null  | sort -n
0    afs
0    dev
0    lost+found
0    media
0    mnt
0    opt
0    proc
0    srv
0    sys
8    tmp
32    root
1632    run
33212    etc
176728    home
293680    boot
6576996    var
8371056    usr

7.	 Discard the directories with the lowest disk space usage and keep only the Top 5:

[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' | \
> xargs du -sk 2> /dev/null  | sort -n | tail -5
33212    etc
176728    home
293680    boot
6576996    var
8371056    usr

8.	 Now that we have found the Top 5 directories with the highest disk usage, we will only deal
with this order so that we can use it as evidence:

[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' | \
> xargs du -sk 2> /dev/null  | sort -n | tail -5 \
> awk '{ print $2 }' | xargs du -sh
33M        etc

Linux and Open Source Projects34

173M    home
287M    boot
6.3G    var
8.0G    usr

The same steps should be executed for each of the Top 5 directories so that we can find the subdirectory
that occupies the most disk space and is the one causing the issue. Finding out which service determines
who handles releasing the issue depends on the directory.

Now that these concepts are clear, we can start thinking about how to install our workstation for
system administration purposes. However, before that, we should take a moment to select the desktop
environment we want to use.

Desktop environments
Fedora’s default desktop environment is GNOME, but it provides us with the alternative of using other
desktop environments, either lightweight ones or those with special features, such as those that use
different graphic engines and specialized libraries or are focused on performance. These alternatives
are offered by the Fedora Project as Spin distributions. You can download a Spin with a preconfigured
desktop environment based on Fedora:

Note
For more information about alternative desktops for Fedora, refer to Fedora Spins at https://
spins.fedoraproject.org/.

With this, we have come to the end of Chapter 1. Let’s quickly recap what we learned.

Summary
In this chapter, we briefly walked through the history of the Unix operating system, which taught us
about the beginning and development of Linux and its distributions. Apart from teaching us how
the project that develops the distribution that we will use as a workstation for system administration
operates, it helped us learn how we can be part of it and improve the distribution while we perform
our day-to-day tasks.

In the next chapter, we will learn about some best practices and tips that will help ensure we have a
good installation that will help us develop our work.

https://spins.fedoraproject.org/
https://spins.fedoraproject.org/

Further reading 35

Further reading
To learn more about the topics that were covered in the chapter, please visit the following links:

•	 Timeline of GNU/Linux and Unix: http://laurel.datsi.fi.upm.es/~ssoo/IG/
download/timeline.html

•	 Overview of the GNU System, GNU Operating System: https://www.gnu.org/gnu/
gnu-history.html

•	 Linux and GNU – GNU Project – Free Software Foundation: https://www.gnu.org/
gnu/linux-and-gnu.html

•	 Red Hat brand standards – Our history: https://www.redhat.com/en/about/brand/
standards/history

•	 A Short History of Fedora Linux (Video), YouTube: https://www.youtube.com/
watch?v=NlNlcLD2zRM

•	 CentOS Stream: A contribution path to Red Hat Enterprise Linux: https://www.redhat.
com/en/resources/centos-stream-datasheet

http://laurel.datsi.fi.upm.es/~ssoo/IG/download/timeline.html
http://laurel.datsi.fi.upm.es/~ssoo/IG/download/timeline.html
https://www.gnu.org/gnu/gnu-history.html
https://www.gnu.org/gnu/gnu-history.html
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.redhat.com/en/about/brand/standards/history
https://www.redhat.com/en/about/brand/standards/history
https://www.youtube.com/watch?v=NlNlcLD2zRM
https://www.youtube.com/watch?v=NlNlcLD2zRM
https://www.redhat.com/en/resources/centos-stream-datasheet
https://www.redhat.com/en/resources/centos-stream-datasheet

Part 2:
Workstation Configuration

In this part, you will learn how to set up a computer as a workstation for the tasks of a system
administrator – from the best practices for the installation of an operating system and tools to
configuring and optimizing resources, such as storage and networks.

This part contains the following chapters:

•	 Chapter 2, Best Practices for Installation

•	 Chapter 3, Tuning the Desktop Environment

•	 Chapter 4, Optimizing Storage Usage

•	 Chapter 5, Network and Connectivity

2
Best Practices for Installation

Now that we have a very complete context of the history and development of the Linux distribution,
let’s see what the recommendations and best practices for the installation of an operating system (OS)
are on the computer that will be our workstation. The most advisable thing, in this case, is that our
OS is a portable computer with good resources of memory and CPU, since if we can virtualize with
it, it will help us a lot with functional tests.

The topics that will be covered in this chapter are as follows:

•	 Creating the boot media

•	 Partitioning local storage

•	 The first startup

•	 Package management

Let’s get started!

Technical requirements
According to the Fedora documentation (https://getfedora.org/en/workstation/
download/), a Fedora Linux image requires a USB flash drive of 2 GB for the creation of the boot
media. To install Fedora Linux, it requires at least 20 GB of local storage and 2 GB of RAM; the
recommended amount is double the amount of both.

Visit https://getfedora.org to get the image of the Fedora Edition to be installed. Fedora
images are hybrid ISOs, so you can test them in live mode before installing them.

In this chapter, we will cover the best practices to install our workstation, in terms of performance
and flexibility for the applications that help us to administer Linux systems.

To create the bootable media, we will use Fedora Linux. However, the creation of the bootable media
is possible from any Linux distribution, preferably rpm-based, as well as on Windows or Mac systems.

https://getfedora.org/en/workstation/download/
https://getfedora.org/en/workstation/download/
https://getfedora.org

Best Practices for Installation40

For our installation, we will select the Fedora Workstation image as the best edition to use, as it is
an OS that is refined and simple to use on laptops and desktops, with a full set of tools for developers
and all kinds of users. After downloading the corresponding image, we will create a boot media, of
which there are different methods.

Creating the boot media
There are many methods to create the boot media, from the dd command to applications such as
Unetbootin or balenaEtcher that work on different platforms. However, these applications extract files
from the image and write the syslinux bootloader to the device. This process builds a bootloader
based on Fedora Linux, but it’s different from the one contained in the image, so the boot media build
is inconsistent with the image, which results in boot errors.

Fedora Media Writer is the official supported application to create Fedora bootable media. It works
on different platforms. It is built with Qt (https://www.qt.io/). According to the official Fedora
Project documentation, this is the recommended option to create bootable media. To install the tool,
on an rpm-based Linux distribution, run the dnf or yum command as a root user:

[root@host ~]# dnf install mediawriter

Note
You can download Fedora Media Writer for other platforms at https://github.com/
FedoraQt/MediaWriter.

Let’s see how the process of creating the boot media works.

Fedora Media Writer

This method involves erasing the existing data on the USB flash drive, so back up your data if necessary.

Note
For more information on alternative methods of boot media creation, visit Creating and
using a live installation image from Fedora Docs at https://docs.fedoraproject.
org/en-US/quick-docs/creating-and-using-a-live-installation-
image/#proc_creating-and-using-live-usb.

https://www.qt.io/
https://github.com/FedoraQt/MediaWriter
https://github.com/FedoraQt/MediaWriter
https://docs.fedoraproject.org/en-US/quick-docs/creating-and-using-a-live-installation-image/#proc_creating-and-using-live-usb
https://docs.fedoraproject.org/en-US/quick-docs/creating-and-using-a-live-installation-image/#proc_creating-and-using-live-usb
https://docs.fedoraproject.org/en-US/quick-docs/creating-and-using-a-live-installation-image/#proc_creating-and-using-live-usb

Creating the boot media 41

Follow these steps to create the boot media with Fedora Media Writer:

1.	 Select Fedora Media Writer from the Applications menu. If you have not downloaded the
image, the tool offers the option to do it:

Figure 2.1 – Fedora Media Writer

Best Practices for Installation42

2.	 Click the Next button to select the version to install:

Figure 2.2 – Fedora Media Writer – Select Fedora Release

If you choose to download the image, enable the Official Editions radio button and select
Fedora Workstation from the drop-down menu.

3.	 Click the Next button, and on the next screen, select the options to write the release/version, the
hardware architecture, and the device to install. You have the option to delete the downloaded
image after writing the device:

Creating the boot media 43

Figure 2.3 – Fedora Media Writer – Write Options

4.	 Click the Download & Write button, and wait for it to download the image and write it to
the device.

Best Practices for Installation44

 When the image download completes, it will start writing the image to the device:

Figure 2.4 – Fedora Media Writer – writing the image

Once the image writing finishes, it starts with the review of the data written to the device:

Figure 2.5 – Fedora Media Writer – Verifying written data

Creating the boot media 45

5.	 When data verif﻿ication finishes, click the Finish button, and remove the bootable media device:

Figure 2.6 – Fedora Media Writer – writing completed

With the image written on the boot media, it’s now time to install it on the computer and start
the installation.

Best Practices for Installation46

Booting

As mentioned in a previous section, Fedora Linux images are hybrid, which means that the OS can
boot from boot media to perform functional tests and, from there, perform the complete installation
of the distribution. To do this, follow the following steps:

1.	 Restart the computer and insert the boot media created to start the installation of the Fedora
Linux image. The boot screen appears:

Figure 2.7 – The boot media screen

Creating the boot media 47

2.	 Select the Test this media & start Fedora-Workstation-Live 37 option; this is important to
determine whether the bootable media has inconsistency problems when installing the workstation.

3.	 At the end of the tests, the desktop displays the Welcome to Fedora screen, where we can
choose to test the Fedora Live distribution or install it on the hard disk device:

Figure 2.8 – Fedora Live – the welcome screen

Best Practices for Installation48

4.	 Select the Install to Hard Drive option. On the next screen, select the language to be used
during installation, according to your preference:

Figure 2.9 – Fedora Install – selecting a language

Click the Continue button.

Creating the boot media 49

5.	 The INSTALLATION SUMMARY screen appears. Select the keyboard mapping, and set the
date and time and your current location.

Click the Installation Destination button to select the device where the system should be
installed:

Figure 2.10 – Fedora Installation Summary

Best Practices for Installation50

6.	 Set the Storage Configuration option to Custom:

Figure 2.11 – Fedora INSTALLATION DESTINATION

7.	 Click the Done button when finished.

Partitioning is one of the basic best practices of storage management. It means dividing the local storage
into small units, as you decide, to separate the data stored in each section, and with this, apart from a
better organization, you avoid the possible collapse of the entire OS. In an extreme case where there
were no divisions, the storage would not have enough free space to continue operating.

Since it is best to perform this organization during the installation of the OS, let’s take advantage of
this step to analyze it in depth. Let’s get to it.

Partitioning local storage 51

Partitioning local storage
The installation wizard includes a shortcut to create partitioning as standard. This is very useful for
cases such as this, installing a workstation, but not in other cases such as specific use servers. We
will discuss these cases and expand on several basic storage management concepts in a later chapter.

Let’s start with the standard partitioning provided by the wizard and add some extra mount points
that will help with our system administration task.

Follow these steps to partition the local storage:

1.	 The MANUAL PARTITIONING screen enables you to select the format scheme, leave it as Btrfs,
and create the base mount points by clicking the Click here to create them automatically link.

Figure 2.12 – Fedora Manual Partitioning

A mount point base should be created, with the filesystems of the /home and / directories,
plus the /boot directory and BIOS boot, mounted on the first two physical partitions of
the hard drive device.

Best Practices for Installation52

2.	 Click the plus sign [+] button to add another filesystem mounted on the /var/lib/libvirt/
images directory; this directory should become the location of the guest virtual machines
(VMs) that will be configured in a later chapter.

3.	 Change the disk space assigned so that the /home and / directories are about 50 GiB. The
remaining storage space on the hard disk device should assign them to the /var/lib/
libvirt/images directory.

For example, with a 500 GiB hard disk device, after allocating 100 GiB to the /home and /
directories, there is 400 GiB of storage space left that is allocated to the /var/lib/libvirt/
images directory.

Figure 2.13 – Fedora Manual Partitioning

Click the Done button.

Partitioning local storage 53

4.	 The INSTALLATION SUMMARY screen displays that there are no missing items to configure
and enables the Begin Installation button:

Figure 2.14 – Fedora Installation Summary

Best Practices for Installation54

Click the Begin Installation button and wait for the installation to finish.

Figure 2.15 – Fedora INSTALLATION PROGRESS

5.	 Click the Finish Installation button.

6.	 Restart the live media and remove the bootable media device.

Now that we have the OS installed on our computer, let’s finish the configuration on the first boot.

The first startup
The OS installs on the computer, but the user configuration for access is still missing, as well as some
customization that could perform from the first start. Let’s add some customization to conclude the
installation of the distribution.

The first startup 55

Follow these steps to finish the configuration:

1.	 On restarting the system, the Setup screen displays:

Figure 2.16 – The Fedora welcome screen

Click the Start Setup button.

Best Practices for Installation56

2.	 On the Privacy settings screen, if you agree, activate the Location Services and Automatic
Problem Reporting switches.

Figure 2.17 – Fedora welcome – Privacy

Enabling Location Services allows some applications, such as maps or weather, to provide you
with local information based on your current location. Please read the privacy policy before
considering activating the switch.

Enabling Automatic Problem Reporting sends technical reports of failures to the Fedora
Project. Personal information is removed before sending. The OS collects this information.

Click the Next button.

The first startup 57

3.	 On the next screen, enable third-party repositories by clicking the Enable Third-Party
Repositories button.

Figure 2.18 – Fedora welcome – Third-Party Repositories

Third-party repositories provide access to extra software from selected external sources, such
as popular applications or some drivers, including proprietary software.

Click the Next button.

Best Practices for Installation58

4.	 The next screen enables you to connect your Google, Nextcloud, or Microsoft online service
accounts by selecting the service and logging in to your account.

Figure 2.19 – Fedora welcome – Online Accounts

Note
This step is optional and won’t interfere with the OS activities.

To skip this step, click the Skip button.

The first startup 59

5.	 Create your login account on the next screen:

Figure 2.20 – Fedora welcome – About You

When complete, click the Next button.

Best Practices for Installation60

6.	 Then, create a strong password for your login account; the system indicates the minimum
acceptable password strength.

Figure 2.21 – Fedora welcome – Password

The first startup 61

7.	 When complete, click the Next button. The setup is now complete.

Figure 2.22 – Fedora welcome – Setup Complete

Best Practices for Installation62

8.	 Click the Start Using Fedora Linux button. The workspace desktop displays.

Figure 2.23 –Fedora Linux 37 Workstation GNOME desktop

When working for a long time at the console, it is vital to take care of our vision, preventing permanent
damage as much as possible. One of the options that GNOME offers us is to configure a dark mode
that can help to avoid these visual effects.

The first startup 63

Click the button in the upper-right corner and select dark mode by clicking the Dark Mode button.

Figure 2.24 – Fedora desktop – Dark Mode

Important note
Give your eyes a rest. If you spend a lot of time at the computer or focusing on any one thing,
you sometimes forget to blink, and your eyes can get fatigued. Try the 20-20-20 rule – every
20 minutes, look away about 20 feet in front of you for 20 seconds. This short exercise can
help reduce eyestrain.

For more tips on how to prevent vision loss, refer to the Vision Health Initiative (VHI)
at https://www.cdc.gov/visionhealth/risk/tips.htm/.

With the installation and basic configuration finished, we can start with the installation of the software
that will help us to have the most useful tools for our day-to-day tasks.

https://www.cdc.gov/visionhealth/risk/tips.htm/

Best Practices for Installation64

For this, it is indispensable to have our computer connected to the internet. As with storage, in a later
chapter, we will review the basic concepts of network configuration to optimize its operation. At this
point, it is only necessary to know that the system network is available, either in wired or wireless
form, to download and install packages and updates of the OS.

Let’s now learn how to update the OS and download extra packages that provide the tools needed.

Package management
The Fedora Linux live installation media build is based on a kickstart (text) file where, depending
on the version of the image, the packages that compose it are included.

The Fedora Workstation version includes the following groups of packages:

•	 Common Network Manager Submodules

•	 Container management

•	 Core

•	 Fedora Workstation product core

•	 Firefox web browser

•	 Fonts

•	 GNOME

•	 Guest desktop agents

•	 Hardware support

•	 LibreOffice

•	 Multimedia

•	 Printing support

•	 base-x

Package management 65

Note
For more information about Fedora Composes, refer to fedora-kickstarts at https://
pagure.io/fedora-kickstarts/.

To review the installed packages, perform the following steps:

1.	 Open the Activities overview window and select Software from the bottom icon bar:

Figure 2.25 – Activities overview

https://pagure.io/fedora-kickstarts/
https://pagure.io/fedora-kickstarts/

Best Practices for Installation66

2.	 Click the Installed tab:

Figure 2.26 – Software installed

Note
Get the detailed list of packages contained in the distribution from our GitHub repository
at https://github.com/PacktPublishing/Fedora-Linux-System-
Administration/blob/main/chapter2/fedora-37-packages.txt.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter2/fedora-37-packages.txt
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter2/fedora-37-packages.txt

Package management 67

3.	 The Updates tab indicates that packages need to update. Click the Updates tab:

Figure 2.27 – Software updates

Important
As this is the first boot, it is important to update all OS packages.

For detailed information on the content of the package updates, refer to Fedora Updates System
at https://bodhi.fedoraproject.org/releases/F38.

https://bodhi.fedoraproject.org/releases/F38

Best Practices for Installation68

4.	 Click the Restart & Update button.

Figure 2.28 – Restart & Install Updates

5.	 Click the Restart & Install button.

Figure 2.29 – Installing Updates…

Extra package selection 69

Wait for the installation updates, and when the computer restarts, log in and verify, under Software
| Updates, that the updates are up to date.

Figure 2.30 – Software updates

Close this window to continue with the installation of extra packages.

Extra package selection
Fedora Linux includes in its repositories many tools that can make day-to-day tasks in system
administration easier, but some of them are not included in the system installation, so it is necessary
to install them. To install packages on Fedora Linux, which has a package manager based on rpm
packages (RPM Package Manager), use the PackageKit GUI and the dnf command in the Terminal.

Note
For more information about installing packages in Fedora Linux, refer to Package Management
System at https://docs.fedoraproject.org/en-US/quick-docs/package-
management/.

https://docs.fedoraproject.org/en-US/quick-docs/package-management/
https://docs.fedoraproject.org/en-US/quick-docs/package-management/

Best Practices for Installation70

Some of these recommended tools are as follows:

•	 Development:

	� gcc: A GNU project C and C++ compiler

	� git: A distributed revision control system

	� make: A GNU Make utility to maintain groups of programs

•	 Laptop battery power:

	� tlp: A tool to apply power-saving settings and control battery care features

•	 Network scanner:

	� nmap: A network exploration tool and security/port scanner

•	 Terminal emulator:

	� terminator: Stores and runs multiple GNOME Terminals in one window

•	 Virtualization:

	� genisoimage: A program to generate ISO 9660/Joliet/HFS hybrid filesystems

	� libguestfs: A tool to access and modify VM disk images

	� qemu-kvm: A QEMU PC system emulator

	� virt-install: A tool to create new KVM, Xen, or Linux container guests using the
libvirt hypervisor management library

	� virt-manager: A graphical tool to manage libvirt VMs

	� virt-viewer: A tool to display the graphical console of a virtual machine

Open the GNOME Terminal to install extra packages. Then, open the Activities Overview window
and select Terminal:

Extra package selection 71

Figure 2.31 – The GNOME Terminal

Switch to the root user using the sudo command and clean all the repository metadata:

[user@workstation ~]$ sudo -i
[sudo] password for user: [password]
[root@workstation ~]# dnf clean all
68 files removed

Note
Clearing the metadata to force the package manager to refresh it is optional. I have always
considered it a good practice.

Install the extra packages using the dnf command:

[root@workstation ~]# dnf install gcc make libgcc git \
> qemu-kvm virt-manager virt-viewer libguestfs \
> virt-install genisoimage terminator nmap tlp

In later chapters, we will install more tools for some specific tasks.

Best Practices for Installation72

Once the system is upgraded and the extra packages are installed, everyone gets to enjoy the
experience of using the tools. However, you may find that a tool or package could be enhanced with
some added function or feature. You should take your proposal to the Fedora Project for evaluation
of the enhancement.

The installation and basic configuration of our workstation are now complete, so let’s summarize
what we have learned.

Summary
In this chapter, we reviewed the best practices and tips to install Fedora on our computer, including
the basic partitioning of the internal storage, as well as the first steps of a basic configuration of
our workstation.

In the next chapter, we will learn how to customize our workstation with the proper tools to perform
Linux system administration.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Fedora: https://getfedora.org

•	 Preparing Boot Media: https://docs.fedoraproject.org/en-US/fedora/
f35/install-guide/install/Preparing_for_Installation/#sect-
preparing-boot-media

•	 Fedora Media Writer: https://github.com/FedoraQt/MediaWriter/

•	 Fedora 37 – DistroWatch: https://distrowatch.com/?newsid=11673

•	 fedora-kickstarts: https://pagure.io/fedora-kickstarts

•	 fedora build system: https://koji.fedoraproject.org/koji/

•	 Fedora Updates System: https://bodhi.fedoraproject.org/

•	 Fedora Workstation Working Group: https://pagure.io/fedora-workstation

•	 Fedora Pagure – Issues: https://pagure.io/fedora-workstation/issues

https://docs.fedoraproject.org/en-US/fedora/f35/install-guide/install/Preparing_for_Installation/#sect-preparing-boot-media
https://docs.fedoraproject.org/en-US/fedora/f35/install-guide/install/Preparing_for_Installation/#sect-preparing-boot-media
https://docs.fedoraproject.org/en-US/fedora/f35/install-guide/install/Preparing_for_Installation/#sect-preparing-boot-media
https://github.com/FedoraQt/MediaWriter/
https://distrowatch.com/?newsid=11673
https://pagure.io/fedora-kickstarts
https://koji.fedoraproject.org/koji/
https://bodhi.fedoraproject.org/
https://pagure.io/fedora-workstation
https://pagure.io/fedora-workstation/issues

3
Tuning the Desktop

Environment

With the operating system installed on our computer and the least necessary configuration completed,
we can continue with the customization of our workstation, looking to optimize the processes. But at this
point, it is very important to feel comfortable with the experience as users of our desktop environment.
In this chapter, we will look, step by step, at how to have a customized desktop environment; you can
omit or add any component to your liking, based on your personal taste. The desktop environment
we are going to use is GNOME, but most of the customizations, except the GNOME plugins, could
be done in any desktop environment.

The following customization components are covered in the chapter:

•	 Initial system tuning

•	 Customizing the panel and taskbar

•	 Making tasks easy with widgets

•	 Handy applications with docks

Technical requirements
For the exercises in this chapter, you need to have a personal computer with Fedora Workstation
installed, with release 37, the release this book is based on. If you do not have the operating system
installed on the computer, you can refer to the previous chapter where I provided the best practices
for its installation.

Let’s start the desktop tuning with resource optimization.

Tuning the Desktop Environment74

Initial system tuning
Tuning a Linux system involves many of its components. For this reason, we will start by going through
desktop tuning step by step so that we have a workstation optimized as best as possible. As always, in
these cases, the main thing to take care of is the memory and CPU usage of our computer.

According to Fedora’s official documentation (https://docs.fedoraproject.org/en-US/
fedora/latest/release-notes/welcome/Hardware_Overview/), the minimum
system requirements that we must have in our hardware are as follows:

•	 2 GHz dual-core processor or faster

•	 2 GB system memory

According to several resource usage benchmark websites, such as diffen.com (https://www.
diffen.com/difference/GNOME_vs_KDE), webdock.io (https://webdock.io/en/
docs/how-guides/desktop-environments/overview-of-desktop-environments),
and pcgamebenchmark.com (https://www.pcgamebenchmark.com/find-the-gnome-
system-requirements), the GNOME desktop has the following specifications:

•	 800 MHz CPU power (1 GHz for optimal performance)

•	 512 MB of Random Access Memory (RAM) (1 GB for optimal performance)

A tuning that can help us, if we have limited system memory, is adjusting the swappiness value.

Swappiness is a property of the Linux kernel that allows adjusting the balance between the use of
swap space and RAM. Swap space gets used when the amount of physical memory (RAM) is full.
Swap space is a physical storage space on the system. Swappiness values range from 0 to 100, a ratio
between anonymous pages and file pages.

Tuning the swappiness value

The swappiness value determines the amount of data written to the virtual memory of the hard disk
drive (swap space), which can slow down the system.

By default, this value is 60, which you can verify by running the following command from Terminal:

[root@workstation ~]# cat /proc/sys/vm/swappiness
60

This value could change through the /etc/sysctl.conf file by adding a lower value to this
parameter. As a recommendation, add a comment of the change made as a backup:

[root@workstation ~]# cat /etc/sysctl.conf
...output omitted...

https://docs.fedoraproject.org/en-US/fedora/latest/release-notes/welcome/Hardware_Overview/
https://docs.fedoraproject.org/en-US/fedora/latest/release-notes/welcome/Hardware_Overview/
https://www.diffen.com/difference/GNOME_vs_KDE
https://www.diffen.com/difference/GNOME_vs_KDE
https://webdock.io/en/docs/how-guides/desktop-environments/overview-of-desktop-environments
https://webdock.io/en/docs/how-guides/desktop-environments/overview-of-desktop-environments
https://www.pcgamebenchmark.com/find-the-gnome-system-requirements
https://www.pcgamebenchmark.com/find-the-gnome-system-requirements

Initial system tuning 75

The default value is 60, decrementing the value of parameter
vm.swappiness=10

After saving the file, reboot the computer and confirm the changed value. With this, less information
should write to the virtual drive.

With this basic tuning done, let’s get a better experience with the use of our desktop resources. So
now, let’s go ahead and customize it to have the tools at hand and perform better day-to-day activities.

Tuning the desktop experience

In the GNOME desktop, in the upper-left corner, you will find the Activities menu button. By
clicking it, access to the programs and system settings is available. Pressing the Super key also opens
the Activities menu.

From the Activities menu, we can search for any program, but GNOME can not only search for
software but also for any item that is available, such as locations, contacts, calendar appointments,
notes, and so on.

Figure 3.1 – Searching from the Activities menu

Tuning the Desktop Environment76

This is very useful, but it can also mean a resource drain on the performance of the desktop environment.
To limit GNOME’s search, click on the icons at the top right and click on the gear to open the
configuration window. In the Search section, select only the source of the items to search for.

Figure 3.2 – Settings – Search

When a file search is enabled, a background program runs to read filenames and generate an index
of them. This service runs often to detect new files as they are created. So, disabling file indexing can
free up resources.

Initial system tuning 77

Figure 3.3 – Settings – Files disabled

Note
File indexing in GNOME comes from a service called tracker, which can be completely
uninstalled to ensure that it does not run in the background. To uninstall it, run the dnf
remove command:
[root@workstation ~]# dnf remove tracker

More tuning exists under GNOME, but the tweak tool should do the job. Install the tweak tool using
the following dnf command:

[root@workstation ~]# dnf install gnome-tweaks

Let’s now take a look at some of the tunings available with the tool.

Tuning the Desktop Environment78

GNOME Tweak Tool

GNOME Tweak Tool is a new application that contains a variety of customization options beyond
what’s available in the system settings (https://wiki.gnome.org/Gnome3CheatSheet).

Figure 3.4 – GNOME Tweaks

These tunings change the behavior or use of different desktop elements, such as the following:

•	 Appearance

•	 Fonts

•	 Keyboard & Mouse

•	 Startup Applications

•	 Top Bar

•	 Window Titlebars

•	 Windows

https://wiki.gnome.org/Gnome3CheatSheet

Initial system tuning 79

A very useful tuning when our workstation is not portable is to disable the suspension of the computer
when the lid closes. To disable this behavior, turn off the Suspend when laptop lid is closed switch
in the General section of Tweaks.

Figure 3.5 – GNOME Tweaks – General

Note
Suspension is useful when moving around because it saves battery power. Please consider
whether this option is useful for your day-to-day tasks.

Tuning the Desktop Environment80

Another tuning we should keep an eye on is the system startup applications, which are set in the
Startup Applications section of Tweaks.

Figure 3.6 – GNOME Tweaks – Startup Applications

To add a startup application, click on the plus sign (+) and add the program.

Figure 3.7 – GNOME Tweaks – Adding Startup Applications

Initial system tuning 81

These tunings are the basic ones to optimize the performance of the desktop environment in our
workstation. Now, let’s see some customizations to improve the user experience.

GNOME Shell extensions

These customizations come through the available GNOME desktop extensions. In the same way as
with Chrome and Firefox browser extensions, GNOME Shell extensions enable small changes and
modify the way GNOME works.

GNOME shell extensions can be installed with the dnf install command, and also from the
browser, as follows:

1.	 Open the URL https://extensions.gnome.org/ in the Firefox web browser.

Figure 3.8 – GNOME Shell extensions

https://extensions.gnome.org/

Tuning the Desktop Environment82

2.	 Click on the Click here to install browser extension link to install the browser extension, add
the GNOME Shell integration extension, and accept the installation.

Figure 3.9 – GNOME Shell integration extension installed

3.	 Once the installation is complete, the GNOME icon appears in the browser bar.

Figure 3.10 – GNOME icon in the browser bar

Initial system tuning 83

4.	 Press the F5 key to refresh the page and install the extensions.

Figure 3.11 – GNOME Extensions page

Now, let’s go over how to customize each component of our desktop environment, starting with the
panel and the taskbar.

Tuning the Desktop Environment84

Customizing the panel and the taskbar
One of the functionalities that everybody misses in the desktop environment is having a menu that
allows organized access to applications.

In the GNOME extensions, there are different menu options that help with this need.

In my case, I like to use the ArcMenu extension, as it provides a clean and clear organization of
applications, and it adds some shortcuts to directories and system settings.

In the search bar, type ArcMenu, then click on the extension name, and toggle the switch to ON on
the extension page (https://extensions.gnome.org/extension/3628/arcmenu/).
Click on the Install button.

Figure 3.12 – ArcMenu extension installation

https://extensions.gnome.org/extension/3628/arcmenu/

Customizing the panel and the taskbar 85

The ArcMenu icon appears in the upper-left corner instead of the Activities menu. Click on it, and
the menu opens.

Figure 3.13 – ArcMenu extension

Tuning the Desktop Environment86

Click on the ArcMenu Settings button to change the appearance and organization of the applications,
as well as to add or remove shortcuts.

Figure 3.14 – ArcMenu settings

Customizing the panel and the taskbar 87

Instead of the ArcMenu icon, I prefer the Fedora icon to be shown. To do this, click on the Menu
Button tab and click on the Browse button in the Choose a new icon section. Then, in the Distro
Icons tab, choose the Fedora icon.

Figure 3.15 – Choosing the Fedora icon

Tuning the Desktop Environment88

Close the window, and now the Fedora icon shows up as the menu in the top-left corner.

Figure 3.16 – ArcMenu with the Fedora icon

The extension installation procedure is the same in all cases. Let’s now look at the extensions that will
help us to improve the taskbar.

The taskbar

In the taskbar, the best practices include shortcuts to the most used applications, as well as to the
general information and system settings.

Customizing the panel and the taskbar 89

On the left side, next to the menu, add the Frippery Panel Favorites extension (https://
extensions.gnome.org/extension/4/panel-favorites/).

Figure 3.17 – Frippery Panel Favorites

To add or remove favorites, from the menu, click on the Activities Overview icon and drag and drop
the application icons to the bottom bar.

Figure 3.18 – Favorites applications

https://extensions.gnome.org/extension/4/panel-favorites/
https://extensions.gnome.org/extension/4/panel-favorites/

Tuning the Desktop Environment90

To have local weather information, add the OpenWeather extension (https://extensions.
gnome.org/extension/750/openweather/) next to the clock in the center of the taskbar.

Figure 3.19 – OpenWeather extension

To change the location, click on the settings icon button in the lower-right corner, and in the Locations
tab of the Settings window, click on the Add button to find the location and add it.

Figure 3.20 – OpenWeather Settings

https://extensions.gnome.org/extension/750/openweather/
https://extensions.gnome.org/extension/750/openweather/

Customizing the panel and the taskbar 91

The extensions that I recommend for the upper-right corner are as follows:

•	 Clipboard Indicator – Saves the text copied for reuse:

https://extensions.gnome.org/extension/779/clipboard-indicator/

•	 Extension List – Provides access to the extension’s configuration:

https://extensions.gnome.org/extension/3088/extension-list/

•	 Hide Keyboard Layout – Hides the keyboard layout configuration:

https://extensions.gnome.org/extension/2848/hide-keyboard-layout/

•	 Section Todo List – Adds a simple to-do list:

https://extensions.gnome.org/extension/1104/section-todo-list/

•	 Removable Drive Menu – When inserting a removable disk, it adds a quick access to unmount it:

https://extensions.gnome.org/extension/7/removable-drive-menu/

In the case of a portable computer, the Battery Time extension (https://extensions.gnome.
org/extension/5425/battery-time/) indicates the remaining charge time.

Figure 3.21 – Taskbar – Upper-right corner

Other extensions that help improve the look and feel of the desktop environment are as follows:

•	 User Avatar In Quick Settings – Displays the user’s profile picture in the Settings part of the
upper-right corner:

https://extensions.gnome.org/extension/5506/user-avatar-in-
quick-settings/

•	 Transparent Shell – Makes desktop components (top bar, dash, workspace view, etc.) transparent:

https://extensions.gnome.org/extension/3518/transparent-shell/

Figure 3.22 – Customized taskbar

https://extensions.gnome.org/extension/779/clipboard-indicator/
https://extensions.gnome.org/extension/3088/extension-list/
https://extensions.gnome.org/extension/2848/hide-keyboard-layout/
https://extensions.gnome.org/extension/1104/section-todo-list/
https://extensions.gnome.org/extension/7/removable-drive-menu/
https://extensions.gnome.org/extension/5425/battery-time/
https://extensions.gnome.org/extension/5425/battery-time/
https://extensions.gnome.org/extension/5506/user-avatar-in-quick-settings/
https://extensions.gnome.org/extension/5506/user-avatar-in-quick-settings/
https://extensions.gnome.org/extension/3518/transparent-shell/

Tuning the Desktop Environment92

Fedora provides an extension that displays the distribution logo on the desktop wallpaper. You can
install the gnome-shell-extension-background-logo package using the following
dnf command:

[root@workstation ~]# dnf install gnome-shell-extension-background-
logo

Click on the Extensions List icon in the upper-right corner, then click on the gear icon next to the
Background Logo extension to customize how the Fedora logo is displayed.

Figure 3.23 – Background Logo settings

Customizing the panel and the taskbar 93

Another thing that also improves the look and feel of the desktop environment is the wallpaper. One
recommendation is to use a neutral background that does not distract our attention. On the https://
pixabay.com/ page, you can find some free-usage minimalist images to use as a wallpaper.

To change the wallpaper, right-click on the desktop background and select Change background,
then in the Appearance section of the Settings window, click on the + Add Picture button to add
the downloaded image and apply the change.

Figure 3.24 – Appearance settings

https://pixabay.com/
https://pixabay.com/

Tuning the Desktop Environment94

Now, our custom desktop environment looks and feels better.

Figure 3.25 – Customized desktop

Our desktop environment looks pretty good, but we could improve it even more with other elements.
Let’s see how to do that next.

Making tasks easy with widgets
Widgets are small applications designed to ease access or provide information on the desktop.

A to-do list shows a simple list of tasks to do, but if you need more details about the tasks or their
development, you can use the GNOME Task Widget extension (https://extensions.gnome.
org/extension/3569/task-widget/).

https://extensions.gnome.org/extension/3569/task-widget/
https://extensions.gnome.org/extension/3569/task-widget/

Making tasks easy with widgets 95

Figure 3.26 – Task widget extension

The Task Widget extension displays tasks near the Calendar widget, providing easy access to the task
list along with the ability to merge task lists, group them by due date, mark them as completed for
historical record, plus integrate with mail application calendars.

In Linux, widgets are generally used to provide computer performance information. There are various
extensions that can be used to present information in the taskbar:

•	 Resource Monitor – Displays CPU, memory, storage and network usage:

https://extensions.gnome.org/extension/1634/resource-monitor/

Figure 3.27 – Resource Monitor extension

•	 System Monitor – Shows the use of resources by icons that change color according to their
use. By default, it is placed in the center of the taskbar, but its location could be customized:

https://extensions.gnome.org/extension/1064/system-monitor/

Figure 3.28 – System Monitor extension

https://extensions.gnome.org/extension/1634/resource-monitor/
https://extensions.gnome.org/extension/1064/system-monitor/

Tuning the Desktop Environment96

•	 TopHat – Displays CPU, memory, and network usage in a small graph:

https://extensions.gnome.org/extension/5219/tophat/

Figure 3.29 – TopHat extension

https://extensions.gnome.org/extension/5219/tophat/

Making tasks easy with widgets 97

•	 Vitals – Displays a summary of CPU, memory, and network usage via icons, but clicking on
the extension displays all monitored resources:

https://extensions.gnome.org/extension/1460/vitals/

Figure 3.30 – Vitals extension

I do not use these extensions, as they somehow take away space from the taskbar and, in some cases,
the taskbar looks like it has collapsed with so much information. In my case, I prefer an option that
keeps my taskbar cleaner and displays all the system information I need on the desktop.

Conky

Conky (https://github.com/brndnmtthws/conky) is a lightweight system monitor,
created for the X Window System. It displays any kind of information on the desktop.

You can install Conky using the following dnf command:

[root@workstation ~]# dnf install conky

https://extensions.gnome.org/extension/1460/vitals/
https://github.com/brndnmtthws/conky

Tuning the Desktop Environment98

You can browse the internet to find a lot of templates with different designs that could apply to Conky.
I like to use those posted at https://www.deviantart.com/.

Figure 3.31 – Conky designs at deviantart.com

I found my favorite Conky template, conky_harmattan, in a Deviant Art post (https://
github.com/zagortenay333/conky_themes/tree/master/conky_harmattan).
It has many themes included, but we’ll use the Glass theme in its God-Mode version. Clone the
conky_themes repository in the user’s home directory to install it:

[acallejas@workstation ~]$ git clone \

Note
We’ll talk a bit more about Git in a later chapter.

https://www.deviantart.com/
https://github.com/zagortenay333/conky_themes/tree/master/conky_harmattan
https://github.com/zagortenay333/conky_themes/tree/master/conky_harmattan

Making tasks easy with widgets 99

Change to the conky_harmattan directory inside the conky_themes directory:

[acallejas@workstation ~]$ cd conky_themes/conky_harmattan

Copy the .harmattan-assets and .harmattan-themes directories to the user’s home
directory, keeping them as hidden directories:

[acallejas@workstation conky_harmattan]$ cp -r .harmattan-assets ~/
[acallejas@workstation conky_harmattan]$ cp -r .harmattan-themes ~/

Note
Hidden directories are those that have a name beginning with a period (.).

We’ll create a file in the .config/autostart directory in the user’s home directory to add conky
to the system startup. With this, when we start our session, conky runs and displays it on the desktop.

Create the ~/.config/autostart/start_conky.desktop file with the following content:

[acallejas@workstation ~]$ vi .config/autostart/start_conky.desktop
[Desktop Entry]
Type=Application
Exec=/bin/sh -c "$HOME/.config/autostart/start_conky.sh"
Hidden=false
NoDisplay=false
Terminal=false
X-GNOME-Autostart-enabled=true
Name=Conky
GenericName=ConkyStartup
Comment=Conky Harmattan Startup

Now, create the conky startup script as ~/.config/autostart/start_conky.sh with the
following content:

[acallejas@workstation ~]$ cat .config/autostart/start_conky.sh
#!/bin/bash
killall conky
sleep 10
conky -c $HOME/.harmattan-themes/Glass/God-Mode/.conkyrc

Add execute permissions to the start_conky.sh script:

[acallejas@workstation ~]$ chmod +x .config/autostart/start_conky.sh

Tuning the Desktop Environment100

Note
You can find both files in the repository of this book at https://github.com/
PacktPublishing/Fedora-Linux-System-Administration/tree/main/
chapter3.

As indicated in the conky_harmattan documentation, register a private API key in OpenWeatherMap
(http://openweathermap.org/) to get the current weather information. On the same page,
find the city code by searching for it and copying the code from the URL address of the browser:

Figure 3.32 – OpenWeatherMap page

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter3
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter3
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter3
http://openweathermap.org/

Making tasks easy with widgets 101

Add both pieces of data by editing the ~/.harmattan-themes/Glass/God-Mode/.conkyrc file:

[acallejas@workstation ~]$ vi .harmattan-themes/Glass/God-Mode/.
conkyrc
...output omitted...

--  API Key

template6="d60bb6c3b2b806caf46c43...",

--  City ID

template7="3530597",
...output omitted...

Save the file and test the configuration by running conky from Terminal:

[acallejas@workstation ~]$ sh .config/autostart/start_conky.sh

Unless it sends an error, conky displays on the desktop:

Figure 3.33 – Conky on the desktop

Tuning the Desktop Environment102

To customize the conky location, edit the ~/.harmattan-themes/Glass/God-Mode/.
conkyrc file in the Windows Specifications section by changing the gap_x and gap_y
values, depending on the screen resolution:

[acallejas@workstation ~]$ vi .harmattan-themes/Glass/God-Mode/.
conkyrc
...output omitted...

--  Window Specifications

gap_x=1900,
gap_y=15,
...output omitted...

Saving the file displays the change in Conky’s position:

Figure 3.34 – Conky monitor

Making tasks easy with widgets 103

To see the transparent window, uncomment the following lines from the Windows Specifications
section of the ~/.harmattan-themes/Glass/God-Mode/.conkyrc file:

own_window_argb_visual=true,
own_window_argb_value=0,

Figure 3.35 – Conky with transparent window

To fix the network graph, check that the device name is correct in the conky.text section of the
~/.harmattan-themes/Glass/God-Mode/.conkyrc file:

${if_existing /proc/net/route enp1s0}
${voffset -344}${goto 40}${color5}Up: ${color2}${upspeed
enp1s0}${color5}${goto 150}Down: ${color2}${downspeed enp1s0}
${voffset 10}${goto 40}${upspeedgraph enp1s0 26,80 FFFFFF
FFFFFF}${goto 150}${downspeedgraph enp1s0 26,80 FFFFFF FFFFFF}
${voffset 9}${goto 40}${color5}Sent: ${color2}${totalup
enp1s0}${color5}${goto 150}Received: ${color2}${totaldown enp1s0}
${else}

Tuning the Desktop Environment104

Saving the file displays the graphs in Conky:

Figure 3.36 – Conky graphs

GNOME extensions include many extra ways of customization. A very popular element is docks.
Let’s see some of these options in the following section.

Handy applications with docks
Launchers or docks are a convenient way to access favorite and used applications. GNOME does not
provide a dock, but you could get one through GNOME extensions.

Handy applications with docks 105

The most popular are as follows:

•	 Dash to Dock – Provides the classic dock with favorite applications. The dock location could
change in the extension settings:

https://extensions.gnome.org/extension/307/dash-to-dock/

Figure 3.37 – Dash to Dock extension

•	 Floating Dock – Provides a dock with a button, which, when pressed, displays favorite
applications. The location of the dock could change in the extension settings:

https://extensions.gnome.org/extension/2542/floating-dock/

Figure 3.38 – Floating Dock extension

https://extensions.gnome.org/extension/307/dash-to-dock/
https://extensions.gnome.org/extension/2542/floating-dock/

Tuning the Desktop Environment106

This customization provides us with a clean desktop for our day-to-day tasks.

These customizations, of course, are not the only ones that exist. A Linux system has a high level
of customization, and even has specialized tools such as fedy (https://github.com/
rpmfusion-infra/fedy), which let us add codecs and third-party or proprietary software from
a graphical interface.

Important
RPM Fusion is a set of repositories that are not affiliated with or supported by the Fedora
Project. For more information, refer to Enabling the RPM Fusion repositories in the Fedora
documentation at https://docs.fedoraproject.org/en-US/quick-docs/
setup_rpmfusion/.

Before discussing the functionality of the applications involved, the following chapters provide a brief
overview of the basic concepts of storage and networking that are needed for later use.

Summary
This chapter offered an overview of desktop environment customization, from resource tuning to
tools and tips for a clean and minimalistic desktop.

We divided it into tuning and customization. Keeping that in mind, we customized only the taskbar
and its components, as well as added the conky system monitor.

Customizing each of the elements of the desktop environment, besides improving the way it looks and
feels, allows us to focus on our tasks. It is well known in Linux-based environments, which provide
extreme customization of each component, that this task could be endless.

In my experience as a system administrator, not getting distracted by this kind of customization helps
me to focus on my daily work.

In the next chapter, we will review the concepts of basic local storage, as well as how to optimize its use.

https://github.com/rpmfusion-infra/fedy
https://github.com/rpmfusion-infra/fedy
https://docs.fedoraproject.org/en-US/quick-docs/setup_rpmfusion/
https://docs.fedoraproject.org/en-US/quick-docs/setup_rpmfusion/

Further reading 107

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 What Is Swappiness on Linux? (and How to Change It): https://www.howtogeek.
com/449691/what-is-swapiness-on-linux-and-how-to-change-it/

•	 GNOME 43: https://release.gnome.org/43/

•	 GNOME Wiki: https://wiki.gnome.org/

•	 GNOME 3 Cheat Sheet: https://wiki.gnome.org/Gnome3CheatSheet

•	 GNOME Help: https://help.gnome.org/

•	 GNOME Shell Extensions: https://extensions.gnome.org/about/

https://www.howtogeek.com/449691/what-is-swapiness-on-linux-and-how-to-change-it/
https://www.howtogeek.com/449691/what-is-swapiness-on-linux-and-how-to-change-it/
https://release.gnome.org/43/
https://wiki.gnome.org/
https://wiki.gnome.org/Gnome3CheatSheet
https://help.gnome.org/
https://extensions.gnome.org/about/

4
Optimizing Storage Usage

In the previous chapter, during the installation of the OS, we mentioned the importance of the local
storage configuration. Local storage resource optimization is vital to the well-being of the system. It
is time to review basic storage management concepts that help with optimization, such as the format,
filesystem, and sizing, as well as management tools such as logical volumes and Stratis.

In this chapter, we’re going to cover the following main topics:

•	 Understanding file formats and filesystems

•	 Optimizing storage space size

•	 Deep diving into Logical Volume Manager

•	 Discovering Stratis storage

Let’s get started!

Technical requirements
To perform some of the configurations included in this chapter, you require free local storage space,
if possible, on a local disk independent of the operating system. No matter how large it is, this should
do the job. In case of not having extra space, some configurations can be done in local free space on
the same disk where the operating system was installed, although it is not recommended.

This will be mentioned when some configuration needs to be performed on a disk independent of
the operating system or an alternate disk.

Optimizing Storage Usage110

The following table shows the storage arrangement in the test setup:

Device Size Used as:

/dev/vda 50 GiB OS

/dev/vdb 50 GiB Btrfs, Stratis

/dev/vdc 10 GiB Stratis

/dev/vdd 20 GiB Stratis

Understanding file formats and filesystems
A filesystem allows the operating system to find the data it stores on its local disk. These basic addressable
storage units make a block (usually about 4,096 bytes in size). To find the contents of files, among
the large number of available storage blocks, it uses inodes. An inode contains information about a
file in a particular formatted storage block, such as its size, location, access rules (i.e., who can read,
write, or execute the file), and much more.

Starting with Fedora Linux 33, the default filesystem format on Workstation Edition is Btrfs. Unlike
other distributions that still use xfs or even ext4, Btrfs is a copy-on-write (COW) filesystem for
Linux that implements many advanced features.

In a COW filesystem, once modified, a file is not written back to the same block on disk; it’s more
like a redirect. This is for the preservation of the original data and to ensure writing the new data
to unoccupied inodes. This allows for references to the old versions of the file for easy access as in a
snapshot, keeping a snapshot of the state of the system at a given moment in time.

The downside of this is that this behavior could lead to file fragmentation faster than in other filesystems,
although, for regular desktop usage, it is unlikely to make a difference.

To make the modified file appear in the filesystem, all directory entries that contain a reference to it
get updated as well, in a recursive way. And because a directory is itself a file pointer with an inode
(since it indicates the files inside it), any file modification also creates a new inode for the directory,
and this happens through the filesystem to the root directory (/). So, as long as a reference to the
old directories remain and is not modified, the entire filesystem could still refer to a previous state,
as in a snapshot.

Besides cheap and fast snapshots, Btrfs includes other features such as error detection, fault tolerance,
recovery, transparent compression, and integrated volume management, and provides multiple
device storage pooling, RAID-like functionality, and checksumming of data and metadata, all with
easy-to-use administration.

Let’s create a test Btrfs filesystem to show its capabilities.

Understanding file formats and filesystems 111

Creating a Btrfs filesystem

For the development of this example, use an alternative local disk to the OS installed. This introduces
you to the capabilities of the Btrfs filesystem from scratch. Follow these steps:

1.	 Storage administration requires superuser access, so switch to the root user using the sudo
command and create the /btrfs directory that will host the filesystem:

[user@workstation ~]$ sudo -i
[sudo] password for user: [password]
[user@workstation ~]$ mkdir /btrfs

2.	 Identify the device to use. Ensure that the test storage device is not in use. Formatting implies
total destruction of the data.

Several commands provide information about the use of storage devices. A recommendation is
to use more than one command to verify them. These recommendations include the following:

	� (s)fdisk -l

	� parted -l

	� cat /proc/partitions

	� ls -l /dev/disk/by-path

	� lsblk -p

Figure 4.1 – Identifying storage device

Optimizing Storage Usage112

In our example, the storage device that is not in use is /dev/vdb, since it shows that it does
not contain any partition. Still, it should be managed by Logical Volume Manager (LVM).
Run the following command to display the devices managed by LVM:

pvs -a

Figure 4.2 – Discarding LVM on the storage device

Note
In case of using a partition, you need to confirm that the partition is not in use by another
filesystem and does not have a directory mounted. Use the following basic commands: fdisk,
parted, mount, df, lsblk, and blkid.

3.	 Create a storage pool. With Btrfs, it is not necessary to create physical partitions on the storage
device. Create a storage pool and then create subvolumes. These subvolumes can have quotas
and snapshots since these resizable partitions can share blocks of data.

Run the mkfs.btrfs command to format /dev/vdb as Btrfs:
mkfs.btrfs -L testbtrfs /dev/vdb

Understanding file formats and filesystems 113

Figure 4.3 – Creating a Btrfs storage pool

4.	 Mount the storage device on the directory where subvolumes should be created. Use the
mount command:

[root@workstation ~]# mount /dev/vdb /btrfs

With the Btrfs filesystem mounted, let’s analyze the usage of its storage space.

5.	 To show the structure of a filesystem, run the following:

[root@workstation ~]# btrfs filesystem show /btrfs
Label: 'testbtrfs'  uuid: def9423d-8684-487f-bd11-4829937752b6
Total devices 1 FS bytes used 144.00KiB
devid    1 size 50.00GiB used 1.56GiB path /dev/vdb

Optimizing Storage Usage114

6.	 To measure the available space on the filesystem, run the following:

[root@workstation ~]# btrfs filesystem df /btrfs
Data, single: total=1.00GiB, used=0.00B
System, DUP: total=32.00MiB, used=16.00KiB
Metadata, DUP: total=256.00MiB, used=128.00KiB
GlobalReserve, single: total=3.50MiB, used=0.00B

Note
The following section will explain in detail the meaning of the command output.

In Btrfs, a subvolume is similar to a filesystem contained in the host. A Btrfs filesystem contains a
single subvolume, but extra subvolumes could exist. The subvolumes appear as directories within the
mounted Btrfs filesystem. A subvolume could access it like any other user-accessible directory, or it
could mount as a separate filesystem.

Btrfs separates each volume. By default, the Btrfs filesystem contains a subvolume. This is set as the
top-level subvolume and is mounted even if not specified. Subvolumes, as they're being created, could
nest into each other. But not the top-level subvolume. So each of them has a mountable root and could
contain more than one tree of files. This sets a relative location for each subvolume and the mount
point of the main subvolume.

A Btrfs subvolume is considered more like a namespace.

Some basic layouts exist for subvolumes (including snapshots), and they include the following:

•	 Flat – Subvolumes are children of the top level

•	 Nested – Subvolumes are located anywhere in the file hierarchy, below other subvolumes, not
the top-level subvolume

•	 Mixed – The two basic schemes could be mixed, for example, the base structure follows a flat
layout, with certain parts of the filesystem placed in nested subvolumes

Let’s create a subvolume:

1.	 Use the btrfs subvolume create command to create the test subvolume:

[root@workstation ~]# btrfs subvolume create /btrfs/test
Create subvolume '/btrfs/test'

2.	 Review the subvolume information with the btrfs subvolume command:

[root@workstation ~]# btrfs subvolume show /btrfs/test

Understanding file formats and filesystems 115

Figure 4.4 – Subvolume information

3.	 Create the /test directory and mount the subvolume on it:

[root@workstation ~]# mkdir /test
[root@workstation ~]# mount -o bind /btrfs/test /test

In this example, the subvolume doesn’t have an allocated space, so it can use all the available
space in the pool.

4.	 Verify the used space of the pool:

[root@workstation ~]# btrfs filesystem du /btrfs
     Total   Exclusive  Set shared  Filename
     0.00B       0.00B           -  /btrfs/test
     0.00B       0.00B       0.00B  /btrfs

To get more details on space usage, run the following command:
btrfs filesystem usage /btrfs

Optimizing Storage Usage116

Figure 4.5 – Storage space used by Btrfs pool

Let’s create an empty file of 1 GB to observe the change in the allocated usage.

5.	 Use the dd command to create an empty 1 GB file in the /test directory:

[root@workstation ~]# dd if=/dev/zero of=/test/example \
> bs=1M count=1024

6.	 Verify the change of the allocated space in the pool:

[root@workstation ~]# btrfs filesystem du /btrfs
[root@workstation ~]# btrfs filesystem usage /btrfs

Optimizing storage space size 117

Figure 4.6 – Change in storage space used by the Btrfs pool

This is the end of the example. We started by identifying a free-of-use storage device to format it as
Btrfs, created a storage pool on it, created a subvolume, and mounted it in a filesystem and analyzed
the storage space usage in detail.

In the next section, we will continue revisiting the basic concepts of storage administration in
Fedora Linux.

Optimizing storage space size
In the previous section, we reviewed some of the features of the Btrfs filesystem. Now it is time to
learn how to optimize this used storage space in more detail.

Btrfs reserves some raw storage at its lowest level because the volume needs to contain file data or
volume metadata. For that, it allocates pieces of raw storage for use by the filesystem. A piece of storage

Optimizing Storage Usage118

gets referred to as a chunk. Its main function is to contain file data or volume metadata to replicate
on the same volume or another similar device.

 Storage space gets allocated to the chunks, and the space is used by the blocks. A chunk with no blocks
used is unallocated; a chunk with one or more blocks used is allocated. All chunks can get allocated
even if not all the space is used.

Btrfs uses delayed allocation to enable better disk allocation. Btrfs only allocates disk space when the
system needs to get rid of dirty pages, so in the end, you get much larger allocations and much larger
chunks of sequential data, which makes data reading faster.

Btrfs allocates space on its disks by assigning chunks of 1 GB for data and 256 MB chunks for metadata.
This implies that a chunk has a specific profile associated with it: once allocated a chunk for data or
metadata, that space is only usable for one or the other. So, Btrfs has different allocation profiles for
metadata and data.

This division of metadata and data might get confusing: a filesystem might show 10 GB of data but only
2 GB free. Common operating system commands, such as df or du, do not show the full information
about space usage and chunk allocation in Btrfs. For this reason, Btrfs incorporates its own commands
that show the used space and allocated chunks.

Using the filesystem created in the previous section, let’s take a closer look at storage space usage and
chunk allocation. Use the btrfs filesystem df command to display the /btrfs information:

[root@workstation ~]# btrfs filesystem df /btrfs
Data, single: total=1.00GiB, used=1.00GiB
System, DUP: total=8.00MiB, used=16.00KiB
Metadata, DUP: total=256.00MiB, used=1.17MiB
GlobalReserve, single: total=3.50MiB, used=16.00KiB

Observe the following:

•	 Data, System, and Metadata are separate block group types:

	� single is the allocation profile, defined at mkfs time.

	� DUP means duplicate. It guarantees the existence of two copies on the same disk. This mode
protects against data or metadata corruption but not against disk failure.

	� total is the sum of space reserved for all allocation profiles of the given type, that is, all
Data/single. Note that it’s not the total size of the filesystem.

	� used is the sum of the used space of the data, that is, file extents, and metadata blocks.

•	 GlobalReserve is artificial and internal emergency space:

	� The GlobalReserve space is part of the metadata used. It is used when the filesystem
metadata gets exhausted. While it is not allocated, it appears as unused metadata space.

Optimizing storage space size 119

From here, you could add other storage devices to the /btrfs filesystem to make it a single partition
that spans all the devices you add. For this, follow these steps:

1.	 Format the extra devices as Btrfs with the mkfs.btrfs command:

mkfs.btrfs /dev/vdc /dev/vdd...

2.	 Add devices to the mounted device:

btrfs device add /dev/vdc /dev/vdd...
Performing full device TRIM /dev/vdc (10.00GiB) ...
Performing full device TRIM /dev/vdd (20.00GiB) ...

If we rerun the btrfs filesystem df command, the output shows no change:

[root@workstation ~]# btrfs filesystem df /btrfs
Data, single: total=1.00GiB, used=1.00GiB
System, DUP: total=8.00MiB, used=16.00KiB
Metadata, DUP: total=256.00MiB, used=1.17MiB
GlobalReserve, single: total=3.50MiB, used=0.00B

This is because the disks that are added are neither allocated for data nor metadata. Using the btrfs
filesystem show command, the following output shows:

[root@workstation ~]# btrfs filesystem show /btrfs
Label: 'testbtrfs'  uuid: 6c8ccaad-f9a0-4957-919e-8d87e02078e3
Total devices 3 FS bytes used 1.00GiB
devid    1 size 50.00GiB used 1.52GiB path /dev/vdb
devid    2 size 10.00GiB used 0.00B path /dev/vdc
devid    3 size 20.00GiB used 0.00B path /dev/vdd

The size value is the size of each disk, and the used value is the size of the chunks allocated on that
disk. So, the new filesystem size is 80 GB, but no chunks from the new devices are allocated, leaving
79 GB of free space to allocate. Use the usual df command to show this:

[root@workstation ~]# df -h /btrfs
Filesystem      Size  Used Avail Use% Mounted on
/dev/vdb         80G  1.1G   79G   2% /btrfs

Btrfs could redistribute space and reclaim any wasted space. If you add a disk, you can run the
balance command to make sure everything gets spread across the disks.

It is very useful to balance any Btrfs volume subject to updates and to prevent the allocation of every
chunk in the volume. It is usually enough to balance chunks that are 50% or 70% used.

Optimizing Storage Usage120

To auto-balance the mounted /btrfs filesystem, run the btrfs filesystem balance command:

[root@workstation ~]# btrfs filesystem balance /btrfs
Done, had to relocate 3 out of 3 chunks

By re-running the btrfs filesystem df command, it shows the new distribution of chunks
in the filesystem:

[root@workstation ~]# btrfs filesystem df /btrfs
Data, single: total=1.00GiB, used=1.00GiB
System, DUP: total=32.00MiB, used=16.00KiB
Metadata, DUP: total=256.00MiB, used=1.16MiB
GlobalReserve, single: total=3.50MiB, used=0.00B

When adding a device, it is generally a good idea to run a balance on the filesystem.

Btrfs itself doesn’t perform periodic rebalancing on filesystems and might experience problems with
disk space management. If left unattended, these error messages could make it impossible to rebalance
the partitions or devices on the filesystem.

The issue usually occurs when there is the right pattern of disk I/O and file sizes. This causes inefficient use
of disk space and prevents new writes to the disk, generating No space left on device errors.

To prevent this, run a long space allocation check now and then, usually based on the work cycle of our
system. The simplest way to explain this period of time could involve a cash cut for some businesses.
For example: if the business does the cash cut every 30th day of the month, we have a window of
time one day before and one day after that date, which leaves us with 28 or 29 productive days in
which the system cannot change. On both dates, we could check the allocated space to confirm that
everything is OK.

Let’s see how to perform this space allocation check.

Space allocation check

Btrfs allocates chunks as large as 1/10 of the partition size, up to a maximum of 1 GB. Ideally, at least
one chunk must remain unallocated for use during the rebalance operation.

Note
It is not necessary to run a rebalance if Btrfs has not allocated a significant part of the filesystem.
A significant part of the filesystem is greater than 80% of the size or the entire filesystem size
minus 2 GB.

Optimizing storage space size 121

To determine whether a rebalance would free up space, compare the amount of space allocated to
the data with the amount of space used by the data. If the difference between these is greater than the
largest chunk size, then a rebalance would probably free up some space.

The btrfs filesystem usage command provides the information needed to find both values:

Figure 4.7 – The Btrfs filesystem usage output

Let’s create an extra file to better exemplify the check:

[root@workstation ~]# dd if=/dev/zero \
> of=/btrfs/test/example2 bs=1M count=49152
49152+0 records in
49152+0 records out
51539607552 bytes (52 GB, 48 GiB) copied, 70.17 s, 734 MB/s

Optimizing Storage Usage122

Now that we have a filesystem with 49 GB used, let’s see how they got allocated:

[root@workstation ~]# btrfs filesystem df /btrfs
Data, single: total=50.00GiB, used=48.45GiB
System, DUP: total=32.00MiB, used=16.00KiB
Metadata, DUP: total=256.00MiB, used=54.98MiB
GlobalReserve, single: total=53.69MiB, used=16.00KiB

[root@workstation ~]# btrfs filesystem show /btrfs
Label: 'testbtrfs'  uuid: 6c8ccaad-f9a0-4957-919e-8d87e02078e3
Total devices 3 FS bytes used 48.51GiB
devid    1 size 50.00GiB used 34.56GiB path /dev/vdb
devid    2 size 10.00GiB used 3.00GiB path /dev/vdc
devid    3 size 20.00GiB used 13.00GiB path /dev/vdd

Use the btrfs filesystem usage command with the –b (bytes) parameter to calculate whether
rebalancing is necessary:

Figure 4.8 – The Btrfs filesystem usage output

Optimizing storage space size 123

From the output, highlight the size of the device, the allocation on the device, and the size and usage
of the data:

[root@workstation ~]# btrfs filesystem usage -b /btrfs
Overall:
    Device size:          85899345920
    Device allocated:          54291070976
    Device unallocated:     31608274944
    Device missing:          0
... output omitted...
Data,single: Size:53687091200, Used:52613349376 (98.00%)
... output omitted...

With this information, follow these steps to perform the calculation:

1.	 The device size is 85899345920. Calculate 80%:

85899345920 * 0.80 = 68719476736

2.	 The device size is 85899345920. Subtract 2 GB (2147483648):

85899345920 - 2147483648 = 83751862272

3.	 Compare both results. Take the highest amount (83751862272) to compare against the
amount allocated on the device:

54291070976 < 83751862272

Note
If the device allocation is smaller than the calculated condition, then this part of the check is
negative, and there should be no need to run a rebalance on this filesystem. But a data storage
efficiency check must be performed to confirm that a rebalance is not necessary.

4.	 Estimate the difference between the space allocated and the space used:

53687091200 - 52613349376 = 1073741824

5.	 Calculate the chunk size:

85899345920*0.10 = 8589934592

Optimizing Storage Usage124

6.	 Compare both results:

8589934592 > 1073741824

If the chunk size is greater than the difference, then the check is also negative. Rebalancing is
not necessary.

Rebalancing is only necessary if the device allocation is greater than 80% of the device size (or the
device size minus 2 GB) and the space allocated and used is greater than the chunk size.

Remember, both conditions must not meet. If the first check is negative, it is necessary to run the second
check to confirm that rebalancing is not required.

Fedora Linux provides a tool to help us get a detailed report of the Btrfs filesystem’s usage. Let’s see
how to use it.

Using the btrfs-usage-report command

The primary purpose of the python-btrfs module is to inspect Btrfs filesystems, acting as a
wrapper around low-level kernel calls and Btrfs data structures. This module includes the btrfs-
usage-report tool to show a report of the Btrfs filesystem usage.

To install the tool, install the python3-btrfs package with the dnf command:

[root@workstation ~]# dnf install python3-btrfs

Run the btrfs-usage-report command to get the report of the filesystem mounted on /btrfs.
The report is complete, as shown in Figure 4.9.

At the beginning, it shows the following:

•	 The filesystem ID

•	 The physical space used

•	 The profiles

Optimizing storage space size 125

It also shows an estimate of the virtual space available and how much raw disk is allocated per chunk type:

Figure 4.9 – The Btrfs-usage-report output

Optimizing Storage Usage126

The last part of the report adds detailed information about storage space allocation:

Figure 4.10 – The Btrfs-usage-report output

Deep diving into Logical Volume Manager 127

Besides checking the allocated space and the efficiency of the data storage check, this tool helps
optimize the storage space used on our workstation.

Note
Get the complete output of the btrfs-usage-report command from the /btrfs
filesystem of our GitHub repository at https://github.com/PacktPublishing/
Fedora-Linux-System-Administration/blob/main/chapter4/btrfs-
usage-report_btrfs.txt.

Despite all these advanced features, the use of Brtfs as a filesystem is not the default in distributions
other than Fedora Linux or OpenSUSE. Generally, most distributions prefer to use LVM with ext4
or xfs as the filesystem format.

Let’s see how different the Brtfs filesystem is from LVM.

Deep diving into Logical Volume Manager
Despite basic differences between Btrfs and LVM, they have a lot in common:

•	 They focus on protecting against filesystem corruption

•	 They support single - or multiple-device setup

•	 They can create quick snapshots

•	 Several tools exist to help manage them in graphic or command - line form

LVM sits on a layer before the filesystem, so it supports any filesystem. LVM converts any device or
partition into a physical device (pv) that is dynamically manageable. Physical devices get placed in
volume groups (vg), enabling the creation of logical volumes (lv).

This is how an LVM structure gets created sequentially:

1.	 It creates physical devices with the available devices, using the pvcreate [device1]
[device2] ... command.

2.	 It joins the physical devices, creating the volume group, using the vgcreate [vg_name]
[pv1] [pv2] ... command.

3.	 It creates the logical volume with the lvcreate command.

To remove each layer from the LVM structure, run similar commands in reverse order:

1.	 To delete the logical volume, use the lvremove command.

2.	 Remove the volume group with the vgremove command.

3.	 Remove the physical devices with the pvremove command.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter4/btrfs-usage-report_btrfs.txt
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter4/btrfs-usage-report_btrfs.txt
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter4/btrfs-usage-report_btrfs.txt

Optimizing Storage Usage128

The following figure shows the LVM creation and removal sequence:

Figure 4.11 – LVM creation and removal sequence and commands

Physical devices could be added or removed to grow or reduce a volume group. In the same way, a
logical volume could be extended or reduced but requires data verification before running it. In the
case of xfs filesystems on LVM, there is no logical volume reduction.

LVM takes a set of block devices and presents the system with a new block device (lv) with a fixed
mapping to physical blocks.

A Btrfs subvolume is different from an LVM logical volume, in the structure and behavior. A Btrfs
volume is a mountable filesystem tree, not a block device.

The following figure shows the basic structures:

Figure 4.12 – Btrfs subvolumes layouts

Deep diving into Logical Volume Manager 129

The typical Btrfs snapshot structure uses the flat scheme.

Let’s compare the snapshots of the Brtfs filesystem and LVM.

Differences between snapshots

LVM supports read-only and read-write snapshots. This eases the creation of consistent backups of
active filesystems, with a defined size on the source volume group of the logical volume or an external
source. This allows snapshots to belong to a thin provisioned pool when the target LV is a thin LV,
which doesn’t consume fixed-size chunks of the source volume.

Creating snapshots on LVM is similar to creating a logical volume. Specify the snapshot name and
the targeted LV, adding the following parameters to the lvcreate command:

lvcreate -s -n snapshot_name -L snapshot_size target_lv disk

After taking the snapshot, all modifications made on the target LV will be stored in the new snapshot
LV, but the old data remains in the source LV.

As needed, use the snapshot LV to roll back some changes in the source LV, mounting it in the affected
directory instead of the original LV. Use the usual mount and unmount commands.

Remove the snapshot as an LV with the lvremove command:

lvremove /dev/vg_name/snapshot_name

Note
It is possible to deactivate the logical volume before deleting it. Use the lvchange -an command.
It will not show the prompt verifying whether you want to delete an active logical volume.

Snapshots in Btrfs are COW clones of a complete subvolume. They look similar to a new subvolume
that contains the data of the cloned subvolume, but any changes in one do not affect the other. The
space consumed increases as the original subvolume and the snapshot grow apart.

Create a snapshot using the btrfs subvolume command stating that it is a snapshot. Observe the
following steps to create a snapshot on our /btrfs filesystem from the Creating a Btrfs filesystem section:

1.	 List the subvolumes of the filesystem mounted on /btrfs:

[root@workstation ~]# btrfs subvolume list /btrfs
ID 256 gen 72 top level 5 path test

Optimizing Storage Usage130

Note
The top-level subvolume with Btrfs ID 5 is the root of the volume. All subvolumes mount
below it.

2.	 Create a snapshot of the test subvolume:

[root@workstation ~]# btrfs subvolume snapshot \
> /btrfs/test /btrfs/test_snapshot
Create a snapshot of '/btrfs/test' in '/btrfs/test_snapshot'

3.	 Listing the subvolumes again displays the snapshot:

[root@workstation ~]# btrfs subvolume list /btrfs
ID 256 gen 76 top level 5 path test
ID 257 gen 76 top level 5 path test_snapshot
[root@workstation ~]# ls /btrfs/
test  test_snapshot

4.	 Inspect the directories to verify that they contain the same data:

[root@workstation ~]# tree /btrfs/
/btrfs/
├── test
│   └── example
└── test_snapshot
    └── example

3 directories, 2 files

With COW, each subvolume could change without changes in one affecting the other.

The differences between Btrfs and LVM are remarkable:

•	 A Btrfs subvolume holds the capacity of the filesystem to which it belongs. A logical volume
in LVM contains a capacity, which is a space reservation of the volume group it belongs to.

•	 A Btrfs snapshot is a full-fledged subvolume, and once created there is no "original" and
"snapshot." On LVM, a snapshot depends on the logical volume from the one that it came from.

For example, it is not possible to resize a logical volume or move its data with the pvmove
command (from one physical volume to another) while having active snapshots of that
logical volume.

Discovering Stratis storage 131

Note
For more information about the LVM commands and their Btrfs equivalents, refer to the
Fedora wiki article at https://fedoraproject.org/wiki/User:Chrismurphy/
lvm2btrfs.

Let’s now learn about Fedora’s latest approach to storage management, Stratis storage.

Discovering Stratis storage
Stratis is a command-line tool designed to simplify storage management. It uses a hybrid approach
with both user-space and kernel components, based on existing block device managers, such as
device mapper, and existing filesystems such as XFS.

Here’s what you can do with Stratis:

•	 Create, modify, and destroy storage pools

•	 Allocate and detach filesystems from storage pools

•	 Encrypt and decrypt filesystem data

Stratis storage brings together common storage management tools and automates them for ease of
use. Here are some things it uses:

•	 device-mapper – A framework for logical to physical mapping of data blocks

•	 LUKS – An on-disk format for encryption that can securely manage multiple passwords

•	 XFS – A scalable, journaling, and performant filesystem

•	 Clevis – A framework for automated decryption

Here are the Stratis components:

•	 Blockdev – Block devices, either a disk or a partition.

•	 Pool – Consists of one or more block devices. A pool has a fixed total size, which represents
the sum of all the block devices present in it.

•	 Filesystem – Filesystems don’t have a fixed total size, thinly provisioned. The real size of
the filesystem grows with the data stored in it. The thin volume and the filesystem increase
automatically. Each pool could contain one or more filesystems, formatted with XFS.

https://fedoraproject.org/wiki/User:Chrismurphy/lvm2btrfs
https://fedoraproject.org/wiki/User:Chrismurphy/lvm2btrfs

Optimizing Storage Usage132

The following diagram shows the layout of the components in the Stratis pool:

Figure 4.13 – Stratis storage components

Let’s create a Stratis test pool to show its capabilities.

Creating a Stratis pool

For this practice example, reuse the disks used in the Btrfs section in this chapter.

Follow these steps:

1.	 Unmount the Btrfs and /test filesystem and remove the /btrfs directory:

[root@workstation ~]# umount /btrfs/test
[root@workstation ~]# umount /btrfs
[root@workstation ~]# rm -rf /btrfs

2.	 Removes the Btrfs filesystem from the storage devices using the wipefs command:

[root@workstation ~]# wipefs /dev/vdb --all –f
[root@workstation ~]# wipefs /dev/vdc --all -f
[root@workstation ~]# wipefs /dev/vdd --all -f

The --all parameter deletes all available signatures.

The -f parameter forces erasure even if the filesystem is mounted.

Discovering Stratis storage 133

3.	 Install Stratis using the dnf command:

[root@workstation ~]# dnf install stratis-cli stratisd

4.	 Use the systemctl command to enable the stratisd service:

[root@workstation ~]# systemctl enable --now stratisd

5.	 With the fdisk command, verify the size of the disk:

Figure 4.14 – Checking the disk size

6.	 Use the stratis pool create command to create the pool test on the /dev/vdb device:

[root@workstation ~]# stratis pool create test /dev/vdb

7.	 List the Stratis pool using the stratis pool list command:

Optimizing Storage Usage134

Figure 4.15 – Stratis pool list

The following table lists the fields of the stratis pool list output:

Field Description

Name The name of the pool

Total/Used/Free The physical usage statistics for the pool

Properties Boolean-valued properties that the pool may have. Each property has a
two-letter code in camel case. If the pool does not have the property, add
a ~ symbol, which stands for negation, to the property code.

If the engine has experienced an error in obtaining the property, add a ?
symbol, which stands for unknown, to the property code.

The property codes are as follows:

•	 Ca - Indicates that the pool has a cache

•	 Cr - Indicates encrypted pool

•	 Op - indicates that the pool allows over-provisioning

UUID Universally Unique IDentifier of the pool

Alerts Anything unusual or urgent information about the pool that the user
needs information on.

Let’s now add another device to the pool to see how the available space in the pool increases:

1.	 Use the stratis pool add-data command to add the /dev/vdc device to the Stratis
pool and list the pool again to observe the change:

Discovering Stratis storage 135

Figure 4.16 – Stratis pool list

Now let’s create a filesystem to show the differences from a common filesystem.

2.	 Create the filesystem data using the stratis filesystem create command:

[root@workstation ~]# stratis filesystem create test data

3.	 List the filesystems in the test pool to observe their properties. Use the stratis filesystem
list command:

Figure 4.17 – Stratis filesystem list

Note that the total size of the filesystem is 1 TiB, even though the sum of the actual available
disk space is 60 GiB:

[root@workstation ~]# stratis filesystem list test
Pool   Filesystem   Total / Used / Free
test   data         1 TiB / 546 MiB / 1023.47 GiB
...output omitted...

As mentioned, the filesystem gets created on a thinly provisioned 1 TiB block device by design.
Stratis handles the allocation of blocks from the pool and resizes the XFS filesystem on demand
during its lifetime.

Stratis also facilitates the creation of snapshots of filesystems. A Stratis snapshot is a thinly
provisioned real-time read/write copy of the source filesystem.

Let’s see how to create snapshots.

4.	 Use the stratis filesystem snapshot command to create the snapshot, and then
list the filesystems of the pool:

Optimizing Storage Usage136

Figure 4.18 – Stratis filesystem list

The filesystems and their snapshots could mount in the traditional way in the operating system. Use
the mount command and, to keep them mounted permanently, configure an entry in the /etc/
fstab file.

Note
For more information about Stratis, refer to the Stratis documentation at https://stratis-
storage.github.io/howto/.

This concludes our review of storage basics. In the following chapters, we will review some other
fundamental concepts, such as networking and the use of applications, along with applying system
administration of Linux systems.

Summary
This chapter consisted of reviewing the basic concepts of storage management and focused on the
Btrfs filesystem, performing practical examples to understand its use and main features, identifying
storage devices, formatting storage devices, creating pools, and mounting filesystems.

We clarified some items that assist in optimizing the allocation of storage space and learned the main
differences between Btrfs subvolumes and LVM.

As a bonus, we discussed the Fedora Project’s new approach to storage management with Stratis, the
intention of which is to ease storage management.

In the next chapter, we will cover the fundamental concepts and configurations of network connections
and how to optimize them.

https://stratis-storage.github.io/howto/
https://stratis-storage.github.io/howto/

Further reading 137

Further reading
To learn more about the topics that were covered in the chapter, please visit the following links:

•	 Fedora Wiki – Btrfs: https://fedoraproject.org/wiki/Btrfs

•	 Btrfs documentation: https://btrfs.readthedocs.io/en/latest/

•	 Choose between Btrfs and LVM-ext4: https://fedoramagazine.org/choose-
between-btrfs-and-lvm-ext4/

•	 Getting started with Stratis – up and running: https://fedoramagazine.org/getting-
started-with-stratis-up-and-running/

•	 Stratis storage: https://stratis-storage.github.io/

https://fedoraproject.org/wiki/Btrfs
https://btrfs.readthedocs.io/en/latest/
https://fedoramagazine.org/choose-between-btrfs-and-lvm-ext4/
https://fedoramagazine.org/choose-between-btrfs-and-lvm-ext4/
https://fedoramagazine.org/getting-started-with-stratis-up-and-running/
https://fedoramagazine.org/getting-started-with-stratis-up-and-running/
https://stratis-storage.github.io/

5
Network and Connectivity

Now, it’s time to review the basics of network configuration and management on our workstation.
This will lead to us knowing about the fundamental points that can be adjusted and fine-tuned in the
network configuration. We will get to know in depth about the NetworkManager administration
tool, as well as the most common tips and examples regarding its use.

We will also walk through the wired and wireless network configuration. In the next section, we
will review how to access a virtual private network (VPN). Finally, we will learn about the tools for
monitoring network performance and connectivity.

In this chapter, we’re going to cover the following main topics:

•	 Walking through the basics

•	 Tuning wireless connectivity

•	 Improving network connectivity using a VPN

•	 Network performance monitoring

Let’s get to it!

Technical requirements
The configurations mentioned in this chapter require access to the local network, either wired or
wireless. It is not necessary to have a dedicated network interface for these tests.

You can find the templates and example files used in this chapter in this book’s GitHub repository:
https://github.com/PacktPublishing/Fedora-Linux-System-
Administration/tree/main/chapter5

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter5
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter5

Network and Connectivity140

Walking through the basics
NetworkManager uses the concept of connection profiles, which contain the network configuration.
These profiles support a variety of formats for storing properties, such as int32, boolean, uint32,
string, array of string, uint64, and many more. As NetworkManager’s usage and features
grow, ifcfg files may no longer be supported.

NetworkManager uses plugins to read and write this data. NetworkManager added support for new
connection types and finally settled on using a more streamlined configuration file format for it,
known as the keyfile plugin.

The keyfile plugin supports all connection types and capabilities that NetworkManager has.
NetworkManager uses the INI-key file format to store connection profile data.

This plugin always remains active and stores any connection that no other active plugin supports.
For security, it ignores files that could be read or written by any non-root user since private keys and
passwords might be stored in plain text inside the file.

Let’s take an example of an Ethernet connection profile to understand plugins better:

[connection]
id=net_connection
uuid= 9cd8a444-f501-4179-900e-f3754dbbe7c0
type=ethernet
autoconnect=true

[ipv4]
method=auto

[ipv6]
method=auto

[ethernet]
mac-address=48:2a:e3:8f:4b:aa

It consists of sections (groups) of key-value pairs that correspond to a configuration name, which
is described as a property. Most of the properties in the specification are also written in the same
format in the key file. However, some values are unfriendly to use. These are stored in the files listed
at /etc/NetworkManager/system-connections/, /usr/lib/NetworkManager/
system-connections/ and /run/NetworkManager/system-connections/, in a
more readable form.

Walking through the basics 141

Note
For more information about the Description of keyfile settings plugin, refer to the GNOME
Developer Documentation at https://developer-old.gnome.org/NetworkManager/
stable/nm-settings-keyfile.html.

Like any file in Linux, keyfiles can be modified, but NetworkManager must know about these changes
so that they can be considered.

Now, let’s review the utility that helps us handle NetworkManager and network configuration.

NetworkManager command-line interface (nmcli)

NetworkManager can be managed by the nmcli command-line utility (NetworkManager Command
Line Interface). nmcli allows us to create, display, edit, delete, activate, and deactivate network
connections. Besides controlling and displaying the status of network devices, it can run as a command
from the terminal or be invoked from a script.

As a command running from the terminal, nmcli can create, edit, start, and stop network connections
or display a network device’s status, without the need for the GUI or desktop applet.

For scripts, nmcli provides a simple output format that can be adapted to data processing, which
integrates network configurations into a process rather than managing network connections manually.

The basic nmcli command run format is as follows:

nmcli [OPTIONS] OBJECT { COMMAND | help }

Note
For a complete list of options, from the terminal, run the man nmcli command.

Then, to get the connection overview, run the nmcli -o conn command:

Figure 5.1 – Overview of network connections

https://developer-old.gnome.org/NetworkManager/stable/nm-settings-keyfile.html
https://developer-old.gnome.org/NetworkManager/stable/nm-settings-keyfile.html

Network and Connectivity142

To get an overview of the enp1s0 network device, run the nmcli -o dev show enp1s0 command:

Figure 5.2 – Overview of the network device

You can list the keyfiles of network connections by running the nmcli -f TYPE,FILENAME,NAME
conn command:

Figure 5.3 – Checking the network connection keyfiles

Walking through the basics 143

In this case, observe that the IP address of the workstation is set to auto, meaning that it uses DHCP
as the boot-time protocol:

[ipv4]
method=auto

To assign a static IP address such as 192.168.122.100 instead of the one assigned by DHCP,
follow these steps:

1.	 Back up the original configuration of the connection:

cat /run/NetworkManager/system-connections/Wired\ connection\
1.nmconnection >>  wired_connection_1.bkp.txt

Figure 5.4 – Backing up network connection settings

Note
Running the cat command to redirect the output to a file lets us know about and identify the
contents of the file.

2.	 Add the enp1s0 connection as a new NetworkManager connection profile:

nmcli connection add con-name wired-conn1
 ifname enp1s0 type ethernet

Figure 5.5 – Adding the new NetworkManager connection profile

Network and Connectivity144

3.	 Set the IP address of this profile:

nmcli connection modify wired-conn1
 ipv4.addresses 192.168.122.100/24

Figure 5.6 – Setting the IP address

4.	 Set the connection method to manual:

nmcli connection modify wired-conn1
 ipv4.method manual

Figure 5.7 – Setting the connection method

5.	 Set the gateway to 192.168.122.1:

nmcli connection modify wired-conn1  ipv4.gateway
192.168.122.1

Walking through the basics 145

Figure 5.8 – Setting the gateway

6.	 Set dns to 192.168.122.1:

nmcli connection modify wired-conn1  ipv4.dns 192.168.122.1

Figure 5.9 – Setting dns

7.	 Activate the new NetworkManager connection profile:

[root@workstation ~]# nmcli connection up wired-conn1

Figure 5.10 – Activating the NetworkManager profile

Network and Connectivity146

8.	 Check the device’s status:

[root@workstation ~]# nmcli device status

Figure 5.11 – Reviewing the device’s status

9.	 Check the network configuration of the workstation. Confirm the changes in the IP address
of the enp1s0 device. Then, use the ip command:

[root@workstation ~]# ip a

Figure 5.12 – Verifying the network configuration

10.	 Review the workstation connection’s keyfiles:

nmcli -f TYPE,FILENAME,NAME conn

Walking through the basics 147

Figure 5.13 – Checking the keyfiles

Note that the active configuration is now highlighted in green.

Let’s compare the original backup file with the created one. Use the diff command to highlight
the differences:

Figure 5.14 – Keyfile differences

Network and Connectivity148

The first difference is in the id value of the connection name. But also, notice that there is a change
in the uuid value:

< id=Wired connection 1
< uuid=0938b01a-f879-3f76-a796-b3f856dc27ac

> id=wired-conn1
> uuid=c841a92b-3aab-45ac-9ef1-25cd4dc2034f

NetworkManager creates a new Universally Unique Identifier (uuid) for this connection profile. This
allows multiple connections to be applied to the same device, but only one of these can be activated at
a time. Extra connections allow you to quickly switch between different networks or configurations.

The connection was auto-configured during installation as DHCP. Since this parameter remained
unchanged during installation, one of the properties that were assigned by the boot-time protocol
was auto-connection priority:

< autoconnect-priority=-999

When the connection is set to auto-connect, higher-priority connections are preferred. The
default is 0. A higher number means a higher priority.

An interesting piece of data that can be found in the original keyfile is timestamp, in seconds since
the Unix Epoch, when the connection was last successfully activated:

< timestamp=1687113052

The biggest change is in the ipv4 configuration section:

< method=auto

> address1=192.168.122.100/24,192.168.122.1
> dns=192.168.122.1;
> method=manual

In the original keyfile, the method is set as auto. The current keyfile is set to manual, plus the
configuration of the IP address, gateway, and DNS.

A wired connection is the simplest example of network configuration, although several extra properties
could be added.

A wireless connection, which is used for the kind of work involved in managing Linux servers, is the
type of connection we will use the most, given its inherent mobility advantages.

Now, let’s see how, besides configuring our wireless connection, to optimize it with some fine-tuning settings.

Tuning wireless connectivity 149

Tuning wireless connectivity
Sometimes, the network’s devices are not recognized by the operating system. This is one of the
common issues of using wireless networks.

Let’s start this section by ensuring that the wireless network device has support from the operating
system by identifying which chipset it uses and which drivers work best for its operation.

Identifying the device

In a network device, the main thing is to identify the Vendor ID (the 16-bit number of the vendor –
that is, the VID) and the Product ID (the 16-bit number of the product number – that is, the PID).
Use the following commands for each case, depending on the bus used by the device:

•	 PCI: lspci -nn

•	 USB: lsusb:

Figure 5.15 – Identifying the network device

As shown in the preceding figure, the output of the lspci command provides the required
chipset information:

00:00.0 PCI bridge [0604]: Broadcom Inc. and subsidiaries BCM2711 PCIe
Bridge [14e4:2711] (rev 10)

Now, go to Google and type the chipset information in the form:

"14e4 2711" site:cateee.net/lkddb/

This search leads to a chipset match in Linux Kernel Driver DataBase (https://cateee.net/
lkddb/), which allows us to identify whether the wireless network device has support and which
driver is the correct one to use:

https://cateee.net/lkddb/
https://cateee.net/lkddb/

Network and Connectivity150

Figure 5.16 – LKDDb search

If you search for chipset information in the form – that is, "14e4:2711" – it leads to several useful
sites that provide more detailed information. Click on the Hardware for Linux page link (https://
linux-hardware.org/) and find the chipset’s details:

https://linux-hardware.org/
https://linux-hardware.org/

Tuning wireless connectivity 151

Figure 5.17 – The Hardware for Linux site

With the preceding tools, we can identify the wireless device in our computer. Follow these steps to
identify the vendor and its product ID:

1.	 Run the lspci command to identify the card:

[root@workstation ~]# lspci | grep -i broadcom
00:00.0 PCI bridge: Broadcom Inc. and subsidiaries BCM2711 PCIe
Bridge (rev 10)

Note
If the card is not integrated into the motherboard of the computer, use the lsusb command
to identify this device.

Network and Connectivity152

A bus number, a device number, and a function number can be identified at the beginning of
the output:

00:00.0

2.	 Use this information to get detailed device information. To do so, run the lspci command:

[root@workstation ~]# lspci -vv -s 00:00.0
00:00.0 PCI bridge: Broadcom Inc. and subsidiaries BCM2711 PCIe
Bridge (rev 10) (prog-if 00 [Normal decode])
Device tree node: /sys/firmware/devicetree/base/scb/
pcie@7d500000/pci@0,0
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop-
ParErr- Stepping- SERR- FastB2B- DisINTx-
Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort-
<TAbort- <MAbort- >SERR- <PERR- INTx-
Latency: 0
Interrupt: pin A routed to IRQ 38
...output omitted...

3.	 List the modules that were loaded in the kernel and search the identified chipset of the wireless
card. Use the lsmod command:

root@workstation ~]# lsmod | grep -i broadcom
broadcom               28672  1
bcm_phy_ptp            24576  1 broadcom
bcm_phy_lib            28672  2 bcm_phy_ptp,broadcom

4.	 Use the modinfo command to display the module information:

[root@workstation ~]# modinfo broadcom
filename:       /lib/modules/6.1.12-200.fc37.aarch64/kernel/
drivers/net/phy/broadcom.ko.xz
license:        GPL
author:         Maciej W. Rozycki
description:    Broadcom PHY driver
...output omitted...
depends:        bcm-phy-lib,bcm-phy-ptp
intree:         Y
name:           broadcom
vermagic:       6.1.12-200.fc37.aarch64 SMP preempt
    mod_unload aarch64
sig_id:         PKCS#7
signer:         Fedora kernel signing key
sig_key:        4C:FF:C2:28:93:D4:32:A9:E6:E0:32:6A:D9:B0
...output omitted...

Tuning wireless connectivity 153

With these simple steps, we can determine whether the wireless card is using the right, updated driver.
This prevents any initial issues when connecting to a network.

Now, let’s learn how to identify the available wireless networks and configure our wireless card to get
the best connectivity performance.

Finding the best quality network connection

By default, the nmcli command lists the available Wi-Fi access points that are no more than 30
seconds old by enabling a network scan if necessary.

To list the available Wi-Fi access points, run the nmcli dev wifi list command:

Figure 5.18 – Listing the Wi-Fi access points

The nmcli command shows the Wi-Fi access points in different colors. Each one represents different
signal strengths.

Soft colors, such as cyan, represent a weak signal (less than 30% intensity). A stronger signal (30-50%)
is represented by a magenta color. Orange indicates a better signal (60-80%), whereas green represents
an excellent signal (80-100%).

With the --rescan option, the scan could be forced to be disabled, regardless of the age of the
access point list.

Network and Connectivity154

Use the nmcli device command to identify the wireless network device:

Figure 5.19 – Identifying the wireless network device

From the list of access points, select those that belong to the location of the workstation. Both have
good signal quality:

Figure 5.20 – Selecting Wi-Fi access points

Tuning wireless connectivity 155

Select the access point with the best signal quality and connect to it. Use the nmcli command with
the following format:

nmcli device wifi connect [SSID] password [SSID-password]

Note
This command preserves the password in the shell history. To remove it from the history, delete
the corresponding line in the ~/.bash_history file or run the history -c command
to delete all entries.

Then, use the nmcli device command to confirm the device status change:

Figure 5.21 – Connecting to the access point

Network and Connectivity156

Repeat the same command and add the show and device options to display the connection details:

Figure 5.22 – Connection details

The received signal strength indicator (RSSI), which specifies how strong the received signal is, is
measured in decibels relative to one milliwatt (dBm) or 10-3 W.

To find the RSSI, it’s necessary to interpret the raw value given by /proc/net/wireless and
then display it in the appropriate unit or greatest value (using 8-bit arithmetic).

Use the iw command to get the device link information:

[root@workstation ~]# iw wlan0 link
Connected to 2c:58:4f:7c:4a:1b (on wlan0)
SSID: innsmouth
freq: 2462
RX: 1817351 bytes (8922 packets)
TX: 806585 bytes (3517 packets)
signal: -38 dBm
rx bitrate: 58.5 MBit/s
tx bitrate: 72.2 MBit/s
     bss flags:     short-preamble
dtim period:     1
beacon int:     100

Tuning wireless connectivity 157

The iw command grabs the information from the /proc/net/wireless file and interprets it.
By combining this with the watch command, it is possible to directly monitor changes in the file.
Here’s an example:

watch -n 1 cat /proc/net/wireless

Figure 5.23 – Monitoring the quality of the connection

Monitoring the frequency of changes in quality values and comparing them on different networks
could establish the optimal network to use for our system administration tasks. This will help us reduce
connectivity interruptions in such tasks.

In the last section of this chapter, we will take a more in-depth look at monitoring connections for
better performance and minimizing outages.

The GNOME desktop also includes an applet to configure the wireless network graphically.
nm-connection-editor is a GTK-based application for adding, deleting, and modifying network
connections that NetworkManager stores. Let’s see how to do it.

nm-connection-editor

In the top-right corner of the taskbar, there is the control panel for settings, including the network
connection. If the workstation is not connected to any network, only the icons for keyboard language,
volume, and system power will appear:

Figure 5.24 – The top-right corner of the taskbar

Network and Connectivity158

Click on that area to display the control panel:

Figure 5.25 – Taskbar control panel

Follow these steps to connect the workstation to the wireless network:

1.	 Click on the gear icon and select Wi-Fi to discover the available wireless networks:

Figure 5.26 – Wi-Fi – Visible Networks

Tuning wireless connectivity 159

2.	 Locate the desired wireless network and click on it. If required, you will be prompted to enter
the access password:

Figure 5.27 – Requesting access to the wireless network

3.	 If the password you’ve entered is correct, you will be able to access the wireless network and
the connection details will be shown:

Network and Connectivity160

Figure 5.28 – Connection details

4.	 Now, the wireless connection icon will appear in the top-right corner of the taskbar:

Figure 5.29 – Wireless icon on the taskbar

When we click on it, the control panel will show us an icon that we can use to disable the
connection or view the available networks:

Tuning wireless connectivity 161

Figure 5.30 – Wireless direct access icon

Now, we can configure the network access to our workstation, either cable or wireless, depending on
our needs.

In the examples shown in this chapter, we have focused on setting access and ensuring a healthy
connection to the network.

However, we cannot omit the security risks involved in connecting to a network, especially those
with public access.

Let’s talk about this and how we can mitigate these risks.

What about security?

The use of wireless networks has boosted the mobility of jobs that rely on the use of computers.

Open wireless networks provide many facilities for remote work from anywhere in the world. However,
they also include the risk of exposing confidential information about ourselves, our employers, or
the clients we work with.

The most basic principle of security is to be aware of what we have open, such as ports, sockets, files,
and/or processes. Some processes use the network’s open ports to maintain connectivity between the
client and server machine. Applying security’s basic principle, we must be aware of the ports that have
been opened and only allow those that we know must remain that way.

The tool that helps us in these cases is the network firewall.

As its name suggests, a network firewall is a protective barrier that prevents unauthorized network
communications. Its main purpose is to prevent unauthorized access or use of the network services
of our system.

Network and Connectivity162

Fedora Linux has a built-in firewall as part of the networking functions inside the kernel. The firewall
management service in Fedora uses firewalld.

firewalld provides dynamic firewall management with support for network/firewall zones.
That support defines the trust level of network connections or interfaces. The firewalld D-Bus
interface uses the firewall-cmd, firewall-config, and firewall-applet firewall
configuration tools.

The following diagram shows the firewall management flow with firewalld:

Figure 5.31 – The firewall management flow with firewalld

By default, the firewalld service comes installed with Fedora. You can use the firewall-cmd cli
interface to investigate its status. Run the firewall-cmd --state command:

[root@workstation ~]# firewall-cmd --state
running

To load the configuration into the firewall, use the firewall-cmd --list-all command:

[root@workstation ~]# firewall-cmd --list-all
FedoraWorkstation (active)
  target: default
  icmp-block-inversion: no
  interfaces: wlan0
  sources:
  services: dhcpv6-client mdns samba-client ssh
  ports: 1025-65535/udp 1025-65535/tcp
  protocols:
  forward: yes

Tuning wireless connectivity 163

  masquerade: no
  forward-ports:
  source-ports:
  icmp-blocks:
  rich rules:

The output of the preceding command shows that the configuration allows the dhcpv6-client,
mdns, samba-client, and ssh services, as well as the 1025-65535/udp and 1025-65535/
tcp dynamic ports.

In our workstation use case, it is likely that we do not need to have services or ports exposed to the
network. So, the best practice is to close them all.

Before closing them, use the ss command to investigate the ports that have been opened by the
processes to determine whether they refer to the services and ports allowed in the firewall:

ss -tulpn

Figure 5.32 – Ports and services connections

As a result of this analysis, it is clear that our network is not using the open services allowed in the
firewall, so we should close them. Let’s look at the main reasons why we should do this:

•	 The network does not have ipv6 (dhcpv6-client)

•	 DNS resolution does not use multicast on the network. (mdns)

Network and Connectivity164

•	 We do not use shared directories by CIFS or samba (samba-client)

•	 The workstation will be used to connect to other computers via ssh, but not in the
opposite direction

To permanently remove the services from the configuration, use the firewall-cmd command:

[root@workstation ~]# firewall-cmd --permanent  --delete-
service={dhcpv6-client,mdns,samba-client}
Error: BUILTIN_SERVICE: 'dhcpv6-client' is built-in service
Error: BUILTIN_SERVICE: 'mdns' is built-in service
Error: BUILTIN_SERVICE: 'samba-client' is built-in service

Note
These services come as part of the system and they cannot be removed from the configuration.

The fourth point (from the preceding list) is also optional. We can do this if we need to connect to
the workstation and connect to the managed servers from there, either as a pivot server or a jump box.

With the same command, remove the dynamic ports:

[root@workstation ~]# firewall-cmd --permanent  --remove-
port={1025-65535/udp,1025-65535/tcp}
Success

Note
The firewall-cmd --permanent command only affects the configuration files, not the
firewall running in memory.

The service must reload its configuration to consider the changes.

Use the firewall-cmd --reload command and verify the configuration change:

[root@workstation ~]# firewall-cmd --reload
success
[root@workstation ~]# firewall-cmd --list-all
FedoraWorkstation (active)
  target: default
  icmp-block-inversion: no
  interfaces: wlan0
  sources:
  services: dhcpv6-client mdns samba-client ssh
  ports:

Improving network connectivity using a VPN 165

  protocols:
  forward: yes
  masquerade: no
  forward-ports:
  source-ports:
  icmp-blocks:
  rich rules:

Thus, by adding services and/or ports, we will have better control of the connections to our workstation.

Note
For more information on the use of firewalld, refer to the service manual included in the
operating system. Run the man firewalld command to access it.

From our side, the workstation has a secure environment that knows and authorizes the services and
ports exposed to the network. But, especially in a public network, this communication must have an
extra level of security. This could come from using a VPN.

Let’s learn how to use a VPN to secure the connection from our workstation to the managed computers.

Improving network connectivity using a VPN
A VPN is a way of connecting to a local network over the internet.

A VPN connection creates a single virtual private network between two points. Each bit of data gets
encrypted from point to point via tunneling. Tunneling refers to the process by which VPN packets
reach their destination. VPNs operate at the operating system level, redirecting all their traffic through
other servers. All traffic, including its physical location, remains hidden during network browsing.
When using a VPN, the VPN router, called the proxy server, appears as the origin of the connection,
not the real one. So, neither the site offering public access nor anyone else will be able to deduce who
you are or what you are doing.

The following diagram shows, with a red line, the tunneling created by the VPN by connecting the
workstation to the managed server through the public network:

Network and Connectivity166

Figure 5.33 – Virtual private network

A VPN could be created with different types of tunneling using a variety of protocols, such as Secure
Shell (SSH) or Point-to-Point Protocol (PPP). They also support different service providers, such
as Cisco, Juniper, NetScreen, and SonicWall, and they are multi-compatible.

Now, let’s provide an overview of their two most common services: an IPSec-based VPN and OpenVPN.

IPSec-based VPN

Libreswan is an IPsec implementation of userspace for a VPN, which is the preferred method
for creating a VPN. A VPN tunnel always uses authentication and encryption. For cryptographic
operations, Libreswan uses the NSS library.

In Fedora, by default, Libreswan is not installed. So, install the NetworkManager-libreswan-
gnome package with the dnf command:

[root@workstation ~]# dnf install NetworkManager-libreswan-gnome

Later, we will describe how to configure the VPN client with this protocol.

OpenVPN

OpenVPN supports client authentication methods based on certificates, smart cards, and/or
two-factor authentication. It allows access control policies through firewall rules. OpenVPN is not a
web application proxy and does not work through a web browser. It needs to be set up in the properties
of the network connection.

The OpenVPN client integrates into NetworkManager as an applet.

Now, let’s learn how to connect the workstation as a VPN client.

Improving network connectivity using a VPN 167

Configuring a VPN client with the Control Center

Follow these steps to connect the workstation as a VPN client:

1.	 Go to the top-right corner, click on it, and click on the gear icon to open the Control Center area:

Figure 5.34 – Control Center

2.	 In Settings, in the left column, click Network:

Figure 5.35 – Network settings

Network and Connectivity168

3.	 In the VPN section, click on the plus (+) symbol to add a new connection.

If the workstation has the NetworkManager-libreswan-gnome package installed, the option
to add an IPsec-based VPN will appear.

The following figure shows the difference. The Add VPN window on the left does have the
NetworkManager-libreswan-gnome package installed, while the window on the right side
does not have the package installed:

Figure 5.36 – Different VPN connection types available

Let’s look at each case.

IPsec-based VPN

The following figure shows the window for adding the IPsec-based VPN connection:

Improving network connectivity using a VPN 169

Figure 5.37 – IPsec-based VPN

In the Identity tab, add some general configuration properties for the connection:

•	 Name: This will identify the VPN connection.

•	 General:

	� Gateway: The name or IP address of the VPN gateway

•	 Authentication:

	� Type: IPsec supports two different types of authentication:

	� IKEv2 (Certificate): This authentication uses a certificate, so it is the most secure
option. This is the default option in the connection.

	� IKEv1 (XAUTH): The authentication uses a username and password or a pre-shared key.

Network and Connectivity170

•	 Certificate name: The certificate’s filename

•	 Remote ID: This is used if the remote server requires a local identifier for the IKE exchange

By clicking on the Advanced button, you can access more specific configuration details. If more details
for the connection are needed, they can be set up in this window:

Figure 5.38 – IPsec-based VPN – Advanced Properties

After filling in the required fields, click the Apply button. Returning to the previous Add VPN screen,
click the Add button to add the VPN connection.

Improving network connectivity using a VPN 171

OpenVPN

Clicking on OpenVPN displays a window similar to the IPsec-based screen:

Figure 5.39 – OpenVPN connection

Filling in all the fields, as you did for the previous connection type, allows you to add the
OpenVPN connection.

However, adding an OpenVPN connection is typically done by importing a certificate. Let’s take a
look at this process.

Network and Connectivity172

In the Add VPN connection window, click on the last option, Import from file…:

Figure 5.40 – Importing the .ovpn file certificate

Browse to the .ovpn file and click the Open button. The configuration window will display the
connection information.

For example, in this case, we will import the /home/acallejas/sample.ovpn file.

Improving network connectivity using a VPN 173

The following figure shows the sample vpn connection information:

Figure 5.41 – Sample VPN connection

Regarding the connection, note the following:

•	 The file contains the connection’s Name and the remote access Gateway details.

•	 Authentication requires User name and Password.

•	 CA certificate is a .pem file. This file could request a dynamic passphrase or one-time password
(OTP). This is generated by a physical, virtual, or hybrid device to allow access.

Click on the Apply button, if necessary. The OpenVPN connection will be added.

At the end of the VPN connection configuration, go to Control Center and select the VPN you want
to access:

Network and Connectivity174

Figure 5.42 – Choosing a VPN connection

After successfully authenticating, the login icon will appear in the top-right corner:

Figure 5.43 – Workstation connected to the VPN

Note
One of the best practices for secure communications is to have your own VPN. For more
information on how to do this, visit the articles published in Fedora Magazine at https://
fedoramagazine.org/tag/vpn/.

Now that we have improved our network connection, be it wired or wireless, using tuning or a VPN,
let’s learn about some tools that will help us track the connection’s behavior.

https://fedoramagazine.org/tag/vpn/
https://fedoramagazine.org/tag/vpn/

Network performance monitoring 175

Network performance monitoring
There are different and varied network connection monitoring tools, but I prefer those that can be
managed via the console. This allows for flexibility and, at the same time, can be used to run test
batteries to verify the information that’s been received.

The first tool we’ll look at is basic but also has enough power to generate a quick analysis of the
connection’s behavior.

nmon

Nigel’s Monitor (nmon) was created for the IBM AIX operating system with release 4.3 in 2006 and
was ported to Linux in 2015 under the GNU General Public License for use.

nmon is a benchmark tool. It collects operating system statistics, including the following:

•	 CPU (and CPU thread utilization or CPU frequency)

•	 GPU stats

•	 Memory use (physical and virtual, swap and paging)

•	 Disk (read and write, transfers plus service time and wait times, groups)

•	 Network (read and write and transfers), and more

This information can be displayed on the screen or saved in a comma-separated file. This allows for
file backup and analysis to be performed with data extraction tools.

nmon is available in Fedora’s repositories. Install nmon using the dnf command:

[root@workstation ~]# dnf install nmon

Run the tool with the nmon command:

[root@workstation ~]# nmon

Network and Connectivity176

The terminal will display the main nmon window:

Figure 5.44 – nmon

In the case of network connection analysis, press n to display the connection statistics:

Figure 5.45 – Network stats

Network performance monitoring 177

Note
nmon can collect a lot of useful information for workstation performance benchmarking. To learn
more about its uses, refer to the nmon for Linux page at https://nmon.sourceforge.
net/.

Another of my favorite tools is bashtop, but it is not included in the Fedora repositories at the time of
writing. It must be installed by following the instructions on the project’s page on GitHub (https://
github.com/aristocratos/bashtop#installation).

A Python implementation of bashtop that’s included in the official Fedora Linux repositories
is bpytop.

Let’s learn how to install and use it.

bpytop

bpytop is a resource monitor that displays usage and statistics for the processor, memory, disks,
network, and processes.

It includes the most common features of resource monitors, such as ease of use and process manipulation
at the touch of a key. However, it also has flexible features that allow data and processes to be manipulated
simplistically. It can also be used to integrate themes that make it more attractive.

To install bpytop, follow these steps:

1.	 As the root user, use the dnf command to install bpytop:

[root@workstation ~]# dnf -y install bpytop

2.	 On the terminal, run bpytop as root:

[root@workstation ~]# bpytop

https://nmon.sourceforge.net/
https://nmon.sourceforge.net/
https://github.com/aristocratos/bashtop#installation
https://github.com/aristocratos/bashtop#installation

Network and Connectivity178

The main monitor window will appear:

Figure 5.46 – bpytop monitor

Note
To learn more about bpytop monitor usage, refer to the bpytop GitHub page at https://
github.com/aristocratos/bpytop.

These excellent monitoring tools allow us to track the performance of network connections.

Summary
In this chapter, we reviewed how to connect our workstation to a network, by cable or wirelessly. Besides
learning how to fine-tune this connection through best practices, we reviewed how to use VPNs in
detail, as well as how to connect our workstation with an IPsec-based VPN and OpenVPN. Finally,
we reviewed two monitoring tools that can help us track the performance of the network’s connection.

In the next chapter, we will start learning about applications. We will begin by looking at some modern
ways of using them, such as using sandbox containers.

https://github.com/aristocratos/bpytop
https://github.com/aristocratos/bpytop

Further reading 179

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

•	 Fedora Linux 36 no longer supports the ifcfg files to configure networking:

https://fedoraproject.org/wiki/Releases/36/ChangeSet#No_ifcfg_
by_default

•	 nm-settings-nmcli:

https://developer-old.gnome.org/NetworkManager/stable/nm-settings-
nmcli.html

•	 Ask Fedora – Wi-Fi:

https://ask.fedoraproject.org/search?q=wifi%20tags%3Af37%2Cwifi%20
order%3Aviews

•	 Fedora Docs: Using firewalld:

https://docs.fedoraproject.org/en-US/quick-docs/firewalld/

•	 Fedora Wiki: OpenVPN:

https://fedoraproject.org/wiki/OpenVPN

https://fedoraproject.org/wiki/Releases/36/ChangeSet#No_ifcfg_by_default

https://fedoraproject.org/wiki/Releases/36/ChangeSet#No_ifcfg_by_default

https://developer-old.gnome.org/NetworkManager/stable/nm-settings-nmcli.html

https://developer-old.gnome.org/NetworkManager/stable/nm-settings-nmcli.html

https://ask.fedoraproject.org/search?q=wifi%20tags%3Af37%2Cwifi%20order%3Aviews

https://ask.fedoraproject.org/search?q=wifi%20tags%3Af37%2Cwifi%20order%3Aviews

https://docs.fedoraproject.org/en-US/quick-docs/firewalld/

https://fedoraproject.org/wiki/OpenVPN

Part 3:
Productivity Tools

In this part, you will learn how to use the most common productivity tools used in a professional
business environment, from text editors, office applications, and email clients to web browsers, starting
with the different ways to install applications in general on Fedora Linux.

This part contains the following chapters:

•	 Chapter 6, Sandbox Applications

•	 Chapter 7, Text Editors

•	 Chapter 8, LibreOffice Suite

•	 Chapter 9, Mail Clients and Browsers

6
Sandbox Applications

To provide children with a safe place to play, you create a walled area and store their toys inside a
small box (or container). When this idea moves to the playground, we refer to it as a sandbox. The
term sandbox in application development comes from this same idea.

In the sandboxing approach, each application resides in a sandbox, a controlled and restricted environment
for running its code. This environment helps developers isolate and protect system resources.

Developers also use sandboxed environments to identify an application’s behavior and to detect bugs
or other undesirable elements of its behavior.

There are several methods of sandboxing applications for Linux environments. In this book, we focus
on some of them, including those considered the least intrusive (Applmage) and those developed and
supported by the Fedora Project (Flatpak).

In this chapter, we’re going to cover the following main topics:

•	 Inspecting sandbox applications

•	 Diving deep into AppImage apps

•	 Examining Flatpak applications

Technical requirements
For sandboxing or development of sandbox applications, you will need to install some packages. Most
of them are included in Fedora’s official repositories.

In each section, you will see the required packages and how to install each one of them.

If we use any package or code that’s not included in the official Fedora repositories, we will include
the link to get it and the instructions to install it.

Sandbox Applications184

The examples created in this chapter can be found in the book’s GitHub repository that you can find at
the following URL: https://github.com/PacktPublishing/Fedora-Linux-System-
Administration/tree/main/chapter6.

Inspecting sandbox applications
Before we begin, we must make a distinction. Application isolation has always been sought as a security
or restriction measure, either in case of intrusions or excessive use of resources.

With this, we can distinguish the development of applications according to the relationship between
their use of resources and their interaction with privileged files of the host system.

Then, based on the aforementioned abstraction required to host code in a system, we could typify an
application as follows:

•	 Native or compiled: It runs on the system with all system restrictions and privileges.

•	 Interpret: Interpreters walk through an application’s code line by line and run each instruction
into the system. In the past, applications created with interpreted languages were much slower
than applications created with compiled languages. But, with the development of just-in-time
compilation, this difference is reduced.

•	 Jailed: It allows application code to run on the system but from a restricted location. This
restriction could include system resources or even system files. The structure of the jail could
look like the system, but the changes or alterations to the files inside the jail do not affect the
behavior of the host system.

•	 Sandbox: This is a more restrictive environment than a jail. The sandbox includes only the files
required to run the application and interact with the system. This feature allows the portability of
the application in an efficient way. The distribution of the host system does not affect the runtime
of the sandbox application. It only requires that the distribution supports the sandbox type.

The development of a sandbox application could be very simple, from opening an application installed
on the system in a controlled environment to porting applications from other distributions, without
all the development involved in making it run on each distribution.

Let’s see how to create a simple sandbox application. Then, let’s learn about the common packaging
methods for sandbox applications in Fedora.

SELinux sandbox

SELinux is a set of policies that allow us to add a security layer to our system environment. Based on
these policies, we could set up a sandbox for applications.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter6
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter6

Inspecting sandbox applications 185

Note
SELinux will be covered in detail in Chapter 12 of this book.

For example, let’s run the Firefox browser inside a sandbox isolated from the system environment.
To do this, follow the subsequent steps:

1.	 As a root user, install the SELinux sandbox utilities. Install the policycoreutils-
sandbox package with the dnf command:

[root@workstation ~]# dnf install policycoreutils-sandbox

2.	 Configure SELinux in the Permissive mode to allow SELinux sandboxing. Use the
setenforce and getenforce commands to verify the change:

[root@workstation ~]# setenforce 0
[root@workstation ~]# getenforce
Permissive

3.	 As a non-privileged user, open a terminal and, inside the SELinux sandbox, run firefox in
a 1280x1024 window. Use the sandbox command:

$ sandbox -X -t sandbox_net -t sandbox_web_t -w 1280x1024
firefox

The sandbox command runs its own X server (-X) and enables policy enforcement for network
and browser usage (-t sandbox_net -t sandbox_web_t). Set up sandbox and run
firefox in a 1280x1024 window (-w 1280x1024 firefox):

Figure 6.1 – Firefox on SELinux sandbox

Sandbox Applications186

Let’s find out how to monitor the performance of the sandbox.

4.	 Use the ps command to find the sandbox’s PID:

$ ps auf | grep firefox
acallej+   30511  0.0  0.9 ...output omitted...

Figure 6.2 – Finding the sandbox pid

5.	 Use the top command to monitor the performance of the found PID:

$ top -p 30511

Figure 6.3 – Monitoring sandbox performance

The web browser is isolated, so its behavior does not affect the rest of the system. Let’s see how
to verify it.

6.	 On Firefox sandboxing, open the Fedora Project home page (https://start.
fedoraproject.org/):

https://start.fedoraproject.org/
https://start.fedoraproject.org/

Inspecting sandbox applications 187

Figure 6.4 – Browsing with Firefox sandboxing

Close Firefox sandboxing by clicking the X button in the upper-right corner of the Firefox window.

7.	 Run Firefox in the sandbox again:

$ sandbox -X -t sandbox_net -t sandbox_web_t -w 1280x1024
firefox

Sandbox Applications188

Use Ctrl + H to open the browsing history:

Figure 6.5 – Checking browsing history

8.	 Close the Firefox sandboxing window again.

Observe that no information about the website visited was saved. This information gets saved in a
system file. Firefox runs in isolation and the information is stored inside the sandbox. When the
sandbox is closed, the information stored in it is deleted.

The SELinux sandbox has many practical uses, for example, if an untrusted file needs to be opened.

With a pdf file, as an example, run evince in a sandbox to read it. Use the sandbox command:

$ sandbox -X -i /home/acallejas/findings.pdf evince /home/acallejas/
findings.pdf

With the preceding command, an untrusted file is added to the sandbox, indicating the full path to
the file (-i /home/acallejas/findings.pdf).

Note
For more information on the use of the sandbox command, refer to the manual by running
man sandbox.

Diving deep into AppImage apps 189

The SELinux sandbox is one of the most basic ways to isolate an application. Using this idea, it is now
taken a step further using different frameworks or forms to package the applications to make them
portable to different environments, easing their installation.

Let’s look at the most common examples of sandbox applications: AppImages and Flatpaks.

Diving deep into AppImage apps
Introduced in 2004 as klik by Simon Peter and renamed in 2011 as PortableLinuxApp, it was finally
named in 2013 as we know it today: AppImage.

AppImage is a universal portable distribution format, also known as upstream packaging.

AppImages, as portable applications, do not need installation by the user. They also do not need
administrator privileges to run. The user downloads the AppImage and assigns it execution permissions,
and the application starts.

For a developer, creating AppImages is quite simple. An AppImage consists of a program package
with dependency libraries and all the resources it needs during runtime.

AppImages are unique binaries, following the basic principle of one application = one file.

The tools to generate an AppImage from an AppDir. They are aware of possible incompatibilities
between distributions and try to avoid them.

Once the AppImage is built, it runs on all major desktop distributions.

Let’s see how to run an AppImage as a user. Then, let’s walk through the development of an AppImage.

Running an AppImage

An AppImage is an image of the application.When you are running it, it mounts on the filesystem in
the user space. Just give it execution permissions and double-click on it.

AppImages do not have an application store from which to download them, but there is a place to
find and download hundreds of applications, known as AppImageHub (https://appimage.
github.io/apps/).

https://appimage.github.io/apps/
https://appimage.github.io/apps/

Sandbox Applications190

For example, to download the developer version of Firefox Nightly and test new features without
installing it, follow the subsequent steps:

1.	 Open the Firefox browser and go to https://appimage.github.io/apps/. Press the
Ctrl + F key combination and search for the firefox string:

Figure 6.6 – Searching for the Firefox Nightly AppImage

https://appimage.github.io/apps/

Diving deep into AppImage apps 191

2.	 Click on the Firefox_Nightly link:

Figure 6.7 – Firefox_Nightly download window

Scroll down and click on the Download button.

Sandbox Applications192

3.	 This button takes us to the GitHub repository where the AppImage resides. Click on the latest
version to download it:

Figure 6.8 – Latest version in AppImage format

Wait for the download to finish.

4.	 Open a terminal and switch to the Downloads directory. Review the downloaded AppImage
by running a long listing. Use the ls command:

Figure 6.9 – Checking the AppImage

Diving deep into AppImage apps 193

5.	 Grant execution permissions to AppImage using the chmod command:

$ chmod +x firefox-nightly-113.0.r20230321213816-x86_64.AppImage

6.	 Open the file browser and change parent directory to the Downloads directory. Right-click
on the AppImage icon and click on Properties. Verify that the Executable as program switch
button is enabled:

Figure 6.10 – AppImage properties

Sandbox Applications194

7.	 Close the Properties window by clicking on X in the upper-right corner.

8.	 Double-click on the AppImage icon. The Firefox Nightly window opens:

Figure 6.11 – Firefox Nightly on AppImage

With these simple steps, the application runs without being installed. If we prefer, we could create a
launcher and add it to the shortcuts of the taskbar.

Let’s see now how to develop AppImages.

Developing AppImages

Developing AppImages is very simple. The AppImage project provides AppImageKit, an implementation
of the AppImage format focused on the tiny runtime of each one.

Note
AppImageKit is available to download at https://github.com/AppImage/
AppImageKit/releases/continuous.

https://github.com/AppImage/AppImageKit/releases/continuous
https://github.com/AppImage/AppImageKit/releases/continuous

Diving deep into AppImage apps 195

The core components of AppImageKit are as follows:

•	 runtime: The runtime provides an executable header for an AppImage. The runtime mounts
the filesystem image to a temporary location. Such a filesystem image is called an AppDir. It
then launches the payload application. Downloading it is not required.

•	 Appimagetool: This creates the AppImages by embedding the runtime and attaching the
AppDir inside it. This tool comes as an AppImage.

•	 AppRun: This provides the entry point of the AppImage. The runtime executes this file inside
the AppDir. It doesn’t need to be a regular file; it could be a symlink to the main binary.

Note
The project adds and deprecates extra tools in the AppImageKit all the time, even those from
third parties. So, keep an eye out for updates to the GitHub repository.

To create an AppImage, according to the project documentation, follow these steps:

1.	 Download appimagetool using the wget command:

$ wget \
> https://github.com/AppImage/AppImageKit/releases/download/
continuous/appimagetool-x86_64.AppImage

2.	 Add execution permissions with the chmod command:

$ chmod a+x appimagetool-x86_64.AppImage

3.	 To create the AppDir, use a high-level tool such as linuxdeployqt. Assuming that the
AppDir already has everything needed to run the application, run the appimagetool
command to generate the AppImage:

$./appimagetool-x86_64.AppImage some.AppDir

With this simple procedure, the new AppImage is created and ready to distribute.

Note
For more information on the use of AppImageKit, refer to the GitHub repository at https://
github.com/AppImage/AppImageKit.

So, now we know how to create and use AppImages, it’s time to look at the proposal drawn up by the
Fedora Project itself. Let’s take a walk through the flatpaks.

https://github.com/AppImage/AppImageKit
https://github.com/AppImage/AppImageKit

Sandbox Applications196

Examining Flatpak applications
First is one of Fedora’s founding principles, so Fedora Linux is always on the cutting edge.

Flatpak is a new distribution-independent format for packaging and distributing Linux desktop applications.

The main goals of Flatpak include the following:

•	 Create a single installation file that could be distributed to users of all distributions

•	 Run applications that are as isolated as possible from the rest of the system

The biggest benefit to users is the ability to run any application, regardless of the version of Fedora
Linux they use.

Its development name was xdg-app and it was renamed Flatpak in 2016 to reflect the fact that it
became ready for wider use.

Flatpak is a system for building, distributing, and running sandboxed desktop applications on Linux.

Flatpak applications are installed through the flatpak command or through a GUI such as GNOME
Software or KDE Discover.

Flatpak introduces some basic concepts, such as the following:

•	 Runtime: A platform that provides the basic utilities needed for a Flatpak application to run.

•	 BaseApp: An integrated platform for frameworks such as Electron.

•	 Flatpak bundle: A specific export format for a single file. It contains one application. It is also
known as Flatpak runtime.

•	 Sandboxes: Applications build and run in an isolated environment. Only the content of the
sandbox can be accessed by the program. Access to other resources, such as processes other
than the sandbox, is not possible.

•	 Portals: The mechanism through which applications interact with the host environment from
within a sandbox. It provides interaction with data, files, and services without the need to add
permissions to the sandbox.

•	 Repositories: Flatpak applications and runtimes get stored and published via repositories such
as Git repositories, which in some cases are named registries.

Let’s now look at the mechanisms for running Flatpak applications, and then we’ll walk a little bit
through the development of Flatpak applications.

Examining Flatpak applications 197

Using Flatpak applications

Flatpak is installed by default on Fedora desktop variants.

Flatpak applications are fully integrated into the operating system’s package manager. We can install
them using the graphical interface or the command line.

Let’s first look at the simplest form of installation using the GUI.

Using the GUI

The origin of installable applications might come as a package built on the OS, not sandboxed or
built in a sandbox.

For the end user, there is no difference, but it is possible to find out the installation format of an
application from the software manager. It is very simple. For example, let’s inspect the format that
installed the Firefox browser and its installation options. Follow the subsequent steps:

1.	 As a non-root user, open the Activities Overview menu and click on Software:

Figure 6.12 – Activities Overview menu

Sandbox Applications198

2.	 Click on the search icon in the upper-left corner. In the search field, type firefox and
press Enter:

Figure 6.13 – Search for the application

Click on the Firefox icon, shown as Installed.

Examining Flatpak applications 199

3.	 Below the Open button, find the installation source. Click on the drop-down list:

Figure 6.14 – Firefox installation source

Installation options for Firefox include the following:

	� FLATPAK: From the official Fedora registry (registry.fedoraproject.org) as a
Flatpak application

	� RPM: From the official Fedora repositories (fedoraproject.org) as RPM

In this case, it shows that Firefox was installed from the official Fedora repositories as a built RPM.

So, to install a Flatpak application with the software manager, just select the installation source.

http://registry.fedoraproject.org
http://fedoraproject.org

Sandbox Applications200

Let’s install a digital painting editor as an example. Follow the subsequent steps:

1.	 In the search field of the software manager, type krita:

Figure 6.15 – Search for the application

Click on the first result.

Examining Flatpak applications 201

2.	 Verify the installation source as a Flatpak application. Below the Install button, click on the
drop-down list:

Figure 6.16 – Verifying the installation source

Choose Flatpak as the installation source.

3.	 Click the Install button. Wait until the installation is complete.

Sandbox Applications202

4.	 Click the Open button:

Figure 6.17 – Open the application

Examining Flatpak applications 203

The application opens and is ready for use:

Figure 6.18 – Krita as a Flatpak application

As mentioned earlier, the end user experiences no difference with applications built on rpm. Through
the command line, it is possible to inspect the resources used and the isolation of the application
from the system along with other options such as adding other repositories of Flatpak applications.

Let’s now see how to use the command line to manage Flatpak applications.

Using the CLI

As mentioned in Chapter 1, the use of the command line expands the system administration capabilities.
Let’s analyze the performance of the Flatpak application installed in the previous section. Follow the
subsequent steps:

1.	 As a root user, open a terminal and use the ps command to search for the xdg-dbus-
proxy and krita processes:

[root@workstation ~]# ps axf | egrep "krita|xdg-dbus-proxy"
  13340 ?  S   0:00  |   _ bwrap --args 42 krita
  13359 ?  S   0:00  |       _ bwrap --args 42 krita
  13360 ?  Sl  0:04 |           _ krita
  13353 ?  S   0:00 _ bwrap --args 42 xdg-dbus-proxy --args=44
  13354 ?  Sl  0:00      _ xdg-dbus-proxy --args=44

Sandbox Applications204

xdg-dbus-proxy is a filtering proxy for D-Bus connections. It is the portal through which
the krita application interacts with the system.

2.	 Using the method of the first section of this chapter, track the performance of both processes.
Use the top command:

[root@workstation ~]# top -p 13353,13360

Figure 6.19 – Flatpak application performance

As mentioned at the beginning of this section, flatpak comes installed by default in Fedora
Linux. It is available as a command to build, install, and run applications and runtimes. It could
operate at the local or wide level, as a root or non-root user.

Let’s start to explore the capabilities of the flatpak command line.

3.	 Use the flatpak command to list the Flatpak applications installed:

[root@workstation ~]# flatpak list --app

Figure 6.20 – Listing Flatpak applications

Examining Flatpak applications 205

4.	 To inspect the changes to Flatpak applications on the system, use the flatpak command
with the history option:

[root@workstation ~]# flatpak history

Figure 6.21 – Flatpak history

These changes include installation, update, or removal, covering applications and runtimes.

5.	 To show the application details, use the flatpak command with the info option and the
Application ID of the application:

[root@workstation ~]# flatpak info org.kde.krita

Figure 6.22 – Flatpak application info

Sandbox Applications206

6.	 To display the running applications, use the flatpak command with the ps option:

[root@workstation ~]# flatpak ps

Figure 6.23 – Running Flatpak applications

Observe that the root user is not running any Flatpak applications.

Switch to the non-root user and run the same command:

Figure 6.24 – Running Flatpak applications

Let’s now see how we can add Flatpak applications from the command line. But before that, it is
important to identify the installation source.

As mentioned before, Flatpak applications in Fedora Linux are set by default and point to the official
registry of the distribution.

Through the command line, it’s possible to add other repositories as installation sources and install
more Flatpak applications because they are not in the Fedora registry, the version is different, or just
to have more installation sources.

Examining Flatpak applications 207

Let’s verify the general repository of Flatpak applications as an installation source. Follow the
subsequent steps:

1.	 As a root user, open a terminal and use the flatpak command to list the repositories:

[root@workstation ~]# flatpak remotes

Figure 6.25 – Flatpak repositories

2.	 Add more columns to show the details of the repositories.
Use the – –columns=name,title,url,homepage parameter:

Figure 6.26 – Flatpak application repositories

3.	 To list the applications available in a repository, use the flatpak command with the
remote-ls option and the Name repository. To avoid runtimes and only list the applications,
add the –app parameter:

[root@workstation ~]# flatpak remote-ls flathub --app

Sandbox Applications208

Figure 6.27 – Applications available on Flathub

In step 1, Figure 6.25 shows that the flathub repository appears as filtered.

Note
This is true for versions before Fedora Linux 38, where the Flathub filter was removed.

This is because the Fedora Linux configuration points to Fedora Flatpaks. Fedora
Flatpaks is the remote Flatpak repository of the Fedora Project.

The difference is that Flathub makes applications and tools as accessible as possible, no matter
what distribution they’re used in.

On the other hand, Fedora Flatpaks pushes RPMs from the Fedora Project and makes
them accessible through Fedora Linux as Flatpak applications.

To have access to all the Flathub applications, let’s add the repository again without restrictions.

4.	 Add the flathub repository using the flatpak command with the remote-add option.
Add the --if-not-exists parameter to prevent registry overwriting (the repository URL
is https://flathub.org/repo/flathub.flatpakrepo):

flatpak remote-add --if-not-exists flathub \
> .org/repo/flathub.flatpakrepo

Figure 6.28 – Adding the Flathub repository

https://flathub
https://flathub.org/repo/flathub.flatpakrepo

Examining Flatpak applications 209

5.	 List the repositories again using the flatpak remotes command:

[root@workstation ~]# flatpak remotes

Figure 6.29 – Flatpak repositories

Note that Flathub is no longer filtered. Let’s now see what Flatpak applications offer us.

6.	 List the applications available in the flathub repository. Use the flatpak remote-ls
flathub –app command:

Figure 6.30 – Flathub applications

Sandbox Applications210

If we get the number of applications, we find that it has increased:
flatpak remote-ls flathub --app | wc -l

	� 2164

Let’s install an application.

7.	 Switch to a non-root user and search for the Telegram Desktop app. Use the flatpak
remote-ls flathub –app command and filter the Telegram Desktop string:

$ flatpak remote-ls flathub --app | grep "Telegram Desktop"

Figure 6.31 – Searching for the Telegram Desktop Flatpak application

Before installing it, let’s get the details of the Flatpak application.

8.	 Use the flatpak remote-info command with the flathub repository option and the
Application ID from Telegram Desktop:

$ flatpak remote-info flathub org.telegram.desktop

Figure 6.32 – Telegram Desktop info

Examining Flatpak applications 211

9.	 To install the application, use the flatpak install command with the flathub repository
option and the Telegram Desktop Application ID:

$ flatpak install flathub org.telegram.desktop

Here’s the output:
Looking for matches…
Required runtime for org.telegram.desktop/x86_64/stable
(runtime/org.freedesktop.Platform/x86_64/22.08) found in remote
flathub
Do you want to install it? [Y/n]: Y

Since it requires a runtime to be installed first, the command asks us whether we want to install
it. Type Y to install.

Wait for the installation to finish:

Figure 6.33 – Telegram Desktop installation

Sandbox Applications212

10.	 Once installed, use the flatpak run command with the Application ID to run
the application:

$ flatpak run org.telegram.desktop

Figure 6.34 – Telegram Desktop Flatpak application

11.	 After installation, it is possible to find it in the Activities menu and/or add it to Favorites to
display the icon in the top bar:

Examining Flatpak applications 213

Figure 6.35 – Searching for Telegram Desktop in the Activities menu

Both procedures, graphical and CLI, provide an intuitive way to use Flatpak applications, regardless
of the distribution or version installed.

Note
For more information on the use of Flatpak applications, refer to the Using Flatpak section
of Flatpak’s documentation at https://docs.flatpak.org/en/latest/using-
flatpak.html.

Now, let’s walk through the process of creating Flatpak applications.

Building Flatpak applications

Building Flatpak applications is relatively simple. As a prerequisite, you must install, as a root user,
the flatpak-builder package, either as an RPM or Flatpak application:

•	 RP

dnf list flatpak-builder

•	 Flatpak application

flatpak install flathub org.flatpak.Builder

https://docs
https://docs.flatpak.org/en/latest/using-flatpak.html
https://docs.flatpak.org/en/latest/using-flatpak.html

Sandbox Applications214

As an example, let’s create a Flatpak application based on a simple bash script. To create our Flatpak
application, follow the subsequent steps:

1.	 Identify the runtime using the flatpak remote-ls command with the -a (all)
parameter. To search both runtimes and applications in the flathub repository, filter the
freedesktop platform string to find the latest version. As an optional filter, add a
parameter to avoid translations:

flatpak remote-ls flathub -a | grep -i \
> "freedesktop platform" | grep -v translations

Figure 6.36 – Identifying the runtime

From the preceding figure, we can see that the last version is 22.08. Next, we’ll search for the
same version of the SDK.

2.	 Use the flatpak remote-ls command with the -a (all) parameter in the flathub
repository. Filter the freedesktop SDK string and the 22.08 version:

flatpak remote-ls flathub -a | grep -i \
> "freedesktop SDK" | grep 22.08

Figure 6.37 – Searching the SDK

Examining Flatpak applications 215

3.	 Use the flatpak install command to install both:

flatpak install flathub \
org.freedesktop.Platform//22.08 \
org.freedesktop.Sdk//22.08

	� Looking for matches…

Skipping: org.telegram.desktop/x86_64/22.08 is already installed

Since we installed the runtime in a previous step, the flatpak command skips its installation.
Type Y to install the SDK:

Do you want to install it? [Y/n]: Y

Wait for the installation to finish:

Figure 6.38 – SDK installation

4.	 Create a bash script. For example, as a non-root user, copy the following and save it as script.
sh:

#!/bin/sh
echo "Hello world, I'm a flatpak application"

5.	 Add the manifest. Each Flatpak application includes a file with basic build information known
as the manifest. Create a file with the following and save it as org.flatpak.script.yml
in the same directory as the bash script:

app-id: org.flatpak.script
runtime: org.freedesktop.Platform
runtime-version: '22.08'
sdk: org.freedesktop.Sdk
command: script.sh
modules:
  - name: script
    buildsystem: simple

Sandbox Applications216

    build-commands:
      - install -D script.sh /app/bin/script.sh
    sources:
      - type: file
        path: script.sh

6.	 Build the Flatpak application using the flatpak-builder command with the target
directory and the manifest:

$ flatpak-builder build-dir org.flatpak.script.yml

Figure 6.39 – Building the Flatpak application

7.	 Install the Flatpak application using the flatpak-builder command. Add the --user
option to install dependencies on the user’s local installation. With the --force-clean
option, delete the previously created directory. This removes the contents of the directory and
creates new build content:

$ flatpak-builder --user --install --force-clean \
> build-dir org.flatpak.script.yml

Examining Flatpak applications 217

Figure 6.40 – Installing the Flatpak application

8.	 Run the Flatpak application using the flatpak run command:

$ flatpak run org.flatpak.script

Figure 6.41 – Running the Flatpak application

This way, we have a Flatpak application based on a simple script with all the necessary sandbox and
isolation features.

In a more complex case, the manifest should include all the necessary dependencies and files, declared
as modules.

Note
For more information on the build of Flatpak applications, refer to the Building section of Flatpak’s
documentation at https://docs.flatpak.org/en/latest/building.html.

This concludes our tour of sandbox applications. In the following chapters, we will discuss the
installation options for different applications. Some should be installed via RPM and some others
should be available as AppImages or Flatpak applications.

https://docs.flatpak.org/en/latest/building.html

Sandbox Applications218

Summary
In this chapter, we learned how sandbox applications work, from a very illustrative example using
SELinux and Firefox, to portable application formats widely used today.

We explored AppImage apps, from how to run them to using the AppImageKit to generate AppImages.

Finally, we took a deep look at Flatpak applications, a format that supports the Fedora Project and
even maintains its own version of Fedora Flatpaks based on RPMs.

We also learned how to use the command line to extend the administration and use of
sandboxed applications.

In the next chapter, we will take a walk through the most popular terminal-based text editors, plus
look at some usage tricks and customizations.

Further reading
To learn more about the topics covered in this chapter, you can visit the following links:

•	 Flatpak: https://flatpak.org/

•	 Getting Started with Flatpak: https://fedoramagazine.org/getting-started-
flatpak/

•	 An introduction to Fedora Flatpaks: https://fedoramagazine.org/an-introduction-
to-fedora-flatpaks/

•	 Comparison of Fedora Flatpaks and Flathub remotes: https://fedoramagazine.org/
comparison-of-fedora-flatpaks-and-flathub-remotes/

•	 Flatpak Usage: https://developer.fedoraproject.org/deployment/flatpak/
flatpak-usage.html

•	 Flathub: https://flathub.org/home

https://flatpak.org/
https://fedoramagazine.org/getting-started-flatpak/
https://fedoramagazine.org/getting-started-flatpak/
https://fedoramagazine.org/getting-started-flatpak/
https://fedoramagazine.org/an-introduction-to-fedora-flatpaks/
https://fedoramagazine.org/an-introduction-to-fedora-flatpaks/
https://fedoramagazine.org/an-introduction-to-fedora-flatpaks/
https://fedoramagazine.org/comparison-of-fedora-flatpaks-and-flathub-remotes/
https://fedoramagazine.org/comparison-of-fedora-flatpaks-and-flathub-remotes/
https://fedoramagazine.org/comparison-of-fedora-flatpaks-and-flathub-remotes/
https://developer.fedoraproject.org/deployment/flatpak/flatpak-usage.html
https://developer.fedoraproject.org/deployment/flatpak/flatpak-usage.html
https://developer.fedoraproject.org/deployment/flatpak/flatpak-usage.html
https://flathub.org/home

7
Text Editors

In Chapter 1, we recommended that you always use the command line to edit files. Since practice is
the only way to develop our console skills, we should take every opportunity to do so. File editing is
the most basic and most common skill used during the configuration of a system.

Some text editors even allow us to execute commands on the operating system. This gives us an
advantage of being able to practice them. We can also extend their capabilities by installing plugins
or customizing their configuration. These modifications allow us to format files, verify syntax, and
execute tasks.

Besides their use, we will discuss basic configuration tips and customizations of the most popular
text editors.

In this chapter, we’re going to cover the following main topics:

•	 Text editors and the command line

•	 Emacs overview

•	 Nano basics

•	 The mighty Vim

Let’s get started!

Technical requirements
To perform the configurations, customizations, and examples mentioned in this chapter, the installed
Fedora Workstation image in Chapter 2 includes the vim and nano packages in their basic form.
emacs and some other packages may need to be installed. Most of them are included in Fedora’s
official repositories.

In each section, you will see the required packages and how to install each of them.

Text Editors220

When using a package or code not included in the official Fedora repositories, we will provide a link
to get it and instructions to install it.

The examples created in this chapter are available for download in the book’s GitHub repository: https://
github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/
main/chapter7.

Text editors and the command line
The UNIX operating system has some unique of ideas and concepts that shape its design. UNIX
was the first operating system to abstract all I/O operations under a unified concept. The fathers of
UNIX called this concept a file. Each file exposes itself through the same Application Programming
Interface (API). This abstraction provides many advantages, such as preventing duplicate code and
increasing reusability.

To read/write to a disk, keyboard, document, or network device, it is possible to use the same basic
set of commands (such as the cat, more, grep, sed, and echo commands).

This principle is encapsulated in the phrase: everything is a file.

This fundamental concept has two sides:

•	 In UNIX, everything is a stream of bytes.

With reference to a file, called a file descriptor, the I/O access uses the same set of operations
and the same API (whatever the device type and the underlying hardware is). As a byte stream,
it allows the following:

	� read

	� write

	� search

	� close

•	 In UNIX, the filesystem serves as a universal namespace.

Files are not only a stream of bytes with a consistent API, but they can also reference each
other in a uniform way. UNIX filesystem paths provide a consistent, global scheme for labeling
resources, regardless of their nature. This global namespace is often viewed as a hierarchy of
files and directories. This is a convenient abstraction; a file path could refer to almost anything:
a filesystem, a device, a network share, or a communication channel.

This means that in UNIX, and so in Linux, anything is accessible as a file in the filesystem space. The
point of all this is to make it possible to use common tools for different things.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter7
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter7
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter7

Emacs overview 221

The tool used to change the content of the text files is the text editor. The files contain plain text or
source code either for a program or for text formatters, which reads the typed input and produces a
printable output.

The main advantage of text editors on UNIX/Linux systems is the ability to use them without a graphical
environment, in the terminal. This advantage allows their use on remote machines. Since there’s no
need to transfer the entire graphical environment, working with text editors improves the speed of the
network. As a system administrator, you need to know how to edit files from the terminal like an expert.

nano or vim come as a base package with any Linux distribution. In some cases, either package is
available out of the box, and some distributions also include emacs.

These packages achieve the same thing (edit text files) but they do it in very different ways:

•	 nano: Easiest to use, but with the fewest features.

•	 vim: Steepest learning curve, but powerful once it’s mastered.

•	 emacs: Midway between nano and vim in difficulty of use. Powerful and customizable. Does
not always come as a base package.

Let’s take a deep dive into each of them. We’ll start with the one that has the most historical weight,
GNU Emacs, created by Richard Stallman. In Fedora Workstation, it needs to be installed to use it.
Let’s start by getting an overview of it.

Emacs overview
Early text editors were very rudimentary, so much so that they could not open an entire text document.
To solve that, a text editor turned out to be more of a command that could generate words and dump
them into a file, find and replace words in a file, delete lines in a file, and so on.

Editing large documents in this way could become quite boring. So, people started to develop macros
to perform common related tasks.

In 1983, Richard Stallman released a package of his macros under the name Editing Macros, or Emacs for
short. When Dr. Stallman started the GNU project, GNU Emacs became his most successful application.

GNU Emacs is a text editor designed for POSIX operating systems. It is often considered complex
since it was developed long before modern computer conventions and terminology existed.

However, GNU Emacs offers efficient commands for common but complex actions, plus plugins and
configuration hacks developed around it over 40 years. Once you learn the basic use of GNU Emacs,
it is a powerful, efficient, and hackable editor for life.

The most common version of emacs is GNU Emacs.

Text Editors222

To install it on our Fedora Workstation, using the software application from main menu, choose
between RPM or FLATPAK for its installation source, as we covered in Chapter 6:

Figure 7.1 – Installing emacs

Using the console allows you to list the available plugins too. Switch to the root user and run
the following:

dnf list emacs*

Emacs overview 223

Figure 7.2 – emacs and plugins

Listing and counting the plugins, there are under 100 of them:

dnf list emacs-* | wc -l
85

Install GNU Emacs by your preferred method and let’s start with the basics.

The basics

At the beginning, the usability of the program seems complicated. But it’s only a little different because
it was created in another era. Follow these instructions to start getting used to the user interface.

Text Editors224

Open GNU Emacs from the menu by typing Emacs in the search box:

Figure 7.3 – Open emacs from menu

It can also be opened using the emacs command as a non-root user from the terminal:

$ emacs

Emacs overview 225

In both cases, the GNU Emacs window opens:

Figure 7.4 – GNU Emacs

Text Editors226

On the welcome screen, the first link, Emacs Tutorial, takes you to the help tutorial of the application:

Figure 7.5 – Emacs tutorial

You can return to it as many times as you need with its key combination.

Most of the key combinations use the Ctrl key, along with the required combination. For example,
to open the tutorial, the combination is C-h + C-t, which means pressing the Ctrl key plus the h key,
followed by the Ctrl key plus the t key; that is, you could hold down the Ctrl key and press the h key
followed by the t key.

In some cases, the Alt key is also used for key combinations. But the notation is different, noted by
an M. For example, to use the Alt-x combination, the notation is M-x.

This is because the Alt key was known as Meta in the past. Remember, when GNU Emacs was developed,
some of the current terms were not in use back then.

Emacs overview 227

Note
The letter M refers to the Meta key, which on x86 PCs is the Alt key. There are also ports of
emacs on other platforms, such as macOS where Meta refers to the Cmd key.

Using the graphical interface helps when getting started with GNU Emacs. The menus include the
key combinations used for each task:

Figure 7.6 – GNU Emacs menus

Text Editors228

The following table shows the most common tasks with their corresponding key combination:

File Operations
Open a file C-x C-f

Save file C-x C-s

Save as C-x C-w

Close file C-x C-k

Quit C-x C-c

Copy & Paste
Cut C-w

Copy M-w

Help
Display all key bindings C-h b

Tutorial C-h C-t

Table 7.1 – GNU Emacs common key combinations

GNU Emacs is very flexible and runs without a graphical interface, in the terminal. This is where it
becomes an essential tool in system administration.

Let’s now take a look at an overview of the advanced usage of GNU Emacs.

Mastering GNU Emacs

At first glance, GNU Emacs looks like a very complex way to edit files because it uses different
keyboard combinations than those used by other text editors. But for the day-to-day tasks of the
system administrator, running from the terminal, GNU Emacs is a powerful solution.

Let’s give an overview of this using a small example. Follow these steps:

1.	 Open GNU Emacs in the terminal by running the emacs command with the --no-window-
system parameter:

$ emacs --no-window-system

Emacs overview 229

Figure 7.7 – GNU Emacs on the terminal

2.	 From the start screen, browse to the test file to be modified.

3.	 Press the Ctrl key plus the x key (C-x) to enter command mode, followed by the Ctrl and f keys
(C-f) to find the file to edit. Press the Tab key to display the contents of the directory:

Text Editors230

Figure 7.8 – Find the file to edit

4.	 The file to edit is the test file. Type test in Find file at the bottom to open the file.

Figure 7.9 – Opening the test file

Emacs overview 231

Note
The file mentioned previously is available in the book’s GitHub repository at https://
github.com/PacktPublishing/Fedora-Linux-System-Administration/
tree/main/chapter7.

This test file is a combination of the /etc/group and /etc/passwd files.

Figure 7.10 – test file

5.	 Suppose that you need to see the contents of both files within the test file. On the line where
one of them ends, split the screen and move between the contents of each of them.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter7
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter7
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter7

Text Editors232

To split the screen, press Ctrl plus the x and 2 keys (C-x-2):

Figure 7.11 – Split screen

6.	 In Emacs, a buffer contains a process or a file. A window is the view of a buffer. The frame is
the desktop window.

Emacs overview 233

The following figure shows these concepts:

Figure 7.12 – Buffers, windows, and frame

This means that we split the frame into two windows. Each buffer edits the same test file.

If needed, each buffer could open different files, split the frame into more horizontal and vertical
windows, or open other frames.

7.	 To change the buffer, press the Ctrl key with the x key plus the o key (C-x-o).

8.	 This adds a line of plus signs (+) to separate the contents of the files. Save the file by pressing
the Ctrl key with the x key (C-x) plus the Ctrl key with the s key (C-s).

Text Editors234

Figure 7.13 – Saving changes

9.	 Quit the saved file by pressing the Ctrl key with the x key (C-x) plus the Ctrl key with the c
key (C-c).

The following table shows advanced tasks with their corresponding key combinations:

Text Selection
Start selection C-<space> or C-@
Deselect C-g

Undo
Undo C-/ or C-x-u
Panic!
Cancel a command or operation in progress C-g

Copy & Paste
Yank C-y

Cut line after cursor C-k

Cut word after cursor M-d

Emacs overview 235

Navigation
Previous line C-p

Next line C-n

Back a character C-b

Back a word M-b

Forward a character C-f

Forward a word M-f

Go to start of line C-a

Go to end of line C-e

Frames, windows, and buffers
Vertical split C-x-3

Horizontal split C-x-2

No splits C-x-1

Remove window C-x-0

Visit other window C-x-o

Open a new frame C-x-5-2

Table 7.2 – GNU Emacs advanced key combinations

Now let’s see how to add enhancements to the text editor.

Powering GNU Emacs

GNU Emacs has some essential features. Not all implemented, but conceptualized:

•	 It has lots of plugins. Not all text editors have plugins, and not all need them. Sometimes the
only feature needed is simplicity. For a text editor used for hours a day, plugins add valuable
enhancements and improvements.

•	 It is a customizable environment that could become a complete desktop environment, for example,
keeping track of projects, tasks, and events, organizing emails and chats, and managing
remote servers.

•	 Provides powerful and flexible key combinations and keymaps configurable for specific modes.

•	 Every aspect of the environment is customizable. It allows modifying the user interface of all
applications: the help system, the file and workspace tabs, and the fonts and colors of the user
interface elements.

Text Editors236

Install these enhancements through GNU Emacs. Follow these steps:

1.	 List the available packages, inside GNU Emacs, by pressing the Meta (Alt) key and the x
key. Enter the package command mode, distinguished at the bottom of the window by the
M-x combination:

Figure 7.14 – Package command mode

Emacs overview 237

2.	 Type list-packages and hit Enter:

Figure 7.15 – List packages

Text Editors238

The window shows the packages available for installation:

Figure 7.16 – List of available packages

3.	 To find a package, for example, yaml-mode, to help us with YAML syntax. In the list, press
the Ctrl key and the s key (C-s). Type yaml-mode at the bottom to find the selected package:

Emacs overview 239

Figure 7.17 – Searching for the package to install

Note
This requires the emacs-yaml-mode.noarch package installed to work.

4.	 To view the package description, press the Meta (Alt) key plus the x key (M-x) and type describe-
package.

Text Editors240

Figure 7.18 – Describing package

5.	 This splits the window horizontally. To switch to the description window, press the Ctrl key and
the x key, followed by the o key (C-x-o):

Emacs overview 241

Figure 7.19 – Description window

6.	 Close the window by pressing the Ctrl key and the x key, followed by the 0 key (C-x-0).

7.	 Mark the yaml-mode package for installation by pressing the Meta (Alt) key and the x key
(M-x) and type package-menu-mark-install.

Figure 7.20 – Marking the package to install

Text Editors242

This adds an I to the left side of the package:

Figure 7.21 – Package marked for installation

8.	 To install the package, press the Meta (Alt) key and the x key, and type package-install-
selected-packages.

Figure 7.22 – Installing marked packages

9.	 Exit Emacs using C-x + C-c .

Emacs overview 243

The installation is very fast. Open a YAML file to see the help menu with the syntax of the package:

Figure 7.23 – YAML file

As shown in the previous figure, a lot of packages and plugins could be installed to help us with a
particular feature.

Note
On the internet, you will find many examples of packages and plugins. As a personal
recommendation, check out this Reddit thread, with the must-have packages according to
the community: https://www.reddit.com/r/emacs/comments/w4gxoa/
what_are_some_musthave_packages_for_emacs/.

GNU Emacs, especially for a novice user, seems very complex to use. This led to the popularization
of simpler text editors. One of the most popular ones, which became the default text editor in Fedora
Linux, is Nano.

Let’s now review the basic principles of its use.

https://www.reddit.com/r/emacs/comments/w4gxoa/what_are_some_musthave_packages_for_emacs/
https://www.reddit.com/r/emacs/comments/w4gxoa/what_are_some_musthave_packages_for_emacs/

Text Editors244

Nano basics
GNU nano was designed as a free replacement for the Pico text editor, which was part of the University
of Washington’s Pine email suite.

At the end of 1999, Chris Allegretta left Slackware for Debian. He missed having a package that
included Pine and Pico. So, he decided to make a Pico clone, at that time called Tip Isn’t Pico (TIP).

In January 2000, TIP was renamed nano due to a conflict with another program called tip, included
with many older Unix systems.

In February 2001, nano received an official GNU declaration from Richard Stallman. nano also
reached its first production release on March 22, 2001.

To create a new file, as a non-root user, run the nano command from the terminal:

$ nano

Figure 7.24 – Nano text editor

Nano basics 245

At the bottom taskbar of the window, there are help commands for the editor:

Figure 7.25 – Help commands for nano

Unlike emacs, nano denotes the Ctrl key with the circumflex accent symbol (^), so the help menu
is displayed by pressing the Ctrl key with the G key. To exit, press the Ctrl and X keys.

Note
For more information about why the circumflex accent symbol (^) is used for Ctrl, please refer
to https://retrocomputing.stackexchange.com/questions/10925/why-
do-we-use-caret-as-the-symbol-for-ctrl-control.

Besides the Ctrl key, nano also uses the Alt key and some symbols as part of its commands for
specific tasks.

https://retrocomputing.stackexchange.com/questions/10925/why-do-we-use-caret-as-the-symbol-for-ctrl-control
https://retrocomputing.stackexchange.com/questions/10925/why-do-we-use-caret-as-the-symbol-for-ctrl-control

Text Editors246

The following table shows the most common tasks with their corresponding key combination:

File Management
Display help ^G

Exit ^X

Write the current file ^O

Insert another file into the current one ^R

Editing
Insert a new line at the cursor position ^M

Delete the character under the cursor ^D

Delete the character to the left of the cursor ^H

Insert a tab at the cursor position ^I

Justify the current paragraph ^J

Justify the entire file Alt+J

Count the number of words, lines, and characters Alt+D

Search and Replace
Search for a string or a regular expression ^W

Replace a string or a regular expression ^\

Repeat the last search Alt+W

Table 7.3 – GNU nano common key combinations

GNU nano stands out for its simplicity, in terms of its interface and use.

Another text editor, not as simple as nano, nor as complex as emacs, is the vim editor.

Let’s step through the Vim editor and its customization possibilities.

The mighty vim
Vim (an acronym for Vi IMproved) is an enhanced version of the Vi text editor, present in all UNIX
systems. Bram Moolenaar introduced the first version in 1991.

Vim is a powerful editor that offers many out-of-the-box features. The use of plugins adds new features,
making it easier to adapt Vim to specific workflows. Many plugins focus on general functionality,
such as locating files, providing information, and dealing with different file syntaxes or Git versioning.

Vim comes included in the Fedora Linux base installation, although not as the default text editor. To
change it to the default text editor, add it to the shell configuration file. In Bash, this file is ~/.bashrc
or ~/.bash_profile.

The mighty vim 247

Add the following global variables to set the vim editor as the default editor:

export VISUAL=vim
export EDITOR="$VISUAL"

Both global variables cover the general use of the EDITOR variable.

A VISUAL editor is a full-screen editor such as vim or emacs.

An EDITOR editor works without using the terminal’s functionality (such as the old ed or ex mode
of vi).

For example, when invoking an editor through Bash, Bash tries the VISUAL editor first. If VISUAL
fails (because the terminal doesn’t support a full-screen editor), it tries EDITOR.

With both variables set to vim, grant their use as the default text editor.

Unlike emacs or nano, vim does not use key combinations. The vim editor works in two modes:
Command and Insert. Now let’s review its basic usage.

The basics

The vim modes are essential in its use. To switch between modes, use the Esc key. The following figure
shows the editing flow for a file with vim:

Figure 7.26 – Vim workflow

To create or open a file with vim, run the vim command in the terminal. This opens vim to its splash
screen, in command mode:

Text Editors248

Figure 7.27 – Vim splash screen

To start typing, and to switch to insert mode, press the Esc key and then the I key. The screen changes.
In the upper-left corner the cursor appears, and in the bottom taskbar, the mode appears as INSERT:

The mighty vim 249

Figure 7.28 – Insert mode

After typing, to return to command mode, press the Esc key. This clears the mode in the bottom bar.

Figure 7.29 – Command mode

Text Editors250

The normal mode contains a command-line mode. Here, a variety of tasks, such as saving or quitting
the file, can be run.

To enter command-line mode, press the colon key (:) and type the command for the desired task.
The following table shows the commands for the most common tasks:

Save/Quit
Write buffer :w

Quit :q

Write and quit :wq

Abandon buffer :q!

Other
Find down :/[string]

Set numbers :se nu

No numbers :se nonu

Table 7.5 – Commands for common tasks

In normal mode, also, file editing tasks can be run. No need to press the colon key (:). Just run the
command for the editing task needed. The following table shows the most common editing commands:

Insert
After cursor a

At the end of line A

Before cursor i

At beginning of line I

Open line below o

Open line above O

Yank word yw

Yank line yy

Put (paste) p

Change
Word cw

Line cc

Rest of line C

Under cursor s

Replace character r

The mighty vim 251

Delete
Word dw

Line dd

Rest of line D

Under cursor x

Before cursor X

Transpose xp

Table 7.6 – Commands for editing tasks

Note
Vim includes a tutor to learn how to use it. To start the tutor, run the vimtutor command.

The flexibility and power of Vim make it an essential tool in system administration.

Let’s now get an overview of the advanced use of Vim.

Mastering vim

For many people, vim seems as complex as emacs. But in practice, with reference to Figure 7.26, the
editing flow is simpler. The only thing to get used to is switching between modes.

As proof of this, let’s use the same example used earlier with emacs to edit the test file, composed
of the contents of the /etc/passwd and /etc/group files. Follow these steps:

1.	 In the terminal, as a non-root user, run the vim command. To browse for the file, type a colon
(:) and the letter e with a space. Type the letter t to browse for the test file and then press
the Tab key. Vim shows in the bottom bar the files whose names begin with t:

Text Editors252

Figure 7.30 – Browse for the test file

2.	 To split the screen, as in emacs, type a colon (:) and then the split command:

Figure 7.31 – Split screen

The mighty vim 253

3.	 To switch screens, press the Ctrl key plus the w key twice (Ctrl+ww). Scroll down until you find
the plus sign (+) characters added in the emacs example:

Figure 7.32 – Search for plus characters

4.	 Let’s replace these plus signs (+) with asterisks (*). Type a colon (:) and type the percent sign
(%) plus the s letter. This indicates to vim that this is a substitution. Next, type a slash (/)
to state the string to be replaced and again another slash (/) to type the characters that will
replace the original string. Type another slash (/) and then the letter g to tell vim that the
substitution must take place globally:

Text Editors254

Figure 7.33 – Replacing characters

5.	 Press the Enter key and vim performs the substitution. The bottom bar displays a message of
the completed task:

Figure 7.34 – Modifying the test file

The mighty vim 255

6.	 To save and quit the file, type a colon (:) followed by the letters w and q, and then press the
Enter key.

Note
On the internet, you can find more commands and advanced uses of vim. A very useful resource
is the post 50 Useful Vim Commands: https://vimtricks.com/p/50-useful-vim-
commands/.

Pimp my vim

Like emacs, Vim expands its capabilities with the installation of plugins and packages, in addition
to customizing the interface to provide information or help edit the file. Beyond the look and feel, it
adds features that increase the usability of the editor.

Unlike emacs, Vim uses a variety of initialization files where settings and customizations are included.
Some of the most relevant files are as follows:

•	 /usr/share/vim/vim90/doc/*.txt

The Vim documentation files. Use :help doc-file-list to get the complete list.

•	 /usr/share/vim/vim90/doc/tags

The tags file used to find information in the documentation files

•	 /usr/share/vim/vim90/syntax/syntax.vim

System-wide syntax initializations

•	 /usr/share/vim/vim90/syntax/*.vim

Syntax files for various languages

•	 /usr/share/vim/vimrc

System-wide Vim initializations

•	 ~/.vimrc

Personal Vim initializations

•	 /usr/share/vim/vim90/optwin.vim

Script used for the :options command. A nice way to view and set options.

https://vimtricks.com/p/50-useful-vim-commands/
https://vimtricks.com/p/50-useful-vim-commands/

Text Editors256

The file that contains the Vim initializations is vimrc. The vimrc file is a collection of the following:

•	 Configurations

•	 Custom commands

•	 Custom functions

•	 Mappings

•	 Plugins

Let’s take a look at some examples of each of them.

Configurations

In normal mode, it is possible to configure Vim to add some features. For example, to add numbers
to lines to identify them, type a colon (:) followed by set nu:

Figure 7.35 – Numbered lines

This setting only remains enabled as long as the editor is open. Closing the editor disables it.

Keep this setting enabled by adding it to the .vimrc file.

The mighty vim 257

These settings could help with syntax while editing the file. For example, when editing YAML files,
you could configure the .vimrc file in a basic way as follows:

set ts=2 ← [1]
set et   ← [2]
set ai   ← [3]

•	 [1] A tab is two spaces

•	 [2] Expand tabs

•	 [3] Auto-indenting

Custom commands

In Vim, we can create custom commands to perform tasks. For example, we could create a command
that tells us today’s date in various formats:

•	 In the .vimrc file, add the following line:

:command! TellDate echo call("strftime", [<args>])

•	 In Vim command mode, run the TellDate command as follows:

:TellDate "%F"

Figure 7.36 – Custom date

•	 To get the current time, run the TellDate command as follows:

:TellDate "%H:%M"

Figure 7.37 – Current time

Custom functions

As seen previously, Vim allows us to run a built-in or custom command from command mode. But
it is not limited to one; it could run a set of commands or series of instructions within the same
command mode. Or they get written to a file and generated in a running Vim instance (:source
path/to/file). Some of these files come up as part of the configuration from the .vimrc file.

Text Editors258

These scripts use Vimscript (also called VimL). This Vim ex-command subset provides many features
that could be expected from a scripting language, such as values, variables, functions, and loops.

It is very common for a script to mix features of a scripting language and raw ex-commands.

The .vimrc file includes some files describing functions that extend the capabilities of the text editor.
These functions get called using the native Vimscript let function, which assigns a value to a variable.

The function structure uses the following syntax:

{functionName}() function.
  {some_tasks}
endfunction

The following table shows the most common functions of Vimscript:

Buffer Marks

Current
line number

line('.') Position of
a mark

getpos("'a")

col('.') setpos("'a",...)

col('$')
Position of

selection start
getpos("'<")

Current line
as string

getline('.') Cursor

Get line 1 getline(1)

Moves cursor
cursor(line,col)

Get lines 1-5 getline(1, 5)
cursor(line,col,
off,curswant)

Next blank
line, returns
line number

search('^$')

Returns
[bufnum,
line, col,

off, curswant]

getcurpos()

Search but don’t
move cursor

search('^$','n')

Date/time
strftime('%c')

strftime('%c',
getftime('file.c'))

Table 7.7 – Vimscript common functions

The mighty vim 259

Mappings

Vim allows us to customize key mappings. It is useful to change the definition of the keys typed on
the keyboard. The most common use is to define a sequence of commands for a function key. For
example, if want to map the x key to the dd command to delete lines, in normal mode, in the .vimrc
file, add the following line:

nmap x dd

Mapping applies in four modes: normal, visual, selection, and operator-pending.

For help with mapping, commands, and modes, run the following in command mode:

:help map.txt

Figure 7.38 – Mapping help

Text Editors260

Plugins

Vim plugins are installed via packages. A Vim package is a directory or repository that contains one
or more plugins that depend on each other. Among its main features are the following:

•	 Downloaded as a compressed file and unzipped in its own directory, which avoids it mixing
with others and makes it easy to update and remove

•	 Contain plugins loaded at startup and others that are only loaded when needed with :packadd

The directory recommended to install Vim packages inside is the user’s .vim directory.

To exemplify the process, let’s install the most used plugin: Vim Airline.

Vim Airline is a plugin that replaces the standard Vim status line with a useful status bar, and provides
useful information about the working file, including the following:

•	 Filename

•	 Save status

•	 File type

•	 Encoding

•	 Position

•	 Word count

Vim mode

To install Vim Airline, follow these steps:

1.	 In the home directory of the non-root user, as the non-root user, create the .vim directory:

[acallejas@workstation ~]$ mkdir -p .vim

2.	 Change to the .vim directory. Download the Vim Airline package from its repository on
GitHub (https://github.com/vim-airline/vim-airline):

$ cd .vim
$ wget https://github.com/vim-airline/vim-airline/archive/refs/
tags/v0.11.tar.gz

https://github.com/vim-airline/vim-airline

The mighty vim 261

Figure 7.39 – Download Vim Airline

3.	 Decompress the Vim Airline package:

$ tar xzf v0.11.tar.gz

Figure 7.40 – Decompressing the package

Text Editors262

4.	 Move the Vim Airline version directory as vim-airline

$ mv vim-airline-0.11 vim-airline

Figure 7.41 – Renaming a directory

5.	 Create the pack/dist/start path. Move the vim-airline directory into the pack/
dist/start path:

$ mkdir -p pack/dist/start
$ mv vim-airline pack/dist/start/

The mighty vim 263

Figure 7.42 – Relocating the vim-airline directory

Vim Airline is a Vimscript version of Powerline (https://github.com/powerline/
powerline) written in Python.

Powerline includes a font with pretty symbols. To get these symbols with Vim Airline, install
the patched font.

6.	 As the root user, or with sudo if a non-root user has the privileges, install the powerline-
fonts package using the dnf command:

$ sudo dnf install powerline-fonts

https://github.com/powerline/powerline
https://github.com/powerline/powerline

Text Editors264

Figure 7.43 – Installing the Powerline font

7.	 Switch to the home directory and edit the .vimrc file to enable the font use. Add the line
let g:airline_powerline_fonts = 1:

$ cd
$ vim .vimrc

The mighty vim 265

Figure 7.44 – Enabling font usage

8.	 Edit the test file and check the new status bar:

$ vim test

Text Editors266

Figure 7.45 – vim-airline status bar

9.	 When changing modes, the bar also changes its color to differentiate between the modes:

The mighty vim 267

	� This is what it looks like in Insert mode:

Figure 7.46 – Insert mode

Text Editors268

	� The following is what it looks like in Command mode:

Figure 7.47 – Command mode

Note
Changing or customizing the color scheme is available. For further reference, visit the vim-
airlines-themes repository on GitHub: https://github.com/vim-airline/
vim-airline-themes.

This way, the plugin installation and configuration work in our editor.

There are many plugins, some very specialized, that complement Vim, with a similar installation.

Note
On the internet, you’ll find many examples of packages and plugins. As a personal recommendation,
visit these posts with specialized recommendations to improve Vim:

•	 5 useful Vim tplugins for developers: https://opensource.com/article/19/1/
vim-plugins-developers

•	 Top five Vim plugins for sysadmins: https://www.redhat.com/sysadmin/five-
vim-plugins

https://github.com/vim-airline/vim-airline-themes
https://github.com/vim-airline/vim-airline-themes
https://opensource.com/article/19/1/vim-plugins-developers
https://opensource.com/article/19/1/vim-plugins-developers
https://www.redhat.com/sysadmin/five-vim-plugins
https://www.redhat.com/sysadmin/five-vim-plugins

Summary 269

This concludes our walk-through of the text editors. In the following chapters, we’ll make use of
them, adding plugins or packages for specialized tasks to help us with the system administration of
our Linux systems.

Summary
In this chapter, we learned in depth about text editors, beginning with the fundamental understanding
that in Unix/Linux, everything is a file. Thus, the use of the terminal as a tool to edit files eases the
tasks of system configuration.

We took our first steps in Emacs. While it is known to be a very complex editor for novices, we offered
a basic guide to get started with it.

We also reviewed the use of Nano, the default text editor in several distributions, including Fedora Linux.

We also deep-dived into the use of Vim, a well-known and recommended file editing tool for
file management.

The decision is up to you, dear reader, to choose an editor of your preference.

In the next chapter, we will review the LibreOffice suite and its different programs for creating and
editing commonly used file formats.

Further reading
To learn more about the topics covered in this chapter, you can visit the following links:

•	 The Linux Documentation Project: Text editors

https://tldp.org/LDP/intro-linux/html/sect_06_01.html

•	 9 Best Text Editors for the Linux Command Line

https://itsfoss.com/command-line-text-editors-linux/

•	 Linux skills: 9 tutorials to get more from your text editor

https://www.redhat.com/sysadmin/text-editor-roundup-2022

•	 A beginner’s guide to text editing with Emacs

https://www.redhat.com/sysadmin/beginners-guide-emacs

•	 How to get started with the Vi editor

https://www.redhat.com/sysadmin/get-started-vi-editor

https://tldp.org/LDP/intro-linux/html/sect_06_01.html
https://itsfoss.com/command-line-text-editors-linux/
https://www.redhat.com/sysadmin/text-editor-roundup-2022
https://www.redhat.com/sysadmin/beginners-guide-emacs
https://www.redhat.com/sysadmin/get-started-vi-editor

8
LibreOffice Suite

GNU/Linux supports the standardization, optimization, and improvement of organizations that
operate with an office suite. The office suite is one of the most common tools in any industry, with
the goal of making work more practical and dynamic. An office suite is a set of programs that allows
you to create, modify, organize, store, send, receive, scan, and print files. The basic programs of an
office suite include word processors, spreadsheets, and image and/or presentation editors for projects.

LibreOffice is an open source office suite by excellence. It was originally called OpenOffice, but when
Apache acquired it, some users created a fork, which became LibreOffice.

All distributions and users adopted LibreOffice, accelerating its development. LibreOffice is present in the
most popular GNU/Linux distributions, besides Flatpak packages, making its installation very simple.

In this chapter, we will cover the following main topics:

•	 Exploring Office tools on Fedora Linux

•	 Getting used to Writer and Calc

•	 Creating slides and image management

Let’s get started!

Technical requirements
LibreOffice comes installed by default in the Workstation version of Fedora Linux, which we installed
in Chapter 2. The development of the topics in this chapter only requires you to confirm that you have
followed the steps of the aforementioned chapter. If not, ensure that you install LibreOffice on your
Fedora Linux Workstation.

The examples created in this chapter are available for download in the book’s GitHub repository, which
you can find at the following URL: https://github.com/PacktPublishing/Fedora-
Linux-System-Administration/tree/main/chapter8.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter8
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter8

LibreOffice Suite272

Exploring office tools on Fedora Linux
The Fedora Project has not developed its own office suite, but it provides a default set of office
applications designed to have broad appeal and deliver useful functionality. The official repositories
include the LibreOffice components.

Besides LibreOffice, Fedora Linux offers you the possibility to install other office suites, including
add-ons such as templates or fonts.

Before diving into the components of LibreOffice, let’s take a brief look at these packages.

WPS Office

WPS Office is a cross-platform (Windows, Linux, Android, and iOS) productivity suite available for
computers and mobile devices. It is considered a high-performance but proprietary solution, compatible
and comparable to Microsoft Office. Its Writer, Presentation, and Spreadsheet components are robust
solutions, like Microsoft’s PowerPoint, Excel, and Word.

The WPS Office suite is produced by WPS Office Software, a subsidiary of the Kingsoft Corporation,
which is a leading internet services and software company in China. It is fully compatible with Microsoft
Office formats and has a spell checker available in more than 10 different languages.

On Fedora Linux, it is available through a Flatpak package provided by Flathub.

Note
The Flatpak package comes with a warning, saying that this Flatpak package is not verified,
affiliated, or supported by the Kingsoft Office Corporation.

ONLYOFFICE

ONLYOFFICE Desktop Editors is an open source office suite available for Linux, Windows, and
macOS, freely distributed under the terms of AGPLv3. It consists of three editors for text documents,
spreadsheets, and presentations that are natively compatible with Microsoft Office formats.

ONLYOFFICE Desktop Editors offers you the possibility to connect to cloud platforms, such as
ONLYOFFICE, Nextcloud, ownCloud, Seafile, Liferay, and kDrive, and collaborate on team documents,
including co-editing in real time, reviewing, commenting, and interacting using chat.

Exploring office tools on Fedora Linux 273

Note
The Affero General Public License is a copyleft license derived from the GNU General Public
License. It is designed to ensure community cooperation on software running on a network,
and it adds an obligation to distribute the software if it provides services over a network.

The Free Software Foundation recommends the use of GNU AGPLv3 for any software that runs
over a network. You can find more information at https://www.gnu.org/licenses/
agpl-3.0.html.

On Fedora Linux, ONLYOFFICE Desktop Editors is available through a Flatpak package provided
by Flathub.

Calligra

Calligra is an office suite created by KDE. You don’t need to have the Plasma desktop environment
installed to use it, as it works fine on other desktop environments, such as Fedora Workstation
using GNOME.

Calligra adopts the OASIS OpenDocument format as its native file format. The OpenDocument
Format (ODF) is an XML-based open document file format for office applications. It is used for
documents containing text, spreadsheets, diagrams, and graphical elements.

Note
For more information on the OASIS Open Document Format for Office Applications,
refer to https://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=office.

The main components of Calligra are as follows:

•	 Calligra Words: A word processor, organized around a main window, for editing and writing
text, and a panel on the right that provides access to the most common tools.

•	 Calligra Stage: A presentation editor that highlights its templates, which, although there are
few, are a good basis for a customized presentation.

•	 Calligra Sheets: Used for spreadsheet editing. As in the previous cases, it offers templates for
specific cases.

•	 Calligra Plan: A tool that helps you to organize and hierarchize tasks.

•	 Karbon: A vector graphics editor that supports documents with multiple pages and imports
PDF files.

On Fedora Linux, each component is available individually as an RPM package or a Flatpak package,
provided by Fedora Flatpaks.

https://www.gnu.org/licenses/agpl-3.0.html
https://www.gnu.org/licenses/agpl-3.0.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office

LibreOffice Suite274

Fonts

Fedora Linux installs by default more than 70 fonts. However, in its repositories, it has more than 1,000
fonts available. To install more fonts from the official repositories, follow these steps:

1.	 As a non-root user, open the menu in the upper-left corner and click on Software:

Figure 8.1 – Opening the menu

2.	 Click on the search icon in the upper-left corner. In the search field, type fonts, and then
press Enter.

Exploring office tools on Fedora Linux 275

Figure 8.2 – Searching the fonts

3.	 Select the desired font and install it – for example, search for the font julietaula Montserrat
Alternates, and then click on the font icon. Click on the Install button:

Figure 8.3 – Installing the font

LibreOffice Suite276

Wait for the installation to complete.

At the end of the installation, the font is available for use in the office suite.

Note
For more information on the Montserrat Font Project, refer to its repository on GitHub
at https://github.com/JulietaUla/Montserrat.

Now that we know the alternative options to LibreOffice and how to install more fonts, let’s take a
look at the default office suite of Fedora Linux.

LibreOffice

LibreOffice is the successor project to OpenOffice.org, commonly known as OpenOffice.

OpenOffice.org started in the year 2000, after Sun Microsystems released the StarOffice 5.2 code
as a free download for personal use.

In 2010, Oracle Corporation acquired Sun Microsystems. This concerned members of the OpenOffice.
org community because of the well-known behavior of Oracle towards open source software (as in
the Java lawsuit against Google: https://en.wikipedia.org/wiki/Google_LLC_v._
Oracle_America,_Inc).

In the same year, members of the OpenOffice.org community announced the Document
Foundation, a non-profit foundation intended to provide continuity in the development of the office
suite. The foundation’s main project is LibreOffice, a fork of OpenOffice.org.

LibreOffice adds extra features and improves compatibility with Microsoft Office, with regular releases
and security updates.

The main components of LibreOffice are as follows:

•	 Writer: A word processor

•	 Calc: A spreadsheet editor

•	 Impress: A slide show editor

Fedora Linux includes in its repositories extra components for the LibreOffice suite:

•	 Base: A database manager

•	 Draw: A drawing tool

https://github.com/JulietaUla/Montserrat
http://OpenOffice.org
http://OpenOffice.org
http://OpenOffice.org
http://OpenOffice.org
http://OpenOffice.org
http://OpenOffice.org

Exploring office tools on Fedora Linux 277

Any installed LibreOffice component programs can be accessed from the Activities Overview menu.
Type Libre in the search bar, as shown in the following figure:

Figure 8.4 – Searching for LibreOffice components

The LibreOffice components are also grouped as an Office category in the menu. To access them,
follow these steps:

1.	 As a non-root user, open the menu in the upper-left corner, and click on the All Apps icon:

Figure 8.5 – All Apps on the menu

LibreOffice Suite278

2.	 Within the categories offered by the menu, click on the Office category:

Figure 8.6 – The Office category

Getting used to Writer and Calc 279

3.	 Within the Office category, find the installed LibreOffice components:

Figure 8.7 – The installed LibreOffice components

4.	 To access the desired component, click on its icon.

Either access method allows you to open LibreOffice components and use them to create and
edit documents.

Let’s take a closer look at each of the LibreOffice components.

Getting used to Writer and Calc
Text editors and spreadsheets are the most used tools in an office suite. With them, documentation
related to managed systems comes to life, which we’ll talk about in a later chapter when covering
Linux system administration.

Let’s take a look at each of these LibreOffice components.

LibreOffice Suite280

Writer

LibreOffice Writer is the word processor of the suite. Writer is a word processor, like Microsoft
Word and Corel’s Word Perfect, with similar functions and file format compatibility. The default file
format of Writer is OpenDocument (ODT), but it is capable of opening and editing Microsoft Word
files such as DOC, DOCX, RTF, and XHTML.

LibreOffice Writer is like Microsoft Word (as shown in the following figure), since it has many options
that can be found in Microsoft’s products.

Upon opening Writer to create or edit a text file, you will be shown the active page, along with various
editing resources.

Figure 8.8 – LibreOffice Writer

Editing resources include the following:

•	 A menu with different tabs:

	� File, with commands that open or close existing documents or create a new document,
besides closing an application.

	� Edit, with commands to edit the active document.

	� View includes commands to display the interface view and toolbars.

	� Insert, with commands for inserting elements into the active document. These elements
include images, objects from other applications, hyperlinks, comments, symbols, footnotes,
and sections.

Getting used to Writer and Calc 281

	� Format, with commands to format the content of the active document.

	� Styles, with commands to apply, create, edit, load, and manage styles in text documents.
Styles come in several categories, such as paragraph, character, frame, page, and list.

	� Table, with commands to insert, edit, and delete tables and their elements in text documents.

	� Form contains commands to activate the form design mode, and it allows you to enable or
disable control wizards or control forms in the document.

	� Tools contains several tools, including a spell checker, redaction options, a mail merge wizard,
and an extensions manager, besides other tools to configure or customize the program’s
menus and preferences.

	� Window includes commands to display and manipulate document windows.

	� Help provides access to the LibreOffice help resource.

•	 Various toolbars:

	� The Standard toolbar is available in every LibreOffice suite application. Its functions include
the following:

	� New (document)

	� Open File

	� Save and Save As

	� Email Document

	� Edit Mode

	� Export as PDF

	� Print File Directly and Print Preview

	� Spelling

	� Cut, Copy, Paste, and Clone Formatting

	� Undo and Redo

	� Hyperlink

	� Formatting contains a variety of functions for text formatting.

•	 The Properties sidebar:

	� The sidebar sits to the right or left of the active document display area. It provides contextual
properties, style management, document navigation, and media gallery functions.

LibreOffice Suite282

The preceding functions and accessible commands load by default when Writer opens, but more
functions and commands can added by enabling other toolbars. Enable these toolbars through the
View menu under the Toolbars option:

Figure 8.9 – The available toolbars in Writer

Note
For more information about the toolbar options available in LibreOffice Writer, refer to
LibreOffice Writer Help at https://help.libreoffice.org/latest/en-US/.

Writer helps us document our processes in Linux system administration. It can improve the documentation
with a variety of applicable styles. It can also create its own styles and/or change or customize existing ones.

Let’s see an example of how to use styles in LibreOffice Writer.

https://help.libreoffice.org/latest/en-US/

Getting used to Writer and Calc 283

Applying styles in LibreOffice Writer

While creating documentation, we format text and paragraphs to get a certain look and feel. However,
this could turn into a tedious and time-consuming task, which can be solved by applying styles.

LibreOffice Writer links the formatting attributes of paragraphs, characters, and other similar elements
by applying styles. This not only creates uniform and professional-looking documents but also saves
you time, by calculating the table of contents in a document.

Let’s use some small text as an example, named Lorem Ipsum Doc.txt, which you can find
in the GitHub repository of the book, in the chapter 8 directory (https://github.com/
PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter8/
Lorem%20Ipsum%20Doc.txt).

Figure 8.10 – Sample text in the GitHub repository

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter8/Lorem%20Ipsum%20Doc.txt
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter8/Lorem%20Ipsum%20Doc.txt
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter8/Lorem%20Ipsum%20Doc.txt

LibreOffice Suite284

Follow these steps to apply a style to the text:

1.	 Open LibreOffice Writer. Copy the text into a new file. Save it to a known location, such
as $HOME/Documents:

Figure 8.11 – Lorem Ipsum doc

Note
To avoid highlighting spelling errors in this exercise, disable automatic spell-checking. From
the Tools menu, disable the Automatic Spell Checking checkbox or press the Shift + F7 keys.

2.	 Increase the visibility of the text on the screen. From the View menu, click on Zoom and then
Page Width. Note that some parts of the text, such as lines or words, appear separate from the
paragraph. This indicates that there are sections that divide the paragraphs:

Getting used to Writer and Calc 285

Figure 8.12 – Paragraph section separators

In LibreOffice Writer, section titles are called headings. Headings come in hierarchical order
– first-level headings are called Heading 1, second-level headings are called Heading 2, third-
level headings are called Heading 3, and so on. Let’s tell Writer which titles and headings we
have in the example text.

3.	 Press the F11 key to display the Styles sidebar:

Figure 8.13 – The Styles sidebar

LibreOffice Suite286

Because we paste plain text into our document, it’s important to tell Writer that the text is the
body of the document.

4.	 Select all the text using the Ctrl + A key. Double-click on Text Body in the Style sidebar:

Figure 8.14 – Applying the Text Body style

Note that the paragraphs separate automatically, since the style has a spacing of 0.10” between
paragraphs. If you want to change this default spacing, right-click on the Text Body style and
select Modify. Then, in the Indents & Spacing tab, modify the Below paragraph value, and
then click the OK button.

Getting used to Writer and Calc 287

Figure 8.15 – Modifying the Below paragraph value

5.	 Turn the first line into the title of the document. Position the cursor on the first line, and click
on the Headings section of the Style sidebar. Double-click on Title.

Figure 8.16 – Formatting title

LibreOffice Suite288

Now, format the titles of the sections and subsections of the text.

The words Introduction, Rationale, and Discussion are section headings. The lines Pros and
cons and Follow up are subtitles within the Discussion section.

6.	 Place the cursor on the Introduction line, and double-click on Heading 1 in the Style sidebar.

Figure 8.17 – Applying the Heading 1 style

Using the Ctrl + 1 keys, apply the same style by placing the cursor over the words Rationale
and Discussion.

7.	 Place the cursor over Pros and cons, and then double-click on Heading 2 in the Styles sidebar.
Then, add a sentence that follows the Follow Up subtitle and repeat the procedure, or use the
Ctrl + 2 keys.

Getting used to Writer and Calc 289

Figure 8.18 – Applying the Heading 2 style

8.	 In the Pros and cons subsection, some lines start with a dash (-), which means that those lines
make a list. Select these lines, and double-click on the List 1 style in the Style sidebar. This
style adds an indentation to the lines, and if you add more lines, they become part of the list.

Figure 8.19 – Creating a list

LibreOffice Suite290

Finally, let’s add a table of contents to our formatted document.

9.	 Place the cursor at the end of the title, and press Enter. Click on the Insert menu, and select
Table of Contents and Index. Click on Table of Contents, Index or Bibliography. The Table
of Contents, Index or Bibliography window will appear:

Figure 8.20 – The Table of Contents, Index or Bibliography window

10.	 Edit the title if desired. In the tabs of the window, make changes to the appearance of the table.
Click on the OK button to insert the table of contents on the document, completing the example.

Getting used to Writer and Calc 291

Figure 8.21 – Adding a table of contents

With these simple style changes, you can produce more professional and uniform documentation. The
selected styles can be applied automatically, and you can update the table of contents by right-clicking
on the table and selecting the Update Index option.

Note
For more information about applying styles in LibreOffice Writer, refer to the third-party resources
on the Document Foundation Wiki under Writer | Libre Office Styles Tutorial at https://
wiki.documentfoundation.org/Documentation/Third_Party_Resources.

The properties sidebar, some toolbars, and the process to apply styles remain the same in other
LibreOffice components.

Now, let’s get an overview of the other components and the differences in their available editing toolbars.

Calc

LibreOffice Calc is the spreadsheet component of the suite and is used to calculate, analyze, and
manage data. It supports importing and modifying Microsoft Excel spreadsheets. The LibreOffice
Calc interface resembles the Microsoft equivalent:

https://wiki.documentfoundation.org/Documentation/Third_Party_Resources
https://wiki.documentfoundation.org/Documentation/Third_Party_Resources

LibreOffice Suite292

Figure 8.22 – LibreOffice Calc

Its main features include the following:

•	 Calculations: LibreOffice Calc provides functions, including statistical and banking functions,
to create formulas and perform complex calculations on data. It also includes a Function
Wizard that helps you create formulas.

•	 What-if calculations: Visualize immediate results of changes made to a calculation factor
composed of several factors, as well as managing large tables using different predefined scenarios.

•	 Database functions: Use spreadsheets to organize, store, and filter data. LibreOffice Calc
supports exports from databases, using drag and drop, or using a spreadsheet as a data source
or as an inserted object in LibreOffice Writer.

•	 Organize data: Reorder a spreadsheet to show or hide certain ranges of data, format ranges
according to special conditions, or work out quick subtotals and total calculations.

•	 Dynamic charts: LibreOffice Calc shows spreadsheet data in dynamic charts that update when
data changes.

•	 Opening and saving Microsoft Excel files: Convert Microsoft Excel files and save them in a
variety of other formats. The default format for LibreOffice Calc is the ODF spreadsheet (.ods).

The LibreOffice Calc interface looks similar to the LibreOffice Writer interface. Its main difference from
the LibreOffice Writer interface is that LibreOffice Calc provides an extra Data menu. The Standard
and Formatting toolbars include a couple of options for cell formatting. Calc also includes a Formula
bar, from which formulas for calculations can be added:

Getting used to Writer and Calc 293

Figure 8.23 – The LibreOffice Calc interface

Let’s take a look at the details of each of the differences in the Calc interface:

•	 The Data menu, with commands to edit the data on the current sheet – that is, define ranges,
sort and filter data, calculate results, outline data, and create pivot tables:

	� Inserting a chart: Creates a chart in the current spreadsheet.

	� Inserting or editing a pivot table: Enables you to combine, compare, and analyze large
amounts of data. Data can either be organized, reordered, or summarized, according to
different viewpoints.

	� Defining a print area: Defines the range of cells in a spreadsheet to print.

	� Freezing rows and columns: Splits the sheet in the upper-left corner of the active cell or
column. This area becomes no longer scrollable.

•	 The Formatting toolbar includes functions for Calc such as the following:

	� Merging and centering or unmerging cells, depending on the current toggle state: Use these
options to select adjacent cells and then merge them into a single centered cell. Conversely,
a large cell can be split into individual cells.

	� Formatting as currency: The cell receives the default currency formatting set in Tools |
Options | Language settings | Languages.

	� Formatting as percentage: Applies percentage formatting to the selected cells.

	� Formatting as number: Applies default numeric formatting to the selected cells.

	� Formatting as date: Applies the default date format to selected cells based on the LibreOffice
locale settings.

	� Adding or removing decimal places: Adds or removes a decimal place to the numbers in
the selected cells.

•	 Use the Formula bar to enter formulas. Buttons are used to access the commands:

	� The Name Box shows a reference to the active cell, the range of selected cells, or the name
of the active area.

	� The Function Wizard opens the wizard to help create functions.

LibreOffice Suite294

	� The Select Function inserts a function from a range of cells into the active cell. The function
includes Sum, Average, Minimum, Maximum, and Count.

	� Function adds a formula to the active cell.

Note
For more information about the commands and options available in LibreOffice Calc, refer to
LibreOffice Help at https://help.libreoffice.org/latest/en-US/.

All these spreadsheet editing tools help us to document processes in the administration of Linux
systems, when creating and/or editing inventories or databases of administration elements, such as
servers, routers, users, and passwords.

Now, let’s take a look at the component that manages slide shows and images in the LibreOffice suite.

Creating slides and image management
Following the documentation of processes, assisted by Writer, and the inventory of administrable elements,
supported by Calc, it is time to present a summary of the status, advancement, or performance of our
projects. The LibreOffice component to help us create professional presentations is LibreOffice Impress.

LibreOffice Impress enables us to create professional slide shows, which can include graphics, drawing
objects, text, multimedia, and a lot of other elements, as well as importing and changing Microsoft
PowerPoint presentations.

For onscreen slide shows, LibreOffice Impress includes features such as animation, slide transitions,
and multimedia playback.

As in the case of Writer and Calc, the Impress interface is similar to its Microsoft product peer,
Microsoft PowerPoint.

https://help.libreoffice.org/latest/en-US/

Creating slides and image management 295

One of the few differences occurs upon opening LibreOffice Impress. Impress displays the Select a
Template window:

Figure 8.24 – Opening LibreOffice Impress

LibreOffice includes a set of built-in templates to create documents, presentations, spreadsheets, or
drawings. Using the templates available in the template manager, you can create your own templates
or search online for extra templates.

Templates save editing time by opening new documents with the content and formatting already
complete. The Template Manager provides access to and the organization of templates in LibreOffice.

Previews of available templates appear in the main window of the Template Manager, based on the
search and filtering options. Double-click on any template icon to open a new document with the
template content and formatting.

LibreOffice Suite296

Figure 8.25 – The Template Manager

Select Thumbnail View or List View at the bottom-left to change the way the templates appear.

You can disable the display of the Template Manager window by clicking on the Show this dialog at
startup checkbox.

The main differences between the Writer and Calc interface are that LibreOffice Impress provides a
couple of extra menus – Slide and Slide Show. On Impress, the Formatting toolbar does not load
at startup and instead displays the Drawing toolbar. It also includes the Standard toolbar, access to
commands to present slides, and the Presentation toolbar:

Creating slides and image management 297

Figure 8.26 – The LibreOffice Impress interface

The Properties sidebar is also different, as it focuses on slides.

Let’s take a look at the details of each of the differences in the Impress interface:

•	 The Slide menu provides navigation and slide management commands – you can create, edit,
duplicate, and delete slides, as well as insert slides from another presentation.

•	 The Slide Show menu contains commands and options to play a presentation. This includes
starting the slide show, defining settings, adding a timer, and defining object interaction,
animations, and transitions.

•	 The Standard toolbar includes functions for Impress, such as the following:

	� Display Views, in Edit Modes or Master Modes.

	� Master Slide switches to Master Slide View, where we can add desired elements that appear
on all slides using the same master slide.

	� Start from First Slide and Start from Current Slide state the origin point to display the
slide show.

	� Use the Slide bar buttons to manage slides – New Slide, Duplicate Slide, Delete Slide, and
Slide Layout.

LibreOffice Suite298

	� The Drawing bar contains common editing tools. The Drawing bar is also available in a
text document or a spreadsheet. The set of visible icons could differ depending on the type
of active document. Editing tools include the following:

	� The Select tool (a white arrow) allows you to select an object on the active slide

	� Zoom & Pan

	� Line Color

	� Fill Color

	� Insert Line

	� Inserting different shapes: Basic, Rectangle, Ellipse, Lines and Arrows, Symbol, Block
Arrows, Connectors, Curves and Polygons, Flowchart, Callouts, Stars and Banners, and
3D Objects

	� Object management: Rotate, align, arrange, and distribute

	� Image management: Add shadow, crop, filter, points, and glue points functions (the point
where a connection line could be set)

	� Toggle Extrusion

Note
For more information about the commands and options available in LibreOffice Impress, refer
to LibreOffice Help at https://help.libreoffice.org/latest/en-US/.

The LibreOffice components help us to improve the documentation of our managed systems. In the
following chapters, we will use them to establish a standardized system baseline.

Summary
In this chapter, we provided an overview of Linux office suites. Some of them are integrated into the
official Fedora Linux repositories, and we added some fonts that could help us to improve the look
and feel of the documentation made with an office suite.

We walked through the main components of LibreOffice, included by default in the Workstation version
of Fedora Linux. Writer, the text editor, helps us to create process documentation, and we learned
how to apply styles to documents, improving the appearance and organization of our documentation.

With Calc, the spreadsheet editor, we can create inventories and databases of our managed devices.
We reviewed the main differences between the available tools to edit spreadsheets and the text editor.

Finally, we learned how to make slide shows of our documentation, using Impress. We also discussed
the differences between its editing tools and those of the other components of LibreOffice.

https://help.libreoffice.org/latest/en-US/

Further reading 299

In the following chapter, we will review mail clients and browsers, closing the journey of the productivity
tools offered by Fedora Linux. These tools will help us to organize the documentation of administration
processes using Linux systems.

Further reading
To learn more about the topics covered in this chapter, you can visit the following links:

•	 Office Suites for Fedora: https://flylib.com/books/en/1.303.1.85/1/

•	 Fedora Magazine – Apps for daily needs part 2: office suites: https://fedoramagazine.
org/apps-for-daily-needs-part-2-office-suites/

•	 Fedora Docs – Adding New Fonts in Fedora: https://docs.fedoraproject.org/
en-US/quick-docs/fonts/

•	 LibreOffice Timeline: https://www.libreoffice.org/about-us/libreoffice-
timeline/

•	 LibreOffice Help: https://help.libreoffice.org/latest/en-US/

•	 LibreOffice – Documentation/Third Party Resources: https://wiki.documentfoundation.
org/Documentation/Third_Party_Resources

https://flylib.com/books/en/1.303.1.85/1/
https://fedoramagazine.org/apps-for-daily-needs-part-2-office-suites/
https://fedoramagazine.org/apps-for-daily-needs-part-2-office-suites/
https://docs.fedoraproject.org/en-US/quick-docs/fonts/
https://docs.fedoraproject.org/en-US/quick-docs/fonts/
https://www.libreoffice.org/about-us/libreoffice-timeline/
https://www.libreoffice.org/about-us/libreoffice-timeline/
https://help.libreoffice.org/latest/en-US/
https://wiki.documentfoundation.org/Documentation/Third_Party_Resources
https://wiki.documentfoundation.org/Documentation/Third_Party_Resources

9
Mail Clients and Browsers

The internet began as ARPAnet, a packet-switched network sponsored by the US government, in
September 1969. Linus Torvalds wouldn’t be born until December of that same year. In 1991, when
Linux emerged, only academics, researchers, and the military were on the internet. For most people,
being online meant connecting with a v.32 modem, at the astonishing speed of 9600 BPS (baud per
second) to a Bulletin Board System (BBS), or an online service. The internet as we knew it could be
accessed through ASCII-based applications such as Pine and Elm for email, using command line
programs such as ftp and Archie to search and share files. The most advanced tool available was
Gopher, a Yahoo-like guide to internet resources. Then, Tim Berners-Lee invented the World Wide
Web, and everything changed.

Today, internet access has improved a lot with higher speeds. This has led to the emergence of different
tools for reading emails and surf﻿ing the web.

In this chapter, we will discuss the most common tools available in Fedora Linux, covering the
following main topics:

•	 Mailing with Evolution

•	 Mailing with Thunderbird

•	 Trusty old Firefox

•	 Expanding browsing with Google Chrome

Mail Clients and Browsers302

Technical requirements
For the development of the topics in this chapter, it is necessary to install the packages indicated in
each section. The Firefox browser is the only package installed by default in the Workstation version
of Fedora Linux.

In each section, you will find instructions for the different types of installation of each package as required.

Mailing with Evolution
In 2000, Linux distributions didn’t have an email client that provided the functionality and interoperability
needed for corporate users. Then, Ximian decided to develop Evolution. Evolution version 1.0 was
released in December 2001. It offered Ximian a proprietary plug-in that allows users to connect with
Microsoft Exchange Server. Evolution was open source software from the beginning, but Ximian’s
connector was sold as proprietary software. Thus, Ximian could generate revenue. When Novell
acquired Ximian in August 2003, Novell decided to integrate the Exchange plugin as open source,
starting in May 2004 on Evolution 2.0.

Novell was acquired by the Attachmate Group in 2011. As a result, Novell’s developers moved to
SUSE. In 2012, SUSE decided to withdraw funding for Evolution development.

Red Hat continued with Evolution development. This resulted in the active development of Evolution
and the need for an email client with good support for Microsoft Exchange.

Evolution works as the default personal information manager in most Linux distributions that use
GNOME by default, especially Debian and Fedora Linux.

In December 2018, the Fedora Project decided to drop Evolution from the default installation of the
Workstation version, starting on Fedora Linux 30. However, Evolution is still available in the official
repositories, allowing you to install and use it as a personal information manager.

Now, let’s see how to install and configure Evolution on our workstation. Follow the following steps:

1.	 To install Evolution, Fedora Linux offers several options. From the Software application, select
Evolution for installation, from your preferred source:

	� RPM

	� Fedora Flatpak

Mailing with Evolution 303

	� Flathub

Figure 9.1 – Installing Evolution from a software application

Mail Clients and Browsers304

2.	 Using the terminal, with the dnf command, you can see the available packages and plugins.
Switch to the root user and run the following:

dnf list *evolution*

Figure 9.2 – Evolution and plugins

Install Evolution by your preferred method, and then we’ll start with the mail client configuration.

Mailing with Evolution 305

3.	 To open Evolution, launch it from the menu. As a non-root user, open the menu in the upper-
left corner and type Evolution in the search box:

Figure 9.3 – Evolution from the menu

Mail Clients and Browsers306

Evolution can also be accessed from the Activities Overview menu. Type evolution in
the search bar:

Figure 9.4 – Evolution from the Activities Overview menu

4.	 When Evolution opens for the first time, set it as the default email client if you like:

Figure 9.5 – Configuring Evolution as the default email client

Mailing with Evolution 307

5.	 In the Welcome screen, it’ll ask you to set up an email account. Click the Next button to start
the configuration:

Figure 9.6 – The Evolution configuration wizard

6.	 The first option offered is to restore a backup of the Evolution configuration to set up the
email account.

Figure 9.7 – The Restore from backup window

Mail Clients and Browsers308

If you have a backup, check the Restore from a backup file box, and click on the Browse icon
to select the file and restore the backup.

If don’t have an Evolution backup, click on the Next button to continue with the configuration.

7.	 In the following window, fill in the requested data – Full Name and Email Address:

Figure 9.8 – The Identity window

More information can be added, such as the name of the organization or the aliases managed
by the account.

When finished, click the Next button to continue with the configuration.

8.	 If Evolution activates, it will search for the mail service information for the account entered. If
this is not found, it will provide configuration options for receiving mail:

Mailing with Evolution 309

Figure 9.9 – Receiving mail options

The options are as follows:

	� Exchange Web Services: Connects to Microsoft Exchange servers to synchronize email,
calendar, and contact information.

	� IMAP: Maintains email on the server, so email can be accessed from multiple systems through
the IMAP protocol. IMAP stands for Internet Message Access Protocol.

	� POP: Downloads email to the hard disk for permanent storage as an option, freeing up space
on the email server. POP stands for Post-Office Protocol.

	� USENET news: It connects to a news server and downloads a list of available news summaries.

	� Local delivery: Move the email from the spool and store it in the home directory.

	� MH-format mail directories: Downloads emails using mh (Message Handling System) or
an mh-style program. mh consists of several different programs designed to work from the
command line. Instead of storing many messages in a single file, each message has its own
separate file in a special directory.

	� Maildir-format mail directories: Downloads emails using a Maildir-style program. The
Maildir email format is a common way of storing email messages. Each message is stored
in a separate file with a unique name, and each mail folder is a filesystem directory.

Mail Clients and Browsers310

	� Standard Unix mbox spool directory: Downloads emails in the format used by Unix hosts
to store mail messages. The mbox files usually live in the system mail spool, under various
names in users’ mail directories and under the name mbox in users’ home directories.

	� Standard Unix mbox spool file: This is the same case as the previous option, but the mail
spool is created in a single file.

Note
Confirm general mail access data, such as server type and security, with the staff of the
corresponding area to avoid connectivity problems.

9.	 After selecting the option to receive mail, enter the access data, as shown in the following figure:

Figure 9.10 – The Receiving Email window

Click the Next button to continue with the configuration.

10.	 In the following window, configure the mail reception options, such as the time interval to
check new mails, or whether a copy of the mail should be left on the server, as well as enabling
or disabling functions:

Mailing with Evolution 311

Figure 9.11 – The Receiving Options window

Click the Next button to continue with the configuration.

11.	 In the following window, configure the Sending Email options:

Figure 9.12 – The Sending Email window

By default, the wizard fills the Sending Email fields with the login information provided for the
mail reception. If this information is correct and enough for sending emails, click the Finish
button to end the configuration.

If you want to review all the information provided, click the Next button.

Mail Clients and Browsers312

12.	 The following window shows a summary of the data configured for the account:

Figure 9.13 – The Account Summary window

If any information needs to be changed, click on the Back button to return to the window
where it is required to change the data.

If the information is correct, click the Next button.

Mailing with Evolution 313

13.	 The following window confirms the end of the mail account configuration:

Figure 9.14 – The completed mail configuration window

14.	 Click the Apply button to save the settings.

With the account now set up, email is ready to be checked and sent.

In the main window of Evolution, in the upper-left corner, there are buttons to send/receive mail and
create a new mail.

Mail Clients and Browsers314

To send or receive mail, click on the Send/Receive button:

Figure 9.15 – The Evolution main window

To create an email, click the New button:

Figure 9.16 – The Compose Message window

Mailing with Thunderbird 315

In the new message composition window, fill in the recipient and subject of the email. Additionally,
choose the format of the email (plain text, rich text, or HTML), as well as add attachments with the
button in the lower-right corner.

When the email message is ready for delivery, click on the Send button.

Evolution is currently the default client in several Linux distributions. Some alternative mail clients
exist, but they do not have all the options that Evolution has.

One of the clients with more options, which is an alternative to Evolution, is Mozilla Thunderbird.

Let’s now take a walk through this mail client and see its main differences with Evolution.

Mailing with Thunderbird
Mozilla Thunderbird is a cross-platform, free, and open source email, news, RSS, and chat client,
developed by the Mozilla Foundation. It uses the XUL interface language. XML User Interface
Language (XUL) is an XML-based user interface language developed by Mozilla. XUL works as an
XML dialect, providing graphical user interfaces such as web pages. XUL is not a public standard.

On December 7, 2004, version 1.0 was released and received over 500,000 downloads in its first 3 days
of release, and 1 million in 10 days.

On July 6, 2012, Mozilla announced that the company was dropping the Thunderbird development
priority because the ongoing effort to expand Thunderbird’s feature set was unsuccessful. On December 1,
2015, Mozilla’s CEO announced that the development of Thunderbird should be separated from Firefox.

Recently, Thunderbird announced on its official blog that one of the same Mozilla subsidiaries (MZLA
Technologies Corporation) will continue with the project, with new updates, a new design, and a
mobile application.

Thunderbird is installed by default on the desktop systems of several Linux distributions. It is not
installed by default in Fedora Linux, but it is available in the official repositories.

Let’s see how to install and configure Thunderbird on our Fedora Linux Workstation. Follow the
following steps:

1.	 To install Mozilla Thunderbird, Fedora Linux offers several options, but it is only available as
a Flatpak package. From the software application, to install Mozilla Thunderbird, select your
preferred option:

	� Fedora Linux (Flatpak)

	� Flathub

Mail Clients and Browsers316

Figure 9.17 – Installing Thunderbird from a software application

2.	 Using the terminal, with the dnf command, you can see the available packages and plugins.
Switch to the root user and run the following:

dnf list *thunderbird*

Figure 9.18 – Thunderbird and plugins

Install Mozilla Thunderbird by your preferred method, and then we’ll start with the mail
client configuration.

Mailing with Thunderbird 317

3.	 To open Mozilla Thunderbird, launch it from the menu. As a non-root user, open the menu in
the upper-left corner and type Thunderbird in the search box:

Figure 9.19 – Launching Thunderbird from the menu

Mozilla Thunderbird can also be accessed from the Activities Overview menu. Type
thunderbird in the search bar:

Mail Clients and Browsers318

Figure 9.20 – Thunderbird from the Activities Overview menu

4.	 When Mozilla Thunderbird opens for the first time, it will ask you to set up an email account:

Figure 9.21 – The Account Setup window

Mailing with Thunderbird 319

Fill in the requested data, and click on the Continue button.

Note
In my case, I entered a Google email account. If your workstation is connected to the internet,
Mozilla Thunderbird will try to get the information from the servers of the mail service. It will
only get the information if it is accessible.

The following window shows the data of the available configurations downloaded. Select the
configuration of your preference, and click on the Done button:

Figure 9.22 – The available configurations downloaded

Mail Clients and Browsers320

Mozilla Thunderbird will offer to connect the services found in the account, such as the address
books or calendars:

Figure 9.23 – Automatic setup completed

To complete the configuration, click on the Finish button.

Note
If Mozilla Thunderbird can’t find service configuration information, you will need to manually
configure the mail account.

Mailing with Thunderbird 321

This ends the automatic configuration of the mail account. To specify the mail account settings manually,
follow the following steps:

1.	 In the Account Setup window, click the Configure manually link:

Figure 9.24 – The Account Setup window

Note
Confirm the general mail access data, such as server type, service ports, and security, with the
staff of the corresponding area to avoid connectivity issues.

Mozilla Thunderbird supports connection to a mail server, by IMAP or POP3 protocols or
local mail, as described in the previous section.

Mail Clients and Browsers322

2.	 Select the protocol to be used and the access data of the incoming and outgoing mail servers:

Figure 9.25 – The manual Account Setup window

Mailing with Thunderbird 323

3.	 If further configuration options are required, click on the Advanced config link.

Figure 9.26 – The advanced Account Settings window

This window contains granular settings for the account connection details.

Once the configuration is complete, click on the x symbol in the Account Settings tab to close it.

Mail Clients and Browsers324

4.	 After completing the account setup, Mozilla Thunderbird’s main window appears:

Figure 9.27 – The Mozilla Thunderbird main window

Mailing with Thunderbird 325

5.	 From the main window, it is possible to configure more accounts for mail, calendars, address
books, chat, file links, feeds, or newsgroups. It also imports these accounts from other email
clients and provides access to support resources. To retrieve mail messages, click on the Get
Messages button:

Figure 9.28 – Retrieving mail messages

Mail Clients and Browsers326

Now, let’s see how to send an email:

1.	 To create a new email message, click the Write button on the Mozilla Thunderbird toolbar:

Figure 9.29 – The Mozilla Thunderbird main window

2.	 In the Write message window, fill in the recipient and subject of the email. If you need to send
attachments, click on the Attach button on the toolbar:

Trusty old Firefox 327

Figure 9.30 – The Write message window

3.	 When the email message is ready for delivery, the Send button gets enabled. Click the Send
button to dispatch the email message.

According to opensource.com, these two mail clients, Evolution and Mozilla Thunderbird,
represent the most used desktop mail clients in enterprise environments.

However, the most common method to get access to email on Linux is through a web browser.

Let’s now take a look at the two most used web browsers in Fedora Linux.

Trusty old Firefox
In January 1998, the Netscape Communications Corporation (NSCP) announced plans to release
the source code for its Netscape Communicator software on the internet. The company released
the source code for the first developer version of Netscape Communicator 5.0 in the first quarter of
1998. This aggressive move allowed Netscape to harness the creative power of thousands of internet
programmers by incorporating enhancements for future versions of Netscape software.

This announcement led to the creation of the Mozilla Project.

Phoenix 0.1 was released in September 2002. That was the first version of a browser that was later
called Firebird and then Firefox. Firefox 1.0 was launched in 2004 and became a huge success.

In November 2003, Red Hat announced Fedora Core 1, the first software release of the Fedora Project.
GNOME was Fedora Linux’s default desktop. Mozilla Suite was the web browser of choice at the time.
Mozilla had not yet started the Firefox browser project, so this suite included an email client and a
Usenet newsreader.

http://opensource.com

Mail Clients and Browsers328

Fedora Core 3 was released one year later, in 2004. This was the first version to include the Mozilla
Firefox web browser.

In 2019, Fedora Linux 31 Workstation came with a Firefox backend, moved from X11 to Wayland
by default, and had a new display server. This was another step in the ongoing effort to move to
Wayland. This affected only GNOME.

Firefox comes installed as the default RPM on Fedora Linux Workstation, alongside Firefox installed
as a Flatpak application and another package that lets you run Firefox in Wayland.

Let’s see the difference between each of these installation options:

1.	 From the software application, search for Firefox, and click on the installed option:

Figure 9.31 – Firefox on a software application

Trusty old Firefox 329

2.	 After clicking on the installation sources, find RPM and the Fedora Flatpak application:

Figure 9.32 – The Firefox installation source

3.	 Also in the terminal, use the dnf command to list the available Firefox packages:

dnf list *firefox*

Figure 9.33 – The Firefox packages on the terminal

Mail Clients and Browsers330

4.	 To open the Firefox browser, by default, a launcher will appear in the favorites of the Activities
Overview window:

Figure 9.34 – The Firefox launcher on Activities Overview

From the menu, you can also find the Firefox launcher within the favorites:

Figure 9.35 – The Firefox launcher on the menu

Trusty old Firefox 331

In Chapter 3, I mentioned that installing the Gnome Frippery Panel Favorites extension
(https://extensions.gnome.org/extension/4/panel-favorites/) adds
the favorites to the taskbar, so the Firefox launcher appears on the desktop:

Figure 9.36 – The Firefox launcher on the desktop

5.	 Opening Firefox shows the Fedora Project page as the home page:

Figure 9.37 – The Firefox browser

https://extensions.gnome.org/extension/4/panel-favorites/

Mail Clients and Browsers332

6.	 You can choose to change the home page, which can be done from the Firefox settings. To do
this, click on the icon with three horizontal lines, as shown here:

Figure 9.38 – The Firefox settings

7.	 In the drop-down menu, select Settings to open the window with the Firefox preferences. This
window opens in the same way – by navigating to about:preferences from the address bar:

Trusty old Firefox 333

Figure 9.39 – Firefox preferences

8.	 Firefox settings appear in sections, and each one has several sections:

	� General: General configuration options such as the following:

	� Language and appearance: Changes the appearance of the website, with automatic, light
or dark color schemes, colors, fonts, zoom, as well as the language. It also changes the
display of Firefox menus, messages, and notifications.

	� Files and applications: Changes the handling of files, such as downloads, including where
to save them and which applications to open them with.

	� Firefox updates: Verifies the browser version.

	� Performance: Changes or verifies the recommended performance settings.

	� Browsing: Changes or adds options to the browsing behavior, such as a scroll display or
media file handling. It also controls extensions and features.

	� Network settings: Configures how Firefox connects to the internet.

Mail Clients and Browsers334

	� Home: Controls the launch options when opening Firefox:

	� New windows and tabs: Configuration of the home page, new windows, and tabs

	� Firefox Home Content: Configuration of the home screen content

	� Search: Configuration of the search options, including the following:

	� Search bar: A tool to perform a search

	� Default search engine: The preferred search engine (the default is Google)

	� Search suggestions: The behavior of the suggestions in searches

	� Search shortcuts: Alternative search engines

	� Privacy & Security: Privacy and security settings, which include the following:

	� Enhanced tracking protection: A tool to block malicious trackers and scripts. It allows
different levels of security.

	� Cookies and site data: The management of cookies and saved site data.

	� Logins and passwords: The management of site access data and passwords.

	� History: Browsing history management.

	� Address bar: The customization of the address bar view.

	� Permissions: The customization of access to resources, such as location, devices,
or notifications.

	� Firefox data collection and use: The management of data collected by Firefox.

	� Security: The customization of the general security of navigation.

	� Sync: The configuration of sync options – bookmarks, history, tabs, passwords, and add-ons.
Create a sync account if required.

	� More from Mozilla: Allows you to try other Mozilla products:

	� Firefox Mobile: A browser for mobile phones

	� Firefox Relay: Email masking to protect online identity

	� Extensions & themes: Firefox customization options. This window can also be opened by
navigating to about:addons from the address bar:

	� Extensions: The extensions include programs that expand Firefox’s functions, such as
pop-up blockers, online translation, and cookie handling

Trusty old Firefox 335

	� Themes: Changes the color scheme or add a custom background to the browser

	� Plugins: Plugins add features to the browser, such as playing some video or image formats

•	 Firefox Support: Opens the Mozilla Support window (https://support.mozilla.
org). This can also be accessed in the Firefox Options, Preferences and Settings section.

9.	 In the drop-down menu shown in Figure 9.38, find some shortcuts to various sections of the
Firefox settings or preferences. For example, to view the version of Firefox, click on the drop-
down menu, click on the Help option, and then click on About:

Figure 9.40 – About Mozilla Firefox

One of the best feel and look-related options that Firefox has is customizing the browser theme.

Let’s see how to add a theme to our browser.

Customizing Firefox

A theme changes the appearance of Firefox, such as the color scheme and the background image of
the toolbars. Not all Firefox themes are light (background), and in some cases, they are not compatible.
Before installing a theme, verify the compatibility and size of it.

https://support.mozilla.org
https://support.mozilla.org

Mail Clients and Browsers336

Now, let’s see how to install a Firefox theme on our workstation. Follow the following steps:

1.	 Open the Firefox Settings window and click on the Extensions & Themes section:

Figure 9.41 – Firefox Extensions & Themes

Trusty old Firefox 337

2.	 The Firefox Add-ons Manager window displays a sub-menu with Recommendations, Extensions,
Themes, and Plugins customization options.

Figure 9.42 – Firefox add-ons

Click on Themes.

Mail Clients and Browsers338

3.	 In the Themes window, browse through the theme recommendations offered by Firefox:

Figure 9.43 – Firefox themes

It is also possible to search for themes. In the search bar called Find more add-ons, type dark
space.

Trusty old Firefox 339

4.	 Firefox displays a window with the results for the theme search:

Figure 9.44 – Searching for a theme

Click on the first theme.

Mail Clients and Browsers340

5.	 To add the theme, install and enable it, and then click on the Install Theme button:

Figure 9.45 – Installing a theme

Trusty old Firefox 341

6.	 A notification window will appear to confirm the add-on installation:

Figure 9.46 – Installing an add-on

Click the Add button.

Mail Clients and Browsers342

7.	 The appearance of Firefox will change in the tab bar and toolbar:

Figure 9.47 – Adding a theme

A notification window will inform you about the theme application. Click the Okay button
to accept the change.

Once you have finished customizing Firefox, it is ready to open our email via the web.

Following the example in the previous section, open the Google Mail URL (https://mail.
google.com):

https://mail.google.com
https://mail.google.com

Trusty old Firefox 343

Figure 9.48 – Accessing mail via the web

Enter your email address and password. Click the Next button. Firefox will open the email folder so
that you can check and send mail:

Figure 9.49 – Accessing email via the web

Mail Clients and Browsers344

Firefox is one of the best and most stable browser options available on Linux.

Another of the best and most popular options is to use Google’s browser – Google Chrome. Let’s see
how to take browsing one step further, using Google’s Chrome browser.

Expanding browsing with Google Chrome
Google Chrome is a proprietary web browser developed by Google, although derived from open
source projects. Chrome builds on the Chromium open source browser project. Chrome draws from
different code libraries from Google and others from third parties, such as Netscape. Chrome releases
are sourced from Chromium.

Regardless of this, Google Chrome is available free of charge.

Google Chrome was launched in 2008, and along with its release, the Chromium source code became
available. This allowed the code set to serve as the basis for the development of other browsers. The
initial version of the code included builds for Windows, macOS, and Linux at a very early stage of
development, lacking full functionality. Chromium 1.0 was released in December 2008 and removed
Chrome from beta status for Windows only.

In May 2009, the first alpha version of Chromium for Linux was released. That July, Chromium
incorporated native themes for Linux, using the GTK+ toolkit, which allowed it to integrate with the
GNOME desktop environment.

Chromium 5.0 was released in January 2010. Google Chrome 5.0 followed in May 2010 and provided
a stable (non-beta) version for all platforms.

Chrome includes extra features, such as support for proprietary media files (such as H.264 or AAC)
and playback of rights-protected media (Netflix, etc.). Chrome also includes support for other Google
services, such as browser synchronization and location services not supported by Chromium.

Google Chrome is available on Fedora Linux Workstation through a third-party repository. After
enabling this repository, Chrome can be installed via the software application or the command line.

Expanding browsing with Google Chrome 345

Let’s verify the options to install Chrome on our workstation:

1.	 Open the software application, and in the search option, type Google Chrome:

Figure 9.50 – Searching for Chrome on the software app

Mail Clients and Browsers346

2.	 Click on the first result and verify the installation source:

Figure 9.51 – The Google Chrome source installation options

Expanding browsing with Google Chrome 347

3.	 To enable the Google third-party repository, return to the main window of the software application.
Click the collapsed menu icon with three horizontal lines, next to the close (x) button:

Figure 9.52 – Software repositories on the software app

4.	 Click on Software Repositories.

Mail Clients and Browsers348

5.	 Scroll down until you find the google-chrome repository, and toggle the button to enable it:

Figure 9.53 – The Software Repositories window

Expanding browsing with Google Chrome 349

6.	 Run the search again, and verify that the installation source is RPM:

Figure 9.54 – The Google Chrome source installation options

7.	 Open the terminal, and as the root user, use the dnf command to list the google-chrome
browser packages:

dnf list *google-chrome*

Figure 9.55 – The Google Chrome packages

Mail Clients and Browsers350

Install Google Chrome by your preferred method, and then we’ll start the browser configuration.

8.	 To open Google Chrome, launch it from the menu. As a non-root user, open the menu in the
upper-left corner, and type Google Chrome in the search box:

Figure 9.56 – Google Chrome launched from the menu

Expanding browsing with Google Chrome 351

Google Chrome can also be accessed from the Activities Overview menu. Type Google
Chrome in the search bar:

Figure 9.57 - Google Chrome from the Activities Overview menu

9.	 If needed, add Chrome to the Favorites tab. Drag and drop the Chrome icon from the Activities
Overview menu to the Favorites dash.

Mail Clients and Browsers352

A notification window will confirm that Google Chrome is now pinned to the Favorites dash:

Figure 9.58 – Google Chrome pinned to Favorites

The icon can also be placed in the Favorites dash in your preferred location. From now on, it
will appear as a Favorites item:

Figure 9.59 – The Favorites dashboard

Expanding browsing with Google Chrome 353

Thus, the Google Chrome icon also appears in the taskbar, which was enabled by the previously
installed extension:

Figure 9.60 – Google Chrome on the taskbar

10.	 When Chrome opens for the first time, you can set it as the default browser:

Figure 9.61 – Configure Google Chrome as the default browser

11.	 Enable the checkboxes and click the OK button if you agree with the settings. Otherwise, close
the window.

To configure Google Chrome, let’s take advantage of the fact that the email account currently
being used is from Google Mail.

Mail Clients and Browsers354

12.	 When the Chrome window opens, click on the Already a Chrome user? Sign in link to use
the email account and synchronize the Chrome settings.

Figure 9.62 – The Google Chrome welcome screen

Expanding browsing with Google Chrome 355

13.	 Enter the email address in the following dialog box, and click on the Following button:

Figure 9.63 – The Google Chrome access screen

Mail Clients and Browsers356

14.	 On the following screen, enter your password, and click on the Following button:

Figure 9.64 – The Google Chrome access screen

Expanding browsing with Google Chrome 357

15.	 If you customized Chrome on another device and enabled sync, Chrome will configure automatically.

Figure 9.65 – The Google Chrome sync screen

16.	 Click the Yes, I’m in button to start the synchronized customization.

Mail Clients and Browsers358

The automatic application of your theme, installation of extensions and plugins, as well as the
configuration and downloading of your history and bookmarks will start running:

Figure 9.66 – Running the Google Chrome sync

Expanding browsing with Google Chrome 359

17.	 After finishing the sync, Google Chrome will display the completed customization:

Figure 9.67 – Google Chrome customized

Like Firefox, Google Chrome offers the configuration and synchronization between devices. Chrome
takes advantage of the use of Google services for configuration sync. The configuration and customization
of Chrome is pretty similar to Firefox.

Mail Clients and Browsers360

To access the Chrome settings, click on the button with the three dots icon (aka a vertical ellipsis)
below the x button:

Figure 9.68 – Chrome settings

The Chrome settings appear in sections, and each one has several sections, among them the following:

•	 You and Google: Configures access account and syncs with Google services. From here, you
can customize the profile, as well as import bookmarks and settings.

•	 Autofill and passwords: Manages the password manager, payment methods, and stored
addresses and data.

•	 Privacy and security: Includes a security check option to detect security breaches, malicious
extensions, and so on. It also manages privacy and security options.

•	 Performance: Adds a memory saver option, a type of power saving mode, for inactive open tabs.

•	 Appearance: Configures the appearance of the browser, such as the theme, the home page, as
well as how to display the bookmarks bar or the side panel.

•	 Search engine: Configures the browser’s search engine (which might differ from Google) and
its behavior.

•	 Default browser: Detects the system default browser.

•	 On startup: Configures browser behavior at startup.

Expanding browsing with Google Chrome 361

•	 Languages: Configures the preferred languages to display website content, as well as offering
to spell-check when you type on websites.

•	 Downloads: Manages file downloads.

•	 Accessibility: Configures the browser accessibility options.

•	 System: Configures the browser behavior options in the operating system.

•	 Reset settings: Resets the browser settings to factory defaults.

•	 Extensions: Manages browser extensions and add-ons.

•	 About Chrome: Displays the browser version.

The following figure shows the sections of the Chrome settings:

Figure 9.69 – The Chrome settings sections

Mail Clients and Browsers362

Like in Firefox, you can access the Settings section of Chrome directly. For example, to view the
browser version, type chrome://settings/help in the address bar:

Figure 9.70 – The Chrome version

Expanding browsing with Google Chrome 363

In this particular case, Chrome was customized with the Google Mail Checker extension
(https://chrome.google.com/webstore/detail/google-mail-checker/
mihcahmgecmbnbcchbopgniflfhgnkff), which adds a button to directly access Google Mail:

Figure 9.71 – The Google Mail Checker extension

https://chrome.google.com/webstore/detail/google-mail-checker/mihcahmgecmbnbcchbopgniflfhgnkff
https://chrome.google.com/webstore/detail/google-mail-checker/mihcahmgecmbnbcchbopgniflfhgnkff

Mail Clients and Browsers364

To manage and add extensions in Chrome, click on the Extensions section of the Chrome settings,
or type chrome://extensions/ in the address bar:

Figure 9.72 – Chrome extensions

From the search bar, you can find and install extensions with one click.

These applications are those most used for email and internet browsing in Fedora Linux Workstation.

With these applications, we have covered all the basic tools, establishing a baseline for the standardization
of the managed systems’ documentation.

In the following chapters, we will discuss the processes and best practices to generate the baseline, as
well as a standardized system administration.

Summary 365

Summary
In this chapter, we learned how to install, configure, and use the most common Linux options for
email and web browsing.

Evolution, supported by Red Hat and GNOME, is one of the most common mail clients in enterprise
environments (according to opensource.com). This is because it allows you to connect to the
Microsoft Exchange mail service.

The Mozilla Project provides us with two options for both services. The Thunderbird email client
is an excellent alternative for email management, whereas Firefox, the most used web browser, is
included in all Linux distributions.

Google Chrome proves a dynamic choice as a web browser. Based on open source projects, it offers
the best of both worlds, with the integration of proprietary plugins. The use of a mail account in the
services offered by Google provides mobility between devices, as well as flexibility when accessing them.

In the following chapter, we will look at the fundamentals of the concepts and processes for the
administration of Linux systems, taking advantage of having a workstation with a compatible
operating system.

Further reading
To learn more about the topics covered in this chapter, you can visit the following links:

•	 Fedora Magazine – Email clients in Fedora:

https://fedoramagazine.org/email-clients-fedora/

•	 Fedora docs – Mail Servers:

https://docs.fedoraproject.org/en-US/fedora/latest/system-
administrators-guide/servers/Mail_Servers/

•	 GNOME Wiki – Evolution:

https://wiki.gnome.org/Apps/Evolution

•	 Thunderbird:

https://www.thunderbird.net/en-US/

•	 Fedora Wiki – Firefox:

https://fedoraproject.org/wiki/Firefox

•	 Fedora docs – Installing Chromium or Google Chrome browsers:

https://docs.fedoraproject.org/en-US/quick-docs/installing-
chromium-or-google-chrome-browsers/

http://opensource.com
https://fedoramagazine.org/email-clients-fedora/
https://docs.fedoraproject.org/en-US/fedora/latest/system-administrators-guide/servers/Mail_Servers/
https://docs.fedoraproject.org/en-US/fedora/latest/system-administrators-guide/servers/Mail_Servers/
https://wiki.gnome.org/Apps/Evolution
https://www.thunderbird.net/en-US/
https://fedoraproject.org/wiki/Firefox
https://docs.fedoraproject.org/en-US/quick-docs/installing-chromium-or-google-chrome-browsers/
https://docs.fedoraproject.org/en-US/quick-docs/installing-chromium-or-google-chrome-browsers/

Part 4:
System Administration Tools

In this part, you will learn the best practices to perform system administrator tasks, starting from the
basic principles. You will also receive tips on how to tune a system, use hardened security, and use
virtualization and containers.

This part contains the following chapters:

•	 Chapter 10, System Administration

•	 Chapter 11, Performance Tuning Best Practices

•	 Chapter 12, SELinux

•	 Chapter 13, Virtualization and Containers

10
System Administration

Unlike many professions, there is no single path to becoming a system administrator. Many SysAdmins
have a degree in a wide range of fields: computer science, systems engineering, Information
Technology, software engineering, mechanical engineering, meteorology, and so on.

Plus, given the hands-on nature of system administration, and the availability of open source server
software, many SysAdmins enter this field on a self-taught basis. Generally, it requires some prior
experience with the system expected to be managed. In some cases, SysAdmin candidates must hold
a certificate before they can be considered for the position.

This profession becomes more difficult if you don’t have the habit of undertaking best practices.

But where do you learn them? Where are they written down?

In this chapter, we intend to clear up those doubts and help you on your way to becoming a Linux
system administrator.

We’re going to cover the following main topics:

•	 The three laws of the SysAdmin

•	 A little bit of Git and programming

•	 Don’t forget to back up

•	 Automating with Ansible

•	 Never-ending study

Technical requirements
To complete the topics in this chapter, you will need to install the packages indicated in each section.
In each section, you will find instructions for the different types of packages you will need to install.

System Administration370

The examples for this chapter can be downloaded from this book’s GitHub repository: https://
github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/
main/chapter10.

The three laws of the SysAdmin
“Because, if you stop to think of it, the three laws of robotics are the essential guiding principles of a good
many of the world’s ethical systems. [...] To put it simply, if Byerley follows all the laws of robotics, he
may be a robot, or may simply be a very good man.”

Dr. Susan Calvin in Evidence from Isaac Asimov

For more than 20 years, I was a SysAdmin for different companies. In those years, some young people
asked me what the best practices were and if could they apply them to consider themselves a good
SysAdmin. Over the years, I have read different articles about these best practices: Ethics Code for
SysAdmins, The 10 Commandments of the SysAdmin, and even Fundamental Laws of Computing.

This job of becoming a platform SysAdmin is an arduous task that becomes complicated if we don’t get
into the habit of applying best practices. But where do you learn them? Where are they written down?

One of the best philosophies, in my experience, is to follow the KISS principle and, based on it,
simplify the recommendations into fundamental principles that help us develop our skills.

Let’s provide an overview of this principle.

The KISS principle

The KISS principle (an acronym for Keep It Simple, Stupid!) is a design principle that was outlined
by the US Navy in 1960. It states that most systems work better if they’re kept simple than if they
become complicated. Thus, simplicity should be a key aim in design, and unnecessary complexity
should be avoided.

A text attributed to Leonardo Da Vinci gives us a broad outline of the principle:

“Simplicity is the ultimate sophistication.

When once you have tasted flight, you will forever walk the Earth with your eyes turned skyward, for
there you have been, and there you will always long to return.

Learning never exhausts the mind.”

– Leonardo da Vinci

In most cases, simple solutions are more effective. Over the years, I have seen young SysAdmins fall
into applying complex solutions that lead to more issues.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter10
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter10
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter10

The three laws of the SysAdmin 371

Note
For more information on how to apply the KISS principle in code creation, refer to The Kiss
Principle at https://people.apache.org/~fhanik/kiss.html.

Based on this, let me share with you the fundamental principles that guide me in my work as a SysAdmin.

Let’s see how these fundamental principles originated, and then delve deeper into them.

Knowing the basic tasks

This is from Wikipedia (https://en.wikipedia.org/wiki/System_administrator):

“A System Administrator is the person who handles implementing, configuring, maintaining, monitoring,
documenting, and ensuring the proper functioning of a computer system, or some aspect of it.”

Their purpose is to guarantee the uptime, performance, resource usage, and security of the servers that
they manage.

They have different roles, such as server administrator, database administrator, network administrator,
email server administrator, web server administrator, security administrator, backup administrator,
and so on.

Depending on the role, the tasks change, but they converge on fundamental points.

Let’s start with the most basic point, which is to always use the command-line interface. As mentioned
in Chapter 1, the Terminal is the primary tool for operating system administration. Its use extends
the capabilities of system administration and operation.

From my own experience, any productive system will fail one day, no matter how many precautions
we have provided or maintenance we’ve undertaken. The best solution is to prepare for that day with
a valid backup.

If we do not know what is critical in our system, then we should investigate what is critical and, thus,
plan to have a backup. How do we know that a backup will serve us in case of disaster? Here are some
questions you should ask when planning:

•	 What software (or script) is used for backing up?

•	 How much space do we have for backups (internal and external, on disk, or on tape)?

•	 How often should we rotate the backups?

•	 Regardless of the total backup (full backup), do we need incremental backups?

Once we have a clear idea of how we make the backup, we must take the necessary time to verify it.
Although we have a good plan for creating backups, this does not mean that they won’t be corrupted.

Backing up, and how often we do it, is the most basic and generic task in all types of system administration.

https://people.apache.org/~fhanik/kiss.html
https://en.wikipedia.org/wiki/System_administrator

System Administration372

The majority of backup solutions allow us to handle this task via the command line. Thanks to this facility,
the task could become automated, like many others. Automating tasks streamlines SysAdmins’ work.

The statement Lazy SysAdmin is the best SysAdmin is well known. This means that if you are proactive
enough to automate all processes, you will have a lot of free time and be considered lazy. The best
SysAdmin never seems to be very busy and prefers relaxing and letting the system do the work for
them. Work smarter, not harder.

But the free time we can get from automating processes should be used productively – maybe by studying
some new language or emerging technologies we haven’t mastered (Perl, Python, Kubernetes, and so
on) or optimizing some script to turn it into an orchestration.

The following figure shows the evolution of these principles:

Figure 10.1 – Fundamental principles

Following these basic principles helped me improve many systems administration skills. Although
they do not cover all aspects of systems administration per se, they create good habits that could
develop many skills needed for this job.

These principles constitute my fundamental laws of effective management – that is, my three laws of
the SysAdmin:

•	 Back up: A SysAdmin must back up the entire system and always verify the backup

•	 Automate: A SysAdmin should automate as much as possible, except if it conflicts with the
first law

•	 Study: A SysAdmin must have free time to study, so long this free time does not conflict with
the first or second law

Before we dive deep into each of the laws of system administration, let’s take a quick look at a couple
of indispensable tools for implementing them.

First, we’ll look at programming and version management.

A little bit of Git and programming 373

A little bit of Git and programming
Typical system administration tasks involve command-line tools. Tasks of greater complexity often need
to chain several commands and share the results with each other. Linux commands can be combined to
solve repetitive and difficult tasks using the Bash shell environment and basic programming functions.

As a command interpreter and a programming language in its own right, the Bash shell environment
allows you to run routines and use expressions, besides running other programming languages.

These routines simplify the lists of commands, which can be included in a file called a Bash script.

Next, we’ll learn how to create Bash scripts.

Bash scripting

Bash scripting consists of programming using commands as the program’s instructions. This strategy
automates repetitive tasks, reducing them to a single line through expressions such as logic gates,
conditions, loops, and so on. Thus, it facilitates the consolidation of several long commands into a
single piece of code to run.

It provides a structured, formatted, and modular sequence of activities, as well as commands with
dynamic values through the use of command-line arguments.

In its simplest form, a Bash script consists of a runnable file containing a list of commands, and with
programming logic to control decision-making in the task. Skill in shell scripting is essential for
administering systems in any operating environment.

There is a lot of literature and many references on how to write a Bash script in the best way. However,
by following the principle of simplicity mentioned at the beginning of this chapter, it could summarized
as follows:

#!/bin/bash  ← [1]
#
IDENTIFICATION  ← [2]
#

VARIABLES  ← [3]

COMMANDS  ← [4]

Let’s take a closer look:

•	 [1] she-bang or sh-bang: The first line of a script starts with the #! notation. This is a
two-byte magic number that indicates an interpretative script. The syntax that follows is the
name of the command interpreter needed to run the lines of this script.

System Administration374

Note
To understand how magic numbers indicate file types in Linux, refer to the file(1) and
magic(5) man pages.

•	 [2] IDENTIFICATION: The identification section of the script is essential and indispensable.
This is the documentation of the script and includes the description of the routines run, as well
as the version and even the author’s details and license of use.

•	 [3] VARIABLES: This section declares the variables that run the script during its operation.
The variables store information in the system’s memory. The script uses local variables. These
variables store information for short periods. Local variables exist and are valid only for the
shell or session in which the script runs.

•	 [4] COMMANDS: This section lists the routines and commands to run. It also includes functions
used to specify run commands in specific situations.

Let’s see an example of a Bash script. Create a script that covers the following routines:

1.	 Name the file mytasks.sh.

2.	 Create a working directory named class.

3.	 Concatenate the following files as a data file in the working directory:

	� /etc/passwd

	� /etc/group

	� /etc/shadow

4.	 Create the following users:

	� John

	� Peter

	� Mark

5.	 Copy the data file to the users’ home.

6.	 Generate an activity log.

The routines are simple: creating a working directory gives the administrator a single point of
consolidation of working files. This makes backing up much easier. And, from system files, we create
a data file, which must exist in each of the users’ home directories – the same users that, if they do not
exist in the system, must create them. All routines and activities performed by the Bash script should
be recorded in the log for documentation purposes.

A little bit of Git and programming 375

The Bash script involves creating users, so the user running the script must have the appropriate privileges
to do so. One of the best options is to use the sudo command. Then, you can grant the non-root user
the privilege to create users and assign the permissions needed to the files involved in the activities.

To make this example a little simpler, we’ll use the root user. To switch to the root user, use the
sudo command:

$ sudo -i

To create the Bash script, follow these steps:

1.	 Create and change to the class working directory:

mkdir class
cd class

2.	 Use your preferred text editor to create the mytasks.sh script file. In this example, we will
use the vim editor:

vim mytasks.sh

3.	 As a she-bang, add the #!/bin/bash line:

Figure 10.2 – Creating the mytasks.sh script

System Administration376

4.	 Fill in the IDENTIFICATION section with descriptive information about the script routine,
including the version and the author of the script:

Figure 10.3 – Script identification section

5.	 In the VARIABLES section, we need to declare the static information, which won’t change:

I.	 The path and name of the class working directory:

WDIR=/root/class

II.	 The path and name of the log file:

LOG=$WDIR/mytasks.log

Please note how the working directory variable serves as the file path origin point.

III.	 The selected timestamp for the log record of the runs:

TIMESTAMP=$(date +'%Y-%m-%d %H:%M')

This output of the date command gets formatted as 2023-06-18 20:50.

IV.	 The path and name of DATA_FILE:

DATA_FILE=$WDIR/data

A little bit of Git and programming 377

6.	 In the command section, test the use of variables and how tasks are logged and run by creating
the data file:

I.	 Start recording a header with symbols to separate the activities in log:

echo "++++++++++++++++++++++++++++++++" >> $LOG

To record the activities in log, run an echo command with the activity and direct the
output to the log file.

II.	 Record the start of the script so that you can count the time it takes to perform the routine:

echo "$TIMESTAMP [INFO] Start running mytasks.sh" >> $LOG

Using log levels (info, error, warn, and so on) allows you to distinguish the outputs
of the activities.

Note
To learn more about kernel log levels, refer to the syslog(2) man page.

III.	 Record the first activity – that is, creating the data file:

echo "$TIMESTAMP [INFO] Create data file" >> $LOG
cat /etc/passwd >> $DATA_FILE
cat /etc/group >> $DATA_FILE
cat /etc/shadow >> $DATA_FILE

This same first activity can be seen in the following screenshot:

Figure 10.4 – The first version of mytasks.sh

System Administration378

Now, let’s test this first version of the Bash script:

1.	 Set run rights to the mytasks.sh script:

chmod +x mytasks.sh

Figure 10.5 – Setting run rights to mytasks.sh

2.	 Run the mytasks.sh script:

./mytasks.sh

3.	 Verify the creation of the data file:

Figure 10.6 – Verifying the data file

A little bit of Git and programming 379

4.	 Verify that activities are recorded in the log file:

Figure 10.7 – Verifying the log file

As we can see, the data file was created and the activities were recorded in the log file.

The next step is to create the users. However, note that every time the Bash script runs, the
data file must be created. Before continuing, now is a good time to add a validation:

	� If the data file exists, continue with the following instruction.

	� If the data file is not present, then you can create it.

5.	 For validation, use an if-else statement. A basic effective if-else statement indicates
that if a particular test is true, then it performs a given set of commands. If it is false, then
perform a different set of commands.

In the COMMANDS section, add the following if-else statement:
echo "$TIMESTAMP [INFO] Verify the data file" >> $LOG
if [-f $DATA_FILE];
then
  echo "$TIMESTAMP [OK] The data file exists" >> $LOG
else
  echo "$TIMESTAMP [INFO] Create data file" >> $LOG
  cat /etc/passwd >> $DATA_FILE
  cat /etc/group >> $DATA_FILE
  cat /etc/shadow >> $DATA_FILE
fi

Note that the commands that create the data file can be turned into a basic for loop:
for i in passwd group shadow
do
  cat /etc/$i >> $DATA_FILE
done

A for loop in Bash is a statement that allows code to run repeatedly.

System Administration380

The COMMANDS section looks as follows:

Figure 10.8 – The COMMANDS section of mytasks.sh

Save the changes and test them.

6.	 Verify the run in the log file record:

Figure 10.9 – Verifying the run on the log file

A little bit of Git and programming 381

7.	 Delete the data file and rerun the mytasks.sh script to confirm the creation of the data file:

rm -rf data

Figure 10.10 – Validating the creation of the data file

Since this change worked, the version of the Bash script could change:
Version: 0.2 → Add data file validation

Figure 10.11 – Modifying the version of mytasks.sh

System Administration382

Let’s continue by adding the routine activities.

The routine includes creating users and copying the data file to their home directories. Here, a
combination of statements and loops is used so that the script can be reused every time extra users
are added to it:

1.	 Begin by recording the activity in the log file:

echo "$TIMESTAMP [INFO] Verify users" >> $LOG

2.	 Use a for loop to confirm the users and the data file in their home directories. Instead of
adding the usernames to the script, instruct the loop to take the reading of a users file as
input. So, add the users file to the VARIABLES section:

USER_FILE=$WDIR/users

3.	 Create the users file with the requested usernames:

Figure 10.12 – The users file

4.	 In the for loop, for each line representing a user, first, confirm the user’s existence in the
/etc/passwd file. If the user exists, then confirm the data file in the user’s home directory.
If both statements are positive, only then both statements are recorded in the log file.

If either statement is negative, then create the user and copy the data file to the user’s home
directory. Alternatively, you can copy the data file to its home directory, in case the user exists
but the data file doesn’t. This statement takes the form of a nested if statement:

A little bit of Git and programming 383

Figure 10.13 – A nested if statement

5.	 Run the mytasks.sh script and confirm that the users were created and that the data file
was copied to their home directories:

Figure 10.14 – Testing user creation and data file copying

System Administration384

6.	 Rerun the test for user creation and data file copy to confirm the condition:

Figure 10.15 – Creation and copy condition confirmed

7.	 Add the lucas user to the user file and run the mytasks.sh script to confirm the creation
of the user and that the data file was copied:

Figure 10.16 – Adding the lucas user

A little bit of Git and programming 385

8.	 Run the script and review the log file:

Figure 10.17 – Reviewing user creation and copying the data file

9.	 The nested if statement works and results in the version of the script being changed. Since
this is a working version that meets the needs of the routine, this makes it the first version of
the script:

Version: 1.0 → Add user creation and customization

Note
You can find the mytasks.sh script in this book’s GitHub repository at https://github.
com/PacktPublishing/Fedora-Linux-System-Administration/tree/
main/chapter10/.

This small script exemplifies how to simplify routine day-to-day tasks. If you have any doubts
about whether a routine could be a Bash script, remember one of the most well-known statements
among SysAdmins:

“If you typed it twice, you should have scripted it once.”

The problems come when you’re modifying the scripts and managing their versions.

A tool that could help us when we need to manage different versions of scripts or configuration files
is Git.

Let’s learn a little bit about this tool.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter10/
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter10/
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter10/

System Administration386

Git

Git is a form of control version software designed by Linus Torvalds and released in 2007. It maintains
versions of applications, prioritizes efficiency, reliability, and compatibility, and provides a record of
changes to the files. It also coordinates the work that several people do on shared files in a code repository.

Git has supported the growth of open source software in recent years, making collaboration between
programmers around the world easier.

Version control allows you to record changes that have been made to a file or set of files over time so
that specific versions can be retrieved later.

Git is a distributed version control system. Besides the central repository, the clients replicate the entire
repository, including its complete history. Thus, if a server fails, any of the repository clients could get
copied back to the server to restore it. Each clone is a complete backup of all data.

GitLab and GitHub provide the most important Git-based web services. Each of them allows us to
share repositories of our projects, both private and public.

To access GitHub, use your preferred browser and navigate to https://github.com/login.
Log in or create your account by following the instructions on the page:

Figure 10.18 – GitHub login page

https://github.com/login

A little bit of Git and programming 387

To access GitLab, use your preferred browser and navigate to https://gitlab.com/users/
login. Log in or register to create your account by following the instructions on the page. Also,
consider signing in using other web services such as Google, GitHub, Twitter, Bitbucket, or Salesforce
for authentication. Each service will ask you if you want GitLab to access your account:

Figure 10.19 – GitLab – The Sign in page

Now, let’s learn how to work with Git. We use a local repository, but it could live on a dedicated server
or a web service platform.

Note
The examples that follow illustrate how to use Git, so the public repository on the web could
use either of the two free services. Choose wisely.

Let’s start with the basics.

https://gitlab.com/users/login
https://gitlab.com/users/login

System Administration388

The basics

Git handles files as a set of snapshots of a mini filesystem. Most operations in Git only need local files
and resources to work. Everything in Git gets verified before storage. Therefore, it is identified by a
checksum (as an identification number). Git generally adds information.

Git has three main states that files come in: modified, staged, and committed:

•	 Modified means that the file has changed but the changes have not been committed to the
database yet

•	 Staged means that a modified file, in its current version, gets marked to go to the next
commit instance

•	 Committed means that the changes are stored in the local database

The following figure illustrates the state changes of a file within Git:

Figure 10.20 – File state change flow in Git

In Chapter 2, we installed Git on our workstation. Let’s set up our session and create a sample repository.
Follow these steps:

1.	 As a non-root user, set up a username and associate it with an email address. This data gets
saved with the changes that are made. Use the git config command:

$ git config --global user.name "username"
$ git config --global user.email user@your-mail.com

2.	 Create a directory and switch to it:

$ mkdir git-basics ; cd git-basics

A little bit of Git and programming 389

3.	 Initialize the directory as a git repository:

$ git init .
Initialized empty Git repository in /home/username/git-basics/.
git/

The git-basics directory is now a git repo, so it might contain one of the states
mentioned previously:

Figure 10.21 – The git-basics directory

To be able to see the state of the repository, add a custom configuration in the user’s profile.

4.	 Add the following lines to the .bashrc file of the user:

#
Lines added for git-prompt
#
git_prompt_sh='/usr/share/git-core/contrib/completion/
git-prompt.sh'
if [-f ${git_prompt_sh}]; then
  source ${git_prompt_sh}
  export GIT_PS1_SHOWDIRTYSTATE=true
  export GIT_PS1_SHOWUNTRACKEDFILES=true
  export PS1='[\u@\h \W$(declare -F __git_ps1 &>/dev/null && __
git_ps1 " (%s)")]\$ '
fi

System Administration390

Figure 10.22 – Adding git-prompt to the .bashrc file

5.	 After saving this change to the .bashrc file, return to the git-basics directory:

Figure 10.23 – git-basics

Note that the prompt now shows the initial branch of the repo, which is named master.

master is the initial name of the branch by default. Before we start adding files, let’s rename
the branch.

6.	 Use the git branch command to change the branch’s name from master to main:

$ git branch –m master main

Figure 10.24 – Renaming the initial branch

A little bit of Git and programming 391

Now, it’s time to add files to the repository.

7.	 Create a Python script called my-script.py with the following content:

name = input("What's your name? ")
print(name + " Welcome!")

Upon running this script, you will asked for your name and you’ll see a welcome message.

8.	 After saving the file, review the status of the repository by running the git status command:

$ git status

Figure 10.25 – Reviewing the status of the repository

The output of the command shows that the repository has changed. Note that some files are
not tracked until their status changes.

At the prompt, you should now see the % symbol, which indicates that a file has been added
to the repository.

Let’s look at some other symbols that were added to the prompt concerning the repository’s status:

	� Unstaged (*)

	� Staged (+)

Note
To learn more about git-prompt, refer to the documentation of the git-prompt.sh
script at /usr/share/git-core/contrib/completion/git-prompt.sh.

System Administration392

Now, let’s change the repository’s status.

9.	 Use the git add command to add the file to the repository:

$ git add my-script.py

Figure 10.26 – Changing the repository’s status

Now, the repository’s status appears as staged, and the prompt displays the respective symbol (+).

Before we store the changes in the database, we need to test the file and review that no other
changes need to be made.

10.	 Run the my-script.py script and verify that it works fine:

$ python my-script.py

Figure 10.27 – Testing the my-script.py script

Since the script ran successfully, let’s commit to adding the file to the repository.

A little bit of Git and programming 393

11.	 Use the git commit command to change the status of the branch to committed so that
you can apply the change that was made to the repository. This command supports adding
a comment. This comment helps notify you about the modifications that are made in the
repository by providing a brief description of the changes:

$ git commit –m "Adding my-script.py script"

Review the history of changes that were made to the repository by running the git log command:
$ git log

Figure 10.28 – Committing and reviewing the repository’s history

Note
If you have doubts about how to add a good commit message, please visit the online resource
Conventional Commits at https://www.conventionalcommits.org/.

With these simple steps, our script repository has version control and is managed by Git.

Having a repository that contains the scripts that are used for daily tasks, aside from acting as a backup,
can be turned into a collaborative resource for our area. If we wish to publish it on a web platform, we
need to remove sensitive data from it so that we can turn it into a valuable resource for the community.

Now, let’s learn how to publish both script directories in a public repository on the internet.

Note
For this example, I’m using a repository on GitHub, but it could be created the same way on
any Git-based web platform of your choice.

https://www.conventionalcommits.org/

System Administration394

To create the repository on any web platform, follow these steps:

1.	 Log into the web platform:

Figure 10.29 – Web platform dashboard

Click on the plus (+) button and click on New repository.

A little bit of Git and programming 395

2.	 The Create a new repository screen will appear:

Figure 10.30 – The Create a new repository screen

Enter the repository’s name and a brief description of its use. Leave the repository set to
Public and choose to Add a README file. This file provides a welcome message or a detailed
description of the repository’s usage.

Once you’re finished, click Create repository.

System Administration396

3.	 The repository will be created. Click the Code button and copy the HTTPS address of
the repository:

Figure 10.31 – Public repository

Let’s copy the remote repository as local.

4.	 Create a working directory and switch to it. Use the git clone command to download a
copy of the repository:

$ git clone https://github.com/alex-sysadmin/daily-tasks-
scripts.git

Figure 10.32 – Cloning the repository

A little bit of Git and programming 397

5.	 Switch to the repository, verify the main branch, and review the files contained within:

Figure 10.33 – Verifying the repository

6.	 Copy the directory of the Bash script example and the preceding example script into this directory:

Figure 10.34 – The daily-tasks-scripts repository

Before adding the files with Git, note that the class directory, from the Bash script, has some
ownership issues. Also, take note of the log file, which is not needed in the repository but is
created when the script is run. The users file contains sensitive information about the users
that have been created. Both files must remain, but their contents must be restarted (this is
referred to as blanking). Fix these issues:

System Administration398

Figure 10.35 – Fixing issues

The preceding example directory, git-basics, is also a repository. Remove the hidden .git
directory inside it so that Git doesn’t take it as a submodule of the main repository. A backup
of our scripts is all we need:

Figure 10.36 – Removing the .git directory

With the files ready, let’s add them to the repository.

7.	 Use the git add command to add all the files to the repository:

$ git add .

8.	 Commit the changes to the repository by adding the corresponding comment. Then, run the
git commit command:

Figure 10.37 – Committing changes to the repository

A little bit of Git and programming 399

9.	 Let’s synchronize the local changes with the remote repository. Set the original repository as the
upstream repository to reference it. Use the git push command to set up the upstream repository:

$ git push --set-upstream origin main

Figure 10.38 – Pushing changes to the repository

Note
The authentication for the repository depends on the web platform in use. In the case of GitHub,
it requests a token. To generate one, go to Settings | Developer settings | Personal access token
| Generate new token and copy it to a safe place.

10.	 The modified files will appear on the web platform:

Figure 10.39 – The repository on GitHub

System Administration400

With that, we have a collaborative repository of the scripts that will be used in our day-to-day tasks.

At the same time, the repository serves as a backup of our scripts.

Let’s take a walk through the alternatives that could help us make a backup.

Don’t forget to back up
Back up: A SysAdmin must back up the entire system, and always verify the backup.

Backing up is the most basic task.

Good practice begins with good habits. One of the habits that I have made over the years is to back
up a file before editing it, either in the file path or by creating a backup directory:

Figure 10.40 – Backing up before modifying

On the surface, it doesn’t seem like a big task. However, if you incorporate this step into your tasks,
then you have a simple backup of the files that you work with.

Besides copying files to change, another good habit is to create a package that contains archives or
compressed files.

Let’s see how this works.

Archiving and compression

First of all, note the difference between an archive file and a compressed file:

•	 An archive file consists of files and directories stored in a single file. The archive file remains
uncompressed – it uses the same disk space as all the individual files and directories are combined.

•	 A compressed file also consists of files and directories stored in a single file. However,
they are stored in such a way that they use less disk space than all the individual files and
directories combined.

Don’t forget to back up 401

An archive file itself is not compressed, but a compressed file could contain an archive file.

Linux provides several utilities for compressing and decompressing files. The following table shows
the most used utilities:

Utility Syntax Examples
gzip gzip <file>

gunzip <file>

$ gzip test

$ gunzip test.gz

bzip2 bzip2 <file>

bunzip2 <file>

$ bzip2 test

$ bunzip2 test.bz2

xz xz <file>

xz -d <file>

$ xz test

$ xz -d test.xz

zip zip .zip-file <file>

unzip <.zip-file>

$ zip test.zip test

$ unzip test.zip

Table 10.1 – Compress and decompress utilities

Let’s look at the difference between the utilities in the compression algorithms that are used by each:

•	 The gzip utility compresses the size of files using Lempel-Ziv (LZ77) encoding. Each file gets
replaced by one with the .gz extension.

•	 bzip2 compresses files using the Burrows-Wheeler block-sorting text compression algorithm
and Huffman encoding. Each file gets replaced with another file with the .bz2 extension.

•	 xz uses the Lempel-Ziv-Markov chain algorithm (LZMA) for compression/decompression.

•	 The .zip format uses a 32-bit CRC algorithm. It includes two copies of the metadata for each
entry to provide greater protection against data loss.

Note
To learn more about compression utilities, refer to the gzip, bzip2, xz, and zip man pages.

In practical use cases, compression utilities share the same goal: to reduce the space usage of the file
in question. Beyond the algorithm, what needs to be considered is the size of space usage that the file
reduces. This is due to portability reasons. The following illustrative example shows the differences
practically. However, note that more compression or decompression requires more resources (CPU
and memory).

Another best practice habit is to compress backups so that any space that’s used doesn’t become an
issue. This can also be enhanced if we compress file archives.

System Administration402

In Linux, we can use the tar tool to create, manage, and extract archive files. With this command,
many files that are stored in a single archive file become portable. A tar archive is a structured
sequence of metadata and file data with an index.

Archives might be compressed when they’re created using one of the supported compression algorithms.
Besides creating archive files, the tar command provides further options, such as listing the contents
of an archive without extracting it or extracting files from compressed and uncompressed archives.

The tar command’s options provide us with three different styles:

•	 In the traditional style, the first argument is a group of option letters, and the arguments that
follow supply arguments to those options that need them.

•	 In the UNIX or short option style, each option letter comes preceded by a single hyphen (-). If
an option has an argument, the argument follows it, either as a separate word on the command
line or immediately after the option.

•	 In GNU or long option style, each option begins with two hyphens (--) and has a meaningful
name, consisting of lowercase letters and hyphens. The long option could be abbreviated to
its initial letters. Long option arguments are supplied as separate words on the command line,
immediately following the option, or separated from the option by an equals (=) sign with no
intervening whitespace. Optional arguments should always use the latter method.

The tar command requires an action with at least one option. The most common actions and options
are shown in the following table:

Description Traditional Style Short Style Long Style
Creates an archive file c -c --create

Lists the content of an archive file t -t --list

Extracts an archive file x -x --extract

Shows the currently archived or
extracted files

v -v --verbose

Use this option with the name of the file
to create or open

f -f --file

Keeps the original permissions of the files
by extracting them

p -p --preserve-
permissions

Uses the file suffix to determine the
algorithm to use for compression

a -a --auto-compress

Uses the gzip compression algorithm z -z --gzip

Uses the bzip2 compression algorithm j -j --bzip2

Uses the xz compression algorithm J -J --xz

Uses an LZ-variant algorithm Z -Z --compress

Don’t forget to back up 403

Description Traditional Style Short Style Long Style
Enables extended attribute support and
stores file-extended attributes

NA NA --xattrs

Enables SELinux context support and
stores SELinux contexts

NA NA --selinux

Table 10.2 – Common tar command actions and options

Let’s analyze an example of how to create an archive of compressed files with two different compression
algorithms so that we can compare the space that’s used.

As a non-root user, in our backup directory, use the tar command to create an archive file of the
day-to-day script repository.

Follow these steps:

1.	 First, use the gzip compression algorithm option. Run the following tar command:

$ tar czvf daily-tasks-scripts.bkp.tar.gz ../wdir/daily-tasks-
scripts

Figure 10.41 – Creating an archive with the tar command

System Administration404

2.	 Now use the bzip2 compression algorithm and create the file archive from the same directory
by running the following tar command:

$ tar cjvf daily-tasks-scripts.bkp.tar.bz2 ../wdir/daily-tasks-
scripts

Figure 10.42 – Using the bzip2 compression algorithm with the tar command

3.	 Check the size of both file archives to compare the compression rate:

Figure 10.43 – Comparing file sizes

Don’t forget to back up 405

As we can see, the repository’s directory size is 42272 bytes:
$ du -sb ../wdir/daily-tasks-scripts
42272 ../wdir/daily-tasks-scripts

The size of the archive file, when compressed with the gzip algorithm, is 18947 bytes:
$ du -sb daily-tasks-scripts.bkp.tar.gz
18947 daily-tasks-scripts.bkp.tar.gz

The size of the archive file, when compressed with the bzip2 algorithm, is 18594 bytes:
$ du -sb daily-tasks-scripts.bkp.tar.bz2
18594 daily-tasks-scripts.bkp.tar.bz2

Let’s take a closer look at what this means:

	� The gzip compression algorithm reduced the size of the repository by 44.82%

	� The bzip2 compression algorithm reduced the size of the repository by 43.98%

The difference is minimal, and these are the most used formats for backups. It is up to you to decide
which one to use – just remember: don’t forget to back up!

Note
To learn more about archiving files, refer to the tar man page.

As mentioned in the previous section, the Git repository also helps us back up the information
contained in it. It also provides us with a snapshot of the data at the time it was taken.

So, let’s learn how to manage versions with Git.

Version management with Git

To learn how Git handles versioning, we’ll use the example from the previous section. As a non-root
user, switch to the daily-tasks-scripts repository directory and follow these steps:

1.	 As a good habit, ensure that the local repository keeps updated and in sync with the remote
repository before starting. Use the git fetch and git pull commands to do so:

$ git fetch --all
$ git pull --all

System Administration406

Figure 10.44 – Keeping the repository updated and in sync

The git fetch command extracts all the data from a remote project that doesn’t already
exist locally. The git fetch command only downloads the data to the local repository –
it doesn’t merge it or change anything you’re currently working on. The changes have to be
merged manually.

The git pull command incorporates changes from a remote repository into the current
branch of the local repository.

As another good practice, Git gives you the option to branch the repository. Branching means
deviating from the main line of development and continuing to work without altering that
main line.

To change the repository without altering its original content, let’s create a branch.

2.	 Create the enhancement branch of the daily-tasks-scripts repository. Use the git
branch command and the appropriate branch name:

$ git branch acallejas/repo-enhancement

Note
Include the author of the changes in the branch name as good practice.

The git branch command only creates the branch. To switch to it, use the git switch
command and the branch’s name.

Both commands can be combined to create the branch and switch to it. To do this, use the git
switch command with the -c option:

$ git switch -c acallejas/repo-enhancement

When creating the repository, we added a README.md file that serves to document the use
of the repository. Let’s update this file so that we can document our repository.

Don’t forget to back up 407

3.	 Update the README.md file so that it documents the repository:

Figure 10.45 – Updating the README.md file

Note that the README.md file format uses the Markdown language. Markdown is a markup
language that appears to human readers when it’s in its source code form.

Note
To learn more about the basic syntax of the Markdown language, refer to the Markdown guide
at https://www.markdownguide.org/basic-syntax.

Save the changes and compare the differences between this branch and the main branch.

4.	 Use the git diff command to display the differences between the branches:

$ git diff

https://www.markdownguide.org/basic-syntax

System Administration408

Figure 10.46 – Displaying the differences between the branches

The lines that begin with plus (+) signs state the differences in the README.md file between
the versions of the branches.

5.	 Add and commit the changes to the file to update the branch:

$ git add README.md
$ git commit –m "Updating README.md file"

6.	 Update the remote repository with the local enhancement branch. Use the git push command
and the branch’s name to do so:

$ git push –u origin acallejas/repo-enhancement

Don’t forget to back up 409

Figure 10.47 – Updating the remote repository

7.	 For the local repository, use the git branch command to show the branches of the local
repository. The -r option lists the remote branches while -a lists all branches:

$ git branch
$ git branch -r
$ git branch -a

Figure 10.48 – Listing the branches

System Administration410

8.	 The web platform also displays the branches. Navigate to the repository and click on the
Branches link:

Figure 10.49 – Branches

The changes haven’t been applied to the main branch yet. To do this, we need to merge the
branch with the enhancements. This should be done through a pull request.

Let’s integrate the enhancements into the main branch.

9.	 In the Branches window, click on the New pull request button:

Figure 10.50 – The Branches window

Don’t forget to back up 411

10.	 In the Open a pull request window, fill in the title and description fields of the change:

Figure 10.51 – The Open a pull request window

11.	 In this window, at the bottom, find and verify the details of the change.

12.	 In the right column, in the Reviewers section, select members of the team to review the changes
before merging them, as good practice.

13.	 Once the request is ready, click on the Create pull request button.

System Administration412

14.	 The Pull requests window will appear, providing an overview of the change:

Figure 10.52 – The Pull requests screen

The Commits tab lists the changes committed, while the Files changed tab displays the difference
between versions of the changed files.

15.	 If you agree with the merger of the branches, click on the Merge pull request button.

16.	 On confirming the merge, the repository on the web platform will display the changes that
have been made:

Don’t forget to back up 413

Figure 10.53 – Remote repository updated

Let’s update the local repository.

17.	 In the local repository, switch to the main branch and update it:

Figure 10.54 – Local repository updated

By using the branches of the repository, a backup of our script directory of day-to-day tasks
becomes available.

System Administration414

By archiving files to Git repositories, a backup could exist. Of course, there are software solutions that
ease this task, even IT areas in charge of it. But the best practice is, regardless of these solutions, as
the first law of the SysAdmin says: always back up. These activities, like many others, can be run in
an automated fashion using scripts and/or scheduled tasks.

Now, let’s look at a tool that might make it easier to automate tasks in Linux.

Automating with Ansible
Automate: A SysAdmin should automate as much as possible, except if it conflicts with the first law.

Previously, we discussed one of the most well-known statements among SysAdmins:

“If you typed it twice, you should have scripted it once.”

If a task gets scripted, it could be scheduled and, with this, automated. This means that the task must
run without the SysAdmin’s intervention.

However, not all scheduled tasks might be automated. The easiest way to determine this is by applying
the principles of automation:

•	 The rule of algorithmic thinking

Everything is a system. Algorithmic thinking is a way of getting to a solution through a clear
definition of the steps needed – nothing happens by magic.

•	 The rule of bottlenecks

Bad decisions propagate. Every system, regardless of how well it works, has at least one constraint
(a bottleneck) that limits performance.

•	 The rule of autonomy

Humans always play a role. This challenges the idea that automation means completely eliminating
the human element. Using the rule of algorithmic thinking, humans are another layer of
abstraction in the system.

Taking these principles into account and applying them allows us to define an ideal automation solution.

The Ansible project is an open source community sponsored by Red Hat, the developer of the
automation tool. Ansible is available in the official Fedora Linux repositories.

Ansible is an automation tool that focuses on simplicity and ease of use as its primary goals. Ansible
enables us to configure systems, manage packages, and, in an advanced way, orchestrate tasks that
support the continuous delivery cycle.

Automating with Ansible 415

Ansible works in two separate layers:

•	 Control plane (in the cloud): Generate instances and manage their resources

•	 On instance: Syart and stop services, push configuration files, install packages, and more

Through OpenSSH, an agentless service, Ansible manages systems and performs the tasks
described previously.

Let’s start with the basics of Ansible.

The basics

The Ansible use cases approach deals with automating processes. Let’s look at some of the most
common options:

•	 Provisioning

•	 Configuration management

•	 Application deployment

•	 Continuous delivery

•	 Security and compliance

•	 Orchestration

Ansible divides process automation into a variety of work unit levels:

•	 Tasks: A task is the smallest unit of work. It could consist of an action such as install a database,
install a web server, or copy this configuration file to the server.

•	 Plays: A play consists of several tasks. For example, the play Prepare a database for a web service
could consist of the following tasks:

A.	 Install the database package.

B.	 Set the password for the database administrator.

C.	 Create the database.

D.	 Define the access to the database.

•	 Playbook: A playbook consists of several plays. For example, the playbook Install a website
with a database backend could consist of the following tasks:

A.	 Configure the database server.

B.	 Configure the web server.

System Administration416

The task automation process within Ansible requires two types of nodes to be defined: control and
managed. The control node is the machine from where Ansible is running and the managed nodes
are the machines where the tasks take place:

Figure 10.55 – Ansible nodes

Let’s learn how to prepare our workstation as the Ansible control node.

First steps

So, let’s start with installing and configuring Ansible. Follow these steps:

1.	 Ansible is available in the official Fedora Linux repositories. Install the ansible package
using the dnf command:

$ sudo dnf install ansible

The default configuration file of Ansible resides in the /etc/ansible/ansible.cfg file,
but as a best practice, create a custom file to get better control of automated tasks.

2.	 Inside the working directory, create a directory named ansible and switch to it:

$ mkdir ansible; cd ansible

3.	 Inside the ansible directory, create a configuration file called ansible.cfg. Only add
the defaults section and set up the name of the inventory file, something like this:

[defaults]
inventory = inventory

Automating with Ansible 417

Ansible does not install an agent on the managed nodes. Instead, it bases its communication
with them through SSH keys. So, let’s create a key that we’ll use to manage the nodes.

4.	 Create an ssh key pair and specify rsa with 2048 bits. Use the ssh-keygen command
to do so:

$ ssh-keygen -t rsa -b 2048

Figure 10.56 – Generating the ssh key pair

The ssh-keygen command will ask you to confirm the path where the key should be
generated. Note that the path must not be the default path but inside the working directory in
the ansible directory.

After this, the command prompts you to enter a passphrase instead of the user’s login password.
As the connection must run unattended, leave this field empty and hit Enter twice to confirm
the creation of the key pair.

Note
To learn more about creating SSH keys, refer to the ssh-keygen man page.

This command generates the SSH key pair, which consists of a public key and a private key.

Let’s test the communication with the key without using the user’s access password.

5.	 To test communication with the SSH key, copy the key to the same workstation. Use the
ssh-copy-id command to do so:

$ ssh-copy-id -i id_rsa.pub localhost

System Administration418

Figure 10.57 – Copying the ssh public key

The ssh-copy-id command copies the public key to the machine where the trust relationship
gets established. In our case, this is the workstation itself.

To copy the key, the command asks for the user’s one-time login password.

Once access is granted, the command copies the content of the public key to the authorized_
keys file in the hidden .ssh directory inside the user’s home directory.

6.	 To test the connection, use the ssh command to offer the private key:

$ ssh -i id_rsa localhost

Figure 10.58 – Testing the trust relationship

The connection that uses the private key must allow access and run remote commands without
requesting the user’s password.

Automating with Ansible 419

Now, let’s configure and automate simple tasks with Ansible.

7.	 Create the inventory file, adding workstation as a managed node, indicating the private
key as a variable for the host. In the inventory file, add the following lines:

[workstation]
localhost
[workstation:vars]
ansible_ssh_private_key_file=/home/acallejas/wdir/ansible/id_rsa

Let’s test the communication to the managed nodes using ad hoc commands. Ad hoc commands
allow us to run basic tasks from the command line.

8.	 Use the ansible command, along with the ping module, to verify the connection to all
managed nodes:

$ ansible all -m ping

Figure 10.59 – Testing communication with all managed nodes

This ad hoc command allows us to run any operating system command by passing it as an
argument using the -a or --args option:

$ ansible workstation -a "hostname"

System Administration420

Figure 10.60 – Using ad hoc commands

Note
For more information, refer to the Introduction to ad hoc commands section of the Ansible
documentation at https://docs.ansible.com/ansible/latest/command_
guide/intro_adhoc.html.

As mentioned previously, the tasks and the set of them (plays) get grouped into a file. This file allows
us to run them sequentially or selectively. These files are called playbooks.

Playbooks come written in YAML format. This format, due to its simplicity, is based on a tree structure,
which makes it more human-readable than a JSON or XML file. This means that it maintains its ideal
of being the simplest implementation tool.

Let’s analyze a playbook through a simple example. The following playbook runs the tasks to verify
that a web server has the httpd package installed and running:

verify_webserver.yaml

Figure 10.61 – Ansible playbook

https://docs.ansible.com/ansible/latest/command_guide/intro_adhoc.html
https://docs.ansible.com/ansible/latest/command_guide/intro_adhoc.html

Automating with Ansible 421

Let’s take a closer look:

•	 <1> Identification block: This assigns a name to the play and the hosts in the inventory where
the play applies.

•	 <2> Variables block: This declares the variables used in the play.

•	 <3> Tasks block: This declares the tasks to run in the play.

In the preceding example, the play consists of two tasks:

•	 Verify that the httpd package has been installed as the latest version

•	 Verify that the httpd service has been enabled and started

For each of these tasks, the play uses two modules: ansible.builtin.package and ansible.
builtin.service.

The modules consist of small units of code that perform tasks using instructions from the operating
system. In the preceding example, the ansible.builtin.package module uses the dnf
command to determine the installation status of the package.

The ansible.builtin.service module uses the systemctl command to determine the
status of the service.

Since the syntax of the playbooks uses the YAML file format, they are prone to indentation failures.
Ansible provides a tool to check the syntax of playbooks – that is, the ansible-playbook command
with the --syntax-check option:

$ ansible-playbook --syntax-check verify_webserver.yaml

Figure 10.62 – Verifying the syntax of the playbook

The output of this command explains the syntax error. The error message shows where you can find
the runtime error.

System Administration422

Note
Although the error message displays the error’s location, it could be a result of an error that
wasn’t caused by the displayed location. As a best practice, confirm the correct indentation on
the lines before the error message.

After editing the playbook and fixing the error, run the syntax check again:

$ ansible-playbook --syntax-check verify_webserver.yaml

Figure 10.63 – Running the syntax check on the playbook once more

This output indicates that our playbook has the correct syntax and is ready to run.

Another test tool provided by Ansible consists of running it in dry-run mode. Use the ansible-
playbook command with the --check option to run in dry-run mode:

$ ansible-playbook --check verify_webserver.yaml

Figure 10.64 – Running the playbook in dry-run mode

Dry-run mode doesn’t send any error message, so it is considered positive. Note that no change
occurred; the playbook only tested if the tasks could be run on the managed node.

Now that there are no errors in the tests, run the playbook:

$ ansible-playbook verify_webserver.yaml

Automating with Ansible 423

Figure 10.65 – Running the playbook

The failed=0 output indicates that the tasks were finished successfully.

As predicted, in dry-run mode, the playbook does not generate errors.

Confirm this by logging into the host and verifying that the tasks are running:

Figure 10.66 – Verifying tasks

Note
To learn more about Ansible, refer to the Ansible documentation at https://docs.
ansible.com/index.html.

Automating with Ansible simplifies day-to-day tasks.

https://docs.ansible.com/index.html
https://docs.ansible.com/index.html

System Administration424

Automate as much as possible, so long as that automation impacts backups.

Automating enables us to get free time. Free time must be used to develop or learn new skills. A
SysAdmin never stops learning.

Finally, let’s take a look at a few resources where we can learn about and develop new skills.

Never-ending study
Study: A SysAdmin must have free time to study, so long this free time does not conflict with the first or
second law.

Infrastructure profiles have been evolving the most in recent years. It is not that it is going to disappear
as a job role, but it is reinventing itself and new skills are emerging. Thus, professionals must gain
new knowledge.

The best advice is to always go back to the basics – that is, to programming and coding. Knowing all
sides of the system is what assures the SysAdmin that they can continue to play a fundamental role.
Each new technology can mean better work in less time with greater control of the system.

When new technology comes along, it takes time to study and implement it while keeping the system
active, all while increasing productive leisure time.

A SysAdmin needs commitment to continuous learning while keeping up to date with the latest
technology trends and best practices.

In these same years, the boom of online education took place. Among the many resources available,
there are several to take advantage of.

Let’s review those that could develop our skills as a SysAdmin:

•	 A great place to develop vim editor skills is VimTricks. VimTricks (https://vimtricks.
com/) collects the necessary tricks, how-tos, guides, videos, links, and plugins and posts them
on their social networks and as an e-newsletter. The site offers an extensive archive of published
material, as well as a book and the possibility to register to receive the e-newsletter regularly:

https://vimtricks.com/
https://vimtricks.com/

Never-ending study 425

Figure 10.67 – The VimTricks web page

•	 Another recommendation is a page that brings together the tools and training needed to develop
with the new Red Hat technologies – that is, https://developers.redhat.com/:

Figure 10.68 – The Red Hat Developer web page

https://developers.redhat.com/:

System Administration426

Red Hat Developer is a community that provides tools, training, and technical talks designed to
help developers improve their skills and keep up-to-date on the technologies that are shaping
the future.

Subscribers have access to weekly DevNation technical talks, technology deep dives, and open
source tutorials.

The subscription is free – just sign up and you’ll also get access to other official Red Hat learning
and reference sites.

•	 As a form of support to help you get solid knowledge of Ansible and automate tasks with this
tool, you can go to https://www.ansiblepilot.com/:

Figure 10.69 – The Ansible Pilot learning page

Luca Berton, Ansible automation expert and author of several books on automation, offers
many examples, pieces of code, and videos of automating tasks of all kinds on his site. This is
a great place to learn and practice task automation.

•	 Kubernetes is the new paradigm of technology. It is an open source container orchestrator
that manages scalable applications. A good place to start with this technology is https://
kubebyexample.com/:

https://www.ansiblepilot.com/
https://kubebyexample.com/
https://kubebyexample.com/

Never-ending study 427

Figure 10.70 – The Kube by Example web page

With Kube by Example, you can learn about Linux principles, the basics of Kubernetes, developing
applications deployed on the platform, and applicable security best practices. It includes lots of
downloadable code, practical examples, and videos so that learning can flow naturally.

•	 At Packt Publishing we don’t lag behind. You can access free learning content at https://
www.packtpub.com/free-learning:

Figure 10.71 – Packt free learning

https://www.packtpub.com/free-learning
https://www.packtpub.com/free-learning

System Administration428

By registering, you will have unlimited access to thousands of learning materials such as
e-books and video courses – free content forever! Don’t miss the opportunity and sign up for
your free trial.

Remember, a SysAdmin is always reinventing themselves.

It’s not magic. It’s talent and sweat.

There is a lot of reference material that could guide you in your development as a SysAdmin. However,
if you want to look at it from a simple point of view, these three principles should help you create good
habits that generate good practices.

I hope you find them useful.

In the next chapter, we will discuss the use and practical application of operating system tuning.

Summary
In this chapter, we reviewed the path to becoming a SysAdsmin and proposed three basic rules for
the acquisition of good habits.

First, we looked at backing up any information with which we have contact with the system. This
backup will ensure that changes that are made can be returned safely in case they’re needed. It
also provides a snapshot of the system at a certain point in time. Next, we looked at various task
automation techniques to streamline our daily routine. This principle lightens your workload and
allows SysAdmins to get free time that might be occupied with expanding their knowledge. The last
point we considered was to never stop learning. Since technology is advancing faster and faster, this
should be taken as a responsibility.

In the following chapters, we will make use of these principles and apply them to various particular
aspects of systems administration. We will start by learning how to tune operating systems.

11
Performance Tuning

Best Practices

Performance tuning system resources is one of the main (or even the most important) tasks of any
system administrator. Performance tuning is the process of tweaking a system’s configuration to
improve the use of computing resources, data throughput, or user experience. It requires a thorough
understanding of the hardware and software components of a system, as well as the many interactions
between them.

Performance tuning is often confused with troubleshooting, but there are significant differences
between them. In a troubleshooting process, the main goal is finding and solving a problem to make
the system work. In performance tuning, the goal is to get the system running with the best possible
performance while taking advantage of the resources and environment it operates in.

In this chapter, we are going to cover the following main topics on how to get the best performance
regarding the key aspects of the system:

•	 Understanding kernel tuning

•	 Main tuning – CPU and memory

•	 Don’t ignore storage tuning

•	 Boosting performance with network tuning

Technical requirements
To complete the topics in this chapter, you will need to install the packages indicated in each section.
There, you will find instructions for each package that needs to be installed.

The examples that were created for this chapter can be downloaded from this book’s GitHub
repository: https://github.com/PacktPublishing/Fedora-Linux-System-
Administration/tree/main/chapter11.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter11
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/tree/main/chapter11

Performance Tuning Best Practices430

Understanding kernel tuning
The Linux kernel exposes user-space tunable information and configurations through the /proc directory.
The /proc filesystem acts as an interface to the kernel data structures and runtime information. It
provides a way to access detailed information about processes, system configuration, hardware, and
more, exposing this data through a hierarchy of virtual files.

The files in the /proc directory contain system information such as memory (meminfo), CPU
(cpuinfo), and available filesystems.

The /proc/sys subdirectory contains configurable parameters to adjust kernel behavior and activity.
Most files in /proc/sys can be modified by the root user. Modifying files in /proc/sys causes
immediate changes to the running system.

Note
Changing the files in /proc/sys could improve the performance of the running system, but
it could also degrade it. Be careful when applying any changes to these files. Remember to back
up before making any changes to them.

Within /proc/sys, the files get organized into a subdirectory tree by tunable kernel type:

•	 /proc/sys/dev: Contains tunables for system devices

•	 /proc/sys/fs: Contains tunable variables related to the filesystem

•	 /proc/sys/kernel: Includes tweaks that change the internal kernel operation

•	 /proc/sys/net: Contains tunables that change the network configuration

•	 /proc/sys/vm: This contains parameters that change the management of the virtual
memory of the kernel

Note
Remember, not all files in /proc/sys are writable. Some of them only get altered by the
operating system itself.

Let’s see how we can change these kernel tunables.

Tuning kernel parameters

The following figure illustrates how the kernel parameters can be changed in different ways:

Understanding kernel tuning 431

Figure 11.1 – Linux Performance Tuning Tools, by Brendan Gregg (CC BY-SA 4.0)

As system administrators, the best practice is to make changes through the command line, as follows:

•	 Using a text editor to change /proc/sys files

•	 Using the echo command to set simple values in the tunables

•	 Using the sysctl command to set a parameter by name

•	 Create files with the desired parameters in the /etc/sysctl.d directory

Note
Changing the configurable values in the kernel tunables directly does not make them persistent
at reboot. To do this, you must use the sysctl command or create a file with the change in
the /etc/sysctl.d directory.

Performance Tuning Best Practices432

Let’s see an example of each of the different ways we can do this. Follow these steps:

1.	 Review the content of the tunable icmp_echo_ignore_all inside the /proc/sys/
net/ipv4 directory:

cat /proc/sys/net/ipv4/icmp_echo_ignore_all
0

This value (0) indicates that icmp (ping) support exists:

Figure 11.2 – The workstation supports ping

Let’s change it.

2.	 Use the echo command to change the value of the tunable from false (0) to true (1):

echo "1" > /proc/sys/net/ipv4/icmp_echo_ignore_all

Confirm the change of the tunable:
cat /proc/sys/net/ipv4/icmp_echo_ignore_all
1

As you will see, the operating system no longer allows pinging:

Figure 11.3 – Ping not allowed by the operating system

Understanding kernel tuning 433

This change can also be made using the sysctl command.

Let’s do it.

3.	 The path of the tunable to change can be represented by replacing the slashes under /proc/
sys with dots. In our example, the tunable is as follows:

net.ipv4.icmp_echo_ignore_all

Use the sysctl command with the –w option to enable ping:
sysctl -w net.ipv4.icmp_echo_ignore_all="0"
net.ipv4.icmp_echo_ignore_all = 0

Confirm that ping support is already enabled:

Figure 11.4 – Ping allowed

However, this change is not persistent on reboot.

Let’s see how to do this.

4.	 On boot, the kernel loads the tunable settings from the configuration files found in these directories:

	� /etc/sysctl.d/

	� /run/sysctl.d/

	� /usr/lib/sysctl.d/

Create a configuration file with the .conf extension, with the tunable set to true:
echo "net.ipv4.icmp_echo_ignore_all=1" > /etc/sysctl.d/ping.
conf

Use the sysctl command with the -p option to apply the setting:
sysctl -p /etc/sysctl.d/ping.conf
net.ipv4.icmp_echo_ignore_all = 1

Performance Tuning Best Practices434

Confirm the ping behavior change:

Figure 11.5 – Ping not allowed

These are the different ways to change the kernel tunables. To get the list of kernel tunables,
use the -a option of the sysctl command:

sysctl –a

Figure 11.6 – Kernel tunables list

Changes that are made to the kernel tunables modify the behavior of the operating system. Now, let’s
take a look at the changes in some specific aspects of the main components of the operating system.

Main tuning – CPU and memory 435

Main tuning – CPU and memory
In the previous section, Figure 11.1 illustrated the different tools that help us collect performance
information on the use of system resources.

The tools display system information such as free disk space, CPU temperature, and other essential
components, as well as network information such as the system’s IP address and current upload and
download rates.

Monitoring the resources of the running system represents one of the many main tasks of a system
administrator. The goal of system monitoring is to determine whether the current performance meets
the specified technical requirements.

Monitoring the performance of resources helps us know about the areas that need improving.

Before changing the CPU and memory usage configuration, let’s take a brief look at the basic monitoring
tools included in Fedora Linux.

Overview of monitoring tools

Monitoring tools provide per-process statistics and are based on process structures or system-wide
statistics from the kernel. Monitoring tools usually become available to unprivileged users, but for a
more granular level of detail, system administrator privileges are required.

The ps and top commands are the most common commands that provide process statistics, including
CPU and memory.

As the root user, running the ps command with the aux option lists the processes with extended
details by user:

ps aux

Figure 11.7 – Output of the ps aux command

Performance Tuning Best Practices436

The following table describes the output of the ps aux command column by column:

Column Description

USER The user running the process.

PID Process ID of this process.

%CPU CPU time used (in percent) by this process.

%MEM Physical memory used (in percentage) by this process.

VSZ Virtual memory used (in bytes) by this process.

RSS Resident Set Size, non-swappable physical memory used (in KiB*) by this process.

TTY
Terminal from which the process started.

The question mark (?) indicates that the process wasn’t started from a terminal.

STAT Process state.

START Starting time and date of the process.

TIME Total CPU time used by this process.

COMMAND The command, with all its arguments, that started the process.

Table 11.1 – The ps aux command’s output description column by column

*More details will be provided in the following section.

Note
For more information about the process stat codes, refer to the ps manual pages. Use the man
ps command.

Unlike the ps command, where the output is static, the top command provides a real-time report
of process activity. It also provides an interface for filtering and manipulating the monitoring data:

top

Main tuning – CPU and memory 437

Figure 11.8 – Output of the top command

The command output header provides general information on the current behavior of the system:

•	 The first line includes the current time, how long the system runs for, the number of users
connected, and the average load in the last 1, 5, and 15 minutes

•	 The second line shows the number of tasks and their statuses: running, sleeping, stopped,
or zombies

•	 The third line shows different CPU usage values (at runtime):

	� us: Time that CPU spends running processes for users in user space

	� sy: Time spent running system kernel space processes

	� ni: Time spent running processes with a manually set nice value

	� id: CPU idle time

	� wa: Time that CPU spends waiting for I/O tasks to complete

	� hi: Time spent servicing hardware interrupts

	� si: Time spent servicing software interrupts

	� st: Time lost due to running virtual machines (steal time)

•	 The fourth line shows the total amount (in KiB) of physical memory, and how much is free,
used, and buffered or cached

Performance Tuning Best Practices438

•	 The fifth line shows the total amount (in KiB) of swap memory, and how much is free, used,
and available

The following table describes the output of the top command column by column:

Column Description

PID Process ID

USER User owner of the process

PR Process priority

NI Nice value of the process

VIRT Virtual memory used by the process

RES Resident memory used by the process

SHR Shared memory used by the process

S Status of the process

%CPU Share of CPU time used (in percentage) by the process since the last update

%MEM Share of physical memory used (in percentage)

TIME+ Total CPU time used by the task in hundredths of a second

COMMAND The command, with all its arguments, that started the process

Table 11.2 – The top command’s output description column by column

Note
For more information about the process status codes, refer to the top manual pages. Use the
man top command to do so.

Regarding memory, the free command lists the free and used physical and swap memory. By using
the -b, -k, -m, and -g options, the output will be displayed in bytes, KB, MB, and GB, respectively:

free

Main tuning – CPU and memory 439

Figure 11.9 – Outputs after running the different options of the free command

The GNOME desktop provides a graphical tool for resource monitoring. From the main menu, under
Activities Overview, type system monitor:

Figure 11.10 – GNOME System Monitor from Activities Overview

You can also open the utility from the Terminal by running the gnome-system-monitor command:

$ gnome-system-monitor

Performance Tuning Best Practices440

Figure 11.11 – GNOME System Monitor

Fedora Linux, through its official repositories, provides a package that integrates several monitoring
tools. The sysstat package takes the raw data from the kernel counters and allows you to display
and store the metrics in a historical process running database.

The following utilities are included in this package:

•	 mpstat: Reports individual or combined CPU-related statistics

•	 iostat: Reports CPU and I/O statistics for devices, partitions, and the network filesystem

•	 pidstat: Reports statistics for processes, including disk I/O, CPU, and memory usage

•	 cifsiostat: Reports statistics about shared filesystems, printers, or network serial ports

•	 sar: Collects, reports, and stores system activity

To install the package, from the Terminal, run the following command:

dnf install sysstat

All these tools are useful for measuring and storing system resource usage information. And with this,
we can determine which aspect of the resources has points for improvement.

Main tuning – CPU and memory 441

Let’s start with CPU usage.

Improving CPU usage

To find points of improvement in CPU usage, first, observe the behavior of the CPU. Let’s learn how
to check CPU usage with the different monitoring tools. Follow these steps:

1.	 Use the ps command to list the processes with the highest CPU usage:

ps ax --format pid,%cpu,cmd --sort -%cpu

Figure 11.12 – Output of the ps command listing the processes with the highest CPU usage

This mode of the ps ax command formats the output by process identifier (pid), percentage of
CPU usage, and the command that started the process, sorting by the percentage of CPU usage.

The output shows that the process with the highest CPU usage is SSH, which should be considered
normal for administrative tasks.

In our system, a web server is running. Let’s analyze its CPU usage.

2.	 Use the ps command to identify the httpd process and its CPU usage:

ps auxf | grep "[h]ttpd"
ps ax --format pid,%cpu,cmd --sort -%cpu | grep "[h]ttpd"

Performance Tuning Best Practices442

Figure 11.13 – Identifying the httpd process and its CPU usage

Note
Enclosing the first character of the process in square brackets limits the search, ignoring the
grep command itself at the output.

Note that the CPU usage displayed is not significant, so further research needs to focus on
finding the real value of CPU usage.

3.	 Use the process identifier (pid) to find the resource usage with the top command:

top -p 851,876,881,910

Figure 11.14 – Monitoring resource usage with the top command

Now, let’s use the utility included in the sysstat package to get more information about the
process’s performance.

4.	 Use the pidstat command with the process identifier (pid) to get the CPU usage of the
process at the 1-second interval:

pidstat -p 851,876,881,910 1 1

Main tuning – CPU and memory 443

Figure 11.15 – Process CPU usage percentage

A single CPU can only run one process at a time. To make the Linux system run multiple processes
simultaneously, through multitasking, processes interleave their running on the CPU.

The kernel uses the process scheduler to determine which process to run at any given time. The process
scheduler must balance several options, based on certain criteria, such as determining which process
gets the next turn of execution, getting a fair share of CPU time but allowing high-priority processes
a larger share and preempting lower-priority processes, or being predictable and scalable under
different workload conditions.

The scheduler controls the order of running based on the scheduling priority policy assigned to each
thread or process. These scheduling policies are divided into two groups: non-real-time policies and
real-time policies.

Note
Real-time computing (RTC) guarantees the response of a system from the event to the response
itself, within specified time constraints. A real-time system describes a system that controls
an environment. It receives data, processes it, and returns the results fast enough to affect the
environment at that time.

The priority of the process using real-time policies is a value between 1 (lowest) and 99 (highest) and
is known as a static priority. Processes using non-real-time policies that do not use static priorities
are set to 0.

The priority of the process could increase and decrease during the lifetime of the process; this is known
as the dynamic priority. The value for determining which non-real-time process takes precedence
over other non-real-time processes comes under the name of nice value. A user could change the
priority of a process by using the nice or renice commands.

Performance Tuning Best Practices444

Since the static priority of non-real-time processes is set to 0, the nice value determines the relative
scheduling of non-real-time processes. The nice value ranges from -20 (highest) to 19 (lowest).

Fedora Linux provides six scheduling policies divided into two groups: real-time and non-real-
time scheduling classes. The following table lists the policies available in each scheduling class:

Class Policies Definition

Real-time scheduler
SCHED_FIFO

Uses the first-in, first-out scheduling algorithm
without timeslices.

SCHED_RR
Uses the round-robin scheduling algorithm
with timeslices.

Completely Fair
Scheduler (CFS)

SCHED_NORMAL (also
known as SCHED_OTHER)

Defines the round-robin style
time-sharing schedule.

SCHED_BATCH Benefits batch-oriented workloads.
SCHED_IDLE Benefits running low-priority applications.

Deadline scheduler SCHED_DEADLINE

The scheduler guarantees real-time task
scheduling, even under high load conditions. It
does so by using three parameters – period,
deadline, and runtime – to define a task
in nanoseconds.

Table 11.3 – Scheduling policies

Let’s continue using the previous example of the web server to analyze the priority of its process.
Follow these steps:

1.	 Use the ps command to list the priority of processes:

ps axo pid,pri,rtprio,ni,cls,comm | grep -e "PID" -e "[h]ttpd"

Figure 11.16 – Reviewing process priority

Main tuning – CPU and memory 445

Here, the pri column shows static priority (19), the rtprio column shows real time priority
(-), the ni column shows nice value (0), and the cls column shows the scheduling policy.
Here, TS represents time-sharing.

The preceding output indicates that the process has low priority in its run. Let’s change this.

2.	 Use the chrt command to display the scheduling policy and priority of the web server processes:

chrt -p [PID]

Figure 11.17 – Scheduling the policy and priority of web server processes

The scheduled priority of all processes is 0 and their scheduling policy is SCHED_NORMAL
(or SCHED_OTHER). Let’s improve the process run.

3.	 Stop the web server service and restart it by changing the scheduled policy to SCHED_FIFO
and the scheduled priority to 38. Use the chrt command and the process binary:

systemctl stop httpd
chrt -f 38 /usr/sbin/httpd

Performance Tuning Best Practices446

Figure 11.18 – Changing the scheduling policy and priority

Review the scheduling policy and priority of the web server processes.

Note
For more information about the chrt command’s options, refer to the manual pages by running
the man chrt command.

This change is temporary. When the process restarts, the scheduled policy and scheduled
priority should apply again.

To set a scheduled policy and priority to improve the performance of the process each time it
starts, it must be added to the service’s unit file.

Let’s do it.

4.	 Create a scheduled configuration file for the httpd service with the following content:

vim /etc/systemd/system/httpd.service.d/10-scheduler.conf
[Service]
CPUSchedulingPolicy=rr
CPUSchedulingPriority=10

Main tuning – CPU and memory 447

Figure 11.19 – Creating the service configuration file

Unit configuration policies are set to change the priority of a service during the boot process.
The directives in the [Service] section change the scheduling policy and priority:

	� CPUSchedulingPriority (Nice): Sets the default nice level for the service. The nice
level is set as a number between -20 (highest priority) and 19 (lowest priority).

	� CPUSchedulingPolicy: Sets the CPU scheduling policy for the service. The policy is
set with the other, batch, idle, fifo, and rr values.

Note
At the time of writing, the CPUSchedulingPolicy variable does not support the SCHED_
DEADLINE policy setting.

Reload the configuration of the services that were loaded in by systemd before restarting the
web server service. Use the systemctl command:

systemctl daemon-reload

Restart the service to apply the policy and priority changes.

5.	 Use the systemctl command to restart the web server service:

systemctl restart httpd

Performance Tuning Best Practices448

Figure 11.20 – Restarting the web server service

Review the scheduling policy and priority of the web server processes.

The change of priority and scheduled policy should apply when the service starts. This change improves
the performance of the service.

What we’ve covered here applies to the case of processing. Now, let’s learn how to improve memory usage.

Improving memory usage

The ps and top utilities differentiate between two statistics: VIRT (or VSZ), the total amount of
virtual memory a process has requested, and RES (or RSS), the total amount of virtual memory a
process is currently mapping into physical memory. RSS is the most critical value.

Using the preceding example, observe the virtual memory value mapped to the web server process
with the ps command:

ps -o pid,vsz,rss,comm -C httpd

Main tuning – CPU and memory 449

Figure 11.21 – Reviewing the virtual memory mapped to the web server

When a process requests memory, virtual memory addresses get reserved, but the kernel doesn’t
allocate them to physical page frames. The kernel only allocates physical page frames when the process
starts using memory.

In the same way that the priority and scheduled policy are changed for processing, the memory that
an application consumes could change.

Follow this step to adjust the MemoryLimit parameter of the sshd process:

1.	 Using the sysctl command, adjust the MemoryLimit parameter:

systemctl set-property sshd.service MemoryLimit=1G

Note
A memory size can be specified in kilobytes, megabytes, gigabytes, or terabytes using the K,
M, G, or T suffix, respectively.

This command changes the service startup configuration file.

Use the sysctl command to display the service unit file. Filter the Memory parameter:

Figure 11.22 – Reviewing the MemoryLimit parameter

Performance Tuning Best Practices450

In Figure 11.22, we find that the kernel assigned the service 10 MB of memory and, by setting the
MemoryLimit parameter, ensures that it only uses up to 1 GB.

Keeping control of the resources assigned to the services allows them to improve their performance
and that of the operating system as well.

Managing unallocated memory is the task that requires the most intense monitoring in Linux. The
kernel uses most of the unallocated memory as a cache to store data that gets read from or written
to disk. The next time a process needs that data, the system fetches it from RAM instead of disk.
The caching mechanism improves performance in general since storage is usually much slower than
physical memory.

Besides cache pages, the system uses anonymous pages. Anonymous pages have no data associated
with them on disk. These anonymous pages represent the pages that processes allocate and use to
store their work data.

We have different tools and utilities that help us monitor both.

Let’s have a brief overview of these tools and utilities.

Inspect the memory usage with the free and vmstat commands:

free –m

Figure 11.23 – Output of the free command

In this system, there’s 8 GiB of RAM. The cache pages (the buff/cache column) consume 1 GiB.

Let’s compare this with the output of the vmstat command:

vmstat --unit M 1

Main tuning – CPU and memory 451

Figure 11.24 – Output of the vmstat command

From the output of the vmstat command, note that the size of the page cache is the sum of the buff
and cache columns. Buffers are part of the page cache. Buffers store blocks of data read directly from
a block device, not from the filesystem.

Anonymous pages get moved to the swap area when the system is under memory pressure. The kernel
chooses between retrieving anonymous pages or pages from the page cache. The availability of swap
increases the amount of effective memory.

From the output of the vmstat command (Figure 11.24), in the swap section, we can see the values
of the anonymous pages:

•	 si: Pages swapped in per second

•	 so: Pages swapped out per second

The swap area was a subject of discussion for many years. At the beginning of the computer era, several
myths about how to calculate the swap area were created among system administrators from those
days. They were not only taken as good practices but as a must-have during the creation of the swap
area. This was because, in those days, physical storage was expensive.

Nowadays, with new technologies, storage has become cheaper and more affordable. So, the creation
of the swap area is considered under the use case criteria.

Red Hat proposes the following table as a basis for use cases for sizing when creating the swap area:

RAM Swap Space
2 GiB or less Two times the RAM
Between 2 GiB and 8 GiB Equal to RAM
Between 8 GiB and 64 GiB At least 4 GiB
More than 64 GiB At least 4 GiB

Table 11.4 – Basic guidance on swap area sizing

Performance Tuning Best Practices452

Keep in mind that when a process requests memory, the kernel only reserves virtual memory and
doesn’t consume any RAM. Since the kernel only allocates physical page frames when the process
starts, this allows applications to allocate more memory than what’s available in the system. This
feature function is called memory overcommitment.

The memory overcommit policy of the system can be tuned using the sysctl variable,
vm.overcommit_memory. You can set it to one of the following values:

•	 0: The kernel uses a heuristic overcommit algorithm. This is the configured system default.

•	 1: The kernel always overcommits memory. It always grants memory allocations, regardless of
whether there is enough free memory.

•	 2: The kernel strictly controls memory overcommitment. It only commits an amount of memory
equal to the amount of swap space plus a percentage (the default is 50%) of physical memory.
This percentage gets defined with the vm.overcommit_ratio variable.

Use the sysctl command to verify both variables:

sysctl vm.overcommit_memory
sysctl vm.overcommit_ratio

Figure 11.25 – Reviewing the memory overcommit variables

Monitoring these basic aspects of memory helps improve the performance of the system and the
services it provides.

Let’s see how to do the same with storage.

Don’t ignore storage tuning
Unlike other system resources, storage may optimize its performance as soon it gets sized. It can also
be tuned when its usage gets analyzed.

For this, it is necessary to consider that the correct sizing depends on differentiating the measures
used in the storage allocation process.

Don’t ignore storage tuning 453

A very common mistake is to size with the wrong storage measurements, causing storage space to
go unused or wasted.

The key point to consider is how disk manufacturers overcome the challenge of creating a device that
lives in two worlds. A disk is a raw physical device with no virtual or data structures before creating a
filesystem. A raw disk becomes a block disk structure when it gets formatted as a filesystem. Filesystems
are binary structures.

This means that we must create a physical device, created under the physical rules of the real world,
and turn it into a data structure in the digital world.

The International System of Units (SI) is the most widely used measurement system in the world.
The International Electrotechnical Commission (IEC) constructed an alternative standard using
the SI decimal prefixes that involves taking the first two letters of the analogous decimal prefix (for
example, ki- for kilo-) and adding the letters - bi - for binary.

The point of error occurs when the values get confused. Note the difference in the following
comparison table:

SI decimal prefixes
Prefix Nomenclature base Bytes
kilo- k 103 1,000
mega- M 106 1,000,000
giga- G 109 1,000,000,000
tera- T 1012 1,000,000,000,000

IEC binary prefixes
kibi- Ki 210 1,024
mebi- Mi 220 1,048,576
gibi- Gi 230 1,073,741,824
tebi- Ti 240 1,099,511,627,776

Table 11.5 – Prefixes comparison

So, how many bytes are on a 1 TB disk?

1 TB is 1 x 1,012 bytes = 1,000,000,000,000.

As mentioned previously, to create a filesystem on disk, binary structures use a block size (by default)
of 4,096 (4 KiB). Using this nomenclature, a terabyte means 1,012 bytes.

Thus, some operating system tools could report in TB, but actually, they measure in binary tebibytes (TiB).

Performance Tuning Best Practices454

A tool that reports disk size in TB, but measures TB as tebibytes, would report that a 1 TB disk is only
0.91 TB in size (equal to 0.91 TiB), a difference of almost 10%.

Thus, it is very important to clearly state which units get used to analyze the sizing in a system report
– otherwise, significant errors could occur in the analysis.

Now, let’s learn how to analyze storage space usage.

Improving storage space usage

A big issue in analyzing storage space usage involves identifying it correctly. A stable identifier that maps
to a filesystem is its UUID. This is a hexadecimal number that acts as a Universal Unique Identifier.

The UUID is part of the filesystem and remains the same so long as the filesystem is not regenerated again.

The utility for listing block devices is the lsblk command.

The lsblk command with the -fp option displays the full path to the device, as well as the UUIDs
and mount points, plus the filesystem type of the physical disk partition:

lsblk -fp

Figure 11.26 – Output of the lsblk command

Note
If the filesystem is not mounted, the mount point appears blank.

The most used tool for obtaining information about total filesystem usage is the df command. With
the -h option, the output is displayed in a human-readable format:

$ df –h

Don’t ignore storage tuning 455

Figure 11.27 – Output of the df -h command

By installing the sysstat package, as mentioned previously, we receive tools for monitoring system
performance. In the case of storage, the iostat command displays I/O statistics per disk, as well as
workload, usage, and saturation metrics.

Running the iostat command without arguments returns the CPU usage and disk I/O metrics:

iostat

Figure 11.28 – Output of the iostat command

By combining the different options of the iostat command, we can generate very useful statistics
for usage analysis. Here’s an example:

iostat -dyz  1 3

Performance Tuning Best Practices456

Figure 11.29 – Output of the iostat -dyz command

Let’s look at the options that were used:

•	 -d displays the disk I/O usage report

•	 -y skips the first report with statistics since when the system started

•	 -z skips inactive devices

•	 The interval is a second

•	 The count is an output of three reports every interval

Note
For more information about the iostat command options, refer to the manual pages. You
can find them by running the man iostat command.

As mentioned in the previous section, having swap space increases the effective amount of memory.
Let’s learn how to create a swap space in the system with effective sizing.

We’ll use the /dev/sdc disk we used in Chapter 4 to create the filesystem with Stratis. Please follow the
instructions in the aforementioned chapter to remove the pool and wipe the filesystem from the disk.

Then, follow these steps:

1.	 Use the wipefs command:

wipefs /dev/sdc

Don’t ignore storage tuning 457

Note
This command destroys the filesystem information of the device. Please be very careful and
verify that the device you wish to wipe is the correct one.

Now, let’s create the partition for the swap area.

2.	 Inspect the /dev/sdc disk to confirm that no partitions have been created. Use the
parted command:

parted /dev/sdc print

Figure 11.30 – Listing the /dev/sdc disk partitions

Create a 512 MB partition.

3.	 Use the parted command:

parted /dev/sdc

Performance Tuning Best Practices458

Figure 11.31 – Creating a swap partition

Using the parted command without a subcommand opens an interactive parted session.

Inside the interactive session, do the following:

I.	 Run the mkpart subcommand to create the partition.

II.	 Set swap1 as the partition’s name.

III.	 Set the filesystem type to linux-swap.

IV.	 The partition should start at 2,049 KB and end at 513 MB so that the size is 512 MB.

Note
It is important to start a partition in the first block of the underlying storage. Starting at sector
2048 is the default value for modern Linux and is stored on all storage types. This is known
as the initial offset or partition alignment.

Don’t ignore storage tuning 459

Verify that the partition was created by running the print subcommand.

Type quit to exit the interactive parted session.

Note
The parted command can display output on a binary basis as well.

Run the # parted /dev/sdc unit MiB print command:

Figure 11.32 – Output of the parted command displayed on a binary basis

Ask the system to detect the new partition and create the associated device file in the
/dev directory.

4.	 Run the udevadm settle command to observe the udev event queue and update it:

udevadm settle

Now, format the partition.

5.	 Use the mkswap command:

mkswap /dev/sdc1

Figure 11.33 – Formatting the partition

Performance Tuning Best Practices460

Review the swap area of the system.

6.	 Use the free command:

free -m

Figure 11.34 – Reviewing swap memory

Activate the swap partition in the system.

7.	 Use the swapon command:

swapon /dev/sdc1

Figure 11.35 – Activating the swap partition

Now, verify the swap area of the system.

The new swap area partition is active and available to the system. To make it persistently active,
we need to create an entry in the /etc/fstab file.

8.	 Identify the UUID of the swap partition and create an entry in the /etc/fstab file. Use the
lsblk command to do so:

lsblk -fp

Don’t ignore storage tuning 461

Figure 11.36 – Identifying the UUID of the swap partition

Add the following line to the /etc/fstab file:
UUID=6f53144d-fe12-4fc3-bb69-6469012592dc  swap  swap  defaults
0 0

Figure 11.37 – Adding the swap partition to the /etc/fstab file

In this way, the swap partition remains persistently available to the system. With this, the system’s
performance improves since physical memory becomes available. At this stage, the storage space is
optimized for the swap space.

Finally, let’s learn how to improve the performance of the network connection to the system.

Performance Tuning Best Practices462

Boosting performance with network tuning
The network represents one of the most complex and key elements involved in tuning the system.
Being an externally self-organizing element, some network elements could affect performance. To
identify and adjust them, it is necessary to know the flow that a packet follows both when transmitted
and received by a system, as well as the tuning options available for them.

The transmission and reception flow of the packet is roughly as follows:

•	 Transmission:

I.	 Data gets written to a socket (an object such as a file) and sent to the transmit buffer.

II.	 The kernel encapsulates the data in a protocol data unit (PDU).

III.	 The PDUs go to the device’s transmit queue.

IV.	 The network device driver copies the PDU from the transmit queue header to the NIC.

V.	 The NIC sends the data and triggers an interrupt when transmitted.

•	 Reception:

I.	 The NIC receives a frame and uses DMA to copy the frame to the receive buffer.

II.	 The NIC triggers a hard interrupt.

III.	 The kernel handles the hard interrupt and schedules a soft interrupt to handle the packet.

IV.	 The soft interrupt handles and moves the packet to the IP layer.

V.	 If the packet is intended for local delivery, the PDU is de-encapsulated and placed in a
socket receive buffer:

VI.	 If a process is waiting in this socket, it processes the data in the receive buffer

The tunables for the case of improving network flow consist of buffer limits. The kernel adjusts the
size of these buffers based on the current network use but within the limits specified by the kernel
tunables. The default values of these variables get calculated at boot time based on the amount of
available memory.

The kernel tunables, which could change when running the sysctl command, are as follows:

•	 net.ipv4.tcp_mem: This specifies the TCP system memory limits. It considers three
fields: min, max, and pressure (when the amount of memory used in TCP/UDP exceeds
this number, pages get moderated until they drop and return to the min value). These values
represent the number of pages, not bytes.

•	 Net.ipv4.udp_mem: This specifies the UDP system memory limits. It considers three fields:
min, max, and pressure. These values represent the number of pages, not bytes.

Boosting performance with network tuning 463

•	 net.core.rmem_max: The maximum network core socket receive/send (read/write)
buffers. Values are in bytes.

•	 net.core.wmem_max: The maximum network core socket receive/send (read/write)
buffers. Values are in bytes.

•	 net.ipv4.tcp_rmem: The maximum TCP socket receive/send (read/write) buffers.
It considers three fields: min, default, and max. Values are in bytes.

•	 net.ipv4.tcp_wmem: The maximum TCP socket receive/send (read/write) buffers.
It considers three fields: min, default, and max. Values are in bytes.

Note
The change of these values should take place after a behavioral analysis.

In general, tunable values should be changed after the system’s behavior has been analyzed.

For this purpose, several tools and utilities exist, which we have used throughout this chapter.

Now, let’s look at a tool that complements the use of sysstat and provides a graphical display of
the collected metrics.

Analyzing metrics

Besides installing the sysstat package to monitor tools, it can also be run as a service:

systemctl enable --now sysstat

Figure 11.38 – Reviewing the status of the sysstat service

Performance Tuning Best Practices464

The sysstat service collects, reports, or saves information about system activity. It stores operating
system counters in the /var/log/sa/sadd file. From the data that’s been collected, a lot of
information about the system can be received:

•	 CPU usage

•	 Memory paging and usage

•	 Network I/O and transfer statistics

•	 Process creation activity

•	 The activity of all block devices

•	 Interrupts per second

We can get the collected data with the sar command:

•	 Use the sar command with the -u option to get the CPU usage report:

sar –u 1 3

Figure 11.39 – Output of the sar –u command

This command is also used to read the history files where the daily data is recorded.

•	 Use the sar command to read one of the log files from /var/log/sa:

sar –q –f /var/log/sa17

Boosting performance with network tuning 465

Figure 11.40 – The log file’s content

Note
For more information about sar command options, refer to the manual pages by running
the man sar command.

From these files, it is possible to generate graphs and export them as images or even a PDF report.
The most commonly used tool for this is ksar.

To get ksar, download it from their website at https://sourceforge.net/projects/
ksar/:

https://sourceforge.net/projects/ksar/
https://sourceforge.net/projects/ksar/

Performance Tuning Best Practices466

Figure 11.41 – The ksar website

Note
A more updated version of the ksar tool can be downloaded from its GitHub
repository: https://github.com/vlsi/ksar/releases.

The ksar tool comes as a jar file, so it requires the java-17-openjdk package to be installed:

dnf install java-17-openjdk

The best practice is to make a copy of the log files to analyze, either by period or by a known event.
A copy of the file can be used to generate the performance graphs. Follow these steps:

1.	 Use the sar command to redirect the contents of the log files to a text file:

LC_ALL=C sar -A > /tmp/sar.data.txt

https://github.com/vlsi/ksar/releases

Boosting performance with network tuning 467

2.	 Use the java command to open the ksar tool:

$ java -jar kSar.jar

Figure 11.42 – The ksar tool’s main window

Load the data file created from the log files to generate the system performance graphs.

Performance Tuning Best Practices468

3.	 From the Data menu, click on Load from a text file…:

Figure 11.43 – The Load from a text file… option

The file selection window will open.

Boosting performance with network tuning 469

4.	 Navigate to the directory where the generated file resides:

Figure 11.44 – Selecting the sar file

Select the sar file and click Open.

The file will take some time to load, depending on its size and the amount of data to analyze.

Performance Tuning Best Practices470

5.	 After loading finishes, the window will display the data column for filtering by resource:

Figure 11.45 – Data analyzed window

Navigate to NIC to review the network behavior.

Boosting performance with network tuning 471

6.	 Click Interfaces traffic and then eth0:

Figure 11.46 – NIC performance graph

Note
On your system, the device may be different. Please confirm the device information that we
will analyze.

This way, the behavior could be better visualized.

Let’s export these graphs.

Performance Tuning Best Practices472

7.	 Click on the Export menu and then Export to PDF…:

Figure 11.47 – The Export menu

The window for selecting the data to export will open.

Boosting performance with network tuning 473

8.	 Select the data to export and click the OK button:

Figure 11.48 – Selecting data to export

Name the file, as is best practice, with the system’s name, and save it in the directory of your choice.

Note
You can get the export report from our GitHub repository at https://github.com/
PacktPublishing/Fedora-Linux-System-Administration/blob/main/
chapter11/workstation.packt.lab.pdf.

This concludes the best practices for improving system performance. In the next chapter, we will talk
about the security provided by Fedora Linux.

https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter11/workstation.packt.lab.pdf
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter11/workstation.packt.lab.pdf
https://github.com/PacktPublishing/Fedora-Linux-System-Administration/blob/main/chapter11/workstation.packt.lab.pdf

Performance Tuning Best Practices474

Summary
In this chapter, we provided an overview of best practices in system tuning. Beyond configurations,
we looked at the tools that are available in Fedora Linux to analyze system behavior.

System tuning, in most cases, is performed after a failure incident. It is at this point that it gets confused
with troubleshooting. System tuning is about more than resolving a failure – it is about collecting
metrics and performing analysis using the right tools.

First, we learned how to change the kernel tunables using the sysctl command to understand their
origin and the scope of these changes in their original configuration.

Then, we learned how to use the system tools and utilities, including the ps, top, and free commands.
We also covered the suite of utilities provided by installing the sysstat package, including the
mpstat, iostat, pidstat, and sar commands.

After that, we briefly reviewed the units of measurement, which cause failures when sizing resources,
particularly in storage.

Finally, we touched on network tuning and discussed the limitations of the operating system. While
doing so, we learned how to use ksar, a tool that helps us graph the metrics collected by sysstat
when it’s running as a service.

In the next chapter, we will take a walk through the hardened security layer offered by Fedora Linux:
SELinux. In most cases, this is not activated due to ignorance of how it works. We will clarify how it
operates so that we can implement it in our systems.

12
Untangling Security

with SELinux

Security, Hardening, Compliance, and Policy: these are the four horsemen of the SysAdmin apocalypse.
One of the big battles is maintaining the security of the systems. Besides the daily tasks, the security of
the systems is part of the job, even those systems where the third-party provider asks us to deactivate
the enhanced security. In most of these cases, an analysis is enough to find the right troubleshooting
method or a workaround.

Security-Enhanced Linux (SELinux) is a code that runs in the user space, leveraging kernel code
(Linux Security Modules) to provide mandatory access control (MAC) over system resources. The
access to system objects and features takes place on a per-domain basis following the principle of
least privilege.

In this chapter, we are going to learn how to take advantage of the benefits of SELinux to secure
managed systems, covering the following main topics:

•	 Learning about mandatory access control

•	 Labeling and type enforcement

•	 How to troubleshoot SELinux issues

Technical requirements
For the development of the topics in this chapter, it is necessary to install the packages indicated in
each section. In each section, you will find the instructions for the different types of installation of
each package as required.

Untangling Security with SELinux476

Learning about mandatory access control
Linux file permissions control which users or groups of users access specific files. But a user with read
or write access to a specific file could use that file in any way desired, even if that use is not what the
file should be used for.

Linux standard file permissions succeed when files get used by a single owner and a single designated
group of people.

File permissions fail to prevent some forms of unwanted access. They were not designed to control
how a file gets used, but only who to allow to read, write, or run a file.

Linux standard file permissions are ownership-based, also known as discretionary access control (DAC).

The MAC rules are policy based, not by ownership.

There are two types of MAC:

•	 Multi-level security systems: The original and simplest form of MAC consists of a vertical
structure of protection and security levels. Information only flows within this area. A level of
protection is also assigned to users, who can thus only access the same or lower levels.

•	 Multi-lateral security systems: These systems are more complex and assign access based on
segments. Those segments form associations, which in turn consist of protection levels and code
words. This results in a horizontal security system that also includes vertical levels of protection.

SELinux is an example of a MAC application on Linux.

SELinux offers a special security architecture based on the principles of MAC. SELinux minimizes
access to operating system processes and files through strict access control methods and corresponding
security measures. The module aims to ensure data confidentiality and integrity. Furthermore, with
SELinux, the operating system and user programs remain delimited.

SELinux also relies on two other implementations: type enforcement (TE) and role-based access
control (RBAC). With RBAC, access rights map according to a defined role model. The defined user
roles abstract the work processes of an organization. On a MAC model, TE is the notion that access
gets governed through clearance based on a subject-access-object set of rules.

SELinux defines security measures and sets extra attributes that state under what conditions and
in what situations a rights holder could access certain operating system processes or files. If these
conditions or relationships (i.e., attributes) are not met, access is denied.

SELinux consists of sets of policies that declare exactly what actions and accesses are allowed for each
object used by an application. It is also known as a targeted policy since the policy covers the activities
of a single application. Policies declare predefined labels that apply to individual programs, files, and
network ports.

Labeling and type enforcement 477

SELinux enforces a set of access rules that prevent a security flaw in one application from affecting
other applications or the system itself. SELinux provides an extra layer of security, but it also adds a
level of complexity that might seem confusing to those unfamiliar with it.

To better understand how it works, let’s walk through the basic concepts that SELinux works with.

Labeling and type enforcement
SELinux is a labeling system, which tells us that each file, directory, or object in the system has a
corresponding label. Each file, process, directory, and port has a special security label called an SELinux
context. A context is a tag name used by the SELinux policy to determine whether a process can access
a file, directory, or port. Policies control the interaction between these elements. By default, the policy
does not allow any interaction unless an explicit rule grants access. If no permission rule exists, access
is not allowed. The Linux kernel enforces these rules.

SELinux contexts have different labels in their format, separated by colons: user, role, type, and sensitivity
level. They are formed as follows:

user:role:type:level (optional)

Note
The sensitivity level is the part that is optional.

The targeted policy bases its rules on the third context component: the type context. Type context
names usually end with _t.

Let’s look at the following example:

Figure 12.1 – SELinux label example

In the preceding example, the /var/www/html/file file has the following context components:
unconfined_u is the SELinux user, the role is object_r, the type is httpd_sys_content_t,
and the sensitivity level is s0. So, the context on which the access of this file depends is httpd_
sys_content_t.

Let’s use a demo example with this file to learn how the SELinux policy works.

Untangling Security with SELinux478

How SELinux works

Before analyzing the operation of SELinux, let’s determine how SELinux is running on the system.

SELinux runs in three modes:

•	 Enforcing: SELinux enforces access control rules. This is the Fedora Linux default enabled mode.

•	 Permissive: SELinux is active but instead of enforcing access control rules, it logs warnings of
rules violated. This mode gets used for testing and troubleshooting.

•	 Disabled: SELinux is completely disabled; no SELinux violations are denied or even logged.
This is not recommended under any circumstances.

To find out how SELinux is running, use the sestatus command:

$ sestatus
SELinux status:                 enabled
SELinuxfs mount:                /sys/fs/selinux
SELinux root directory:         /etc/selinux
Loaded policy name:             targeted
Current mode:                   enforcing
Mode from config file:          enforcing
Policy MLS status:              enabled
Policy deny_unknown status:     allowed
Memory protection checking:     actual (secure)
Max kernel policy version:      33

Labeling and type enforcement 479

The SELinux running mode gets configured in the /etc/selinux/config file:

Figure 12.2 – SELinux config file

During execution, for testing, the SELinux mode could change. But upon rebooting the system, it will
again take the mode configured in the configuration file to set it. Use the getenforce command
to find out the mode SELinux is running in and the setenforce command to change the mode,
as the root user:

Figure 12.3 – Changing the SELinux run mode

Untangling Security with SELinux480

Now, let us see how SELinux works.

So, how does SELinux work?

Linux was born in the early days of the operating system’s usefulness. It’s used as the main operating
system running a web server.

The Apache web server (httpd) is not insecure, but its access range is very wide so it is very important
to secure it.

So, let’s start with this example to understand how SELinux works. Follow the subsequent steps:

1.	 Verify that the httpd service is installed and active on the system:

Figure 12.4 – Status of the httpd service

2.	 If not, use the dnf and systemctl commands to perform this:

dnf install httpd
systemctl enable --now httpd

The httpd service runs a binary file to start. This file launches from /usr/sbin/.

3.	 The Linux kernel integrates an option, in most commands, to know the SELinux context type.
Use the ls command with the -Z (or –context) option to identify the SELinux context
type of the binary file:

ls -Z /usr/sbin/httpd
system_u:object_r:httpd_exec_t:s0 /usr/sbin/httpd

The context type of the binary file is httpd_exec_t.

4.	 The configuration files for the httpd service are found in /etc/httpd. Let’s see what
context type they have:

ls -dZ /etc/httpd/
system_u:object_r:httpd_config_t:s0 /etc/httpd/

The context type of the configuration files is httpd_config_t.

Labeling and type enforcement 481

5.	 The logs of the httpd service are found in /var/log/httpd. Find their context type using
the following:

ls -dZ /var/log/httpd
system_u:object_r:httpd_log_t:s0 /var/log/httpd

The context type of the logs is httpd_log_t.

6.	 The content type directory of the httpd service is found in /var/www/html. Find their
context using the following:

ls -dZ /var/www/html
system_u:object_r:httpd_sys_content_t:s0 /var/www/html

The context type of the content directory is httpd_sys_content_t.

7.	 The unit file for the httpd service startup is found in /usr/lib/systemd/system/.
Find its context type using the following:

ls -Z /usr/lib/systemd/system/httpd.service
system_u:object_r:httpd_unit_file_t:s0 /usr/lib/systemd/system/
httpd.service

The context type of the unit file is httpd_unit_file_t.

8.	 Use the ps command to find the context type of the httpd service daemon while it is running:

ps auxfZ | grep httpd

Figure 12.5 – Finding the context of the httpd daemon

The context type of the service daemon is httpd_t.

9.	 Use the netstat command to find the context type of the httpd service port while it
is running:

netstat -tulpnZ | grep httpd

Figure 12.6 – Finding the context of the httpd port

Untangling Security with SELinux482

The context type of the service port is httpd_t.

The preceding example can be summarized in the following table:

Type Context type
Binary file httpd_exec_t

Config files httpd_config_t

Logs httpd_log_t

Content directory httpd_sys_content_t

Unit file httpd_unit_file_t

Process httpd_t

Port httpd_t or http_port_t

Table 12.1 – The httpd service contexts

Note the relation of contexts; all belong to the httpd_t domain.

Thus, type enforcement is the concept under which it makes sense for a process running in the
httpd_t context to interact with a file labeled as httpd_sys_content_t.

Let’s see what context the /etc/shadow file has, where user passwords are stored:

ls -Z /etc/shadow
system_u:object_r:shadow_t:s0 /etc/shadow

The context of the /etc/shadow file is shadow_t.

From a basic functional perspective, the web server (httpd) reads and publishes documents that live
within it. Besides the file’s proprietary permissions, security could enhance this through the SELinux
policy. With proper proprietary permissions, there would be nothing to prevent the httpd service
from publishing the file with user passwords.

With SELinux policies enabled, no matter what permission level the file has, the policy would prevent
it from doing so.

Files with the httpd_t context type can only interact with files under the same context type. The
password file belongs to a different context type than httpd_t; its context is shadow_t, thus their
interaction is denied.

This is the most basic way SELinux works, and the way the policy works. It is not free of issues, but
these are also limited by its nature.

Let’s see how to determine SELinux errors.

How to troubleshoot SELinux issues 483

How to troubleshoot SELinux issues
The popular belief is that it is very difficult to determine and fix SELinux issues. This stems from the
fact that the logs get logged with the system audit. This log reading is not intuitive and, in fact, to the
human eye is quite complex; but it isn’t.

Carrying on with the example of the httpd web server, consider the following sequence of commands:

1.	 As the root user, create the myfile file:

touch myfile

2.	 Move the myfile file to the web content directory:

mv myfile /var/www/html/

3.	 Use the curl command to get the contents of the myfile file published by the web server:

curl http://localhost/myfile

4.	 Observe the output:

Figure 12.7 – Creating the myfile web file

5.	 Use the grep command to search for the myfile string in the system audit log:

grep myfile /var/log/audit/audit.log
...
type=AVC msg=audit(1689045662.823:264): avc:  denied  { getattr
} for  pid=1035 comm="httpd" path="/var/www/html/myfile"
dev="vda3" ino=769948 scontext=system_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:admin_home_t:s0 tclass=file
permissive=0

Untangling Security with SELinux484

At first glance, it is not very easy to read, but let’s analyze it in parts:

•	 type=AVC: AVC Audit Events generated by the AVC subsystem (AVC means Access Vector
Cache) as a result of access denials, or where specific events have requested an audit message.

•	 msg=audit(1689045662.823:264): The timestamp of the message in Unix format
(epoch); use the date command to determine the time:

date -d @1689045662.823
Mon Jul 10 09:21:02 PM CST 2023

•	 avc: denied { getattr } for pid=1035: The result of the avc audit event
called denied for pid 1035

•	 comm="httpd": The httpd command

•	 path="/var/www/html/myfile": The var/www/html/myfile file path

•	 dev="vda3": The vda3 device

•	 ino=769948: Inode identifier

•	 scontext=system_u:system_r:httpd_t:s0: Source context

•	 tcontext=unconfined_u:object_r:admin_home_t:s0: Target context

•	 tclass=file: Target class is a file

•	 permissive=0: SELinux permissive mode disabled

Then, the audit message reads as follows:

At the described timestamp, an AVC event resulted as denied for pid 1035 of the httpd command on
the /var/www/html/myfile file, located on the device and the described inode. The source context
type is httpd_t and the target context type is admin_home_t. The permissive mode is set as disabled.

This indicates that it is an error of the SELinux contexts since they do not correspond and cannot
interact with each other. That is, the web server is not allowed to read that file, as indicated by the
output of the curl command.

At first, it looked very complicated, but when analyzing the log, the error stands out at a glance.

This is the most common error with SELinux, about contexts that cannot interact and whose access
is denied.

What is SELinux trying to tell me?

Let’s analyze each of them and their solutions or workarounds.

How to troubleshoot SELinux issues 485

Labeling

As we observed, every process and object in the system has a label associated with it. If files are not
labeled in the right context, access may be denied. Or, if alternate or custom paths get used for confined
domains, SELinux needs to know about it.

Let’s use the following illustrative example.

Labeling issue: The files in /srv/myweb are not labeled correctly and the web server cannot
access them.

In this particular case, a custom path to the web server’s content directory appears to be used. To assign
the correct label, there are two ways:

•	 If you know the correct label, use the semanage command to assign it to the policy:

semanage fcontext -a -t httpd_sys_content_t '/srv/myweb(/.*)?'

The semanage command applies the httpd_sys_content_t label to the entire contents
of the /srv/myweb directory and inherits it to the new files created in it. This means the
(/.*)? characters appear at the end of the command.

•	 If you don’t know the correct label, but know a file with the correct label, use the semanage
command to assign it:

semanage fcontext -a -e /srv/myweb /var/www

With the -e option of the semanage command, assign the label with reference to another
known file with the correct label.

In both cases, to restore the context from the policy, use the restorecon command:

restorecon -vR /srv/myweb

Using the example from the previous section, let’s solve the issue.

Labeling issue: If a file moves, instead of copying it, it keeps its original context.

To fix this, use the chcon command to change the context:

•	 Change the context to the correct label:

chcon -t httpd_system_content_t /var/www/html/myfile

•	 Change the context with a reference label:

chcon --reference /var/www/html/ /var/www/html/myfile

Untangling Security with SELinux486

In the same way as before, for both cases, to restore the context from the policy, use the
restorecon command:

restorecon -vR /var/www/html

As shown, the main cause of error with SELinux is in the labeling. To correct the context, change the
file context with the chcon command. This is the easiest way to fix it.

If there is a custom path, it is necessary to inform SELinux that an alternate directory to the policy is
going to be used. To change the policy, use the semanage command.

To save context changes in the policy, use the restorecon command.

When there is a customization that modifies the policy, this falls into the second case of SELinux
failures. If the standard usage of a task changes, then SELinux must be informed.

Let’s look at these cases.

SELinux needs to know

Following the web server configuration, in the case of using a port other than the standard port (80)
– for example, 8585 – let’s start by finding out the port label. Use the semanage command to ask
the policy about the configured label:

semanage port --list | grep -w 80
http_port_t     tcp      80, 81, 443, 488, 8008, 8009, 8443, 9000

The context type of the httpd port is httpd_port_t.

Then, use the semanage command to add the 8585 port to the httpd policy:

semanage port -a -t http_port_t -p tcp 8585

Besides these custom configurations, SELinux also offers to change pre-loaded configurations in the
policy, turning them on and off.

These configurations, known as Booleans, allow parts of SELinux policies to get modified at runtime
without the need to rewrite the policy.

For example, if we want to allow the web server to send mail with the sendmail service, turn on
the Boolean with the setsebool command:

setsebool -P httpd_can_sendmail 1

With the -P option, the Boolean change persists on system restart.

To see all Booleans, use the getsebool command with the -a option:

getsebool -a

How to troubleshoot SELinux issues 487

Figure 12.8 – SELinux Booleans

To review the Boolean description, use the semanage boolean command with the -l option:

semanage boolean -l

Figure 12.9 – Reviewing the Boolean description

These two cases, incorrect labeling and custom configuration, are the most common causes of errors
with SELinux.

Untangling Security with SELinux488

There are two other cases that, although not as common, could happen.

Let’s look at the first one.

Policy bugs

In some events, the policy might not work when the behavior fails to meet expectations, as in the
following cases:

•	 Configurations

•	 Redirection of stdout

•	 Filtered file descriptors

•	 Executable memory

•	 Libraries built wrongly

•	 Unusual paths in the code

There is a high likelihood that the policy or application has bugs. These bugs or behavioral flaws should
be reported to the developers to get them fixed.

This is an unusual situation as developers pay close attention to SELinux policies , but do not rule out
the possibility of it happening.

A less common situation is that the system might be compromised, and the behavior of the policies
changes to grant the escape of information or an intrusion.

Let’s look at this last case of failure with SELinux.

Hack attack

There is a risk of a hack attack if the current tools don’t do a good job of differentiating contexts, or if
you detect the case where confined domains attempt to do the following:

•	 Load kernel modules

•	 Turn off SELinux enforcing mode

•	 Write to etc_t/shadow_t

•	 Change firewall rules

If this happens, then be careful, because the system could become compromised and your information
could be in danger.

Summary 489

Hacker attacks are not that common, but rest assured that hackers know how to use SELinux. Don’t
trust, and follow your instinct. If you notice unexpected behavior and it is not related to the other
SELinux failures, there is a possibility that your system might be hacked.

Take it seriously, and thoroughly inspect your system.

You never know when you might be a target for security attacks.

Summary
In this chapter, we gave an overview of the use of SELinux and differentiated the types of access control:
discretionary and mandatory. SELinux, as a mandatory access control could help us to harden the
security of our systems.

The use of SELinux is considered very complex, but we gave several examples that simplify how it
works. SELinux is a labeling system.

We learned how to read the error logs with SELinux and found that there are only four scenarios
where SELinux could fail, as looked at their solutions. The most common failures are with labels or
when using custom configurations for services.

Also, policies could have errors and they should be reported to their developers.

In a less common case, we analyzed that the change of behavior of the policies could be due to an
attack on our system.

In the next chapter, we will take an in-depth look at how to virtualize complete systems or take them
to their smallest expression using containers.

Further reading
To learn more about the topics covered in this chapter, you can visit the following links:

•	 A sysadmin’s guide to SELinux: 42 answers to the big questions: https://opensource.
com/article/18/7/sysadmin-guide-selinux

•	 A sysadmin’s handy cheat sheet for SELinux: https://opensource.com/article/18/8/
cheat-sheet-selinux

•	 SELinux troubleshooting and pitfalls: https://www.redhat.com/sysadmin/selinux-
troubleshooting

https://opensource.com/article/18/7/sysadmin-guide-selinux
https://opensource.com/article/18/7/sysadmin-guide-selinux
https://opensource.com/article/18/8/cheat-sheet-selinux
https://opensource.com/article/18/8/cheat-sheet-selinux
https://www.redhat.com/sysadmin/selinux-troubleshooting
https://www.redhat.com/sysadmin/selinux-troubleshooting

13
Virtualization and Containers

Going back to the 1990s, most companies had physical servers and IT stacks from a single vendor that
did not allow legacy applications to run on another vendor’s hardware. This led to large, multi-service
server environments that were very complex to manage.

As companies upgraded their IT environments with less expensive servers, operating systems, and
applications from a variety of vendors, they began to underutilize physical hardware. Each server
could only run one specific task from one vendor.

Virtualization was the natural solution to two problems: companies could partition their servers and
run legacy applications on multiple types and versions of operating systems and servers began to be used
more efficiently, reducing the costs associated with purchasing, installation, cooling, and maintenance.

The next step was the containerization of these services. Containerization is a form of virtualization.
The goal of virtualization is to run multiple instances of the operating system on a single server, while
containerization runs a single instance of the operating system, with multiple user spaces to isolate
the processes from each other and provide the service.

In this chapter, we will take a brief tour of virtualization and containerization by covering the following
main topics:

•	 Virtualization with QEMU, KVM, and libvirt

•	 Using GNOME Boxes

•	 Discovering OCI containers with Podman

Technical requirements
To complete the topics mentioned in this chapter, you must install the packages indicated in each
section. In each section, you will find instructions for the different types of installation for each
package as required.

Virtualization and Containers492

Virtualization with QEMU, KVM, and libvirt
Fedora Linux comes with native support for virtualization extensions. This support is provided by
Kernel-based Virtual Machine (KVM) and is available as a kernel module. QEMU/KVM in combination
with the Libvirt management toolkit is the standard virtualization method in Fedora Linux.

Quick Emulator (QEMU) is a full system emulator that works together with KVM and allows you
to create virtual machines with hardware and peripherals.

Finally, libvirt is the API layer and allows you to manage the infrastructure – that is, create and
run virtual machines. It includes a local virtual network that enables secure communication between
virtual guest systems with each other and with the host. libvirt’s default configuration also allows NAT
access to the public network, which is useful for virtual machines or containers that don’t have direct
access to the public interface.

The following figure illustrates the QEMU/KVM architecture with libvirt:

Figure 13.1 – The QEMU/KVM architecture

Let’s take a brief look at the management tools.

Management tools

libvirt is a C toolkit that interacts with the virtualization capabilities of Fedora Linux. The main
package includes the libvirtd server for exporting virtualization support.

Virtualization with QEMU, KVM, and libvirt 493

The basic management tools are as follows:

•	 virsh: This is the main interface for managing virsh guest domains. The program can create,
pause, and shutdown domains. It also lists the current domains and their status.

•	 Virt-manager: This is a desktop tool for managing virtual machines. It provides life cycle
control of current virtual machines (startup/shutdown, pause/resume, and suspend/restore),
provisions new virtual machines and various types of storage, manages virtual networks, gives
access to the graphical console of virtual machines, and generates performance statistics locally
or remotely:

Figure 13.2 – Virtual Machine Manager

•	 virt-viewer: This is a minimal tool for displaying the graphical console of a virtual machine.
It accesses the console using the VNC or SPICE protocol. Refer to the virtual guest based on its
name, ID, or UUID. If the guest is not running yet, the viewer could wait until it starts before
attempting to connect to the console. The viewer could connect to remote hosts to look up
console information, as well as connect to the remote console using the same network transport.

•	 virt-install: This is a command-line tool for creating new KVM, Xen, or Linux container
guests using the libvirt hypervisor management library. The virt-install tool supports
graphical installations that use VNC or SPICE protocols, as well as text mode installations
via serial console. The guest could be configured to use one or more virtual disks, network
interfaces, audio devices, and physical USB or PCI devices, among others.

Virtualization and Containers494

The installation media could include local ISOs or CDROMs, or a distribution installation
tree hosted remotely via HTTP, FTP, or in a local directory. In the case of the installation
tree, virt-install obtains the minimum files necessary to start the installation process,
allowing the guest to get the rest of the operating system distribution as needed. PXE booting
and importing an existing disk image (thus skipping the installation phase) are also supported.

With the proper command-line arguments, virt-install can run completely unattended,
with the guest “booting” itself. This allows for easy automation of the guest installation.

Using virt-install capabilities enables you to streamline the process of creating virtual machines,
minimizing the installation time. Let’s learn how to perform this procedure.

Streamlining the creation of virtual machines

QEMU uses the qcow file format for disk image files. It stands for QEMU Copy On Write. The qcow
format uses a disk storage optimization strategy that delays the allocation of storage until it is needed.
Files within the qcow format could contain a variety of disk images that are generally associated with
specific guest operating systems. There are three versions of the format: qcow, qcow2, and qcow3.

At the time of writing, the vast majority of distributions, including Fedora Linux, offer a cloud-ready
downloadable version. One of the available options is the qcow2 image disk format.

OpenStack, an open standard cloud computing platform, provides a web page that references cloud
images for many distributions and operating systems (which you’ll find in the next example).

Using the virt-customize command-line tool, you can modify the downloadable disk image to
import it as a ready-to-use virtual machine.

Follow these steps to create a virtual machine in a short time with these three tools:

1.	 Before starting, verify that your workstation runs virtualization-enabled from the BIOS/UEFI.

Note
This process depends on the manufacturer of your workstation. Please refer to the manufacturer’s
documentation to confirm that they have virtualization capability enabled in the BIOS/UEFI.

2.	 Confirm that the processor of your workstation has the flags that support virtualization:

$ sudo grep -E 'svm|vmx' /proc/cpuinfo

3.	 Use the sudo command to install the packages required for virtualization:

	� qemu-kvm

	� virt-manager

Virtualization with QEMU, KVM, and libvirt 495

	� virt-viewer

	� guestfs-tools

	� virt-install

	� genisoimage:

$ sudo dnf install qemu-kvm virt-manager virt-viewer guestfs-
tools virt-install genisoimage

4.	 Use your browser to navigate to https://docs.openstack.org/image-
guide/obtain-images.html and download the qcow2 disk image of the chosen
distribution/operating system:

Figure 13.3 – OpenStack – Get images

5.	 For this example, download the Fedora Linux image. Use your browser to navigate to https://
fedoraproject.org/cloud/download/:

https://docs.openstack.org/image-guide/obtain-images.html
https://docs.openstack.org/image-guide/obtain-images.html
https://fedoraproject.org/cloud/download/
https://fedoraproject.org/cloud/download/

Virtualization and Containers496

Figure 13.4 – The Fedora Cloud download page

Download the qcow2 image for x86_64 architectures.

Note
Each image requires about 400 MB of disk space. Ensure that you have enough storage space
to store them and let them grow as they get used.

6.	 Move the downloaded qcow2 image to the KVM working directory in /var/lib/libvirt/
images:

$ sudo mv Fedora-Cloud-Base-38-1.6.x86_64.qcow2 /var/lib/
libvirt/images/

Note
A best practice is to copy the qcow2 image with the virtual machine name instead of moving
it. Reuse the original downloaded image to create many virtual machines:

$ sudo cp Fedora-Cloud-Base-38-1.6.x86_64.qcow2 /var/lib/
libvirt/images/vmtest01.qcow2

Virtualization with QEMU, KVM, and libvirt 497

7.	 Use the virt-customize command to modify the downloaded image:

$ sudo virt-customize \
-a /var/lib/libvirt/images/vmtest01.qcow2 \
--hostname vmtest01.packt.lab \
--root-password password:rootpw \
--ssh-inject 'root:file:labkey.pub' \
--uninstall cloud-init \
--selinux-relabel

Let’s look at each of the options that we used in detail:

	� virt-customize modifies the guest or disk image in place. The guest must power off to
modify the disk image. There’s no need to run virt-customize as root user. In this case,
use the sudo command since there are no access rights to the path where this image resides.

	� -a indicates the path of the disk to customize.

	� --hostname sets the virtual machine hostname.

	� --root-password sets the new root password, which in this case is rootpw.

	� --ssh-inject allows you to inject an SSH key to some user. In this case, this is labkey
for the root user.

To generate the SSH key, use the ssh-keygen command:
$ ssh-keygen -t ecdsa -b 521 -f labkey

Note
For more information on the ssh-keygen command, refer to the command manual: man
ssh-keygen.

	� --uninstall allows us to uninstall the software contained by default in the downloaded image.

cloud-init is a suite that helps initialize an image for use in OpenStack. In this case, it is not
necessary since a basic functional level of customization works best here.

Note
If the cloud-init package is not uninstalled, the VM will take a long time to boot as it waits
for the parameters for initialization with cloud-init scripts.

Virtualization and Containers498

	� Since it is a Fedora Linux image, the SELinux contexts must relabel with the --selinux-
relabel option as several files must be changed or removed:

Figure 13.5 – Customizing the qcow2 image

Now that we’ve finished customizing, let’s import the disk image as a new virtual machine.

8.	 To import the disk image as a new virtual machine, use the virt-install command:

$ sudo virt-install \
--name vmtest01 \
--memory 1024 \
--vcpus 1 \
--disk /var/lib/libvirt/images/vmtest01.qcow2 \
--import \
--osinfo fedora38 \
--noautoconsole

Let’s look at each of the options we used in detail:

	� virt-install is the command-line tool for creating new VMs.

	� --name sets the name of the new guest VM instance. The name must remain unique among
all guests known to the hypervisor on the connection, including those not currently active.

	� --memory indicates the memory to allocate for the guest in MiB.

	� --vcpus indicates the number of vcpus to configure for the guest.

	� –disk specifies the device to use as storage for the guest. In this case, this is the path to
the disk image.

	� --import indicates that the disk image gets imported as a new VM building a guest
around this disk image.

Virtualization with QEMU, KVM, and libvirt 499

	� --osinfo optimizes the guest configuration for a specific operating system version or
distribution. In this case, fedora38 is indicated.

Note
To find the list of supported operating system name values, use the virt-install command
– that is, virt-install --osinfo list.

	� --noautoconsole specifies not to try to connect to the guest console automatically:

Figure 13.6 – Creating a new virtual machine

9.	 Verify the status of the created virtual machine:

$ sudo virsh list

Here’s the output:

Figure 13.7 – Verifying the new virtual machine’s status

Virtualization and Containers500

Now, let’s connect to the virtual machine via SSH.

10.	 Use the virsh command to find the IP address that was assigned by the virtualization
DHCP service:

$ sudo virsh domifaddr vmtest01

Here’s the output:

Figure 13.8 – Finding the VM’s IP address

11.	 Use the ssh command and the SSH key to access the virtual machine:

$ ssh –i labkey root@192.168.124.225

You will get the following output:

Figure 13.9 – Accessing the VM

With that, you can get a working virtual machine up and running in a short time. Mastering these
commands speeds up this task.

Before moving on to containerization, which is virtualization in miniature form, let’s look at the tool
that GNOME includes as part of its desktop suite.

Using GNOME Boxes 501

Using GNOME Boxes
GNOME Boxes is an application of the GNOME desktop environment that’s used to access remote
or virtual systems. Boxes uses the QEMU, KVM, and Libvirt virtualization technologies.

Besides the virtualization extensions seen in the previous section, Boxes requires at least 20 GB of
storage space and 500 MB of RAM to allocate to virtual machines. GNOME recommends at least 8 GB
of RAM and 20 GB of storage on the workstation to run Boxes efficiently. Boxes assigns resources to
virtual machines automatically and dynamically based on the vendor’s recommendations.

Let’s review the process of creating a virtual machine with Boxes:

1.	 To access Boxes, open Activities Overview and type Boxes:

Figure 13.10 – GNOME Boxes via Activities Overview

2.	 The main Boxes window will appear. To create a new virtual machine, click on the plus (+)
button in the top-left corner:

Figure 13.11 – GNOME Boxes main window

Virtualization and Containers502

3.	 Boxes offers two options for creating a new virtual machine:

Figure 13.12 – Creating a new virtual machine with Boxes

They are as follows:

	� Install from File: When using this option, you must state the location of the ISO image of
the operating system to install in the new virtual machine

Using GNOME Boxes 503

	� Download OS: This option selects an operating system version or distribution and downloads
the corresponding image for installation in the new virtual machine:

Figure 13.13 – Selecting an operating system image

Virtualization and Containers504

For this example, let’s download the ISO image by ourselves.

4.	 Use your browser to navigate to https://fedoraproject.org/workstation/
download/:

Figure 13.14 – Fedora Workstation download page

Download the ISO image for x86_64 architectures.

https://fedoraproject.org/workstation/download/
https://fedoraproject.org/workstation/download/

Using GNOME Boxes 505

5.	 In Boxes, click on the plus sign (+) and select the Install from File option. Navigate to the
location of the downloaded ISO image and click the Open button:

Figure 13.15 – Creating a new virtual machine

Boxes will display the virtual machine creation options. Use the default options and click the
Create button.

Virtualization and Containers506

6.	 The installation of the downloaded image – in this case, Fedora Workstation – starts on a
bare-metal machine:

Figure 13.16 – Fedora Workstation live image

7.	 In the Fedora Workstation installation window, click the Install Fedora button and continue
installing the operating system:

Using GNOME Boxes 507

Figure 13.17 – Fedora Linux installation window

8.	 Once the installation has finished, click on the Finish installation button and restart the
virtual machine:

Figure 13.18 – Finishing virtual machine installation

Virtualization and Containers508

Upon restarting the virtual machine, it will appear in the main Boxes window:

Figure 13.19 – The Boxes main window

Using GNOME Boxes 509

9.	 Click on the virtual machine icon to access it:

Figure 13.20 – Accessing the virtual machine

Virtualization and Containers510

The virtual machine window takes up the space of the main Boxes window and allows us to
use it graphically, as a remote session:

Figure 13.21 – Fedora Workstation virtual machine

Now, use the virtual machine for the tasks assigned to it.

If the virtual machine gets turned off, it will appear in the main window, as shown in the
following figure:

Using GNOME Boxes 511

Figure 13.22 – The virtual machine turned off in Boxes

10.	 Right-click on the virtual machine icon to access the administration options:

Figure 13.23 – Virtual machine management options

Virtualization and Containers512

11.	 To turn on the virtual machine, double-click its icon.

GNOME Boxes is a simple application for accessing and managing virtual machines. It does not
provide granular management and automation facilities of virsh, but it is a good tool to become
familiar with the use of virtual machines.

A more granular method, with less creation time and better optimization of host resources, is to
use containers.

Now, let’s learn how Fedora Linux implements the use of open containers.

Discovering OCI containers with Podman
A Linux container, roughly speaking, works like the virtualization process, where we import a pre-built
image of an operating system and create a virtual machine from it. In the case of containers, the image
only packages the programs and their minimal dependencies needed for the operation of an application.

A container is a set of one or more processes that stand isolated from the rest of the system.

The kernel provides the following main components:

•	 namespaces to ensure process isolation

•	 cgroups to control system resources

•	 SELinux to ensure separation between the host and container, as well as between containers

The administration interface interacts with the kernel components and provides tools for building and
managing containers. All the files needed to run a container come from an image.

Container images live in an external repository called a registry. To create a container, download the
registry image and generate a runnable copy of the application on the host. These processes require
a runtime and the image needs to be in a specific format to run.

The Linux Foundation sponsors the Open Container Initiative (OCI) project with the purpose of
creating open industry standards around container formats and runtimes.

The OCI currently contains three specifications:

•	 The Runtime Specification (runtime-spec). This specifies how to run a filesystem bundle
that is unpacked on disk.

•	 The Image Specification (image-spec). This provides interoperable tools for building,
transporting, and preparing a container image for running.

•	 The Distribution Specification (distribution-spec). This defines an API protocol to
ease and standardize content distribution.

Discovering OCI containers with Podman 513

An OCI implementation would download an OCI image and then unpack that image into an OCI
runtime filesystem bundle.

Fedora Linux implements Podman for OCI container management.

Podman relies on an OCI-compliant container runtime (runc, crun, runv, and so on) to interact
with the operating system and create the running containers via the command line:

Figure 13.24 – Podman interaction

Containers controlled with Podman can be run by root or an unprivileged user. Podman manages
the entire container ecosystem, including pods, containers, container images, and container volumes,
using the libpod library.

To run containers as a non-root user, you must have some considerations about the resources you use:

•	 The container images get stored in the user’s home directory ($HOME/.local/share/
containers/storage/) instead of /var/lib/containers

•	 Due to not having root privileges, these rules must be followed:

	� No capability to access a port less than 1024

	� Storage must live on a local filesystem

Let’s start by installing the utility.

Installing Podman requires administrator privileges. As the root user, run the dnf command:

dnf install podman

Virtualization and Containers514

Now, let’s create an example container to exemplify the scope of the utility as a non-root user:

1.	 Verify rootless configuration:

$ podman unshare cat /proc/self/uid_map

You should see the following output:

Figure 13.25 – Podman rootless configuration

2.	 Create a base container. Use the podman pull command to download the image:

$ podman pull ubi9/ubi

Note
The Red Hat Universal Base Image (UBI) enables you to build, share, and collaborate with
containerized applications.

Here’s the output:

Figure 13.26 – Obtaining the container image

Discovering OCI containers with Podman 515

After the download is complete, verify and inspect the image.

3.	 Use the podman images command to list the downloaded images:

$ podman images

Here’s the output:

Figure 13.27 – Listing container images

Use image ID to inspect it.

4.	 Inspecting the downloaded image provides us with information on the creation and use of the
image, besides the available variables to use on it. Use the podman inspect command with
the name of the image or its ID:

$ podman inspect 05936a40cfa4

You will see the following output:

Figure 13.28 – Inspecting the UBI image

Virtualization and Containers516

Now, let’s create a container from the downloaded image.

5.	 Run a container of the UBI image to display the operating system version:

$ podman run ubi9/ubi cat /etc/os-release

Here’s the output:

Figure 13.29 – Running a container

The container is a base image of RHEL9 that’s running on Fedora Linux.

Discovering OCI containers with Podman 517

Now, let’s create an example of a containerized service. Follow these steps:

1.	 Use your browser to navigate to https://registry.fedoraproject.org/:

Figure 13.30 – Fedora Project container image registry

https://registry.fedoraproject.org/

Virtualization and Containers518

2.	 Find the latest web server image (httpd) and copy its pull command:

docker pull registry.fedoraproject.org/f29/httpd

Note
Change the pull command so that it uses podman instead of docker.

3.	 Download the container image and verify it:

$ podman pull registry.fedoraproject.org/f29/httpd
$ podman images

You should get the following output:

Figure 13.31 – Getting the httpd image

4.	 Test run the container for the httpd image:

$ podman run httpd

Discovering OCI containers with Podman 519

Here’s the output:

Figure 13.32 – Running the httpd image container

Running the httpd image container in this way inhibits the use of the Terminal. Let’s run it
with a custom name and in the background.

5.	 Run the httpd image container as myapache and in the background. Use the --name and
-d options with the podman run command:

$ podman run --name myapache -d httpd

Verify the container’s status with the podman ps command:
$ podman ps

You should see the following output:

Figure 13.33 – Running the container and verifying its status

Virtualization and Containers520

Inspect the running container to find information you can use to access the service.

6.	 Use the podman inspect command:

$ podman inspect myapache | grep IPAddress
$ podman inspect myapache | grep expose-service

You should see the following:

Figure 13.34 – Looking for access to the containerized service

The containerized service has no IPAddress assigned to it but opens ports 8080 and 8443.
Check the logs for more information.

7.	 Use the podman logs command to review the logs:

$ podman logs myapache

Here’s the output:

Figure 13.35 – Reviewing service logs

Discovering OCI containers with Podman 521

In the logs of the containerized service, find the IP address that opens port 8443. Verify access
to the service with this information.

8.	 Verify access to the containerized service. Use the following curl command:

$ curl 10.0.2.100:8443

Here’s the output:

Figure 13.36 – Verifying access to the web service

The service fails to answer on port 8443 or 8080.

This is due to the container port not referring to a host port. Delete the container and recreate
it with the reference to a local port.

9.	 Remove the container. First, use the stop option to interrupt the container run and then the
rm option to delete the container with the podman command:

$ podman stop myapache
$ podman rm myapache

You should see the following output:

Figure 13.37 – Removing the container

Verify that the myapache container is not running anymore. Use the podman ps command
to do so.

Virtualization and Containers522

10.	 Recreate the myapache container by mapping the container’s port, 8080, to local port 8080.
Add the -p option to the podman run command that we ran in step 4:

$ podman run --name myapache -d -p 8080:8080 httpd

Here’s the output:

Figure 13.38 – Mapping the container port to the local port

11.	 Use the podman ps command to confirm that the port was mapped correctly.

12.	 Test the service again but on local port 8080:

$ curl localhost:8080

You should see the following output:

Figure 13.39 – Testing service access

Now that the service is accessible, it shows the Apache test page.

An application that always runs on a single host accesses local disk storage to get the information it needs
while running. These storage volumes remain both logically and physically persistent. Containerized
dynamic and elastic deployments separate the logical and physical states of application storage.

A containerized application could be logically resident but physically transient due to the redistribution
and scaling capabilities inherent in OCI technologies.

Discovering OCI containers with Podman 523

If a container resides on a host, but that container stops working, the container manager could start
a new instance on another host. The application may need some data available when it is running;
this is known as logical persistence. Since container information is ephemeral by default, the storage
is physically transient.

In containerized storage in general, the trend is to integrate persistent storage with ephemeral containers
as best as possible.

Now, let’s learn how to add persistent storage to our containerized service. Follow these steps:

1.	 Stop and remove the myapache container:

$ podman stop myapache
$ podman rm myapache

2.	 In the user’s home directory, create the working directory for persistent storage of the
myapache container:

$ mkdir –p ~/containers/myapache/var/www/html

Now, let’s create a custom home page for our service.

3.	 Create the index.html file inside the persistent storage directory we created for the
myapache container:

$ echo "Hello from myapache container!" > ~/containers/myapache/
var/www/html/index.html

4.	 Regenerate the myapache container with the -v option to add persistent storage as a volume
of the myapache container.

5.	 Run the container again with the option to attach the volume mentioned previously. As with
the port, the local directory must be mapped to the container directory. In this case, since it
deals with files, add the -Z option to apply the SELinux policy from the container directory
to the local directory:

$ podman run --name myapache -d -p 8080:8080 -v ~/containers/
myapache/var/www/html:/var/www/html:Z httpd

6.	 Verify that the container is running, as well as that you have access to the service:

Figure 13.40 – Testing the container with persistent storage

Virtualization and Containers524

Now, our web service has persistent storage. This can be managed locally or independently of the
container instance(s) running with the content.

This service could manage itself as a container and give this management to systemd as part of the
system. Let’s learn how set up self-management.

Using the same myapache container from the previous example, follow these steps:

1.	 Stop and remove the myapache container:

$ podman stop myapache
$ podman rm myapache

2.	 To make the myapache container self-managed, add a command that determines the health
of the container. In our case, we will use the curl command from the previous example. Use
the --health-cmd and --health-interval options to define them in the container:

$ podman run --name myapache -d -p 8080:8080 -v ~/containers/
myapache/var/www/html:/var/www/html:Z --health-cmd="curl
localhost:8080 || exit 1" --health-interval=0 httpd

Here’s the output:

Figure 13.41 – Making the container self-managed

Verify the creation of the container. Then, use the podman ps command.

3.	 To check the health of the container, run the podman healthcheck run command:

$ podman healthcheck run myapache

Here’s the output:

Figure 13.42 – Reviewing the health of the container

Discovering OCI containers with Podman 525

4.	 The output of the preceding command should return nothing. Run an echo command on the
special variable, $?, to get the output of the command:

$ echo $?

If it is equal to zero (0), the command ran successfully, which means that the health of the
container is good.

Thus, the myapache container indicates when it is working correctly – that is, it is self-managing. This
management could delegate to the operating system as part of one of its services. For this, systemd
must be set up to support services that are started from the user session. Follow these steps:

1.	 As root, enable user lingering by running the loginctl command:

loginctl enable-linger acallejas

2.	 Create a directory to host the containerized services and change to that directory:

$ mkdir -p ~/.config/systemd/containerized-services
$ cd ~/.config/systemd/containerized-services

3.	 Build the configuration files for systemd using the podman generate command:

podman generate systemd --name myapache --files

Here’s the output:

Figure 13.43 – Containerized service configuration file

The preceding command creates the container-myapache.service unit file with the
configuration for systemd to manage.

Virtualization and Containers526

4.	 Reload the user’s daemons by running the following systemctl command:

$ systemctl --user daemon-reload

5.	 Enable the user’s containerized service by running the following systemctl command:

$ systemctl --user enable --now ~/.config/systemd/containerized-
services/container-myapache.service

6.	 Verify the status of the containerized service by running the following systemctl command:

$ systemctl --user status container-myapache

You should see the following output:

Figure 13.44 – Verifying the containerized service

Finally, verify that the containerized service continues to operate. Use the curl command
we used previously.

With that, we’ve learned how to use OCI containers, from their simple use to creating a containerized
service that’s managed by the operating system.

Fedora Linux implements the use of OCI containers as a way to ease service management. With this
bouquet of possibilities, depending on the workload, we can choose a virtual machine, either created
with a cloud-based image or created with its installation image traditionally. Alternatively, we can use
containers if we only need to deploy a simple service such as myapache.

I hope these options can help you improve the performance of your day-to-day tasks as a Linux
system administrator.

Summary 527

Summary
In this chapter, we provided a quick overview of the methods for creating a virtual machine. In my
opinion, the easiest and fastest way is to rely on the use of pre-built cloud images. In a couple of steps,
and with enough practice, we can have them working in a matter of minutes.

Besides that, we used Gnome Boxes as a traditional method of creating virtual machines with
an installation image. This method is a bit slower but allows us to customize the guest operating
system installation.

Next, we looked at services, where we learned how to use OCI containers implemented by Fedora
Linux. This is a simple option for creating containerized services because it gives us the power to
customize them so that they meet our needs. For example, we can use them for persistent storage, self-
management, or even to delegate a containerized service as a system service managed by systemd.

All these tools make up an arsenal that could ease the performance of a Linux system administrator’s
day-to-day tasks. As we mentioned in Chapter 10, “a good system administrator backs up, automates,
and studies in their spare time.”

Congratulations on making it to the end of this book! I hope you found it useful.

Further reading
To learn more about the topics covered in this chapter, you can visit the following link:

•	 Build a lab in 5 minutes with three simple commands: https://www.redhat.com/
sysadmin/build-lab-quickly

https://www.redhat.com/sysadmin/build-lab-quickly
https://www.redhat.com/sysadmin/build-lab-quickly

Index

A
AAC 344
Affero General Public License 273
AGPLv3 272
AlmaLinux 15
Ansible 414

automating 414
configuring 416-423
installing 416-423
layers 415
reference link 423
use cases approach 415
work unit levels 415

AppImage apps 189
developing 194, 195
running 189-194

Application Programming
Interface (API) 220

archive file 400
ArcMenu 85

extension 84
Attachmate Group 302
AVC Audit Events 484

B
backup 400

archive file 400-405
compressed file 400-405

balenaEtcher 40
Bash-one-liners 22
Bash scripting 373-385
Battery Time extension

reference link 91
Bitbucket 387
block 110
boot media

creating 40
creating, with Fedora Media Writer 41-45
OS, booting from 46-50

Bourne Again Shell (Bash) 17
bpytop 177, 178
browsing

expanding, with Google Chrome 344-364
Btrfs filesystem 110

creating 111-117
subvolume 114

btrfs-usage-report command
using 124-127

Index530

C
Calc 279
Calligra 273

components 273
CDROMs 494
CentOS Project 8
CentOS Stream 8, 15
Chromium 1.0 344
Chromium 5.0 344
chunk 118
C language 4
CLI

using 203-213
cloud-init 497
Code of Conduct 11

reference link 11
command line 220, 221
command-line interface 16

basics 17
console, using 21, 22
filesystem space 30-33
information search 17
regular expression handling 27
text file editor 24

command-line interface, console
advanced level 23, 24
basic level 22
intermediate level 22

command-line interface, information search
advanced level 20, 21
basic level 17-19
intermediate level 19, 20

command-line interface, regular
expression handling

advanced level 30
basic level 27-29
intermediate level 29

command-line interface, text file editor
advanced level 26
basic level 24, 25
intermediate level 25, 26

compressed file 400
compression utilities 401
computer science 369
Conky 97-104
containerization 491
context 477
Control Center

VPN client, configuring with 167, 168
Conventional Commits

reference link 393
copy-on-write (COW) filesystem 110
Corel’s Word Perfect 280
COW clones 129
CPU 435

usage, improving 441-448

D
Dash to Dock 105
Debian 6
Debian Package 6
delayed allocation 118
desktop environment 34
discretionary access control (DAC) 476
docks 104

handy applications 104
Document Foundation Wiki 291
dynamic priority 443

E
Evolution

mailing with 302-315
Evolution 2.0 302

Index 531

F
Fedora Core 1 327
Fedora Core 3 328
Fedora Council 11
Fedora Docs 40
Fedora documentation

reference link 39
Fedora Edition 39
Fedora Engineering Steering

Committee (FESCo) 11
Fedora Linux 3, 7, 39, 162, 177, 196

extra package selection 69-71
office tools, exploring 272

Fedora Linux, office tools
Calligra 273
fonts 274-276
LibreOffice 276-279
ONLYOFFICE Desktop Editors 272
WPS Office 272

Fedora Media Writer 40
boot media, creating 41-45
download link 40

Fedora Mindshare Committee 11
Fedora Project 7, 56

Code of Conduct 11
contributing 10
Fedora’s mission and foundations 9, 10
implementing 12-15
Red Hat contribution path 8
reference link 186
system administration tool 15

Fedora’s mission and foundations 9, 10
mission 10
vision 10

Fedora Spins
reference link 34

Fedora Workstation 40, 73
version, package management 64-69

file 220
file formats 110
filesystem 110, 430
Firebird 327
Firefox 327-335

customizing 335-344
Firefox 1.0 327
Firefox Nightly 190
firewall-cmd cli 162
Flatpak applications

building 213-217
CLI, using 203-213
examining 196
GUI, using 197-203
using 197

Floating Dock 105, 106
fonts 274-276
Free Software Foundation 273
Frippery Panel Favorites extension

reference link 89

G
Git 386, 387

basics 388-400
version management 405-414

GitHub 386, 387
GitLab 386
Git states

committed 388
modified 388
staged 388

GNOME 73, 157
desktop environment 34

GNOME Boxes
using 501-512

Index532

Gnome Frippery Panel Favorites extension
reference link 331

GNOME Shell extensions 81-83
GNOME tweak tool 78-80
GNU AGPLv3 273
GNU Emacs 4

basics 223-228
features 235-243
mastering 228-235
overview 221-223

GNU General Public License
(GPL) 4, 175, 273

GNU/Linux 271
GNU nano 244-246
GNU Project 4
Google 387
Google Chrome

browsing, expanding with 344-364
Google Chrome 5.0 344
GUI

using 197-203

H
H.264 344
Hardware for Linux

reference link 150
hidden directories 99
Hurd 5

reference link 5

I
IBM AIX operating system 175
Information Technology 369
inode 110

installing packages, Fedora Linux
reference link 69

internal kernel operation 430
International Electrotechnical

Commission (IEC) 453
International System of Units (SI) 453
Internet Message Access

Protocol (IMAP) 309
IPsec-based VPN 166

connection, adding 168-170
ISOs 494

J
Java lawsuit against Google

reference link 276

K
kernel

log levels 377
parameters, tuning 430-434
tuning 430
tuning, type 430

Kernel-based Virtual Machine (KVM)
used, for virtualization 492

keyfile plugin 140
reference link 141

keyfiles, network connections 142
KISS principle 370

reference link 371
Konsole Desktop Environment (KDE) 17
Kubernetes

reference link 426

Index 533

L
labeling 477

issue 485
Lempel-Ziv (LZ77) 401
Lempel-Ziv-Markov chain

algorithm (LZMA) 401
LibreOffice 271, 276

components 276
LibreOffice Calc 291-294

features 292
interface 293

LibreOffice Impress 294
LibreOffice Writer 280-282

styles, applying 283-291
libvirt

used, for virtualization 492
Linux

history 3-5
Linux distributions 6
Linux Kernel Driver DataBase (LKDDb)

reference link 149
Linux Security Modules 475
Linux system administrator 369
local storage

partitioning 51-54
logical persistence 523
Logical Volume Manager (LVM) 112-129

snapshots, comparing 129, 130

M
management tools 492, 493
mandatory access control (MAC) 475

learning 476
multi-lateral security systems 476
multi-level security systems 476

Markdown language syntax
reference link 407

mechanical engineering 369
memory 435

usage, improving 448-452
meteorology 369
monitoring tools

overview 435-440
Montserrat Font Project

reference link 276
Mozilla Project 327
Mozilla Thunderbird

mailing with 315-327
multi-lateral security systems 476
multi-level security systems 476
MZLA Technologies Corporation 315

N
Netscape Communications

Corporation (NSCP) 327
Netscape Communicator 5.0 327
Netscape Communicator software 327
network configuration 430
network connection monitoring tools 175

bpytop 177, 178
Nigel’s Monitor (nmon) 175-177

network connectivity
improving, with VPN 165, 166

network firewall 161
NetworkManager 140

fundamentals 140, 141
NetworkManager command-line

interface (nmcli) 141-148
network tuning

used, for boosting performance 462, 463
nice value 443
Nigel’s Monitor (nmon) 175-177

Index534

nm-connection-editor 157-161
nmon for Linux

reference link 177
non-real-time policies 443

O
OASIS Open Document Format for

Office Applications 273
OCI containers

discovering, with Podman 512-526
ODF spreadsheet (.ods) 292
one-time password (OTP) 173
ONLYOFFICE Desktop Editors 272
Open Container Initiative (OCI) 512

Distribution Specification 512
Image Specification 512
Runtime Specification 512

OpenDocument Format (ODF) 273
OpenDocument (ODT) 280
OpenOffice

URL 276
OpenStack 494
OpenVPN 166

connection, adding 171-174
OpenWeather extension

reference link 90
OpenWeatherMap

reference link 100
operating system (OS) 39

booting, from boot media 46-50
configuration, finishing on first boot 54-63

P
PackageKit GUI 69
package management system (PMS) 6

panel
customizing 84-88

partitioning 50
performance

boosting, with network tuning 462, 463
performance, with network tuning

metrics, analyzing 463-473
Phoenix 0.1 327
Pino clone 244
Podman

OCI containers, discovering with 512-526
Point-to-Point Protocol (PPP) 166
Post-Office Protocol (POP) 309
protocol data unit (PDU) 462
proxy server 165
ps aux command

output, describing 436
Python 177

Q
Qt

URL 40
Quick Emulator (QEMU)

used, for virtualization 492

R
real-time computing (RTC) 443
real-time policies 443
received signal strength (RSSI) 156
reception flow 462
Red Hat 3, 7, 302
Red Hat 6.2E 7
Red Hat contribution path 8
Red Hat Enterprise Linux (RHEL) 7
Red Hat Linux 7
Red Hat Linux 6.1 7

Index 535

Red Hat Package Manager 7
Red Hat technologies

reference link 425
registry 512
RHEL 2.1AS 8
Rocky 15
role-based access control (RBAC) 476
RPM Fusion 106
RPM Package Manager 7, 69

S
Salesforce 387
sandbox applications

inspecting 184
SELinux sandbox 184-189

Secure Shell (SSH) 166
security 310
Security-Enhanced Linux (SELinux) 475

disabled mode 478
enforcing mode 478
permissive mode 478
working 478-482

Security-Enhanced Linux (SELinux), issues
hack attack 488, 489
labeling 485
policy bugs 488
troubleshooting 483, 484
web server configuration 486, 487

SELinux context 477
SELinux sandbox 184-189
server type 310
shell script 23
Slackware 6
slides and image management

creating 294-298
snapshot 110

Softlanding Linux System (SLS) 6
software engineering 369
SSH keys 417, 497
static priority 443
storage

space usage, improving 454-461
tuning, considerations 452-454

storage space size
btrfs-usage-report command, using 124-127
optimizing 117-120
space allocation check 120-124

Stratis pool
creating 132-136

Stratis storage
discovering 131, 132
Stratis pool, creating 132-136

SUSE 302
SysAdmin 369
SysAdmin laws 370

fundamental principles 371, 372
KISS principle 370

system devices 430
systems engineering 369
system tuning 74

desktop experience, tuning 75-77
GNOME tweak tool 78-80
swappiness value, tuning 74, 75

T
tar command 402

options 402
taskbar 88-94

customizing 84-88
Task Widget extension 94, 95

reference link 94
resource monitor 95

Index536

system monitor 95
TopHat 96
vitals 97

Template Manager 295
Text Editor & Corrector (TECO) 4
Text editors 220, 221
Tip Isn’t Pico (TIP) 244
top command

output, describing 438
transmission flow 462
tunneling 165
tweak tool 77
Twitter 387
type enforcement (TE) 476, 477

U
Unetbootin 40
Uniplexed Information & Computing

Service (UNICS) 3
Universal Base Image (UBI) 514
Universal Unique Identifier (UUID) 454
Unix 3
Unix Epoch 148
Unix format 484
UNIX operating system 220

V
Vi IMproved (Vim) 25, 246-251

capabilities 255, 256
configurations 256
custom commands 257
custom functions 257, 258
mapping 259
mastering 251-255
plugins 260-269

Vim plugins, for developers
reference link 269

Vim plugins, for sysadmins
reference link 269

VimTricks
reference link 424

virtualization 491
virtual machines

creation, streamlining 494-500
virtual private network (VPN)

used, for improving network
connectivity 165, 166

Vision Health Initiative (VHI)
reference link 63

VPN client
configuring, with Control Center 167, 168

W
Wi-Fi access points 153
wireless network connection

device, identifying 149-153
nm-connection-editor 157-161
searching, to obtain best connectivity

performance 153-157
security 161-165
tuning 149

WPS Office 272
Writer 279, 280

X
XML User Interface Language (XUL) 315

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Embedded Linux Development Using Yocto Project - Third Edition

Otavio Salvador, Daiane Angolini

ISBN: 978-1-80461-506-5

•	 Get to grips with Poky workflows

•	 Configure and prepare the Poky build environment

•	 Explore the latest version of Yocto Project through examples

•	 Configure a build server and customize images using Toaster

•	 Generate images and fit packages into created images using BitBake

•	 Support the development process by setting up and using Package feeds

•	 Debug Yocto Project by configuring Poky

•	 Build and boot image for BeagleBone Black, RaspberryPi 4, and VisionFive via SD cards

•	 Explore the use of QEMU to speed up the development cycle using emulation

https://packt.link/9781804615065

539Other Books You May Enjoy

Architecture and Design of the Linux Storage Stack

Muhammad Umer

ISBN: 978-1-83763-996-0

•	 Understand the role of the virtual filesystem

•	 Explore the different flavors of Linux filesystems and their key concepts

•	 Manage I/O operations to and from block devices using the block layer

•	 Deep dive into the Small Computer System Interface (SCSI) subsystem and the layout of
physical devices

•	 Gauge I/O performance at each layer of the storage stack

•	 Discover the best storage practices

https://packt.link/9781837639960

540

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Fedora Linux System Administration, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1804618403

541

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80461-840-0

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80461-840-0

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
The Fedora Project
	Chapter 1: Linux and Open Source Projects
	A brief history of Linux
	Understanding Linux distributions
	The Fedora Project
	The Red Hat contribution path
	Fedora’s mission and foundations
	Contributing to the project
	Fedora as a system administration tool

	The command-line interface
	The basics
	Guided example – releasing space in the filesystem

	Desktop environments
	Summary
	Further reading

	Part 2:
Workstation Configuration
	Chapter 2: Best Practices for Installation
	Technical requirements
	Creating the boot media
	Fedora Media Writer
	Booting

	Partitioning local storage
	The first startup
	Package management
	Extra package selection
	Summary
	Further reading

	Chapter 3: Tuning the Desktop Environment
	Technical requirements
	Initial system tuning
	Tuning the swappiness value
	Tuning the desktop experience
	GNOME Tweak Tool

	Customizing the panel and the taskbar
	The taskbar

	Making tasks easy with widgets
	Conky

	Handy applications with docks
	Summary
	Further reading

	Chapter 4: Optimizing Storage Usage
	Technical requirements
	Understanding file formats and filesystems
	Creating a Btrfs filesystem

	Optimizing storage space size
	Space allocation check
	Using the btrfs-usage-report command

	Deep diving into Logical Volume Manager
	Differences between snapshots

	Discovering Stratis storage
	Creating a Stratis pool

	Summary
	Further reading

	Chapter 5: Network and Connectivity
	Technical requirements
	Walking through the basics
	NetworkManager command-line interface (nmcli)

	Tuning wireless connectivity
	Identifying the device
	Finding the best quality network connection
	nm-connection-editor
	What about security?

	Improving network connectivity using a VPN
	IPSec-based VPN
	OpenVPN
	Configuring a VPN client with the Control Center

	Network performance monitoring
	nmon
	bpytop

	Summary
	Further reading

	Part 3:
Productivity Tools
	Chapter 6: Sandbox Applications
	Technical requirements
	Inspecting sandbox applications
	SELinux sandbox

	Diving deep into AppImage apps
	Running an AppImage
	Developing AppImages

	Examining Flatpak applications
	Using Flatpak applications
	Building Flatpak applications

	Summary
	Further reading

	Chapter 7: Text Editors
	Technical requirements
	Text editors and the command line
	Emacs overview
	The basics
	Mastering GNU Emacs

	Nano basics
	The mighty vim
	The basics
	Mastering vim

	Summary
	Further reading

	Chapter 8: LibreOffice Suite
	Technical requirements
	Exploring office tools on Fedora Linux
	WPS Office
	ONLYOFFICE
	Calligra
	Fonts
	LibreOffice

	Getting used to Writer and Calc
	Writer
	Calc

	Creating slides and image management
	Summary
	Further reading

	Chapter 9: Mail Clients and Browsers
	Technical requirements
	Mailing with Evolution
	Mailing with Thunderbird
	Trusty old Firefox
	Customizing Firefox

	Expanding browsing with Google Chrome
	Summary
	Further reading

	Part 4:
System Administration Tools
	Chapter 10: System Administration
	Technical requirements
	The three laws of the SysAdmin
	The KISS principle
	Knowing the basic tasks

	A little bit of Git and programming
	Bash scripting
	Git
	The basics

	Don’t forget to back up
	Archiving and compression
	Version management with Git

	Automating with Ansible
	The basics
	First steps

	Never-ending study
	Summary

	Chapter 11: Performance Tuning
Best Practices
	Technical requirements
	Understanding kernel tuning
	Tuning kernel parameters

	Main tuning – CPU and memory
	Overview of monitoring tools
	Improving CPU usage
	Improving memory usage

	Don’t ignore storage tuning
	Improving storage space usage

	Boosting performance with network tuning
	Analyzing metrics

	Summary

	Chapter 12: Untangling Security
with SELinux
	Technical requirements
	Learning about mandatory access control
	Labeling and type enforcement
	How SELinux works

	How to troubleshoot SELinux issues
	Labeling
	SELinux needs to know
	Policy bugs
	Hack attack

	Summary
	Further reading

	Chapter 13: Virtualization and Containers
	Technical requirements
	Virtualization with QEMU, KVM, and libvirt
	Management tools
	Streamlining the creation of virtual machines

	Using GNOME Boxes
	Discovering OCI containers with Podman
	Summary
	Further reading

	Index
	About Packt
	Other Books You May Enjoy

