

Embedded Linux Development
Using Yocto Project

Leverage the power of the Yocto Project to build efficient
Linux-based products

Otavio Salvador

Daiane Angolini

BIRMINGHAM—MUMBAI

Embedded Linux Development Using Yocto Project

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Group Product Manager: Mohd Riyan Khan
Publishing Product Manager: Mohd Riyan Khan
Content Development Editor: Sujata Tripathi
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Sean Lobo
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Aparna Bhagat
Marketing Coordinator: Marylou Dmello

First published: July 2014
Second edition: November 2017
Third Edition: April 2023
Production reference: 1290323

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80461-506-5

www.packtpub.com

http://www.packt.com

We primarily want to express our gratitude to our families for their unwavering support, which helped
us stay on track and complete this project.

We are deeply thankful for the time and effort the Yocto Project and the OpenEmbedded communities
have invested in developing these powerful open source tools. It is an honor to be part of such a
dynamic and supportive community, and we look forward to continuing our collaboration and

contributing to the growth of these projects. In addition, their vibrant communities have provided us
with insights, reviews, materials, and guidance, which have been instrumental in shaping the content

of this book.

– Otavio Salvador and Daiane Angolini

Contributors

About the authors
Otavio Salvador is a well-known software engineer and developer with extensive embedded Linux
development experience. He contributes to open source projects related to the Linux kernel and
embedded systems, including system boot, device drivers, firmware, and more.

He is the chief executive officer at the Brazilian technology company O.S. Systems, a leading provider of
embedded Linux development solutions and services. The company offers various services, including
embedded Linux development, consulting, and support. Otavio Salvador has been a key contributor
to the Yocto Project. His expertise in this area has helped make O.S. Systems a leading Yocto Project-
based solutions and services provider.

Daiane Angolini is a software engineer with embedded systems and embedded Linux development
expertise. In addition, she has experience in open source software development with contributions to
several projects and communities, including the Yocto Project, OpenEmbedded, and the Linux kernel.

Daiane is a senior embedded software engineer at Foundries.io, a company that built a secure, open
source platform for the world’s connected devices and a cloud service configurable to any hardware
and any cloud through embedded computing solutions. At Foundries.io, she develops and improves
the software for various embedded systems, maintaining LmP and BPSs based on the ARM and x86
architectures using Yocto Project tools.

About the reviewers
Vanessa Maegima is an electronics engineer from Brazil with over six years of experience in embedded
systems. She works as an embedded software engineer focusing on Customer Success at Foundries.
io and previously worked as a systems engineer at NXP Semiconductors, where she met and fell in
love with the embedded Linux world. She is enthusiastic about U-Boot and Linux kernel as well as
microcontroller unit software development.

To my family, who always pushes me to be my best, specially to my husband Gustavo, for the daily
support and love.

Khem Raj is a long-time open-source software maintainer and developer. He serves on the technical
steering committee and is part of the advisory board for Yocto Project. He maintains several Yocto
Project layers, including the core toolchain layer. A fellow at Comcast, Khem has helped bootstrap
Reference Design Kit (RDK) project, which uses Yocto Project for its build infrastructure, which is
now the standard operating platform for set-top boxes and home routers across the service provider
industry. He is also a frequent speaker at events such as Embedded Linux Conference and Open
Source Summit.

To my children Himangi and Vihaan, who keep me motivated to do new things, and my spouse Sweta’s
everlasting support, without which I would be unable to do this. Thank you.

Caio Pereira had his first contact with embedded Linux in 2005 during a demo from Blackfin Digital
Signal Processor with μClinux at university. This led him to decide to work with embedded Linux. He
received a bachelor’s of science in electrical engineering with a specialization in telecommunications
from INATEL, Brazil, in 2008. Over the last 15 years, he has participated in product development and
Linux customization for different areas including broadcasting, telecommunications, home automation,
smart cities, defense, and lithography machines, having experience with Field Programmable Gate
Arrays and processors from different architectures. Today, he lives in the Netherlands and works for
Foundries.io as a customer success engineer, helping companies worldwide to develop fast and secure
products based on Linux.

I want to thank my family for their love and support and for understanding my extra night hours
dedicated to study and work. I also thank all my colleagues from the companies I’ve worked for sharing
their knowledge and experience with me; it has been fundamental to my growth. Special thanks to all
those who dedicate their time to open source projects responsible for keeping the world running.

Preface xiii

1
Meeting the Yocto Project 1

What is the Yocto Project? 1
Delineating the Yocto Project 2
The alliance of the OpenEmbedded
project and the Yocto Project 2
Understanding Poky 3

BitBake 3
OpenEmbedded Core 4
Metadata 4

The Yocto Project releases 4
Summary 6

2
Baking Our First Poky-Based System 7

Preparing the build host system 7
Using Windows Subsystem for Linux (WSLv2) 7
Preparing a Linux-based system 8

Downloading the Poky source code 9
Preparing the build environment 10

Knowing the local.conf file 12
Building a target image 13
Running images in QEMU 15
Summary 17

3
Using Toaster to Bake an Image 19

What is Toaster? 19
Installing Toaster 19
Starting Toaster 20

Building an image for QEMU 21
Summary 29

Table of Contents

Table of Contentsviii

4
Meeting the BitBake Tool 31

Understanding the BitBake tool 31
BitBake metadata collections 31

Metadata types 33
Summary 34

5
Grasping the BitBake Tool 35

Parsing metadata 35
Dependencies 37
Preferring and providing recipes 38
Fetching the source code 39
Remote file downloads 40

Git repositories 41

Optimizing the source code download 42
Disabling network access 44

Understanding BitBake’s tasks 45
Summary 47

6
Detailing the Temporary Build Directory 49

Detailing the build directory 49
Constructing the build directory 49
Exploring the temporary build
directory 50

Understanding the work directory 51
Understanding the sysroot directories 54
Summary 55

7
Assimilating Packaging Support 57

Using supported package formats 57
List of supported package formats 57
Choosing a package format 58

Running code during package
installation 58
Understanding shared state cache 60
Explaining package versioning 61

Specifying runtime package
dependencies 62
Using packages to generate a rootfs
image 63
Package feeds 64
Using package feeds 65

Summary 68

Table of Contents ix

8
Diving into BitBake Metadata 69

Understanding BitBake’s metadata 69
Working with metadata 70

Summary 77

9
Developing with the Yocto Project 79

What is a software development kit? 79
Generating a native SDK for
on-device development 80
Understanding the types of
cross-development SDKs 80
Using the Standard SDK 81
Using the Extensible SDK 83

Building an image using devtool 85
Running an image on QEMU 85
Creating a recipe from an external
Git repository 87
Building a recipe using devtool 88
Deploying to the target using devtool 88
Extending the SDK 89

Summary 90

10
Debugging with the Yocto Project 91

Differentiating metadata and
application debugging 91
Tracking image, package, and SDK
contents 91
Debugging packaging 93
Inspecting packages 93

Logging information during task
execution 95
Debugging metadata variables 95
Utilizing a development shell 96
Using the GNU Debugger for
debugging 98
Summary 99

11
Exploring External Layers 101

Powering flexibility with layers 101 Detailing a layer’s source code 103

Table of Contentsx

Adding meta layers 104
The Yocto Project layer ecosystem 105

Summary 107

12
Creating Custom Layers 109

Making a new layer 109
Adding metadata to the layer 111
Creating an image 111
Adding a package recipe 114
Adding support to a new machine definition 117
Using a custom distribution 119

MACHINE_FEATURES versus
DISTRO_FEATURES 122
Understanding the scope of
a variable 122
Summary 122

13
Customizing Existing Recipes 123

Understanding common use cases 123
Extending a task 124

Adding extra options to recipes based
on Autotools 124
Applying a patch 125

Adding extra files to the existing
packages 126
Understanding file searching paths 127
Changing recipe feature configuration 128

Configuration fragments for
Kconfig-based projects 129
Summary 132

14
Achieving GPL Compliance 133

Understanding copyleft 133
Understanding copyleft compliance versus
proprietary code 134

Managing software licensing with
Poky 134
Understanding commercial licenses 135

Using Poky to achieve copyleft
compliance 136
Understanding license auditing 136
Providing the source code 137
Providing compilation scripts and source
code modifications 138
Providing license text 139

Summary 139

Table of Contents xi

15
Booting Our Custom Embedded Linux 141

Discovering the right BSP layer 141
Reviewing aspects that impact hardware use 141
Taking a look at widely used BSP layers 142

Using physical hardware 142
BeagleBone Black 143
Baking for BeagleBone Black 143
Booting BeagleBone Black 144

Raspberry Pi 4 144

Baking for Raspberry Pi 4 145
Booting Raspberry Pi 4 145

VisionFive 146
Baking for VisionFive 146
Booting VisionFive 146

Taking the next steps 147
Summary 148

16
Speeding Up Product Development through Emulation – QEMU 149

What is QEMU? 149
What are the benefits of using QEMU
over hardware? 150
When is choosing real hardware
preferable? 150
Using runqemu capabilities 150

Using runqemu to test graphical applications 152
Using runqemu to validate memory
constraints 153
Using runqemu to help with image regression
tests 154

Summary 155

17
Best Practices 157

Guidelines to follow for Yocto Project 157
Managing layers 157
Avoid creating too many layers 158
Prepare the product metadata for new Yocto
Project releases 159
Create your custom distro 159
Avoid reusing existing images for your product 160
Standard SDK is commonly undervalued 160

Avoid too many patches for Linux kernel and
bootloader modifications 161
Avoid using AUTOREV as SRCREV 161
Create a Software Bill of Materials 162

Guidelines to follow for general
projects 162
Continuously monitor the project license
constraints 162

Table of Contentsxii

Security can harm your project 163
Don’t underestimate maintenance costs 163
Tackle project risk points and constraints as

soon as possible 164

Summary 164

Index 165

Other Books You May Enjoy 174

Preface

Linux has been consistently used in cutting-edge products, and embedded systems have been wrought
in the technological portfolio of humankind.

The Yocto Project is in an optimal position to be the choice for your projects. It provides a rich set
of tools to help you use most of your energy and resources in your product development instead of
reinventing the wheel.

The usual tasks and requirements of embedded Linux-based products and development teams were
the guideline for this book’s conception. However, being written by active community members with
a practical and straightforward approach is a stepping stone for both your learning curve and the
product’s project.

In this third edition, the book has been thoroughly reworked to incorporate the feedback from readers
from previous editions and extended to facilitate the understanding of complex concepts related to
the Yocto Project, in addition to being fully updated to reflect the changes made up to Yocto Project
Long Term Support version 4.0 (codename Kirkstone).

Furthermore, two new chapters have been added, one regarding using QEMU to speed product
development through emulation and one about Yocto Project and general project guidelines.

Who this book is for
This book is intended for engineers and enthusiasts with embedded Linux experience, willing to
learn about Yocto Project’s tools for evaluation, comparison, or use in a project. This book is aimed at
helping you get up to speed quickly and to prevent you from getting trapped into the usual learning
curve pitfalls.

What this book covers
Chapter 1, Meeting the Yocto Project, presents the first concepts and premises to introduce parts of
the Yocto Project and its main tools.

Chapter 2, Baking Our Poky-Based System, introduces the environment needed for the first build.

Chapter 3, Using Toaster to Bake an Image, shows the user-friendly web interface that can be used as
a configuration wrapper and build tool.

Prefacexiv

Chapter 4, Meeting the BitBake Tool, presents the BitBake metadata concepts.

Chapter 5, Grasping the BitBake Tool, shows how it manages the tasks and their dependencies.

Chapter 6, Detailing the Temporary Build Directory, details the temporary output folder of a build.

Chapter 7, Assimilating Packaging Support, explains the packaging mechanism used as a base to create
and manage all the binary packages.

Chapter 8, Diving into BitBake Metadata, details the BitBake metadata language, which will be used
for all the other chapters.

Chapter 9, Developing with the Yocto Project, demonstrates the workflow needed to obtain a
development environment.

Chapter 10, Debugging with the Yocto Project, shows how to use Poky to generate a debug environment
and how to use it.

Chapter 11, Exploring External Layers, explores one of the most important concepts of the Yocto
Project—the flexibility of using external layers.

Chapter 12, Creating Custom Layers, practices the steps for layer creation.

Chapter 13, Customizing Existing Recipes, presents examples of how to customize existing recipes.

Chapter 14, Achieving GPL Compliance, summarizes the tasks and concepts involved for a copyleft
compliance product.

Chapter 15, Booting Our Custom Embedded Linux, uses real hardware machines and the Yocto
Project’s tools.

Chapter 16, Speeding Up Product Development Through Emulation – QEMU, illustrates how QEMU
can accelerate product development.

Chapter 17, Best Practices, discusses some Yocto Project and general project-related guidelines based
on the author’s experience.

To get the most out of this book
To understand this book better, it is crucial that you have some previous background about some
of the topics that are not covered or are just briefly mentioned in the text, such as Git and general
knowledge of Linux kernel and its basic compilation process.

To understand the big picture of the Yocto Project before going to the technical concepts detailed in
this book, we recommend the open sourced booklet, Heading for the Yocto Project, found in the Git
repository at https://git.io/vFUiI; the content of this booklet is intended to help newcomers
to gain a better understanding of the goals of the Yocto Project and its potential uses. It provides an
overview of the project before diving into the technical details of how things can be done.

https://git.io/vFUiI

Preface xv

A basic understanding of the use of the GNU/Linux environment and embedded Linux is required,
as well as the general concepts used in development, such as compilation, debugging, deployment,
and installation. In addition, some experience with shell script and Python is a bonus because these
programming languages are core technologies used extensively by the Yocto Project’s tools.

However, you may prefer to learn more about those topics. In that case, we recommend the book
Mastering Embedded Linux Programming - Third Edition, ISBN-13 978-1789530384, by Chris Simmonds.

You shouldn’t take any missing concepts – of those we enumerated above – as a deterrent but as
something you can learn and, at the same time, practice their use with this book.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/lbpMD.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In line 8,
BBFILE_COLLECTIONS, we tell BitBake to create a new metadata collection called yocto. Next, in
line 9, BBFILE_PATTERN_yocto, we define the rule to match all paths starting with LAYERDIR
to identify the metadata belonging to the yocto collection.”

Any command-line input or output is written as follows:

$ sudo dnf install gawk make wget tar bzip2 gzip python3 unzip
perl patch diffutils diffstat git cpp gcc gcc-c++ glibc-devel
texinfo chrpath ccache perl-Data-Dumper perl-Text-ParseWords
perl-Thread-Queue perl-bignum socat python3-pexpect findutils
which file cpio python python3-pip xz python3-GitPython
python3-jinja2 SDL-devel xterm rpcgen mesa-libGL-devel perl-
FindBin perl-File-Compare perl-File-Copy perl-locale zstd lz4

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “After that, click the Image recipes tab
to choose the image you want to build.”

Tips or important notes
Appear like this.

Prefacexvi

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Embedded Linux Development Using Yocto Project, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1804615064

Preface xvii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804615065

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804615065

1
Meeting the Yocto Project

This chapter introduces you to the Yocto Project. The main concepts of the project discussed here
are constantly used throughout the book. In addition, we will briefly discuss the history of the Yocto
Project, OpenEmbedded, Poky, BitBake, metadata, and versioning schema. So, fasten your seat belt,
and welcome aboard!

What is the Yocto Project?
The Yocto Project is a Linux Foundation workgroup and is defined as follows:

The Yocto Project is an open source collaboration project that helps developers
create custom Linux-based systems that are designed for embedded products

regardless of the product’s hardware architecture. Yocto Project provides a flexible
toolset and a development environment that allows embedded device developers

across the world to collaborate through shared technologies, software stacks,
configurations, and best practices used to create these tailored Linux images.

Thousands of developers worldwide have discovered that Yocto Project provides
advantages in both systems and applications development, archival and

management benefits, and customizations used for speed, footprint, and memory
utilization. The project is a standard when it comes to delivering embedded

software stacks. The project allows software customizations and build interchange
for multiple hardware platforms as well as software stacks that can be maintained

and scaled.

- Yocto Project Overview and Concepts Manual

The Yocto Project is an open source collaboration project. It supplies templates, tools, and methods
to help us create custom Linux-based systems for embedded products, regardless of the hardware
architecture. It can generate tailored Linux distributions based on the glibc and musl C standard
libraries and the Real-Time Operating System (RTOS) toolchains for bare-metal development, as
done by the Zephyr Project.

Being managed by a Linux Foundation member, the project stays independent of the member
organizations, which participate in many ways and supply resources to the project.

Meeting the Yocto Project2

It was founded in 2010 as a collaboration of many hardware manufacturers, open source operating
systems, vendors, and electronics companies to reduce duplication of work and supply resources and
information catering to new and experienced users. Among these resources is OpenEmbedded Core,
the core system component provided by the OpenEmbedded project.

The Yocto Project aggregates several companies, communities, projects, and tools with the same
purpose – to build Linux-based embedded products. These stakeholders are in the same boat, driven
by their community needs to work together.

Delineating the Yocto Project
To ease our understanding of the duties and outcomes of the Yocto Project, we can use the analogy of
a computing machine. The input is a set of data that describes what we want, that is, our specification.
As an output, we have the desired Linux-based embedded product.

The output is composed of the pieces of the operating system. It encompasses the Linux kernel,
bootloader, and the root filesystem (rootfs) bundled and organized to work together.

The Yocto Project’s tools are present in all intermediary steps to produce the resultant rootfs
bundle and other deliverables. The previously built software components are reused across builds –
applications, libraries, or any software component.

When reuse is not possible, the software components are built in the correct order and with the desired
configuration, including fetching the required source code from their respective repositories, such as
The Linux Kernel Archives (www.kernel.org), GitHub, BitBucket, and GitLab.

The Yocto Project’s tools prepare its build environment, utilities, and toolchains, reducing the host
software dependency. The utilities, versions, and configuration options are independent of the host
Linux distribution, minimizing the number of host utilities to rely on while producing the same result.
A subtle but essential implication benefit is the considerable increase in determinism, reduced build
host dependencies, but increased first-time builds.

BitBake and OpenEmbedded Core are under the OpenEmbedded project umbrella, while some
projects, such as Poky, are under the Yocto Project umbrella. They are all complementary and play
specific roles in the system. We will understand exactly how they work together in this chapter and
throughout this book.

The alliance of the OpenEmbedded project and the Yocto
Project
The OpenEmbedded project was created around January 2003 when some core developers from the
OpenZaurus project started to work with the new build system. Since its beginning, the OpenEmbedded
build system has been a task scheduler inspired and based on the Gentoo Portage package system named
BitBake. As a result, the project quickly grew its software collection and the supported machine list.

http://www.kernel.org

Understanding Poky 3

Due to chaotic and uncoordinated development, it was challenging to use OpenEmbedded in products
that demand a more stable and polished code base, which is how Poky distribution was born. Poky
started as a subset of the OpenEmbedded build system, and had a more polished and stable code base
across a limited set of architectures. Additionally, its reduced size allowed Poky to develop highlighting
technologies, such as IDE plugins and Quick Emulator (QEMU) integration, which are still in use.

The Yocto Project and OpenEmbedded project consolidated their efforts on a core build system called
OpenEmbedded Core. It uses the best of both Poky and OpenEmbedded, emphasizing the increased
use of additional components, metadata, and subsets. Around November 2010, the Linux Foundation
announced that the Yocto Project would continue this work under a Linux Foundation-sponsored project.

Understanding Poky
Poky is the default Yocto Project reference distribution, which uses OpenEmbedded build system
technology. It is composed of a collection of tools, configuration files, and recipe data (known
as metadata). It is platform-independent and performs cross-compiling using the BitBake tool,
OpenEmbedded Core, and a default set of metadata, as shown in the following figure. In addition, it
provides the mechanism to build and combine thousands of distributed open source projects to form
a fully customizable, complete, and coherent Linux software stack.

Poky’s main objective is to provide all the features an embedded developer needs.

Figure 1.1 – Poky main components

BitBake

BitBake is a task scheduler and execution system that parses Python and Shell Script code. The code
that is parsed generates and runs tasks, which are a set of steps ordered per the code’s dependencies.

BitBake evaluates all available metadata, managing dynamic variable expansion, dependencies, and
code generation. In addition, it keeps track of all tasks to ensure their completion, maximizing the use
of processing resources to reduce build time and predictability. The development of BitBake happens
in the https://lists.openembedded.org/g/bitbake-devel mailing list, and the
source code is in the bitbake subdirectory of Poky.

https://lists.openembedded.org/g/bitbake-devel

Meeting the Yocto Project4

OpenEmbedded Core

The OpenEmbedded Core metadata collection provides the engine of the Poky build system. It provides
the core features and aims to be generic and as lean as possible. It supports seven different processor
architectures (ARM, ARM64, x86, x86-64, PowerPC, PowerPC 64, MIPS, MIPS64, RISC-V32, and
RISC-V 64), only supporting platforms to be emulated by QEMU.

The development is centralized in the https://lists.openembedded.org/g/openembedded-
core (mailto:openembedded-core@lists.openembedded.org) mailing list and houses
its metadata inside the meta subdirectory of Poky.

Metadata

The metadata includes recipes and configuration files. It is composed of a mix of Python and Shell
Script text files, providing a tremendously flexible tool. Poky uses this to extend OpenEmbedded Core
and includes two different layers, which are other metadata subsets, shown as follows:

• meta-poky: This layer provides the default and supported distribution policies, visual branding,
and metadata tracking information (maintainers, upstream status, and so on). This is to serve as
a curated template that could be used by distribution builders to seed their custom distribution.

• meta-yocto-bsp: This provides the Board Support Package (BSP) used as the reference
hardware for the Yocto Project development and Quality Assurance (QA) process.

Chapter 9, Developing with Yocto Project, explores the metadata in more detail and serves as a reference
when we write our recipes.

The Yocto Project releases
The Yocto Project has a release every six months, in April and October. This release cycle ensures
continuous development flow while providing points of increased testing and focus on stability. A
release becomes a Stable or a Long-Term Support (LTS) release whenever a release is ready.

The support period differs significantly between the stable and LTS releases. The support for the stable
release is for 7 months, offering 1 month of overlapped support for every stable release. The LTS release
has a minimal support period of 2 years, optionally extended. After the official support period ends,
it moves to Community support and finally reaches End Of Life (EOL).

When the official release support period ends, a release can be Community support if a community
member steps in to become the community maintainer. Finally, a release turns EOL when there is no
change in the source code by 2 months, or the community maintainer is no longer an active member.

https://lists.openembedded.org/g/openembedded-core
https://lists.openembedded.org/g/openembedded-core
mailto:openembedded-core@lists.openembedded.org

The Yocto Project releases 5

The following diagram shows the two release cycles:

Figure 1.2 – Stable or LTS release cycles

Table 1.1 provides the Yocto Project version, codename, release date, and current support level, which
can be seen as follows. The updated table is available at https://wiki.yoctoproject.org/
wiki/Releases:

Codename Version Release Date Support Level

Mickledore 4.2 April 2023 Future (until October 2023)

Langdale 4.1 October 2022 Stable (until May 2023)

Kirkstone 4.0 May 2022 LTS (minimum April 2024)

Honister 3.4 October 2021 EOL

Hardknott 3.3 April 2021 EOL

Gatesgarth 3.2 Oct 2020 EOL

Dunfell 3.1 April 2020 LTS (until April 2024)

Zeus 3.0 October 2019 EOL

Warrior 2.7 April 2019 EOL

Thud 2.6 Nov 2018 EOL

Sumo 2.5 April 2018 EOL

Rocko 2.4 Oct 2017 EOL

Pyro 2.3 May 2017 EOL

Morty 2.2 Nov 2016 EOL

Krogoth 2.1 Apr 2016 EOL

Jethro 2.0 Nov 2015 EOL

Fido 1.8 Apr 2015 EOL

Dizzy 1.7 Oct 2014 EOL

Daisy 1.6 Apr 2014 EOL

Dora 1.5 Oct 2013 EOL

Dylan 1.4 Apr 2013 EOL

Danny 1.3 Oct 2012 EOL

https://wiki.yoctoproject.org/wiki/Releases
https://wiki.yoctoproject.org/wiki/Releases

Meeting the Yocto Project6

Codename Version Release Date Support Level

Denzil 1.2 Apr 2012 EOL

Edison 1.1 Oct 2011 EOL

Bernard 1.0 Apr 2011 EOL

Laverne 0.9 Oct 2010 EOL

Table 1.1 – List of Yocto Project versions

Summary
This chapter provided an overview of how the OpenEmbedded project is related to the Yocto Project,
the components that form Poky, and how the project began. The next chapter will introduce the Poky
workflow with steps to download, configure, and prepare the Poky build environment and how to
have the first image built and running using QEMU.

2
Baking Our First

Poky-Based System

Let’s get our hands dirty! In this chapter, we will understand the basic concepts involved in the Poky
workflow. We will cover the steps to download, configure, and prepare the Poky build environment
and bake something usable. The steps covered here are common for testing and development. They
will give us some experience using Poky and a taste of its capabilities.

Preparing the build host system
This section describes how to prepare Windows and Linux distribution host systems. Although we
will describe the Windows steps, we will focus on using a Linux distribution host system.

Tip
The use of macOS as a host system is possible. Still, it involves using the CROss PlatformS
(CROPS) framework, which leverages Docker, allowing the use of foreign operating systems,
including macOS. For more information, you can refer to the Setting Up to Use CROss PlatformS
(CROPS) section from the Yocto Project Development Tasks Manual (https://docs.
yoctoproject.org/4.0.4/dev-manual/start.html#setting-up-to-use-
cross-platforms-crops).

Next, we will provide the necessary information to start the build host system preparation.

Using Windows Subsystem for Linux (WSLv2)

You can set up a Linux distribution on Windows if you are a Windows user. WSLv2 is only available
for Windows 10+ builds greater than 18917. WSLv2 allows development using the Yocto Project. You
can install the Linux distribution from the Microsoft Store.

https://docs.yoctoproject.org/4.0.4/dev-manual/start.html#setting-up-to-use-cross-platforms-crops
https://docs.yoctoproject.org/4.0.4/dev-manual/start.html#setting-up-to-use-cross-platforms-crops
https://docs.yoctoproject.org/4.0.4/dev-manual/start.html#setting-up-to-use-cross-platforms-crops

Baking Our First Poky-Based System8

Please refer to the Setting Up to Use Windows Subsystem For Linux session (https://docs.
yoctoproject.org/4.0.4/dev-manual/start.html#setting-up-to-use-
windows-subsystem-for-linux-wslv2) from the Yocto Project Development Tasks Manual
(https://docs.yoctoproject.org/4.0.4/dev-manual/index.html). Once you
have WSLv2 set up, you can follow the next sections as if you were running on a native Linux machine.

Preparing a Linux-based system

The process needed to set up our host system depends on the Linux distribution we use. Poky has a set
of supported Linux distributions. Let’s suppose we are new to embedded Linux development. In that
case, it is advisable to use one of the supported Linux distributions to avoid wasting time debugging
issues related to the host system support.

If you use the current release of one of the following distributions, you should be good to start using
the Yocto Project on your machine:

• Ubuntu

• Fedora

• CentOS

• AlmaLinux

• Debian

• OpenSUSE Leap

To confirm whether your version is supported, it is advisable to check the official documentation
online in the Required Packages for the Build Host section (https://docs.yoctoproject.
org/4.0.4/ref-manual/system-requirements.html#required-packages-
for-the-build-host).

If your preferred distribution is not in the preceding list, it doesn’t mean it is not possible to use Poky
on it. Your host development system must meet some specific versions for Git, tar, Python, and GCC.
Your Linux distributions should provide compatible versions of those base tools. However, there is a
chance that your host development system does not meet all these requirements. In that case, you can
resolve this by installing a buildtools tarball that contains these tools, as detailed in Required Git, tar,
Python, and GCC Versions (https://docs.yoctoproject.org/4.0.4/ref-manual/
system-requirements.html#required-git-tar-python-and-gcc-versions).

https://docs.yoctoproject.org/4.0.4/dev-manual/start.html#setting-up-to-use-windows-subsystem-for-linux-wslv2
https://docs.yoctoproject.org/4.0.4/dev-manual/start.html#setting-up-to-use-windows-subsystem-for-linux-wslv2
https://docs.yoctoproject.org/4.0.4/dev-manual/start.html#setting-up-to-use-windows-subsystem-for-linux-wslv2
https://docs.yoctoproject.org/4.0.4/dev-manual/index.html
https://docs.yoctoproject.org/4.0.4/ref-manual/system-requirements.html#required-packages-for-the-build-host
https://docs.yoctoproject.org/4.0.4/ref-manual/system-requirements.html#required-packages-for-the-build-host
https://docs.yoctoproject.org/4.0.4/ref-manual/system-requirements.html#required-packages-for-the-build-host
https://docs.yoctoproject.org/4.0.4/ref-manual/system-requirements.html#required-git-tar-python-and-gcc-versions
https://docs.yoctoproject.org/4.0.4/ref-manual/system-requirements.html#required-git-tar-python-and-gcc-versions

Downloading the Poky source code 9

We must install a few packages on the host system. This book provides instructions for Debian
and Fedora, our preferred distributions, which we will look at next. The set of packages for other
supported distributions can be found in the Yocto Project Reference Manual (https://docs.
yoctoproject.org/4.0.4/ref-manual/system-requirements.html#required-
packages-for-the-build-host).

Debian-based distribution

To install the necessary packages for a headless host system, run the following command:

$ sudo apt install gawk wget git diffstat unzip texinfo gcc
build-essential chrpath socat cpio python3 python3-pip python3-
pexpect xz-utils debianutils iputils-ping python3-git python3-
jinja2 libegl1-mesa libsdl1.2-dev pylint3 xterm python3-subunit
mesa-common-dev zstd liblz4-tool

Fedora

To install the needed packages for a headless host system, run the following command:

$ sudo dnf install gawk make wget tar bzip2 gzip python3 unzip
perl patch diffutils diffstat git cpp gcc gcc-c++ glibc-devel
texinfo chrpath ccache perl-Data-Dumper perl-Text-ParseWords
perl-Thread-Queue perl-bignum socat python3-pexpect findutils
which file cpio python python3-pip xz python3-GitPython
python3-jinja2 SDL-devel xterm rpcgen mesa-libGL-devel perl-
FindBin perl-File-Compare perl-File-Copy perl-locale zstd lz4

Downloading the Poky source code
After we have installed the required packages on our development host system, we can download the
current LTS version (at the time of writing) of Poky source code using Git, with the following command:

$ git clone https://git.yoctoproject.org/poky -b kirkstone

Tip
Learn more about Git at https://git-scm.com.

https://docs.yoctoproject.org/4.0.4/ref-manual/system-requirements.html#required-packages-for-the-build-host
https://docs.yoctoproject.org/4.0.4/ref-manual/system-requirements.html#required-packages-for-the-build-host
https://docs.yoctoproject.org/4.0.4/ref-manual/system-requirements.html#required-packages-for-the-build-host
https://git-scm.com

Baking Our First Poky-Based System10

After the download process is complete, we should have the following contents inside the poky directory:

Figure 2.1 – The content of the poky directory after downloading

Note
The examples and code presented in this and subsequent chapters use the Yocto Project 4.0
release (codenamed Kirkstone) as a reference.

Preparing the build environment
Inside the poky directory exists a script named oe-init-build-env, which sets up the building
environment. But first, the script must be run-sourced (not executed) as follows:

$ source oe-init-build-env [build-directory]

Here, [build-directory] is an optional parameter for the name of the directory where the
environment is configured. If it is empty, it defaults to build. The [build-directory] parameter
is the place where we perform the builds.

The output from source oe-init-build-env build displays some important configurations
such as the file location, some project URLs, and some common targets, such as available images. The
following figure shows an output example:

Preparing the build environment 11

Figure 2.2 – Output of the source oe-init-build-env build command

It is very convenient to use different build directories. We can work on separate projects in parallel
or experimental setups without affecting our other builds.

Note
Throughout the book, we will use build as the build directory. When we need to point to
a file inside the build directory, we will adopt the same convention – for example, build/
conf/local.conf.

Baking Our First Poky-Based System12

Knowing the local.conf file
When we initialize a build environment, it creates a file called build/conf/local.conf. This
config file is powerful, since it can configure almost every aspect of the build process. We can set the
target machine and the toolchain host architecture to be used for a custom cross-toolchain, optimize
options for maximum build time reduction, and so on. The comments inside the build/conf/
local.conf file are excellent documentation and a reference of the possible variables and their
defaults. The minimal set of variables that we probably want to change from the default is the following:

MACHINE ??= "qemux86-64"

The MACHINE variable is where we determine the target machine we wish to build. At the time of
writing, Poky supports the following machines in its reference BSP:

• beaglebone-yocto: This is BeagleBone, which is the reference platform for 32-bit ARM

• genericx86: This is generic support for 32-bit x86-based machines

• genericx86-64: This is generic support for 64-bit x86-based machines

• edgerouter: This is EdgeRouter Lite, which is the reference platform for 64-bit MIPS

The machines are made available by a layer called meta-yocto-bsp. Besides these machines,
OpenEmbedded Core, inside the meta directory, also provides support for the following Quick
Emulation (QEMU) machines:

• qemuarm: This is the QEMU ARMv7 emulation

• qemuarmv5: This is the QEMU ARMv5 emulation

• qemuarm64: This is the QEMU ARMv8 emulation

• qemumips: This is the QEMU MIPS emulation

• qemumips64: This is the QEMU MIPS64 emulation

• qemuppc: This is the QEMU PowerPC emulation

• qemuppc64: This is the QEMU PowerPC 64 emulation

• qemux86-64: This is the QEMU x86-64 emulation

• qemux86: This is the QEMU x86 emulation

• qemuriscv32: This is the QEMU RISC-V 32 emulation

• qemuriscv64: This is the QEMU RISC-V 64 emulation

Extra BSP layers available from several vendors provide support for other machines. The process of
using an extra BSP layer is shown in Chapter 11, Exploring External Layers.

Building a target image 13

Note
The local.conf file is a convenient way to override several global default configurations
throughout the Yocto Project’s tools. Essentially, we can change or set any variable – for example,
adding additional packages to an image file. Changing the build/conf/local.conf file
is convenient; however, the source code management system usually does not track temporary
changes in this directory.

The build/conf/local.conf file can set several variables. It is worth taking some time and
reading through the file comments that are generated to get a general idea of what variables can be set.

Building a target image
Poky provides several predesigned image recipes we can use to build our binary image. We can check
the list of available images by running the following command from the poky directory:

$ ls meta*/recipes*/*images/*.bb

All the recipes provide images that are a set of unpacked and configured packages, generating a
filesystem that we can use with hardware or one of the supported QEMU machines.

Next, we can see the list of most commonly used images:

• core-image-minimal: This is a small image allowing a device to boot. It is handy for
kernel and bootloader tests and development.

• core-image-base: This console-only image provides basic hardware support for the
target device.

• core-image-weston: This image provides the Wayland protocol libraries and the reference
Weston compositor.

• core-image-x11: This is a basic X11 image with a terminal.

• core-image-sato: This is an image with Sato support and a mobile environment for
mobile devices that use X11. It provides applications such as a terminal, editor, file manager,
media player, and so on.

• core-image-full-cmdline: A console-only image with more full-featured Linux system
functionality installed.

There are other reference images available from the community. Several images support features, such
as Real Time, initramfs, and MTD (flash tools). It is good to check the source code or the Yocto
Project Reference Manual (https://docs.yoctoproject.org/4.0.4/ref-manual/
index.html) for the complete and updated list.

https://docs.yoctoproject.org/4.0.4/ref-manual/index.html
https://docs.yoctoproject.org/4.0.4/ref-manual/index.html

Baking Our First Poky-Based System14

The process of building an image for a target is straightforward. But first, we need to set up the build
environment using source oe-init-build-env [build-directory] before using
BitBake. To build the image, we can use the template in the following command:

Figure 2.3 – How to build a recipe using BitBake

Note
We will use MACHINE = "qemux86-64" in the following examples. You can set it in
build/conf/local.conf accordingly.

For example, to build core-image-full-cmdline, run the following command:

$ bitbake core-image-full-cmdline

The Poky build looks like the following figure:

Figure 2.4 – The result of bitbake core-image-full-cmdline

Running images in QEMU 15

Running images in QEMU
We can use hardware emulation to speed up the development process, as it enables a test run
without involving any actual hardware. Fortunately, most projects have only a tiny portion that
is hardware-dependent.

QEMU is a free, open source software package that performs hardware virtualization. QEMU-based
machines allow testing and development without real hardware. ARMv5, ARMv7, ARMv8, MIPS,
MIPS64, PowerPC, PowerPC 64, RISC-V 32, RISC-V 64, x86, and x86-64 emulations are currently
supported. We will go into more detail about QEMU usage in sw, Speeding Up Product Development
through Emulation – QEMU.

OpenEmbedded Core provides the runqemu script tool, which is a wrapper to make use of QEMU
easier. The way to run the script tool is as follows:

$ runqemu <machine> <zimage> <filesystem>

Here, <machine> is the machine/architecture to be used as qemux86-64, or any other supported
machine. Also, <zimage> is the path to a kernel (for example, bzImage-qemux86-64.bin).
Finally, <filesystem> is the path to an ext4 image (for example, filesystem-qemux86-64.
ext4) or an NFS directory. All parameters in the preceding call to runqemu <zimage> and
<filesystem> are optional. Just running runqemu is sufficient to launch the image in the shell
where the build environment is set, as it will automatically pick up the default settings from building
the environment.

So, for example, if we run runqemu qemux86-64 core-image-full-cmdline, we can see
something similar to that shown in the following screenshot:

Baking Our First Poky-Based System16

Figure 2.5 – The QEMU screen during the Linux kernel boot

After finishing booting Linux, you will see a login prompt, as shown in Figure 2.6:

Figure 2.6 – The QEMU screen during user login

Summary 17

We can log in to the root account using an empty password. The system behaves as a regular machine,
even when executed inside the QEMU. The process to deploy an image in real hardware varies,
depending on the type of storage used, the bootloader, and so on. However, the process of generating
the image is the same. We explore how to build and run an image in real hardware in Chapter 15,
Booting Our Custom Embedded Linux.

Summary
In this chapter, we learned the steps needed to set up Poky and get our first image built. Then, we ran
that image using runqemu, which gave us a good overview of the available capabilities. In the next
chapter, we will introduce Toaster, a human-friendly interface for BitBake. We will use it to build an
image and customize it further.

3
Using Toaster to Bake an Image

Now that we know how to build an image using BitBake within Poky, we will learn how to do the same
using Toaster. We are going to focus on the most straightforward usage of Toaster and also cover what
else it can do so that you know about its capabilities.

What is Toaster?
Toaster is a web interface to configure and run builds. It communicates with the BitBake and Poky
build system to manage and gather information about the builds, packages, and images.

There are two ways to use Toaster:

• Locally: We can run Toaster as a local instance, suitable for single-user development, providing
a graphical interface to the BitBake command lines and some build information.

• Hosted: This is suitable for multiple users. The Toaster servers build and store the users’ artifacts.
Its components can be spread across several machines when using a hosted instance.

In this chapter, we will use Toaster as a local instance. However, if you want to use it as a hosted
instance, please visit the following website for instructions – Toaster Manual (https://docs.
yoctoproject.org/4.0.4/toaster-manual/index.html).

Note
Bear in mind that every hosted service requires attention to its security. Think about this before
using a hosted instance.

Installing Toaster
Toaster uses the Python Django framework. The easiest way to install it is by using Python’s pip
utility. We already installed this when configuring our host machine in Chapter 2, Baking Our Poky-
Based System. We can now install the rest of Toaster’s requirements inside the Poky source directory
by running the following command:

$ pip3 install --user -r bitbake/toaster-requirements.txt

https://docs.yoctoproject.org/4.0.4/toaster-manual/index.html
https://docs.yoctoproject.org/4.0.4/toaster-manual/index.html

Using Toaster to Bake an Image20

Starting Toaster
Once we have installed Toaster’s requirements, we are ready to start its server. To do this, we should
go to Poky’s directory and run the following commands:

$ source oe-init-build-env

$ source toaster start

The commands take some time to finish. When everything is set up, the web server is started. The
result is shown in the following figure.

Figure 3.1 – The result of the source toaster startup

Building an image for QEMU 21

To access the Toaster web interface, open your favorite browser and enter the following:

http://127.0.0.1:8000

Note
By default, Toaster starts on port 8000. The webport parameter lets you use a different port
– for example, $ source toaster start webport=8400.

Next, we can see the starting page of Toaster:

Figure 3.2 – The Toaster welcome page

Building an image for QEMU
Following the same steps used in Chapter 2, Baking Our Poky-Based System, we will build an image
of the QEMU x86-64 emulation.

Using Toaster to Bake an Image22

Since we currently don’t have a project, a collection of configurations and builds, we need to start one.
Create a project name and choose the target release, as shown in the following screenshot:

Figure 3.3 – Creating a new project with Toaster

Building an image for QEMU 23

After creating my-first-project, we can see the main project screen, as shown in the following screenshot:

Figure 3.4 – The first page of the project

Using Toaster to Bake an Image24

While on the Configuration tab, go to Machine and change the target machine to qemux86-64:

Figure 3.5 – How to choose the target machine

After that, click the Image recipes tab to choose the image you want to build. In this example, as
used in Chapter 2, Baking Our Poky-Based System, we can build core-image-full-cmdline:

Building an image for QEMU 25

Figure 3.6 – How to find an image using Search

The following screenshot shows the build process:

Figure 3.7 – Toaster during the image build

Using Toaster to Bake an Image26

The build process takes some time, but after that, we can see the built image along with some statistics,
as shown in the following screenshot:

Figure 3.8 – The image build artifact report

Building an image for QEMU 27

We can also verify the generated set of files, as shown in the following screenshot:

Figure 3.9 – The core-image-full-cmdline directory structure as shown in Toaster

Toaster is a powerful tool. You can use it on a local development machine or a shared server to get a
graphic representation of the build. You can return to the terminal where you started Toaster to run
runqemu qemux86-64 core-image-full-cmdline. You will see what is shown in the
following screenshot:

Using Toaster to Bake an Image28

Figure 3.10 – The QEMU screen during the Linux kernel boot

After finishing the Linux booting, you will see a login prompt, as shown in Figure 3.11.

Figure 3.11 – The QEMU screen during user login

Summary 29

We can log in to the root account using an empty password.

Summary
In this chapter, we introduced Toaster and its essential features. Then, we went through installing and
configuring Toaster and built and inspected an image.

In the next chapter, we will go through some critical BitBake concepts. We believe these concepts are
essential to understanding the Yocto Project. We will use BitBake and the command line for the rest
of the book, as they provide a view of all the concepts.

4
Meeting the BitBake Tool

With this chapter, we will now begin our journey of learning how the Yocto Project’s engine works
behind the scenes. As is the case with every journey, communication is critical, so we need to
understand the language used by the Yocto Project’s tools and learn how to get the best out of these
tools to accomplish our goals.

The preceding chapters introduced us to the standard Yocto Project workflow for creating and emulating
images. Now, in this chapter, we will explore the concept of metadata and how BitBake reads this
metadata to make its internal data collections.

Understanding the BitBake tool
The BitBake task scheduler started as a fork from Portage, the package management system used in the
Gentoo distribution. However, the two projects diverged significantly due to different use cases. The
Yocto Project and the OpenEmbedded Project are intensive users of BitBake. It remains a separate and
independent project with its own development cycle and mailing list (bitbake-devel@lists.
openembedded.org).

BitBake is a tool similar to GNU Make. As discussed in Chapter 1, Meeting the Yocto Project, BitBake
is a task executor and scheduler that parses Python and Shell Script mixed code.

Therefore, BitBake is responsible for running as many tasks as possible in parallel while ensuring they
are run respecting their dependencies.

BitBake metadata collections
For BitBake, there is no metadata outside a metadata collection. Instead, a metadata collection has a
unique name, and the common term the Yocto Project uses for those collections is Layer.

mailto:bitbake-devel@lists.openembedded.org
mailto:bitbake-devel@lists.openembedded.org

Meeting the BitBake Tool32

Chapter 1, Meeting the Yocto Project, explains that we have the following layers:

• OpenEmbedded Core: This is inside the meta directory

• Poky distribution: This is inside the meta-poky directory

• Yocto Project reference BSP: This is inside the meta-yocto-bsp directory

The preceding list describes real examples of layers. Every layer contains a file called conf/layer.
conf. This file defines several layer properties, such as the collection name and priority. The following
figure shows the conf/layer.conf file for the meta-poky layer:

Figure 4.1 – The conf/layer.conf file for the meta-poky layer

The preceding example is relatively simple but serves as a base for us to illustrate the conf/layer.
conf file principles.

In line 8, BBFILE_COLLECTIONS, we tell BitBake to create a new metadata collection called
yocto. Next, in line 9, BBFILE_PATTERN_yocto, we define the rule to match all paths starting
with the LAYERDIR variable to identify the metadata belonging to the yocto collection. Finally, in
line 10, BBFILE_PRIORITY_yocto establishes the priority (the higher the number, the higher
the priority) of the yocto collection against the other metadata collections.

The dependency relation between the layers is vital as it ensures that all required metadata is available
for use. An example is in line 18 as LAYERDEPENDS_yocto, from the conf/layer.conf file,
adds a dependency to the core, provided by the OpenEmbedded Core layer.

Metadata types 33

Figure 4.2 shows Poky’s layers using the bitbake-layers command, as follows:

Figure 4.2 – Results of bitbake-layers show-layers for Poky

Metadata types
There are three major areas where we can classify the metadata used by BitBake. They are as follows:

• Configuration (the .conf files)

• Classes (the .bbclass files)

• Recipes (the .bb and .bbappend files)

The configuration files define the global content to provide information and configure how the recipes
work. One typical example of a configuration file is the machine file, which has a list of settings that
describes the hardware.

The whole system uses the classes that recipes can inherit according to their needs or by default.
They define the commonly used system’s behavior and provide the base methods. For example,
kernel.bbclass abstracts tasks related to building and packaging the Linux kernel independently
of version or vendor changes.

Note
The recipes and classes mix Python and Shell Script code.

The classes and recipes describe the tasks to be run and provide the information needed to allow
BitBake to generate the required task list and its dependencies. The inheritance mechanism permits a
recipe to inherit one or more classes to promote code reuse, improve accuracy, and make maintenance
easier. A Linux kernel recipe example is linux-yocto_5.15.bb, which inherits a set of classes,
including kernel.bbclass.

BitBake’s most commonly used aspects across all types of metadata (.conf, .bb, and .bbclass)
are covered in Chapter 5, Grasping the BitBake Tool, while the metadata grammar and syntax are
detailed in Chapter 8, Diving into BitBake Metadata.

Meeting the BitBake Tool34

Taking Figure 4.1 into consideration, we need to pay attention to two other variables – BBPATH
and BBFILES.

BBPATH, on line 2, is analogous to PATH but adds a directory to the search list for metadata files; the
BBFILES variable, on line 5, lists the pattern used to index the collection recipe files.

Summary
In this chapter, we learned about metadata, metadata collection concepts, and the importance of
conf/layer.conf, which are the base for the understanding of the Yocto Project. In the next
chapter, we will examine metadata knowledge, understand how recipes depend on each other, and
how BitBake deals with dependencies. Additionally, we will also get a better view of the tasks managed
by BitBake, download all the required source code, build and generate packages, and see how these
packages fit into generated images.

5
Grasping the BitBake Tool

In the previous chapter, we learned about metadata, metadata collection concepts, and the importance
of conf/layer.conf. In this chapter, we will examine metadata more deeply, understand how
recipes depend on each other, and see how BitBake deals with dependencies.

In addition, we will cover a massive list of tasks, from downloading source code to generating images
and other artifacts. Some examples of these tasks are storing the source code in the directory used for
the build, patching, configuring, compiling, installing, and generating packages, and determining how
the packages fit into the generated images, which we will introduce in this chapter.

Parsing metadata
Usually, our projects include multiple layers that provide different metadata to fulfill specific needs.
For example, when we initialize a build directory, using source oe-init-build-env build,
a set of files is generated as follows:

Figure 5.1 – A list of files created with source oe-init-build-env build

The build/conf/templateconf.cfg file points to the directory used as the template to create
the build/conf directory.

Grasping the BitBake Tool36

Note
A user can provide a different template directory using the TEMPLATECONF environment
variable – for example, TEMPLATECONF=/some/dir source oe-init-build-
env build.

The build/conf/local.conf file is the placeholder for the local configurations. We used this
file in Chapter 2, Baking Our First Poky-Based System, and we will use it throughout this book.

BitBake uses the build/conf/bblayers.conf file to list the layers considered in the build
environment. An example is as follows:

Figure 5.2 – The build/conf/bblayer.conf content after the source oe-init-build-env build

The BBLAYERS variable, on line 8, is a space-delimited list of layer directories. BitBake parses each
layer to load its content to the metadata collection. There are three major categories that the metadata
used by BitBake can be classified into. They are listed as follows:

• Configuration (the .conf files)

• Classes (the .bbclass files)

• Recipes (the .bb and .bbappend files)

Tip
The order of the listed layers in the BBLAYERS variable is followed from left to right by BitBake
when parsing the metadata. Therefore, if your layer needs to be parsed first, have it listed in
the right place in the BBLAYERS variable.

After parsing all the layers in use, BitBake starts to parse the metadata. The first parsed metadata in
BitBake is configuration metadata, identified by the .conf file extension. This metadata is global
and, therefore, affects all executed recipes and tasks.

Dependencies 37

Note
One typical example of the configuration file is the machine file, which has a list of settings
that describes the hardware.

BitBake first loads meta/conf/bitbake.conf from one of the paths included in the BBPATH
list. The meta/conf/bitbake.conf file uses include directives to pull in metadata, such as
architecture-specific metadata, machine configuration files, and the build/conf/local.conf
file. One significant restriction of BitBake configuration files (.conf) is that only variable definitions
and include directives are allowed.

BitBake’s classes (.bbclass) are a rudimentary inheritance mechanism in the classes/ directories.
When an inherit directive appears during parsing, BitBake immediately parses the linked class.
The class content is searched based on the order of the BBPATH variable list.

The BBFILES variable is a space-separated list of the .bb and .bbappend files and can use wildcards.
It is required in every layer inside conf/layer.conf, so BitBake knows where to look for recipes.
A BitBake recipe (.bb) is a logical unit of tasks to be executed; typically, it refers to a package.

Dependencies
From the BitBake point of view, there are three different dependency types:

• Build time

• Execution time

• Tasks

An application that needs some other package, such as a library, has a build dependency for a successful
compilation. Build dependencies include compilers. libraries, and native build tools (such as CMake).
In addition, a build dependency has an execution dependency whenever an application is needed
only during execution time. Runtime dependencies include fonts, icons, dynamically opened libraries,
and language interpreters.

Tip
The convention inside Poky is to use -native suffixes for recipe names. This is because those
tools are aimed to be run during the build process, in the host building system, and are not
deployed into the target.

The task dependencies create order in the chaos of task execution – for example, to compile a package,
the source code needs to be downloaded. Under the hood, all the dependencies are task dependencies.
This means that when package B has a build-time dependency on package A, the tasks from package
A need to be completed before package B starts.

Grasping the BitBake Tool38

Metadata expresses all the dependencies. OpenEmbedded Core provides a vast set of classes to handle the
default task dependencies commonly used – for example, a recipe can express a build-time dependency
with the DEPENDS variable and an execution-time dependence with the RDEPENDS variable.

Knowing the recipe dependencies chain, BitBake can sort all the recipes for the build in a feasible
order. BitBake organizes tasks in the following ways:

• Recipe tasks that do not have a dependency relation are built in parallel

• Dependent recipes are built in serial order and sorted in a way that satisfies the dependencies

Tip
Every recipe included in the runtime dependencies is added to the build list. This sounds
obvious, but even though they have no role during the build, they need to be ready for use so
that the resulting binary packages are installable. This will be required when building images
or populating feeds.

Preferring and providing recipes
Dependency is a relation between two things; one side can only be fulfilled if the other side exists.
However, a dependency only specifies that some functionality or characteristic is needed to be fulfilled,
not precisely how it must be fulfilled.

For example, when a recipe depends on A, the first thought is that it depends on a recipe called A.
However, there are two possible ways to satisfy the dependency requirement of A:

• A recipe called A

• A recipe that provides a functionality or characteristic called A

For a recipe to communicate to BitBake that it can fulfill a functionality or characteristic requirement,
it must use the PROVIDES keyword. A subtle consequence is that two or more recipes can deliver
the same functionality or characteristic. We must inform BitBake which recipe should fulfill that
requirement using the PREFERRED_PROVIDER keyword.

So, if a recipe called foo_1.0.bb depends on bar, BitBake lists all recipes providing bar. The
bar dependency can be satisfied by the following:

• A recipe with the bar_<version>.bb format because every recipe provides itself by default

• A recipe where the PROVIDES variable includes bar

The virtual/kernel provider is a clear example of this mechanism. The virtual/ namespace
is the convention adopted when we have a set of commonly overridden providers.

Fetching the source code 39

All recipes that require the kernel to be built can add virtual/kernel to the dependency list
(DEPENDS), and BitBake satisfies the dependency. When we have more than one recipe with an
alternative provider, we must choose one to be used – for example, the following:

Figure 5.3 – An example of how to set a preferred provider for virtual/kernel

The virtual/kernel provider is commonly set in the machine definition file, as it can vary
from machine to machine. We will see how to create a machine definition file in Chapter 12, Creating
Custom Layers.

Note
BitBake raises an error when a dependency cannot be satisfied due to a missing provider.

When BitBake has two providers with different versions, it uses the highest version by default. However,
we can force BitBake to use a different version by using PREFERRED_VERSION. This is common in
BSPs, such as bootloaders, where vendors may use specific versions for a board.

We can avoid using a development or an unreliable recipe version, by default, lowering the version
preference by using the DEFAULT_PREFERENCE keyword in a recipe file, as follows:

Figure 5.4 – How to lower the version preference in a recipe

So, even if the version is higher, the recipe is not choosen without PREFERRED_VERSION being
explicitly set to use it.

Fetching the source code
When we download the Poky source code, we download the metadata collection and the BitBake tool.
One of the main features supported by BitBake is additional source code fetching.

The ability of fetching external source code is as modular and flexible as possible. For example, every
Linux-based system includes the Linux kernel and several other utilities that form the root filesystem,
such as OpenSSH or BusyBox.

The OpenSSH source code is available from its upstream website as a tar.gz file hosted on an HTTP
server, while the Linux kernel release is in a Git repository. Therefore, BitBake can easily fetch those
two different instances of source code.

Grasping the BitBake Tool40

BitBake offers support for many different fetcher modules that allow the retrieval of tarball files and
several other SCM systems, such as the following:

• Amazon AWS S3

• Android repo

• Azure Storage

• Bazaar

• ClearCase

• CVS

• FTP

• Git

• Git Annex

• Git submodules

• HTTP(S)

• Mercurial

• NPM

• NPMSW (npm shrinkwrap implementation)

• openSUSE Build Service client

• Perforce

• Rust Crate

• SFTP

• SSH

• Subversion

The mechanism used by BitBake to fetch the source code is internally called a fetcher backend, which
is configurable to align a user’s requirements and optimize fetching the source code.

Remote file downloads

BitBake supports several methods for remote file downloads. The most commonly used are http://,
https://, and git://. We won’t cover the internal details of how BitBake handles remote file
downloads and will instead focus on its visible effects.

Fetching the source code 41

When BitBake executes the do_fetch task in a recipe, it checks the SRC_URI contents. Let’s
look at, for example, the pm-utils recipe (available at meta/recipes-bsp/pm-utils/
pm-utils_1.4.1.bb). The processed variables are shown in the following figure:

Figure 5.5 – SRC_URI for the pm-utils_1.4.1.bb recipe

BitBake expands the PV variable to the package version (1.4.1 in this example is taken from
the pm-utils_1.4.1.bb recipe filename) to download the file from http://pm-utils.
freedesktop.org/releases/pm-utils-1.4.1.tar.gz, and then saves it as DL_DIR,
which points to the download storage directory.

After the download is complete, BitBake compares the sha256sum value of the downloaded file with
the value from the recipe. If the value matches, it creates a ${DL_DIR}/pm-utils-1.4.1.tar.
gz.done file to mark the file as successfully downloaded and checked, allowing BitBake to reuse it.

Note
By default, the DL_DIR variable points to build/downloads. You can override this by
adding to the build/conf/local.conf file the following line – DL_DIR = "/my/
download-cache". Using this, we can share the same download cache among several build
directories, thus saving download time and bandwidth.

Git repositories

One of the most commonly used source control management systems is Git. BitBake has solid support
for Git, and the Git backend is used when the do_fetch task is run and finds a git:// URL at
the beginning of the SRC_URI variable.

The default way for BitBake’s Git backend to handle the repositories is to clone the repository in ${DL_
DIR}/git2/<git URL> – for example, check the following quote from the lz4_1.9.4.bb
recipe found in meta/recipes-support/lz4/lz4_1.9.4.bb inside Poky:

Figure 5.6 – Source code download configuration for the lz4_1.9.4.bb recipe

Here, the lz4.git repository is cloned in ${DL_DIR}/git2/ github.com.lz4.lz4.git.
This directory name avoids conflicts between possible Git repositories with the same project name.

http://pm-utils.freedesktop.org/releases/pm-utils-1.4.1.tar.gz
http://pm-utils.freedesktop.org/releases/pm-utils-1.4.1.tar.gz

Grasping the BitBake Tool42

There are two cases where the SRCREV variable has an impact. They are as follows:

• do_fetch: This task uses the SRCREV variable to ensure the repository has the required
Git revision

• do_unpack: This task uses SRCREV to set up the working directory with the necessary
source revision

Note
We need to use the branch=<branch name> parameter as follows – SRC_URI =
"git://myserver/myrepo.git;branch=mybranch" – to specify the branch that
contains the revision we want to use. In cases when the hash used points to a tag that is not
available on a branch, we need to use the nobranch=1 option as follows – SRC_URI =
"git://myserver/myrepo.git;nobranch=1".

The remote file and the Git repository are the most commonly used fetch backends of BitBake. The
other source code management-supported systems vary in their implementations, but the general
ideas and concepts are the same.

Optimizing the source code download
To improve the robustness of source code download, Poky provides a mirror mechanism that can
provide the following:

• A centrally preferred server for download

• A set of fallback servers

To provide this robust download mechanism, BitBake follows defined logic steps. During the build,
the first BitBake step is to search for the source code within the local download directory (specified
by DL_DIR). If this fails, the next step is to try the locations defined by the PREMIRRORS variable.
Finally, BitBake searches the locations specified in the MIRRORS variable in a failure case. In summary,
these steps are as follows:

1. DL_DIR: Look for the download on the host machine.

2. MIRRORS: Search for the download in a list of mirrors.

3. PREMIRRORS: This is used to reduce the download from external servers and is usually used
inside companies to reduce or forbid internet use.

Optimizing the source code download 43

For example, when configuring a local server, https://mylocalserver, as PREMIRROR, we
can add the following code to a global configuration file, such as build/conf/local.conf:

Figure 5.7 – An example of the PREMIRRORS configuration

The preceding code prepends the PREMIRRORS variable to change and instructs the build system to
intercept any download requests. It redirects them to the https://mylocalserver source’s mirror.

This use of PREMIRRORS is so common that there is a class to help its configuration. To make it easier,
we inherit the own-mirror class and then set the SOURCE_MIRROR_URL variable to https://
mylocalserver in any global configuration file, such as build/conf/local.conf.

Figure 5.8 – How to configure own-mirror

If the desired component is unavailable in the source mirror, BitBake falls back to the MIRRORS
variable. An example of the content of this variable is shown in the following figure. It shows some
servers used in mirrors.bbclass, inherited by default in Poky:

Grasping the BitBake Tool44

Figure 5.9 – An example of how to use the MIRRORS variable

Tip
Let’s suppose the goal is to have a shareable download cache. In that case, it is advisable to
enable the tarball generation for the SCM backends (for example, Git) in the download folder
with BB_GENERATE_MIRROR_TARBALLS = "1" in build/conf/local.conf.

Disabling network access

Sometimes, we need to ensure that we don’t connect to the internet during the build process. There
are several valid reasons for this, such as the following:

• Policy: Our company does not allow the inclusion of external sources in a product without
proper legal validation and review.

• Network cost: When we are on the road using mobile broadband, the cost of data may be too
high because the data to download may be extensive.

• Download and build decoupling: This setup is typical in continuous integration environments,
where a job is responsible for downloading all the required source code. In contrast, the build
jobs have internet access disabled. The decoupling between downloading and building ensures
that no source code is downloaded in duplication and that we have cached all the necessary
source code.

• Lack of network access: Sometimes, we do not have access to a network.

Understanding BitBake’s tasks 45

To disable the network connection, we need to add the following code in the build/conf/local.
conf file:

Figure 5.10 – How to disable network access during the build

Understanding BitBake’s tasks
BitBake uses execution units, which are, in essence, a set of clustered instructions that run in sequence.
These units are known as tasks. During every recipe’s build, BitBake, schedules, executes, and checks
many tasks provided by classes to form the framework we use to build a recipe. Therefore, it is essential
to understand some of these, as we often use, extend, implement, or replace them ourselves when
writing a recipe.

When we run the following command, BitBake runs a set of scheduled tasks:

Figure 5.11 – How to run all tasks for a recipe

When we wish to run a specific task, we can use the following command:

Figure 5.12 – How to run a particular task for a recipe

To list the tasks defined for a recipe, we can use the following command:

Figure 5.13 – How to list all tasks for a recipe

Grasping the BitBake Tool46

The output of listtasks for the wget recipe is as follows:

Figure 5.14 – The list of tasks for the wget recipe

We will briefly describe the most commonly used tasks here:

• do_fetch: The first step when building a recipe is fetching the required source using the
fetching backends feature, which we discussed previously in this chapter. It is essential to note
that fetching a source or a file does not mean it is a remote source.

• do_unpack: The subsequent natural task after the do_fetch task is do_unpack. This
is responsible for unpacking source code or checking out the requested revision or branch in
case the referenced source uses an SCM system.

• do_patch: Once the source code is properly unpacked, BitBake initiates adapting the source
code. Every file fetched by do_fetch, with the .patch extension, is assumed to be a patch
to be applied. This task applies the list of patches needed. The final modified source code will
be used to build the package.

Summary 47

• do_configure, do_compile, and do_install: The do_configure, do_compile,
and do_install tasks are performed in this order. It is important to note that the environment
variables defined in the tasks are different from one task to another. Poky provides a rich
collection of predefined tasks in the classes, which we ought to use when possible – for example,
when a recipe inherits the autotools class, it provides a known implementation of the
do_configure, do_compile, and do_install tasks.

• do_package: The do_package task splits the files installed by the recipe into logical
components, such as debugging symbols, documentation, and libraries. We will cover packaging
details in more depth in Chapter 7, Assimilating Package Support.

Summary
In this chapter, we learned how recipes depend on each other and how Poky deals with dependencies.
We understood how a download is configured and how to optimize it. In addition, we got a better
view of the tasks managed by BitBake to download all the required source code and use it to build
and generate packages.

In the next chapter, we will see the contents of the build directory after complete image generation
and learn how BitBake uses it in the baking process, including the contents of the temporary build
directory and its generated files.

6
Detailing the Temporary

Build Directory

In this chapter, we will try to understand the contents of the temporary build directory after image
generation and see how BitBake uses it in the baking process. In addition, we will learn how some of
these directories can assist us by acting as a valuable source of information when things do not work
as expected.

Detailing the build directory
The build directory is a central information and artifact source for every Poky user. Its main directories
are as follows:

• conf: This contains the configuration files we use to control Poky and BitBake. We first used
this directory in Chapter 2, Baking Our Poky-Based System. It stores configuration files, such
as build/conf/local.conf and build/conf/bblayers.conf.

• downloads: This stores all the downloaded artifacts. It works as a download cache. We talked
about it in detail in Chapter 5, Grasping the BitBake Tool.

• sstate-cache: This contains the snapshots of the packaged data. It is a cache mainly used
to speed up the future build process, as it is used as a cache for the building process. This folder
is detailed in Chapter 7, Assimilating Packaging Support.

• tmp: This is the temporary build directory and the main focus of this chapter.

Constructing the build directory
In the previous chapters, we learned about Poky’s inputs and outputs in abstract high-level detail. We
already know that BitBake uses metadata to generate different types of artifacts, including images.
Besides the generated artifacts, BitBake creates other content during this process, which may be used
in several ways, dependent on our goals.

Detailing the Temporary Build Directory50

BitBake performs several tasks and continuously modifies the build directory during the build process.
Therefore, we can understand it better by following the usual BitBake execution flow, as follows:

• Fetching: The first action executed by BitBake is to download the source code. This step may
modify the build directory as it tries to use the cached downloaded copy of the source code or
performs the download and stores it inside the build/download directory.

• Source preparation: After completing the source code fetching, it must be prepared; for example,
the unpacking of a tarball or a clone of a locally cached Git directory (from the download
cache). This preparation happens in the build/tmp/work directory. When the source code
is ready, the required modifications are applied (for example, applying necessary patches and
checking out the correct Git revision).

• Configuration and building: The building process starts with the ready-to-use source code. It
involves the configuration of build options (for example, ./configure) and building (for
example, make).

• Installing: The built artifacts are then installed (for example, make install) in a staging
directory under build/tmp/work/<...>/image.

• Wrapping the sysroot: The artifacts required for cross-compilation, such as libraries, headers,
and other files, are copied and sometimes modified to build/tmp/work/<...>/recipe-
sysroot and build/tmp/work/<...>/recipe-sysroot-native.

• Creating the packages: The packages are generated using the installed contents, potentially
splitting this content across multiple packages, which can be provided in different formats, for
example, .rpm, .ipk, .deb, or .tar.

• Quality Assurance (QA) checks: When building a recipe, the build system performs various
QA checks on the output to ensure that common issues are detected and reported.

Exploring the temporary build directory
Understanding the temporary build directory (build/tmp) is critical. The temporary build directory
is created just after the build starts, and it’s essential for helping us identify why something didn’t
behave as expected.

Understanding the work directory 51

The following figure shows the contents of the build/tmp directory:

Figure 6.1 – Contents of build/tmp

The most critical directories found within it are as follows:

• deploy: This contains the build products, such as images, binary packages, and SDK installers.

• sysroots-components: This contains a representation of recipes-sysroot and
recipes-sysroot-native, which allows BitBake to know where each component is
installed. This is used to create recipe-specific sysroots during the build.

• sysroots-uninative: This includes glibc (a C library), which is used when native
utilities are generated. This, in turn, improves the reuse of shared state artifacts across different
host distributions.

• work: This contains the working source code, a task’s configuration, execution logs, and the
contents of generated packages.

• work-shared: This is a work directory used for sharing the source code with multiple recipes.
work-shared is only used by a subset of recipes, for example, linux-yocto and gcc.

Understanding the work directory
The build/tmp/work directory is organized by architecture. For example, when working with the
qemux86-64 machine, we have the following four directories:

Detailing the Temporary Build Directory52

Figure 6.2 – The contents of the build/tmp/work directory

Figure 6.2 shows an example of possible directories under build/tmp/work for an x86-64 host
and a qemux86-64 target. They are architecture- and machine-dependent, as follows:

• all-poky-linux: This directory contains the working build directories for the architecture-
agnostic packages. These are mostly scripts or interpreted language-based packages, for example,
Perl scripts and Python scripts.

• core2-64-poky-linux: This directory contains the working build directories for the
packages common to x86-64-based targets using the optimization tuned for core2-64.

• qemux86_64-poky-linux: This directory contains the working build directories for
packages specific to the qemux86-64 machine.

• x86_64-linux: This directory holds the working build directories for the packages that are
targeted to run on the build host machine.

This componentized structure is necessary to allow building system images and packages for multiple
machines and architectures within one build directory without conflicts. The target machine we
will use is qemux86-64.

The build/tmp/work directory is useful when checking for misbehavior or building failures. Its
contents are organized in sub-directories following this pattern:

Figure 6.3 – The pattern used in sub-directories of the build/tmp/work directory

Some of the directories under the tree shown in Figure 6.3 are as follows:

• <sources>: This is extracted source code of the software to be built. The WORKDIR variable
points to this directory.

• image: This contains the files installed by the recipe.

• package: The extracted contents of output packages are stored here.

• packages-split: The contents of output packages, extracted and split into sub-directories,
are stored here.

• temp: This stores BitBake’s task code and execution logs.

Understanding the work directory 53

Tip
We can automatically remove the work directory after each recipe compilation cycle to reduce
disk usage, adding INHERIT += "rm_work" in the build/conf/local.conf file.

The structure of the work directory is the same for all architectures. For every recipe, a directory with
the recipe name is created. Taking the machine-specific work directory and using the sysvinit-
inittab recipe as an example, we see the following:

Figure 6.4 – Content of build/tmp/work/core2-64-poky-linux/pm-utils/1.4.1-r1/

The sysvinit-inittab recipe is an excellent example, as it is machine-specific. This recipe
contains the inittab file that defines the serial console to spawn the login process, which varies
from machine to machine.

Note
The build system uses the directories shown in the preceding figure that are not detailed
here. Therefore, you should not need to work with them, except if you are working on build
tool development.

Detailing the Temporary Build Directory54

The work directory is handy for debugging purposes; we cover this in Chapter 10, Debugging with
the Yocto Project.

Understanding the sysroot directories
The sysroot directory plays a critical role in the Yocto Project. It creates an individual and isolated
environment for each recipe. This environment, set for each recipe, is essential to ensure reproducibility
and avoid contamination with the host machine’s packages.

After we build the procps recipe, version 3.3.17, we get two sets of sysroot directories –
recipes-sysroot and recipes-sysroot-native.

Inside each sysroot set, there is a sub-directory called sysroot-provides. This directory lists
the packages installed on each respective sysroot. Following is the recipe-sysroot directory:

Figure 6.5 – Content of the recipe-sysroot directory under build/tmp/work for recipe procps

The recipe-sysroot-native directory includes the build dependencies used on the host system
during the build process. It encompasses the compiler, linker, tools, and more. At the same time, the
recipe-sysroot directory has the libraries and headers used in the target code. The following
figure shows the recipe-sysroot-native directory:

Summary 55

Figure 6.6 – Content of the recipe-sysroot-native directory under build/tmp/work for recipe procps

When we see a missing header or a link failure, we must double-check whether our sysroot directory
(target and host) contents are correct.

Summary
In this chapter, we explored the contents of the temporary build directory after image generation. We
saw how BitBake uses it during the baking process.

In the next chapter, we will better understand how packaging is done in Poky, how to use package
feeds, the Package Revision (PR) service, and how they may help our product maintenance.

7
Assimilating Packaging

Support

This chapter presents the key concepts for understanding the aspects of Poky and BitBake related to
packaging. We will learn about the supported binary package formats, shared state cache, package
versioning components, how to set up and use binary package feeds to support our development
process, and more.

Using supported package formats
From a Yocto Project perspective, a recipe may generate one or more output packages. A package
wraps a set of files and metadata in a way that makes them available in the future. They can be installed
into one or more images or deployed for later use.

Packages are critical to Poky, as they enable the build system to produce diverse types of artifacts,
such as images and toolchains.

List of supported package formats

Currently, BitBake supports four different package formats:

• Red Hat Package Manager (RPM): Originally named Red Hat Package Manager but now
known as the RPM package format since its adoption by several other Linux distributions, this
is a popular format in use in Linux distributions such as SuSE, OpenSuSE, Red Hat, Fedora,
and CentOS.

• Debian Package Manager (DEB): This is a widespread format used in Debian and several
other Debian-based distributions – Ubuntu Linux and Linux Mint are the most widely known.

Assimilating Packaging Support58

• Itsy Package Management System (IPK): This was a lightweight package management system
designed for embedded devices that resembled Debian’s package format. The opkg package
manager, which supports the IPK format, is used in several distributions such as OpenEmbedded
Core, OpenWRT, and Poky.

• Tar: This is derived from the Tape Archive, a widely used tarball file type used to group
several files into just a single file.

Choosing a package format

The support for formats is provided using a set of classes (i.e., package_rpm, package_deb, and
package_ipk). We can select one or more formats using the PACKAGE_CLASSES variable, as
shown in the following example:

Figure 7.1 – The variable used to configure which package format to use

You can configure one or more package formats – for example, in the build/conf/local.conf file.

Tip
The first package format in PACKAGE_CLASSES is the one used for image generation.

Poky defaults to the RPM package format, which uses the DNF package manager. However, the format
choice depends on several factors, such as package format-specific features, memory, and resource
usage. OpenEmbedded Core defaults to the IPK and opkg as the package manager, as it offers a
smaller memory and resource usage footprint.

On the other hand, users familiar with Debian-based systems may prefer to use the APT and DEB
package formats for their products.

Running code during package installation
Packages can use scripts as part of their installation and removal process. The included scripts are
defined as follows:

• preinst: This executes before unpacking the package. If the package has services, it must
stop them for installation or upgrade.

• postinst: After unpacking, this typically completes any required configuration of the package.
Many postinst scripts execute any command necessary to start or restart a service after
installation or upgrade.

Running code during package installation 59

• prerm: It usually stops any daemon associated with a package before removing files associated
with the package.

• postrm: This commonly modifies links or other files created by the package.

The preinst and prerm scripts target complex use cases, such as data migration when updating
packages. In the Yocto Project case, postinst and postrm are also responsible for stopping and
starting the systemd or sysvinit services. A default script is provided when we use the systemd
and update-rc.d classes. It can be customized to include any particular case.

The post-package installation (postinst) scripts are run during the root filesystem creation. The
package is marked as installed if the script returns a success value. To add a postinst script for a
package, we can use the following:

Figure 7.2 – An example of the pkg_postinst script

Sometimes, we need to ensure that postinst runs inside the target device itself. This can be done
using the postinst_ontarget variant, such as the following:

Figure 7.3 – An example of the pkg_postinst_ontarget script

Tip
Instead of using the package name itself, we can use the PN variable, which automatically
expands the package name of the recipe.

All post-installation scripts must succeed when we generate an image with read-only-rootfs
in IMAGE_FEATURES. Because it is impossible to write in a read-only rootfs, the check must
occur during build time. It ensures that we identify the problem while building the image, rather than
during the initial boot operation in the target device. If there is a requirement to run any script inside
the target device, the do_rootfs task fails.

Assimilating Packaging Support60

Tip
Eventually, using a whole image as read-only is not an option. For example, some projects
may need to persist some data or even allow some applications to write to a volatile directory.
Such use cases are outside the scope of this book. However, you might find some helpful
information in the Yocto Project Reference Manual for the overlayfs (https://docs.
yoctoproject.org/4.0.4/ref-manual/classes.html#overlayfs-bbclass)
and overlayfs-etc (https://docs.yoctoproject.org/4.0.4/ref-manual/
classes.html#overlayfs-etc-bbclass) classes.

One common oversight when creating post-installation scripts is the lack of the D variable in front
of absolute paths. D has two traits:

• During rootfs generation, D is set to the root of the working directory

• Inside the device, D is empty

Consequently, this ensures that paths are valid in both host and target environments. For example,
consider the following code:

Figure 7.4 – Sample source code using the D variable

In the example in Figure 7.4, the touch command uses the D variable, so it works generically
depending on its value.

Another common mistake is attempting to run processes specific to or dependent on the target
architecture. The easiest solution, in this case, is to postpone the script execution to the target
(using pkg_postinst_ontarget). However, as mentioned before, this prevents the use of
read-only filesystems.

Understanding shared state cache
The default behavior of Poky is to build everything from scratch unless BitBake determines that a
recipe does not need to be rebuilt. The main advantage of building everything from scratch is that the
result is fresh, and there is no risk of previous data causing problems. However, rebuilding everything
requires computational time and resources.

The strategy to determine whether a recipe must be rebuilt is complex. BitBake tries to track as much
information as possible about every task, variable, and piece of code used in the build process. BitBake
then generates a checksum for the information used by every task, including dependencies from other
tasks. In summary, BitBake recursively tracks used variables, task source code, and dependencies for
the recipes and their dependencies.

https://docs.yoctoproject.org/4.0.4/ref-manual/classes.html#overlayfs-bbclass
https://docs.yoctoproject.org/4.0.4/ref-manual/classes.html#overlayfs-bbclass
https://docs.yoctoproject.org/4.0.4/ref-manual/classes.html#overlayfs-etc-bbclass
https://docs.yoctoproject.org/4.0.4/ref-manual/classes.html#overlayfs-etc-bbclass

Explaining package versioning 61

Poky uses all this information provided by BitBake to store snapshots of those tasks as a set of packaged
data, generated in a cache called the shared state cache (sstate-cache). This cache wraps the
contents of each task output in packages stored in the SSTATE_DIR directory. Whenever BitBake
prepares to run a task, it first checks the existence of a sstate-cache package that matches the
required computed checksum. If the package is present, BitBake uses the prebuilt package.

The whole shared state mechanism encompasses quite complex code, and the previous explanation
simplifies it. For a detailed description, it is advised that you go through the Shared State Cache
section of the Yocto Project Overview and Concepts Manual (https://docs.yoctoproject.
org/4.0.4/overview-manual/concepts.html#shared-state-cache).

When using Poky for several builds, we must remember that sstate-cache needs cleaning from
time to time, since it keeps growing after every build. There is a straightforward way of cleaning it.
Use the following command from the poky directory:

Figure 7.5 – The command line to remove a duplicated Shared State Cache

Tip
When we need to rebuild from scratch, we can do either of the following:

• Remove build/tmp so that we can use sstate-cache to speed up the build

• Remove both build/tmp and sstate-cache so that no cache is reused during the build

Explaining package versioning
Package versioning is used to differentiate the same package in distinct stages of its life cycle. From
Poky’s perspective, it is also used as part of the equation that generates the checksum used by BitBake
to verify whether a task must be rebuilt.

The package version, also known as PV, plays a leading role when we select which recipe to build.
The default behavior of Poky is always to prefer the newest recipe version unless there is a different
explicit preference, as discussed in Chapter 5, Grasping the BitBake Tool. For example, let’s suppose
that we have two versions of the myrecipe recipe:

• myrecipe_1.0.bb

• myrecipe_1.1.bb

BitBake, by default, builds the recipe with version 1.1. Inside the recipe, we may have other variables
that compose package versioning with the PV variable. These are the package epoch, known as PE,
and the package revision, known as PR.

https://docs.yoctoproject.org/4.0.4/overview-manual/concepts.html#shared-state-cache
https://docs.yoctoproject.org/4.0.4/overview-manual/concepts.html#shared-state-cache

Assimilating Packaging Support62

Those variables normally follow this pattern:

Figure 7.6 – A complete versioning pattern

The PE variable has a default value of zero. It is used when the package version schema is changed,
breaking the possibility of usual ordering. PE is prepended in the package version, forcing a higher
number when needed.

For example, suppose a package uses the date to compose PV variables such as 20220101, and there
is a version schema change to release the 1.0 version. It is impossible to determine whether version
1.0 is higher than version 20220101. So, PE = "1" is used to change the recipe epoch, forcing
version 1.0 to be higher than 20220101, since 1:1.0 is greater than 0:20220101.

The PR variable has a default value of r0 and is a part of package versioning. When it is updated, it
forces BitBake to rebuild all tasks of a specific recipe. We can update it manually in the recipe metadata
to force a rebuild we know is needed. Still, it is fragile because it relies on human interaction and
knowledge. BitBake uses task checksums to control what needs to be rebuilt. The manual PR increment
is only used in rare cases when the task checksum does not change.

Specifying runtime package dependencies
The results of most recipes are packages managed by the package manager. As we saw in the previous
sections, it requires information about all those packages and how they relate. For example, a package
may depend on or conflict with another.

Constraints exist within multiple package relationships; however, those constraints are package format-
specific, so BitBake has specific metadata to abstract those constraints.

Here is a list of the most used package runtime constraints:

• RDEPENDS: The list of packages must be available at runtime, along with the package that
defines it.

• RPROVIDES: This is the list of symbolic names a package provides. By default, a package
always includes the package name as a symbolic name. It can also include alternative symbolic
names provided by that package.

• RCONFLICTS: This is the list of packages known to conflict with the package. The final image
must not include conflicting packages.

• RREPLACES: This is a list of symbolic names that the package can replace.

Using packages to generate a rootfs image 63

A full recipe, from meta/recipes-devtools/python/python3-dbus_1.2.18.bb, is
as follows:

Figure 7.7 – An example of how to use RDEPENDS

The recipe from Figure 7.6 shows that the python3-dbus package has a list of runtime dependencies
on several Python modules, on line 21.

Using packages to generate a rootfs image
One of the most common uses of Poky is the rootfs image generation. The rootfs image should
be seen as a ready-to-use root filesystem for a target. The image can be composed of one or more
filesystems. It may include other artifacts available during its generation, such as the Linux kernel,
the device tree, and bootloader binaries. The process of generating the image is composed of several
steps. Its most common uses are as follows:

1. Generating the rootfs directory

2. Creating the required files

3. Wrapping the final filesystem according to the specific requirements (it may be a disk file with
several partitions and contents)

4. Finally, compressing it, if applicable

Assimilating Packaging Support64

The sub-tasks of do_rootfs perform all these steps. rootfs is a directory with the desired packages
installed, with the required tweaks applied afterward. The tweaks make minor adjustments to the
rootfs contents – for example, when building a development image, rootfs is adjusted to allow
us to log in as root without a password.

The list of packages to be installed into rootfs is defined by a union of packages listed by IMAGE_
INSTALL and the packages included with IMAGE_FEATURES; image customization is detailed in
Chapter 12, Creating Custom Layers. Each image feature can include extra packages for installation
– for example, dev-pkgs, which installs development libraries and headers of all packages listed
to be installed in rootfs.

The list of packages to be installed is now filtered by the PACKAGE_EXCLUDE variable, which lists the
packages that should not be installed. The packages listed in PACKAGE_EXCLUDE are only excluded
from the list of packages to be explicitly installed.

With the final set of packages to install, the do_rootfs task can initiate the process of unpacking and
configuring each package, and its required dependencies, into the rootfs directory. The rootfs
generation uses the local package feed, which we will cover in the next section.

With the rootfs contents unpacked, the non-target post-installation scripts of the referred packages
must run to avoid the penalty of running them during the first boot.

Now, the directory is ready to generate the filesystem. IMAGE_FSTYPES lists the filesystem to be
generated – for example, EXT4 or UBIFS.

After the do_rootfs task has finished, the generated image file is placed in build/tmp/
deploy/image/<machine>/. The process of creating our image and the possible values for
IMAGE_FEATURES and IMAGE_FSTYPES are described in Chapter 12, Creating Custom Layers.

Package feeds
As discussed in Chapter 5, Grasping the BitBake Tool, packages play a vital role, as images and Software
Development Kits (SDKs) rely on them. In fact, do_rootfs uses a local repository to fetch binary
packages when generating those artifacts. This repository is known as a package feed.

There is no reason for this repository to be used just for the images or SDK build steps. Several valid
reasons exist for making this repository remotely accessible, either internally in our development
environment or publicly. Some of these reasons are as follows:

• You can easily test an updated application during the development stage, without requiring a
complete system re-installation

• You can make additional packages more flexible so that they can be installed in a running image

• You can update products in the field

Package feeds 65

To produce a solid package feed, we must ensure that we have consistent increments in the package
revision every time the package is changed. It is almost impossible to do this manually, and the Yocto
Project has a PR service specifically designed to help with this.

The PR service, part of BitBake, is used to increment PR without human interaction every time
BitBake detects a checksum change in a task. It injects a suffix in PR in the ${PR}.X format. For
example, if we have PR = "r34" after subsequent PR service interactions, the PR value becomes
r34.1, r34.2, r34.3, and so on. The use of the PR service is critical for solid package feeds, as it
requires the version to increase linearly.

Tip
Even though we ought to use the PR service to have solid package versioning, it does not
preclude the need to set PR manually in exceptional cases.

By default, the PR service is not enabled or running. We can enable it to run locally by adding the
PRSERV_HOST variable in the BitBake configuration – for example, in build/conf/local.
conf, as in the following:

Figure 7.8 – How to configure a PR service to run locally

This approach is adequate when the build happens on a single computer, which builds every package
of the package feed. BitBake starts and stops the server at each build and automatically increases the
required PR values.

For a more complex setup, with multiple computers working against a shared package feed, we must
have a single PR service running, used by all building systems associated with the package feed. In
this case, we need to start the PR service in the server using the bitbake-prserv command,
shown as follows:

Figure 7.9 – The command line to initiate the PR service server

In addition to manually-starting the service, we need to update the BitBake configuration file (for
example, build/conf/local.conf) of each build system, which connects to a server using the
PRSERV_HOST variable, as described earlier, so that each system points to the server IP and port.

Using package feeds

To use package feeds, the following two components are required:

• The server provides access to the packages

• The client accesses the server and downloads the required packages

Assimilating Packaging Support66

The set of packages offered by the package feed is determined by the recipes we build. We can build
one or more recipes and offer them, or build a set of images to generate the desired packages. Once
satisfied with the packages offered, we must create the package index provided by the package feeds.
The following command performs this:

Figure 7.10 – The command line to create the package index

The packages are available inside the build/tmp/deploy directory. We must choose the respective
sub-directory depending on the package format chosen. Poky uses RPM by default, so we must serve
the content of the build/tmp/deploy/rpm directory.

Tip
Make sure to run bitbake package-index after building all packages; otherwise, the
package index will not include them.

The package index and packages must be made available through a transfer protocol such as HTTP.
We can use any server we wish for this task, such as Apache, Nginx, and Lighttpd. A convenient way
to make the packages available through HTTP for local development is by using the Python simple
HTTP server, shown as follows:

Figure 7.11 – How to provide the package feed by using the Python simple HTTP server

To add support for package management to the image, we have a couple of changes to make. We need to
add package-management in EXTRA_IMAGE_FEATURES and set the URI for package fetching
on PACKAGE_FEED_URIS. For example, we can add this to our build/conf/local.conf:

Figure 7.12 – How to configure a remote package feed

We will detail the IMAGE_FEATURES and EXTRA_IMAGE_FEATURES variables in Chapter 12,
Creating Custom Layers. If we want a small image with no package management support, we should
omit package-management from EXTRA_IMAGE_FEATURES.

The PACKAGE_FEED_URIS and EXTRA_IMAGE_FEATURES configurations guarantee that the
image on the client side can access the server and has the utilities needed to install, remove, and upgrade
its packages. After these steps, we can use the runtwime package management in the target device.

Package feeds 67

For example, if we choose the RPM package format for the image, we can fetch the repository
information using the following command:

Figure 7.13 – Command line to fetch the package feed repository

Use the dnf search <package>, and dnf install <package> commands to find and
install packages from the repositories.

Depending on the package format chosen, the commands for the target to update the package index,
search for, and install a package are different. See the available command lines for each package format
in the following table:

Package format RPM IPK DEB

Update the
package index

dnf check-
updates

opkg update apt-get update

Search for a package dnf search

<package>

opkg search

<package>

apt-cache search

<package>

Install a package dnf install

<package>

opkg install

<package>

apt-get install

<package>

System upgrade dnf upgrade opkg upgrade apt-get dist-
upgrade

Table 7.1 – A package management command comparison

The use of package feeds are great to use in a local development phase because they enable us to install
packages in an already deployed image.

Note
The use of package feeds for system upgrades in the field requires a huge test effort to guarantee
that a system does not fall into a broken state. The testing effort is enormous to verify all different
upgrade scenarios. Usually, full image upgrades are safer for production use.

The management of a package feed is much more complex. It involves several other aspects, such as
package dependency chains and different upgrade scenarios. Creating a complex package feed external
server is out of this book’s scope, so please refer to the Yocto Project documentation for further details.

Assimilating Packaging Support68

Summary
This chapter presented the basic concepts of packaging, which has a significant role in Poky and
BitBake (package versioning), and how this impacts Poky’s behavior when rebuilding packages and
package feeds. It also showed us how to configure an image to be updated using prebuilt packages
provided by a remote server.

In the next chapter, we will learn about the BitBake metadata syntax and its operators and how to
append, prepend, and remove content from variables, variable expansions, and so on. We will then
be able to better understand the language used in Yocto Project engines.

8
Diving into BitBake Metadata

At this point in this book, we know how to generate images and packages and how to use package
feeds – basically, everything we must know for the simple usage of Poky. Hereafter, we will learn how
to control the behavior of Poky to accomplish our goals and achieve maximum benefit from the Yocto
Project as a whole.

This chapter will help enhance our understanding of the BitBake metadata syntax. We will learn to
use the BitBake operators to alter the content of variables, variable expansions, and so on. These are
the key concepts we can use to make our recipes and the customization that we will learn about in
the following chapters.

Understanding BitBake’s metadata
The amount of metadata used by BitBake is enormous. Therefore, to get the maximum benefit from
Poky, we must master it. As we learned in Chapter 4, Meeting the BitBake Tool, metadata covers three
major areas:

• Configuration (the .conf files): The configuration files define the global content that configures
how the classes and recipes will work.

• Classes (the .bbclass files): Classes can be inherited for easier maintenance and to promote
code reuse and avoid code duplication.

• Recipes (the .bb or .bbappend files): The recipes describe the tasks to be run and provide
the required information to allow BitBake to generate the required task chain. They are the
most commonly used metadata, as they define the variables and tasks for the recipes. The most
common types of recipes generate packages and images.

The classes and recipes use a mix of Python and Shell Script code, which is parsed by BitBake, generating
a massive number of tasks and local states that must still be executed after being parsed.

We will also learn about the operators and essential concepts we need to build our recipes.

Diving into BitBake Metadata70

Working with metadata

The syntax used by BitBake metadata can be misleading and sometimes hard to trace. However, we
can check the value of each variable in BitBake-generated, pre-processed recipe data by using the
bitbake option (-e or --environment), as follows:

Figure 8.1 – How to display the BitBake environment

To understand how BitBake works, please refer to BitBake User Manual (https://docs.
yoctoproject.org/bitbake/2.0). The following sections will show most of the syntax
commonly used in recipes.

The basic variable assignment

The assignment of a variable can be done as shown here:

Figure 8.2 – An example of a variable assignment

In the preceding example, the value of the FOO variable is assigned to bar. Variable assignment is
core to the BitBake metadata syntax, as most examples use variables.

The variable expansion

BitBake supports variable referencing. The syntax closely resembles Shell Script, such as the following:

Figure 8.3 – An example of variable expansion

The preceding example results in A containing aValue and B containing before-aValue-after.
An important thing to bear in mind is that the variable only expands when it is used, as shown here:

Figure 8.4 – The variables are only expanded when used

Figure 8.4 illustrates the lazy evaluation used by BitBake evaluation. The B variable value is before-
${A}-after until a task requires the variable value. The A variable has been assigned to aNewValue
in line 3; consequently, B evaluates before-aNewValue-after.

https://docs.yoctoproject.org/bitbake/2.0
https://docs.yoctoproject.org/bitbake/2.0

Understanding BitBake’s metadata 71

Assigning a value if the variable is unassigned, using ?=

When there is a need to assign a variable only if the variable is still unassigned, the ?= operator can
be used. The following code shows its use:

Figure 8.5 – An example of value

The same behavior happens if there are multiple ?= assignments to a single variable. The first use of
the ?= operator is responsible for assigning the variable. Let’s look at the following example:

Figure 8.6 – An example of a second assignment being ignored

The A variable has been assigned to value on line 1, before the assignment of
ignoredAsAlreadyAssigned on line 2, which is ignored.

We need to consider that the = operator is stronger than the ?= operator, as it assigns the value
independently of the previous variable state, as shown here:

Figure 8.7 – An example showing that the ?= operator is weaker than the = operator

Hence, the A variable is assigned as changeValue.

Assigning a default value using ??=

Using the ??= operator is intended to provide a default value for a variable and is a weaker version
of the ?= operator.

Check out the following code:

Figure 8.8 – An example of how default values are assigned

In line 1, the A default value is assigned to firstValue, and then in line 2, the A default value
is changed to secondValue. As no other assignment is made to the A variable, the final value
is secondValue.

Diving into BitBake Metadata72

?= is an assignment operator, as seen before, and takes precedence over the ??= operator, as can be
seen in the following example:

Figure 8.9 – An example of the ??= operator being weaker than the ?= operator

The final value of A variable is thirdValue, as no assignment has been made until line 3.

The immediate variable expansion

The := operator is used when there is a need to force the immediate expansion of a variable. It results
in the variable’s contents being expanded immediately rather than when the variable is used, as follows:

Figure 8.10 – An example of immediate variable expansion

The value for B is assigned immediately, in line 2, and expands to aValue-after. However, the
value for C is only assigned when used and then set to newValue, as A value has been set in line 3.

The list appending and prepending

The += operator, known as list appending, adds a new value after the original one, separated with a
space, as shown here:

Figure 8.11 – An example of list appending

In this example, the final value for A is originalValue appendedValue.

The =+ operator, known as list prepending, adds a new value before the original one, separated with
a space, as shown here:

Figure 8.12 – An example of list prepending

In this example, the final value for A is prependedValue originalValue.

Understanding BitBake’s metadata 73

The string appending and prepending

The .= operator, known as string appending, adds a new value after the original one, with no extra
space, as shown here:

Figure 8.13 – An example of string appending

In this example, the final value for A is originalValueAppendedValue.

The =. operator, known as string prepending, adds the new value before the original one with no
extra space, as shown here:

Figure 8.14 – An example of string prepending

In this example, the final value for A is prependedValueOriginalValue.

The :append and :prepend operators

The :append operator adds a new value after the original with no extra space, as shown here:

Figure 8.15 – An example of how to use the :append operator

In this example, the final value for A is originalValueAppendedValue.

The :prepend operator adds the new value before the original with no extra space, as shown here:

Figure 8.16 – An example of how to use the :prepend operator

In this example, the final value for A is prependedValueOriginalValue.

You may have noticed that the :append and :prepend operators resemble the string appending
(.=) and prepending (=.) operators. Still, there is a subtle difference between how the :append
and :prepend operators and the string appending and string prepending operators are parsed, as
shown here:

Diving into BitBake Metadata74

Figure 8.17 – An example of the difference between :append and the .= operator

Using the :append operator queues the operation for execution, which happens after the line 2
assignment, resulting in A becoming valueAppendedValue. The .= operator is immediate, so
the assignment of line 4 replaces the value set on line 3, resulting in B becoming value.

The list item removal

The :remove operator drops a list item from the original content. For example, see the following:

Figure 8.18 – An example of how to use the :remove operator

In this example, A is now value1 value3. The :remove operator considers the variable value as
a list of strings separated by spaces so that the operator can remove one or more items from the list.
Note that every appending and prepending operation has already finished when :remove is executed.

Conditional metadata sets

BitBake provides a very easy-to-use way to write conditional metadata through a mechanism
called overrides.

The OVERRIDES variable contains values separated by colons (:) and evaluated from left to right.
Each value is an item that we want to have conditional metadata.

Let’s consider the next example:

Figure 8.19 – An example of the OVERRIDES variable

The linux override is less specific than arm and mymachine. The following example shows how
we can use OVERRIDES to set the A variable conditionally:

Understanding BitBake’s metadata 75

Figure 8.20 – An example of using OVERRIDES conditional setting

In this example, A will be linuxSpecificValue, due to the condition of linux being in OVERRIDES.

Conditional appending

BitBake also supports appending and prepending variables, based on whether something is in
OVERRIDES, as shown in the following example:

Figure 8.21 – An example of using OVERRIDES conditional appending

In the preceding example, A is set to value armValue.

File inclusion

BitBake provides two directives for file inclusion – include and require.

With the include keyword, BitBake attempts to insert the file at the keyword location, so it is
optional. Let’s suppose the path specified on the include line is relative; then, BitBake locates the
first instance it can find within BBPATH. By contrast, the require keyword raises ParseError
if the required file cannot be found.

Tip
The convention generally adopted in the Yocto Project is to use a .inc file to share the common
code between two or more recipe files.

Python variable expansion

BitBake makes it easy to use Python code in variable expansion with the following syntax:

Figure 8.22 – An example of Python expansion syntax

Diving into BitBake Metadata76

This gives enormous flexibility to a user. We can see a Python function call in the following example:

Figure 8.23 – An example of a Python command to print the current date

This results in the A variable containing today’s date.

Defining executable metadata

Metadata recipes (.bb) and class files (.bbclass) can use Shell Script code, as follows:

Figure 8.24 – An example of a task definition

The task definition is identical to setting a variable, except that this variable happens to be an executable
Shell Script code. When writing the task code, we should not use Bash or Zsh-specific features, as the
tasks can only rely on POSIX-compatible features. When in doubt, an excellent way to test whether
your code is safe is to use the Dash shell to try it out.

Another way to inject code is by using Python code, as shown here:

Figure 8.25 – An example of a Python task definition

The task definition is similar, but it flags the task as Python so that BitBake knows how to run
it accordingly.

Defining Python functions in a global namespace

When we need to generate a value for a variable or some other use, this can be quickly done in recipes
(.bb) and classes (.bbclass) using code similar to the following:

Figure 8.26 – A code example to handle variable values in Python code

Summary 77

Usually, we need to access the BitBake datastore when writing a Python function. Therefore, a convention
among all metadata is the use of an argument called d to point to BitBake’s datastore. It is usually in
the last parameter of the function.

In Figure 8.26, we ask the datastore for the value of the SOMECONDITION variable in line 2 and
return a value depending on it.

The example results in the value for the DEPENDS variable containing dependencyWithConditon.

The inheritance system

The inherit directive specifies which classes of functionality our recipe (.bb) offers a rudimentary
inheritance mechanism, such as object-oriented programming languages. For example, we can abstract
the tasks involved in using the Autoconf and Automake building tools and put them into the class
for our recipes to reuse. A given .bbclass is located by searching for classes/filename.
bbclass in BBPATH. So, in a recipe that uses Autoconf or Automake, we can use the following:

Figure 8.27 – An example of how to inherit a class

Line 1 from Figure 8.27 instructs BitBake to use inherit autotools.bbclass, providing the
default tasks that work fine for most Autoconf- or Automake-based projects.

Summary
In this chapter, we learned in detail about the BitBake metadata syntax, its operators to manipulate
variable contents, and variable expansions, including some usage examples.

In the next chapter, we will learn how to use Poky to create external compilation tools and produce a
root filesystem suitable for target development.

9
Developing with the

Yocto Project

So far in this book, we have used Poky as a build tool. In other words, we have used it as a tool to
design and generate the image delivered to products.

In this chapter, we will see how to set up a development environment for use inside the target and
meet the Standard SDK and Extensible SDK tools, which can help us develop applications outside
the target. For example, they allow us to cross-compile applications, recipes, and images.

What is a software development kit?
In embedded development, the toolchain is often composed of cross-platform tools or tools executed
on one architecture, which then produces a binary for use in another architecture – for example, a GCC
tool that runs on an x86-64-compatible machine and generates binaries for an ARM machine is a cross-
compiler. When a tool and the resulting binaries rely on dependencies from the same host on which
the tool runs, this is commonly called a native build. Build and target architectures may be the same,
but it is cross-compilation if the target binary uses a staged root filesystem to find its dependencies.

A software development kit (SDK) is a set of tools and files to develop and debug applications. These
tools include compilers, linkers, debuggers, external libraries, headers, and binaries, also called a
toolchain. It may also include extra utilities and applications. We can have two types of SDK:

• Cross-development SDKs: These have the goal of being used in the development host to
generate binaries for the target

• Native SDKs: These aim to run on the target device

Developing with the Yocto Project80

Generating a native SDK for on-device development
Some embedded devices are powerful enough to be used as a development environment. However,
the resources needed for the build vary significantly from one library or application to another, so
using the target as the building environment may not always be viable. The development image needs
the following:

• The header files and libraries

• The toolchain

The following line adds these properties to an image:

Figure 9.1 – How to configure an image to include development artifacts

IMAGE_FEATURES in the preceding example extends the image functionality as follows:

• dev-pkgs: Installs development packages (headers and extra library links) for all packages
installed in a given image

• tools-sdk: Installs the toolchain that runs on the device

The IMAGE_FEATURES variable is described in more detail in Chapter 12, Creating Custom Layers.

Tip
If we want to modify only build/conf/local.conf, the variable we should use is EXTRA_
IMAGE_FEATURES.

The target can use this image during the application development cycle and share the image among
all developers working on the same project. Each developer will have a copy, and the development
team will use the same development environment consistently.

Understanding the types of cross-development SDKs
The Yocto Project can generate two types of cross-development SDKs that aim to cover different
needs. They are defined as follows:

• Standard SDK: This provides the artifacts for application development, be it for bootloader or
Linux kernel development, or some other user space software

• Extensible SDK: This allows the installation of extra packages inside the SDK’s sysroot directory,
as well as recipe and application integration inside a Yocto Project-controlled environment

Using the Standard SDK 81

The Standard SDK includes a toolchain and debugging applications. Its goal is to allow users to generate
binaries for use in the target. The Extensible SDK is more powerful and can build images and recipes.
A notable difference between the two types of SDK is the presence of devtool in the Extensible SDK.

devtool is responsible for providing the additional features of the Extensible SDK. It is an interface
for using BitBake and recipetool’s power. The devtool and recipetool commands are also
available in the traditional Yocto Project environment.

Using the Standard SDK
Usually, an SDK has a set of libraries and applications it must provide, which is defined in an image
tailored to the product. These are called image-based SDKs. For example, we can generate the Standard
SDK for core-image-full-cmdline with the following command:

Figure 9.2 – How to generate the Standard SDK for core-image-full-cmdline

Another option is to create a generic SDK with the toolchain and debugging tools. This generic SDK
is called meta-toolchain and is used mainly for Linux kernel and bootloader development and
their debugging processes. It may not be sufficient to build applications with complex dependencies.
To create meta-toolchain, use the following command:

Figure 9.3 – How to generate a generic SDK

In both cases, the resulting SDK self-installer files are at build/tmp/deploy/sdk/. Considering
we used the Standard SDK for core-image-full-cmdline, we can see the following resulting
set of files:

Figure 9.4 – The resultant files after running bitbake core-image-full-cmdline -c populate_sdk

The next step after creating the Standard SDK is to install it, as the Standard SDK is wrapped in an
installation script that can be executed in the same manner as any other script. The following sequence
shows the Standard SDK installation process using the standard target directory:

Developing with the Yocto Project82

Figure 9.5 – The Standard SDK installation process

The preceding Standard SDK illustrates how we can generate and install a Standard SDK. Still, it
is not ideal to use a standard image that is not tailored to your current needs. Therefore, creating a
custom image that fits our application needs is highly recommended. It is also recommended to base
the Standard SDK on this custom image.

The Standard SDK is generated to match the machine architecture we set using the MACHINE variable.
To use the Standard SDK to build a custom application, for example, hello-world.c, we can use
the following lines, targeting the x86-64 architecture:

Figure 9.6 – The steps to build a C application using the Standard SDK

Another very commonly used project is the Linux kernel. When we want to build the Linux kernel
source code, we can use the following sequence of commands:

Figure 9.7 – The steps to build the Linux kernel using the Standard SDK

unset LDFLAGS is required to avoid using GCC for linking, which is the Yocto Project-based
Standard SDK’s default.

Using the Extensible SDK 83

Using the Extensible SDK
The Extensible SDK expands the functionalities of the Standard SDK. Some of the significant capabilities
included are as follows:

• Generate recipes

• Build recipes

• Build images

• Install packages in the internal toolchain

• Deploy packages to the target

Those additional features are provided by the devtool utility, which is also available in the standard
Yocto Project environment.

To generate the Extensible SDK, use the following command:

Figure 9.8 – Command to generate the Extensible SDK

The resulting files are in build/tmp/deploy/sdk/. Considering we used the Extensible SDK

for core-image-full-cmdline, we see the following set of files:

Figure 9.9 – The resultant files after running bitbake core-image-full-cmdline -c populate_sdk_ext

The next step after creating the Extensible SDK is to install it. To install it, we can execute the generated
script. The following sequence shows the Extensible SDK installation process using the standard
target directory:

Developing with the Yocto Project84

Figure 9.10 – The Extensible SDK installation process

The preceding screenshot illustrates how we can generate and install an Extensible SDK. Still, it is not
ideal to use a standard image that is not tailored to your current needs. Therefore, creating a custom
image that fits your application needs is highly recommended, as is basing the Extensible SDK on one.
However, we can build and install any extra dependencies into the SDK using the Extensible SDK.

In our case, we installed the Extensible SDK in /home/user/poky_sdk. After the installation
has been completed, the next step is to use the provided script to export the required environment
variables, which enables the Extensible SDK’s use, with the following command:

Figure 9.11 – Exporting the environment variables to allow the Extensible SDK to be used

In the following sections, we will cover some use cases using devtool. All commands are executed
inside a terminal with the Extensible SDK variables exported.

The Extensible SDK is a different way to deliver the same Yocto Project tools and metadata. It wraps
together the following:

• A basic set of binaries for the Yocto Project environment execution

• A Standard SDK for development

• A shared state cache to reduce local builds

• A snapshot of the Yocto Project metadata and configuration

Using the Extensible SDK 85

Essentially, the Extensible SDK is a snapshot of the environment used to create it. Therefore, all
devtool commands, including those we will use in the following sections, are available inside the
Yocto Project environment.

Building an image using devtool

Let’s start by creating an image. The Extensible SDK is capable of creating any supported image. For
example, to create core-image-full-cmdline, we can use the following command line:

Figure 9.12 – Building core-image-full-cmdline with devtool

After running the devtool command, the generated files can be found in /home/user/poky_
sdk/tmp/deploy/images/qemux86-64.

Running an image on QEMU

We can emulate the target hardware with QEMU using the previously built image, core-image-
full-cmdline, with the following command:

Developing with the Yocto Project86

Figure 9.13 – Emulating with devtool and QEMU

It starts the QEMU execution and generates the boot splash, as is shown in the following screenshot:

Figure 9.14 – The QEMU boot splash

Using the Extensible SDK 87

Creating a recipe from an external Git repository

devtool is also capable of producing a recipe from an external Git repository. Here, we are going
to use https://github.com/OSSystems/bbexample:

Figure 9.15 – Creating the recipe using devtool

devtool creates a basic recipe file for the given repository. It creates a workspace with the package
source code and the needed metadata. The file structure used by devtool, after the devtool add
https://github.com/OSSystems/bbexample command is run, is as follows:

Figure 9.16 – The file structure created by devtool when creating a recipe

https://github.com/OSSystems/bbexample

Developing with the Yocto Project88

Currently, devtool generates a tentative recipe for projects based on the following:

• Autotools (autoconf and automake)

• CMake

• Scons

• qmake

• A plain Makefile

• The Node.js module

• Python modules that use setuptools or distutils

Building a recipe using devtool

Now that the recipe has been created under the workspace directory, we can build it with the
following command:

Figure 9.17 – Building a recipe with devtool

Deploying to the target using devtool

After building the package with devtool, we can deploy it to the target. In our example, the target
is the running QEMU. To access it, use the default QEMU IP address, 192.168.7.2, as shown in
the following command:

Using the Extensible SDK 89

Figure 9.18 – Deploying to the target using devtool

The application is installed in the target. We can see bbexample being executed in the QEMU target,
as shown in the following screenshot:

Figure 9.19 – bbexample executing on the target

Extending the SDK

One of the goals of the Extensible SDK is to allow us to install different recipes in the SDK environment.
For example, to have libusb1 available, we can run the following command:

Developing with the Yocto Project90

Figure 9.20 – The installation of a new recipe in the Extensible SDK

Tip
The Yocto Project Extensible SDK allows for distributed development, as developers can
update and extend the existing SDK environment during a project’s lifetime. There is some
infrastructure setup required for the proper use of the Extensible SDK as a sstate-cache
mirror and Extensible SDK server, which requires a complex configuration beyond the scope
of this book. For more details, please refer to the Providing Updates to the Extensible SDK
After Installation section of Yocto Project Application Development and the Extensible Software
Development Kit (eSDK) (https://docs.yoctoproject.org/4.0.4/sdk-manual/
appendix-customizing.html#providing-updates-to-the-extensible-
sdk-after-installation).

Summary
In this chapter, we learned that the Yocto Project can be used for development and image creation.
We learned how to create different types of toolchains and also how to use them.

In the next chapter, we will look at how we can configure Poky to help us in the debugging process,
how we can configure our system to provide the required tools for remote debugging using GDB, and
how we can track our changes using buildhistory.

https://docs.yoctoproject.org/4.0.4/sdk-manual/appendix-customizing.html#providing-updates-to-the-extensible-sdk-after-installation
https://docs.yoctoproject.org/4.0.4/sdk-manual/appendix-customizing.html#providing-updates-to-the-extensible-sdk-after-installation
https://docs.yoctoproject.org/4.0.4/sdk-manual/appendix-customizing.html#providing-updates-to-the-extensible-sdk-after-installation

10
Debugging with

the Yocto Project

The debug process is an essential step in every development cycle. In this chapter, we will learn how to
configure Poky to help us with the debugging process; for example, how we can configure our system
to provide the tools needed for a remote debug using the Gnu DeBugger (GDB), how we can track
our changes using buildhistory, and how we can use handy debug tools, such as oe-pkgdata-
util, bitbake-getvar, and devshell.

Differentiating metadata and application debugging
Before we delve into the details of debugging, we need to realize that there are different types of
debugging, such as metadata and runtime code debugging.

Metadata debugging is needed to ensure that the behavior of BitBake’s tasks aligns with our goals and
to identify the culprit when it’s not aligned. For example, a recipe may need to be fixed to enable a
feature. In such a case, we can use several log files generated by BitBake in the host to help trace the
execution path of the involved task.

On the other hand, debugging runtime code is more natural as it is essentially the same as the typical
development cycle of an application, a library, or a kernel. Depending on the issue we are seeking
to resolve, the right tool to help may vary from a debugger to code instrumentation (for example,
adding debug prints).

Tracking image, package, and SDK contents
The easiest way to ensure we have the image, packages, and software development kit (SDK), along
with the expected contents, is to use the buildhistory mechanism.

When a recipe is updated for a new version or has its code changed, it may influence the contents of
the generated packages and, consequently, the image or SDK.

Debugging with the Yocto Project92

Poky deals with many recipes and images or SDKs frequently have tens or hundreds of packages.
Therefore, it may be challenging to track the package contents. The Poky tool that helps in this task
is buildhistory.

buildhistory, as the name suggests, keeps a history of the contents of several artifacts built during
the use of Poky. It tracks package, image, and SDK building and their contents.

To enable buildhistory in our system, we need to add the following lines of code in our build/
conf/local.conf file:

Figure 10.1 – How to enable buildhistory support

The INHERIT method includes the buildhistory class hooks in the building process. At the
same time, the BUILDHISTORY_COMMIT line enables BitBake to create a new Git commit in the
buildhistory repository for every new package, image, or SDK build. The Git commit makes
tracking as simple as using git diff between two commits. The data is stored under the build/
buildhistory directory as text files for ease of use.

Poky provides a utility that outputs the difference between two buildhistory states, called
buildhistory-diff, in a more concise way, which is very useful when checking for changes. The
buildhistory-diff utility outputs the difference between any two Git revisions more meaningfully.

For example, suppose we add the strace package in the core-image-minimal image and build
it. In that case, the buildhistory-diff command can be used to check the resultant changes,
as in the following screenshot:

Figure 10.2 – The result of buildhistory-diff

For every package build, buildhistory creates a list of generated sub-packages, installation scripts,
a list of file ownership and sizes, the dependency relation, and more. In addition, the dependency
relationship between the packages, filesystem files, and dependency graph is created for images and SDKs.

To better understand the capabilities and features provided by buildhistory, refer to Maintaining
Build Output Quality in Yocto Project Development Tasks Manual (https://docs.yoctoproject.
org/4.0.4/dev-manual/common-tasks.html#maintaining-build-output-
quality).

https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#maintaining-build-output-quality
https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#maintaining-build-output-quality
https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#maintaining-build-output-quality

Debugging packaging 93

Debugging packaging
In more sophisticated recipes, we split the installed contents into several sub-packages. The sub-packages
can be optional features, modules, or any other set of files that is optional to install.

To inspect how the recipe’s content has been split, we can use the build/tmp/work/<arch>/<recipe
name>/<software version>/packages-split directory. It contains a sub-directory for
every sub-package and has its contents in the sub-tree.

Among the possible reasons for a mistaken content split, we have defined the following:

• The contents not being installed (for example, an error in installation scripts)

• An application or library configuration error (for example, a disabled feature)

• Metadata errors (for example, the wrong package order)

Another common issue for build failure is lacking the required artifacts in the sysroot directory
(for example, headers or dynamic libraries). The counterpart of the sysroot generation can be seen
at build/tmp/work/<arch>/<recipe_name>/<software_version>/sysroot-
destdir.

If this is not enough, we can instrument the task code with these logging functions to determine the
logical error or bug that has caused the unexpected result.

Inspecting packages

A central aspect of the Yocto Project is dealing with the packages. Therefore, the project has designed
oe-pkgdata-util to help us to inspect the built packages and related data. For example, after
running bitbake bluez5, we can use the following command to find all the packages related
to bluez:

Figure 10.3 – Listing all the available packages and filtering those related with bluez

Debugging with the Yocto Project94

Sometimes, we need to find the package that includes this specific file. We can inquire about the
packages database using the following command:

Figure 10.4 – Finding which package provides /usr/bin/rfcomm

Another use case is when we need to find out the current version of a package. This can be done with
the following command:

Figure 10.5 – Listing the package info for bluez5

We can also list all the files for the given package using the following command:

Figure 10.6 – Listing the files from the bluez5 package

The oe-pkgdata-util script is a handy tool to help us debug packaging.

Logging information during task execution 95

Logging information during task execution
The logging utilities provided by BitBake are handy for tracing the code execution path. BitBake
provides logging functions for use in Python and Shell Script code, described as follows:

• Python: For use within Python functions, BitBake supports several log levels such as bb.fatal,
bb.error, bb.warn, bb.note, bb.plain, and bb.debug.

• Shell Script: For use in Shell Script functions, the same set of log levels exists and is accessed
with a similar syntax: bbfatal, bberror, bbwarn, bbnote, bbplain, and bbdebug.

These logging functions are very similar to each other but have minor differences, described as follows:

• bb.fatal and bbfatal: These have the highest priority for logging messages as they print
the message and terminate the processing. They cause the build to be interrupted.

• bb.error and bberror: These display an error but do not force the build to stop.

• bb.warn and bbwarn: These warn the users about something.

• bb.note and bbnote: These add a note to the user. They are only informative.

• bb.plain and bbplain: These output a message.

• bb.debug and bbdebug: These add debugging information that is shown depending on
the debug level used.

There is one subtle difference between using the logging functions in Python and Shell Script. The
logging functions in Python are directly handled by BitBake, seen on the console, and stored in the
execution log inside build/tmp/log/cooker/<machine>. When the logging functions are
used in Shell Script, the information is outputted to an individual task log file, which is available in
build/tmp/work/<arch>/<recipe name>/<software version>/temp.

Inside the temp directory, we can inspect the scripts for every task with the run.<task>.<pid>
pattern and use the log.<task>.<pid> pattern for its output. Symbolic links point to the last log
files using the log.<task> pattern. For example, we can check for log.do_compile to verify
whether the right files were used during the build process.

The build/tmp/work directory is detailed in Chapter 6, Detailing the Temporary Build Directory.

Debugging metadata variables
To debug the metadata variables, we can use the bitbake-getvar script. It uses the BitBake
internal data to get a specific variable value and its attribution history.

Debugging with the Yocto Project96

For example, to inspect the PACKAGECONFIG variable for the procps recipe, we can use the
following command:

Figure 10.7 – The result of bitbake-getvar -r procps PACKAGECONFIG

From Figure 10.7, we can see that PACKAGECONFIG at the end is empty. We can also see that
defaultval was set to "${@bb.utils.filter('DISTRO_FEATURES', 'systemd',
d)}" at line 33 from the meta/recipes-extended/procps/procps_3.3.17.bb file.

We can see the procps recipe lines 33 and 34 in the following screenshot:

Figure 10.8 - The procps recipe 33 and 34 lines

The bitbake-getvar script can be used to check whether a feature is enabled or to be sure a
variable has been expanded as we expect.

Utilizing a development shell
A development shell can be a helpful tool when editing packages or debugging build failures. The
following steps take place when we use devshell:

1. Source files are extracted into the working directory.

2. Patches are applied.

3. A new terminal is opened in the working directory.

All the environment variables needed for the build are available in the new terminal, so we can use
commands such as configure and make. The commands execute just as if the build system were
running them.

Utilizing a development shell 97

The following command is an example that uses devshell on a target named linux-yocto:

Figure 10.9 – Running devshell for the linux-yocto recipe

The command from Figure 10.9 allows us to rework the Linux kernel source code, build it, and change
its code as needed. In Figure 10.10, you can see the log after executing the bitbake linux-yocto
-c devshell command:

Figure 10.10 – The log for bitbake linux-yocto -c devshell

Note
It is crucial to remember that changes made inside devshell do not persist between builds;
thus, we must be careful to record any critical change before leaving it.

Since we have the source at our disposal, we can use it to generate extra patches. A convenient way
of doing that is using Git and git format-patch to create the patch to be included in the
recipe afterward.

Debugging with the Yocto Project98

The following screenshot shows the devshell window open after calling the devshell task:

Figure 10.11 – The list of files inside the WORKDIR directory

The devshell command is convenient for small tasks. But when a more involved change is needed,
using an external toolchain or devtool might be a better option.

To include the generated patch in the recipe and make it persistent, see Chapter 13, Customizing
Existing Recipes.

Using the GNU Debugger for debugging
While developing any project, from time to time, we end up struggling to understand subtle bugs.
The GDB is available as a package in Poky. It is installed in SDK images by default, as was detailed in
Chapter 9, Developing with the Yocto Project.

Note
To install debugging packages containing the debug symbols and tools in an image, add
IMAGE_FEATURES += "dbg-pkgs tools-debug" in build/conf/local.conf.

Using the SDK or an image with the debugging packages and tools installed allows us to debug
applications directly in the target, replicating the same development workflow we usually do on
our machine.

The GDB may not be usable on some targets because of memory or disk space constraints. The main
reason for this limitation is that the GDB needs to load the debugging information and the binaries
of the debugging process before starting the debugging process.

To overcome these constraints, we can use gdbserver, included by default when using tools-
debug in IMAGE_FEATURES. It runs on the target and doesn’t load any debugging information
from the debugged process. Instead, a GDB instance processes the debugging information on the build
host. The host GDB sends control commands to gdbserver to control the debugged application,
so the target does not need to have the debugging symbols installed.

However, we must ensure the host can access the binaries with their debugging information.
Therefore, it is recommended that the target binaries are compiled with no optimization to facilitate
the debugging process.

Summary 99

The process for using gdbserver and adequately configuring the host and target is detailed in the
Debugging With the GNU Project Debugger (GDB) Remotely section in Yocto Project Development Tasks
Manual (https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.
html#debugging-with-the-gnu-project-debugger-gdb-remotely).

Summary
In this chapter, we learned how to configure Poky to help us with the debugging process. We learned
about the contents of deployed directories that can be used for debugging and how we can track our
changes using buildhistory. We also covered the use of oe-pkgdata-util to inspect package
information, use bitbake-getvar to debug variable expansion, how we can use devshell to
emulate the same build environment found by BitBake, and how we configure our system to provide
the tools needed for GDB debugging.

In the next chapter, we will learn how to expand the Poky source code using external layers. First, we
will introduce the concept of layering. Then, we will learn in detail about the directory structure and
the content of each layer type.

https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#debugging-with-the-gnu-project-debugger-gdb-remotely
https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#debugging-with-the-gnu-project-debugger-gdb-remotely

11
Exploring External Layers

One of the most charming features of Poky is the flexibility of using external layers. In this chapter,
we will examine why this is a vital capability and how we can take advantage of it. We will also look
at the different types of layers and their directory trees layout. Finally, at the end of this chapter, we
will learn to include a new layer in our project.

Powering flexibility with layers
Poky contains metadata spread over configuration definition files such as machine and distro files,
classes, and recipes, covering everything from simple applications to full graphical stacks and
frameworks. There are multiple places that BitBake can load metadata collection from, which are
known as metadata layers.

The biggest strength of using layers is the ability to split metadata into logical units, which enables
users to pick only the metadata collection needed for a project.

Using metadata layers enables us to do the following:

• Improve code reuse

• Share and scale work across different teams, communities, and vendors

• Increase the Yocto Project community’s code quality, as multiple developers and users focus
together on a particular metadata layer that is of interest to them

We can configure the system for different reasons, such as the need to enable/disable a feature or
change build flags to enable architecture-specific optimizations. These are examples of customizations
that can be done using layers.

In addition, we should organize metadata in different layers instead of creating our custom project
environment, changing recipes, and modifying files in the Poky layer. The more separated an organization
is, the easier it is to reuse the layers in future projects, as the Poky source code is split into different layers
as well. It contains three layers by default, as we can see in the output of the following command line:

Exploring External Layers102

Figure 11.1 – The result of bitbake-layers show-layers

The command-line output shows the following three essential properties of any layer:

• Name: This usually starts with the meta string.

• Path: This is important when we want to add a layer in our project that is appended to the
BBPATH variable.

• Priority: This is the value used by BitBake to decide which recipe to use and the order in which
the .bbappend files should be concatenated. It means that if two layers include the same
recipe file (.bb), the one with the highest priority is used. In the case of .bbappend, every
.bbappend file is included in the original recipe. The layer priority determines the order
of inclusion, so the .bbappend files within the highest priority layers are appended first,
followed by the others.

Taking Poky as an example, it has three central individual layers. The meta-yocto-bsp layer is the
Poky reference Board Support Package (BSP) layer. It contains machine configuration files and recipes
to configure packages for the machines. As it is a reference BSP layer, it can be used as an example.

The meta-poky layer is the Poky reference distribution layer. It contains a distribution configuration
used in Yocto Project by default. This default distribution is described in the poky.conf file, and it is
widely used for testing products. It can be used as a starting point when designing your own distribution.

Another kind of layer is the software layer, which includes only applications or configuration files for
applications and can be used on any architecture. There is a massive list of software layers. To name
only a few, we have meta-java, meta-qt5, and meta-browser. The meta-java layer provides
Java runtime and SDK support, the meta-qt5 layer includes Qt5 support, and meta-browser
supports web browsers such as Firefox and Chrome.

The meta layer is the OpenEmbedded Core metadata, which contains the recipes, classes, and the
QEMU machine configuration files. It can be considered a mixed layer type, as it has software collection,
BSP definition, and the distribution used by Yocto Project as the baseline.

Sometimes, your product may have special requirements, and changes in the build/conf/local.
conf file will need to be made as required. The most adequate and maintainable solution is to create
a distribution layer to place the distribution definition file.

Detailing a layer’s source code 103

Tip
The build/conf/local.conf file is a volatile file that is not supposed to be tracked by Git.

We should not rely on it to set package versions, providers, and the system features for products
but use it instead just as a shortcut for testing purposes during development.

Avoiding adding custom settings in build/conf/local.conf helps to make our builds
reproducible afterward.

Detailing a layer’s source code
Usually, a layer has a directory tree, as shown in the following screenshot:

Figure 11.2 – The standard layer layout

Inside this directory are two files, <layer>/COPYING and <layer>/README, a license and a
message to a user respectively. In <layer>/README, we must specify any other dependency and
information that the layer’s users need to know. The meta- prefix for the layer is not a requirement
but a commonly used naming convention.

The classes folder should hold the classes specific to that layer (the .bbclass files). It is an
optional directory.

The <layer>/conf folder is mandatory and should provide the configuration files (the .conf
files). The layer configuration file, <layer>/conf/layer.conf, which will be covered in detail
in the next chapter, is the file with the layer definition.

An example of the directory layout of the <layer>/conf folder is shown in Figure 11.2, where (a)
shows the structure for a BSP layer and (b) shows the structure for a distribution layer:

Exploring External Layers104

Figure 11.3 – The <layer>/conf layout for BSP and distribution layers

The recipe-* folder is a cluster of recipes separated by category – for example, recipes-core,
recipes-bsp, recipes-graphic, recipes-multimedia, and recipes-kernel.
Inside each folder, starting with the recipes- prefix, there is a directory with the recipe name or
a group of recipes. Inside it, the recipe files are placed, whose names end with .bb or .bbappend.
For example, we can find the following screenshot from meta layer:

Figure 11.4 – An example of the recipes-* layout

Adding meta layers
We can find the most of available meta layers at http://layers.openembedded.org. There
are hundreds of meta layers from the Yocto Project, OpenEmbedded, communities, and companies
that can be manually cloned inside the project source directory.

http://layers.openembedded.org

The Yocto Project layer ecosystem 105

To include, for example, meta-oe (one of the several meta layers inside the meta-openembedded
repository) in our project, we can change the content of the configuration files or use BitBake command
lines. However, we first need to fetch the layer’s source code. Run the following command from your
Poky source directory:

Figure 11.5 – Cloning the meta-openembedded layer

We need to modify the build/conf/bblayer.conf file to add the layer location, using its
absolute path. See line 12 in Figure 11.6 as follows:

Figure 11.6 – The content of build/conf/bblayers.conf after including the meta-openembedded layer

Alternatively, we can use the bitbake-layers tool to perform the inclusion for us. This can be
done using the following command from the build directory:

Figure 11.7 – The command line to add the layer location

The Yocto Project layer ecosystem
It is convenient to create a layer. To make all the available layers easier to access, the OpenEmbedded
community has developed an index, available at http://layers.openembedded.org, where
most of them can be found. An example of its Layers tab is shown as follows:

Exploring External Layers106

Figure 11.8 – The OpenEmbedded Layer Index for Kirkstone

Another convenient use case for the OpenEmbedded Layer Index website is to search for a specific
software type or recipe. The OpenEmbedded Layer Index can save the day by allowing us to search
for the following:

• Machines

• Distributions

• Layers

• Recipes

• Classes

Summary 107

The bitbake-layers tool also supports the use of the OpenEmbedded Layer Index. For example,
to add the meta-oe layer, we can use the following command:

Figure 11.9 – Fetching a layer from the OpenEmbedded Layer index

Summary
In this chapter, we introduced the concept of layering. We learned about the directory structure in
detail and the content in each layer type. In addition, we saw how to add an external layer to our
project manually or by using the BitBake command line, as well as how to use the OpenEmbedded
Layer index to find the available layers we need easily.

In the next chapter, we will learn more about why we need to create new layers and what the common
metadata included in them is (such as machine definition files, recipes, and images). We will wrap it
all up with an example of distribution customization.

12
Creating Custom Layers

In addition to using existing layers from the community or vendors, we will learn how to create layers
for our products in this chapter. Additionally, we will discover how to create a machine definition and
distribution and profit from them to organize our source code better.

Making a new layer
Before creating our layer, it’s always a good idea to check whether a similar one is already available at
the following website: http://layers.openembedded.org.

If we are still looking for a layer suitable for our needs, the next step is to create the directory. Usually,
the layer name starts with meta-, but this is not a technical restriction.

The <layer>/conf/layer.conf file is the layer configuration file required for every layer. The
new layer can be created with a tool called bitbake-layers from BitBake, provided in Poky, as
shown in the following command:

Figure 12.1 – Creating a new layer using bitbake-layers

After creating the layer, we need to include it in the build/conf/bblayers.conf file using
the following command:

Figure 12.2 – Adding meta-newlayer to build/conf/bblayers.conf

http://layers.openembedded.org

Creating Custom Layers110

Tip
The bitbake-layers tool, by default, generates the layer with layer priority 6. We can still
customize the priority using parameters.

The last command generates the layer, as shown in the following figure:

Figure 12.3 – The meta-newlayer layout when created

The default layer configuration file for meta-newlayer is the minimal configuration to get the layer
working. However, it can be customized to include configurations required in the future.

The following figure shows the content of default conf/layer.conf for the meta-newlayer
layer we just created:

Figure 12.4 – The meta-newlayer/conf/layer.conf minimal configuration

Adding metadata to the layer 111

Some commonly used variables that may need to be added or changed are LAYERVERSION and
LAYERDEPENDS. Those are useful if our layer requires other layers to work. Both variables’ names
must be suffixed with the layer’s name, as follows:

• LAYERVERSION: This is an optional variable that specifies the version of the layer in a single
number. This variable is used within the LAYERDEPENDS variable to depend on a specific
layer version – for example, LAYERVERSION_meta-newlayer = "1".

• LAYERDEPENDS: This lists the layers that the recipes depend upon, separated by spaces – for
example, we add the dependency for version 2 of meta-otherlayer with LAYERDEPENDS_
meta-newlayer += "meta-otherlayer:2".

An error is incurred if a dependency cannot be satisfied or the version numbers do not match. The
base of the layer structure is now created. In the following sections, we will learn how to extend it.

Adding metadata to the layer
Layer metadata can serve two goals – add new software, or feature and modify existing metadata.

We can include several metadata files on a new layer, such as recipes, images, and bbappend files.
There are several examples of bbappend files on meta-yocto-bsp and meta-yocto. We will
explore some of their common uses in Chapter 13, Customizing Existing Recipes.

In the next sections, we will go through some common modifications to layer metadata.

Creating an image

Image files are, in essence, a set of packages grouped for a purpose and configured in a controlled
way. We can create an image from scratch or create one by reusing an existing one and adding the
extra necessary packages.

We should reuse an existing image when possible, making code maintenance more manageable and
highlighting the functional differences. For example, we may want to include an application and
remove an image feature from the core-image-full-cmdline image file. In that case, we can
create an image in the recipes-mine/images/my-image-full-cmdline.bb file with
the following lines of code:

Figure 12.5 – The content of my-image-full-cmdline.bb

Creating Custom Layers112

The core-image class provides image features that offer helpful building blocks of commonly
used functionality and should be used when creating an image from scratch. For example, we can
create an image in the recipes-mine/images/my-image-strace.bb file consisting of the
following lines of code:

Figure 12.6 – The content of my-image-strace.bb

Tip
The list appending operator (+=) guarantees that a new EXTRA_IMAGE_FEATURES variable
can be added by build/conf/local.conf.

CORE_IMAGE_EXTRA_INSTALL is the variable we should use to include extra packages in the image
when we inherit the core-image class, which facilitates image creation. The class adds support for
the IMAGE_FEATURES variable, which avoids duplication of code.

Currently, the following image features are supported, as detailed in the Image Features section of the
Yocto Project Reference Manual (https://docs.yoctoproject.org/4.0.4/ref-manual/
features.html#image-features):

• allow-empty-password: Allows Dropbear and OpenSSH to accept logins from accounts
that have an empty password string.

• allow-root-login: Allows Dropbear and OpenSSH to accept root logins.

• dbg-pkgs: Installs debug symbol packages for all packages installed in a given image.

• debug-tweaks: Makes an image suitable for development (for example, allows root logins,
logins without passwords – including root ones, and enables post-installation logging).

• dev-pkgs: Installs development packages (headers and extra library links) for all packages
installed in a given image.

• doc-pkgs: Installs documentation packages for all packages installed in a given image.

• empty-root-password: This feature, or debug-tweaks, is required if you want to allow
root login with an empty password.

• hwcodecs: Installs hardware acceleration codecs.

• lic-pkgs: Installs license packages for all packages installed in a given image.

• nfs-server: Installs an NFS server.

https://docs.yoctoproject.org/4.0.4/ref-manual/features.html#image-features
https://docs.yoctoproject.org/4.0.4/ref-manual/features.html#image-features

Adding metadata to the layer 113

• overlayfs-etc: Configures the /etc directory to be in overlayfs. This allows you
to store device-specific information elsewhere, especially if the root filesystem is configured
as read-only.

• package-management: Installs package management tools and preserves the package
manager database.

• perf: Installs profiling tools such as perf, systemtap, and LTTng.

• post-install-logging: Enables you to log postinstall script runs in the /var/log/
postinstall.log file on the first boot of the image on the target system.

• ptest-pkgs: Installs ptest packages for all ptest-enabled recipes.

• read-only-rootfs: Creates an image whose root filesystem is read-only.

• read-only-rootfs-delayed-postinsts: When specified in conjunction with read-
only-rootfs, it specifies that post-install scripts are still permitted.

• serial-autologin-root: When specified in conjunction with empty-root-password,
it will automatically login as root on the serial console.

• splash: Enables you to show a splash screen during boot. By default, this screen is provided
by psplash, which does allow customization.

• ssh-server-dropbear: Installs the Dropbear minimal SSH server.

• ssh-server-openssh: Installs the OpenSSH SSH server, which is more full-featured than
Dropbear. Note that if both the OpenSSH SSH server and the Dropbear minimal SSH server
are present in IMAGE_FEATURES, then OpenSSH will take precedence and Dropbear will
not be installed.

• stateless-rootfs: Specifies that an image should be created as stateless – when using
systemd, systemctl-native will not be run on the image, leaving the image to be
populated at runtime by systemd.

• staticdev-pkgs: Installs static development packages, which are static libraries (for
example, *.a files), for all packages installed in a given image.

• tools-debug: Installs debugging tools such as strace and gdb.

• tools-sdk: Installs a full SDK that runs on a device.

• tools-testapps: Installs device testing tools (for example, touchscreen debugging).

• weston: Installs Weston (a reference Wayland environment).

• x11-base: Installs the X server with a minimal environment.

• x11: Installs the X server.

• x11-sato: Installs the OpenedHand Sato environment.

Creating Custom Layers114

Adding a package recipe

Poky includes several classes that makes the process for the most common development tools as
projects abstract, based on Autotools, CMake, and Meson. A package recipe is how we can instruct
BitBake to perform the fetch, unpack, patch, configure, compile, and install tasks
on our application, kernel module, or any software a project provides. In addition, a list of classes
included in Poky can be seen in the Classes section in the Yocto Project Reference Manual (https://
docs.yoctoproject.org/4.0.4/ref-manual/classes.html).

A straightforward recipe that executes the compile and install tasks explicitly is provided
as follows:

Figure 12.7 – A manually crafted helloworld recipe

The do_compile and do_install code blocks provide the Shell Script command for us to
build and install the resulting binary into the destination directory, referenced as ${D}, which aims
to relocate the installation directory to a path inside the build/tmp/work/ directory. Suppose
that we are working on an Autotools-based project. If so, we can avoid a lot of code duplication by
using the autotools class in the stripped example, extracted from the recipe in the poky/meta/
recipes-core/dbus-wait/dbus-wait_git.bb file, as follows:

https://docs.yoctoproject.org/4.0.4/ref-manual/classes.html
https://docs.yoctoproject.org/4.0.4/ref-manual/classes.html

Adding metadata to the layer 115

Figure 12.8 – The content of poky/meta/recipes-core/dbus-wait/dbus-wait_git.bb

The simple act of inheriting the autotools class in line 19 is to provide all the code required to do
the following tasks:

• Update the configure script code and artifacts

• Update the libtool scripts

• Run the configure script

• Run make

• Run make install

The same concepts apply to other building tools, as is the case for CMake and Meson. Additionally,
the number of supported classes is growing in every release to support new build systems and avoid
code duplication.

Automatically creating a base package recipe using devtool

As we learned in the Creating a recipe from an external Git repository section in Chapter 9, Developing
with the Yocto Project, devtool automates the process of creating a recipe based on an existing
project with the following command:

Figure 12.9 – The command line to generate the recipe for bbexample

Creating Custom Layers116

Behind the scenes, devtool ran the recipetool to generate a recipe and automatically configure
all pre-built information into the new recipe file. The end result is stored in the workspace directory,
a layer maintained by devtool. To copy the recipe file to the target layer, we can use the devtool
command, as shown here:

Figure 12.10 – The command line to deploy the bbexample recipe to meta-newlayer

The created meta-newlayer/recipes-bbexample/bbexample/bbexample_git.bb
file is shown in the following snippet:

Figure 12.11 – The content of bbexamle_git.bb

The devtool has created a base recipe, which should not be taken as a final recipe. You should check
for compilation options, extra metadata information, and so on.

Adding metadata to the layer 117

Adding support to a new machine definition

Even though creating a new machine definition for use in Poky is a straightforward task, it shouldn’t
be underestimated. Depending on the set of features we need to support at the BSP layer, it can involve
checking the bootloader, kernel, and hardware support drivers.

The Yocto Project supports ARM, ARM64, x86, x86-64, PowerPC, PowerPC 64, MIPS, MIPS64,
RISC-V 32, and RISC-V 64, representing the most currently used embedded architectures.

The prevailing set of variables used in a machine definition is as follows:

• TARGET_ARCH: This sets the machine architecture – for example, ARM and x86-64

• PREFERRED_PROVIDER_virtual/kernel: This overrides the default kernel (linux-
yocto) if you need to use a specific one

• SERIAL_CONSOLES: This defines serial consoles and their speeds

• MACHINE_FEATURES: This describes hardware features, so the software stack required is
included in the images by default

• KERNEL_IMAGETYPE: This is used to choose the kernel image type – for example, bzImage
or Image

• IMAGE_FSTYPES: This sets the generated filesystem image types – for example, tar.gz,
ext4, and ubifs

You can see examples of machine definition files inside the Poky source code in the meta-yocto-
bsp/conf/machine/ directory. When describing a new machine, we should pay special attention
to specific features supported by it in MACHINE_FEATURES. This way, the software needed to help
these features is installed into the images. The values currently available for MACHINE_FEATURES
are listed as follows:

• acpi: The hardware has ACPI (x86/x86-64 only)

• alsa: The hardware has ALSA audio drivers

• apm: The hardware uses APM (or APM emulation)

• bluetooth: The hardware has integrated BT

• efi: Support for booting through EFI

• ext2: The hardware HDD or microdrive

• keyboard: The hardware has a keyboard

• numa: The hardware has non-uniform memory access

• pcbios: Support for booting through BIOS

Creating Custom Layers118

• pci: The hardware has a PCI bus

• pcmcia: The hardware has PCMCIA or CompactFlash sockets

• phone: Mobile phone (voice) support

• qemu-usermode: QEMU can support user-mode emulation for this machine

• qvga: The machine has a QVGA (320x240) display

• rtc: The machine has a real-time clock

• screen: The hardware has a screen

• serial: The hardware has serial support (usually RS232)

• touchscreen: The hardware has a touchscreen

• usbgadget: The hardware is USB gadget device-capable

• usbhost: The hardware is USB host-capable

• vfat: FAT filesystem support

• wifi: The hardware has integrated Wi-Fi

Wrapping an image for your machine

Creating a ready-to-use image for a machine should be addressed at the end of any BSP support layer
development. The type of image depends on the processor, peripherals included on the board, and
project restrictions.

The partitioned image is the most frequently used image for direct use in the storage. The Yocto
Project has a tool called wic, which provides a flexible way to generate this image. It allows the
creation of partitioned images based on a template file (.wks), written in a common language
that describes the target image layout. The language definition can be found in the OpenEmbedded
Kickstart (.wks) Reference section from The Yocto Project Reference Manual (https://docs.
yoctoproject.org/4.0.4/ref-manual/kickstart.html#openembedded-
kickstart-wks-reference).

The .wks file is placed in our layer inside the wic directory. It is common to have multiple files in
this directory to specify different image layouts. However, it is essential to remember that the chosen
structure must match the machine – for example, when considering the use of an i.MX-based machine
that boots using U-Boot from an SD card with two partitions, one for the boot files and the other for
rootfs. The respective .wks file is shown here:

https://docs.yoctoproject.org/4.0.4/ref-manual/kickstart.html#openembedded-kickstart-wks-reference
https://docs.yoctoproject.org/4.0.4/ref-manual/kickstart.html#openembedded-kickstart-wks-reference
https://docs.yoctoproject.org/4.0.4/ref-manual/kickstart.html#openembedded-kickstart-wks-reference

Adding metadata to the layer 119

Figure 12.12 – An example of a .wks file for an i.MX device using SPL

To enable the wic-based image generation, it is a matter of adding wic to IMAGE_FSTYPES. We
can also define the .wks file to be used by setting the WKS_FILE variable.

Using a custom distribution

The creation of a distribution is a mix of simplicity and complexity. Creating the distribution file is
straightforward but significantly impacts Poky’s behavior. Depending on our options, it may cause a
binary incompatibility with previously built binaries.

The distribution is where we define global options, such as the toolchain version, graphical backends,
and support for OpenGL. We should make a distribution only if the default settings provided by Poky
fail to fulfill our requirements.

Usually, we intend to change a small set of options from Poky. For example, we remove the X11
support to use a framebuffer instead. We can easily accomplish this by reusing the Poky distribution
and overriding the necessary variables – for example, the sample distribution represented by the
<layer>/conf/distro/my-distro.conf file is as follows:

Figure 12.13 – An example of a custom distribution file

Creating Custom Layers120

To use the distribution just created, we need to add the following piece of code to the build/conf/
local.conf file:

Figure 12.14 – The line to set DISTRO on build/conf/local.conf

The DISTRO_FEATURES variable may influence how the recipes are configured and the packages are
installed in images – for example, if we want to use sound in any machine and image, the alsa features
must be present. The following list shows the present state for the DISTRO_FEATURES-supported
values, as detailed in the Distro Features section in the Yocto Project Reference Manual (https://
docs.yoctoproject.org/4.0.4/ref-manual/features.html#distro-features):

• 3g: Includes support for cellular data

• acl: Includes Access Control List support

• alsa: Includes Advanced Linux Sound Architecture support (OSS compatibility kernel modules
are installed if available)

• api-documentation: Enables the generation of API documentation during recipe builds

• bluetooth: Includes Bluetooth support (integrated BT only)

• cramfs: Includes CramFS support

• debuginfod: Includes support for getting ELF debugging information through a
debuginfod server

• ext2: Includes tools to support devices with an internal HDD/Microdrive for storing files
(instead of Flash-only devices)

• gobject-introspection-data: Includes data to support GObject introspection

• ipsec: Includes IPSec support

• ipv4: Includes IPv4 support

• ipv6: Includes IPv6 support

• keyboard: Includes keyboard support

• ldconfig: Includes support for ldconfig and ld.so.conf on the target

• ld-is-gold: Uses the gold linker instead of the standard GNU linker (bfd)

• lto: Enables Link-Time Optimization

• multiarch: Enables you to build applications with multiple architecture support

• nfc: Includes support for Near Field Communication

https://docs.yoctoproject.org/4.0.4/ref-manual/features.html#distro-features
https://docs.yoctoproject.org/4.0.4/ref-manual/features.html#distro-features

Adding metadata to the layer 121

• nfs: Includes NFS client support

• nls: Includes Native Language Support (NLS)

• opengl: Includes the Open Graphics Library, a cross-language, multi-platform API, used to
render two- and three-dimensional graphics

• overlayfs: Includes OverlayFS support

• pam: Includes Pluggable Authentication Module (PAM) support

• pci: Includes PCI bus support

• pcmcia: Includes PCMCIA/CompactFlash support

• polkit: Includes Polkit support

• ppp: Includes PPP dial-up support

• ptest: Enables you to build the package tests that were supported by individual recipes

• pulseaudio: Includes support for PulseAudio

• seccomp: Enables you to build applications with seccomp support, allowing the applications
to strictly restrict the system calls that they are allowed to invoke

• selinux: Includes support for Security-Enhanced Linux (SELinux) (requires meta-selinux)

• smbfs: Includes SMB network client support

• systemd: Includes support for this init manager, a full replacement for init, with parallel
starting of services, reduced shell overhead, and other features

• usbgadget: Includes USB Gadget Device support

• usbhost: Includes USB Host support

• usrmerge: Merges the /bin, /sbin, /lib, and /lib64 directories into their respective
counterparts in the /usr directory to provide better package and application compatibility

• vfat: Includes FAT filesystem support

• vulkan: Includes support for the Vulkan API

• wayland: Includes the Wayland display server protocol and the library that supports it

• wifi: Includes Wi-Fi support (integrated only)

• x11: Includes the X server and libraries

• xattr: Includes support for extended file attributes

• zeroconf: Includes support for zero-configuration networking

Creating Custom Layers122

MACHINE_FEATURES versus DISTRO_FEATURES
The DISTRO_FEATURES and MACHINE_FEATURES variables work together to provide feasible
support for the final system. When a machine supports a feature, this does not imply that the target
system supports it because the distribution must provide its underlying base.

For example, if a machine supports Wi-Fi but the distribution does not, the applications used by
the operating system will be built with Wi-Fi support disabled so that the outcome will be a system
without Wi-Fi support. On the other hand, if the distribution provides Wi-Fi support and a machine
does not, the modules and applications needed for the Wi-Fi will not be installed in images built for
this machine. However, the operating system and its modules have support for Wi-Fi enabled.

Understanding the scope of a variable
The BitBake metadata has thousands of variables, but the scope where these variables are available
depends on where it is defined. There are two kinds of variables, as follows:

• Variables defined in configuration files are global to every recipe, also referred to as configuration
metadata. The parsing order of the main configuration files is shown as follows:

 � build/conf/local.conf

 � <layer>/conf/machines/<machine>.conf

 � <layer>/conf/distro/<distro>.conf

• Variables defined within recipe files have recipe visibility scope that is local to the specific recipe
only during the execution of its tasks.

Summary
In this chapter, we covered how to create a new layer and metadata. First, we saw how to create a
machine configuration, a distribution definition, and recipe files. Then, we learned how to make
images and include our application in an image.

In the next chapter, we will access some examples of the most common customization cases used
by an additional layer, such as modifying existing packages, adding extra options to autoconf,
applying a new patch, and including a new file to a package. We will see how to configure BusyBox
and linux-yocto, the two packages commonly customized when making an embedded system.

13
Customizing Existing Recipes

In the course of our work with Yocto Project’s tools, it is expected that we will need to customize
existing recipes. In this chapter, we will explore some examples, such as changing compilation options,
enabling or disabling features of a recipe, applying an extra patch, and using configuration fragments
to customize some recipes.

Understanding common use cases
Nowadays, projects usually have a set of layers to provide the required features. We certainly need to
make changes on top of them to adapt them to our specific needs. They may be cosmetic or substantive
changes, but the way to make them is the same.

We must create a .bbappend file to change a preexisting recipe in our project layer. For example, suppose
the original recipe was named <original-layer>/recipes-core/app/app_1.2.3.bb.
When you create a .bbappend file, you can use the % wildcard character to allow for matching recipe
names. So, the .bbappend file could have the following different forms:

• App_1.2.3.bbappend: This applies the change only for the 1.2.3 version

• app_1.2.%.bbappend: This applies the change only for the 1.2.y version

• app_1.%.bbappend: This applies the change only for the 1.x and 1.x.y versions

• app_%.bbappend: This applies the change for any version

We can have multiple .bbappend files, depending on the intended changes we want to apply to the
app recipe. Sometimes we can restrict the changes to one version, but sometimes, we want to change
all available recipes.

Note
When there is more than one .bbappend file for a recipe, all of them are joined following
the layer’s priority order.

Customizing Existing Recipes124

The .bbappend file can be seen as a text appended at the end of the original recipe. It empowers
us with a highly flexible mechanism to avoid duplicating source code to apply the required changes
to our project’s layers.

Extending a task

When the task content does not satisfy our requirements, we replace it (providing our implementation)
or append it. As we will learn more extensively about the BitBake metadata syntax in Chapter 8, Diving
into BitBake Metadata, the :append and :prepend operators can extend a task with extra content.
For example, to extend a do_install task, we can use the following code:

Figure 13.1 – Example on how to extend the do_install task

This way, the new content is concatenated in the original task.

Adding extra options to recipes based on Autotools
Let’s assume we have Autotools-based application, along with a preexisting recipe for it, and we want
to do the following:

• Enable my-feature

• Disable another-feature

The content of the .bbappend file to make the changes will be the following:

Figure 13.2 – Adding extra configuration to the Autoconf flags

The same strategy can be used if we need to enable it conditionally based on the hardware we are
building for, as follows:

Figure 13.3 – Conditionally adding extra configuration to the Autoconf flags

Applying a patch 125

The Yocto Project supports many different build systems, and the variables to configure them are
shown in the following table:

Build System Variable

Autotools EXTRA_OECONF

Cargo EXTRA_OECARGO

CMake EXTRA_OECMAKE

Make EXTRA_OEMAKE

Meson EXTRA_OEMESON

NPM EXTRA_OENPM

SCons EXTRA_OESCONS

WAF EXTRA_OEWAF

Table 13.1 – The list of variables to configure each build system

The variables from Table 13.1 are given as arguments for the respective build system.

Applying a patch
For cases where we need to apply a patch to an existing package, we should use FILESEXTRAPATHS,
which includes new directories in the searching algorithm, making the additional file visible to BitBake,
as shown here:

Figure 13.4 – The content of .bbappend is used only to apply mypatch.patch

In the preceding example, THISDIR expands to the current directory, and PN and PV expand to the
package name and version, respectively. This new path is then included in the directories list used for
file searching. The prepend operator is crucial as it guarantees that the file is picked from this directory,
even if a file with the same name is added in the lower priority layers in the future.

BitBake assumes that every file with a .patch or .diff extension is a patch and applies them accordingly.

Customizing Existing Recipes126

Adding extra files to the existing packages
If we need to include an additional configuration file, we should use FILESEXTRAPATHS, as explained
in the previous example and shown in the following lines of code:

Figure 13.5 – The content of the .bbappend file to install a new configuration file

The do_install:append function appends the provided block below the metadata already available
in the original do_install function. It includes the command to copy our new configuration file
into the package’s filesystem. The file is copied from ${WORKDIR} to ${D} as these are the directories
used by Poky to build the package and the destination directory used by Poky to create the package.

There are many variables to define paths in our recipes, such as bindir, datadir, and sysconfdir.
The poky/meta/conf/bitbake.conf file defines all those commonly used variables. The
variables exist, so the installation paths of binaries can be customized depending on the use case. For
example, the native SDK binaries require a specific installation path, so the binaries don’t conflict
with the target ones.

The following table shows the most common variables and their default expanded values:

Variable Default Expanded Value
base_bindir /bin

base_sbindir /sbin

sysconfdir /etc

localstatedir /var

datadir /usr/share

bindir /usr/bin

sbindir /usr/sbin

libdir /usr/lib or /usr/lib64
libexecdir /usr/libexec

includedir /usr/include

Table 13.2 – The list of commonly used variables and their default expanded value

Adding extra files to the existing packages 127

The use of hard coded paths in recipes should be avoided, so we reduce the risk of misconfiguration.
For example, when using the usrmerge DISTRO_FEATURE, behind the scenes, all recipes set
base_bindir as bindir, so if a recipe uses /bin as a hard coded path, the installation won’t
happen as expected.

Understanding file searching paths

When a file (a patch or a generic file) is included in SRC_URI, BitBake searches for the FILESPATH
and FILESEXTRAPATH variables. The default setting is to look in the following locations:

1. <recipe>-<version>/

2. <recipe>/

3. files/

In addition to this, it also checks for OVERRIDES for a specific file to be overridden in each folder.
To illustrate this, consider the foo_1.0.bb recipe. The OVERRIDES = "<board>:<arch>"
variable for the file will be searched in the following directories, respecting the exact order shown:

1. foo-1.0/<board>/

2. foo-1.0/<arch>/

3. foo-1.0/

4. foo/<board>/

5. foo/<arch>/

6. foo/

7. files/<board>/

8. files/<arch>/

9. files/

This is just illustrative as the list of OVERRIDES is huge and machine-specific. When we work with our
recipe, we can use bitbake-getvar OVERRIDES to find the complete list of available overrides
for a specific machine and use them accordingly. See the Poky output as follows:

Customizing Existing Recipes128

Figure 13.6 – Using bitbake-getvar to get the value of the OVERRIDES variable

This command is quite useful for debugging the metadata during the debugging process.

Changing recipe feature configuration

PACKAGECONFIG is a mechanism to simplify feature set customization for recipes. It provides a
way to enable and disable the recipe features. For example, the recipe has the following configuration:

Figure 13.7 – Example of PACKAGECONFIG

Figure 13.7 has two features: feature1 and feature2. The behavior of each feature is defined
by six arguments, separated by commas. You can omit any argument but must retain the separating
commas. The order is essential and specifies the following:

1. Extra arguments if the feature is enabled.

2. Extra arguments if the feature is disabled.

Configuration fragments for Kconfig-based projects 129

3. Additional build dependencies (DEPENDS) if the feature is enabled.

4. Additional runtime dependencies (RDEPENDS) if the feature is enabled.

5. Additional runtime recommendations (RRECOMMENDS) if the feature is enabled.

6. Any conflicting (mutually exclusive) PACKAGECONFIG settings for this feature.

We can create a .bbappend file that expands the PACKAGECONFIG variable’s default value to
enable feature2 as well, as shown here:

Figure 13.8 – The content of a .bbappend file to expand the PACKAGECONFIG variable

Note
To add the same feature to the build/conf/local.conf file, we can use
PACKAGECONFIG:pn-<recipename>:append = ' feature2'.

The list of available PACKAGECONFIG features for a specific package must be checked inside the
recipe file, as there is no tool to list them all.

Configuration fragments for Kconfig-based projects
The Kconfig configuration infrastructure has become popular due to its flexibility and expressiveness.
Although it started with Linux kernel, some other projects use the same infrastructure, such as U-Boot
and BusyBox.

The configuration is based on select-based features where you can enable or disable a feature and save
the result of this choice in a file for later use. So please consider the following figure:

Figure 13.9 – Enable or disable TFTPD on BusyBox KConfig

We have control whether the TFTPD support in BusyBox is enabled (a) or not (b).

The Yocto Project provides a specialized class to handle the configuration of the Kconfig-based project,
allowing minor modifications called configuration fragments. We can use this to enable or disable
features for your machine, for example, when configuring linux-yocto, we can use <layer>/
recipes-kernel/linux/linux-yocto_%.bbappend as in the following code:

Customizing Existing Recipes130

Figure 13.10 – The .bbappend content for applying a fragment

Every configuration fragment must use the .cfg file extension. So, the content of the <layer>/
recipes-kernel/linux/linux-yocto/linux-yocto/enable-can.cfg file is
shown here:

Figure 13.11 – The content of enable-can.cfg

We can use BitBake to configure or generate the Linux kernel configuration file. The bitbake
virtual/kernel -c menuconfig command that allows us to configure the Linux kernel can
be seen in the following screenshot:

Figure 13.12 – Enabling CAN bus subsystem support using bitbake virtual/kernel -c menuconfig

Figure 13.12 shows how to enable CAN bus support using Linux kernel’s menuconfig. The kernel
configuration is changed when exiting and saving from menuconfig.

Configuration fragments for Kconfig-based projects 131

The next step is to create the fragment using bitbake virtual/kernel -c diffconfig,
as shown in the following screenshot:

Figure 13.13 – The diffconfig option generates the configuration fragment

Figure 13.13 displays the log after the command. It is important to note that the fragment file is created
under the <build>/tmp/work/ directory, and the absolute path is shown in the log. We must
copy this fragment file to the layer and use it in a .bbappend file in order to get it applied.

Tip
To save a complete configuration, we can use bitbake virtual/kernel -c
savedefconfig. This command generates a defconfig file to replicate the same
configuration. This is a complete configuration, not a fragment file.

Customizing Existing Recipes132

The support for the configuration fragments works for the following recipes:

• Linux kernel

• U-Boot

• BusyBox

Those recipes also offer the menuconfig and diffconfig tasks.

Summary
In this chapter, we learned how to customize existing recipes using the .bbappend files and benefited
from this by avoiding the duplication of source code. We saw how to enable or disable a feature, how
to apply a patch, and how to use the configuration fragment support.

In the next chapter, we will discuss how the Yocto Project can help us with some legal aspects of
producing a Linux-based system using packages under different licenses. We will understand which
artifacts we need and how Poky can be configured to generate the artifacts that should be shared as
part of the copyleft compliance accomplishment process.

14
Achieving GPL Compliance

In this chapter, we will see how we can ensure open source license compliance and use Poky to provide
the artifacts needed, such as the source code, licensing text, and the list of derivative work. This is
critical for most products introduced into the market nowadays, as open source code needs to live
alongside proprietary code.

Understanding copyleft
Copyleft is a legal way to use copyright law to maximize rights and express freedom. However, it
impacts our products. We must meet all obligations of open source and free software licenses.

When building a Linux distribution, at least two projects are used: the Linux kernel and a compiler.
The GNU Compiler Collection (GCC) is still the most commonly used compiler. The Linux kernel
uses the General Public License (GPL) v2 license, and the GCC uses the GPLv2, GPLv2.1, and GPLv3
licenses, depending on the project used.

However, a Linux-based system can include virtually all projects available worldwide, in addition to
all applications made by the company for its product. So how do we know the number of projects and
licenses included, and how do we fulfill copyleft compliance requirements?

Note
This chapter describes how the Yocto Project can help you in this task but be aware that you
must know exactly what you need to provide and the possible license incompatibilities. Please
consult your legal department or a copyright lawyer if you have any doubts.

In the next section, we will look at how the Yocto Project can help us with the most common tasks
required for copyleft compliance.

Achieving GPL Compliance134

Understanding copyleft compliance versus proprietary code

Understanding that proprietary and copyleft-covered codes can coexist in the same product is essential.
Although this is the standard for most products available nowadays, we must be careful about the
libraries we link the code to because some may have license compatibility issues.

One Linux-based system is a set of several projects, each one under a different license. The Yocto
Project helps developers understand that most copyleft projects have the following obligations:

• The source code of the project

• The license for the project

• Any modification to the project

• Any script that is required to configure and build

If one project under copyleft is modified, the license text, the base source code, and any modification
must be included in the final deliverable.

The assumptions cover most rights guaranteed by copyleft licenses. These are the parts where the
Yocto Project can help us. However, before releasing anything, it is recommended that we audit all
the materials to be released to make sure they’re complete.

Managing software licensing with Poky
One important Poky feature is the ability to manage licenses. Most of the time, we only care about our
bugs. However, managing licenses and the kinds of licenses used is crucial when creating a product.

Poky keeps track of licenses in every recipe. In addition, it has a strategy to work with proprietary
applications during the development cycle.

Note
An important thing to know is that a recipe is released under a specific license and represents a
project released under a different license. Therefore, the recipe and the project are two separate
entities with specific licenses, so the two licenses must be considered part of the product.

In most recipes, information is a comment containing the copyright, license, and author name; this
information pertains to the recipe itself. Then, there is a set of variables to describe the package license,
and they are as follows:

• LICENSE: This describes the license under which the package was released.

• LIC_FILES_CHKSUM: This may not seem very useful at first sight. It describes the license
file and checksum for a particular package, and we may find much variation in how a project
describes its license. The most common license files are stored in meta/files/common-
licenses/.

Managing software licensing with Poky 135

Some projects include a file, such as COPYING or LICENSE, which specifies the license for the source
code. Others use a header note in each file or the main file. The LIC_FILES_CHKSUM variable has
the checksum for the license text of a project; if any letters are changed, the checksum is changed
as well. This ensures that any change is noted and consciously accepted by the developer. A license
change may be a typo fix; however, it may also be a change in legal obligations, so the developer needs
to review and understand the difference.

When a different license checksum is detected, BitBake launches a build error and points to the project
that had its license changed. You must be careful when this happens, as the license change may impact
the use of this software. To be able to build anything again, you must change the LIC_FILE_CHKSUM
value accordingly and update the LICENSE field to match the license change. Your legal department
should be consulted if the license terms have changed. It is also good practice to record the reason for
the change in a commit message for future reference.

Understanding commercial licenses

By default, Poky does not use any recipe with a commercial license restriction. In the recipe file,
the LICENSE_FLAGS variable is used to identify which license restriction that recipe has. For the
gstreamer1.0-plugins-ugly recipe, the license-related variables are from line 5 to line 10,
as in Figure 14.1:

Figure 14.1 – The license-related variables for the gstreamer1.0-plugins-ugly recipe

Line 10 indicates to Poky that this recipe requires the commercial license flag to be explicitly
accepted for the recipe to be used. To allow the use of the gstreamer1.0-plugins-ugly
recipe, we can use the following:

Figure 14.2 – How to accept to install the recipes with commercial license restrictions

We can add LICENSE_FLAGS_ACCEPTED in our custom distribution (e.g., <my-layer>/
conf/distro/my-distro.conf) or inside build/conf/local.conf during the initial
development stages. Using the commercial flag accepts the installation of every recipe that requires

Achieving GPL Compliance136

this flag. Still, sometimes we want to manage the recipes we use, demanding specific license terms.
We can use the following form:

Figure 14.3 – How to accept to only install gstreamer1.0-plugins-ugly

With the code from Figure 14.3 we accept only the commercial license flag from gstreamer1.0-
plugins-ugly, which is the recipe name. It is good practice to ensure this flag is enabled for a
set of recipes that you have permission to use in a commercial setting. Please consult your legal
department to ensure this.

Using Poky to achieve copyleft compliance
At this point, we know how to use Poky and understand its main goal. It is time to understand the
legal aspects of producing a Linux-based system that uses packages under different licenses.

We can configure Poky to generate the artifacts that should be shared as part of the copyleft
compliance process.

Understanding license auditing

To help us achieve copyleft compliance, Poky generates a license manifest during the image build, located
at build/tmp/deploy/licenses/<image_name-machine_name>-<datastamp>/.

To demonstrate this process, we will use the core-image-full-cmdline image for the qemux86-
64 machine. To start with our example, look at the files under build/tmp/deploy/licenses/
core-image-full-cmdline-qemux86-64-<datastamp>, which are as follows:

• image_license.manifest: This lists the recipe names, versions, licenses, and the packages
files available in build/tmp/deploy/image/<machine> but not installed inside the
root filesystem (rootfs). The most common examples are the bootloader, the Linux kernel
image, and DTB files.

• package.manifest: This lists all the packages in the image.

• license.manifest: This lists the names, versions, recipe names, and licenses for all the
installed packages. This manifest may be used for copyleft compliance auditing.

Using Poky to achieve copyleft compliance 137

Figure 14.4 – The directory layout for the license manifests under build/tmp/deploy

The license manifest for each recipe is under build/tmp/deploy/licenses/<package-
name>. Figure 14.4 shows the directory layout for some packages.

Providing the source code

The most apparent way Poky can help us to provide the source code of every project used in our image
is by sharing the DL_DIR content. However, this approach has one crucial pitfall – any proprietary
source code will be shared within DL_DIR if it is shared as is. In addition, this approach will share
any source code, including parts not required by copyleft compliance.

Poky must be configured to archive the source code before the final image is created. To have it, we
can add the following variables into build/conf/local.conf, as in Figure 14.5:

Figure 14.5 – Configuring Poky to provide the source code of packages under copyleft

Achieving GPL Compliance138

The archiver class copies the source code, patches, and scripts for the filtered license set. The default
configuration is to have COPYLEFT_LICENSE_INCLUDE set to "GPL* LGPL* AGPL*" so the
recipes that use source code licensed on those licenses are copied under the build/tmp/deploy/
sources/<architecture> folders:

Figure 14.6 – The build/tmp/deploy/sources directory layout

The class also supports the COPYLEFT_LICENSE_EXCLUDE variable to ensure packages that use
source code licensed on some specific licenses never go into the sources directory. By default, it
is set to "CLOSED Proprietary". Figure 14.6 shows some recipe examples after baking core-
image-full-cmdline.

Providing compilation scripts and source code modifications

With the configuration provided in the previous section, Poky will package the original source code for
each project. If we want to include the patched source code, we will only use ARCHIVER_MODE[src]
= "patched"; this way, Poky will wrap the project source code after the do_patch task. It includes
modifications from recipes or the .bbappend file.

This way, the source code and any modifications can be shared easily. However, one kind of information
still needs to be created: the procedure used to configure and build the project.

To have a reproducible build environment, we can share the configured project, in other words, the
project after the do_configure task. We can add ARCHIVER_MODE[src] = "configured"
to build/conf/local.conf for this.

Summary 139

It is important to remember that we must consider that the person on the other side may not use
the Yocto Project for copyleft compliance; alternatively, if they are using it, they must know that the
modification made to the original source code and configuration procedure is not available. This is
why we share the configured project: it allows anyone to reproduce our build environment.

For all flavors of source code, the default resulting file is a tarball; other options will add ARCHIVER_
MODE[srpm] = "1" to build/conf/local.conf, and the resulting file will be an SRPM package.

Providing license text

When providing the source code, the license text is shared inside it. If we want the license text inside
our final image, we can add the following to build/conf/local.conf:

Figure 14.7 – How to configure Poky to deploy license text inside the final image

This way, the license files will be placed inside the rootfs, under /usr/share/common-
licenses/.

Summary
In this chapter, we learned how Poky can help with copyleft license compliance and why it should not
be used as a legal resource. Poky enables us to generate source code, reproduction scripts, and license
text for packages used in our distribution. In addition, we learned that the license manifest generated
within the image might be used to audit the image.

In the next chapter, we will learn how to use the Yocto Project’s tools with real hardware. Then, we
will use the Yocto Project to generate images for a few real boards.

15
Booting Our Custom

Embedded Linux

It’s time! We are ready to boot our custom-made embedded Linux, as we have learned the required
concepts and gained enough knowledge about the Yocto Project and Poky. In this chapter, we will
practice what we have learned so far about using Poky with external BSP layers to generate an image
for use with the following machines and boot it using the SD card:

• BeagleBone Black

• Raspberry Pi 4

• VisionFive

The concepts in this chapter can be applied to every other board as long as the vendor provides a BSP
layer to use with the Yocto Project.

Discovering the right BSP layer
In Chapter 11, Exploring External Layers, we learned that the Yocto Project allows for splitting its
metadata among different layers. It organizes the metadata so we can choose which exact meta layer
to add to our project.

The way to find the BSP for a board varies, but generally, we can find it by visiting https://
layers.openembedded.org. We can search for the machine name and the website finds which
layer contains it in its database.

Reviewing aspects that impact hardware use

The boards used in this chapter are well maintained and straightforward. However, using a different
board is a valid choice, but your mileage may vary.

https://layers.openembedded.org
https://layers.openembedded.org

Booting Our Custom Embedded Linux142

When we choose a board, the first step is to verify the quality of its software support. The low-level
components comprise the following:

• Bootloader (such as U-Boot, GRUB, or systemd-boot)

• Linux kernel (with other required drivers such as GPU or WiFi)

• User space packages required by hardware acceleration

Those are critical but are not the only aspects to consider. The integration inside the Yocto Project, in
a BSP layer form, reduces the friction in the board use as it usually provides the following:

• A reusable disk partition layout (e.g., a WIC .wks template)

• Ready-to-use machine definitions

• User space packages integrated for hardware acceleration (usable out of the box)

The maturity level of software enablement, and the Yocto Project BSP, significantly impact the friction
involved in using the board and the out-of-the-box experience when using Poky for different boards.

Taking a look at widely used BSP layers

We will see a list of widely used BSP layers in this chapter. This should not be taken as a complete list
or as a definitive one. Still, we want to facilitate your search for the required layer in case you have
one board of a specific vendor next to you. This list is as follows, in alphabetic order:

• Allwinner: This has the meta-allwinner layer

• AMD: This has the meta-amd layer

• Intel: This has the meta-intel layer

• NXP: This has the meta-freescale and meta-freescale-3rdparty layers

• Raspberry Pi: This has the meta-raspberrypi layer

• RISC-V: This has the meta-riscv layer

• Texas Instruments: This has the meta-ti layer

In the next sections, we start to work with the example boards.

Using physical hardware
To ease the exploration of the Yocto Project’s capabilities, it is good to have a real board so we can
enjoy the experience of booting our customized embedded system. For this, we have tried to collect
the most widely available boards so the chances of you owning one are higher.

BeagleBone Black 143

The next sections will cover the steps for the following boards:

• BeagleBone Black: BeagleBone Black is community-based, with members worldwide. Further
information is available at https://beagleboard.org/black/.

• Raspberry Pi 4: The most famous ARM64-based board with the broadest community spread
worldwide. See more details at https://www.raspberrypi.org/.

• VisionFive: The world’s first generation of affordable RISC-V boards designed to run Linux.
See more details at https://www.starfivetech.com/en.

All the boards listed are maintained by non-profit organizations based on education and mentoring,
which makes the community a fertile place to discover the world of embedded Linux. The following
table summarizes the boards and their main features:

Board version Features

BeagleBone Black TI AM335x (single-core) 512 MB RAM

Raspberry Pi 4 Broadcom BCM2711 64bit CPU (quad-core) 1 GB up to
8 GB RAM

VisionFive U74 Dual-Core 8 GB RAM

Table 15.1 – The hardware specification for the covered boards

In the next sections, we are going to bake and boot the Yocto Project image for each one of the suggested
machines. It’s recommended that you only read the section for the board that you own. Make sure to
consult the board’s documentation in order to understand how to prepare the board for the operation.

BeagleBone Black
In the next two sections, we go through the steps for baking and booting an image for the BeagleBone
Black board.

Baking for BeagleBone Black

To use this board, we can rely on the meta-yocto-bsp layer, which is included by default in Poky.
The meta layer can be accessed at https://git.yoctoproject.org/meta-yocto/tree/
meta-yocto-bsp?h=kirkstone.

To create the source structure, please download Poky using the following command line:

git clone git://git.yoctoproject.org/poky -b kirkstone

https://beagleboard.org/black/
https://www.raspberrypi.org/
https://www.starfivetech.com/en
https://git.yoctoproject.org/meta-yocto/tree/meta-yocto-bsp?h=kirkstone
https://git.yoctoproject.org/meta-yocto/tree/meta-yocto-bsp?h=kirkstone

Booting Our Custom Embedded Linux144

After completing this, we must create the build directory we use for our builds. We can do this using
the following command line:

source oe-init-build-env build

After we have the build directory and the BSP layers properly set up, we can start the build. Inside
the build directory, we must call the following command:

MACHINE=beaglebone-yocto bitbake core-image-full-cmdline

The MACHINE variable can be changed depending on the board we want to use or set in build/
conf/local.conf.

Booting BeagleBone Black

After the build process is over, the image will be available inside the build/tmp/deploy/images/
beaglebone-yocto/ directory. The file we want to use is core-image-full-cmdline-
beaglebone-yocto.wic.

Make sure you point to the right device and double-check to not write on your hard disk.

To copy the core-image-full-cmdline image to the SD card, we should use the dd utility,
as follows:

sudo dd if=core-image-full-cmdline-beaglebone-yocto.wic of=/
dev/<media>

After copying the content to the SD card, insert it into the SD card slot, connect the HDMI cable, and
power on the machine. It should boot nicely.

Note
The BeagleBone Black boot sequence starts trying to boot from eMMC and only tries to boot
from the SD card in case the eMMC boot fails. Clicking the USER/BOOT button when powering
on will temporarily change the boot order, making sure the boot is from the SD card. To further
tailor these instructions for your board, please refer to the documentation at http://www.
beagleboard.org/black.

Raspberry Pi 4
In the next two sections, we go through the steps for baking and booting an image for the Raspberry
Pi 4 board.

http://www.beagleboard.org/black
http://www.beagleboard.org/black

Raspberry Pi 4 145

Baking for Raspberry Pi 4

To add this board support to our project, we need to include the meta-raspberrypi meta layer,
which is the BSP layer with support for the Raspberry Pi boards, including the Raspberry Pi 4, but
not limited to it. The meta layer can be accessed at http://git.yoctoproject.org/cgit.
cgi/meta-raspberrypi/log/?h=kirkstone.

To create the source structure, please download Poky using the following command line:

git clone git://git.yoctoproject.org/poky -b kirkstone

After completing this, we must create the build directory we use for our builds and add the BSP
layer. We can do this using the following command lines:

source oe-init-build-env build

bitbake-layers layerindex-fetch meta-raspberrypi

After we have the build directory and the BSP layers properly set up, we can start the build. Inside
the build directory, we must call the following command:

MACHINE=raspberrypi4 bitbake core-image-full-cmdline

The MACHINE variable can be changed depending on the board we want to use or set in build/
conf/local.conf.

Booting Raspberry Pi 4

After the build process is over, the image will be available inside the build/tmp/deploy/
images/raspberrypi4/ directory. The file we want to use is core-image-full-cmdline-
raspberrypi4.wic.bz2.

Make sure you point to the right device and double-check to not write on your hard disk.

To copy the core-image-full-cmdline image to the SD card, we should use the dd utility,
as follows:

bzcat core-image-full-cmdline-raspberrypi4.wic.bz2 | sudo dd
of=/dev/<media>

After copying the content to the SD card, insert it into the SD card slot, connect the HDMI cable, and
power on the machine. It should boot nicely.

http://git.yoctoproject.org/cgit.cgi/meta-raspberrypi/log/?h=kirkstone
http://git.yoctoproject.org/cgit.cgi/meta-raspberrypi/log/?h=kirkstone

Booting Our Custom Embedded Linux146

VisionFive
In the next two sections, we go through the steps for baking and booting an image for the VisionFive board.

Baking for VisionFive

To add this board support to our project, we need to include the meta-riscv meta layer, which
is the BSP layer with support for RISC-V-based boards, including the VisionFive, but not limited to
it. The meta layer can be accessed at https://github.com/riscv/meta-riscv/tree/
kirkstone.

To create the source structure, please download Poky using the following command line:

git clone git://git.yoctoproject.org/poky -b kirkstone

After completing this, we must create the build directory we’ll use for our builds and add the BSP
layer. We can do this using the following command lines:

source oe-init-build-env build

bitbake-layers layerindex-fetch meta-riscv

After we have the build directory and the BSP layers properly set up, we can start the build. Inside
the build directory, we must call the following command:

MACHINE=visionfive bitbake core-image-full-cmdline

The MACHINE variable can be changed depending on the board we want to use or set in build/
conf/local.conf.

Booting VisionFive

After the build process is over, the image will be available inside the build/tmp/deploy/
images/visionfive/ directory. The file we want to use is core-image-full-cmdline-
visionfive.wic.gz.

Make sure you point to the right device and double-check to not write on your hard disk.

To copy the core-image-full-cmdline image to the SD card, we should use the dd utility,
as follows:

zcat core-image-full-cmdline-visionfive.wic.gz | sudo dd of=/
dev/<media>

After copying the content to the SD card, insert it into the SD card slot, connect the HDMI cable, and
power on the machine.

https://github.com/riscv/meta-riscv/tree/kirkstone
https://github.com/riscv/meta-riscv/tree/kirkstone

Taking the next steps 147

Note
VisionFive doesn’t have a default boot target and requires manual intervention to boot. Please
use the following commands inside the U-Boot prompt using a serial console:

setenv bootcmd “run distro_bootcmd”

saveenv

boot

The command saveenv is optional to make the new configuration persist so that it can work
out of the box after reboot.

See how to get the serial console in the Quick Start Guide (https://doc-en.rvspace.
org/VisionFive/Quick_Start_Guide/).

Taking the next steps
Phew! We got it done! Now you should know the Yocto Project build system basics and be capable of
extending your other areas of knowledge. We tried covering the most common daily tasks using the
Yocto Project. There are a few things you might want to practice:

• Creating bbappend files to apply patches or make other changes to a recipe

• Making your custom images

• Changing the Linux kernel configuration file (defconfig)

• Changing the BusyBox configuration and including the configuration fragments to add or
remove a feature in a layer

• Adding a new recipe for a package

• Making a product layer with your product-specific machines, recipes, and images

Remember, the source code is the ultimate knowledge source, so use it.

When looking for how to do something, finding a similar recipe saves you time testing different
approaches to solve the problem.

Eventually, you’ll likely see yourself in a position to fix or enhance something on OpenEmbedded Core,
a meta layer, or in a BSP. So, don’t be afraid – send the patches and take the feedback and requests for
changes as an opportunity to learn and improve your way of solving a problem.

https://doc-en.rvspace.org/VisionFive/Quick_Start_Guide/
https://doc-en.rvspace.org/VisionFive/Quick_Start_Guide/

Booting Our Custom Embedded Linux148

Summary
We learned how to discover the BSP for a board we want to use in our project. We consolidated our
Yocto Project knowledge by adding external BSP layers and using these in real boards with a generated
image. We also consolidated the necessary background information to learn about any other aspect
of the Yocto Project you may need.

In the next chapter, we will explore how using QEMU speeds up product development by enabling
us to not rely on hardware for every development cycle.

16
Speeding Up Product

Development through
Emulation – QEMU

In this chapter, we explore the possibilities of shortening product development through emulation
and reducing the dependency on real hardware for most development. You will come to understand
the benefits of using QEMU over hardware and when choosing real hardware is preferable. We also
describe the runqemu capabilities and demonstrate some use cases.

What is QEMU?
Quick EMUlator (QEMU) is a free, open source software tool that allows users to run multiple
architectures on the same physical machine. It is a system emulator that can virtualize complete device
hardware, including the CPU, memory, storage, and peripherals.

Using QEMU for testing and debugging can save time and effort during development. It allows
developers to test their code in various simulated environments.

Among other things, the Yocto Project uses QEMU to run automated Quality Assurance (QA) tests
on final images shipped with each release. Within the context of the Yocto Project, QEMU allows
you to run a complete image you have built using the Yocto Project as another task on your build
system. In addition, QEMU helps to run and test images and applications on supported Yocto Project
architectures without having actual hardware.

Speeding Up Product Development through Emulation – QEMU150

What are the benefits of using QEMU over hardware?
There are several situations where it may be more practical to use QEMU instead of real hardware
for testing and debugging:

• It allows you to quickly and easily test your code in various simulated environments without
constantly deploying it to the target device

• If you don’t have the hardware that the software will be running on or if its availability is limited

• When you need to test software on multiple hardware platforms without having to set up
multiple physical machines

• When you want to debug software in a controlled environment, such as reduced memory
availability, to observe its behavior

• When you want to validate software that isn’t hardware specific and wish to reduce the time
needed for testing, such as flashing, board wiring, and so on

However, it is essential to note that QEMU is a software emulator, which may not be a perfect substitute
for real hardware at all times. Therefore, testing software on real hardware may be necessary to ensure
it works correctly.

When is choosing real hardware preferable?
There are several situations where it may be more practical, and even required, to use real hardware
instead of QEMU for testing and debugging, such as the following:

• When the software relies on specific hardware features, for example, a particular Video
Processing Unit (VPU) or Graphics Processing Unit (GPU) feature

• When evaluating the software performance, QEMU may not be able to replicate the performance
of real hardware

While QEMU can be a valuable tool for testing and debugging software, it is not always a perfect
substitute for real hardware.

Using runqemu capabilities
QEMU is deeply integrated into the Yocto Project, and it is crucial to learn how to take advantage
of this integration so we can plan the testing of our projects. The runqemu usage lists the variety of
options available, which you can see in the following figure:

Using runqemu capabilities 151

Figure 16.1 – The runqemu usage

There are a few use cases of QEMU that are important to highlight:

• Allows choosing different kernel images for testing

• Allows choosing different rootfs for booting

• The capability to pass boot arguments for the kernel

• Supports the use of a graphical environment with OpenGL or OpenGL ES options

Speeding Up Product Development through Emulation – QEMU152

• It can pass extra QEMU command-line parameters

• Allows the use of serial console-only for rapid image testing

• Testing the audio stack support

• Testing different init systems (e.g., systemd)

In the following few sections, we use the qemux86-64 machine as a reference to cover some common
use cases, illustrating the main runqemu capabilities.

Using runqemu to test graphical applications

When we aim to validate the application, ignoring the embedded device GPU performance, we can
rely on QEMU for such validation, for example, a Qt or GTK+ application. At first, we need to build
the core-image-weston image. Next, we can run the validation as follows:

Figure 16.2 – The log after running QEMU with graphic support

Next, you see the execution of core-image-weston inside QEMU:

Using runqemu capabilities 153

Figure 16.3 – Screenshot of QEMU running core-image-weston

The preceding screenshot shows the Wayland Terminal open, showing the information of the running
Linux kernel.

Using runqemu to validate memory constraints

When we aim to validate the application memory usage, we can rely on QEMU for such validation.
At first, we need to build the core-image-full-cmdline image and run QEMU with the
following command line:

Figure 16.4 – The log after running QEMU with 128 MB of RAM

Speeding Up Product Development through Emulation – QEMU154

In the following screenshot, we can see the amount of memory in use inside QEMU:

Figure 16.5 – Screenshot of QEMU running core-image-full-cmdline with 128 MB of RAM

Changing the command line used to run QEMU can help us test a set of different memory sizes
via emulation.

Using runqemu to help with image regression tests

The Yocto Project provides an automated testing framework, a crucial part of the Yocto Project Quality
Assurance process. The integration or validation testing support uses the testimage class to execute
the images inside the target.

Tip
The testing framework can test existing recipes and images and be enhanced with custom
tests to validate new applications and integrations. The testing framework capabilities are
described in the section Types of Testing Overview from Yocto Project Tests (https://docs.
yoctoproject.org/4.0.4/test-manual/intro.html#yocto-project-
tests-types-of-testing-overview).

First, we enabled the testimage support by adding IMAGE_CLASSES += "testimage" in
build/conf/local.conf and made sure to build the core-image-weston image.

Warning
During the image testing, the sudo command is used for networking setup and may trigger an
error depending on your host configuration. Check Yocto Project Development Tasks Manual,
in the Enabling Runtime Tests on QEMU section (https://docs.yoctoproject.
org/4.0.4/dev-manual/common-tasks.html#enabling-runtime-tests-
on-qemu) for how to avoid those errors.

https://docs.yoctoproject.org/4.0.4/test-manual/intro.html#yocto-project-tests-types-of-testing-overview
https://docs.yoctoproject.org/4.0.4/test-manual/intro.html#yocto-project-tests-types-of-testing-overview
https://docs.yoctoproject.org/4.0.4/test-manual/intro.html#yocto-project-tests-types-of-testing-overview
https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#enabling-runtime-tests-on-qemu
https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#enabling-runtime-tests-on-qemu
https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#enabling-runtime-tests-on-qemu

Summary 155

Then, we must build the core-image-weston image. We are ready now to start the execution of
testimage with the following command:

Figure 16.6 – The result of running the testimage task for core-image-weston

In the preceding log, we see the regression test results.

Summary
In this chapter, we have learned how to use QEMU and how its capabilities can shorten the development
cycle by emulating when possible and describing when it is not possible. It also presented some
runqemu use cases.

In the final chapter, we offer a list of good practices that authors have been using over the years in the
development of Yocto Project-based products.

17
Best Practices

This chapter aims to provide insight into our (the authors’) personal experience in working with
embedded devices and embedded Linux development over the years. We have gathered some aspects
that are often underestimated or wholly neglected to serve as inspiration for you in your next project.

We have split this chapter into two independent parts, one about the guidelines related to the Yocto
Project specifics and the other about more general aspects of a project. This is so that you don’t have
to study the two sections in a particular order.

Guidelines to follow for Yocto Project
This section aims to gather some guidelines for aspects of the Yocto Project metadata and project
organization tips that make our life easier in terms of short- and long-term maintenance.

Managing layers

As our journey in product development advances, we will naturally use multiple repositories to meet the
needs we face. Keeping track of the repositories is a complex challenge as we need to do the following:

• Make sure we can reproduce a previous build in the future

• Allow multiple team members to work in the same code base

• Validate the changes we make using Continuous Integration tools

• Avoid subtle changes in the layers we use

Those goals are intimidating, but a few tools are in use, with different strategies to overcome
those challenges.

Best Practices158

The simplest solution uses the image-buildinfo class (https://docs.yoctoproject.
org/4.0.4/ref-manual/classes.html#image-buildinfo-bbclass), which
writes a plain text file containing build information and layers revisions to the target filesystem at
${sysconfdir}/buildinfo by default. Some tools have been developed that can help this
process. These tools are discussed as follows:

• Google developed the repo (https://source.android.com/docs/setup/
download#repo) tool for Android development. It has been adopted for use in other projects.
A critical aspect of repo is that it requires some tooling to integrate with Yocto Project-based
projects to automate the build directory and environment configuration. See the O.S. Systems
Embedded Linux project (https://github.com/OSSystemsEmbeddedLinux/
ossystems-embedded-linux-platform) as inspiration for using repo in your projects.

• Siemens developed kas (https://github.com/siemens/kas) to provide an easy
mechanism for downloading sources, automating the build directory and environment
configuration, and so on.

• Garmin developed Whisk (https://github.com/garmin/whisk) to manage complex
product configurations using OpenEmbedded and the Yocto Project. The key features are
a single source tree, multiple axes of configuration, multiple product builds, isolated layer
configuration, and so on.

• Agilent developed Yocto Buddy (https://github.com/Agilent/yb). The design aims
to ease the setup and keep Yocto Project-based environments synchronized. Yocto Buddy was
inspired by all previously mentioned tools and is still early in development.

This is a subset of existing tools and shouldn’t be considered a complete list. Ideally, you should play
with them before deciding, as the choice depends on the project use case and team expertise.

Avoid creating too many layers

A significant advantage of the Yocto Project is that it has the ability to use and create multiple layers.
It allows us to do the following:

• Reuse BSP layers from semiconductor vendors

• Reduce duplication of work by sharing reusable blocks to enable the use of new or specific
applications, programming languages, and so on.

However, creating multiple layers may be unproductive when developing a project or a set of products.
For example, the development of BSP-only layers makes sense in the following situations:

• The board is the product, as in the System on Module (SoM) vendors’ case

• When external access to the layer is critical, however, we want to limit the access for the
non-BSP source

https://docs.yoctoproject.org/4.0.4/ref-manual/classes.html#image-buildinfo-bbclass
https://docs.yoctoproject.org/4.0.4/ref-manual/classes.html#image-buildinfo-bbclass
https://source.android.com/docs/setup/download#repo
https://source.android.com/docs/setup/download#repo
https://github.com/OSSystemsEmbeddedLinux/ossystems-embedded-linux-platform
https://github.com/OSSystemsEmbeddedLinux/ossystems-embedded-linux-platform
https://github.com/siemens/kas
https://github.com/garmin/whisk
https://github.com/Agilent/yb

Guidelines to follow for Yocto Project 159

Using a single layer for the product, or even the company, has many advantages, such as the following:

• Facilitating the development of reusable components such as a packagegroup package for
development tools or network utilities shared by multiple products

• Reducing the risk of unexpected side effects due to changes for a specific product or board

• Increasing the reuse of bug fixes across multiple products and reuse of BSP low-level components
such as the Linux kernel or bootloader

• Boosting standardization across multiple products, reducing the learning curve for new
team members

The decision to use one or more layers depends on several aspects; however, we recommend starting
simple and, in the future, splitting the layer if required.

Prepare the product metadata for new Yocto Project releases

As our product grows, so does our metadata and the need for good organization. Some use cases
commonly seen during product development are as follows:

• The need to backport a new recipe version due to a bug fix or a feature

• A missing package configuration or bug fix is not yet available in the Yocto Project recipe

We use two recipe directories to organize this kind of content:

• recipes-backport: Backports of recipes coming from new Yocto Project releases

• recipes-staging: New recipes or bbappend files adding missing package configurations
or bug fixes

We continuously send new recipes or bug fixes from recipes-staging to the respective upstream
project (for example, OpenEmbedded Core). Then, when the patch is accepted, we move this change
from recipes-staging to the recipes-backport directory. This approach allows us to keep
track of pending upstreaming tasks and easily upgrade our meta layer to a new Yocto Project release.
Furthermore, we can quickly act on the backport directory and remove it.

Create your custom distro

When using the Yocto Project, we usually add many configurations in build/conf/local.
conf. However, as discussed in the book, this is bad as it is not at source control management and is
likely to differ among developers. Using a custom distribution has many benefits, and some of them
are highlighted here:

• Allows consistent use among multiple developers
• Provides a clear view of the different DISTRO_FEATURES we use when compared to our base

distribution (for example, poky)

Best Practices160

• Provides a central place where we can have a global view of all the required recipe configurations
we need for our product, reducing the number of bbappend files required to configure our
recipes (for example, PACKAGECONFIG:pn-<myrecipe>:append = " myfeature")

Besides those more technical aspects, using a custom distro also allows the proper branding of SDK
or other Yocto Project-generated artifacts.

We learned how to create a custom distribution in the Using a custom distribution sectiown in
Chapter 12, Creating Custom Layers.

Avoid reusing existing images for your product

Images are where everything fits together. When we are developing a product, it is important to
minimize the number of packages we have installed in our images for multiple reasons:

• Reducing the rootfs size

• Reducing the build time

• Reducing the number of licenses to deal with

• Reducing the surface of attack for security breaches

A typical starting point is copying the core-image-base.bb file to our custom layer as myproduct-
image.bb and extending it, adding what we need for the product’s image. In addition, we create
an image called myproduct-image-dev.bb for use during development and make sure it
requires myproduct-image.bb along with the artifacts used only for development, avoiding
code duplication. This way, we have two images for production and development, but they share the
same core features and packages.

Standard SDK is commonly undervalued

Application development implies an interactive process, mainly because we usually continuously build
the application until we accomplish what we aim for. This use case is not well suited for the Yocto
Project, mainly for the following reasons:

• Every time we start the build of a recipe, it discards the previous build objects

• The time needed for deploying the application or image is much longer

• A lack of proper integration in the IDE environment

There are alternatives for a few of those topics, such as using devtool to reuse the build objects and
helping to deploy the application. We saw how to use devtool in the Deploying to the target using
devtool and Building a recipe using devtool sections from Chapter 9, Developing with the Yocto Project,
but the development experience is still cumbersome.

Guidelines to follow for Yocto Project 161

Using Standard SDK for application and other components’ development, such as the Linux kernel and
bootloader, is still preferable. This way, we focus on faster development, postponing or parallelizing
the Yocto Project integration task.

Avoid too many patches for Linux kernel and bootloader
modifications

The need for patches in the Linux kernel and bootloader is inherent to embedded Linux development,
as we rarely use the hardware without any changes. The level of modification on those components
is related to your hardware design, for example:

• Using a Single-Board Computer (SBC), the number of changes should be minimal

• In the use of System-On-Module (SOM) with a custom baseboard, the number of changes could
vary depending on the number of modifications from the vendor baseboard hardware design

• Ultimately, the use of custom hardware design implies the development of a custom BSP and,
consequently, a considerable number of modifications

Those are not set in stone. So, for example, consider starting the project using an SBC. Later, we find
out that the vendor does not provide a good reference BSP, so the number of modifications and amount
of work for the BSP will increase considerably.

When we have small changes, it is better to tackle the changes as patch files added to the component
recipe. But when the effort to maintain the component increases, it justifies having a separate fork of that
component to keep all the changes in place. Using a repository fork gives us the following advantages:

• The history of the changes

• Different branches or tags for development and production

• The possibility of merging with other providers

• It allows the use of much simpler recipes, as we don’t need to carry on individual patches

In summary, we should use the strategy that makes sense for the project. Eventually, this will change,
but using the right approach reduces the total effort to support the hardware in use properly.

Avoid using AUTOREV as SRCREV

The use of AUTOREV as SRCREV is usually applied when developing a product. We must interactively
change the code and try that code inside the Yocto Project. That said, this comes with a couple
of drawbacks:

• It is hard to reproduce the previous build as every time we rebuild our image, it may use a
different revision for our recipe.

Best Practices162

• The AUTOREV value is only applied when BitBake invalidates the cache of a specific recipe.
That happens when we modify the recipe itself or when we change something that triggers the
BitBake cache rebuild, such as changing any .conf file.

Those drawbacks make AUTOREV very fragile, and other alternatives can cover the interactive code
change more consistently. Typically, devtool is used as it allows us to change the code directly
in the workspace and forces the recipe to use this as the source. Another alternative is to use the
externalsrc.bbclass class (https://docs.yoctoproject.org/4.0.4/index.
html#ref-classes-externalsrc), which allows us to configure a recipe to use a directory
as the source for the build.

Create a Software Bill of Materials

The Poky build system can describe all the components used in an image from the licenses for each
software component. This description is generated as a Software Bill of Materials (SBOM) using the
Software Package Data Exchange (SPDX) standard (https://spdx.dev/). Using the SPDX
format has the advantage of leveraging existing tooling, allowing extra automation, which is impossible
using Poky’s standard license output format.

The SBOM is critical to ensure open source license compliance. However, the SBOM is not generated
by default. You can refer to the Creating a Software Bill of Materials section from The Yocto Project
Development Tasks Manual (https://docs.yoctoproject.org/4.0.4/dev-manual/
common-tasks.html#creating-a-software-bill-of-materials).

Guidelines to follow for general projects
This section discusses some project-related guidelines to follow to reduce the general project risk and
avoid common pitfalls.

Continuously monitor the project license constraints

Depending on the project we are working on, license compliance might be a big or a small topic. Some
projects have very restricted license constraints, such as the following:

• The inability to use GPLv3-released software

• Copyleft contamination of project-specific intellectual property

• Company-wise license constraints

The advice is to start this process at the beginning of the project, reducing the amount of rework
throughout the project. However, the project license constraints and the project component’s licenses
may change, requiring us to monitor our license compliance continuously.

https://docs.yoctoproject.org/4.0.4/index.html#ref-classes-externalsrc
https://docs.yoctoproject.org/4.0.4/index.html#ref-classes-externalsrc
https://spdx.dev/
https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#creating-a-software-bill-of-materials
https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#creating-a-software-bill-of-materials

Guidelines to follow for general projects 163

Security can harm your project

In our hyper-connected era, every connected device is a potential target for a security attack. As
embedded device developers, we should contribute to a safer place. We should do the following:

• Scan our embedded Linux software for known security flaws

• Monitor critical software for security fixes

• Implement a process for fixing field devices

We can use the Yocto Project infrastructure, as discussed in the Checking for Vulnerabilities section
of Yocto Project Development Tasks Manual (https://docs.yoctoproject.org/4.0.4/
dev-manual/common-tasks.html#checking-for-vulnerabilities), to scan for
known Common Vulnerabilities and Exposures (CVE) for our recipes. We should not be limited
to this as our BSP components might also require security fixes, which the BSP vendors commonly
neglect. Still, the paranoia level depends on the project niche.

Don’t underestimate maintenance costs

At first, upstreaming our changes might not seem strategic for the following reasons:

• Upstreaming uses resources to adapt modifications

• Upstream review feedback may require additional interactions and rework

• Development work not directly connected to the product needs to be done

Usually, development and management teams underestimate the total cost of maintenance. But
unfortunately, this is frequently the most expensive part of the project, as it lasts for years. Upstreaming
our changes to the respective project allows us to do the following:

• Avoid work duplication over the years

• Reduce the friction during upgrades for new Yocto Project releases

• Receive critical and constructive feedback about the changes we are upstreaming

• Reduce the amount of work with security updates and bug fixes

• Reduce the amount of code we have to maintain

The upstream work is continuous. Every time we add a new feature, we potentially increase the gap
between our code and the upstream. Therefore, we may postpone the upstreaming work, but the
upstreaming costs will be multiplied when you work on updating to the next Yocto Project release.

https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#checking-for-vulnerabilities
https://docs.yoctoproject.org/4.0.4/dev-manual/common-tasks.html#checking-for-vulnerabilities

Best Practices164

Tackle project risk points and constraints as soon as possible

As the software and hardware must work together, a few aspects directly depend on our hardware
design. To reduce the project risk, we should anticipate as many critical software and hardware
requirements as possible so we can validate some aspects, such as the following:

• Is the amount of memory we intend to use enough or too much?

• Is the amount of power the hardware uses sufficient for our constraints?

• Is the target GPU capable of rendering the animations we need?

• Do all the planned peripheral devices have available Linux kernel drivers ready for use or do
we need to plan the development for those?

The preceding questions can be answered using a reference or well-known board, which we have
ready to use BSP. This allows us to produce a Minimal Viable Product (MVP) without the need to
design our custom hardware. After we validate the project’s risks and constraints, those boards are
still valuable assets for the following:

• Continuing the development of our software until the custom board and BSP are ready for use

• As a base of comparison with our custom design

• As a reference to verify whether a bug is specific to our custom board and BSP

Considering we can develop our software using a reference or a well-known board, we should postpone
the design of a custom board for as long as possible. Delaying the design gives us the freedom to
change many aspects of our project, such as changing a peripheral because of a specific driver or
even changing the planned CPU and memory capabilities after maturing the application and features.

When we finally decide to go with a custom design, we should keep it as close as possible to the board
we choose as a reference. But, of course, sometimes we need to deviate from the reference design.
Still, it comes with the risk of introducing design issues and increasing the cost of our custom BSP.

Summary
Phew! In this final chapter, you have been introduced to a set of good practices that the authors have
been using in their real-life projects. We hope they have given you some points to consider when
planning your next project.

Throughout the book, we have covered the necessary background information for you to learn
any other aspect of the Yocto Project that you may need on your own. So, you now have a general
understanding of what is happening behind the scenes when you ask BitBake to build a recipe or an
image. From now on, you are ready to free your mind and try new things. The ball is in your court
now – here’s where the fun begins!

I ndex

Symbols
+= operator 72
=+ operator 72
:= operator

used, for immediate variable expansion 72
??= operator

used, for assigning default value 71, 72
?= operator

used, for assigning value 71
.= operator 73
=. operator 73
:append operator 73, 74
.bbappend files 69
.bbclass files 69
.bb files 69
.conf files 69
.inc file 75
:prepend operator 73, 74
:remove operator

used, for removing list item 74

A
application debugging

versus metadata debugging 91

Autotools-based application
extra configuration, adding 124, 125

B
base package recipe

creating, with devtool 115, 116
BeagleBone Black

features 143
image, baking 143, 144
image, booting 144
reference link 143

BitBake 39
execution flow 50
logging functions, in Python 95
logging functions, in Shell Script 95
metadata collection 31, 32
metadata types 33, 34
reference link 3
tasks 45-47

bitbake-layers tool 105-110
BitBake recipe (.bb) 37
BitBake’s metadata 69

:append operator 73, 74
:prepend operator 73, 74
:remove operator 74
classes 69

Index166

conditional appending 75
conditional metadata set 74, 75
configuration files 69
default value, assigning with

??= operator 71, 72
executable metadata, defining 76
file inclusion 75
immediate variable expansion 72
inheritance system 77
list appending 72
list prepending 72
Python functions, defining in

global namespace 76, 77
Python variable expansion 75
recipes 69
string appending 73
string prepending 73
value, assigning with ?= operator 71
variable assignment 70
variable expansion 70
working with 70

BitBake User Manual
reference link 704

Board Support Package (BSP) layer 102
aspects, reviewing that impact

hardware use 141, 142
discovering 141
usage 142

build directory
constructing 49, 50
detailing 49

buildhistory class 92
reference link 92

buildhistory-diff utility 92
Build History mechanism 91, 92

build host system preparation
Windows Subsystem for Linux

(WSLv2), running 7, 8
build/tmp/work directory 51-54
buildtools tarball 8

C
classes 69
CMake 37, 115
commercial licenses 135, 136
Common Vulnerabilities and

Exposures (CVE) 163
configuration files 69
configuration fragments 129

for Kconfig-based projects 129-132
configuration metadata 122
conf/layer.conf 32
copyleft compliance 133

achieving, with Poky 136
versus proprietary code 134

copyleft compliance, achieving with Poky
compilation scripts, providing 138
license auditing 136
license text, providing 139
source code modifications 138
source code, providing 137, 138

cross-development SDKs 79
Extensible SDK 80
Standard SDK 80
types 80

CROss PlatformS (CROPS) 7
custom layers

creating 109-111
metadata, adding 111

Index 167

D
Debian Package Manager (DEB) 57
debugging

GNU DeBugger (GDB), using for 98
debug process 91
dependencies 37, 38

types 37
development shell 96

utilizing 96-98
devshell command 96-98
devtool

base package recipe, creating with 115, 116
image, building with 85
recipe, building with 88
target, deploying with 88

DISTRO_FEATURES
versus MACHINE_FEATURES 122

E
End Of Life (EOL) 4
executable metadata

defining 76
existing packages

extra files, adding 126, 127
use cases 123, 124

Extensible SDK 80
extending 89
image, building with devtool 85
image, running on QEMU 85, 86
recipe, building with devtool 88
recipe, creating from external

Git repository 87, 88
target, deploying with devtool 88, 89
using 83, 84, 85

external Git repository
recipe, creating from 87, 88

F
fetcher backends 40
file

searching paths 127, 128
file inclusion 75

G
general projects 162

maintenance costs 163
project license constraints, monitoring 162
project risk points and constraints 164
security attack 163

General Public License (GPL)v2 license 133
Gentoo Portage package 2
Git

reference link 9
Git repositories 41, 42
GNU Compiler Collection (GCC) 133
GNU DeBugger (GDB) 91

using, for debugging 98
graphical applications

testing, with runqemu 152, 153
Graphics Processing Unit (GPU) 150

I
image

building, for QEMU 21-29
content, tracking 91, 92

image-buildinfo class
reference link 158

image regression tests
helping, with runqemu 154, 155

include keyword 75
inheritance system 77
Itsy Package Management System (IPK) 58

Index168

K
Kconfig-based projects

configuration fragments 129-132

L
layers 31, 32

flexibility, powering with 101-103
properties 102
source code, detailing 103, 104

lazy evaluation 70
Linux-based system, preparing 8, 9

Debian-based distribution 9
Linux Kernel Archives

URL 2
list

appending 72
prepending 72

logging information
providing, during task execution 95

Long Term Support (LTS) 4
LTTng 113

M
MACHINE_FEATURES

versus DISTRO_FEATURES 122
memory constraints

validating, with runqemu 153, 154
Meson 115
meta-browser layer 102
metadata

parsing 35-37
metadata, adding to custom layer

age recipe, adding 114, 115
custom distribution, using 119-121
image, creating 111-113

support, adding to machine
definition 117, 118

metadata debugging
versus application debugging 91

metadata layers 101
functionalities 101

metadata variables
debugging 95, 96

meta-java layer 102
meta layers 102

adding 104, 105
meta-poky layer 102
meta-qt5 layer 102
meta-raspberrypi meta layer

reference link 145
meta-riscv meta layer

reference link 146
meta-yocto-bsp layer 102

reference link 143
Minimal Viable Product (MVP) 164

N
native build 79
Native Language Support (NLS) 121
native SDK 79

generating, for on-device development 80
network access

disabling 44

O
oe-pkgdata-util script 94
OpenEmbedded community

URL 105
OpenEmbedded Core 3, 4

reference link 4
OpenEmbedded project 2

Index 169

OpenGL 119
OpenZaurus project 2
overrides 74, 75
OVERRIDES conditional appending 75

P
package epoch 61
package feeds 64, 65

using 65-67
package installation

code, running 58-60
packages

content, tracking 91, 92
inspecting 93, 94
used, for generating rootfs image 63, 64

package versioning
explaining 61, 62

packaging
debugging 93

partitioned image 118
patch

applying 125
physical hardware

using 142, 143
Pluggable Authentication Module (PAM) 121
Poky 3, 92

BitBake 3
components 3
copyleft compliance, achieving with 136
metadata 4
OpenEmbedded Core 4
software licensing, managing with 134

porky-based system
build environment, preparing 10, 11
build host system, preparing 7
images, running in QEMU 15-17
local.conf file 12

source code, downloading 9, 10
target image, building 13, 14

PREFERRED_PROVIDER keyword 38, 39
proprietary code

versus copyleft compliance 134
PROVIDES keyword 38, 39
PR service 65
Python functions

defining, in global namespace 76, 77
Python variable expansion 75

Q
Quality Assurance (QA) 4, 149
Quick EMUlator (QEMU) 149

image, building 21-29, 85, 86
images, running in 15-17
use cases 151
versus hardware usage 150

R
Raspberry Pi 4

features 143
image, baking 145
image, booting 145
URL 143

ready-to-use image
creating 118, 119

real hardware
selection, situations 150

Real Time Operating System (RTOS) 1
recipe feature configuration

modifying 128, 129
recipes 69

dependency 38
Red Hat Package Manager (RPM) 57
remote file downloads 40, 41

Index170

repo tool
reference link 158

require keyword 75
root filesystem (rootfs) 136

generating, with packages 63, 64
runqemu capabilities

using 150-152
using, to help with image

regression tests 154, 155
using, to test graphical applications 152, 153
using, to validate memory

constraints 153, 154
runtime package dependencies

specifying 62, 63

S
Security-Enhanced Linux (SELinux) 121
shared state cache 60, 61
Single-Board Computer (SBC) 161
Software Bill of Materials (SBOM) 162
software development kit (SDK) 64, 79

content, tracking 91, 92
cross-development SDKs 79
native SDKs 79

software licensing
managing, with Poky 134

Software Package Data Exchange (SPDX) 162
source code

fetching 39, 40
Git repositories 41, 42
remote file downloads 40, 41

source code download
network access, disabling 44
optimizing 42, 43

Standard SDK 80
using 81, 82

string
appending 73
prepending 73

supported package formats, BitBake 58
selecting 58
using 57
Debian Package Manager (DEB) 57
Red Hat Package Manager (RPM) 57
Tar 58

sysroot directories 54, 55
System on Module (SoM) 158, 161

T
Tape Archive (Tar) 58
task 45

extending 124
temporary build directory (build/tmp)

exploring 50, 51
Toaster 19, 27

initializing 20, 21
installing 19
reference link 19
using, methods 19

toolchain 79

V
value

assigning, with ??= operator 71, 72
assigning, with ?= operator 71

variable
assignment 70
expansion 70
scope 122

Video Processing Unit (VPU) 150
virtual/kernel provider 38, 39

Index 171

VisionFive
features 143
image, baking 146
image, booting 146
reference link 143

W
Windows Subsystem for Linux (WSLv2) 7

X
X11 support 119

Y
Yocto Project 1, 2, 157

AUTOREV as SRCREV usage, avoiding 161
best practices 147
custom distro, creating 159
delineating 2
existing images, avoiding 160
layers, managing 157, 158
layer ecosystem 105, 106
multiple layers, avoiding 158, 159
patches for bootloader modifications,

avoiding 161
patches for Linux kernel, avoiding 161
product metadata, preparing 159
releases 4
Software Bill of Materials

(SBOM), creating 162
standard SDK 160
Standard SDK 161

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Robotics at Home with Raspberry Pi Pico

Danny Staple

ISBN: 9781803246079

• Interface Raspberry Pi Pico with motors to move parts

• Design in 3D CAD with Free CAD

• Build a simple robot and extend it for more complex projects

• Interface Raspberry Pi Pico with sensors and Bluetooth BLE

• Visualize robot data with Matplotlib

• Gain an understanding of robotics algorithms on Pico for smart behavior

https://packt.link/9781803246079

175Other Books You May Enjoy

Embedded Systems Architecture - Second Edition

Daniele Lacamera

ISBN: 9781803239545

• Participate in the design and definition phase of an embedded product

• Get to grips with writing code for ARM Cortex-M microcontrollers

• Build an embedded development lab and optimize the workflow

• Secure embedded systems with TLS

• Demystify the architecture behind the communication interfaces

• Understand the design and development patterns for connected and distributed devices in the IoT

• Master multitasking parallel execution patterns and real-time operating systems

• Become familiar with Trusted Execution Environment (TEE)

https://packt.link/9781803239545

176

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Embedded Linux Development Using Yocto Project, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1804615064
https://packt.link/r/1804615064

177

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804615065

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804615065

	Cover
	Title page
	Copyright and credits
	Contributors
	About the reviewers
	Table of Contents
	Preface
	Chapter 1: Meeting the Yocto Project
	What is the Yocto Project?
	Delineating the Yocto Project
	The alliance of the OpenEmbedded project and the Yocto Project
	Understanding Poky
	BitBake
	OpenEmbedded Core
	Metadata

	The Yocto Project releases
	Summary

	Chapter 2: Baking Our First
Poky-Based System
	Preparing the build host system
	Using Windows Subsystem for Linux (WSLv2)
	Preparing a Linux-based system

	Downloading the Poky source code
	Preparing the build environment
	Knowing the local.conf file
	Building a target image
	Running images in QEMU
	Summary

	Chapter 3: Using Toaster to Bake an Image
	What is Toaster?
	Installing Toaster
	Starting Toaster
	Building an image for QEMU
	Summary

	Chapter 4: Meeting the BitBake Tool
	Understanding the BitBake tool
	BitBake metadata collections
	Metadata types
	Summary

	Chapter 5: Grasping the BitBake Tool
	Parsing metadata
	Dependencies
	Preferring and providing recipes
	Fetching the source code
	Remote file downloads
	Git repositories

	Optimizing the source code download
	Disabling network access

	Understanding BitBake’s tasks
	Summary

	Chapter 6: Detailing the Temporary
Build Directory
	Detailing the build directory
	Constructing the build directory
	Exploring the temporary build directory
	Understanding the work directory
	Understanding the sysroot directories
	Summary

	Chapter 7: Assimilating Packaging Support
	Using supported package formats
	List of supported package formats
	Choosing a package format

	Running code during package installation
	Understanding shared state cache
	Explaining package versioning
	Specifying runtime package dependencies
	Using packages to generate a rootfs image
	Package feeds
	Using package feeds

	Summary

	Chapter 8: Diving into BitBake Metadata
	Understanding BitBake’s metadata
	Working with metadata

	Summary

	Chapter 9: Developing with the
Yocto Project
	What is a software development kit?
	Generating a native SDK for on-device development
	Understanding the types of cross-development SDKs
	Using the Standard SDK
	Using the Extensible SDK
	Building an image using devtool
	Running an image on QEMU
	Creating a recipe from an external Git repository
	Building a recipe using devtool
	Deploying to the target using devtool
	Extending the SDK

	Summary

	Chapter 10: Debugging with
the Yocto Project
	Differentiating metadata and application debugging
	Tracking image, package, and SDK contents
	Debugging packaging
	Inspecting packages

	Logging information during task execution
	Debugging metadata variables
	Utilizing a development shell
	Using the GNU Debugger for debugging
	Summary

	Chapter 11: Exploring External Layers
	Powering flexibility with layers
	Detailing a layer’s source code
	Adding meta layers
	The Yocto Project layer ecosystem
	Summary

	Chapter 12: Creating Custom Layers
	Making a new layer
	Adding metadata to the layer
	Creating an image
	Adding a package recipe
	Adding support to a new machine definition
	Using a custom distribution

	MACHINE_FEATURES versus DISTRO_FEATURES
	Understanding the scope of a variable
	Summary

	Chapter 13: Customizing Existing Recipes
	Understanding common use cases
	Extending a task

	Adding extra options to recipes based on Autotools
	Applying a patch
	Adding extra files to the existing packages
	Understanding file searching paths
	Changing recipe feature configuration

	Configuration fragments for Kconfig-based projects
	Summary

	Chapter 14: Achieving GPL Compliance
	Understanding copyleft
	Understanding copyleft compliance versus proprietary code

	Managing software licensing with Poky
	Understanding commercial licenses

	Using Poky to achieve copyleft compliance
	Understanding license auditing
	Providing the source code
	Providing compilation scripts and source code modifications
	Providing license text

	Summary

	Chapter 15: Booting Our Custom
Embedded Linux
	Discovering the right BSP layer
	Reviewing aspects that impact hardware use
	Taking a look at widely used BSP layers

	Using physical hardware
	BeagleBone Black
	Baking for BeagleBone Black
	Booting BeagleBone Black

	Raspberry Pi 4
	Baking for Raspberry Pi 4
	Booting Raspberry Pi 4

	VisionFive
	Baking for VisionFive
	Booting VisionFive

	Taking the next steps
	Summary

	Chapter 16: Speeding Up Product Development through Emulation – QEMU
	What is QEMU?
	What are the benefits of using QEMU over hardware?
	When is choosing real hardware preferable?
	Using runqemu capabilities
	Using runqemu to test graphical applications
	Using runqemu to validate memory constraints
	Using runqemu to help with image regression tests

	Summary

	Chapter 17: Best Practices
	Guidelines to follow for Yocto Project
	Managing layers
	Avoid creating too many layers
	Prepare the product metadata for new Yocto Project releases
	Create your custom distro
	Avoid reusing existing images for your product
	Standard SDK is commonly undervalued
	Avoid too many patches for Linux kernel and bootloader modifications
	Avoid using AUTOREV as SRCREV
	Create a Software Bill of Materials

	Guidelines to follow for general projects
	Continuously monitor the project license constraints
	Security can harm your project
	Don’t underestimate maintenance costs
	Tackle project risk points and constraints as soon as possible

	Summary

	Index
	Other Books You May Enjoy

