

Linux Kernel Programming

A comprehensive guide to kernel internals, writing kernel
modules, and kernel synchronization

Kaiwan N Billimoria

BIRMINGHAM - MUMBAI

Linux Kernel Programming
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Vijin Boricha
Content Development Editor: Romy Dias
Senior Editor: Rahul D'souza
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Joshua Misquitta

First published: March 2021

Production reference: 2170321

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-343-5

www.packt.com

http://www.packt.com

First, to my dear parents, Diana and Nadir "Nads", for showing me how to live a happy
and productive life. To my dear wife, Dilshad (an accomplished financial advisor herself),

and our amazing kids, Sheroy and Danesh – thanks for all your love and patience.

– Kaiwan N Billimoria

Contributors

About the author
Kaiwan N Billimoria taught himself BASIC programming on his dad's IBM PC back
in 1983. He was programming in C and Assembly on DOS until he discovered the
joys of Unix, and by around 1997, Linux!

Kaiwan has worked on many aspects of the Linux system programming stack,
including Bash scripting, system programming in C, kernel internals, device drivers,
and embedded Linux work. He has actively worked on several commercial/FOSS
projects. His contributions include drivers to the mainline Linux OS and many
smaller projects hosted on GitHub. His Linux passion feeds well into his passion for
teaching these topics to engineers, which he has done for well over two decades now.
He's also the author of Hands-On System Programming with Linux. It doesn't hurt that
he is a recreational ultrarunner too.

Writing this book took a long while; I'd like to thank the team from Packt for their
patience and skill! Carlton Borges, Romy Dias, Vijin Boricha, Rohit Rajkumar,
Vivek Anantharaman, Nithin Varghese, and all the others. It was indeed a pleasure
working with you.

I owe a debt of gratitude to the very able technical reviewers – Donald "Donnie"
Tevault and Anil Kumar. They caught a lot of my mistakes and omissions and
greatly helped make this book better.

About the reviewers
Donald A. Tevault, but you can call him Donnie, got involved with Linux way back
in 2006 and has been working with it ever since. He holds the Linux Professional
Institute Level 3 Security certification, and the GIAC Incident Handler certification.
Donnie is a professional Linux trainer, and thanks to the magic of the internet, teaches
Linux classes literally the world over from the comfort of his living room. He's also a
Linux security researcher for an IoT security company.

Anil Kumar is a Linux BSP and firmware developer at Intel. He has over 12 years of
software development experience across many verticals, including IoT, mobile
chipsets, laptops/Chromebooks, media encoders, and transcoders. He has a master's
degree in electronics design from the Indian Institute of Science and a bachelor's
degree in electronics and communication from BMS College of Engineering, India. He
is an electronics enthusiast and blogger and loves tinkering to create fun DIY projects.

Table of Contents
Preface 1

Section 1: The Basics
Chapter 1: Kernel Workspace Setup 12

Technical requirements 13
Running Linux as a guest VM 14

Installing a 64-bit Linux guest 14
Turn on your x86 system's virtualization extension support 15
Allocate sufficient space to the disk 17
Install the Oracle VirtualBox Guest Additions 17

Experimenting with the Raspberry Pi 20
Setting up the software – distribution and packages 23

Installing software packages 25
Installing the Oracle VirtualBox guest additions 26
Installing required software packages 26
Installing a cross toolchain and QEMU 27
Installing a cross compiler 28

Important installation notes 29
Additional useful projects 30

Using the Linux man pages 30
The tldr variant 31

Locating and using the Linux kernel documentation 32
Generating the kernel documentation from source 34

Static analysis tools for the Linux kernel 34
Linux Trace Toolkit next generation 35
The procmap utility 36
Simple Embedded ARM Linux System FOSS project 38
Modern tracing and performance analysis with [e]BPF 38
The LDV - Linux Driver Verification - project 39

Summary 41
Questions 41
Further reading 41

Chapter 2: Building the 5.x Linux Kernel from Source - Part 1 42
Technical requirements 43
Preliminaries for the kernel build 43

Kernel release nomenclature 44
Kernel development workflow – the basics 45
Types of kernel source trees 48

Steps to build the kernel from source 51

Table of Contents

[ii]

Step 1 – obtaining a Linux kernel source tree 52
Downloading a specific kernel tree 53
Cloning a Git tree 54

Step 2 – extracting the kernel source tree 56
A brief tour of the kernel source tree 57

Step 3 – configuring the Linux kernel 62
Understanding the kbuild build system 63
Arriving at a default configuration 64
Obtaining a good starting point for kernel configuration 65

Kernel config for typical embedded Linux systems 66
Kernel config using distribution config as a starting point 67
Tuned kernel config via the localmodconfig approach 68

Getting started with the localmodconfig approach 70
Tuning our kernel configuration via the make menuconfig UI 73

Sample usage of the make menuconfig UI 76
More on kbuild 84

Looking up the differences in configuration 85
Customizing the kernel menu – adding our own menu item 87

The Kconfig* files 88
Creating a new menu item in the Kconfig file 89
A few details on the Kconfig language 92

Summary 95
Questions 95
Further reading 95

Chapter 3: Building the 5.x Linux Kernel from Source - Part 2 96
Technical requirements 97
Step 4 – building the kernel image and modules 97
Step 5 – installing the kernel modules 103

Locating the kernel modules within the kernel source 103
Getting the kernel modules installed 105

Step 6 – generating the initramfs image and bootloader setup 107
Generating the initramfs image on Fedora 30 and above 108
Generating the initramfs image – under the hood 109

Understanding the initramfs framework 111
Why the initramfs framework? 111
Understanding the basics of the boot process on the x86 114
More on the initramfs framework 115

Step 7 – customizing the GRUB bootloader 118
Customizing GRUB – the basics 119
Selecting the default kernel to boot into 120
Booting our VM via the GNU GRUB bootloader 122
Experimenting with the GRUB prompt 124

Verifying our new kernel's configuration 126
Kernel build for the Raspberry Pi 128

Table of Contents

[iii]

Step 1 – cloning the kernel source tree 129
Step 2 – installing a cross-toolchain 130

First method – package install via apt 131
Second method – installation via the source repo 131

Step 3 – configuring and building the kernel 132
Miscellaneous tips on the kernel build 135

Minimum version requirements 136
Building a kernel for another site 136
Watching the kernel build run 137
A shortcut shell syntax to the build procedure 138
Dealing with compiler switch issues 139
Dealing with missing OpenSSL development headers 139

Summary 141
Questions 141
Further reading 141

Chapter 4: Writing Your First Kernel Module - LKMs Part 1 143
Technical requirements 144
Understanding kernel architecture – part 1 145

User space and kernel space 145
Library and system call APIs 146
Kernel space components 147

Exploring LKMs 150
The LKM framework 150
Kernel modules within the kernel source tree 152

Writing our very first kernel module 155
Introducing our Hello, world LKM C code 155
Breaking it down 156

Kernel headers 157
Module macros 158
Entry and exit points 158
Return values 159

The 0/-E return convention 159
The ERR_PTR and PTR_ERR macros 161
The __init and __exit keywords 162

Common operations on kernel modules 163
Building the kernel module 163
Running the kernel module 165
A quick first look at the kernel printk() 166
Listing the live kernel modules 169
Unloading the module from kernel memory 170
Our lkm convenience script 171

Understanding kernel logging and printk 173
Using the kernel memory ring buffer 174
Kernel logging and systemd's journalctl 176
Using printk log levels 178

Table of Contents

[iv]

The pr_<foo> convenience macros 180
Wiring to the console 181
Writing output to the Raspberry Pi console 183
Enabling the pr_debug() kernel messages 186

Rate limiting the printk instances 188
Generating kernel messages from the user space 191
Standardizing printk output via the pr_fmt macro 192
Portability and the printk format specifiers 194

Understanding the basics of a kernel module Makefile 195
Summary 198
Questions 198
Further reading 198

Chapter 5: Writing Your First Kernel Module - LKMs Part 2 199
Technical requirements 200
A "better" Makefile template for your kernel modules 200

Configuring a "debug" kernel 202
Cross-compiling a kernel module 204

Setting up the system for cross-compilation 205
Attempt 1 – setting the "special" environment variables 206
Attempt 2 – pointing the Makefile to the correct kernel source tree for
the target 209
Attempt 3 – cross-compiling our kernel module 211
Attempt 4 – cross-compiling our kernel module 215

Gathering minimal system information 217
Being a bit more security-aware 220

Licensing kernel modules 222
Emulating "library-like" features for kernel modules 224

Performing library emulation via multiple source files 224
Understanding function and variable scope in a kernel module 225
Understanding module stacking 229

Trying out module stacking 232
Passing parameters to a kernel module 239

Declaring and using module parameters 239
Getting/setting module parameters after insertion 242
Module parameter data types and validation 245

Validating kernel module parameters 245
Overriding the module parameter's name 246
Hardware-related kernel parameters 247

Floating point not allowed in the kernel 248
Auto-loading modules on system boot 250

Module auto-loading – additional details 254
Kernel modules and security – an overview 256

Proc filesystem tunables affecting the system log 257
The cryptographic signing of kernel modules 259
Disabling kernel modules altogether 261

Table of Contents

[v]

Coding style guidelines for kernel developers 262
Contributing to the mainline kernel 263

Getting started with contributing to the kernel 263
Summary 264
Questions 265
Further reading 265

Section 2: Understanding and Working with the Kernel

Chapter 6: Kernel Internals Essentials - Processes and Threads 267
Technical requirements 268
Understanding process and interrupt contexts 268
Understanding the basics of the process VAS 270
Organizing processes, threads, and their stacks – user and
kernel space 273

User space organization 276
Kernel space organization 278

Summarizing the current situation 280
Viewing the user and kernel stacks 281

Traditional approach to viewing the stacks 282
Viewing the kernel space stack of a given thread or process 282
Viewing the user space stack of a given thread or process 283

[e]BPF – the modern approach to viewing both stacks 284
The 10,000-foot view of the process VAS 288

Understanding and accessing the kernel task structure 290
Looking into the task structure 292
Accessing the task structure with current 294
Determining the context 295

Working with the task structure via current 297
Built-in kernel helper methods and optimizations 298
Trying out the kernel module to print process context info 300

Seeing that the Linux OS is monolithic 301
Coding for security with printk 301

Iterating over the kernel's task lists 303
Iterating over the task list I – displaying all processes 303
Iterating over the task list II – displaying all threads 304

Differentiating between the process and thread – the TGID and the PID 306
Iterating over the task list III – the code 308

Summary 311
Questions 312
Further reading 312

Chapter 7: Memory Management Internals - Essentials 313
Technical requirements 314
Understanding the VM split 314

Table of Contents

[vi]

Looking under the hood – the Hello, world C program 315
Going beyond the printf() API 317

VM split on 64-bit Linux systems 320
Virtual addressing and address translation 320

The process VAS – the full view 326
Examining the process VAS 327

Examining the user VAS in detail 328
Directly viewing the process memory map using procfs 329

Interpreting the /proc/PID/maps output 329
The vsyscall page 332

Frontends to view the process memory map 332
The procmap process VAS visualization utility 333

Understanding VMA basics 338
Examining the kernel segment 340

High memory on 32-bit systems 343
Writing a kernel module to show information about the kernel segment 344

Viewing the kernel segment on a Raspberry Pi via dmesg 344
Macros and variables describing the kernel segment layout 346
Trying it out – viewing kernel segment details 349
The kernel VAS via procmap 353
Trying it out – the user segment 358

The null trap page 360
Viewing kernel documentation on the memory layout 361

Randomizing the memory layout – KASLR 362
User-mode ASLR 363
KASLR 364
Querying/setting KASLR status with a script 364

Physical memory 368
Physical RAM organization 368

Nodes 368
Zones 371

Direct-mapped RAM and address translation 373
Summary 378
Questions 378
Further reading 378

Chapter 8: Kernel Memory Allocation for Module Authors - Part 1 379
Technical requirements 380
Introducing kernel memory allocators 380
Understanding and using the kernel page allocator (or BSA) 382

The fundamental workings of the page allocator 383
Freelist organization 383
The workings of the page allocator 386
Working through a few scenarios 388

The simplest case 388
A more complex case 388
The downfall case 388

Page allocator internals – a few more details 389

Table of Contents

[vii]

Learning how to use the page allocator APIs 391
Dealing with the GFP flags 393
Freeing pages with the page allocator 395
Writing a kernel module to demo using the page allocator APIs 397
Deploying our lowlevel_mem_lkm kernel module 403
The page allocator and internal fragmentation 407

The exact page allocator APIs 407
The GFP flags – digging deeper 409

Never sleep in interrupt or atomic contexts 409
Understanding and using the kernel slab allocator 411

The object caching idea 412
Learning how to use the slab allocator APIs 415

Allocating slab memory 415
Freeing slab memory 417
Data structures – a few design tips 419
The actual slab caches in use for kmalloc 420
Writing a kernel module to use the basic slab APIs 422

Size limitations of the kmalloc API 425
Testing the limits – memory allocation with a single call 426

Checking via the /proc/buddyinfo pseudo-file 429
Slab allocator – a few additional details 431

Using the kernel's resource-managed memory allocation APIs 431
Additional slab helper APIs 432
Control groups and memory 433

Caveats when using the slab allocator 434
Background details and conclusions 434
Testing slab allocation with ksize() – case 1 435
Testing slab allocation with ksize() – case 2 436

Interpreting the output from case 2 438
Graphing it 439

Slab layer implementations within the kernel 440
Summary 441
Questions 441
Further reading 441

Chapter 9: Kernel Memory Allocation for Module Authors - Part 2 443
Technical requirements 443
Creating a custom slab cache 444

Creating and using a custom slab cache within a kernel module 444
Creating a custom slab cache 445
Using the new slab cache's memory 448
Destroying the custom cache 449

Custom slab – a demo kernel module 449
Understanding slab shrinkers 454
The slab allocator – pros and cons – a summation 455

Debugging at the slab layer 456
Debugging through slab poisoning 456

Table of Contents

[viii]

Trying it out – triggering a UAF bug 458
SLUB debug options at boot and runtime 461

Understanding and using the kernel vmalloc() API 462
Learning to use the vmalloc family of APIs 463
A brief note on memory allocations and demand paging 467
Friends of vmalloc() 469
Specifying the memory protections 473

Testing it – a quick Proof of Concept 474
Why make memory read-only? 476

The kmalloc() and vmalloc() APIs – a quick comparison 476
Memory allocation in the kernel – which APIs to use when 477

Visualizing the kernel memory allocation API set 478
Selecting an appropriate API for kernel memory allocation 479
A word on DMA and CMA 482

Stayin' alive – the OOM killer 483
Reclaiming memory – a kernel housekeeping task and OOM 483
Deliberately invoking the OOM killer 484

Invoking the OOM killer via Magic SysRq 485
Invoking the OOM killer with a crazy allocator program 485

Understanding the rationale behind the OOM killer 487
Case 1 – vm.overcommit set to 2, overcommit turned off 488
Case 2 – vm.overcommit set to 0, overcommit on, the default 489

Demand paging and OOM 490
Understanding the OOM score 494

Summary 495
Questions 496
Further reading 496

Chapter 10: The CPU Scheduler - Part 1 497
Technical requirements 498
Learning about the CPU scheduling internals – part 1 –
essential background 498

What is the KSE on Linux? 498
The POSIX scheduling policies 499

Visualizing the flow 502
Using perf to visualize the flow 502
Visualizing the flow via alternate (CLI) approaches 506

Learning about the CPU scheduling internals – part 2 507
Understanding modular scheduling classes 507

Asking the scheduling class 513
A word on CFS and the vruntime value 515

Threads – which scheduling policy and priority 517
Learning about the CPU scheduling internals – part 3 521

Who runs the scheduler code? 521
When does the scheduler run? 521

The timer interrupt part 522

Table of Contents

[ix]

The process context part 523
Preemptible kernel 524
CPU scheduler entry points 526

The context switch 528
Summary 529
Questions 529
Further reading 529

Chapter 11: The CPU Scheduler - Part 2 530
Technical requirements 530
Visualizing the flow with LTTng and trace-cmd 531

Visualization with LTTng and Trace Compass 531
Recording a kernel tracing session with LTTng 532
Reporting with a GUI – Trace Compass 533

Visualizing with trace-cmd 534
Recording a sample session with trace-cmd record 535
Reporting and interpretation with trace-cmd report (CLI) 537
Reporting and interpretation with a GUI frontend 542

Understanding, querying, and setting the CPU affinity mask 543
Querying and setting a thread's CPU affinity mask 545

Using taskset(1) to perform CPU affinity 549
Setting the CPU affinity mask on a kernel thread 549

Querying and setting a thread’s scheduling policy and priority 550
Within the kernel – on a kernel thread 551

CPU bandwidth control with cgroups 552
Looking up cgroups v2 on a Linux system 554
Trying it out – a cgroups v2 CPU controller 556

Converting mainline Linux into an RTOS 561
Building RTL for the mainline 5.x kernel (on x86_64) 563

Obtaining the RTL patches 563
Applying the RTL patch 566
Configuring and building the RTL kernel 566

Mainline and RTL – technical differences summarized 570
Latency and its measurement 571

Measuring scheduling latency with cyclictest 573
Getting and applying the RTL patchset 574
Installing cyclictest (and other required packages) on the device 577
Running the test cases 578
Viewing the results 580

Measuring scheduler latency via modern BPF tools 583
Summary 584
Questions 585
Further reading 585

Section 3: Delving Deeper
Chapter 12: Kernel Synchronization - Part 1 587

Table of Contents

[x]

Critical sections, exclusive execution, and atomicity 588
What is a critical section? 588
A classic case – the global i ++ 591
Concepts – the lock 594

A summary of key points 597
Concurrency concerns within the Linux kernel 598

Multicore SMP systems and data races 599
Preemptible kernels, blocking I/O, and data races 600
Hardware interrupts and data races 601
Locking guidelines and deadlocks 602

Mutex or spinlock? Which to use when 605
Determining which lock to use – in theory 607
Determining which lock to use – in practice 608

Using the mutex lock 609
Initializing the mutex lock 610
Correctly using the mutex lock 611
Mutex lock and unlock APIs and their usage 612

Mutex lock – via [un]interruptible sleep? 614
Mutex locking – an example driver 615
The mutex lock – a few remaining points 620

Mutex lock API variants 620
The mutex trylock variant 620
The mutex interruptible and killable variants 622
The mutex io variant 623

The semaphore and the mutex 623
Priority inversion and the RT-mutex 624
Internal design 625

Using the spinlock 626
Spinlock – simple usage 626
Spinlock – an example driver 628
Test – sleep in an atomic context 630

Testing on a 5.4 debug kernel 631
Testing on a 5.4 non-debug distro kernel 636

Locking and interrupts 639
Using spinlocks – a quick summary 646

Summary 647
Questions 647
Further reading 647

Chapter 13: Kernel Synchronization - Part 2 648
Using the atomic_t and refcount_t interfaces 649

The newer refcount_t versus older atomic_t interfaces 650
The simpler atomic_t and refcount_t interfaces 652

Examples of using refcount_t within the kernel code base 654
64-bit atomic integer operators 656

Using the RMW atomic operators 658

Table of Contents

[xi]

RMW atomic operations – operating on device registers 658
Using the RMW bitwise operators 661
Using bitwise atomic operators – an example 663

Efficiently searching a bitmask 666
Using the reader-writer spinlock 666

Reader-writer spinlock interfaces 667
A word of caution 669
The reader-writer semaphore 670

Cache effects and false sharing 671
Lock-free programming with per-CPU variables 673

Per-CPU variables 674
Working with per-CPU 675

Allocating, initialization, and freeing per-CPU variables 675
Performing I/O (reads and writes) on per-CPU variables 676

Per-CPU – an example kernel module 678
Per-CPU usage within the kernel 682

Lock debugging within the kernel 684
Configuring a debug kernel for lock debugging 685
The lock validator lockdep – catching locking issues early 687
Examples – catching deadlock bugs with lockdep 690

Example 1 – catching a self deadlock bug with lockdep 690
Fixing it 694

Example 2 – catching an AB-BA deadlock with lockdep 695
lockdep – annotations and issues 700

lockdep annotations 700
lockdep issues 701

Lock statistics 702
Viewing lock stats 702

Memory barriers – an introduction 704
An example of using memory barriers in a device driver 705

Summary 707
Questions 708
Further reading 708

About Packt 709

Other Books You May Enjoy 710

Index 713

Preface
This book has been explicitly written with a view to helping you learn Linux kernel
development in a practical, hands-on fashion, along with the necessary theoretical
background to give you a well-rounded view of this vast and interesting topic area. It
deliberately focuses on kernel development via the powerful Loadable Kernel
Module (LKM) framework; the vast majority of kernel projects and products, which
includes device driver development, are done in this manner.

The focus is kept on both working hands-on with, and understanding at a sufficiently
deep level, the internals of the Linux OS. In these regards, we cover everything from
building the Linux kernel from source through understanding and working with
complex topics such as synchronization within the kernel.

To guide you on this exciting journey, we divide this book into three sections. The
first section covers the basics – setting up a workspace required for kernel
development, building the kernel from source, and writing your first kernel module.

The next section, a key one, will help you understand important and essential kernel
internals – the Linux kernel architecture, the task structure, and user and kernel-mode
stacks. Memory management is a key and interesting topic – we devote three whole
chapters to it (covering the internals to a sufficient extent, and importantly, how
exactly to allocate any free kernel memory). The working and deeper details of CPU
scheduling on Linux round off this section.

The last section of the book deals with the more advanced topic of kernel
synchronization – a necessity for professional design and code on the Linux kernel.
We devote two whole chapters to covering key topics within this.

The book uses the, at the time of writing, latest 5.4 Long Term Support (LTS) Linux
kernel. It's a kernel that will be maintained (both bug and security fixes) from
November 2019 right through December 2025! This is a key point, ensuring that this
book's content remains current and valid for years to come!

We very much believe in a hands-on approach: over 20 kernel modules (besides
several user apps and shell scripts) on this book's GitHub repository make the
learning come alive, making it fun, interesting, and useful.

We highly recommend you also make use of this book's companion guide, Linux
Kernel Programming (Part 2).

Preface

[2]

It's an excellent industry-aligned beginner's guide to writing misc character drivers,
performing I/O on peripheral chip memory and handling hardware interrupts. You
can get this book for free along with your copy, alternately you can also find this
eBook in the GitHub repository at: https:/ /github. com/PacktPublishing/ Linux-
Kernel-Programming/ tree/ master/ Linux-Kernel- Programming- (Part- 2).

We really hope you learn from and enjoy this book. Happy reading!

Who this book is for
This book is primarily for those of you beginning your journey in the vast arena of
Linux kernel module development and, to some extent, Linux device driver
development. It's also very much targeted at those of you who have already been
working on Linux modules and/or drivers, who wish to gain a much deeper, well-
structured understanding of Linux kernel architecture, memory management, and
synchronization. This level of knowledge about the underlying OS, covered in a
properly structured manner, will help you no end when you face difficult-to-debug
real-world situations.

What this book covers
Chapter 1, Kernel Workspace Setup, guides you on setting up a full-fledged Linux
kernel development workspace (typically, as a fully virtualized guest system). You
will learn how to install all required software packages on it, including a cross
toolchain. You will also learn about several other open source projects that will be
useful on your journey to becoming a professional kernel/driver developer. Once this
chapter is done, you will be ready to build a Linux kernel as well as to start writing
and testing kernel code (via the loadable kernel module framework). In our view, it's
very important for you to actually use this book in a hands-on fashion, trying out and
experimenting with code. The best way to learn something is to do so empirically –
not taking anyone's word on anything at all, but by trying it out and experiencing it
for yourself.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)

Preface

[3]

Chapter 2, Building the 5.x Linux Kernel from Source – Part 1, is the first part of
explaining how to build the modern Linux kernel from scratch with source code. In
this part, you will be given necessary background information – the version
nomenclature, the different source trees, the layout of the kernel source – on the
kernel source tree. Next, you will be shown in detail how exactly to download a
stable vanilla Linux kernel source tree onto the VM. We shall then learn a little
regarding the layout of the kernel source code, getting, in effect, a "10,000-foot view"
of the kernel code base. The actual work of extracting and configuring the Linux
kernel then follows. Creating and using a custom menu entry for kernel configuration
is also shown.

Chapter 3, Building the 5.x Linux Kernel from Source – Part 2, is the second part on
performing kernel builds from source code. In this part, you will continue from the
previous chapter, now actually building the kernel, installing kernel modules,
understanding what exactly initramfs (initrd) is and how to generate it, as well as
setting up the bootloader (for x86). Also, as a valuable add-on, this chapter then
explains how to cross-compile the kernel for a typical embedded ARM target (using
the popular Raspberry Pi as a target device). Several tips and tricks on kernel builds,
and even kernel security (hardening), are mentioned as well.

Chapter 4, Writing Your First Kernel Module – LKMs Part 1, is the first of two parts that
cover a fundamental aspect of Linux kernel development – the LKM framework, and
how it is to be understood and used by the "module user," by you – the kernel
module or device driver programmer. It covers the basics of the Linux kernel
architecture and then, in great detail, every step involved in writing a simple "Hello,
world" kernel module, compiling, inserting, checking, and removing it from the
kernel space. We also cover kernel logging via the ubiquitous printk API in detail.

Chapter 5, Writing Your First Kernel Module – LKMs Part 2, is the second part that
covers the LKM framework. Here, we begin with something critical – learning how to
use a "better" Makefile, which will help you generate more robust code (having
several code-checking, correction, static analysis targets, and so on). We then show in
detail the steps to successfully cross-compile a kernel module for an alternate
architecture, how to emulate "library-like" code in the kernel (via both the "linking"
and the module-stacking approaches), defining and using passing parameters to your
kernel module. Additional topics include the auto-loading of modules at boot,
important security guidelines, and some information on the kernel documentation
and how to access it. Several example kernel modules make the learning more
interesting.

Preface

[4]

Chapter 6, Kernel Internals Essentials – Processes and Threads, delves into some essential
kernel internals topics. We begin with what is meant by execution in process and
interrupt contexts, and minimal but required coverage of the process user virtual
address space (VAS) layout. This sets the stage for you; you'll then learn about Linux
kernel architecture in more depth, focusing on the organization of process/thread task
structures and their corresponding stacks – user- and kernel-mode. We then show
you more on the kernel task structure (a "root" data structure), how to practically
glean information from it, and even iterate over various (task) lists. Several kernel
modules make the topic come alive.

Chapter 7, Memory Management Internals – Essentials, a key chapter, delves into
essential internals of the Linux memory management subsystem, to the level of detail
required for the typical module author or driver developer. This coverage is thus
necessarily more theoretical in nature; nevertheless, the knowledge gained here is
crucial to you, the kernel developer, both for deep understanding and usage of
appropriate kernel memory APIs as well as for performing meaningful debugging at
the level of the kernel. We cover the VM split (and how it is on various actual
architectures), gaining deep insight into the user VAS (our procmap utility will be an
eye-opener), as well as the kernel segment (or kernel VAS). We then briefly delve into
the security technique of memory layout randomization ([K]ASLR), and end this
chapter with a discussion on physical memory organization within Linux.

Chapter 8, Kernel Memory Allocation for Module Authors Part 1, gets our hands dirty
with the kernel memory allocation (and obviously, deallocation) APIs. You will first
learn about the two allocation "layers" within Linux – the slab allocator that's layered
above the kernel memory allocation "engine," and the page allocator (or BSA). We
shall briefly learn about the underpinnings of the page allocator algorithm and its
"freelist" data structure; this information is valuable when deciding which layer to
use. Next, we dive straight into the hands-on work of learning about the usage of
these key APIs. The ideas behind the slab allocator (or cache) and the primary kernel
allocator APIs – the kzalloc/kfree – are covered. Importantly, the size limitations,
downsides, and caveats when using these common APIs are covered in detail as well.
Also, especially useful for driver authors, we cover the kernel's modern resource-
managed memory allocation APIs (the devm_*() routines).

Preface

[5]

Chapter 9, Kernel Memory Allocation for Module Authors Part 2, goes further, in a
logical fashion, from the previous chapter. Here, you will learn how to create custom
slab caches (useful for high-frequency (de)allocations for, say, a custom driver), along
with some help regarding debugging memory allocations at the slab layer. Next,
you'll understand and use the vmalloc() API (and friends). Very importantly,
having covered many APIs for kernel memory (de)allocation, you will now learn how
to pick and choose an appropriate API given the real-world situation you find
yourself in. This chapter is rounded off with important coverage of the kernel's Out
Of Memory (OOM) "killer" framework. Understanding it will also lead to a much
deeper understanding of how user space memory allocation really works, via the
demand paging technique.

Chapter 10, The CPU Scheduler - Part 1, the first part of two chapters, covers a useful
mix of theory and practice regarding CPU scheduling on the Linux OS. The minimal
necessary theoretical background on the thread as the KSE and available kernel
scheduling policies are topics initially covered. Next, sufficient kernel internal details
on CPU scheduling are covered to have you understand how scheduling on the
modern Linux OS works. Along the way, you will learn how to "visualize" PU
scheduling with powerful tools such as perf; thread scheduling attributes (policy and
real-time priority) are delved into as well.

Chapter 11, The CPU Scheduler – Part 2, the second part on CPU scheduling,
continues to cover the topic in more depth. Here, we cover further visualization tools
for CPU scheduling (leveraging powerful software such as LTTng and the trace-cmd
utility). Next, the CPU affinity mask and how to query/set it, controlling scheduling
policy and priority on a per-thread basis – such a powerful feature! – are delved into.
An overview of the meaning and importance of control groups (cgroups), along with
an interesting example on CPU bandwidth allocation via cgroups v2 is seen. Can you
run Linux as an RTOS? Indeed you can! The details on actually doing so are then
shown. We round off this chapter with a discussion on (scheduling) latencies and
how to measure them.

Chapter 12, Kernel Synchronization – Part 1, first covers the key concepts regarding
critical sections, atomicity, what a lock conceptually achieves and, very importantly,
the why of all this. We then cover concurrency concerns when working within the
Linux kernel; this moves us naturally on to important locking guidelines, what
deadlock means, and key approaches to preventing deadlock. Two of the most
popular kernel locking technologies – the mutex lock and the spinlock – are then
discussed in depth along with several (driver) code examples.

Preface

[6]

Chapter 13, Kernel Synchronization – Part 2, continues the journey on kernel
synchronization. Here, you'll learn about key locking optimizations – using
lightweight atomic and (the more recent) refcount operators to safely operate on
integers, RMW bit operators to safely perform bit ops, and the usage of the reader-
writer spinlock over the regular one. Inherent risks, such as cache "false sharing" are
discussed as well. An overview of lock-free programming techniques (with an
emphasis on per-CPU variables and their usage, along with examples) is then
covered. A critical topic – lock debugging techniques, including the usage of the
kernel's powerful "lockdep" lock validator, is then covered. The chapter is rounded
off with a brief look at memory barriers (along with an example).

To get the most out of this book
To get the most out of this book, we expect you to have knowledge and experience in
the following:

Know your way around a Linux system, on the command line (the shell).
The C programming language.
It's not mandatory but experience with Linux system programming
concepts and technologies will greatly help.

The details on hardware and software requirements, as well as their installation, are
covered completely and in depth in Chapter 1, Kernel Workspace Setup. It's critical that
you read it in detail and follow the instructions therein.

Also, we have tested all the code in this book (it has its own GitHub repository as
well) on these platforms:

x86_64 Ubuntu 18.04 LTS guest OS (running on Oracle VirtualBox 6.1)
x86_64 Ubuntu 20.04.1 LTS guest OS (running on Oracle VirtualBox 6.1)
x86_64 Ubuntu 20.04.1 LTS native OS
ARM Raspberry Pi 3B+ (running both its "distro" kernel as well as our
custom 5.4 kernel); lightly tested
x86_64 CentOS 8 guest OS (running on Oracle VirtualBox 6.1); lightly tested

We assume that, when running Linux as a guest (VM), the host system is either
Windows 10 or later (of course, even Windows 7 will work), or a recent Linux
distribution (for example, Ubuntu or Fedora), or even macOS.

Preface

[7]

If you are using the digital version of this book, we advise you to type the code
yourself or, better, access the code via the GitHub repository (link available in the
next section). Doing so will help you avoid any potential errors related to the
copying and pasting of code.

I strongly recommend that you follow the empirical approach: not taking anyone's word
on anything at all, but trying it out and experiencing it for yourself. Hence, this book gives
you many hands-on experiments and kernel code examples that you can and must try
out yourself; this will greatly aid you in making real progress and deeply learning
and understanding various aspects of Linux kernel development.

Download the example code files
You can download the example code files for this book from GitHub at https:/ /
github.com/PacktPublishing/ Linux- Kernel- Programming. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: http:/ /www. packtpub. com/ sites/ default/
files/downloads/ 9781789953435_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "The ioremap() API returns a KVA of the void * type
(since it's an address location)"

A block of code is set as follows:

static int __init miscdrv_init(void)
{
 int ret;
 struct device *dev;

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789953435_ColorImages.pdf

Preface

[8]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

#define pr_fmt(fmt) "%s:%s(): " fmt, KBUILD_MODNAME, __func__
[...]
#include <linux/miscdevice.h>
#include <linux/fs.h>
[...]

Any command-line input or output is written as follows:

pi@raspberrypi:~ $ sudo cat /proc/iomem

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us
at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

https://www.packtpub.com/support/errata

Preface

[9]

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: The Basics

Here, you will learn how to perform basic kernel development tasks. You will set up
a kernel development workspace, build a Linux kernel from source, learn about the
LKM framework, and write a "Hello, world" kernel module.

This section comprises the following chapters:

Chapter 1, Kernel Workspace Setup
Chapter 2, Building the 5.x Linux Kernel from Source, Part 1
Chapter 3, Building the 5.x Linux Kernel from Source, Part 2
Chapter 4, Writing Your First Kernel Module – LKMs Part 1
Chapter 5, Writing Your First Kernel Module – LKMs Part 2

Section 1: The Basics Chapter 1

[11]

We highly recommend you also make use of this book's companion guide, Linux
Kernel Programming (Part 2).

It's an excellent industry-aligned beginner's guide to writing misc character drivers,
performing I/O on peripheral chip memory and handling hardware interrupts. This
book is primarily for Linux programmers beginning to find their way with device
driver development. Linux device driver developers looking to overcome frequent
and common kernel/driver development issues, as well as understand and learn to
perform common driver tasks - the modern Linux Device Model (LDM) framework,
user-kernel interfaces, performing peripheral I/O, handling hardware interrupts,
dealing with concurrency and more - will benefit from this book. A basic
understanding of Linux kernel internals (and common APIs), kernel module
development and C programming is required.

You can get this book for free along with your copy, alternately you can also find this
eBook in the GitHub repository: https:/ /github. com/PacktPublishing/ Linux-
Kernel-Programming/ tree/ master/ Linux-Kernel- Programming- (Part- 2).

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/Linux-Kernel-Programming-(Part-2)

1
Kernel Workspace Setup

Hello, and welcome to this book on learning Linux kernel development. To get the
most out of this book, it is very important that you first set up the workspace
environment that we will be using throughout the book. This chapter will teach you
exactly how to do this and get started.

We will install a recent Linux distribution, preferably as a Virtual Machine (VM),
and set it up to include all the required software packages. We will also clone this
book's code repository on GitHub, and learn about a few useful projects that will help
along this journey.

The best way to learn something is to do so empirically – not taking anyone's word on
anything at all, but trying it out and experiencing it for yourself. Hence, this book
gives you many hands-on experiments and kernel code examples that you can and
indeed must try out yourself; this will greatly aid in your making real progress and
deeply learning and understanding various aspects of Linux kernel and driver
development. So, let's begin!

This chapter will take us through the following topics, which will help us set up our
environment:

Running Linux as a guest VM
Setting up the software – distribution and packages
A few additional useful projects

Kernel Workspace Setup Chapter 1

[13]

Technical requirements
You will need a modern desktop PC or laptop. Ubuntu Desktop specifies the
following as "recommended system requirements" for the installation and usage of
the distribution:

A 2 GHz dual core processor or better.
RAM:

Running on physical host: 2 GB or more system memory
(more will certainly help).
Running as a guest VM: The host system should have at least
4 GB RAM (the more the better and the smoother the
experience).

25 GB of free hard drive space (I suggest more, at least double this).
Either a DVD drive or a USB port for the installer media (not required
when setting up Ubuntu as a guest VM).
Internet access is definitely helpful and required at times.

As performing tasks such as building a Linux kernel from source is a very memory-
and CPU-intensive process, I highly recommend that you try it out on a powerful
Linux system with plenty of RAM and disk space to spare as well. It should be pretty
obvious – the more RAM and CPU power the host system has, the better!

Like any seasoned kernel contributor, I would say that working on a native Linux
system is best. However, for the purposes of this book, we cannot assume that you
will always have a dedicated native Linux box available to you. So, we will assume
that you are working on a Linux guest. Working within a guest VM also adds an
additional layer of isolation and thus safety.

Cloning our code repository: The complete source code for this book is freely
available on GitHub at https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming. You can clone and work on it by cloning the git tree, like so:

git clone
https://github.com/PacktPublishing/Linux-Kernel-Programming.git

The source code is organized chapter-wise. Each chapter is represented as a directory
– for example, ch1/ has the source code for this chapter. The root of the source tree
has some code that is common to all chapters, such as the source files convenient.h,
klib_llkd.c, as well as others.

https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development

Kernel Workspace Setup Chapter 1

[14]

For efficient code browsing, I would strongly recommend that you always index the
code base with ctags(1) and/or cscope(1). For example, to set up the ctags index,
just cd to the root of the source tree and type ctags -R .

Unless noted otherwise, the code output we show in the book is the
output as seen on an x86-64 Ubuntu 18.04.3 LTS guest VM (running
under Oracle VirtualBox 6.1). You should realize that due to (usually
minor) distribution – and even within the same distributions but
differing versions – differences, the output shown here may not
perfectly match what you see on your Linux system.

Running Linux as a guest VM
As discussed previously, a practical and convenient alternative to using a native
Linux system is to install and use the Linux distribution as a guest OS on a VM. It's
key that you install a recent Linux distribution, preferably as a VM to be safe and
avoid unpleasant data loss or other surprises. The fact is when working at the level of
the kernel, abruptly crashing the system (and the data loss risks that arise thereof) is
actually a commonplace occurrence. I recommend using Oracle VirtualBox 6.x (or the
latest stable version) or other virtualization software, such as VMware Workstation.

Both of these are freely available. It's just that the code for this book
has been tested on VirtualBox 6.1. Oracle VirtualBox is considered
Open Source Software (OSS) and is licensed under the GPL v2 (the
same as the Linux kernel). You can download it from https:/ /www.
virtualbox. org/ wiki/ Downloads. Its documentation can be found
here: https:/ /www. virtualbox. org/ wiki/ End- user_
documentation.

The host system should be either MS Windows 10 or later (of course, even Windows 7
will work), a recent Linux distribution (for example, Ubuntu or Fedora), or macOS.
So, let's get started by installing our Linux guest.

Installing a 64-bit Linux guest
Here, I won't delve into the minutiae of installing Linux as a guest on Oracle
VirtualBox, the reason being that this installation is not directly related to Linux
kernel development. There are many ways to set up a Linux VM; we really don't want
to get into the details and the pros and cons of each of them here.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation

Kernel Workspace Setup Chapter 1

[15]

But if you are not familiar with this, don't worry. For your convenience, here are some
excellent resources that will help you out:

A very clearly written tutorial entitled Install Linux Inside Windows Using
VirtualBox by Abhishek Prakash (It's FOSS!, August 2019): https:/ /
itsfoss. com/ install- linux- in- virtualbox/ .

An alternate, similarly excellent resource is Install Ubuntu on Oracle
VirtualBox: https:/ /brb. nci.nih. gov/ seqtools/ installUbuntu. html.

Also, you can look up useful resources for installing a Linux guest on VirtualBox in
the Further reading section at the end of this chapter.

While you install the Linux VM, keep the following things in mind.

Turn on your x86 system's virtualization extension
support
Installing a 64-bit Linux guest requires that CPU virtualization extension support
(Intel VT-x or AMD-SV) be turned on within the host system's basic input/output
system (BIOS) settings. Let's see how to do this:

Our first step is to ensure that our CPU supports virtualization:1.
There are two broad ways to check this while on a Windows1.
host:

One, run the Task Manager app and switch to the
Performance tab. Below the CPU graph, you will see,
among several other things, Virtualization, with
Enabled or Disabled following it.
A second way to check on Windows systems is to
open a Command window (cmd). In Command
Prompt, type systeminfo and press Enter. Among the
output seen will be the Virtualization Enabled
in firmware line. It will be followed by either Yes or
No.

https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html
https://brb.nci.nih.gov/seqtools/installUbuntu.html

Kernel Workspace Setup Chapter 1

[16]

To check this while on a Linux host, from Terminal, issue the2.
following commands (processor virtualization extension
support: vmx is the check for Intel processors, smv is the check for
AMD processors):

egrep --color "vmx|svm" /proc/cpuinfo

For Intel CPUs, the vmx flag will show up (in color) if
virtualization is supported. In the case of AMD CPUs, svm
will show up (in color). With this, we know that our CPU
supports virtualization. But in order to use it, we need to
enable it in the computer BIOS.

Enter the BIOS by pressing Del or F12 while booting (the precise key to2.
press varies with the BIOS). Please refer to your system's manual to see
which key to use. Search for terms such as Virtualization or
Virtualization Technology (VT-x). Here is an example for Award
BIOS:

Figure 1.1 – Setting the BIOS Virtualization option to the Enabled state

If you are using an Asus EFI-BIOS, you will have to set the entry to
[Enabled] if it is not set by default. Visit https:/ /superuser. com/
questions/ 367290/ how- to-enable- hardware- virtualization- on-
asus- motherboard/ 375351#375351.

https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351
https://superuser.com/questions/367290/how-to-enable-hardware-virtualization-on-asus-motherboard/375351#375351

Kernel Workspace Setup Chapter 1

[17]

Now, choose to use hardware virtualization in VirtualBox's Settings menu3.
for your VM. To do this, click on System and then Acceleration. After that,
check the boxes, as shown in the following screenshot:

Figure 1.2 – Enabling hardware virtualization options within the VirtualBox VM settings

This is how we enable our host processor's hardware virtualization features for
optimal performance.

Allocate sufficient space to the disk
For most desktop/laptop systems, allocating a gigabyte of RAM and two CPUs to the
guest VM should be sufficient.

However, when allocating space for the guest's disk, please be generous. Instead of
the usual/default 8 GB suggested, I strongly recommend you make it 50 GB or even
more. Of course, this implies that the host system has more disk space than this
available! Also, you can specify this amount to be dynamically allocated or allocated on-
demand. The hypervisor will "grow" the virtual disk optimally, not giving it the entire
space to begin with.

Install the Oracle VirtualBox Guest Additions
For best performance, it's important to install the Oracle VirtualBox Guest Additions
as well within the guest VM. These are essentially para-virtualization accelerator
software, which greatly helps with optimal performance. Let's see how to do this on
an Ubuntu guest session:

First, update your Ubuntu guest OS's software packages. You can do1.
so using the following command:

sudo apt update

sudo apt upgrade

Kernel Workspace Setup Chapter 1

[18]

On completion, reboot your Ubuntu guest OS and then install the required2.
packages using the following command:

sudo apt install build-essential dkms linux-headers-$(uname -
r)

Now, from the VM menu bar, go to Devices | Insert Guest Additions CD3.
image.... This will mount the Guest Additions ISO file inside your
VM. The following screenshot shows what it looks like doing this:

Figure 1.3 – VirtualBox | Devices | Insert Guest Additions CD image

Now, a dialog window will pop up that will prompt you to run the4.
installer in order to launch it. Select Run.
The Guest Additions installation will now take place in a Terminal window5.
that shows up. Once complete, hit the Enter key to close the window.
Then, power off your Ubuntu guest OS in order to change some settings
from the VirtualBox manager, as explained next.

Kernel Workspace Setup Chapter 1

[19]

Now, to enable Shared Clipboard and Drag'n'Drop functionalities6.
between the guest and host machines, go to General | Advanced and
enable the two options (Shared Clipboard and Drag'n'Drop) as you wish
with the dropdowns:

Figure 1.4 – VirtualBox: enabling functionality between the host and guest

Then, click OK to save the settings. Now boot into your guest system, log7.
in, and test that everything is working fine.

As of the time of writing, Fedora 29 has an issue with the installation
of the vboxsf kernel module required for the Shared
Folders feature. I refer you to the following resource to attempt to
rectify the situation: Bug 1576832 - virtualbox-guest-additions does not
mount shared folder (https:/ /bugzilla. redhat. com/ show_ bug. cgi?
id= 1576832).

If this refuses to work, you can simply transfer files between your
host and guest VM over SSH (using scp(1)); to do so, install and
start up the SSH daemon with the following commands:
sudo yum install openssh-server
sudo systemctl start sshd

Remember to update the guest VM regularly and when prompted. This is an essential
security requirement. You can do so manually by using the following:

sudo /usr/bin/update-manager

https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832
https://bugzilla.redhat.com/show_bug.cgi?id=1576832

Kernel Workspace Setup Chapter 1

[20]

Finally, to be safe, please do not keep any important data on the guest VM. We will be
working on kernel development. Crashing the guest kernel is actually a commonplace
occurrence. While this usually does not cause data loss, you can never tell! To be safe,
always back up any important data. This applies to Fedora as well. To learn how to
install Fedora as a VirtualBox guest, visit https:/ /fedoramagazine. org/ install-
fedora-virtualbox- guest/ .

Sometimes, especially when the overhead of the X Window System
(or Wayland) GUI is too high, it's preferable to simply work in
console mode. You can do so by appending 3 (the run level) to the
kernel command line via the bootloader. However, working in
console mode within VirtualBox may not be that pleasant an
experience (for one, the clipboard is unavailable, and the screen size
and fonts are less than desirable). Thus, simply doing a remote login
(via ssh, putty, or equivalent) into the VM from the host system
can be a great way to work.

Experimenting with the Raspberry Pi
The Raspberry Pi is a popular credit card-sized Single-Board Computer (SBC), much
like a small-factor PC that has USB ports, a microSD card, HDMI, audio, Ethernet,
GPIO, and more. The System on Chip (SoC) that powers it is from Broadcom, and in
it is an ARM core or cluster of cores. Though not mandatory, of course, in this book,
we strive to also test and run our code on a Raspberry Pi 3 Model B+ target. Running
your code on different target architectures is always a good eye-opener to possible
defects and helps with testing. I encourage you to do the same:

Figure 1.5 – The Raspberry Pi with a USB-to-serial adapter cable attached to its GPIO pins

https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/
https://fedoramagazine.org/install-fedora-virtualbox-guest/

Kernel Workspace Setup Chapter 1

[21]

You can work on the Raspberry Pi target either using a digital monitor/TV via HDMI
as the output device and a traditional keyboard/mouse over its USB ports or, more
commonly for developers, over a remote shell via ssh(1). However,
the SSH approach does not cut it in all circumstances. Having a serial console on the
Raspberry Pi helps, especially when doing kernel debugging.

I would recommend that you check out the following article, which
will help you set up a USB-to-serial connection, thus getting a
console login to the Raspberry Pi from a PC/laptop: WORKING ON
THE CONSOLE WITH THE RASPBERRY PI, kaiwanTECH: https:/
/kaiwantech. wordpress. com/2018/ 12/ 16/ working- on- the-
console- with- the- raspberry- pi/.

To set up your Raspberry Pi, please refer to the official documentation: https:/ /www.
raspberrypi.org/ documentation/ . Our Raspberry Pi system runs the "official"
Raspbian (Debian for Raspberry Pi) Linux OS with a recent (as of the time of writing)
4.14 Linux kernel. On the console of the Raspberry Pi, we run the following
commands:

rpi $ lsb_release -a
No LSB modules are available.
Distributor ID: Raspbian
Description: Raspbian GNU/Linux 9.6 (stretch)
Release: 9.6
Codename: stretch
rpi $ uname -a
Linux raspberrypi 4.14.79-v7+ #1159 SMP Sun Nov 4 17:50:20 GMT 2018
armv7l GNU/Linux
rpi $

What if you don't have a Raspberry Pi, or it's not handy? Well, there's always a way –
emulation! Though not as good as having the real thing, emulating the Raspberry Pi
with the powerful Free and Open Source Software (FOSS) emulator
called QEMU or Quick Emulator is a nice way to get started, at least.

https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://kaiwantech.wordpress.com/2018/12/16/working-on-the-console-with-the-raspberry-pi/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/

Kernel Workspace Setup Chapter 1

[22]

As the details of setting up the emulated Raspberry Pi via QEMU go
beyond the scope of this book, we will not be covering it. However,
you can check out the following links to find out more: Emulating
Raspberry Pi on Linux: http:/ /embedonix. com/ articles/ linux/
emulating- raspberry- pi-on-linux/ and qemu-rpi-kernel,
GitHub: https:/ /github. com/dhruvvyas90/ qemu- rpi- kernel/ wiki.

Also, of course, you do not have to confine yourself to the Raspberry Pi family; there
are several other excellent prototyping boards available. One that springs to mind is
the popular BeagleBone Black (BBB) board.

In fact, for professional development and product work, the
Raspberry Pi is really not the best choice, for several reasons... a bit
of googling will help you understand this. Having said that, as a
learning and basic prototyping environment it's hard to beat, with
the strong community (and tech hobbyist) support it enjoys.

Several modern choices of microprocessors for embedded Linux
(and much more) are discussed and contrasted in this excellent in-
depth article: SO YOU WANT TO BUILD AN EMBEDDED LINUX
SYSTEM?, Jay Carlson, Oct 2020 : https:/ /jaycarlson. net/
embedded- linux/ ; do check it out.

By now, I expect that you have set up Linux as a guest machine (or are using a native
"test" Linux box) and have cloned the book's GitHub code repository. So far, we have
covered some information regarding setting up Linux as a guest VM (as well as
optionally using boards such as the Raspberry Pi or the BeagleBone). Let's now move
on to a key step: actually installing software components on our Linux guest system
so that we can learn and write Linux kernel code on the system!

http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
http://embedonix.com/articles/linux/emulating-raspberry-pi-on-linux/
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://github.com/dhruvvyas90/qemu-rpi-kernel/wiki
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/
https://jaycarlson.net/embedded-linux/

Kernel Workspace Setup Chapter 1

[23]

Setting up the software – distribution and
packages
It is recommended to use one of the following or later stable version Linux
distributions. As mentioned in the previous section, they can always be installed as a
guest OS on a Windows or Linux host system, with the clear first choice being
Ubuntu Linux 18.04 LTS Desktop. The following screenshot shows you the
recommended version and the user interface:

Figure 1.6 – Oracle VirtualBox 6.1 running Ubuntu 18.04.4 LTS as a guest VM

The preceding version – Ubuntu 18.04 LTS Desktop – is the version of choice for this
book, at least. The two primary reasons for this are straightforward:

Ubuntu Linux is one of the, if not the, most popular Linux (kernel)
development workstation environments in industry use today.
We cannot always, for lack of space and clarity, show the code/build output
of multiple environments in this book. Hence, we have chosen to show the
output as seen on Ubuntu 18.04 LTS Desktop.

Kernel Workspace Setup Chapter 1

[24]

Ubuntu 16.04 LTS Desktop is a good choice too (it has Long-Term
Support (LTS) as well), and everything should work. To download
it, visit https:/ / www. ubuntu. com/ download/ desktop.

Some other Linux distributions that can also be considered include the following:

CentOS 8 Linux (not CentOS Stream): CentOS Linux is a distribution
that's essentially a clone of the popular enterprise server distribution from
RedHat (RHEL 8, in our case). You can download it from here: https:/ /
www. centos. org/ download/ .
Fedora Workstation: Fedora is a very well-known FOSS Linux distribution
as well. You can think of it as being a kind of test-bed for projects and code
that will eventually land up within RedHat's enterprise products.
Download it from https:/ /getfedora. org/ (download the Fedora
Workstation image).
Raspberry Pi as a target: It's really best to refer to the official
documentation to set up your Raspberry Pi (Raspberry Pi
documentation: https:/ / www. raspberrypi. org/ documentation/). It's
perhaps worth noting that Raspberry Pi "kits" are widely available that
come completely pre-installed and with some hardware accessories as
well.

If you want to learn how to install a Raspberry Pi OS image on an
SD card, visit https:/ /www. raspberrypi. org/ documentation/
installation/ installing- images/ .

BeagleBone Black as a target: The BBB is, like the Raspberry Pi, an
extremely popular embedded ARM SBC for hobbyists and pros. You can
get started here: https:/ / beagleboard. org/ black. The System Reference
Manual for the BBB can be found here: https:/ /cdn. sparkfun. com/
datasheets/ Dev/ Beagle/ BBB_SRM_ C.pdf. Though we don't present
examples running on the BBB, nevertheless, it's a valid embedded Linux
system that, once properly set up, you can run this book's code on.

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.centos.org/download/
https://www.centos.org/download/
https://www.centos.org/download/
https://www.centos.org/download/
https://www.centos.org/download/
https://www.centos.org/download/
https://www.centos.org/download/
https://www.centos.org/download/
https://www.centos.org/download/
https://www.centos.org/download/
https://www.centos.org/download/
https://getfedora.org/
https://getfedora.org/
https://getfedora.org/
https://getfedora.org/
https://getfedora.org/
https://getfedora.org/
https://getfedora.org/
https://getfedora.org/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
https://beagleboard.org/black
https://beagleboard.org/black
https://beagleboard.org/black
https://beagleboard.org/black
https://beagleboard.org/black
https://beagleboard.org/black
https://beagleboard.org/black
https://beagleboard.org/black
https://beagleboard.org/black
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf
https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pdf

Kernel Workspace Setup Chapter 1

[25]

Before we conclude our discussion on selecting our software distribution for the
book, here are a few more points to note:

These distributions are, in their default form, FOSS and non-proprietary,
and free to use as an end user.
Though our aim is to be Linux distribution-neutral, the code has only been
tested on Ubuntu 18.04 LTS and "lightly" tested on CentOS 8, and a
Raspberry Pi 3 Model B+ running the Raspbian GNU/Linux 9.9 (stretch)
Debian-based Linux OS.
We will, as far as is possible, use the very latest (as of the time of writing)
stable LTS
Linux kernel version 5.4 for our kernel build and code runs. Being an LTS
kernel, the 5.4 kernel is an excellent choice to run on and learn with.

It is interesting to know that the 5.4 LTS kernel will indeed have a
long lifespan; from November 2019 right up to December 2025! This
is good news: this book's content remains current and valid for years
to come!

For this book, we'll log in as the user account named llkd.

It's important to realize, for maximized security (with the latest
defenses and fixes), that you must run the most recent Long Term
Support (LTS) kernel possible for your project or product.

Now that we have chosen our Linux distribution and/or hardware boards and VMs,
it's time we install essential software packages.

Installing software packages
The packages that are installed by default when you use a typical Linux desktop
distribution, such as any recent Ubuntu, CentOS, or Fedora Linux system, will
include the minimal set required by a systems programmer: the native toolchain,
which includes the gcc compiler along with headers, and the make utility/packages.

In this book, though, we are going to learn how to write kernel-space code using a
VM and/or a target system running on a foreign processor (ARM or AArch64 being
the typical cases). To effectively develop kernel code on these systems, we will need
to install some software packages. Read on.

Kernel Workspace Setup Chapter 1

[26]

Installing the Oracle VirtualBox guest additions
Make sure you have installed the guest VM (as explained previously). Then, follow
along:

Log in to your Linux guest VM and first run the following commands1.
within a Terminal window (on a shell):

sudo apt update
sudo apt install gcc make perl

Install the Oracle VirtualBox Guest Additions now. Refer to How to Install2.
VirtualBox Guest Additions in Ubuntu: https:/ /www. tecmint. com/ install-
virtualbox- guest- additions- in- ubuntu/ .

This only applies if you are running Ubuntu as a VM using Oracle
VirtualBox as the hypervisor app.

Installing required software packages
To install the packages, take the following steps:

Within the Ubuntu VM, first do the following:1.

sudo apt update

Now, run the following command in a single line:2.

sudo apt install git fakeroot build-essential tar ncurses-dev
tar xz-utils libssl-dev bc stress python3-distutils libelf-dev
linux-headers-$(uname -r) bison flex libncurses5-dev util-
linux net-tools linux-tools-$(uname -r) exuberant-ctags cscope
sysfsutils gnome-system-monitor curl perf-tools-unstable
gnuplot rt-tests indent tree pstree smem libnuma-dev numactl
hwloc bpfcc-tools sparse flawfinder cppcheck tuna hexdump
openjdk-14-jre trace-cmd virt-what

The command installing gcc, make, and perl is done first so that the Oracle
VirtualBox Guest Additions can be properly installed straight after. These (Guest
Additions) are essentially para-virtualization accelerator software. It's important to
install them for optimal performance.

https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/
https://www.tecmint.com/install-virtualbox-guest-additions-in-ubuntu/

Kernel Workspace Setup Chapter 1

[27]

This book, at times, mentions that running a program on another
CPU architecture – typically ARM – might be a useful exercise. If
you want to try (interesting!) stuff like this, please read on;
otherwise, feel free to skip ahead to the Important installation
notes section.

Installing a cross toolchain and QEMU
One way to try things on an ARM machine is to actually do so on a physical ARM-
based SBC; for example, the Raspberry Pi is a very popular choice. In this case, the
typical development workflow is to first build the ARM code on your x86-64 host
system. But to do so, we need to install a cross toolchain – a set of tools allowing you
to build software on one host CPU designed to execute on a different target CPU. An
x86-64 host building programs for an ARM target is a very common case, and indeed
is our use case here. Details on installing the cross compiler follow shortly.

Often, an alternate way to just trying things out is to have an ARM/Linux system
emulated – this alleviates the need for hardware! To do so, we recommend using the
superb QEMU project (https:/ /www. qemu. org/).

To install the required QEMU packages, do the following:

For installation on Ubuntu, use the following:

sudo apt install qemu-system-arm

For installation on Fedora, use the following:

sudo dnf install qemu-system-arm-<version#>

To get the version number on Fedora, just type the preceding
command and after typing the required package name (here, qemu-
system-arm-), press the Tab key twice. It will auto-complete,
providing a list of choices. Choose the latest version and press Enter.

CentOS 8 does not seem to have a simple means to install the QEMU package we
require. (You could always install a cross toolchain via the source, but that's
challenging; or, obtain an appropriate binary package.) Due to these difficulties, we
will skip showing cross-compilation on CentOS.

https://www.qemu.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.qemu.org/

Kernel Workspace Setup Chapter 1

[28]

Installing a cross compiler
If you intend to write a C program that is compiled on a certain host system but must
execute on another target system, then you need to compile it with what's known as a
cross compiler or cross toolchain. For example, in our use case, we want to work on
an x86-64 host machine. It could even be an x86-64 guest VM, no issues, but run our
code on an ARM-32 target:

On Ubuntu, you can install the cross toolchain with the following:

sudo apt install crossbuild-essential-armhf

The preceding command installs an x86_64-to-ARM-32 toolchain
appropriate for ARM-32 "hard float" (armhf) systems (such as the Raspberry
Pi); this is usually just fine. It results in the arm-linux-gnueabihf-
<foo> set of tools being installed; where <foo> represents cross tools such
as addr2line, as, g++, gcc, gcov, gprof, ld, nm, objcopy, objdump,
readelf, size, strip, and so on. (The cross compiler prefix in this case is
arm-linux-gnueabihf-). In addition, though not mandatory, you can
install the arm-linux-gnueabi-<foo> cross toolset like this:

sudo apt install gcc-arm-linux-gnueabi binutils-arm-linux-
gnueabi

On Fedora, you can install the cross toolchain with the following:

sudo dnf install arm-none-eabi-binutils-cs-<ver#> arm-none-
eabi-gcc-cs-<ver#>

For Fedora Linux, the same tip as earlier applies – use the Tab key to
help auto-complete the command.

Installing and using a cross toolchain might require some reading up for newbie
users. You can visit the Further reading section where I have placed a few useful links
that will surely be of great help.

Kernel Workspace Setup Chapter 1

[29]

Important installation notes
We will now mention a few remaining points, most of them pertaining to software
installation or other issues when working on particular distributions:

On CentOS 8, you can install Python with the following command:

sudo dnf install python3

However, this does not actually create the (required) symbolic link
(symlink), /usr/bin/python; why not? Check out this link for details:
https:/ /developers. redhat. com/ blog/ 2019/ 05/ 07/what- no- python- in-
red- hat- enterprise- linux- 8/.

To manually create the symlink to, for example, python3, do the following:

sudo alternatives --set python /usr/bin/python3

The kernel build might fail if the OpenSSL header files aren't installed. Fix
this on CentOS 8 with the following:

sudo dnf install openssl-devel

On CentOS 8, the lsb_release utility can be installed with the following:

sudo dnf install redhat-lsb-core

On Fedora, do the following:
Install these two packages, ensuring the dependencies are
met when building a kernel on Fedora systems:
sudo dnf install openssl-devel-1:1.1.1d-2.fc31
elfutils-libelf-devel

(the preceding openssl-devel package is suffixed with the
relevant Fedora version number (.fc31 here; adjust it as
required for your system).
In order to use the lsb_release command, you must install
the redhat-lsb-core package.

Congratulations! This completes the software setup, and your kernel journey begins!
Now, let's check out a few additional and useful projects to complete this chapter. It's
certainly recommended that you read through these as well.

https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/
https://developers.redhat.com/blog/2019/05/07/what-no-python-in-red-hat-enterprise-linux-8/

Kernel Workspace Setup Chapter 1

[30]

Additional useful projects
This section brings you details of some additional miscellaneous projects that you
might find very useful indeed. In a few appropriate places in this book, we refer to or
directly make use of some of them, thus making them important to understand.

Let's get started with the well-known and important Linux man pages project.

Using the Linux man pages
You must have noticed the convention followed in most Linux/Unix literature:

The suffixing of user commands with (1) – for example, gcc(1) or gcc.1
System calls with (2) – for example, fork(2) or fork().2
Library APIs with (3) – for example, pthread_create(3) or
pthread_create().3

As you are no doubt aware, the number in parentheses (or after the period) denotes
the section of the manual (the man pages) that the command/API in question belongs
to. A quick check with man(1), via the man man command (that's why we love
Unix/Linux!) reveals the sections of the Unix/Linux manual:

$ man man
[...]
A section, if provided, will direct man to look only in that section
of
the manual. [...]

 The table below shows the section numbers of the manual
followed by the types of pages they contain.

 1 Executable programs or shell commands
 2 System calls (functions provided by the kernel)
 3 Library calls (functions within program libraries)
 4 Special files (usually found in /dev)
 5 File formats and conventions eg /etc/passwd
 6 Games
 7 Miscellaneous (including macro packages and conventions),
e.g.
 man(7), groff(7)
 8 System administration commands (usually only for root)
 9 Kernel routines [Non standard]
[...]

Kernel Workspace Setup Chapter 1

[31]

So, for example, to look up the man page on the stat(2) system call, you would use
the following:

man 2 stat # (or: man stat.2)

At times (quite often, in fact), the man pages are simply too detailed to warrant
reading through when a quick answer is all that's required. Enter the tldr project –
read on!

The tldr variant
While we're discussing man pages, a common annoyance is that the man page on a
command is, at times, too large. Take the ps(1) utility as an example. It has a large
man page as, of course, it has a huge number of option switches. Wouldn't it be nice,
though, to have a simplified and summarized "common usage" page? This is precisely
what the tldr pages project aims to do.

TL;DR literally means Too Long; Didn't Read.

In their own words, they provide "simplified and community-driven man pages." So,
once installed, tldr ps provides a neat brief summary on the most commonly
used ps command option switches to do something useful:

Figure 1.7 – A screenshot of the tldr utility in action: tldr ps

Kernel Workspace Setup Chapter 1

[32]

All Ubuntu repos have the tldr package. Install it with sudo apt
install tldr.

It's indeed worth checking out. If you're interested in knowing more, visit https:/ /
tldr.sh/.

Earlier, recall that we said that userspace system calls fall under section 2 of the man
pages, library subroutines under section 3, and kernel APIs under section 9. Given
this, then, in this book, why don't we specify the, say, printk kernel function (or
API) as printk(9) – as man man shows us that section 9 of the manual is Kernel
routines? Well, it's fiction, really (at least on today's Linux): no man pages actually exist
for kernel APIs! So, how do you get documentation on the kernel APIs and so
on? That's just what we will briefly delve into in the following section.

Locating and using the Linux kernel
documentation
The community has developed and evolved the Linux kernel documentation into a
good state over many years of effort. The latest version of the kernel documentation,
presented in a nice and modern "web" style, can always be accessed online
here: https:// www. kernel. org/ doc/ html/ latest/ .

Of course, as we will mention in the next chapter, the kernel
documentation is always available for that kernel version within the
kernel source tree itself, in the directory called Documentation/.

https://tldr.sh/
https://tldr.sh/
https://tldr.sh/
https://tldr.sh/
https://tldr.sh/
https://tldr.sh/
https://tldr.sh/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/

Kernel Workspace Setup Chapter 1

[33]

As just one example of the online kernel documentation, see the following partial
screenshot of the page on Core Kernel Documentation/Basic C Library Functions (https:/
/www.kernel.org/ doc/ html/ latest/ core-api/ kernel- api.html#basic- c-library-
functions):

Figure 1.8 – Partial screenshot showing a small part of the modern online Linux kernel documentation

As can be gleaned from the screenshot, the modern documentation is pretty
comprehensive.

https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html#basic-c-library-functions

Kernel Workspace Setup Chapter 1

[34]

Generating the kernel documentation from source
You can literally generate the full Linux kernel documentation from within the kernel
source tree in various popular formats (including PDF, HTML, LaTeX, EPUB, or
XML), in a Javadoc or Doxygen-like style. The modern documentation system used
internally by the kernel is called Sphinx. Using make help within the kernel source
tree will reveal several documentation targets, among them htmldocs, pdfdocs, and
more. So, you can, for example, cd to the kernel source tree and run make
pdfdocs to build the complete Linux kernel documentation as PDF documents (the
PDFs, as well as some other meta-docs, will be placed
in Documentation/output/latex). The first time, at least, you will likely be
prompted to install several packages and utilities (we don't show this explicitly).

Don't worry if the preceding details are not crystal clear yet. I
suggest you first read Chapter 2, Building the 5.x Linux Kernel from
Source – Part 1, and Chapter 3, Building the 5.x Linux Kernel from
Source – Part 2, and then revisit these details.

Static analysis tools for the Linux kernel
Static analyzers are tools that, by examining the source code, attempt to identify
potential errors within it. They can be tremendously useful to you as the developer,
though you must learn how to "tame" them – in the sense that they can result in false
positives.

Several useful static analysis tools exist. Among them, the ones that are more relevant
for Linux kernel code analysis include the following:

Sparse: https:/ / sparse. wiki. kernel. org/index. php/Main_ Page

Coccinelle: http:/ /coccinelle. lip6. fr/ (requires the ocaml package
installed)
Smatch: http:/ /smatch. sourceforge. net/ , http:/ /repo. or. cz/w/
smatch. git

Flawfinder: https:/ /dwheeler. com/ flawfinder/

Cppcheck: https:/ / github. com/ danmar/ cppcheck

For example, to install and try Sparse, do the following:

sudo apt install sparse
cd <kernel-src-tree>
make C=1 CHECK="/usr/bin/sparse"

https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
http://smatch.sourceforge.net/
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
http://repo.or.cz/w/smatch.git
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck

Kernel Workspace Setup Chapter 1

[35]

There are also several high-quality commercial static analysis tools available. Among
them are the following:

SonarQube: https:/ /www. sonarqube. org/ (a free and open source
community edition is available)
Coverity Scan: https:/ / scan.coverity. com/

Klocwork: https:/ / www. meteonic. com/ klocwork

clang is a frontend to GCC that is becoming more popular even for
kernel builds. You can install it on Ubuntu with sudo apt
install clang clang-tools.

Static analysis tools can save the day. Time spent learning to use them effectively is
time well spent!

Linux Trace Toolkit next generation
A superb tool for tracing and profiling is the powerful Linux Tracing Toolkit next
generation (LTTng) toolset, a Linux Foundation project. LTTng allows you to trace
both userspace (applications) and/or the kernel code paths in minute detail. This can
tremendously aid you in understanding where performance bottlenecks occur, as
well as aiding you in understanding the overall code flow and thus in learning about
how the code actually performs its tasks.

In order to learn how to install and use it, I refer you to its very good documentation
here: https:// lttng. org/ docs (try https:/ /lttng. org/download/ for installation for
common Linux distributions). It is also highly recommended that you install the
Trace Compass GUI: https:/ /www. eclipse. org/ tracecompass/ . It provides an
excellent GUI for examining and interpreting LTTng's output.

Trace Compass minimally requires a Java Runtime Environment
(JRE) to be installed as well. I installed one on my Ubuntu 20.04 LTS
system with sudo apt install openjdk-14-jre.

As an example (I can't resist!), here's a screenshot of a capture by LTTng being
"visualized" by the superb Trace Compass GUI. Here, I show a couple of hardware
interrupts (IRQ lines 1 and 130, the interrupt lines for the i8042 and Wi-Fi chipset,
respectively, on my native x86_64 system.):

https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://scan.coverity.com/
https://scan.coverity.com/
https://scan.coverity.com/
https://scan.coverity.com/
https://scan.coverity.com/
https://scan.coverity.com/
https://scan.coverity.com/
https://scan.coverity.com/
https://scan.coverity.com/
https://scan.coverity.com/
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://www.meteonic.com/klocwork
https://lttng.org/docs
https://lttng.org/docs
https://lttng.org/docs
https://lttng.org/docs
https://lttng.org/docs
https://lttng.org/docs
https://lttng.org/docs
https://lttng.org/docs
https://lttng.org/docs
https://lttng.org/download/
https://lttng.org/download/
https://lttng.org/download/
https://lttng.org/download/
https://lttng.org/download/
https://lttng.org/download/
https://lttng.org/download/
https://lttng.org/download/
https://lttng.org/download/
https://lttng.org/download/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/

Kernel Workspace Setup Chapter 1

[36]

Figure 1.9 – Sample screenshot of the Trace Compass GUI; samples recorded by LTTng showing IRQ lines 1 and 130

The pink color in the upper part of the preceding screenshot represents the
occurrence of a hardware interrupt. Underneath that, in the IRQ vs Time tab (it's only
partially visible), the interrupt distribution is seen. (In the distribution graph, the y
axis is the time taken; interestingly, the network interrupt handler – in red – seems to
take very little time, the i8042 keyboard/mouse controller chip's handler – in blue –
takes more time, even exceeding 200 microseconds!)

The procmap utility
Visualizing the complete memory map of the kernel Virtual Address Space (VAS) as
well as any given process's user VAS is what the procmap utility is designed to do.

The description on its GitHub page sums it up:

It outputs a simple visualization of the complete memory map of a given process in a
vertically-tiled format ordered by descending virtual address. The script has the intelligence to
show kernel and userspace mappings as well as calculate and show the sparse memory regions
that will be present. Also, each segment or mapping is scaled by relative size (and color-coded
for readability). On 64-bit systems, it also shows the so-called non-canonical sparse region or
'hole' (typically close to 16,384 PB on the x86_64).

Kernel Workspace Setup Chapter 1

[37]

The utility includes options to see only kernel space or userspace, verbose and debug
modes, the ability to export its output in convenient CSV format to a specified file, as
well as other options. It has a kernel component as well and currently works (and
auto-detects) on x86_64, AArch32, and Aarch64 CPUs.

Do note, though, that I am still working on this utility; it's currently
under development... there are several caveats. Feedback and
contributions are most appreciated!

Download/clone it from https:/ / github. com/ kaiwan/ procmap:

Figure 1.10 – A partial screenshot of the procmap utility's output, showing only the top portion of kernel VAS on x86_64

We make good use of this utility in Chapter 7, Memory Management Internals -
Essentials.

https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap

Kernel Workspace Setup Chapter 1

[38]

Simple Embedded ARM Linux System FOSS
project
SEALS or Simple Embedded ARM Linux System is a very simple "skeleton" Linux
base system running on an emulated ARM machine. It provides a primary Bash script
that asks the end user what functionality they want via a menu, then accordingly
proceeds to cross-compile a Linux kernel for ARM, then creates and initializes a
simple root filesystem. It can then call upon QEMU (qemu-system-arm) to emulate
and run an ARM platform (the Versatile Express CA-9 is the default board emulated).
The useful thing is, the script builds the target kernel, the root filesystem, and the root
filesystem image file, and sets things up for boot. It even has a simple GUI (or
console) frontend, to make usage a bit simpler for the end user. The project's GitHub
page is here: https:/ /github. com/ kaiwan/ seals/ . Clone it and give it a try... we
definitely recommend you have a look at its wiki section pages at https:/ /github.
com/kaiwan/seals/ wiki for help.

Modern tracing and performance analysis with
[e]BPF
An extension of the well-known Berkeley Packet Filter or BPF, eBPF is the extended
BPF. (FYI, modern usage of the term is simply to refer to it as BPF, dropping the 'e'
prefix). Very briefly, BPF used to provide the supporting infrastructure within the
kernel to effectively trace network packets. BPF is a very recent kernel innovation –
available only from the Linux 4.0 kernel onward. It extends the BPF notion, allowing
you to trace much more than just the network stack. Also, it works for tracing both
kernel space as well as userspace apps. In effect, BPF and its frontends are the modern
approach to tracing and performance analysis on a Linux system.

To use BPF, you will need a system with the following:

Linux kernel 4.0 or later
Kernel support for BPF (https:/ / github. com/ iovisor/ bcc/ blob/ master/
INSTALL. md#kernel- configuration)
The BCC or bpftrace frontends installed (link to install them on popular
Linux distributions: https:/ /github. com/ iovisor/ bcc/blob/ master/
INSTALL. md#installing- bcc)
Root access on the target system

https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/kaiwan/seals/wiki
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#kernel-configuration
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md#installing-bcc

Kernel Workspace Setup Chapter 1

[39]

Using the BPF kernel feature directly is very hard, so there are several easier front
ends to use. Among them, BCC and bpftrace are regarded as useful. Check out the
following link to a picture that opens your eyes to just how many powerful BCC tools
are available to help trace different Linux subsystems and hardware: https:/ /
github.com/iovisor/ bcc/ blob/ master/ images/ bcc_ tracing_ tools_ 2019. png.

Important: You can install the BCC tools for your regular host
Linux distro by reading the installation instructions here: https:/ /
github. com/ iovisor/ bcc/ blob/ master/ INSTALL. md. Why not on
our guest Linux VM? You can, when running a distro kernel (such
as an Ubuntu- or Fedora-supplied kernel). The reason: the
installation of the BCC toolset includes (and depends upon) the
installation of the linux-headers-$(uname -r) package;
this linux-headers package exists only for distro kernels (and not
for our custom 5.4 kernel that we shall often be running on the
guest).

The main site for BCC can be found at https:/ / github. com/ iovisor/ bcc.

The LDV - Linux Driver Verification - project
The Russian Linux Verification Center, founded in 2005, is an opensource project; it
has specialists in, and thus specializes in, automated testing of complex software
projects. This includes comprehensive test suites, frameworks, and detailed analyses
(both static and dynamic) being performed on the core Linux kernel as well as on the
primarily device drivers within the kernel. This project puts a great deal of focus on
the testing and verification of kernel modules as well, which many similar projects tend
to skim.

Of particular interest to us here is the Online Linux Driver Verification Service page
(http://linuxtesting. org/ ldv/ online? action= rules); it contains a list of a few
verified Rules (Figure 1.11):

https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/images/bcc_tracing_tools_2019.png
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules

Kernel Workspace Setup Chapter 1

[40]

Figure 1.11 – Screenshot of the 'Rules' page of the Linux Driver Verification (LDV) project site

By glancing through these rules, we'll be able to not only see the rule but also
instances of actual cases where these rules were violated by driver/kernel code within
the mainline kernel, thus introducing bugs. The LDV project has successfully
discovered and fixed (by sending in patches in the usual manner) several
driver/kernel bugs. In a few of the upcoming chapters, we shall mention instances of
these LDV rule violations (for example, memory leakage, Use After Free (UAF) bugs,
and locking violations) having been uncovered, and (probably) even fixed.

Here are some useful links on the LDV website:

The Linux Verification Center home page; http:/ / linuxtesting. org/

Linux Kernel Space Verification; http:/ /linuxtesting. org/kernel

Online Linux Driver Verification Service page with verified Rules : http:/
/linuxtesting. org/ ldv/ online? action= rules

Problems in Linux Kernel page; lists over 400 issues found in existing drivers
(mostly fixed as well); http:/ /linuxtesting. org/ results/ ldv

http://linuxtesting.org/
http://linuxtesting.org/
http://linuxtesting.org/
http://linuxtesting.org/
http://linuxtesting.org/
http://linuxtesting.org/
http://linuxtesting.org/
http://linuxtesting.org/
http://linuxtesting.org/kernel
http://linuxtesting.org/kernel
http://linuxtesting.org/kernel
http://linuxtesting.org/kernel
http://linuxtesting.org/kernel
http://linuxtesting.org/kernel
http://linuxtesting.org/kernel
http://linuxtesting.org/kernel
http://linuxtesting.org/kernel
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/ldv/online?action=rules
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv
http://linuxtesting.org/results/ldv

Kernel Workspace Setup Chapter 1

[41]

Summary
In this chapter, we covered in detail the hardware and software requirements to set
up an appropriate development environment for beginning to work on Linux kernel
development. In addition, we mentioned the basics and provided links, wherever
appropriate, for setting up a Raspberry Pi device, installing powerful tools such as
QEMU and a cross toolchain, and so on. We also threw some light on other
"miscellaneous" tools and projects that you, as a budding kernel and/or device driver
developer, might find useful, as well as information on how to begin looking up
kernel documentation.

In this book, we definitely recommend and expect you to try out and work on kernel
code in a hands-on fashion. To do so, you must have a proper kernel workspace
environment set up, which we have successfully done in this chapter.

Now that our environment is ready, let's move on and explore the brave world of
Linux kernel development! The next two chapters will teach you how to download,
extract, configure, and build a Linux kernel from source.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

2
Building the 5.x Linux Kernel

from Source - Part 1
Building the Linux kernel from source code is an interesting way to begin your kernel
development journey! Rest assured, it's a long and arduous journey, but that's the fun
of it, right? The kernel build topic itself is large enough to merit being divided into
two chapters, this one and the next.

The primary purpose of this chapter and the next is to describe in detail how exactly
you can build a Linux kernel from scratch, from source code. In this chapter, you will
initially learn how to download a stable vanilla Linux kernel source tree onto a guest
Linux Virtual Machine (VM) (by vanilla kernel, we mean the plain and regular
default kernel source code released by the Linux kernel community on its
repository, https:/ / www. kernel. org). Next, we will learn a little bit about the layout
of the kernel source code – getting, in effect, a 10,000-foot view of the kernel code
base. The actual kernel build recipe then follows.

Before proceeding, a key piece of information: any Linux system, be it a
supercomputer or a tiny embedded device, has three required components: a
bootloader, an Operating System (OS) kernel, and a root filesystem. In this chapter,
we concern ourselves only with the building of the Linux kernel from source. We do
not delve into the root filesystem details, and (in the next chapter) learn to minimally
configure the (very x86-specific) GNU GRUB bootloader.

In this chapter, we will cover the following topics:

Preliminaries for the kernel build
Steps to build the kernel from source
Step 1 – obtaining a Linux kernel source tree

https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[43]

Step 2 – extracting the kernel source tree
Step 3 – configuring the Linux kernel
Customizing the kernel menu – adding our own menu item

Technical requirements
I assume that you have gone through Chapter 1, Kernel Workspace Setup, and have
appropriately prepared a guest VM running Ubuntu 18.04 LTS (or CentOS 8, or later
stable releases of these distributions) and installed all the required packages. If not, I
highly recommend you do this first.

To get the most out of this book, I strongly recommend you first set up the workspace
environment, including cloning this book's GitHub repository (https:/ /github. com/
PacktPublishing/ Linux- Kernel- Programming) for the code, and work on it in a
hands-on fashion.

Preliminaries for the kernel build
It's important to understand a few things right from the outset that will help you as
we proceed on our journey of building and working with a Linux kernel. Firstly, the
Linux kernel and its sister projects are completely decentralized - it's a virtual, online
open-source community! The closest we come to an office is this: stewardship of the
Linux kernel (as well as several dozen related projects) is in the capable hands of
the Linux Foundation (https:/ /linuxfoundation. org/); further, it manages the
Linux Kernel Organization, a private foundation that distributes the Linux kernel to
the public for no charge (https:/ /www. kernel. org/ nonprofit. html).

Some of the key points we discuss in this section includes the following:

The kernel release, or version number nomenclature
The typical kernel development workflow
The existence of different types of kernel source trees within the repository

With this information in place, you will be better armed to move through the kernel
build procedure. All right, let's go over each of the preceding points.

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://linuxfoundation.org/
https://linuxfoundation.org/
https://linuxfoundation.org/
https://linuxfoundation.org/
https://linuxfoundation.org/
https://linuxfoundation.org/
https://linuxfoundation.org/
https://linuxfoundation.org/
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html
https://www.kernel.org/nonprofit.html

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[44]

Kernel release nomenclature
To see the kernel version number, simply run uname -r on your shell. How do you
precisely interpret the output of uname -r? On our Ubuntu distribution version 18.04
LTS guest VM, we run uname(1), passing the -r option switch to display just the
current kernel release or version:

$ uname -r
5.0.0-36-generic

Of course, by the time you read this, the Ubuntu 18.04 LTS kernel
has certainly been upgraded to a later release; that's perfectly
normal. The 5.0.0-36-generic kernel was the one I encountered with
the Ubuntu 18.04.3 LTS at the time of writing this chapter.

The modern Linux kernel release number nomenclature is as follows:

major#.minor#[.patchlevel][-EXTRAVERSION]

This is also often written or described as w.x[.y][-z].

The square brackets around the patchlevel and EXTRAVERSION components
indicate that they are optional. The following table summarizes the meaning of the
components of the release number:

Release # component Meaning Example numbers

Major # (or w)
Main or major number; currently, we
are on the 5.x kernel series, thus the
major number is 5.

2, 3, 4, and 5

Minor # (or x) The minor number, hierarchically
under the major number. 0 onward

[patchlevel] (or y)

Hierarchically under the minor
number – also called the ABI or
revision – applied on occasion to the
stable kernel when significant
bug/security fixes are required.

0 onward

[-EXTRAVERSION]
(or -z)

Also called localversion;
typically used by distribution kernels
to track their internal changes.

Varies; Ubuntu uses w.x.y-
'n'-generic

Table 2.1 – Linux kernel release nomenclature

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[45]

So, we can now interpret our Ubuntu 18.04 LTS distribution's kernel release number,
5.0.0-36-generic:

Major # (or w): 5
Minor # (or x): 0
[patchlevel] (or y): 0
[-EXTRAVERSION] (or -z): -36-generic

Note that distribution kernels may or may not precisely follow these conventions, it's
really up to them. The regular or vanilla kernels released on https:/ /www. kernel.
org/ do follow these conventions (at least until Linus decides to change them).

(a) As part of an interesting exercise configuring the kernel, we will
later change the localversion (aka -EXTRAVERSION) component
of the kernel we build.
(b) Historically, in kernels before 2.6 (IOW, ancient stuff now),
the minor number held a special meaning; if an even number, it
indicated a stable kernel release, if odd, an unstable or beta release.
This is no longer the case.

Kernel development workflow – the basics
Here, we provide a brief overview of the typical kernel development workflow.
Anyone like you who is interested in kernel development should at least minimally
understand the process.

A detailed description can be found within the kernel
documentation here: https:/ /www. kernel. org/ doc/ html/ latest/
process/ 2. Process. html#how- the-development- process- works.

A common misconception, especially in its baby years, was that the Linux kernel is
developed in a very ad hoc fashion. This is not true at all! The kernel development
process has evolved to become a (mostly) well-oiled system with a thoroughly
documented process and expectation of what a kernel contributor should know in
order to use it well. I refer you to the preceding link for the complete details.

In order for us to take a peek into a typical development cycle, let's assume we have
the latest mainline Linux Git kernel tree cloned on to our system.

https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[46]

The details regarding the use of the powerful git(1) Source Code
Management (SCM) tool is beyond the scope of this book. Please
see the Further reading section for useful links on learning how to use
Git. Obviously, I highly recommend gaining at least basic familiarity
with using git(1).

As mentioned earlier, as of the time of writing, the 5.4 kernel is the latest Long-Term
Stable (LTS) version, so we shall use it in the materials that follow. So, how did it
come to be? Obviously, it has evolved from the release candidate (rc) kernels and the
previous stable kernel release that precedes it, which in this case would be the v5.4-
rc'n' kernels and the stable v5.3 one before it. We use the git log command as
follows to get a human-readable log of the tags in the kernel Git tree ordered by date.
Here, we are only interested in the work that has lead to the release of the 5.4 LTS
kernel, hence we have deliberately truncated the following output to reveal only that
portion:

The git log command (that we use in the following code block,
and in fact any other git sub-commands) will only work on a git
tree. We use the following one purely for demonstrating the
evolution of the kernel. A bit later, we will show how you can clone
a Git tree.

$ git log --date-order --graph --tags --simplify-by-decoration --
pretty=format:'%ai %h %d'
* 2019-11-24 16:32:01 -0800 219d54332a09 (tag: v5.4)
* 2019-11-17 14:47:30 -0800 af42d3466bdc (tag: v5.4-rc8)
* 2019-11-10 16:17:15 -0800 31f4f5b495a6 (tag: v5.4-rc7)
* 2019-11-03 14:07:26 -0800 a99d8080aaf3 (tag: v5.4-rc6)
* 2019-10-27 13:19:19 -0400 d6d5df1db6e9 (tag: v5.4-rc5)
* 2019-10-20 15:56:22 -0400 7d194c2100ad (tag: v5.4-rc4)
* 2019-10-13 16:37:36 -0700 4f5cafb5cb84 (tag: v5.4-rc3)
* 2019-10-06 14:27:30 -0700 da0c9ea146cb (tag: v5.4-rc2)
* 2019-09-30 10:35:40 -0700 54ecb8f7028c (tag: v5.4-rc1)
* 2019-09-15 14:19:32 -0700 4d856f72c10e (tag: v5.3)
* 2019-09-08 13:33:15 -0700 f74c2bb98776 (tag: v5.3-rc8)
* 2019-09-02 09:57:40 -0700 089cf7f6ecb2 (tag: v5.3-rc7)
* 2019-08-25 12:01:23 -0700 a55aa89aab90 (tag: v5.3-rc6)
[...]

Aha! In the preceding code block, you can clearly see that the stable 5.4 kernel was
released on 24 November 2019 and the 5.3 tree on 15 September 2019 (you can also
verify this by looking up other useful kernel resources, such as https:/ /
kernelnewbies. org/ LinuxVersions).

https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions
https://kernelnewbies.org/LinuxVersions

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[47]

For the development series that ultimately led to the 5.4 kernel, this latter date (15
September 2019) marks the start of what is called the merge window for the next
stable kernel for a period of (approximately) two weeks. In this period, developers are
allowed to submit new code to the kernel tree (in reality, the actual work would have
been going on from a lot earlier; the fruit of this work is now merged into mainline at
this time).

Two weeks later (on 30 September 2019), the merge window was closed and the rc
kernel work started, with 5.4-rc1 being the first of the rc versions, of course. The -
rc (also known as prepatch) trees work primarily on merging patches and fixing
(regression) bugs, ultimately leading to what is determined by the chief maintainers
(Linus Torvalds and Andrew Morton) to be a "stable" kernel tree. The number of
prepatches (-rc releases) varies. Typically, though, this "bugfix" window takes
anywhere between 6 to 10 weeks, after which the new stable kernel is released. In the
preceding code block, we can see that eight release candidate kernels finally resulted
in the stable release of the v5.4 tree on 24 November 2019 (taking a total of 70 days).

The same can be seen more visually via the releases page at https:/ / github. com/
torvalds/linux/ releases:

Figure 2.1 – The releases leading up to the 5.4 LTS kernel (read it bottom-up)

https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases
https://github.com/torvalds/linux/releases

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[48]

The preceding screenshot is a partial screenshot showing how various v5.4-rc'n'
release candidate kernels ultimately resulted in the release of the LTS 5.4 tree (on 25
November 2019, with v5.4-rc8 being the last rc release). The work never really stops:
by early December 2019, the v5.5-rc1 release candidate went out.

Generically, taking the 5.x kernel series as an example (the same holds true for any
other recent major kernel series), the kernel development workflow is as follows:

The 5.x stable release is made. Thus, the merge window for the 5.x+11.
(mainline) kernel has begun.
The merge window remains open for about 2 weeks and new patches are2.
merged into the mainline.
Once (typically) 2 weeks have elapsed, the merge window is closed.3.
rc (aka mainline, prepatch) kernels start. 5.x+1-rc1, 5.x+1-rc2, ..., 5.x+1-rcn4.
are released. This process takes anywhere between 6 to 8 weeks.
The stable release has arrived: the new 5.x+1 stable kernel is released.5.
The release is handed off to the "stable team":6.

Significant bug or security fixes result in the release of 5.x+1.y :
5.x+1.1, 5.x+1.2, ... , 5.x+1.n.
Maintained until the next stable release or End Of
Life (EOL) date reached

...and the whole process repeats.

So, when you now see Linux kernel releases, the names and the process involved will
make sense. Let's now move on to looking at the different types of kernel source trees
out there.

Types of kernel source trees
There are several types of Linux kernel source trees. The key one is the Long Term
Support (LTS) kernel. Okay, so what exactly is an LTS release kernel? It’s simply a
"special" release in the sense that the kernel maintainers will continue to backport
important bug and security fixes upon it (well, security issues are typically nothing
but bugs), until a given EOL date.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[49]

The "life" of an LTS kernel will usually be a minimum of 2 years, and it can go for
several more (it's extended at times). The 5.4 LTS kernel that we will use throughout
this book is the 20th LTS kernel and has a lifespan of just over 6 years – from
November 2019 to December 2025.

There are several types of release kernels in the repository. However, here, we
mention an incomplete list, ordered from least to most stable (thus, their life, from
shortest to longest time span):

-next trees: This is indeed the bleeding edge, subsystem trees with new
patches collected here for testing and review. This is what an upstream
kernel contributor will work on.
Prepatches, also known as -rc or mainline: These are release candidate
kernels that get generated prior to a release.
Stable kernels: As the name implies, this is the business end. These kernels
are typically picked up by distributions and other projects (at least to begin
with). They are also known as vanilla kernels.
Distribution and LTS kernels: Distribution kernels are (obviously) the
kernels provided by the distributions. They typically begin with a base
vanilla/stable kernel. LTS kernels are the specially maintained-for-a-longer-
while kernels, making them especially useful for industry/production
projects and products.

In this book, we will work throughout on the latest LTS kernel as of
the time of writing, which is the 5.4 LTS kernel. As I mentioned
in Chapter 1, Kernel Workspace Setup, the 5.4 LTS kernel was initially
slated to have an EOL of "at least December 2021." Recently (June
2020), it's now been pushed to December 2025, keeping this book's
content current and valid for years to come!

Super LTS (SLTS) kernels: Even longer maintained LTS kernels (by the
Civil Infrastructure Platform (https:/ /www. cip- project. org/), a Linux
Foundation project).

It's quite intuitive. Nevertheless, I refer you to kernel.org's Releases page to obtain
details on the type of release kernels: https:/ /www. kernel. org/ releases. html.
Again, for even more detail, visit How the development process works (https:/ /www.
kernel.org/doc/ html/ latest/ process/ 2.Process. html#how- the- development-
process-works).

https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/releases.html
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works
https://www.kernel.org/doc/html/latest/process/2.Process.html#how-the-development-process-works

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[50]

As an interesting aside, certain LTS kernels are very long-term releases, the aptly
named SLTS or Super LTS kernels. As an example, the 4.4 Linux kernel (the 16th LTS
release) is considered to be an SLTS kernel. As the first kernel selected for SLTS, the
Civil Infrastructure Platform will provide support until at least 2026, possibly until
2036.

Querying the repository, www.kernel.org, in a non-interactive scriptable fashion
can be done using curl(1) (the following output is the state of Linux as of 05
January 2021):

$ curl -L https://www.kernel.org/finger_banner
The latest stable version of the Linux kernel is: 5.10.4
The latest mainline version of the Linux kernel is: 5.11-rc2
The latest stable 5.10 version of the Linux kernel is: 5.10.4
The latest stable 5.9 version of the Linux kernel is: 5.9.16 (EOL)
The latest longterm 5.4 version of the Linux kernel is: 5.4.86
The latest longterm 4.19 version of the Linux kernel is: 4.19.164
The latest longterm 4.14 version of the Linux kernel is: 4.14.213
The latest longterm 4.9 version of the Linux kernel is: 4.9.249
The latest longterm 4.4 version of the Linux kernel is: 4.4.249
The latest linux-next version of the Linux kernel is: next-20210105
$

Of course, by the time you read this, it's extremely likely (certain, in fact) that the
kernel has evolved further and later versions show up. For a book such as this one,
the best I could do is pick the latest LTS kernel at the time of writing.

Of course, it's happened already! The 5.10 kernel was released on 13
December 2020 and, as of the time of writing (just before going to
print), the work on the 5.11 kernel is in progress...

Finally, yet another safe way to download a given kernel is provided by the kernel
maintainers who offer a script to safely download a given Linux kernel source tree,
verifying its PGP signature. The script is available here: https:/ /git. kernel. org/
pub/scm/linux/ kernel/ git/ mricon/ korg-helpers. git/ tree/ get- verified-
tarball.

Right, now that we're armed with the knowledge on kernel version nomenclature and
types of kernel source trees, it's time to begin our journey of building our kernel.

https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball
https://git.kernel.org/pub/scm/linux/kernel/git/mricon/korg-helpers.git/tree/get-verified-tarball

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[51]

Steps to build the kernel from source
As a convenient and quick reference, the following are the key steps required to build
a Linux kernel from source. As the explanation for each of them is pretty detailed,
you can refer back to this summary to see the bigger picture. The steps are as follows:

Obtain a Linux kernel source tree through either of the following options:1.
Downloading a specific kernel source as a compressed file
Cloning a (kernel) Git tree

Extract the kernel source tree into some location in your home directory2.
(skip this step if you obtained a kernel by cloning a Git tree).
Configuration: Select the kernel support options as required for the new3.
kernel,
make [x|g|menu]config, with make menuconfig being the preferred
way.
Build the kernel's loadable modules and any Device Tree Blobs (DTBs)4.
with make [-j'n'] all. This builds the compressed kernel image
(arch/<arch>/boot/[b|z|u]image), the uncompressed kernel image
(vmlinux), System.map, the kernel module objects, and any configured
DTB(s) files.
Install the just-built kernel modules with sudo make modules_install.5.
This step installs kernel modules by default under
/lib/modules/$(uname -r)/.
Set up the GRUB bootloader and the initramfs (earlier called initrd)6.
image (x86-specific):
sudo make install:

This creates and installs the initramfs (or initrd) image
under /boot.
It updates the bootloader configuration file to boot the new
kernel (first entry).

Customize the GRUB bootloader menu (optional).7.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[52]

This chapter, being the first of two on this topic, will essentially cover steps 1 to 3, with
a lot of required background material thrown in as well. The next chapter will cover
the remaining steps, 4 to 7. So, let's begin with step 1.

Step 1 – obtaining a Linux kernel source
tree
In this section, we will see two broad ways in which you can obtain a Linux kernel
source tree:

By downloading and extracting a specific kernel source tree from the Linux
kernel public repository (https:/ /www. kernel. org)
By cloning Linus Torvalds' source tree (or others') – for example, the
linux-next Git tree

But how do you decide which approach to use? For the majority of developers like
you working on a project or product, the decision has already been made – the project
uses a very specific Linux kernel version. You will thus download that particular
kernel source tree, quite possibly apply project-specific patches to it if required, and
use it.

For folks whose intention is to contribute or "upstream" code to the mainline kernel,
the second approach – cloning the Git tree – is the way to go for you. (Of course,
there's more to it; we described some details in the Types of kernel source trees section).

In the following section, we demonstrate both approaches. First, we describe the
approach where a particular kernel source tree (not a Git tree) is downloaded from
the kernel repository. We choose, as of the time of writing, the latest LTS 5.4 Linux
kernel for this purpose. In the second approach, we clone a Git tree.

https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[53]

Downloading a specific kernel tree
Firstly, where is the kernel source code? The short answer is that it's on the public
kernel repository server visible at https:/ /www. kernel. org. The home page of this
site displays the latest stable Linux kernel version, as well as the latest longterm and
linux-next releases (the following screenshot shows the site as of 29 November
2019. It shows dates in the well-known yyyy-mm-dd format):

Figure 2.2 – The kernel.org site (as of 29 November 2019)

A quick reminder: we also provide a PDF file that has the full-color
images of the screenshots/diagrams used in this book. You can
download it here: https:/ /static. packt- cdn.com/ downloads/
9781789953435_ ColorImages. pdf.

https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[54]

There are many ways to download a (compressed) kernel source file. Let's look at two
of them:

An interactive, and perhaps simplest way, is to visit the preceding website
and simply click on the appropriate tarball link. The browser will
download the image file (in .tar.xz format) to your system.
Alternatively, you can download it from the command line (a shell or the
CLI) using the wget(1) utility (we can also use the powerful curl(1)
utility to do so). For example, to download the stable 5.4.0 kernel source
compressed file, we can do the following:

wget --https-only -O ~/Downloads/linux-5.4.0.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.
4.0.tar.xz

If the preceding wget(1) utility doesn't work, it's likely because the
kernel (compressed) tarball link changed. For example, if it didn't
work for 5.4.0.tar.xz, try the same wget utility but change the
version to 5.4.1.tar.xz.

This will securely download the 5.4.0 compressed kernel source tree to your
computer's ~/Downloads folder. Of course, you may not want the versions of the
kernel that are displayed on the repository's home page. For example, what if, for my
particular project, I require the latest 4.19 stable (LTS) kernel, the 19th LTS release?
Simple: via the browser, just click on the https:/ /www. kernel. org/pub/ (or the
mirror https:/ /mirrors. edge. kernel. org/ pub/) link (immediately to the right of
the "HTTP" link shown in the first few lines) and navigate to the
linux/kernel/v4.x/ directory on the server (you might be directed to a mirror
site). Or, simply point wget(1) at the URL (here, as of the time of writing, it happens
to be https://mirrors. edge. kernel. org/pub/ linux/ kernel/ v4.x/ linux- 4.19. 164.
tar.xz).

Cloning a Git tree
For a developer like you working on and looking to contribute code upstream,
you must work on the very latest version of the Linux kernel code base. Well, there
are fine gradations of the latest version within the kernel community. As mentioned
earlier, the linux-next tree, and some specific branch or tag within it, is the one to
work on for this purpose.

https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://www.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v4.x/linux-4.19.164.tar.xz

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[55]

In this book, though, we do not intend to delve into the gory details of setting up a
linux-next tree. This process is already very well documented and we would prefer
not to merely repeat instructions (see the Further reading section for detailed links).
The detailed page on how exactly you should clone a linux-next tree is
here: Working with linux-next, https:/ /www. kernel. org/ doc/ man- pages/ linux- next.
html, and, as mentioned there, the linux-next tree, http:/ /git. kernel. org/cgit/
linux/kernel/git/ next/ linux- next. git, is the holding area for patches aimed at the
next kernel merge window. If you're doing bleeding-edge kernel development, you
may want to work from that tree rather than Linus Torvalds' mainline tree.

For our purposes, cloning the mainline Linux Git repository (Torvalds' Git tree) is
more than sufficient. Do so like this (type this on one line):

git clone
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

Note that cloning a complete Linux kernel tree is a time-, network-,
and disk-consuming operation! Ensure you have sufficient disk
space free (at least a few gigabytes worth).

Performing git clone --depth n <...>, where n is an integer
value, is very useful to limit the depth of history (commits) and thus
keep the download/disk usage low(er). As the man page on git-
clone(1) mentions for the --depth option: "Create a shallow clone
with a history truncated to a specified number of commits."

As per the preceding tip, why not do the following (again, type this on one line)?

git clone --depth=3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

If you intend to work on this mainline Git tree, please skip the Step 2 – extracting the
kernel source tree section (as the git clone operation will, in any case, extract the
source tree) and continue with the section that follows it (Step 3 – configuring the Linux
kernel).

https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
https://www.kernel.org/doc/man-pages/linux-next.html
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git
http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[56]

Step 2 – extracting the kernel source tree
As mentioned earlier, this section is meant for those of you who have downloaded a
particular Linux kernel from the repository, https:/ /www. kernel. org, and aim to
build it. In this book, we use the 5.4 LTS kernel release. On the other hand, if you have
performed git clone on the mainline Linux Git tree, as shown in the immediately
preceding section, you can safely skip this section and move on to the next one on
kernel configuration.

Now that the download is done, let's proceed further. The next step is to extract the
kernel source tree – remember, it's a tar-ed and compressed (typically .tar.xz) file.

We assume that, as shown in detail earlier in this chapter, you have by now
downloaded the Linux kernel version 5.4 code base as a compressed file (into the
~/Downloads directory):

$ cd ~/Downloads ; ls -lh linux-5.4.tar.xz
-rw-rw-r-- 1 llkd llkd 105M Nov 26 08:04 linux-5.4.tar.xz

The simple way to extract this file is by using the ubiquitous tar(1) utility to do so:

tar xf ~/Downloads/linux-5.4.tar.xz

This will extract the kernel source tree into a directory named linux-5.4 within the
~/Downloads directory. But what if we would like to extract it into another folder,
say ~/kernels? Then, do it like so:

mkdir -p ~/kernels
tar xf ~/Downloads/linux-5.4.tar.xz --directory=${HOME}/kernels/

This will extract the kernel source into the ~/kernels/linux-5.4/ folder. As a
convenience, and good practice, let's set up an environment variable to point to the
location of the root of our kernel source tree:

export LLKD_KSRC=${HOME}/kernels/linux-5.4

Note that, going forward, we will assume that this variable holds
the location of the kernel source tree.

While you could always use a GUI file manager application (such as Nautilus(1))
to extract the compressed file, I strongly urge you to get familiar with using the Linux
CLI to perform these operations.

https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org
https://www.kernel.org

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[57]

Don't forget tldr(1) when you need to quickly lookup the most
frequently used options to common commands! For example,
for tar(1), simply use tldr tar to look it up.

Did you notice? We extract the kernel source tree into any directory under our home
directory (or even elsewhere), unlike in the old days when the tree was always
extracted under a root-writeable location (often, /usr/src/). Nowadays, just say no
(to that).

If all you wish to do now is proceed with the kernel build recipe, skip the following
section and move along. If interested (we certainly hope so!), the next section is a brief
but important deviation into looking at the structure and layout of the kernel source
tree.

A brief tour of the kernel source tree
The kernel source code is now available on your system! Cool, let's take a quick look
at it:

Figure 2.3 – The root of the 5.4 Linux kernel source tree

Great! How big is it? A quick du -m . in the root of the kernel source tree reveals
that this particular kernel source tree (recall, it's version 5.4) is a little over 1,000 MB in
size – almost a gigabyte!

FYI, the Linux kernel has grown to be big and is getting bigger in terms
of Source Lines Of Code (SLOCs). Current estimates are well over 20
million SLOCs. Of course, do realize that not all of this code will get
compiled when building a kernel.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[58]

How do we know which version exactly of the Linux kernel this code is by just
looking at the source? That's easy, one quick way is to just check out the first few lines
of the project's Makefile. Incidentally, the kernel uses Makefile's all over the place;
most directories have one. We will refer to this Makefile, the one at the root of the
kernel source tree, as the top-level Makefile:

$ head Makefile
SPDX-License-Identifier: GPL-2.0
VERSION = 5
PATCHLEVEL = 4
SUBLEVEL = 0
EXTRAVERSION =
NAME = Kleptomaniac Octopus

DOCUMENTATION
To see a list of typical targets execute "make help"
More info can be located in ./README
$

Clearly, it's the source of the 5.4.0 kernel.

Let's get for ourselves a zoomed-out 10,000-foot view of the kernel source tree. The
following table summarizes the broad categorization and purpose of the (more)
important files and directories within the root of the Linux kernel source tree:

File or directory name Purpose
Top-level files

README

The project's README file. It informs us as to where the kernel
documentation is kept – spoiler, it's in the directory called
Documentation – and how to begin using it. The
documentation is really important; it's the authentic thing,
written by the kernel developers themselves.

COPYING
The license terms under which the kernel source is released.
The vast majority are released under the well-known GNU
GPL v2 (written as GPL-2.0) license [1].

MAINTAINERS

FAQ: something's wrong in XYZ, who do I contact to get some
support? That is precisely what this file provides – the list of all
kernel subsystems, indeed down to the level of individual
components (such as a particular driver), its status, who is
currently maintaining it, the mailing list, website, and so on.
Very helpful! There's even a helper script to find the person or
team to talk to: scripts/get_maintainer.pl [2].

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[59]

Makefile
This is the kernel's top-level Makefile; the kbuild kernel build
system as well as kernel modules use this Makefile (at least
initially) for the build.

Major subsystem
directories

kernel/
Core kernel subsystem: the code here deals with
process/thread life cycle, CPU scheduling, locking, cgroups,
timers, interrupts, signaling, modules, tracing, and more.

mm/

The bulk of the memory management (mm) code lives here.
We will cover a little of this in Chapter 6, Kernel Internals
Essentials – Processes and Threads, and some related coverage in
Chapter 7, Memory Management Internals – Essentials, and
Chapter 8, Kernel Memory Allocation for Module Authors – Part 1,
as well.

fs/

The code here implements two key filesystem features: the
abstraction layer – the kernel Virtual Filesystem Switch (VFS),
and the individual filesystem drivers (for example, ext[2|4],
btrfs, nfs, ntfs, overlayfs, squashfs, jffs2, fat, f2fs,
and so on).

block/
The underlying (to the VFS/FS) block I/O code path. It includes
the code implementing the page cache, a generic block IO
layer, IO schedulers, and so on.

net/

Complete (to the letter of the Request For Comments
(RFCs)—https:/ /whatis. techtarget. com/ definition/
Request- for- Comments- RFC) implementation of the network
protocol stack. Includes a high-quality implementation of TCP,
UDP, IP, and many more networking protocols.

ipc/
The Inter-Process Communication (IPC) subsystem code;
covers IPC mechanisms such as (both SysV and POSIX)
message queues, shared memory, semaphores, and so on.

sound/
The audio subsystem code, also known as Advanced Linux
Sound Architecture (ALSA).

virt/
The virtualization (hypervisor) code; the popular and
powerful Kernel Virtual Machine (KVM) is implemented
here.

Infrastructure/misc

https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC
https://whatis.techtarget.com/definition/Request-for-Comments-RFC

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[60]

arch/

The arch-specific code lives here (by the word arch, we mean
CPU). Linux started as a small hobby project for the i386. It is
now probably the most ported OS (see the arch ports in step 3
of the list that follows after this table).

crypto/

This directory contains the kernel-level implementation of
ciphers (encryption/decryption algorithms, aka
transformations) and kernel APIs to serve consumers that
require cryptographic services.

include/
This directory contains the arch-independent kernel headers
(there are also some arch-specific ones under
arch/<cpu>/include/...).

init/

The arch-independent kernel initialization code; perhaps the
closest we get to the kernel's main function (remember, the
kernel is not an application) is here:
init/main.c:start_kernel(), with the start_kernel()
function within it considered the early C entry point during
kernel initialization.

lib/

The closest equivalent to a library for the kernel. It's important
to understand that the kernel does not support shared libraries
as userspace apps do. The code here is auto-linked into the
kernel image file and hence available to the kernel at runtime
(various useful components exist within /lib:
[un]compression, checksum, bitmap, math, string routines, tree
algos, and so on).

scripts/
Various scripts are housed here, some of which are used
during kernel build, many for other purposes (like
static/dynamic analysis, and so on; mostly Bash and Perl).

security/

Houses the kernel's Linux Security Module (LSM), a
Mandatory Access Control (MAC) framework that aims at
imposing stricter access control of user apps to kernel space
than the default kernel does (the default model is
called Discretionary Access Control (DAC)). Currently, Linux
supports several LSMs; well-known ones are SELinux,
AppArmor, Smack, Tomoyo, Integrity, and Yama (note that
LSMs are "off" by default).

tools/
Various tools are housed here, mostly userspace applications
(or scripts) that have a "tight coupling" with the kernel (perf,
the modern profiling tool, serves as an excellent example).

Table 2.2 – Layout of the Linux kernel source tree

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[61]

The following are some important explanations from the table:

Kernel licensing: Without getting stuck in the legal details, here's the1.
pragmatic essence of the thing: as the kernel is released under the GNU
GPL-2.0 license (GNU GPL is the GNU General Public License), any
project that directly uses the kernel code base (even a tiny bit of it!),
automatically falls under this license (the "derivative work" property of the
GPL-2.0). These projects or products must release their kernels under the
same license terms. Practically speaking, the situation on the ground is a
good deal hazier; many commercial products that run on the Linux kernel
do have proprietary user- and/or kernel-space code within them. They
typically do so by refactoring kernel (most often, device driver) work in
Loadable Kernel Module (LKM) format. It is possible to release the kernel
module (LKM) under a dual license model (for example, as dual BSD/GPL;
the LKM is the subject matter of Chapter 4, Writing your First Kernel Module
– LKMs Part 1, and Chapter 5, Writing your First Kernel Module – LKMs Part
2, and we cover some information on the licensing of kernel modules
there). Some folks, preferring proprietary licenses, manage to release their
kernel code within a kernel module that is not licensed under GPL-2.0
terms; technically, this is perhaps possible, but is (at the very least)
considered as being anti-social (and can even cross the line to being illegal).
The interested among you can find more links on licensing in the Further
reading document for this chapter.
MAINTAINERS: An example of running the get_maintainer.pl Perl script2.
(note: it is meant to run on a Git tree only):

$ scripts/get_maintainer.pl -f drivers/android/
Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(supporter:ANDROID DRIVERS)
"Arve Hjønnevåg" <arve@android.com> (supporter:ANDROID
DRIVERS)
Todd Kjos <tkjos@android.com> (supporter:ANDROID DRIVERS)
Martijn Coenen <maco@android.com> (supporter:ANDROID DRIVERS)
Joel Fernandes <joel@joelfernandes.org> (supporter:ANDROID
DRIVERS)
Christian Brauner <christian@brauner.io> (supporter:ANDROID
DRIVERS)
devel@driverdev.osuosl.org (open list:ANDROID DRIVERS)
linux-kernel@vger.kernel.org (open list)
$

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[62]

Linux arch (CPU) ports:3.

$ cd ${LLKD_KSRC} ; ls arch/
alpha/ arm64/ h8300/ Kconfig mips/ openrisc/ riscv/
sparc/ x86/
arc/ c6x/ hexagon/ m68k/ nds32/ parisc/ s390/ um/
xtensa/
arm/ csky/ ia64/ microblaze/ nios2/ powerpc/ sh/
unicore32/

As a kernel or driver developer, browsing the kernel source tree is
something you will have to get quite used to (and even enjoy!).
Searching for a particular function or variable can be a daunting task
when the code is in the ballpark of 20 million SLOCs! Do use
efficient code browser tools. I suggest the ctags(1) and
cscope(1) Free and Open Source Software (FOSS) tools. In fact,
the kernel's top-level Makefile has targets for precisely these:

make tags ; make cscope

We have now completed step 2, the extraction of the kernel source tree! As a bonus,
you also learned the basics regarding the layout of the kernel source. Let's now move
on to step 3 of the process and learn how to configure the Linux kernel prior to
building it.

Step 3 – configuring the Linux kernel
Configuring the new kernel is perhaps the most critical step in the kernel build
process. One of the many reasons Linux is a critically acclaimed OS is its versatility.
It's a common misconception to think that there is a separate Linux kernel code base
for an (enterprise-class) server, a data center, a workstation, and a tiny embedded
Linux device – no, they all use the very same unified Linux kernel source! Thus, carefully
configuring the kernel for a particular use case (server, desktop, embedded, or
hybrid/custom) is a powerful feature and a requirement. This is precisely what we are
delving into here.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[63]

Do carry out this kernel configuration step regardless. Even if you
feel you do not require any changes to the existing (or default)
config, it's very important to run this step at least once as part of the
build process. Otherwise, certain headers that are auto-generated
here will be missing and cause issues. At the very least, make
oldconfig should be carried out. This will set up the kernel config
to that of the existing system with config options being requested
from the user only for any new options.

First though, let's cover some required background on the kernel build (kbuild) system.

Understanding the kbuild build system
The infrastructure that the Linux kernel uses to configure and build the kernel is
known as the kbuild system. Without delving into the gory details, the kbuild system
ties together the complex kernel configuration and build process via four key
components:

The CONFIG_FOO symbols
The menu specification file(s), called Kconfig
The Makefile(s)
The overall kernel config file itself

The purpose of these components is summarized as follows:

Kbuild component Purpose in brief

Config symbol:
CONFIG_FOO

Every kernel configurable FOO is represented by a CONFIG_FOO
macro. Depending on the user's choice, the macro will resolve to
one of y, m, or n:
- y=yes: Implying to build the feature into the kernel image itself
- m=module: Implying to build it as a separate object, a kernel
module
- n=no: Implying not to build the feature
Note that CONFIG_FOO is an alphanumeric string (as we will soon see, you
can look up the precise config option name by using the make
menuconfig option, navigating to a config option, and selecting the <
Help > button).

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[64]

Kconfig files

This is where the CONFIG_FOO symbol is defined. The kbuild
syntax specifies its type (Boolean, tristate, [alpha]numeric, and so
on) and dependency tree. Furthermore, for the menu-based config
UI (invoked via one of make [menu|g|x]config), it specifies the
menu entries themselves. We will, of course, make use of this
feature later.

Makefile(s)

The kbuild system uses a recursive Makefile approach. The
Makefile under the kernel source tree root folder is called the top-
level Makefile, with a Makefile within each sub-folder to build the
source there. The 5.4 vanilla kernel source has over 2,500 Makefiles
in all!

The .config file

Ultimately, the essence of it – the actual kernel configuration – is
generated and stored within the kernel source tree root folder in an
ASCII text file called .config. Keep this file safe, it's a key part of
your product.

Table 2.3 – Major components of the Kbuild build system

The key thing is to get ourselves a working .config file. How can we do so? We do
this iteratively. We begin with a "default" configuration – the topic of the following
section – and carefully work our way up to a custom config as required.

Arriving at a default configuration
So, how do you decide the initial kernel configuration to begin with? Several
techniques exist; a few common ones are as follows:

Don't specify anything; the kbuild system will pull in a default kernel
configuration.
Use the existing distribution's kernel configuration.
Build a custom configuration based on the kernel modules currently loaded
in memory.

The first approach has the benefit of simplicity. The kernel will handle the details,
giving you a default configuration. The downside is that the default config is really
pretty large (here, we mean with reference to building Linux for an x86-based
desktop or server-type system) – a huge number of options are turned on, just in case,
which can make the build time very long and kernel image size very large. Of course,
you are then expected to manually configure the kernel to the desired settings.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[65]

This brings up the question, where is the default kernel config stored? The kbuild system
uses a priority list fallback scheme to retrieve a default configuration. The priority list
and its order (first being highest priority) are specified within
init/Kconfig:DEFCONFIG_LIST:

$ cat init/Kconfig
config DEFCONFIG_LIST
 string
 depends on !UML
 option defconfig_list
 default "/lib/modules/$(shell,uname -r)/.config"
 default "/etc/kernel-config"
 default "/boot/config-$(shell,uname -r)"
 default ARCH_DEFCONFIG
 default "arch/$(ARCH)/defconfig"
config CC_IS_GCC
[...]

FYI, the kernel documentation on Kconfig (found here: https:/ /www. kernel. org/
doc/Documentation/ kbuild/ kconfig- language. txt) documents what
defconfig_list is:

"defconfig_list"
 This declares a list of default entries which can be used when
 looking for the default configuration (which is used when the main
 .config doesn't exists yet.)

From the list, you can see that the kbuild system first checks for the presence of a
.config file in the /lib/modules/$(uname -r) folder. If found, the values there
will be used as the defaults. If not found, it next checks for the presence of a
/etc/kernel-config file. If found, the values there will be used as defaults, and if
not found it moves on to the next option in the preceding priority list, and so on.
Note, though, that the presence of a .config file in the root of the kernel source tree
overrides all of this!

Obtaining a good starting point for kernel
configuration
This brings us to a really important point: playing around with the kernel
configuration is okay to do as a learning exercise (as we do here), but for a production
system, it's really critical that you use a proven – known, tested, and working – kernel
configuration.

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[66]

Here, to help you understand the nuances of selecting a valid starting point for kernel
configuration, we will see three approaches to obtaining a starting point for kernel
configuration that (we hope) are typical:

First, the approach to follow for a typical small embedded Linux system
Next, an approach where you emulate the distribution's configuration
Finally, an approach where you base the kernel configuration on the
existing (or another) system's kernel modules (the localmodconfig
approach)

Let's examine each of these approaches in a bit more detail.

Kernel config for typical embedded Linux systems
The typical target system for using this approach is a small embedded Linux system.
The goal here is to begin with a proven – a known, tested, and working – kernel
configuration for our embedded Linux project. Well, how exactly can we achieve this?

Interestingly, the kernel code base itself provides known, tested, and working kernel
configuration files for various hardware platforms. We merely have to select the one
that matches (or is the nearest match to) our embedded target board. These kernel
config files are present within the kernel source tree in the
arch/<arch>/configs/ directory. The config files are in the format <platform-
name>_defconfig. A quick peek is in order; see the following screenshot showing
the command ls arch/arm/configs being performed on the v5.4 Linux kernel
code base:

Figure 2.4 – The contents of arch/arm/configs on the 5.4 Linux kernel

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[67]

Thus, for example, if you find yourself configuring the Linux kernel for a hardware
platform having, say, a Samsung Exynos System on Chip (SoC) on it, please don’t
start with an x86-64 kernel config file as the default (or simply attempt to use it). It
won't work. Even if you manage it, the kernel will not build/work cleanly. Pick the
appropriate kernel config file: for our example here, the
arch/arm/configs/exynos_defconfig file would be a good starting point. You
can copy this file into .config in the root of your kernel source tree and then proceed
to fine-tune it to your project-specific needs.

As another example, the Raspberry Pi (https:/ /www. raspberrypi. org/) is a popular
hobbyist platform. The kernel config file – within its kernel source tree – used (as a
base) is this one: arch/arm/configs/bcm2835_defconfig. The filename reflects
the fact that Raspberry Pi boards use a Broadcom 2835-based SoC. You can find
details regarding kernel compilation for the Raspberry Pi here: https:/ /www.
raspberrypi.org/ documentation/ linux/ kernel/ building. md. Hang on, though, we
will be covering at least some of this in Chapter 3, Building the 5.x Linux Kernel from
Source – Part 2, in the Kernel build for the Raspberry Pi section.

An easy way to see exactly which configuration file is good for
which platform is to simply perform make help on the target
platform itself. The latter part of the output displays the config files
under the Architecture specific targets heading (note though that this
is meant for foreign CPUs and doesn't work for the x86[-64]).

The careful tweaking and setup of the kernel config for a product is an important part
of the work typically carried out by the engineers working within the platform
or Board Support Package (BSP) team.

Kernel config using distribution config as a starting
point
The typical target system for using this approach is a desktop or server Linux system.

Moving along, this second approach is also quick:

cp /boot/config-5.0.0-36-generic ${LLKD_KSRC}/.config

https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[68]

Here, we simply copy the existing Linux distribution's (here, it's our Ubuntu 18.04.3
LTS guest VM) config file into the .config file in the root of the kernel source tree, of
course, thereby making the distribution config the starting point, which can then be
further edited (a more generic command: cp /boot/config-$(uname -r)
${LLKD_KSRC}/.config).

Tuned kernel config via the localmodconfig
approach
The typical target system for using this approach is a desktop or server Linux system.

This third approach we consider is a good one to use when the goal is to begin with a
kernel config that is based on your existing system and is thus (usually) relatively
compact compared to the typical default config on a desktop or server Linux system.
Here, we provide the kbuild system with a snapshot of the kernel modules currently
running on the system by simply redirecting the output of lsmod(8) into a
temporary file, and then providing that file to the build. This can be achieved as
follows:

lsmod > /tmp/lsmod.now
cd ${LLKD_KSRC}
make LSMOD=/tmp/lsmod.now localmodconfig

The lsmod(8) utility simply lists all the kernel modules currently residing in system
(kernel) memory. We will see (a lot) more on this in Chapter 4, Writing Your First
Kernel Module – LKMs Part 1. We save its output in a temporary file, which we pass
within the LSMOD environment variable to the Makefile's localmodconfig target.
The job of this target is to configure the kernel in a manner as to only include the base
functionality plus the functionality provided by these kernel modules and leave out
the rest, in effect giving us a reasonable facsimile of the current kernel (or of
whichever kernel the lsmod output represents). We use precisely this technique to
configure our 5.4 kernel in the following Getting started with the localmodconfig approach
section.

Right, this concludes the three approaches to setting up a starting point for kernel
configuration. As a matter of fact, we have just scratched the surface. Many more
techniques to explicitly generate the kernel configuration in a given manner are
encoded into the kbuild system itself! How? Via configuration targets to make. See
them under the Configuration targets heading:

$ cd ${LKDC_KSRC} # root of the kernel source tree
$ make help

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[69]

Cleaning targets:
 clean - Remove most generated files but keep the config
and
 enough build support to build external modules
 mrproper - Remove all generated files + config + various
backup
 files
 distclean - mrproper + remove editor backup and patch files

Configuration targets:
 config - Update current config utilising a line-oriented
 program
 nconfig - Update current config utilising a ncurses menu
based
 program
 menuconfig - Update current config utilising a menu based
program
 xconfig - Update current config utilising a Qt based front-
end
 gconfig - Update current config utilising a GTK+ based
front-end
 oldconfig - Update current config utilising a provided .config
as
 base
 localmodconfig - Update current config disabling modules not loaded
 localyesconfig - Update current config converting local mods to
core
 defconfig - New config with default from ARCH supplied
defconfig
 savedefconfig - Save current config as ./defconfig (minimal
config)
 allnoconfig - New config where all options are answered with no
 allyesconfig - New config where all options are accepted with yes
 allmodconfig - New config selecting modules when possible
 alldefconfig - New config with all symbols set to default
 randconfig - New config with random answer to all options
 listnewconfig - List new options
 olddefconfig - Same as oldconfig but sets new symbols to their
 default value without prompting
 kvmconfig - Enable additional options for kvm guest kernel
support
 xenconfig - Enable additional options for xen dom0 and guest
 kernel support
 tinyconfig - Configure the tiniest possible kernel
 testconfig - Run Kconfig unit tests (requires python3 and
pytest)

Other generic targets:

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[70]

 all - Build all targets marked with [*]
[...]
$

A quick but very useful point: to ensure a clean slate, use the mrproper target first.
We will show a summary of all the steps carried out next, so don't worry for now.

Getting started with the localmodconfig
approach
Now, let's quickly get started on creating a base kernel configuration for our new
kernel by using the third approach we discussed previously – the localmodconfig
technique. As mentioned, this existing kernel modules-only approach is a good one
when the goal is to obtain a starting point for kernel config on an x86-based system by
keeping it relatively small and thus make the build quicker as well.

Don't forget: the kernel configuration being performed right now is
appropriate for your typical x86-based desktop/server systems. For
embedded targets, the approach is different (as seen in the Kernel
config for typical embedded Linux systems section). We further cover
this practically in Chapter 3, Building the 5.x Linux Kernel from Source
- Part 2, under the Kernel build for the Raspberry Pi section.

As described previously, first obtain a snapshot of the currently loaded kernel
modules, and then have the kbuild system operate upon it by specifying the
localmodconfig target, like so:

lsmod > /tmp/lsmod.now
cd ${LLKD_KSRC} ; make LSMOD=/tmp/lsmod.now localmodconfig

Now, something to understand: when we perform the actual make [...]
localmodconfig command, it's entirely possible, indeed even probable, that there
will be a difference in the configuration options between the kernel you are currently
building (version 5.4) and the kernel you are currently actually running the build on
($(uname -r) = 5.0.0-36-generic, here). In these cases, the kbuild system will
display every single new config option and the available values you can set it to, on
the console (terminal) window. Then, it will prompt the user to select the value of any
new config options it encounters in the kernel being built. You will see this as a series
of questions and a prompt to answer them on the command line.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[71]

The prompt will be suffixed with (NEW), in effect telling you that
this is a new kernel config option and it wants your answer as to
how to configure it.

Here, at least, we will take the easy way out: just press the [Enter] key to accept the
default selection, as follows:

$ uname -r
5.0.0-36-generic
$ make LSMOD=/tmp/lsmod.now localmodconfig
using config: '/boot/config-5.0.0-36-generic'
vboxsf config not found!!
module vboxguest did not have configs CONFIG_VBOXGUEST
*
* Restart config...
*
*
* General setup
*
Compile also drivers which will not load (COMPILE_TEST) [N/y/?] n
Local version - append to kernel release (LOCALVERSION) []
Automatically append version information to the version string
(LOCALVERSION_AUTO) [N/y/?] n
Build ID Salt (BUILD_SALT) [] (NEW) [Enter]
Kernel compression mode
> 1. Gzip (KERNEL_GZIP)
 2. Bzip2 (KERNEL_BZIP2)
 3. LZMA (KERNEL_LZMA)
 4. XZ (KERNEL_XZ)
 5. LZO (KERNEL_LZO)
 6. LZ4 (KERNEL_LZ4)
choice[1-6?]: 1
Default hostname (DEFAULT_HOSTNAME) [(none)] (none)
Support for paging of anonymous memory (swap) (SWAP) [Y/n/?] y
System V IPC (SYSVIPC) [Y/n/?] y
[...]
Enable userfaultfd() system call (USERFAULTFD) [Y/n/?] y
Enable rseq() system call (RSEQ) [Y/n/?] (NEW)
[...]
 Test static keys (TEST_STATIC_KEYS) [N/m/?] n
 kmod stress tester (TEST_KMOD) [N/m/?] n
 Test memcat_p() helper function (TEST_MEMCAT_P) [N/m/y/?] (NEW)
#
configuration written to .config
#
$ ls -la .config

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[72]

-rw-r--r-- 1 llkd llkd 140764 Mar 7 17:31 .config
$

After pressing the [Enter] key many times, the interrogation mercifully finishes and
the kbuild system writes the newly generated configuration to the .config file in the
current working directory (we truncated the previous output as it's simply too
voluminous, and unnecessary, to reproduce fully).

The preceding two steps take care of generating the .config file via the
localmodconfig approach. Before we conclude this section, here are some key
points to note:

To ensure a completely clean slate, run make mrproper or make
distclean in the root of the kernel source tree (useful when you want to
restart from scratch; rest assured, it will happen one day! Note that doing
this deletes the kernel configuration file(s) too).
Here, in this chapter, all the kernel configuration steps and the screenshots
pertaining to it have been performed on an Ubuntu 18.04.3 LTS x86-64
guest VM, which we use as the host to build a brand spanking new 5.4
Linux kernel. The precise names, the presence and content of the menu
items, as well as the look and feel of the menu system (the UI) can and do
vary based on (a) the architecture (CPU) and (b) the kernel version.
As mentioned earlier, on a production system or project, the platform or
Board Support Package (BSP) team, or indeed the embedded Linux BSP
vendor company if you have partnered with one, will provide a good
known, working, and tested kernel config file. Do use this as a starting
point by copying it onto the .config file in the root of the kernel source
tree.

As you gain experience with building the kernel, you will realize that the effort in
setting up the kernel configuration correctly the first time (critical!) is higher; and, of
course, the time required for the very first build is a lengthy one. Once done correctly,
though, the process typically becomes much simpler – a recipe to run over and over
again.

Now, let's learn how to use a useful and intuitive UI to tune our kernel configuration.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[73]

Tuning our kernel configuration via the make
menuconfig UI
Okay, great, we now have an initial kernel config file (.config) generated for us via
the localmodconfig Makefile target, as shown in detail in the previous section,
which is a good starting point. Now, we want to further examine and fine-tune our
kernel's configuration. One way to do this – in fact, the recommended way – is via the
menuconfig Makefile target. This target has the kbuild system generate a pretty
sophisticated (C-based) program executable (scripts/kconfig/mconf), which
presents to the end user a neat menu-based UI. In the following code block, when we
invoke the command for the first time, the kbuild system builds the mconf executable
and invokes it:

$ make menuconfig
 UPD scripts/kconfig/.mconf-cfg
 HOSTCC scripts/kconfig/mconf.o
 HOSTCC scripts/kconfig/lxdialog/checklist.o
 HOSTCC scripts/kconfig/lxdialog/inputbox.o
 HOSTCC scripts/kconfig/lxdialog/menubox.o
 HOSTCC scripts/kconfig/lxdialog/textbox.o
 HOSTCC scripts/kconfig/lxdialog/util.o
 HOSTCC scripts/kconfig/lxdialog/yesno.o
 HOSTLD scripts/kconfig/mconf
scripts/kconfig/mconf Kconfig
...

Of course, a picture is no doubt worth a thousand words, so here's what the
menuconfig UI looks like:

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[74]

Figure 2.5 – The main menu of kernel configuration via make menuconfig (on x86-64)

As experienced developers, or indeed anyone who has sufficiently used a computer,
well know, things can and do go wrong. Take, for example, the following scenario –
running make menuconfig for the first time on a freshly installed Ubuntu system:

$ make menuconfig
 UPD scripts/kconfig/.mconf-cfg
 HOSTCC scripts/kconfig/mconf.o
 YACC scripts/kconfig/zconf.tab.c
/bin/sh: 1: bison: not found
scripts/Makefile.lib:196: recipe for target
'scripts/kconfig/zconf.tab.c' failed
make[1]: *** [scripts/kconfig/zconf.tab.c] Error 127
Makefile:539: recipe for target 'menuconfig' failed
make: *** [menuconfig] Error 2
$

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[75]

Hang on, don't panic (yet). Read the failure message(s) carefully. The line after YACC
[...] provides the clue: /bin/sh: 1: bison: not found. Ah, so install
bison(1) with the following command:

sudo apt install bison

Now, all should be well. Well, almost; again, on a freshly baked Ubuntu guest, make
menuconfig then complains that flex(1) was not installed. So, we install it (you
guessed it: via sudo apt install flex). Also, specifically on Ubuntu, you need
the libncurses5-dev package installed (on Fedora, do sudo dnf install
ncurses-devel).

If you have read and followed Chapter 1, Kernel Workspace Setup,
you would have all these prerequisite packages already installed. If
not, please refer to it now and install all required packages.
Remember, as ye sow…

Moving along, the kbuild open source framework (reused in a whole bunch of
projects, incidentally) provides some clues to the user via its UI. The meaning of the
symbols prefixing the menu entries are as follows:

[.]: In-kernel feature, Boolean option (it's either on or off):
[*]: On, feature compiled and built in (compiled in) to the
kernel image (y)
[]: Off, not built at all (n)

<.>: A feature that could be in one of three states (tristate):
<*>: On, feature compiled and built in (compiled in) the
kernel image (y)
<M>: Module, feature compiled and built as a kernel module
(an LKM) (m)
< >: Off, not built at all (n)

{.}: A dependency exists for this config option; hence, it's required to be
built (compiled) as either a module (m) or built in (compiled in) to the
kernel image (y).
-*-: A dependency requires this item to be compiled in (y).
(...): Prompt: an alphanumeric input is required (press the [Enter] key
while on this option and a prompt appears).

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[76]

<Menu entry> --->: A sub-menu follows (press [Enter] on this item
to navigate to the sub-menu).

Again, the empirical approach is key. Let's actually experiment with the make
menuconfig UI to see how it works. This is the topic of the next section.

Sample usage of the make menuconfig UI
To get a feel for using the kbuild menu system via the convenient menuconfig target,
let's step through the process to navigate to the tristate menu item called Kernel
.config support. It will be off by default, so let's turn it on; that is, let's make it y,
built into the kernel image. We can find it under the General Setup main menu
item on the home screen.

What exactly does turning this feature on achieve? When turned on to y (or, of
course, if made to M, then a kernel module will become available, and once it's loaded
up), then the currently running kernel's configuration settings can be looked up at
any time in two ways:

By running the scripts/extract-ikconfig script
By directly reading the content of the /proc/config.gz pseudo-file (of
course, it's gzip(1)-compressed; first uncompress it, and then read it)

As a learning exercise, we will now learn how to configure our 5.4 Linux kernel (for
the x86-64 architecture) for the kernel config options with the values shown in the
following table. For now, don't stress regarding the meaning of each of these options;
it's just to get some practice with the kernel config system:

Feature Effect and location in the make menuconfig
UI

Select the < Help > button
to see the precise CONFIG_<FOO>
option

Value:
original
-> new
value

Local version

Sets the -EXTRAVERSION component of the
kernel release/version (seen with uname -
r); General Setup / Local
version - append to kernel
release

CONFIG_LOCALVERSION
(none) ->
-llkd01

Kernel config file
support

Allows you to see the current kernel
configuration details;
General Setup / Kernel .config
support

CONFIG_IKCONFIG n -> y

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[77]

The same as the
preceding plus
access via procfs

Allows you to see the current kernel
configuration details via proc filesystem
(procfs);
General Setup / Enable access
to .config through
/proc/config.gz

CONFIG_IKCONFIG_PROC n -> y

Kernel profiling
Kernel profiling support; General Setup
/ Profiling support

CONFIG_PROFILING y -> n

HAM radio
Support for HAM radio; Networking
support / Amateur Radio
support

CONFIG_HAMRADIO y -> n

VirtualBox
support

(Para)virtualization support for
VirtualBox; Device Drivers /
Virtualization drivers
/ Virtual Box Guest
integration support

CONFIG_VBOXGUEST n -> m

Userspace IO
Drivers (UIO)

UIO support; Device Drivers /
Userspace I/O Drivers

CONFIG_UIO n -> m

The preceding
plus the UIO
platform driver
with generic IRQ
handling

UIO platform driver with generic IRQ
handling; Device Drivers /
Userspace I/O Drivers /
Userspace I/O platform driver
with generic IRQ handling

CONFIG_UIO_PDRV_GENIRQ n -> m

MS-DOS
filesystem support

File systems / DOS/FAT/NT
Filesystems / MSDOS fs support

CONFIG_MSDOS_FS n -> m

Security: LSMs

Turn off kernel LSMs; Security
options / Enable different
security models
(NOTE: it's typically, safer to keep this ON for
production systems!)

CONFIG_SECURITY y -> n

Kernel debug:
stack utilization
info

Kernel hacking / Memory
Debugging / Stack utilization
instrumentation

CONFIG_DEBUG_STACK_USAGE n -> y

 Table 2.4 – Items to configure

How exactly do you interpret this table? Let's take the first row as an example; we go
over it column by column:

The first column specifies the kernel feature we are wanting to modify
(edit/enable/disable). Here, it's the last part of the kernel version string (as
it shows up in the output of uname -r). It's called the -EXTRAVERSION
component of the release (see the Kernel release nomenclature section for
details).

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[78]

The second column specifies two things:
One, what we're attempting to do. Here, we want to set the -
EXTRAVERSION component of the kernel release string.
Two, the location of this kernel config option within the
menuconfig UI is shown. Here, it's within the General
Setup sub-menu, and under that it's the menu item
called Local version - append to kernel release.
We write it as General Setup / Local version -
append to kernel release.

The third column specifies the kernel config option's name as
CONFIG_<FOO>. You can search for this within the menu system if
required. In this example, it's called CONFIG_LOCALVERSION.
The fourth column shows the original value of this kernel config option
and the value we'd like you to change it to (the "new" value). It's shown in
the format original value -> new value. In our example, it's (none) -> -
llkd01, implying that the original value of the -EXTRAVERSION string
component was empty and we would like you to modify it, changing it to
the value -llkd01.

On the other hand, for several items we show, it may not be immediately apparent –
say n -> m; what does this mean? n -> m implies that you should change the
original value from n (not selected) to m (selected to be built as a kernel module).
Similarly, the y -> n string means change the config option from on to off.

You can search for kernel config options within the
menuconfig system UI by pressing the / key (just as with vi; we
show more on this in the section that follows).

Then (in the following chapter, actually), we will build the kernel (and modules) with
these new config options, boot from it, and verify that the preceding kernel config
options were set as we wanted.

But right now, you are expected to do your bit: fire up the menu UI (with the usual
make menuconfig), then navigate the menu system, finding the relevant kernel
config options described previously, and edit it as required, to whatever the fourth
column in the preceding table shows.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[79]

Note that, depending on the Linux distribution you're currently
running and its kernel modules (we used lsmod(8) to generate an
initial config, remember?), the actual values and defaults you see
when configuring the kernel might differ from that of the Ubuntu
18.04.3 LTS distribution (running the 5.0.0-36-generic kernel), as we
have used and shown previously.

Here, to keep the discussion sane and compact, we will only show the complete
detailed steps in setting up the second and third of the kernel config options shown in
the preceding table (the Kernel .config support ones). It's up to you to edit the
remainder. Let's get going:

Change directory to the root of your kernel source tree (wherever you1.
extracted it on your disk):

cd ${LLKD_KSRC}

Set up an initial kernel configuration file, based on the third approach2.
described previously (in the Tuned kernel config via the localmodconfig
approach section):

lsmod > /tmp/lsmod.now
make LSMOD=/tmp/lsmod.now localmodconfig

Run the UI:3.

make menuconfig

Once the menuconfig UI loads up, go to the General Setup menu item.4.
Usually, it's the second item on x86-64. Navigate to it using the keyboard
arrow keys and enter into it by pressing the Enter key.
You are now within the General Setup menu item. Scroll down the menu5.
items by pressing the down arrow key a few times. We scroll down to the
menu of interest for us – Kernel .config support – and highlight it; the
screen should look (something) like this:

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[80]

Figure 2.6 – Kernel configuration via make menuconfig; General setup / Kernel .config support

For the 5.4.0 vanilla Linux kernel on the x86-64, General Setup /
Kernel .config support is the 20th menu item from the top of
the General Setup menu.

Once on the Kernel .config support menu item, we can see (in the6.
preceding screenshot) from its <M> prefix that it's a tristate menu item that's
set to the choice <M> for module, to begin with.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[81]

Keeping this item (Kernel .config support) highlighted, use the right7.
arrow key to navigate to the < Help > button on the bottom toolbar and
press the Enter key while on the < Help > button. The screen should now
look (something) like this:

Figure 2.7 – Kernel configuration via make menuconfig; an example help screen

The help screen is quite informative. Indeed, several of the kernel config
help screens are very well populated and actually helpful. Unfortunately,
some just aren't.

Okay, next, press Enter on the < Exit > button so that we go back to the8.
previous screen.
Then, toggle the Kernel .config support menu item by pressing the9.
space bar (assuming it's initially like this: <M>; that is, set to module).
Pressing the space bar once makes the UI items appear like this:

<*> Kernel .config support
[] Enable access to .config through /proc/config.gz (NEW)

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[82]

Notice how it's become <*>, implying that this feature will be built into the
kernel image itself (in effect, it will be always on). For now, let's do it this
way (of course, pressing the space bar again makes it toggle to the off
state, < >, and then back to the original <M> state).

Now, with the item in the <*> (yes) state, scroll down to the next menu10.
item, [*] Enable access to .config through /proc/config.gz,
and enable it (again, by pressing the space bar); the screen should now
appear (something) like this (we've zoomed in to the relevant portion only):

Figure 2.8 – Kernel configuration via make menuconfig: toggling a Boolean config option to the on state

You can always use the right arrow key to go to < Help > and view
the help screen for this item as well.

Here, we will not explore the remaining kernel config menus; I will leave
that to you to find and set as shown in the preceding table.

Back in the main menu (the home screen), use the right arrow key to11.
navigate to the < Exit > button and press Enter on it. A dialog pops up:

Figure 2.9 – Kernel configuration via make menuconfig: save dialog

It's quite straightforward, isn't it? Press Enter on the < Yes > button to save
and exit. If you select the < No > button, you lose all your configuration
changes (made during this session). Or, you can press the Esc key twice to
get rid of this dialog and continue working on the kernel config.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[83]

Save and exit. Press Enter while on the < Yes > button. The menu system12.
UI now saves the new kernel configuration and the process exits; we're
back on the console (a shell or terminal window) prompt.

But where’s the new kernel configuration saved? This is important: the kernel
configuration is written into a simple ASCII text file in the root of the kernel source
tree, named .config. That is, it's saved in ${LLKD_KSRC}/.config.

As mentioned earlier, every single kernel config option is associated with a config
variable of the form CONFIG_<FOO>, where <FOO>, of course, is replaced with an
appropriate name. Internally, these become macros that the build system and indeed
the kernel source code uses. For example, consider this for the Kernel .config
support option:

$ grep IKCONFIG .config
CONFIG_IKCONFIG=y
CONFIG_IKCONFIG_PROC=y
$

Aha! The configuration now reflects the fact that we have done the following:

Turned on the CONFIG_IKCONFIG kernel feature (=y indicates that it is on
and will be built into the kernel image).
The /proc/config.gz (pseudo) file will now be available,
as CONFIG_IKCONFIG_PROC=y.

Caution: it's best to NOT attempt to edit the .config file manually
("by hand"). There are several inter-dependencies you may not be
aware of; always use the kbuild menu system (we suggest via make
menuconfig) to edit it.

In reality, during our quick adventure with the kbuild system so far, quite a lot has
occurred under the hood. The next section examines a little bit to do with this,
searching within the menu system and cleanly visualizing the differences between the
original (or older) and new kernel configuration files.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[84]

More on kbuild
The creation of, or edits to, the .config file within the root of the kernel source tree
via make menuconfig or other methods is not the final step in how the kbuild
system works with the configuration. No, it now proceeds to internally invoke a
target called syncconfig, which was earlier (mis)named silentoldconfig. This
target has kbuild generate a few header files that are further used in the setup to build
the kernel. These files include some meta headers under include/config, as well as
the include/generated/autoconf.h header file, which stores the kernel config as
C macros, thus enabling both the kernel Makefile(s) and kernel code to make
decisions based on whether or not a kernel feature is available.

Moving along, what if you are looking for a particular kernel configuration option but
are having difficulty spotting it? No problem, the menuconfig UI system has
a Search Configuration Parameter feature. Just as with the famous vi(1)
editor, press the / (forward slash) key to have a search dialog pop up, then enter your
search term with or without CONFIG_ preceding it, and select the < Ok > button to
have it go on its way.

The following couple of screenshots show the search dialog and the result dialog (as
an example, we searched for the term vbox):

Figure 2.10 – Kernel configuration via make menuconfig: searching for a config parameter

The result dialog for the preceding search is interesting. It reveals several pieces of
information regarding the configuration option(s):

The config directive (just prefix CONFIG_ onto whatever it shows in
Symbol:)
The type of config (Boolean, tristate, alphanumeric, and so on)

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[85]

The prompt string
Importantly, its location in the menu system (so you can find it)
Its internal dependencies, if any
Any config option it auto-selects (turns on) if it itself is selected

The following is a screenshot of the result dialog:

Figure 2.11 – Kernel configuration via make menuconfig: the result dialog from the preceding search

All this information is present in an ASCII text file used by the kbuild system to build
the menu system UI – this file is called Kconfig (there are several of them, actually).
Its location, too, is shown (in the Defined at ... line).

Looking up the differences in configuration
The moment the .config kernel configuration file is to be written to, the kbuild
system checks whether it already exists, and if so, it backs it up with the name
.config.old. Knowing this, we can always differentiate the two to see the changes
we have wrought. However, using your typical diff(1) utility to do so makes the
differences quite hard to interpret. The kernel helpfully provides a better way, a
console-based script that specializes in doing precisely
this. The scripts/diffconfig script (within the kernel source tree) is really useful
for this. To see why, let's just run its help screen first:

$ scripts/diffconfig --help
Usage: diffconfig [-h] [-m] [<config1> <config2>]

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[86]

Diffconfig is a simple utility for comparing two .config files.
Using standard diff to compare .config files often includes extraneous
and
distracting information. This utility produces sorted output with only
the
changes in configuration values between the two files.

Added and removed items are shown with a leading plus or minus,
respectively.
Changed items show the old and new values on a single line.
[...]

Now, we try it out:

$ scripts/diffconfig .config.old .config
-AX25 n
-DEFAULT_SECURITY_APPARMOR y
-DEFAULT_SECURITY_SELINUX n
-DEFAULT_SECURITY_SMACK n
[...]
-SIGNATURE y
 DEBUG_STACK_USAGE n -> y
 DEFAULT_SECURITY_DAC n -> y
 FS_DAX y -> n
 HAMRADIO y -> n
 IKCONFIG m -> y
 IKCONFIG_PROC n -> y
 LOCALVERSION "" -> "-llkd01"
 MSDOS_FS n -> m
 PROFILING y -> n
 SECURITY y -> n
 UIO n -> m
+UIO_AEC n
 VBOXGUEST n -> m
[...]
$

If you modified the kernel configuration changes as shown in the preceding table,
you should see an output similar to that shown in the preceding code block via the
kernel's diffconfig script. It clearly shows us exactly which kernel config options
we changed and how.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[87]

Before we finish, a quick note on something critical: kernel security. While userspace
security hardening technologies have vastly grown, kernel-space security hardening
technologies are actually playing catch-up. Careful configuration of the kernel's
config options does play a key role in determining the security posture of a given
Linux kernel; the trouble is, there are so many options (and indeed opinions) that it's
often hard to (cross) check what's a good idea security-wise and what isn't. Alexander
Popov has written a very useful Python script named kconfig-hardened-check; it
can be run to check and compare a given kernel configuration (via the usual config
file) to a set of predetermined hardening preferences (from various Linux kernel
security projects: the well known Kernel Self Protection Project (KSPP), the last
public grsecurity patch, the CLIP OS and the security lockdown LSM). Lookup
the kconfig-hardened-check GitHub repository at https:/ / github. com/
a13xp0p0v/kconfig- hardened- check and try it out!

Alright! You have now completed the first three steps of the Linux kernel build, quite
a thing. (Of course, we will complete the remaining four steps in the build process in
the following chapter.) We will end this chapter with a final section on learning a
useful skill – how to customize the kernel UI menu.

Customizing the kernel menu – adding
our own menu item
So, let's say you have developed a device driver, an experimental new scheduling
class, a custom debugfs (debug filesystem) callback, or some other cool kernel
feature. How will you let others on the team – or for that matter, your customer –
know that this fantastic new kernel feature exists and allow them to select it (as either
a built-in or as a kernel module) and thus build and make use of it? The answer is to
insert a new menu item at an appropriate place in the kernel configuration menu.

To do so, it's useful to first understand a little more about the various Kconfig* files
and where they reside. Let's find out.

https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[88]

The Kconfig* files
The Kconfig file at the root of the kernel source tree is used to fill in the initial screen
of the menuconfig UI. Take a look at it if you wish. It works by sourcing various
other Kconfig files in different folders of the kernel source tree. The following table
summarizes the more important Kconfig* files and which menu they serve in the
kbuild UI:

Menu Kconfig file location for it
The main menu, the initial screen Kconfig

General setup
+ Enable loadable module support

init/Kconfig

Processor types and features
+ Bus options + Binary Emulations
(arch-specific; above the menu title is
for x86; in general, the Kconfig file is
here: arch/<arch>/Kconfig)

arch/<arch>/Kconfig

Power management kernel/power/Kconfig

Firmware drivers drivers/firmware/Kconfig

Virtualization arch/<arch>/kvm/Kconfig

General architecture-dependent
options

arch/Kconfig

Enable the block layer
+ IO Schedulers

block/Kconfig

Executable file formats fs/Kconfig.binfmt

Memory Management options mm/Kconfig

Networking support net/Kconfig, net/*/Kconfig

Device Drivers drivers/Kconfig, drivers/*/Kconfig

File systems fs/Kconfig, fs/*/Kconfig

Security options security/Kconfig,
security/*/Kconfig*

Cryptographic API crypto/Kconfig, crypto/*/Kconfig

Library routines lib/Kconfig, lib/*/Kconfig

Kernel hacking lib/Kconfig.debug, lib/Kconfig.*

Table 2.5 – Kernel config menu items and the corresponding Kconfig* file defining them

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[89]

Typically, a single Kconfig file drives a single menu. Now, let's move on to actually
adding a menu item.

Creating a new menu item in the Kconfig file
As a trivial example, let's add our own Boolean dummy config option within
the General Setup menu. We want the config name to be CONFIG_LLKD_OPTION1.
As can be seen from the preceding table, the relevant Kconfig file to edit is the
init/Kconfig one as this is the menu meta file that defines the General Setup
menu.

Let's get to it:

To be safe, always make a backup copy:1.

cp init/Kconfig init/Kconfig.orig

Now, edit the init/Kconfig file:2.

vi init/Kconfig

Scroll down to an appropriate location within the file; here, we choose to insert
our menu entry just after the CONFIG_LOCALVERSION_AUTO one. The following
screenshot shows our new entry:

Figure 2.12 – Editing init/Kconfig and inserting our own menu entry

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[90]

We have provided the preceding text as a patch to the original
init/Kconfig file in our book's GitHub source tree. Find it under
ch2/Kconfig.patch.

The new item starts with the config keyword followed by the FOO part of
your new CONFIG_LLKD_OPTION1 config variable. For now, just read the
statements we have made in the Kconfig file regarding this entry. More
details on the Kconfig language/syntax are in the A few details on the Kconfig
language section that follows.

Save the file and exit the editor.3.
(Re)configure the kernel. Navigate to our new menu item and turn the4.
feature on (notice how, in the following clipped screenshot, it's highlighted
and off by default):

make menuconfig
[...]

Here's the output:

Figure 2.13 – Kernel configuration via make menuconfig showing our new menu entry

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[91]

Turn it on (toggle it with the space bar), then save and exit the menu5.
system.

While there, try pressing the < Help > button. You should see the
"help" we provided within the Kconfig file.

Check whether our feature has been selected:6.

$ grep "LLKD_OPTION1" .config
CONFIG_LLKD_OPTION1=y
$ grep "LLKD_OPTION1" include/generated/autoconf.h
$

We find that indeed it has been set to on within our .config file, but is not
(yet!) within the kernel's internal auto-generated header file. This will
happen when we build the kernel.

Build the kernel (worry not; the full details on building the kernel are7.
found in the next chapter. You could always first cover Chapter 3, Building
the 5.x Linux Kernel from Source – Part 2, and then come back to this point, if
you so wish...):

make -j4

Once done, recheck the autoconf.h header for the presence of our new8.
config option:

$ grep "LLKD_OPTION1" include/generated/autoconf.h
#define CONFIG_LLKD_OPTION1 1

It worked! Yes, but when working on an actual project (or product), we would
typically require a further step, setting up our config entry within
the Makefile relevant to the code that uses this config option.

Here's a quick example of how this might look. In the kernel's top-level (or
whichever) Makefile, the following line will ensure that our own code (the following
is within the llkd_option1.c source file) gets compiled into the kernel at build
time. Add this line to the end of the relevant Makefile:

obj-${CONFIG_LLKD_OPTION1} += llkd_option1.o

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[92]

Don't stress about the fairly weird kernel Makefile syntax for now.
The next few chapters will shed some light on this.

Also, you should realize that the very same config can be used as a normal C macro
within a piece of kernel code; for example, we could do things like this:

#ifdef CONFIG_LLKD_OPTION1
 do_our_thing();
#endif

However, it's very much worth noting that the Linux kernel community has devised
and strictly adheres to certain rigorous coding style guidelines. In this context, the
guidelines state that conditional compilation should be avoided whenever possible,
and if it is required to use a Kconfig symbol as a conditional, then please do it this
way:

if (IS_ENABLED(CONFIG_LLKD_OPTION1)) {
 do_our_thing();
}

The Linux kernel coding style guidelines can be found here: https:/ /
www. kernel. org/ doc/ html/ latest/ process/ coding- style. html. I
urge you to refer to them often, and, of course, to follow them!

A few details on the Kconfig language
Our usage of the Kconfig language so far is just the tip of the proverbial iceberg. The
fact is, the kbuild system uses the Kconfig language (or syntax) to express and create
menus using simple ASCII text directives. The language includes menu entries,
attributes, (reverse) dependencies, visibility constraints, help text, and so on.

The kernel documents the Kconfig language constructs and syntax
here: https:/ /www. kernel. org/ doc/ Documentation/ kbuild/
kconfig- language. txt. Do refer to this document for complete
details.

https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[93]

A brief (and incomplete) mention of the more common Kconfig constructs is given
in the following table:

Construct Meaning

config <FOO>
Specifies the menu entry name (of the form CONFIG_FOO) here;
just put the FOO part.

Menu attributes

 bool ["<description>"]
Specifies the config option as a Boolean; its value in .config will
be either Y (built into the kernel image) or will not exist (will
show up as a commented-out entry).

tristate ["description>"]

Specifies the config option as tristate; its value in .config will be
either Y, M (built as a kernel module), or will not exist (will show
up as a commented-out entry)

 int ["<description>"] Specifies the config option as taking an integer value.
 range x-y The integer range is from x to y.
 default <value> Specifies the default value; use y, m, n, or another, as required.
 prompt "<description>" A sentence describing the kernel config.

depends on "expr"
Defines a dependency for the menu item; can have several with
the depends on FOO1 && FOO2 && (FOO3 || FOO4) type of
syntax.

select <config> [if
"expr"]

Defines a reverse dependency.

help "help-text" Text to display when the < Help > button is selected.

Table 2.6 – Kconfig, a few constructs

To help understand the syntax, a few examples from lib/Kconfig.debug (the file
that describes the menu items for the Kernel Hacking - kernel debugging, really -
section of the UI) follow:

We will start with a simple one (the CONFIG_DEBUG_INFO option):1.

config DEBUG_INFO
 bool "Compile the kernel with debug info"
 depends on DEBUG_KERNEL && !COMPILE_TEST
 help
 If you say Y here the resulting kernel image will
include
 debugging info resulting in a larger kernel image. [...]

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[94]

Next, let's look at the CONFIG_FRAME_WARN option. Notice range and the2.
conditional default value syntax, as follows:

config FRAME_WARN
 int "Warn for stack frames larger than (needs gcc 4.4)"
 range 0 8192
 default 3072 if KASAN_EXTRA
 default 2048 if GCC_PLUGIN_LATENT_ENTROPY
 default 1280 if (!64BIT && PARISC)
 default 1024 if (!64BIT && !PARISC)
 default 2048 if 64BIT
 help
 Tell gcc to warn at build time for stack frames larger
than this.
 Setting this too low will cause a lot of warnings.
 Setting it to 0 disables the warning.
 Requires gcc 4.4

Next, the CONFIG_HAVE_DEBUG_STACKOVERFLOW option is a simple3.
Boolean; it's either on or off. The CONFIG_DEBUG_STACKOVERFLOW option
is also a Boolean. Notice how it depends on two other options, separated
with a Boolean AND (&&) operator:

config HAVE_DEBUG_STACKOVERFLOW
 bool

config DEBUG_STACKOVERFLOW
 bool "Check for stack overflows"
 depends on DEBUG_KERNEL && HAVE_DEBUG_STACKOVERFLOW
 ---help---
 Say Y here if you want to check for overflows of
kernel, IRQ
 and exception stacks (if your architecture uses
them). This
 option will show detailed messages if free stack
space drops
 below a certain limit. [...]

Alright! This completes our coverage for creating (or editing) a custom menu entry in
the kernel config, and indeed this chapter.

Building the 5.x Linux Kernel from Source - Part 1 Chapter 2

[95]

Summary
In this chapter, you first learned how to obtain for yourself a Linux kernel source tree.
You then understood its release (or version) nomenclature, the various types of Linux
kernels (-next trees, -rc/mainline trees, stable, LTS, SLTS and distributions), and the
basic kernel development workflow. Along the way, you even got a quick tour of the
kernel source tree so that its layout is clearer. Next, you saw how to extract the
compressed kernel source tree to disk and, critically, how to configure the kernel – a
key step in the process. Furthermore, you learned how to customize the kernel menu,
adding your own entries to it, and a bit about the kbuild system and the associated
Kconfig files it uses, among others.

Knowing how to fetch and configure the Linux kernel is a useful skill to possess. We
have just begun this long and exciting journey. You will realize that with more
experience and knowledge of kernel internals, drivers, and the target system
hardware, your ability to fine-tune the kernel to your project's purpose will only get
better.

We're halfway there; I suggest you first digest this material, and, importantly - try out
the steps in this chapter, work on the questions/exercises, and browse through
the Further reading section. Then, in the next chapter, let's actually build the 5.4.0
kernel and verify it!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

3
Building the 5.x Linux Kernel

from Source - Part 2
This chapter continues where the previous chapter left off. In the previous chapter, in
the Steps to build the kernel from source section, we covered the first three steps of
building our kernel. There, you learned how to download and extract the kernel
source tree or even git clone one (steps 1 and 2). We then proceeded to understand
the kernel source tree layout, and, very importantly, the various approaches to
correctly arrive at a starting point to configure the kernel (step 3). We even added a
custom menu item to the kernel config menu.

In this chapter, we continue our quest to build the kernel, by, well, covering the
remaining four steps to actually build it. First, of course, we build it (step 4). You will
then see how to properly install the kernel modules that get generated as part of the
build (step 5). Next, we run a simple command that sets up the GRUB bootloader and
generates the initramfs (or initrd) image (step 6). The motivation for using
an initramfs image and how it's used are discussed as well. Some details on
configuring the GRUB bootloader (for x86) are then covered (step 7).

By the end of the chapter, we'll boot the system with our new kernel image and verify
that it's built as expected. We'll then finish off by learning how to cross-compile a Linux
kernel for a foreign architecture (that is, ARM, the board in question being the well-
known Raspberry Pi).

Briefly, these are the areas covered:

Step 4 – building the kernel image and modules
Step 5 – installing the kernel modules
Step 6 – generating the initramfs image and bootloader setup
Understanding the initramfs framework
Step 7 – customizing the GRUB bootloader

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[97]

Verifying our new kernel's configuration
Kernel build for the Raspberry Pi
Miscellaneous tips on the kernel build

Technical requirements
Before we begin, I assume that you have downloaded, extracted (if required), and
configured the kernel, thus having a .config file ready. If you haven't already,
please refer to the previous chapter for the details on how exactly this is done. We can
now proceed to build it.

Step 4 – building the kernel image and
modules
Performing the build from the end user point of view is actually quite simple. In its
simplest form, just ensure you're in the root of the configured kernel source tree and
type make. That's it – the kernel image and any kernel modules (and, on an embedded
system, possibly a Device Tree Blob (DTB) binary) will get built. Grab a coffee! The
first time around, it could take a while.

Of course, there are various Makefile targets we can pass to make. A quick make
help command issued on the command line reveals quite a bit. Remember, we used
this earlier, in fact, to see all possible configuration targets. Here, we use it to see what
gets built by default with the all target:

$ cd ${LLKD_KSRC} # the env var LLKD_KSRC holds the 'root' of our
 # 5.4 kernel source tree
$ make help
[...]
Other generic targets:
 all - Build all targets marked with [*]
* vmlinux - Build the bare kernel
* modules - Build all modules
[...]
Architecture specific targets (x86):
* bzImage - Compressed kernel image (arch/x86/boot/bzImage)
[...]
$

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[98]

Okay, so performing make all will get us the preceding three targets, the ones
prefixed with *; what do they mean?

vmlinux actually matches the name of the uncompressed kernel image.
The modules target implies that all kernel config options marked as m (for
module) will be built as kernel modules (.ko files) within the kernel source
tree (details on what exactly a kernel module is and how to program one
are the subject matter of the following two chapters).
bzImage is architecture-specific. On an x86[-64] system, this is the name of
the compressed kernel image – the one the bootloader will actually load
into RAM, uncompress in memory, and boot into; in effect, the kernel
image file.

So, an FAQ: if bzImage is the actual kernel that we use to boot and initialize the
system, then what's vmlinux for? Notice that vmlinux is the uncompressed kernel
image. It can be large (even very large, in the presence of kernel symbols generated
during a debug build). While we never boot via vmlinux, it's nevertheless important.
Do keep it around for kernel debugging purposes (which are unfortunately beyond
the scope of this book).

With the kbuild system, just running a make command equates to
make all.

The kernel code base is enormous. Current estimates are in the region of 20 million
source lines of code (SLOC), thus, building the kernel is indeed a very memory- and
CPU-intensive job. Indeed, some folks use the kernel build as a stress test! The modern
make(1) utility is powerful and multi-process capable. We can request it to spawn
multiple processes to handle different (unrelated) parts of the build in parallel,
leading to higher throughput and thus shorter build times. The relevant option is -
j'n', where n is the upper limit on the number of tasks to spawn and run in parallel.
A heuristic (rule of thumb) used to determine this is as follows:

n = num-CPU-cores * factor;

Here, factor is 2 (or 1.5 on very high-end systems with hundreds of CPU cores).
Also, technically, we require the cores to be internally "threaded" or
using Simultaneous Multi-Threading (SMT) – what Intel calls Hyper-Threading – for
this heuristic to be useful.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[99]

More details on parallelized make and how it works can be found in
the man page of make(1) (invoked with man 1 make) in the
PARALLEL MAKE AND THE JOBSERVER section.

Another FAQ: how many CPU cores are there on your system? There are several ways
to determine this, an easy one being to use the nproc(1) utility:

$ nproc
2

A quick word regarding nproc(1) and related utilities:
a) Performing strace(1) on nproc(1) reveals that it works by
essentially using the sched_getaffinity(2) system call. We shall
mention more on this and related system calls in Chapter 9, The
CPU Scheduler – Part 1, and Chapter 10, The CPU Scheduler – Part
2, on CPU scheduling.
b) FYI, the lscpu(1) utility yields the number of cores as well as
additional useful CPU info. For example, it shows whether
it's running on a Virtual Machine (VM) (as does the virt-what
script). Try it out on your Linux system.

Clearly, our guest VM has been configured with two CPU cores, so let's keep
n=2*2=4. So, off we go and build the kernel. The following output is from our trusty
x86_64 Ubuntu 18.04 LTS guest system configured to have 2 GB of RAM and two
CPU cores.

Remember, the kernel must first be configured. For details, refer to
Chapter 2, Building the 5.x Linux Kernel from Source – Part 1.

Again, when you begin, it's entirely possible that the kernel build emits a warning,
although non-fatal in this case:

$ time make -j4
scripts/kconfig/conf --syncconfig Kconfig
 UPD include/config/kernel.release
warning: Cannot use CONFIG_STACK_VALIDATION=y, please install libelf-
dev, libelf-devel or elfutils-libelf-devel
[...]

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[100]

So, to address this, we break off the build with Ctrl + C, then follow the output's
advice and install the libelf-dev package. On our Ubuntu box, sudo apt
install libelf-dev is sufficient. If you followed the detailed setup in Chapter
1, Kernel Workspace Setup, this will not happen. Retry, and it now works! To give you a
feel of this, we've show the following tiny snippets of the build output. Really though,
it's best to just try it out yourself:

Precisely because the kernel build is very CPU- and RAM-intensive,
carrying this out on a guest VM is going to be a lot slower than on a
native Linux system. It helps to conserve RAM by at least booting
your guest at run-level 3 (multiuser with networking, no
GUI): https:/ / www. if- not- true- then- false. com/ 2012/ howto-
change- runlevel- on- grub2/ .

$ cd ${LLKD_KSRC}
$ time make -j4
scripts/kconfig/conf --syncconfig Kconfig
 SYSHDR arch/x86/include/generated/asm/unistd_32_ia32.h
 SYSTBL arch/x86/include/generated/asm/syscalls_32.h
[...]
 DESCEND objtool
 HOSTCC /home/llkd/kernels/linux-5.4/tools/objtool/fixdep.o
 HOSTLD /home/llkd/kernels/linux-5.4/tools/objtool/fixdep-in.o
 LINK /home/llkd/kernels/linux-5.4/tools/objtool/fixdep
[...]

[...]
 LD vmlinux.o
 MODPOST vmlinux.o
 MODINFO modules.builtin.modinfo
 LD .tmp_vmlinux1
 KSYM .tmp_kallsyms1.o
 LD .tmp_vmlinux2
 KSYM .tmp_kallsyms2.o
 LD vmlinux
 SORTEX vmlinux
 SYSMAP System.map
 Building modules, stage 2.
 MODPOST 59 modules
 CC arch/x86/boot/a20.o
[...]
 LD arch/x86/boot/setup.elf
 OBJCOPY arch/x86/boot/setup.bin
 BUILD arch/x86/boot/bzImage
Setup is 17724 bytes (padded to 17920 bytes).
System is 8385 kB

https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/
https://www.if-not-true-then-false.com/2012/howto-change-runlevel-on-grub2/

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[101]

CRC 6f010e63
 CC [M] drivers/hid/hid.mod.o
Kernel: arch/x86/boot/bzImage is ready (#1)

Okay, the kernel image (here, it's called bzImage) and the vmlinux file have
successfully been built by stitching together the various object files generated, as can
be seen in the preceding output – the last line in the preceding block confirms this
fact. But hang on, the build isn't done yet. The kbuild system now proceeds to finish
building all kernel modules; the last portion of the output is shown as follows:

[...]
 CC [M] drivers/hid/usbhid/usbhid.mod.o
 CC [M] drivers/i2c/algos/i2c-algo-bit.mod.o
[...]
 LD [M] sound/pci/snd-intel8x0.ko
 LD [M] sound/soundcore.ko

real 17m31.980s
user 23m58.451s
sys 3m22.280s
$

The entire process seems to have taken a total of around 17.5 minutes. The time(1)
utility gives us a (very) coarse-grained idea of the time taken by the command that
follows it.

If you'd like accurate CPU profiling, learn to use the powerful
perf(1) utility. Here, you can try it out with the perf stat make
-j4 command. I suggest you try this out on a distro kernel as
otherwise, perf itself will have to be manually built for your custom
kernel.

Also, in the previous output, Kernel: arch/x86/boot/bzImage is ready (#1),
#1 implies it's the very first build of this kernel. This number will auto-increment on
subsequent builds and show up when you boot into the new kernel and then
execute uname -a.

As we're doing a parallelized build (via make -j4, implying four
processes performing the build in parallel), all the build processes
still write to the same stdout location – the terminal window.
Hence, it can happen that the output is out of order or mixed up.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[102]

The build should run cleanly, without any errors or warnings. Well, at times compiler
warnings are seen, but we shall blithely ignore them. What if you encounter compiler
errors and thus a failed build during this step? How can we put this politely? Oh
well, we cannot – it's very likely your fault, not the kernel community's. Please check
and re-check every step, redoing it from scratch with a make mrproper command if
all else fails! Very often, a failure to build the kernel implies either kernel
configuration errors (randomly selected configs that might conflict), outdated
versions of the toolchain, or incorrect patching, among other things.

Assuming it goes off well, as indeed it should, by the time this step terminates, three
key files (among many) have been generated by the kbuild system.

In the root of the kernel source tree, we have the following:

The uncompressed kernel image file, vmlinux (only for debugging)
The symbol-address mapping file, System.map
The compressed bootable kernel image file, bzImage (see the following
output)

Let's check them out! We make the output (specifically the file size) more human-
readable by passing the -h option to ls(1):

$ ls -lh vmlinux System.map
-rw-rw-r-- 1 llkd llkd 4.1M Jan 17 12:27 System.map
-rwxrwxr-x 1 llkd llkd 591M Jan 17 12:27 vmlinux
$ file ./vmlinux
./vmlinux: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
statically linked, BuildID[sha1]=<...>, with debug_info, not stripped

As you can see, the vmlinux file is pretty huge. This is because it contains all the
kernel symbols as well as extra debug information encoded into it. (FYI, the vmlinux
and System.map files are used in the kernel debug context; keep them around.) The
useful file(1) utility shows us more detail regarding this image file. The actual
kernel image file that the bootloader loads up and boots into will always be in the
generic location of arch/<arch>/boot/; hence, for the x86 architecture, we have the
following:

$ ls -l arch/x86/boot/bzImage
-rw-rw-r-- 1 llkd llkd 8604032 Jan 17 12:27 arch/x86/boot/bzImage
$ file arch/x86/boot/bzImage
arch/x86/boot/bzImage: Linux kernel x86 boot executable bzImage,
version 5.4.0-llkd01 (llkd@llkd-vbox) #1 SMP Thu [...], RO-rootFS,
swap_dev 0x8, Normal VGA

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[103]

The compressed kernel image version 5.4.0-llkd01 for the x86_64 is a little over 8
MB in size. The file(1) utility again clearly reveals that indeed it is a Linux kernel
boot image for the x86 architecture.

The kernel documents several tweaks and switches that can be
performed during the kernel build by setting various environment
variables. This documentation can be found within the kernel source
tree at Documentation/kbuild/kbuild.rst. We shall in fact use
the INSTALL_MOD_PATH, ARCH, and CROSS_COMPILE environment
variables in the material that follows.

Great! Our kernel image and modules are ready! Read on as we install the kernel
modules as part of our next step.

Step 5 – installing the kernel modules
In the previous step, all the kernel config options that were marked as m have actually
now been built. As you shall learn, that's not quite enough: they must now be
installed into a known location on the system. This section covers these details.

Locating the kernel modules within the kernel
source
To see the kernel modules just generated by the previous step – the kernel build – let's
perform a quick find(1) command within the kernel source folder. Understand the
naming convention used, where kernel module filenames end in .ko:

$ cd ${LLKD_KSRC}
$ find . -name "*.ko"
./arch/x86/events/intel/intel-rapl-perf.ko
./arch/x86/crypto/crc32-pclmul.ko
./arch/x86/crypto/ghash-clmulni-intel.ko
[...]
./net/ipv4/netfilter/ip_tables.ko
./net/sched/sch_fq_codel.ko
$ find . -name "*.ko" | wc -l
59

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[104]

We can see from the preceding output that, in this particular build, a total of 59 kernel
modules have happened to be built (the actual find output is truncated in the
preceding block for brevity).

Now, recall the exercise I asked you to work on in Chapter 2, Building the 5.x Linux
Kernel from Source – Part 1, in the Sample usage of the make menuconfig UI section. There,
in Table 2.4, the last column specifies the type of change we made. Look for the n ->
m (or y -> m) changes, implying we are configuring that particular feature to be built
as a kernel module. There, we can see that this includes the following features:

VirtualBox support, n -> m
Userspace I/O (UIO) drivers, n -> m; and a UIO platform driver with
generic IRQ handling, n -> m
MS-DOS filesystem support, n -> m

As these features have been asked to be built as modules, they will not be encoded
within the vmlinux or bzImage kernel image files. No, they will exist as standalone
(well, kind of) kernel modules. Let's hunt for the kernel modules for the
preceding features within the kernel source tree (showing their pathname and sizes
with a bit of scripting foo):

$ find . -name "*.ko" -ls | egrep -i "vbox|msdos|uio" | awk '{printf
"%-40s %9d\n", $11, $7}'
./fs/fat/msdos.ko 361896
./drivers/virt/vboxguest/vboxguest.ko 948752
./drivers/gpu/drm/vboxvideo/vboxvideo.ko 3279528
./drivers/uio/uio.ko 408136
./drivers/uio/uio_pdrv_genirq.ko 324568
$

Okay, great, the binary kernel modules have indeed been generated within the kernel
source tree. But this alone is not enough. Why? They need to be installed into a well-
known location within the root filesystem so that, at boot, the system can actually find
and load them into kernel memory. This is why we need to install the kernel modules.
The "well-known location within the root filesystem" is /lib/modules/$(uname -
r)/, where $(uname -r) yields the kernel version number, of course.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[105]

Getting the kernel modules installed
Performing the kernel module installation is simple; (after the build step) just invoke
the modules_install Makefile target. Let's do so:

$ cd ${LLKD_KSRC}
$ sudo make modules_install
[sudo] password for llkd:
 INSTALL arch/x86/crypto/aesni-intel.ko
 INSTALL arch/x86/crypto/crc32-pclmul.ko
 INSTALL arch/x86/crypto/crct10dif-pclmul.ko
[...]
 INSTALL sound/pci/snd-intel8x0.ko
 INSTALL sound/soundcore.ko
 DEPMOD 5.4.0-llkd01
$

Notice that we use sudo(8) to perform the installation as root (superuser). This is
required as the default install location (under /lib/modules/) is only root-writeable.
Once the kernel modules have been prepared and copied across (the work that shows
up in the preceding output block as INSTALL), the kbuild system runs a utility called
depmod(8). Its job essentially is to resolve dependencies between kernel modules
and encode them (if they exist) into some metafiles (refer to the man page on
depmod(8) for more details: https:/ /linux. die. net/ man/ 8/depmod).

Now let's see the result of the module installation step:

$ uname -r
5.0.0-36-generic # this is the 'distro' kernel (for Ubuntu
18.04.3 LTS) we're running on
$ ls /lib/modules/
5.0.0-23-generic 5.0.0-36-generic 5.4.0-llkd01
$

In the preceding code, we can see that for each (Linux) kernel we can boot the system
into, there is a folder under /lib/modules/, whose name is the kernel release, as
expected. Let's look within the folder of interest – our new kernel's (5.4.0-llkd01).
There, under the kernel/ sub-directory – within various directories – live the just-
installed kernel modules:

$ ls /lib/modules/5.4.0-llkd01/kernel/
arch/ crypto/ drivers/ fs/ net/ sound/

https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod
https://linux.die.net/man/8/depmod

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[106]

Incidentally, the /lib/modules/<kernel-
ver>/modules.builtin file has the list of all installed kernel
modules (under /lib/modules/<kernel-ver>/kernel/).

Let's search here for the kernel modules that we mentioned earlier:

$ find /lib/modules/5.4.0-llkd01/kernel/ -name "*.ko" | egrep
"vboxguest|msdos|uio"
/lib/modules/5.4.0-llkd01/kernel/fs/fat/msdos.ko
/lib/modules/5.4.0-llkd01/kernel/drivers/virt/vboxguest/vboxguest.ko
/lib/modules/5.4.0-llkd01/kernel/drivers/uio/uio.ko
/lib/modules/5.4.0-llkd01/kernel/drivers/uio/uio_pdrv_genirq.ko
$

They all show up. Excellent!

A final key point: during the kernel build, we can install the kernel modules into a
location that we specify, overriding the (default) /lib/modules/<kernel-ver>
location. This is done by setting the environment variable of INSTALL_MOD_PATH to
the required location; for example, doing the following:

export STG_MYKMODS=../staging/rootfs/my_kernel_modules
make INSTALL_MOD_PATH=${STG_MYKMODS} modules_install

With this, we have all our kernel modules installed into the
${STG_MYKMODS}/ folder. Note how, perhaps, sudo is not required if
INSTALL_MOD_PATH refers to a location that does not require root for writing.

This technique – overriding the kernel modules' install location – can
be especially useful when building a Linux kernel and kernel
modules for an embedded target. Clearly, we must definitely not
overwrite the host system's kernel modules with that of the
embedded target's; that could be disastrous!

The next step is to generate the so-called initramfs (or initrd) image and set up
the bootloader. We also need to clearly understand what exactly this initramfs
image is and the motivation behind using it. The section after the following one
delves into these details.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[107]

Step 6 – generating the initramfs image
and bootloader setup
Firstly, please note that this discussion is highly biased toward the x86[_64]
architecture. For the typical x86 desktop or server kernel build procedure, this step is
internally divided into two distinct parts:

Generating the initramfs (formerly called initrd) image
(GRUB) bootloader setup for the new kernel image

The reason it's encapsulated into a single step in this recipe for the kernel build
process here is that, on the x86 architecture, convenience scripts perform both tasks,
giving the appearance of a single step.

Wondering what exactly this initramfs (or initrd) image file is?
Please see the following Understanding the initramfs framework section
for details. We'll get there soon.

For now, let's just go ahead and generate the initramfs (short for initial ram
filesystem) image file as well as update the bootloader. Performing this on x86[_64]
Ubuntu is easily done in one simple step:

$ sudo make install
sh ./arch/x86/boot/install.sh 5.4.0-llkd01 arch/x86/boot/bzImage \
 System.map "/boot"
run-parts: executing /etc/kernel/postinst.d/apt-auto-removal 5.4.0-
llkd01 /boot/vmlinuz-5.4.0-llkd01
run-parts: executing /etc/kernel/postinst.d/initramfs-tools 5.4.0-
llkd01 /boot/vmlinuz-5.4.0-llkd01
update-initramfs: Generating /boot/initrd.img-5.4.0-llkd01
[...]
run-parts: executing /etc/kernel/postinst.d/zz-update-grub 5.4.0-
llkd01 /boot/vmlinuz-5.4.0-llkd01
Sourcing file `/etc/default/grub'
Generating grub configuration file ...
Found linux image: /boot/vmlinuz-5.4.0-llkd01
Found initrd image: /boot/initrd.img-5.4.0-llkd01
[...]
Found linux image: /boot/vmlinuz-5.0.0-36-generic
Found initrd image: /boot/initrd.img-5.0.0-36-generic
[...]
done
$

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[108]

Notice that, again, we prefix the make install command with sudo(8). Quite
obviously, this is as we require root permission to write the concerned files and
folders.

So that's it, we are done: a brand new 5.4 kernel, along with all requested kernel
modules and the initramfs image, have been generated, and the (GRUB) bootloader
has been updated. All that remains is to reboot the system, select the new kernel
image on boot (from the bootloader menu screen), boot up, log in, and verify that all
is okay.

Generating the initramfs image on Fedora 30
and above
Unfortunately, on Fedora 30 and above, generating the initramfs image does not
appear to work as easily as with Ubuntu in the preceding section. Some folks suggest
explicitly specifying the architecture via the ARCH environment variable. Take a look:

$ sudo make ARCH=x86_64 install
sh ./arch/x86/boot/install.sh 5.4.0-llkd01 arch/x86/boot/bzImage \
System.map "/boot"
Cannot find LILO.
$

It fails! Want to know why? I won't go into the details here, but this link should help
you out: https:/ /discussion. fedoraproject. org/ t/installing- manually-
builded-kernel- in- system- with- grub2/ 1895. To help set this situation right, here's
what I did on my Fedora 31 VM (and, yes, it worked!):

Manually create the initramfs image:1.

 sudo mkinitrd /boot/initramfs-5.4.0-llkd01.img 5.4.0-llkd01

Ensure that the grubby package is installed:2.

sudo dnf install grubby-deprecated-8.40-36.fc31.x86_64

Pressing the Tab key twice after typing grubby- results in the full
package name being auto-completed.

https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895
https://discussion.fedoraproject.org/t/installing-manually-builded-kernel-in-system-with-grub2/1895

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[109]

(Re)run the make install command:3.

$ sudo make ARCH=x86_64 install
 sh ./arch/x86/boot/install.sh 5.4.0-llkd01
arch/x86/boot/bzImage \
 System.map "/boot"
 grubby fatal error: unable to find a suitable template
 grubby fatal error: unable to find a suitable template
 grubby: doing this would leave no kernel entries. Not writing
out new config.
 $

Though the make install command appears to fail, it has sufficiently succeeded.
Let's peek at the content of the /boot directory to verify this:

 $ ls -lht /boot
 total 204M
 -rw-------. 1 root root 44M Mar 26 13:08 initramfs-5.4.0-llkd01.img
 lrwxrwxrwx. 1 root root 29 Mar 26 13:07 System.map ->
/boot/System.map-5.4.0-llkd01
 lrwxrwxrwx. 1 root root 26 Mar 26 13:07 vmlinuz ->
/boot/vmlinuz-5.4.0-llkd01
 -rw-r--r--. 1 root root 4.1M Mar 26 13:07 System.map-5.4.0-llkd01
 -rw-r--r--. 1 root root 9.0M Mar 26 13:07 vmlinuz-5.4.0-llkd01
[...]

Indeed, the initramfs image, the System.map file, and vmlinuz (along with the
required symbolic links) seem to be set up! Reboot, select the new kernel from the
GRUB menu, and verify that it works.

In this step, we generated the initramfs image. The question is, what did the
kbuild system perform under the hood when we did this? Read on to find out.

Generating the initramfs image – under the
hood
Recall from the previous section what you will first see when the sudo make
install command executes (reproduced as follows for your convenience):

$ sudo make install
sh ./arch/x86/boot/install.sh 5.4.0-llkd01 arch/x86/boot/bzImage \
 System.map "/boot"

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[110]

Clearly, it's (install.sh) a script being executed. Internally, as part of its work, it
copies the following files into the /boot folder, with the name format typically being
<filename>-$(uname -r):

System.map-5.4.0-llkd01, initrd.img-5.4.0-llkd01, vmlinuz-5.4.0-
llkd01, config-5.4.0-llkd01

The initramfs image is built as well. A shell script named update-initramfs
performs this task (which is itself a convenience wrapper over another script
called mkinitramfs(8) that performs the actual work). Once built, the initramfs
image is also copied into the /boot directory, seen as initrd.img-5.4.0-llkd01
in the preceding output snippet.

If at all a file being copied into /boot already exists, it is backed up as <filename>-
$(uname -r).old. The file named vmlinuz-<kernel-ver> is a copy of the
arch/x86/boot/bzImage file. In other words, it is the compressed kernel image –
the image file that the bootloader will be configured to load into RAM, uncompress,
and jump to its entry point, thus handing over control to the kernel!

Why the names vmlinux (recall, this is the uncompressed kernel
image file stored in the root of the kernel source tree) and vmlinuz?
It's an old Unix convention that the Linux OS is quite happy to
follow: on many Unix flavors, the kernel was called vmunix, so
Linux calls it vmlinux and the compressed one vmlinuz; the z in
vmlinuz is to hint at the (by default) gzip(1) compression.

As well, the GRUB bootloader configuration file located at /boot/grub/grub.cfg is
updated to reflect the fact that a new kernel is now available for boot.

Again, it's worth emphasizing the fact that all this is very architecture-specific. The
preceding discussion is with respect to building the kernel on an Ubuntu Linux
x86[-64] system. While conceptually similar, the details of the kernel image filenames,
their locations, and especially the bootloader, vary on different architectures.

You can skip ahead to the Customizing the GRUB bootloader section if you wish. If you
are curious (I'm hoping so), read on. In the following section, we describe in some
more detail the hows and whys of the initramfs/inird framework.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[111]

Understanding the initramfs framework
A bit of a mystery remains! What exactly is this initramfs or initrd image for?
Why is it there?

Firstly, using this feature is a choice – the config directive is called
CONFIG_BLK_DEV_INITRD. It's on and hence set to y by default. In brief, for systems
that either do not know in advance certain things such as the boot disk host adapter
or controller type (SCSI, RAID, and so on), the exact filesystem type that the root
filesystem is formatted as (is it ext2, ext3, ext4, btrfs, reiserfs, f2fs, or
another?), or for those systems where these functionalities are always built as kernel
modules, we require the initramfs capability. Why exactly will become clear in a
moment. Also, as mentioned earlier, initrd is now considered an older term.
Nowadays, we more often use the term initramfs in its place.

Why the initramfs framework?
The initramfs framework is essentially a kind of middle-man between the early
kernel boot and usermode. It allows us to run user space applications (or scripts)
before the actual root filesystem has been mounted. This is useful in many
circumstances, a couple of which are detailed in the following list. The key point is
that initramfs allows us to run user mode apps that the kernel cannot normally run
during boot time.

Practically speaking, among various uses, this framework allows us to do things
including the following:

Set up a console font.
Customize keyboard layout settings.
Print a custom welcome message on the console device.
Accept a password (for encrypted disks).
Load up kernel modules as required.
Spawn a "rescue" shell if something fails.
And many more!

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[112]

Imagine for a moment that you are in the business of building and maintaining a new
Linux distribution. Now, at installation time, the end user of your distribution might
decide to format their SCSI disk with the reiserfs filesystem (FYI, it's the earliest
general-purpose journaled filesystem in the kernel). The thing is, you cannot know in
advance what choice exactly the end user will make – it could be one of any number
of filesystems. So, you decide to pre-build and supply a large variety of kernel
modules that will fulfill almost every possibility. Fine, when the installation is
complete and the user's system boots up, the kernel will, in this scenario, require the
reiserfs.ko kernel module in order to successfully mount the root filesystem and
thus proceed with system boot-up.

Figure 3.1 – The root filesystem's on the disk and yet to be mounted, kernel image is in RAM

But wait, think about this, we now have a classic chicken-and-egg problem: in order for
the kernel to mount the root filesystem, it requires the reiserfs.ko kernel module
file to be loaded into RAM (as it contains the necessary code to be able to work with
the filesystem). But, that file is itself embedded inside the reiserfs root filesystem;
to be precise, within the /lib/modules/<kernel-ver>/kernel/fs/reiserfs/
directory! (see Figure 3.1). One of the primary purposes of the initramfs framework
is to solve this chicken-and-egg problem.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[113]

The initramfs image file is a compressed cpio archive (cpio is a flat file format
used by tar(1)). As we saw in the previous section, the update-initramfs script
internally invokes the mkinitramfs script (on Ubuntu at least, this is the case). These
scripts build a minimal root filesystem containing the kernel modules as well as
supporting infrastructure such as the /etc and /lib folders in a simple cpio file
format, which is then usually gzip-compressed. This now forms the so-called
initramfs (or initrd) image file and as we saw earlier, it will be placed in
/boot/initrd.img-<kernel-ver>. Well, so how does that help?

At boot, if we are using the initramfs feature, the bootloader will, as part of its
work, load the initramfs image file in RAM. Next, when the kernel itself runs on
the system, it detects the presence of an initramfs image, uncompresses it, and
using its content (via scripts), loads up the required kernel modules into RAM (Figure
3.2):

Figure 3.2 – The initramfs image serves as a middle-man between early kernel and actual root filesystem availability

Some more details on both the boot process (on x86) and the initramfs image can be
found in the following sections.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[114]

Understanding the basics of the boot process
on the x86
In the following list, we provide a brief overview of the typical boot process on an
x86[_64] desktop (or laptop), workstation, or server:

Early boot, POST, BIOS initialization – the BIOS (short for Basic Input1.
Output System; essentially, the firmware on the x86) loads up the first
sector of the first bootable disk into RAM and jumps to its entry point. This
forms what is often referred to as the stage one bootloader, whose main job
is to load the stage two (larger) bootloader code into memory and jump to it.
Now the stage two bootloader code takes control. Its main job is to load the2.
actual (stage three) GRUB bootloader into memory and jump to its entry point
(GRUB is typically the bootloader employed on x86[-64] systems)
The (GRUB) bootloader will be passed both the compressed kernel image3.
file (/boot/vmlinuz-<kernel-ver>) as well as the compressed
initramfs image file (/boot/initrd.img-<kernel-ver>) as
parameters. The bootloader will (simplistically) do the following:

Perform low-level hardware initialization.
Load these images into RAM, uncompressing the kernel
image to a certain extent.
It will jump to the kernel entry point.

The Linux kernel, now having control of the machine, will initialize the4.
hardware and software environment. It makes no assumptions regarding
the earlier work performed by the bootloader.
Upon completing the majority of hardware and software initialization, it5.
notices that the initramfs feature is turned on
(CONFIG_BLK_DEV_INITRD=y). It will thus locate (and if required,
uncompress) the initramfs (initrd) image in RAM (see Figure 3.2).
It will then mount it as a temporary root filesystem in RAM itself, within6.
a RAMdisk.
We now have a base, minimal root filesystem set up in memory. Thus, the7.
initrd startup scripts now run, performing, among other tasks, the
loading of the required kernel modules into RAM (in effect, loading the
root filesystem drivers, including, in our scenario, the reiserfs.ko kernel
module; again, see Figure 3.2).

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[115]

The kernel then performs a pivot-root, un-mounting the temporary initrd8.
root filesystem, freeing its memory, and mounting the real root filesystem;
it's now possible because the kernel module providing that filesystem
support is indeed available.
Once the (actual) root filesystem is successfully mounted, system9.
initialization can proceed. The kernel continues, ultimately invoking the
first user space process, typically /sbin/init PID 1.
The SysV init framework now proceeds to initialize the system, bringing up10.
system services as configured.

A couple of things to note:
(a) On modern Linux systems, the traditional (read: old) SysV init
framework has largely been replaced with a modern optimized
framework called systemd. Thus, on many (if not most) modern
Linux systems, including embedded ones, the traditional
/sbin/init has been replaced with systemd (or is a symbolic link
to its executable file). Find out more about systemd in the Further
reading section at the end of this chapter.

(b) FYI, the generation of the root filesystem itself is not covered in
this book; as one simple example, I suggest you look at the code of
the SEALS project (at https:/ /github. com/ kaiwan/ seals) that I
mentioned in Chapter 1, Kernel Workspace Setup; it has script that
generates a very minimal, or "skeleton", root filesystem from scratch.

Now that you understand the motivation behind initrd/initramfs, we'll complete
this section by providing a bit of a deeper look into initramfs in the following
section. Do read on!

More on the initramfs framework
Another place where the initramfs framework helps is in bringing up computers
whose disks are encrypted. Quite early in the boot process, the kernel will have to
query the user for the password, and if correct, proceed with mounting the disks, and
so on. But, think about this: how can we run a C program executable that is, say,
requesting a password without having a C runtime environment in place – a root
filesystem containing libraries, the loader program, required kernel modules (for the
crypto support perhaps), and so on?

https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals
https://github.com/kaiwan/seals

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[116]

Remember, the kernel itself hasn't yet completed initialization; how can user space
apps run? Again, the initramfs framework solves this issue by indeed setting up a
temporary user space runtime environment complete with the required root
filesystem containing libraries, the loader, kernel modules, and so on, in memory.

Can we verify this? Yes we can! Let's take a peek into the initramfs image file. The
lsinitramfs(8) script on Ubuntu serves exactly this purpose (on Fedora the
equivalent is called lsinitrd instead):

$ lsinitramfs /boot/initrd.img-5.4.0-llkd01 | wc -l
334
$ lsinitramfs /boot/initrd.img-5.4.0-llkd01
.
kernel
kernel/x86
[...]
lib
lib/systemd
lib/systemd/network
lib/systemd/network/99-default.link
lib/systemd/systemd-udevd
[...]
lib/modules/5.4.0-
llkd01/kernel/drivers/net/ethernet/intel/e1000/e1000.ko
lib/modules/5.4.0-llkd01/modules.dep
[...]
lib/x86_64-linux-gnu/libc-2.27.so
[...]
lib/x86_64-linux-gnu/libaudit.so.1
lib/x86_64-linux-gnu/ld-2.27.so
lib/x86_64-linux-gnu/libpthread.so.0
[...]
etc/udev/udev.conf
etc/fstab
etc/modprobe.d
[...]
bin/dmesg
bin/date
bin/udevadm
bin/reboot
[...]
sbin/fsck.ext4
sbin/dmsetup
sbin/blkid
sbin/modprobe
[...]
scripts/local-premount/resume

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[117]

scripts/local-premount/ntfs_3g
$

There's quite a bit in there: we truncate the output to show a few select snippets.
Clearly, we can see a minimal root filesystem with support for the required runtime
libraries, kernel modules, /etc, /bin, and /sbin directories, along with their
utilities.

The details of constructing the initramfs (or initrd) image goes
beyond what we wish to cover here. I suggest you peek into these
scripts to reveal their inner workings (on
Ubuntu): /usr/sbin/update-initramfs, a wrapper script over
the /usr/sbin/mkinitramfs shell script. Do see the Further
reading section for more.

Also, modern systems feature what is sometimes referred to as hybrid initramfs: an
initramfs image that consists of an early ramfs image prepended to the regular or
main ramfs image. The reality is that we require special tools to unpack/pack
(uncompress/compress) these images. Ubuntu provides the unmkinitramfs(8) and
mkinitramfs(8) scripts, respectively, to perform these operations.

As a quick experiment, let's unpack our brand-new initramfs image (the one
generated in the previous section) into a temporary directory. Again, this has been
performed on our Ubuntu 18.04 LTS guest VM. View its output truncated for
readability with tree(1):

$ TMPDIR=$(mktemp -d)
$ unmkinitramfs /boot/initrd.img-5.4.0-llkd01 ${TMPDIR}
$ tree ${TMPDIR} | less
/tmp/tmp.T53zY3gR91
├── early
│ └── kernel
│ └── x86
│ └── microcode
│ └── AuthenticAMD.bin
└── main
 ├── bin
 │ ├── [
 │ ├── [[
 │ ├── acpid
 │ ├── ash
 │ ├── awk
[...]
 ├── etc
 │ ├── console-setup

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[118]

 │ │ ├── cached_UTF-8_del.kmap.gz
[...]
 ├── init
 ├── lib
[...]
 │ ├── modules
 │ │ └── 5.4.0-llkd01
 │ │ ├── kernel
 │ │ │ └── drivers
[...]
 ├── scripts
 │ ├── functions
 │ ├── init-bottom
[...]
 └── var
 └── lib
 └── dhcp
$

This concludes our (rather lengthy!) discussion on the initramfs framework and the
basics of the boot process on the x86. The good news is that now, armed with this
knowledge, you can further customize your product by tweaking the initramfs
image as required – an important skill!

As an example (and as mentioned earlier), with security being a key factor on modern
systems, being able to encrypt a disk at the block level is a powerful security feature;
doing this very much involves tweaking the initramfs image. (Again, as this goes
beyond the scope of this book, do refer to the Further reading section at the end of this
chapter for useful links to articles on this and other aspects.)

Now let's complete the kernel build with some simple customization of the (x86)
GRUB bootloader's boot script.

Step 7 – customizing the GRUB
bootloader
We have now completed steps 1 to 6 as outlined in Chapter 2, Building the 5.x Linux
Kernel from Source – Part 1, in the Steps to build the kernel from source section). We can
reboot the system; of course, do first close all your apps and files. By default, though,
the modern GRUB (GRand Unified Bootloader) bootloader does not even show us
any menu on reboot; it will by default boot into the newly built kernel (do remember
that here, we're describing this process only for x86[_64] systems running Ubuntu).

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[119]

On x86[_64] you can always get to the GRUB menu during early
system boot. Just ensure you keep the Shift key pressed down
during boot.

What if we would like to see and customize the GRUB menu every time we boot the
system, thus allowing us to possibly select an alternate kernel/OS to boot from? This
is often very useful during development, so let's find out how we can do this.

Customizing GRUB – the basics
Customizing GRUB is quite easy to do. Do note the following:

The following steps are to be carried out on the "target" system itself (not
on the host); in our case, the Ubuntu 18.04 guest VM.
This has been tested and verified on our Ubuntu 18.04 LTS guest system
only.

Here's a quick series of steps for our customization:

Let's be safe and keep a backup copy of the GRUB bootloader config file:1.

sudo cp /etc/default/grub /etc/default/grub.orig

The /etc/default/grub file is the user-configuration file in
question. Before editing it, we make a backup to be safe. This is
always a good idea.

Edit it. You can use vi(1) or your editor of choice:2.

sudo vi /etc/default/grub

To always show the GRUB prompt at boot, insert this line:3.

GRUB_HIDDEN_TIMEOUT_QUIET=false

On some Linux distros, you might instead have the
GRUB_TIMEOUT_STYLE=hidden directive; simply change it to
GRUB_TIMEOUT_STYLE=menu to achieve the same effect.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[120]

Set the timeout to boot the default OS (in seconds) as required; the default4.
is 10 seconds; see the following example:

GRUB_TIMEOUT=3

Setting the preceding timeout value to the following values will produce the
following outcomes:

0: Boot the system immediately without displaying the menu.
-1: Wait indefinitely.

Furthermore, if a GRUB_HIDDEN_TIMEOUT directive is present, just comment
it out:

#GRUB_HIDDEN_TIMEOUT=1

Finally, run the update-grub(8) program as root to have your changes5.
take effect:

sudo update-grub

The preceding command will typically cause the initramfs image to be refreshed
(regenerated). Once done, you're ready to reboot the system. Hang on a second
though! The following section shows you how you can modify GRUB's configuration
to boot by default into a kernel of your choice.

Selecting the default kernel to boot into
The GRUB default kernel is preset to be the number zero (via the
GRUB_DEFAULT=0 directive). This will ensure that the "first kernel" – the most
recently added one – boots by default (upon timeout). This may not be what we want;
as a real example, on our Ubuntu 18.04.3 LTS guest VM, we set it to the default
Ubuntu distro kernel by, as earlier, editing the /etc/default/grub file (as root, of
course) like so:

GRUB_DEFAULT="Advanced options for Ubuntu>Ubuntu, with Linux 5.0.0-36-
generic"

Of course, this implies that if your distro is updated or upgraded,
you must again manually change the preceding line to reflect the
new distro kernel that you wish to boot into by default, and then
run sudo update-grub.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[121]

Right, our freshly edited GRUB configuration file is shown as follows:

$ cat /etc/default/grub
[...]
#GRUB_DEFAULT=0
GRUB_DEFAULT="Advanced options for Ubuntu>Ubuntu, with Linux 5.0.0-36-
generic"
#GRUB_TIMEOUT_STYLE=hidden
GRUB_HIDDEN_TIMEOUT_QUIET=false
GRUB_TIMEOUT=3
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
GRUB_CMDLINE_LINUX=""
[...]

As in the previous section, don't forget: if you make any changes here, run the sudo
update-grub command to have your changes take effect.

Additional points to note:
a) In addition, you can add "pretty" tweaks, such as changing the
background image (or color) via the
BACKGROUND_IMAGE="<img_file>" directive.
b) On Fedora, the GRUB bootloader config file is a bit different; run
this command to show the GRUB menu at every boot:
sudo grub2-editenv - unset menu_auto_hide

The details can be found in the Fedora wiki:
Changes/HiddenGrubMenu: https:/ / fedoraproject. org/ wiki/
Changes/ HiddenGrubMenu.
c) Unfortunately, GRUB2 (the latest version is now 2) seems to be
implemented differently on pretty much every Linux distro, leading
to incompatibilities when trying to tune it in one given manner.

Now let's reboot the guest system, get into the GRUB menu, and boot our new kernel.

All done! Let's (finally!) reboot the system:

$ sudo reboot
[sudo] password for llkd:

Once the system completes its shutdown procedure and reboots, you should soon see
the GRUB bootloader menu (the following section shows several screenshots too). Be
sure to interrupt it by pressing any keyboard key!

https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu
https://fedoraproject.org/wiki/Changes/HiddenGrubMenu

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[122]

Though always possible, I recommend you don't delete the original
distro kernel image(s) (and associated initrd, System.map files,
and so on). What if your brand-new kernel fails to boot? (If it can
happen to the Titanic...) By keeping our original images, we thus have
a fallback option: boot from the original distro kernel, fix our
issue(s), and retry.

As a worst-case scenario, what if all other kernels/initrd images
have been deleted and your single new kernel fails to boot
successfully? Well, you can always boot into a recovery mode Linux
via a USB pen drive; a bit of googling regarding this will yield many
links and video tutorials.

Booting our VM via the GNU GRUB bootloader
Now our guest VM (using the Oracle VirtualBox hypervisor) is about to come up; once
its (emulated) BIOS routines are done, the GNU GRUB bootloader screen shows
up first. This happens because we quite intentionally changed
the GRUB_HIDDEN_TIMEOUT_QUIET GRUB configuration directive to the value
of false. See the following screenshot (Figure 3.3). The particular styling seen in the
screenshot is how it's customized to appear by the Ubuntu distro:

Figure 3.3 – The GRUB2 bootloader – paused on system startup

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[123]

Now let's go straight into booting our VM:

Press any keyboard key (besides Enter) to ensure the default kernel is not1.
booted once the timeout (recall, we set it to 3 seconds) expires.
If not already there, scroll to the Advanced options for Ubuntu menu,2.
highlighting it, and press Enter.
Now you'll see a menu similar, but likely not identical, to the following3.
screenshot (Figure 3.4). For each kernel that GRUB has detected and can
boot into, there are two lines shown – one for the kernel itself and one for
the special recovery mode boot option into the same kernel:

Figure 3.4 – The GRUB2 bootloader showing available kernels to boot from

Notice how the kernel that will boot by default – in our case, the 5.0.0-36-
generic kernel – is highlighted by default with an asterisk (*).

The preceding screenshot shows a few "extra" line items. This is
because, at the time of taking this screenshot, I had updated the VM
and hence a few newer kernels were installed as well. We can spot
the 5.0.0-37-generic and 5.3.0-26-generic kernels. No
matter; we ignore them here.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[124]

Whatever the case, simply scroll to the entry of interest, that is, the 5.4.0-4.
llkd01 kernel entry. Here, it's the very first line of the GRUB menu (as it's
the most recent addition to the GRUB menu of bootable OSes): Ubuntu,
with Linux 5.4.0-llkd01.
Once you have highlighted the preceding menu item, press Enter and voilà!5.
The bootloader will proceed to do its job, uncompressing and loading the
kernel image and initrd image into RAM, and jumping to the Linux
kernel's entry point, thus handing over control to Linux!

Right, if all goes well, as it should, you will have booted into your brand-new freshly
built 5.4.0 Linux kernel! Congratulations on a task well done. Then again, you could
always do more – the following section shows you how you can further edit and
customize GRUB's config at runtime (boot time). Again, this skill comes in handy
every now and then – for example, forgot the root password? Yes indeed, you can
actually bypass it using this technique! Read on to find out how.

Experimenting with the GRUB prompt
You could experiment further; instead of merely pressing Enter while on the Ubuntu,
with Linux 5.4.0-llkd01 kernel's menu entry, ensure that this line is highlighted
and press the e key (for edit). We shall now enter GRUB's edit screen, wherein we are
free to change any value we like. Here's a screenshot after pressing the e key:

Figure 3.5 – The GRUB2 bootloader – detail on the custom 5.4.0-llkd01 kernel

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[125]

The screenshot has been taken after scrolling down a few lines; look carefully, you
can spot the cursor (an underscore-like one, "_") at the very beginning of the third line
from the bottom of the edit box. This is the crucial line; it starts with the suitably
indented keyword linux. It specifies the list of kernel parameters being passed via the
GRUB bootloader to the Linux kernel.

Try experimenting a bit here. As a simple example, delete the words quiet and
splash from this entry, then press Ctrl + X or F10 to boot. This time, the pretty
Ubuntu splash screen does not appear; you are directly in the console seeing all
kernel messages as they flash past.

A common question: what if we forget our password and thus cannot log in? Well,
there are several approaches to tackle this. One is via the bootloader: boot into the
GRUB menu as we have done, go to the relevant menu entry, press e to edit it, scroll
down to the line beginning with the word linux, and append the word single (or
just the number 1) at the end of this entry, such that it looks like this:

 linux /boot/vmlinuz-5.0.0-36-generic \
root=UUID=<...> ro quiet splash single

Now, when you boot, the kernel boots into single-user mode and gives you, the
eternally grateful user, a shell with root access. Just run the passwd <username>
command to change your password.

The precise procedure to boot into single-user mode varies with the
distro. Exactly what to edit in the GRUB2 menu is a bit different on
Red Hat/Fedora/CentOS. See the Further reading section for a link on
how to set it for these systems.

This teaches us something regarding security, doesn't it? A system is considered
insecure when access to the bootloader menu (and even to the BIOS) is possible
without a password! In fact, in highly secured environments, even physical access to
the console device must be restricted.

Now you have learned how to customize the GRUB bootloader, and, I expect, have
booted into your fresh 5.4 Linux kernel! Let's not just assume things; let's verify that
the kernel is indeed configured as per our plan.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[126]

Verifying our new kernel's configuration
Okay, so back to our discussion: we have now booted into our newly built kernel. But
hang on, let's not blindly assume things, let's actually verify that all has gone
according to plan. The empirical approach is always best:

$ uname -r
5.4.0-llkd01

Indeed, we are now running Ubuntu 18.04.3 LTS on our just-built 5.4.0 Linux kernel!

Recall our table of kernel configs to edit from Chapter 2, Building the 5.x Linux Kernel
from Source – Part 1, in Table 2.4. We should check row by row that each configuration
we have changed has actually taken effect. Let's list some of them, starting with the
concerned CONFIG_'FOO' name, as follows:

CONFIG_LOCALVERSION: The preceding output of uname -r clearly shows
the localversion (or -EXTRAVERSION) part of the kernel version has
been set to what we wanted: the -llkd01 string.
CONFIG_IKCONFIG: Allows us to see the current kernel configuration
details. Let's check. Recall that you are to set the LLKD_KSRC environment
variable to the root location of your 5.4 kernel source tree directory:

$ ${LLKD_KSRC}/scripts/extract-ikconfig /boot/vmlinuz-5.4.0-
llkd01
#
Automatically generated file; DO NOT EDIT.
Linux/x86 5.4.0 Kernel Configuration
[...]
CONFIG_IRQ_WORK=y
[...]

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[127]

It works! We can see the entire kernel configuration via the scripts/extract-
ikconfig script. We shall use this very script to grep(1) the remainder of the config
directives that we changed in the aforementioned Table 2.4:

$ scripts/extract-ikconfig /boot/vmlinuz-5.4.0-llkd01 | egrep
"IKCONFIG|HAMRADIO|PROFILING|VBOXGUEST|UIO|MSDOS_FS|SECURITY|DEBUG_STA
CK_USAGE"
CONFIG_IKCONFIG=y
CONFIG_IKCONFIG_PROC=y
CONFIG_PROFILING is not set
CONFIG_HAMRADIO is not set
CONFIG_UIO=m
CONFIG_UIO_CIF is not set
CONFIG_UIO_PDRV_GENIRQ=m
CONFIG_UIO_DMEM_GENIRQ is not set
[...]
CONFIG_VBOXGUEST=m
CONFIG_EXT4_FS_SECURITY=y
CONFIG_MSDOS_FS=m
CONFIG_SECURITY_DMESG_RESTRICT is not set
CONFIG_SECURITY is not set
CONFIG_SECURITYFS=y
CONFIG_DEFAULT_SECURITY_DAC=y
CONFIG_DEBUG_STACK_USAGE=y
$

Carefully looking through the preceding output, we can see that we got precisely
what we wanted. Our new kernel's configuration settings match precisely the settings
expected in Chapter 2, Building the 5.x Linux Kernel from Source – Part 1, Table 2.4;
perfect.

Alternatively, as we have enabled the CONFIG_IKCONFIG_PROC option, we could
have achieved the same verification by looking up the kernel config via the
(compressed) proc filesystem entry, /proc/config.gz, like this:

gunzip -c /proc/config.gz | egrep \
"IKCONFIG|HAMRADIO|PROFILING|VBOXGUEST|UIO|MSDOS_FS|SECURITY|DEBUG_STA
CK_USAGE"

So, the kernel build is done! Fantastic. I urge you to refer back to Chapter 2, Building
the 5.x Linux Kernel from Source – Part 1, in the Steps to build the kernel from source
section, to again see the high-level overview of steps for the entire process. We round
off this chapter with an interesting cross-compile of the Raspberry Pi device kernel and
a few remaining tips.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[128]

Kernel build for the Raspberry Pi
A popular and relatively inexpensive Single-Board Computer (SBC) to experiment
and prototype with is the ARM-based Raspberry Pi. Hobbyists and tinkerers find it
very useful to try out and learn how to work with embedded Linux, especially as it
has a strong community backing (with many Q&A forums) and good support:

Figure 3.6 – A Raspberry Pi 3 Model B+ device (note that the USB-to-serial cable seen in the photo does not come with it)

There are two ways in which you can build a kernel for the target device:

Build the kernel on a powerful host system, typically an Intel/AMD x86_64
(or Mac) desktop or laptop running a Linux distro.
Perform the build on the target device itself.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[129]

We shall follow the first method – it's a lot faster and is considered the right way to
perform embedded Linux development.

We shall assume (as usual) that we are running on our Ubuntu 18.04 LTS guest VM.
So, think about it; now, the host system is actually the guest Linux VM! Also, we're
targeting building the kernel for ARM 32-bit architecture, not 64-bit.

Performing large downloads and kernel build operations on a guest
VM isn't really ideal. Depending on the power and RAM of the host
and guest, it will take a while. It could end up being twice as slow as
building on a native Linux box. Nevertheless, assuming you have
set aside sufficient disk space in the guest (and of course the host
actually has this space available), this procedure works.

We will have to use an x86_64-to-ARM (32-bit) cross-compiler to build the kernel, or
any component for that matter, for the Raspberry Pi target. This implies installing an
appropriate cross-toolchain as well to perform the build.

In the following few sections, we divide the work up into three discrete steps:

Getting ourselves a kernel source tree appropriate for the device1.
Learning how to install an appropriate cross toolchain2.
Configuring and building the kernel3.

So let's begin!

Step 1 – cloning the kernel source tree
We arbitrarily select a staging folder (the place where the build happens) for the kernel
source tree and the cross-toolchain, and assign it to an environment variable (so as to
avoid hard-coding it):

Set up your workspace. We set an environment variable as RPI_STG (it's1.
not required to use exactly this name for the environment variable; just
pick a reasonable-sounding name and stick to it) to the staging folder's
location – the place where we shall perform the work. Feel free to use a
value appropriate to your system:

export RPI_STG=~/rpi_work
mkdir -p ${RPI_STG}/kernel_rpi ${RPI_STG}/rpi_tools

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[130]

Do ensure you have sufficient disk space available: the kernel source
tree takes approximately 900 MB, and the toolchain around 1.5 GB.
You'll require at least another gigabyte for working space.

Download the Raspberry Pi kernel source tree (we clone it from the official2.
source, the Raspberry Pi GitHub repository for the kernel tree, here:
https:/ /github. com/ raspberrypi/ linux/):

cd ${RPI_STG}/kernel_rpi
git clone --depth=1 --branch rpi-5.4.y
https://github.com/raspberrypi/linux.git

The kernel source tree gets cloned under a directory called linux/ (that is, under
${RPI_WORK}/kernel_rpi/linux). Notice how, in the preceding code, we have the
following:

The particular Raspberry Pi kernel tree branch we have selected is not the
very latest one (at the time of writing, the very latest is the 5.11 series), it's
the 5.4 kernel; that's perfectly okay (it's an LTS kernel and matches our x86
one as well!).
We pass the --depth parameter set to 1 to git clone to reduce the
download and uncompress loads.

Now the Raspberry Pi kernel source is installed. Let's briefly verify this:

$ cd ${RPI_STG}/kernel_rpi/linux ; head -n5 Makefile
SPDX-License-Identifier: GPL-2.0
VERSION = 5
PATCHLEVEL = 4
SUBLEVEL = 51
EXTRAVERSION =

Okay, it's the 5.4.51 Raspberry Pi kernel port (the kernel version we use on the x86_64
is the 5.4.0 one; the slight variation is fine).

Step 2 – installing a cross-toolchain
Now it's time to install a cross-toolchain on your host system that's appropriate for
performing the actual build. The thing is, there are several working toolchains
available... Here, I shall show two ways of obtaining and installing a toolchain. The
first is the simplest and typically sufficient, while the second way installs a more
elaborate version.

https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/
https://github.com/raspberrypi/linux/

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[131]

First method – package install via apt
This is really simple and works well; do use this method routinely:

sudo apt install crossbuild-essential-armhf

The tools are typically installed under /usr/bin/ and are therefore already part of
your PATH; you can simply use them. For example, check out the ARM-32 gcc
compiler's location and version as follows:

$ which arm-linux-gnueabihf-gcc
/usr/bin/arm-linux-gnueabihf-gcc
$ arm-linux-gnueabihf-gcc --version |head -n1
arm-linux-gnueabihf-gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0

Also, do keep in mind: this toolchain is appropriate for building the kernel for ARM
32-bit architecture, not for 64-bit. If that's your intention (building for 64-bit, which
we don't cover here), you will need to install a x86_64-to-ARM64 toolchain with sudo
apt install crossbuild-essential-arm64.

Second method – installation via the source repo
This is a more elaborate method. Here, we clone the toolchain from the Raspberry Pi's
GitHub repo:

Download the toolchain. Let's place it under the folder called1.
rpi_tools within our Raspberry Pi staging directory:

cd ${RPI_STG}/rpi_tools
git clone https://github.com/raspberrypi/tools

Update the PATH environment variable so that it contains the toolchain2.
binaries:

export PATH=${PATH}:${RPI_STG}/rpi_tools/tools/arm-
bcm2708/arm-linux-gnueabihf/bin/

Setting the PATH environment variable (as shown in the preceding
code) is required. However, it's only valid for the current shell
session. Make it permanent by putting the preceding line into a
startup script (typically your ${HOME}/.bashrc file or equivalent).

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[132]

As mentioned earlier, alternate toolchains can be used as well. For example, several
toolchains for ARM development (for A-profile processors) are available on the ARM
developer site at https:/ / developer. arm.com/ tools- and- software/ open- source-
software/developer- tools/ gnu- toolchain/ gnu- a/downloads.

Step 3 – configuring and building the kernel
Let's configure the kernel (for the Raspberry Pi 2, Pi 3, and Pi 3[B]+). Before we begin,
it's very important to keep the following in mind:

The ARCH environment variable is to be set to the CPU (architecture) for
which the software is to be cross-compiled (that is, the compiled code will
run on that CPU). The value to set ARCH to is the name of the directory
under the arch/ directory in the kernel source tree. For example,
set ARCH to arm for ARM32, to arm64 for the ARM64, to powerpc for the
PowerPC, and to openrisc for the OpenRISC processor.
The CROSS_COMPILE environment variable is to be set to the cross compiler
(toolchain) prefix. Essentially, it's the first few common letters that precede
every utility in the toolchain. In our following example, all the toolchain
utilities (the C compiler gcc, linker, C++, objdump, and so on) begin with
arm-linux-gnueabihf-, so that's what we set CROSS_COMPILE to.
The Makefile will always invoke the utilities
as ${CROSS_COMPILE}<utility>, hence invoking the correct toolchain
executable. This does imply that the toolchain directory should be within
the PATH variable (as we mentioned in the preceding section).

Okay, let's build the kernel:

cd ${RPI_STG}/kernel_rpi/linux
make mrproper
KERNEL=kernel7
make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- bcm2709_defconfig

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[133]

A quick explanation regarding the configuration target, bcm2709_defconfig: this
key point was mentioned in Chapter 2, Building the 5.x Linux Kernel from Source – Part
1. We must ensure that we use an appropriate board-specific kernel config file as a
starting point. Here, this is the correct kernel config file for the Broadcom SoC on the
Raspberry Pi 2, Pi 3, Pi 3+ and Compute Module 3 devices. The
bcm2709_defconfig config target specified results in parsing in the content of the
arch/arm/configs/bcm2709_defconfig file. (The Raspberry Pi website
documents this as bcm2709_defconfig for Raspberry Pi 2, Pi 3, Pi 3+, and Compute
Module 3 default build configuration. Important: if you are building the kernel for
another type of Raspberry Pi device, please see https:/ /www. raspberrypi. org/
documentation/ linux/ kernel/ building. md.)

FYI, the kernel7 value is as such because the processor is ARMv7-based (actually,
from the Raspberry Pi 3 onward, the SoC is a 64-bit ARMv8, which is compatible with
running in 32-bit ARMv7 mode; here, as we're building a 32-bit kernel for ARM32
(AArch32), we specify KERNEL=kernel7).

The variety of SoCs, their packaging, and their resulting naming
creates a good deal of confusion; this link might help: https:/ /
raspberrypi. stackexchange. com/ questions/ 840/ why- is-the- cpu-
sometimes- referred- to- as-bcm2708- sometimes- bcm2835.

If any further customization of the kernel config is required, you could always do so
with the following:

make ARCH=arm menuconfig

If not, just skip this step and proceed. Build (cross-compile) the kernel, the kernel
modules, and the DTBs with the following:

make -j4 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- zImage modules
dtbs

(Adjust the -jn appropriately for your build host). Once the build is successfully
completed, we can see the following files have been generated:

$ ls -lh vmlinux System.map arch/arm/boot/zImage
-rwxrwxr-x 1 llkd llkd 5.3M Jul 23 12:58 arch/arm/boot/zImage
-rw-rw-r-- 1 llkd llkd 2.5M Jul 23 12:58 System.map
-rwxrwxr-x 1 llkd llkd 16M Jul 23 12:58 vmlinux
$

https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835
https://raspberrypi.stackexchange.com/questions/840/why-is-the-cpu-sometimes-referred-to-as-bcm2708-sometimes-bcm2835

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[134]

Here, our purpose is just to show how a Linux kernel can be configured and built for
an architecture other than the host system it's compiled upon, or in other words,
cross-compiled. The gory details of placing the kernel image (and DTB file) on the
microSD card and so on are not delved into. I refer you to the complete
documentation for the Raspberry Pi kernel build, which can be found here: https:/ /
www.raspberrypi. org/ documentation/ linux/ kernel/ building. md.

Nevertheless, here's a quick tip to try out your new kernel on the Raspberry Pi 3[B+]:

Mount the microSD card. It will typically have a Raspbian distro on it and1.
two partitions, boot and rootfs, corresponding to
the mmcblk0p1 and mmcblk0p2 partitions respectively.

The bootloader and associated binaries: It's key to get the low-level2.
startup binaries, which includes the bootloader itself, onto the SD card's
boot partition; this includes the bootcode.bin (the actual bootloader),
fixup*.dat, and start*.elf binaries; the content of the /boot folder is
explained here: https:/ / www.raspberrypi. org/documentation/
configuration/ boot_ folder. md. (If you're unsure of how to get these
binaries, it's perhaps easiest to simply install a stock version of Raspberry
Pi OS onto an SD card; these binaries will get installed within its boot
partition. The stock Raspberry Pi OS images can be obtained from https:/ /
www. raspberrypi. org/ downloads/ ; also, FYI, the newer Raspberry Pi
Imager app (for Windows, macOS, Linux) makes it really easy to perform
the first-time installation).
If it exists, back up and then replace the kernel7.img file within3.
the /boot partition on the microSD card with the zImage file that we just
built, naming it kernel7.img.

Install the just-built kernel modules; ensure you specify the location as the4.
microSD card's root filesystem with the INSTALL_MOD_PATH environment
variable! (Failing to do so means it might overwrite your host's modules,
which would be disastrous!) Here, we imagine that the microSD card's
second partition (which contains the root filesystem) is mounted under
/media/${USER}/rootfs; then, do the following (all in one line):

sudo env PATH=$PATH make ARCH=arm CROSS_COMPILE=arm-linux-
gnueabihf- INSTALL_MOD_PATH=/media/${USER}/rootfs
modules_install

https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/documentation/configuration/boot_folder.md
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[135]

Install the DTBs (and overlays) that we just generated on the SD card as5.
well:

sudo cp arch/arm/boot/dts/*.dtb /media/${USER}/boot
sudo cp arch/arm/boot/dts/overlays/*.dtb*
arch/arm/boot/dts/overlays/README /media/${USER}/boot/overlays
sync

Unmount the SD card, re-insert it into the device, and try it out.6.

Again, to ensure it works, please refer to the official documentation
(available at https:/ /www.raspberrypi. org/ documentation/ linux/
kernel/ building. md). We have not covered the details regarding
the generation and copying of kernel modules and DTBs to the
microSD card.

Also, FYI, we again discuss kernel configuration and build for the
Raspberry Pi in Chapter 11, The CPU Scheduler – Part 2.

This completes our brief coverage on experimenting with a kernel cross-compilation
for the Raspberry Pi. We'll end this chapter with a few miscellaneous but nevertheless
useful tips.

Miscellaneous tips on the kernel build
We complete this chapter on building the Linux kernel from source with a few tips.
Each of the following subsections encapsulates a tip for you to take note of.

Often a point of confusion for folks new to this: once we configure, build, and boot
from a new Linux kernel, we notice that the root filesystem and any other mounted
filesystems remain identical to what was on the original (distro or custom) system.
Only the kernel itself has changed. This is entirely intentional, due to the Unix
paradigm of having a loose coupling between the kernel and the root filesystem. Since
it's the root filesystem that holds all the applications, system tools, and utilities,
including libraries, in effect, we can have several kernels, to suit different product
flavors perhaps, for the same base system.

https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[136]

Minimum version requirements
To successfully build the kernel, you have to ensure that your build system has the
documented bare minimum versions of the various software pieces of the toolchain
(and other miscellaneous tools and utilities). This very information is clearly within
the kernel documentation in the Minimal requirements to compile the kernel section,
available at https:/ / github. com/ torvalds/ linux/ blob/ master/ Documentation/
process/changes. rst#minimal- requirements- to- compile- the- kernel.

For example, as of the time of writing, the recommended minimum version of gcc is
4.9 and that of make is 3.81.

Building a kernel for another site
In our kernel build walk-through in this book, we built a Linux kernel on a certain
system (here, it was an x86_64 guest) and booted the newly built kernel off the very
same system. What if this isn't the case, as will often happen when you are building a
kernel for another site or customer premises? While it's always possible to manually
put the pieces in place on the remote system, there's a far easier and more correct way
to do it – build the kernel and associated meta-work bundled along with it (the
initrd image, the kernel modules collection, the kernel headers, and so on) into a
well-known package format (Debian's deb, Red Hat's rpm, and so on)! A quick help
command on the kernel's top-level Makefile reveals these package targets:

$ make help
[...]
Kernel packaging:
 rpm-pkg - Build both source and binary RPM kernel packages
 binrpm-pkg - Build only the binary kernel RPM package
 deb-pkg - Build both source and binary deb kernel packages
 bindeb-pkg - Build only the binary kernel deb package
 snap-pkg - Build only the binary kernel snap package (will connect to
external hosts)
 tar-pkg - Build the kernel as an uncompressed tarball
 targz-pkg - Build the kernel as a gzip compressed tarball
 tarbz2-pkg - Build the kernel as a bzip2 compressed tarball
 tarxz-pkg - Build the kernel as a xz compressed tarball
[...]

https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#minimal-requirements-to-compile-the-kernel

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[137]

So, for example, to build the kernel and its associated files as Debian packages, simply
do the following:

$ make -j8 bindeb-pkg
scripts/kconfig/conf --syncconfig Kconfig
sh ./scripts/package/mkdebian
dpkg-buildpackage -r"fakeroot -u" -a$(cat debian/arch) -b -nc -uc
dpkg-buildpackage: info: source package linux-5.4.0-min1
dpkg-buildpackage: info: source version 5.4.0-min1-1
dpkg-buildpackage: info: source distribution bionic
[...]

The actual packages are written into the directory immediately above the kernel
source directory. For example, from the command we just ran, here are the deb
packages that were generated:

$ ls -l ../*.deb
-rw-r--r-- 1 kaiwan kaiwan 11106860 Feb 19 17:05 ../linux-
headers-5.4.0-min1_5.4.0-min1-1_amd64.deb
-rw-r--r-- 1 kaiwan kaiwan 8206880 Feb 19 17:05 ../linux-image-5.4.0-
min1_5.4.0-min1-1_amd64.deb
-rw-r--r-- 1 kaiwan kaiwan 1066996 Feb 19 17:05 ../linux-libc-
dev_5.4.0-min1-1_amd64.deb

This is indeed very convenient! Now, you can literally install the packages on any
other matching (in terms of CPU and Linux flavor) system with a simple dpkg -i
<package-name> command.

Watching the kernel build run
To see details (the gcc(1) compiler flags, and so on) while the kernel build runs, pass
the V=1 verbose option switch to make(1). The following is a bit of sample output
when building the Raspberry Pi 3 kernel with the verbose switch set to on:

$ make V=1 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- zImage modules
dtbs
[...]
make -f ./scripts/Makefile.build obj=kernel/sched
arm-linux-gnueabihf-gcc -Wp,-MD,kernel/sched/.core.o.d
 -nostdinc
 -isystem <...>/gcc-linaro-7.3.1-2018.05-x86_64_arm-linux-
gnueabihf/bin/../lib/gcc/arm-linux-gnueabihf/7.3.1/include
 -I./arch/arm/include -I./arch/arm/include/generated/uapi
 -I./arch/arm/include/generated -I./include
 -I./arch/arm/include/uapi -I./include/uapi

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[138]

 -I./include/generated/uapi -include ./include/linux/kconfig.h
 -D__KERNEL__ -mlittle-endian -Wall -Wundef -Wstrict-prototypes
 -Wno-trigraphs -fno-strict-aliasing -fno-common
 -Werror-implicit-function-declaration -Wno-format-security
 -std=gnu89 -fno-PIE -fno-dwarf2-cfi-asm -fno-omit-frame-pointer
 -mapcs -mno-sched-prolog -fno-ipa-sra -mabi=aapcs-linux
 -mno-thumb-interwork -mfpu=vfp -funwind-tables -marm
 -D__LINUX_ARM_ARCH__=7 -march=armv7-a -msoft-float -Uarm
 -fno-delete-null-pointer-checks -Wno-frame-address
 -Wno-format-truncation -Wno-format-overflow
 -Wno-int-in-bool-context -O2 --param=allow-store-data-races=0
 -DCC_HAVE_ASM_GOTO -Wframe-larger-than=1024 -fno-stack-protector
 -Wno-unused-but-set-variable -Wno-unused-const-variable
 -fno-omit-frame-pointer -fno-optimize-sibling-calls
 -fno-var-tracking-assignments -pg -Wdeclaration-after-statement
 -Wno-pointer-sign -fno-strict-overflow -fno-stack-check
 -fconserve-stack -Werror=implicit-int -Werror=strict-prototypes
 -Werror=date-time -Werror=incompatible-pointer-types
 -fno-omit-frame-pointer -DKBUILD_BASENAME='"core"'
 -DKBUILD_MODNAME='"core"' -c -o kernel/sched/.tmp_core.o
 kernel/sched/core.c
[...]

Note that we have made the preceding output a bit more human-readable by
inserting new lines and highlighting some switches. This level of detail can help
debug situations where the build fails.

A shortcut shell syntax to the build procedure
A shortcut shell (Bash, typically) syntax to the build procedure (assuming the kernel
configuration step is done) could be something like the following example, to be used
in non-interactive build scripts, perhaps:

time make -j4 [ARCH=<...> CROSS_COMPILE=<...>] all && sudo make
modules_install && sudo make install

In the preceding code, the && and || elements are the shell's (Bash's) convenience
conditional list syntax:

cmd1 && cmd2 implies : run cmd2 only if cmd1 succeeds.
cmd1 || cmd2 implies : run cmd2 only if cmd1 fails.

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[139]

Dealing with compiler switch issues
A while back, in October 2016, when attempting to build an (older 3.x) kernel for the
x86_64, I got the following error:

$ make
[...]
CC scripts/mod/empty.o
scripts/mod/empty.c:1:0: error: code model kernel does not support PIC
mode
/* empty file to figure out endianness / word size */
[...]

It turns out that it’s not a kernel issue at all. Rather, it's a compiler switch issue on
Ubuntu 16.10: gcc(1) insists on using the -fPIE (where PIE is short for Position
Independent Executable) flag by default. In the Makefile of older kernels, we need to
turn this off. It's been fixed since.

This Q&A on the AskUbuntu website, on the topic of Kernel doesn't support PIC mode
for compiling?, describes how this can be done: https:/ /askubuntu. com/ questions/
851433/kernel- doesnt- support- pic- mode- for-compiling.

(Interestingly, in the preceding Watching the kernel build run section, with a recent
kernel, notice how the build does use the -fno-PIE compiler switch.)

Dealing with missing OpenSSL development
headers
In one instance, the kernel build on x86_64 on an Ubuntu box failed with the
following error:

[...] fatal error: openssl/opensslv.h: No such file or directory

This is just a case of missing OpenSSL development headers; this is clearly mentioned
in the Minimal requirements to compile the kernel document here: https:/ / github. com/
torvalds/linux/ blob/ master/ Documentation/ process/ changes. rst#openssl.
Specifically, it mentions that from v4.3 and higher, the openssl development
packages are required.

https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://askubuntu.com/questions/851433/kernel-doesnt-support-pic-mode-for-compiling
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl
https://github.com/torvalds/linux/blob/master/Documentation/process/changes.rst#openssl

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[140]

FYI, this Q&A too shows how the installation of the openssl-devel package (or
equivalent; for example, on the Raspberry Pi, the libssl-dev package needs to be
installed) solves the issue: OpenSSL missing during ./configure. How to fix?, available
at https://superuser. com/ questions/ 371901/ openssl- missing- during-
configure-how- to- fix.

In fact, exactly this error occurred on a vanilla x86_64 Fedora 29 distro as well:

make -j4
[...]
HOSTCC scripts/sign-file
scripts/sign-file.c:25:10: fatal error: openssl/opensslv.h: No such
file or directory
 #include <openssl/opensslv.h>
 ^~~~~~~~~~~~~~~~~~~~
compilation terminated.
make[1]: *** [scripts/Makefile.host:90: scripts/sign-file] Error 1
make[1]: *** Waiting for unfinished jobs....
make: *** [Makefile:1067: scripts] Error 2
make: *** Waiting for unfinished jobs....

The fix here is as follows:

sudo dnf install openssl-devel-1:1.1.1-3.fc29

Finally, remember an almost guaranteed way to succeed: when you get those build
and/or boot errors that you just cannot fix: copy the exact error message into the
clipboard, go to Google (or another search engine), and type something akin to linux
kernel build <ver ...> fails with <paste-your-error-message-here>.
You might be surprised at how often this helps. If not, diligently do your research,
and if you really cannot find any relevant/correct answers, do post your (well-
thought-out) question on an appropriate forum.

Several Linux "builder" projects exist, which are elaborate
frameworks for building a Linux system or distribution in its
entirety (typically used for embedded Linux projects). As of the time
of writing, Yocto (https:/ /www. yoctoproject. org/) is considered
the industry standard Linux-builder project, with Buildroot
(https:/ /buildroot. org/) being an older but very much supported
one; they are indeed well worth checking out.

https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://superuser.com/questions/371901/openssl-missing-during-configure-how-to-fix
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/
https://buildroot.org/

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[141]

Summary
This chapter, along with the previous one, covered in a lot of detail how to build the
Linux kernel from source. We began with the actual kernel (and kernel modules')
build process. Once built, we showed how the kernel modules are to be installed onto
the system. We then moved on to both the practicalities of generating the initramfs
(or initrd) image and went on to explain the motivation behind it. The final step in
the kernel build was the (simple) customization of the bootloader (here, we focused
only on x86 GRUB). We then showed how to boot the system via the newly baked
kernel and verify that its configuration is as we expect. As a useful add-on, we then
showed (the basics) of how we can even cross-compile the Linux kernel for another
processor (ARM, in this instance). Finally, we shared some additional tips to help you
with the kernel build.

Again, if you haven't done so already, we urge you to carefully review and try out the
procedures mentioned here and build your own custom Linux kernel.

So, congratulations on completing a Linux kernel build from scratch! You might well
find that on an actual project (or product), you may not have to actually carry out
each and every step of the kernel build procedure as we have tried hard to carefully
show. Why? Well, one reason is that there might be a separate BSP team that works
on this aspect; another reason – increasingly likely, especially on embedded Linux
projects – is that a Linux-builder framework such as Yocto (or Buildroot) is being used.
Yocto will typically take care of the mechanical aspects of the build. However, it is
really important for you to be able to configure the kernel as required by the project;
that still requires the knowledge and understanding gained here.

The next two chapters will take you squarely into the world of Linux kernel
development, showing you how to write your first kernel module.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn

Building the 5.x Linux Kernel from Source - Part 2 Chapter 3

[142]

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

4
Writing Your First Kernel

Module - LKMs Part 1
Welcome to your journey of learning about a fundamental aspect of Linux kernel
development – the Loadable Kernel Module (LKM) framework – and how it is to be
used by the module user or module author, who is typically a kernel or device driver
programmer. This topic is rather vast and hence is split into two chapters – this one
and the next.

In this chapter, we'll begin by taking a quick look at the basics of the Linux kernel
architecture, which will help us to understand the LKM framework. Then, we'll look
into why kernel modules are useful and write our own simple Hello, world LKM,
build and run it. We'll see how messages are written to the kernel log and understand
and make use of the LKM Makefile. By the end of this chapter, you will have learned
the basics of Linux kernel architecture and the LKM framework, applying it to write a
simple yet complete piece of kernel code.

In this chapter, we cover the following recipes:

Understanding the kernel architecture – part I
Exploring LKMs
Writing our very first kernel module
Common operations on kernel modules
Understanding kernel logging and printk
Understanding the basics of a kernel module Makefile

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[144]

Technical requirements
If you have already carefully followed Chapter 1, Kernel Workspace Setup, the
technical prerequisites that follow will already be taken care of. (The chapter also
mentions various useful open source tools and projects; I definitely recommend that
you browse through it at least once.) For your convenience, we summarize some key
points here.

To build and use a kernel module on a Linux distribution (or custom system), you
need, at minimum, the following two components to be installed:

A toolchain: This includes the compiler, assembler, linker/loader, C library,
and various other bits and pieces. If building for the local system, as we
assume for now, then any modern Linux distribution will have a native
toolchain pre-installed. If not, simply installing the gcc package for your
distribution should be sufficient; on an Ubuntu- or Debian-based Linux
system, use this:

sudo apt install gcc

Kernel headers: These headers will be used during compilation. In reality,
you install a package geared to not only install the kernel headers but also
other required bits and pieces (such as the kernel Makefile) onto the
system. Again, any modern Linux distribution will/should have the kernel
header pre-installed. If not (you can check using dpkg(1), as shown here),
simply install the package for your distribution; on an Ubuntu- or Debian-
based Linux system, use this:

$ sudo apt install linux-headers-generic
$ dpkg -l | grep linux-headers | awk '{print $1, $2}'
ii linux-headers-5.3.0-28
ii linux-headers-5.3.0-28-generic
ii linux-headers-5.3.0-40
ii linux-headers-5.3.0-40-generic
ii linux-headers-generic-hwe-18.04
$

Here, the second command using the dpkg(1) utility is simply used to
verify that the linux-headers packages are indeed installed.

This package may be named kernel-headers-<ver#> on
some distributions. Also, for development directly on a Raspberry
Pi, install the relevant kernel headers package
named raspberrypi-kernel-headers.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[145]

The entire source tree for this book is available in its GitHub repository at https:/ /
github.com/PacktPublishing/ Linux- Kernel- Programming, and the code for this
chapter under the ch4 directory. We definitely expect you to clone it:

git clone
https://github.com/PacktPublishing/Linux-Kernel-Programming.git

The code for this chapter is under its directory namesake, chn (where n is the chapter
number; so here, it's under ch4/).

Understanding kernel architecture – part
1
In this section, we begin to deepen our understanding of the kernel. More specifically,
here we delve into what user and kernel spaces are and the major subsystems and
various components that make up the Linux kernel. This information is dealt with at
a higher level of abstraction for now and is deliberately kept brief. We shall delve a
lot deeper into understanding the fabric of the kernel in Chapter 6, Kernel Internals
Essentials - Processes and Threads.

User space and kernel space
Modern microprocessors support a minimum of two privilege levels. As a real-world
example, the Intel/AMD x86[-64] family supports four privilege levels (they call them
ring levels), and the ARM (32-bit) microprocessor family supports up to seven (ARM
calls them execution modes; six are privileged and one is non-privileged).

The key point here is that for security and stability on the platform, all modern
operating systems running on these processors will make use of (at least) two of the
privilege levels (or modes):

User space: For applications to run in unprivileged user mode
Kernel space: For the kernel (and all its components) to run in privileged
mode – kernel mode

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[146]

The following figure shows this basic architecture:

Figure 4.1 – Basic architecture – two privilege modes

A few details on the Linux system architecture follow; do read on.

Library and system call APIs
User space applications often rely on Application Programming Interfaces (APIs) to
perform their work. A library is essentially a collection or archive of APIs, allowing
you to use a standardized, well-written, and well-tested interface (and leverage the
usual benefits: not having to reinvent the wheel, portability, standardization, and so
on). Linux systems have several libraries; even hundreds on enterprise-class systems
is not uncommon. Of these, all usermode Linux applications (executables) are "auto-
linked" into one important, always-used library: glibc – the GNU standard C library,
as you shall learn. However, libraries are only ever available in user mode; the kernel
does not have libraries (more on this in the following chapter).

Examples of library APIs are the well-known printf(3) (recall, from Chapter 1,
Kernel Workspace Setup, the section of the man pages where this API can be found),
scanf(3), strcmp(3), malloc(3), and free(3).

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[147]

Now, a key point: if user and kernel are separate address spaces and at differing
privilege levels, how can a user process access the kernel? The short answer is via
system calls. A system call is a special API, in the sense that it is the only legal
(synchronous) way for user space processes to access the kernel. In other words,
system calls are the only legal entry point into the kernel space. They have the ability
to switch from non-privileged user mode to privileged kernel mode (more on this and
the monolithic design in Chapter 6, Kernel Internals Essentials – Processes and Threads,
under the Process and interrupt contexts section). Examples of system calls include
fork(2), execve(2), open(2),read(2), write(2), socket(2), accept(2),
chmod(2), and so on.

Look up all library and system call APIs in the man pages online:
- Library APIs, man section 3: https:/ /linux. die. net/ man/ 3/
- System call APIs, man section 2: https:/ /linux. die. net/ man/ 2/

The point being stressed here is that it's really only via system calls that user
applications and the kernel communicate; that is the interface. In this book, we do not
delve further into these details. If you are interested in knowing more, please refer to
the book Hands-On System Programming with Linux, by Packt (specifically Chapter 1,
Linux System Architecture).

Kernel space components
This book focuses entirely on the kernel space, of course. The Linux kernel today is a
rather large and complex beast. Internally, it consists of a few major subsystems and
several components. A broad enumeration of kernel subsystems and components
yields the following list:

Core kernel: This code handles the typical core work of any modern
operating system, including (user and kernel) process and thread
creation/destruction, CPU scheduling, synchronization primitives,
signaling, timers, interrupt handling, namespaces, cgroups, module
support, crypto, and more.
Memory Management (MM): This handles all memory-related work,
including the setup and maintenance of kernel and process Virtual
Address Spaces (VASes).

https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/3/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/
https://linux.die.net/man/2/

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[148]

VFS (for filesystem support): The Virtual Filesystem Switch (VFS) is an
abstraction layer over the actual filesystems implemented within the Linux
kernel (for example, ext[2|4], vfat, reiserfs, ntfs, msdos, iso9660,
JFFS2, and UFS).
Block IO: The code paths implementing the actual file I/O, from the VFS
right down to the block device driver and everything in between (really,
quite a lot!), is encompassed here.
Network protocol stack: Linux is well known for its precise, to-the-letter-
of-the-RFC, high-quality implementation of the well-known (and not-so-
well-known) network protocols at all layers of the model, with TCP/IP
being perhaps the most famous.
Inter-Process Communication (IPC) support: The implementation of IPC
mechanisms is done here; Linux supports message queues, shared
memory, semaphores (both the older SysV and the newer POSIX ones), and
other IPC mechanisms.
Sound support: All the code that implements audio is here, from the
firmware to drivers and codecs.
Virtualization support: Linux has become extremely popular with large
and small cloud providers alike, a big reason being its high-quality, low-
footprint virtualization engine, Kernel-based Virtual Machine (KVM).

All this forms the major kernel subsystems; in addition, we have these:

Arch-specific (meaning CPU-specific) code
Kernel initialization
Security frameworks
Many types of device drivers

Recall that in Chapter 2, Building the 5.x Linux Kernel from Source –
Part 1, the A brief tour of the kernel source tree section gave the kernel
source tree (code) layout corresponding to the major subsystems
and other components.

It is a well-known fact that the Linux kernel follows the monolithic kernel
architecture. Essentially, a monolithic design is one in which all kernel components
(that we mentioned in this section) live in and share the kernel address space (or
kernel segment). This can be clearly seen in the following diagram:

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[149]

Figure 4.2 – Linux kernel space - major subsystems and blocks

Another fact you should be aware of is that these address spaces are of course virtual
address spaces and not physical. The kernel will (leveraging hardware such as the
MMU/TLB/caches) map, at the page granularity level, virtual pages to physical
page frames. It does this by using a master kernel paging table to map kernel virtual
pages to physical frames, and, for every single process that is alive, it maps the
process's virtual pages to physical page frames via individual paging tables for each
process.

More in-depth coverage of the essentials of the kernel and memory
management architecture and internals awaits you in Chapter 6,
Kernel Internals Essentials – Processes and Threads (and more chapters
that follow).

Now that we have a basic understanding of the user and kernel spaces, let's move on
and begin our journey into the LKM framework.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[150]

Exploring LKMs
Simply put, a kernel module is a means to provide kernel-level functionality without
resorting to working within the kernel source tree.

Visualize a scenario where you have to add a support feature to the Linux kernel –
perhaps a new device driver in order to use a certain hardware peripheral chip, a new
filesystem, or a new I/O scheduler. One way to do this is pretty obvious: update the
kernel source tree with the new code, build it, and test it.

Though this may seem straightforward, it's actually a lot of work – every change in
the code that we write, no matter how minor, will require us to rebuild the kernel
image and then reboot the system in order to test it. There must be a cleaner, easier
way; indeed there is – the LKM framework!

The LKM framework
The LKM framework is a means to compile a piece of kernel code outside of the kernel
source tree, often referred to as "out-of-tree" code, keeping it independent from the
kernel in a limited sense, and then insert it into or plug it into kernel memory, have it
run and perform its job, and then remove it (or unplug it) from kernel memory.

The kernel module's source code, typically consisting of one or more C source files,
header files, and a Makefile, is built (via make(1), of course) into a kernel module. The
kernel module itself is merely a binary object file and not a binary executable. In
Linux 2.4 and earlier, the kernel module's filename had a .o suffix; on modern 2.6
Linux and later, it instead has a .ko (kernel object) suffix. Once built, you can insert
this .ko file – the kernel module – into the live kernel at runtime, effectively making it
a part of the kernel.

Note that not all kernel functionality can be provided via the LKM
framework. Several core features, such as the core CPU scheduler
code, memory manage the signaling, timer, interrupt management
code paths, and so on, can only be developed within the kernel
itself. Similarly, a kernel module is only allowed access to a subset of
the full kernel API; more on this later.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[151]

You might ask: how do I insert an object into the kernel? Let's keep it simple – the
answer is: via the insmod(8) utility. For now, let's skip the details (these will be
explained in the upcoming Running the kernel module section). The following figure
provides an overview of first building and then inserting a kernel module into kernel
memory:

Figure 4.3 – Building and then inserting a kernel module into kernel memory

Worry not: the actual code for both the kernel module C source as
well as its Makefile is dealt with in detail in an upcoming section; for
now, we want to gain a conceptual understanding only.

The kernel module is loaded into and lives in kernel memory, that is, the kernel VAS
(the bottom half of Figure 4.3) in an area of space allocated for it by the kernel. Make
no mistake, it is kernel code and runs with kernel privileges. This way, you, the kernel (or
driver) developer does not have to reconfigure, rebuild, and reboot the system each
time. All you have to do is edit the code of the kernel module, rebuild it, remove the
old copy from memory (if it exists), and insert the new version. It saves time, and it
increases productivity.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[152]

One reason that kernel modules are advantageous is that they lend themselves to
dynamic product configuration. For example, kernel modules can be designed to
provide different features at differing price points; a script generating the final image
for an embedded product could install a given set of kernel modules depending on
the price the customer is willing to pay. Here's another example of how this
technology is leveraged in a debug or troubleshooting scenario: a kernel module could
be used to dynamically generate diagnostics and debug logs on an existing product.
Technologies such as kprobes and the like allow just this.

In effect, the LKM framework gives us a means of dynamically extending kernel
functionality by allowing us to insert and remove live code from kernel memory. This
ability to plug in and unplug kernel functionality at our whim makes us realize that
the Linux kernel is not purely monolithic, it is also modular.

Kernel modules within the kernel source tree
In fact, the kernel module object isn't completely unfamiliar to us. In Chapter 3,
Building the 5.x Linux Kernel from Source - Part 2, we built kernel modules as part of the
kernel build process and had them installed.

Recall that these kernel modules are part of the kernel source and have been
configured as modules by selecting M in the tristate kernel menuconfig prompt. They
get installed into directories under /lib/modules/$(uname -r)/. So, to see a little
bit regarding the kernel modules installed under our currently running an Ubuntu
18.04.3 LTS guest kernel, we can do this:

$ lsb_release -a 2>/dev/null |grep Description
Description: Ubuntu 18.04.3 LTS
$ uname -r
5.0.0-36-generic
$ find /lib/modules/$(uname -r)/ -name "*.ko" | wc -l
5359

Okay, the folks at Canonical and elsewhere have been busy! Over five thousand
kernel modules... Think about it – it makes sense: distributors cannot know in
advance exactly what hardware peripherals a user will end up using (especially on
generic computers like x86-based systems). Kernel modules serve as a convenient
means to support huge amounts of hardware without insanely bloating the kernel
image file (bzImage or zImage, for example).

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[153]

The installed kernel modules for our Ubuntu Linux system live within the
/lib/modules/$(uname -r)/kernel directory, as seen here:

$ ls /lib/modules/5.0.0-36-generic/kernel/
arch/ block/ crypto/ drivers/ fs/ kernel/ lib/ mm/ net/
samples/ sound/ spl/ ubuntu/ virt/ zfs/
$ ls /lib/modules/5.4.0-llkd01/kernel/
arch/ crypto/ drivers/ fs/ net/ sound/
$

Here, looking at the top level of the kernel/ directory under
/lib/modules/$(uname -r) for the distro kernel (Ubuntu 18.04.3 LTS running the
5.0.0-36-generic kernel), we see that there are many sub folders and literally a
few thousand kernel modules packed within. By contrast, for the kernel we built
(refer to Chapter 2, Building the 5.x Linux Kernel from Source – Part 1, and Chapter 3,
Building the 5.x Linux Kernel from Source – Part 2, for the details), there are much fewer.
You will recall from our discussions in Chapter 2, Building the 5.x Linux Kernel from
Source – Part 1, that we deliberately used the localmodconfig target to keep the
build small and fast. Thus, here, our custom 5.4.0 kernel has just some 60-odd kernel
modules built against it.

One area that sees pretty heavy usage of kernel modules is that of device drivers. As an
example, let's look at a network device driver that is architected as a kernel module.
You can find several (with familiar brands too!) under the distro
kernel's kernel/drivers/net/ethernet folder:

Figure 4.4 – Content of our distro kernel's ethernet network drivers (kernel modules)

Popular on many Intel-based laptops is the Intel 1GbE Network Interface Card (NIC)
ethernet adapter. The network device driver that drives it is called the e1000 driver.
Our x86-64 Ubuntu 18.04.3 guest (running on an x86-64 host laptop) shows that it
indeed uses this driver:

$ lsmod | grep e1000
e1000 139264 0

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[154]

We shall cover the lsmod(8) ('list modules') utility in more detail soon. More
importantly for us, we can see that it's a kernel module! How about obtaining some
more information on this particular kernel module? That's quite easily done by
leveraging the modinfo(8) utility (for readability, we truncate its verbose output
here):

$ ls -l /lib/modules/5.0.0-36-
generic/kernel/drivers/net/ethernet/intel/e1000
total 220
-rw-r--r-- 1 root root 221729 Nov 12 16:16 e1000.ko
$ modinfo /lib/modules/5.0.0-36-
generic/kernel/drivers/net/ethernet/intel/e1000/e1000.ko
filename: /lib/modules/5.0.0-36-
generic/kernel/drivers/net/ethernet/intel/e1000/e1000.ko
version: 7.3.21-k8-NAPI
license: GPL v2
description: Intel(R) PRO/1000 Network Driver
author: Intel Corporation, <linux.nics@intel.com>
srcversion: C521B82214E3F5A010A9383
alias: pci:v00008086d00002E6Esv*sd*bc*sc*i*
[...]
name: e1000
vermagic: 5.0.0-36-generic SMP mod_unload
[...]
parm: copybreak:Maximum size of packet that is copied to a
new
 buffer on receive (uint)
parm: debug:Debug level (0=none,...,16=all) (int)
$

The modinfo(8) utility allows us to peek into a kernel module's binary image and
extract some details regarding it; more on using modinfo in the next section.

Another way to gain useful information on the system, including
information on kernel modules that are currently loaded up, is via
the systool(1) utility. For an installed kernel module (details on
installing a kernel module follow in the next chapter in the Auto-
loading modules on system boot section), doing systool -m
<module-name> -v reveals information about it. Look up the
systool(1) man page for usage details.

The bottom line is that kernel modules have come to be the pragmatic way to build
and distribute some types of kernel components, with device drivers being the most
frequent use case for them. Other uses include but aren't limited to filesystems,
network firewalls, packet sniffers, and custom kernel code.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[155]

So, if you would like to learn how to write a Linux device driver, a filesystem, or a
firewall, you must first learn how to write a kernel module, thus leveraging the
kernel's powerful LKM framework. That's precisely what we will be doing next.

Writing our very first kernel module
When introducing a new programming language or topic, it has become a widely
accepted computer programming tradition to mimic the original K&R Hello,
world program as the very first piece of code. I'm happy to follow this venerated
tradition to introduce the powerful LKM framework. In this section, you will learn
the steps to code a simple LKM. We explain the code in detail.

Introducing our Hello, world LKM C code
Without further ado, here is some simple Hello, world C code, implemented to abide
by the Linux kernel's LKM framework:

For reasons of readability and space constraints, only the key parts
of the source code are displayed here. To view the complete source
code, build it, and run it, the entire source tree for this book
is available in it's GitHub repository here: https:/ /github. com/
PacktPublishing/ Linux- Kernel- Programming. We definitely expect
you to clone it:
git clone
https://github.com/PacktPublishing/Linux-Kernel-Progr
amming.git

// ch4/helloworld_lkm/hellowworld_lkm.c
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>

MODULE_AUTHOR("<insert your name here>");
MODULE_DESCRIPTION("LLKD book:ch4/helloworld_lkm: hello, world, our
first LKM");
MODULE_LICENSE("Dual MIT/GPL");
MODULE_VERSION("0.1");

static int __init helloworld_lkm_init(void)
{
 printk(KERN_INFO "Hello, world\n");
 return 0; /* success */

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[156]

}

static void __exit helloworld_lkm_exit(void)
{
 printk(KERN_INFO "Goodbye, world\n");
}

module_init(helloworld_lkm_init);
module_exit(helloworld_lkm_exit);

You can try out this simple Hello, world kernel module right away! Just cd to the
correct source directory as shown here and get our helper lkm script to build and run
it:

$ cd <...>/ch4/helloworld_lkm
$../../lkm helloworld_lkm
Version info:
Distro: Ubuntu 18.04.3 LTS
Kernel: 5.0.0-36-generic
[...]
dmesg
[5399.230367] Hello, world
$

The hows and whys are explained in a lot of detail shortly. Though tiny, the code of
this, our very first kernel module, requires careful perusal and understanding. Do
read on.

Breaking it down
The following subsections explain pretty much each line of the preceding Hello, world
C code. Remember that although the program appears very small and trivial, there is
a lot to be understood regarding it and the surrounding LKM framework. The rest of
this chapter focuses on this and goes into great detail. I highly recommend that you
take the time to read through and understand these fundamentals first. This will help
you immensely in later, possibly difficult-to-debug situations.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[157]

Kernel headers
We use #include for a few header files. Unlike in user space 'C' application
development, these are kernel headers (as mentioned in the Technical
requirements section). Recall from Chapter 3, Building the 5.x Linux Kernel from Source –
Part 2, that kernel modules were installed under a specific root-writeable branch. Let's
check it out again (here, we're running on our guest x86_64 Ubuntu VM with
the 5.0.0-36-generic distro kernel):

$ ls -l /lib/modules/$(uname -r)/
total 5552
lrwxrwxrwx 1 root root 39 Nov 12 16:16 build -> /usr/src/linux-
headers-5.0.0-36-generic/
drwxr-xr-x 2 root root 4096 Nov 28 08:49 initrd/
[...]

Notice the symbolic or soft link named build. It points to the location of the kernel
headers on the system. In the preceding code, it's under /usr/src/linux-
headers-5.0.0-36-generic/! As you shall see, we will supply this information to
the Makefile used to build our kernel module. (Also, some systems have a similar soft
link called source).

The kernel-headers or linux-headers package unpacks a
limited kernel source tree onto the system, typically under
/usr/src/.... This code, however, isn't complete, hence our use of
the phrase limited source tree. This is because the complete kernel
source tree isn't required for the purpose of building modules – just
the required components (the headers, the Makefiles, and so on) are
what's packaged and extracted.

The first line of code in our Hello, world kernel module is #include
<linux/init.h>.

The compiler resolves this by searching for the previously mentioned kernel header
file under /lib/modules/$(uname -r)/build/include/. Thus, by following the
build soft link, we can see that it ultimately picks up this header file:

$ ls -l /usr/src/linux-headers-5.0.0-36-generic/include/linux/init.h
-rw-r--r-- 1 root root 9704 Mar 4 2019 /usr/src/linux-
headers-5.0.0-36-generic/include/linux/init.h

The same follows for the other kernel headers included in the kernel module's source
code.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[158]

Module macros
Next, we have a few module macros of the form MODULE_FOO(); most are quite
intuitive:

MODULE_AUTHOR(): Specifies the author(s) of the kernel module
MODULE_DESCRIPTION(): Briefly describes the function of this LKM
MODULE_LICENSE(): Specifies the license(s) under which this kernel
module is released
MODULE_VERSION(): Specifies the (local) version of the kernel module

In the absence of the source code, how will this information be conveyed to the end
user (or customer)? Ah, the modinfo(8) utility does precisely that! These macros and
their information might seem trivial, but they are important in projects and products.
This information is relied upon, for example, by a vendor establishing the (open
source) licenses that code is running under by using grep on the modinfo output on
all installed kernel modules.

Entry and exit points
Never forget, kernel modules are, after all, kernel code running with kernel privileges. It's
not an application and thus does not have it's entry point as the familiar main()
function (that we know well and love). This, of course, begs the question: what are the
entry and exit points of the kernel module? Notice, at the bottom of our simple kernel
module, the following lines:

module_init(helloworld_lkm_init);
module_exit(helloworld_lkm_exit);

The module_[init|exit]() code is macros specifying the entry and exit points,
respectively. The parameter to each is a function pointer. With modern C compilers,
we can just specify the name of the function. Thus, in our code, the following applies:

The helloworld_lkm_init() function is the entry point.
The helloworld_lkm_exit() function is the exit point.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[159]

You can almost think of these entry and exit points as a constructor/destructor pair for a
kernel module. Technically, it's not the case, of course, as this isn't object-oriented C++
code, it's plain C. Nevertheless, it's a useful analogy.

Return values
Notice the signature of the init and exit functions is as follows:

static int __init <modulename>_init(void);
static void __exit <modulename>_exit(void);

As a good coding practice, we have used the naming format for the functions
as <modulename>__[init|exit](), where <modulename> is replaced with the
name of the kernel module. You will realize that this naming convention is just that -
it's merely a convention that is, technically speaking, unnecessary, but it is intuitive
and thus helpful. Clearly, neither routine receives any parameter.

Marking both functions with the static qualifier implies that they are private to this
kernel module. That is what we want.

Now let's move along to the important convention that is followed for a kernel
module's init function's return value.

The 0/-E return convention
The kernel module's init function is to return a value of type int; this is a key
aspect. The Linux kernel has evolved a style or convention, if you will, with regard to
returning values from it (meaning from the kernel space to the user space process).
The LKM framework follows what is colloquially referred to as the 0/-E convention:

Upon success, return integer value 0.
Upon failure, return the negative of the value you would like the user space
global uninitialized integer errno to be set to.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[160]

Be aware that errno is a global residing in a user process VAS
within the uninitialized data segment. With very few exceptions,
whenever a Linux system call fails, -1 is returned and errno is set
to a positive value, representing the failure code; this work is carried
out by glibc "glue" code on the syscall return path.

Furthermore, the errno value is actually an index into a global table
of English error messages (const char * const
sys_errlist[]); this is really how routines such as perror(3),
strerror[_r](3) and the like can print out failure diagnostics.

By the way, you can look up the complete list of error codes
available to you from within these (kernel source tree) header files:
include/uapi/asm-generic/errno-base.h and
include/uapi/asm-generic/errno.h.

A quick example of how to return from a kernel module's init function will help
make this clear: say our kernel module's init function is attempting to dynamically
allocate some kernel memory (details on the kmalloc() API and so on will be
covered in later chapters of course; please ignore it for now). Then, we could code it
like so:

[...]
ptr = kmalloc(87, GFP_KERNEL);
if (!ptr) {
 pr_warning("%s:%s:%d: kmalloc failed!\n", __FILE__, __func__,
__LINE__);
 return -ENOMEM;
}
[...]
return 0; /* success */

If the memory allocation does fail (very unlikely, but hey, it can happen!), we do the
following:

First, we emit a warning printk. Actually, in this particular case – "out of1.
memory" – it's pedantic and unnecessary. The kernel will certainly emit
sufficient diagnostic information if a kernel-space memory allocation ever
fails! See this link for more details: https:/ /lkml. org/ lkml/ 2014/ 6/10/
382; we do so here merely as it's early in the discussion and for reader
continuity.

https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[161]

Return the -ENOMEM value:2.
The layer to which this value will be returned in user space is
actually glibc; it has some "glue" code that multiplies this value
by -1 and sets the global integer errno to it.
Now, the [f]init_module(2) system call will
return -1, indicating failure (this is because insmod(8) actually
invokes this system call, as you will soon see).
errno will be set to ENOMEM, reflecting the fact that the kernel
module insertion failed due to a failure to allocate memory.

Conversely, the framework expects the init function to return the value 0 upon
success. In fact, in older kernel versions, failure to return 0 upon success would cause
the kernel module to be abruptly unloaded from kernel memory. Nowadays, this
removal of the kernel module does not happen but the kernel emits a warning
message regarding the fact that a suspicious non-zero value has been returned.

There's not much to be said for the cleanup routine. It receives no parameters and
returns nothing (void). Its job is to perform any and all required cleanup before the
kernel module is unloaded from kernel memory.

Not including the module_exit() macro in your kernel module
makes it impossible to ever unload it (notwithstanding a system
shutdown or reboot, of course). Interesting... (I suggest you try this
out as a small exercise!).

Of course, it's never that simple: this behavior preventing the unload
is guaranteed only if the kernel is built with
the CONFIG_MODULE_FORCE_UNLOAD flag set to Disabled (the
default).

The ERR_PTR and PTR_ERR macros
On the discussion of return values, you now understand that the kernel module's
init routine must return an integer. What if you wish to return a pointer instead?
The ERR_PTR() inline function comes to our rescue, allowing us to return a pointer
disguised as an integer simply by typecasting it as void *. It actually gets better: you
can check for an error using the IS_ERR() inline function (which really just figures
out whether the value is in the range [-1 to -4095]), encodes a negative error value into
a pointer via the ERR_PTR() inline function, and retrieves this value from the pointer
using the converse routine PTR_ERR().

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[162]

As a simple example, see the callee code given here. This time, we have the (sample)
function myfunc() return a pointer (to a structure named mystruct) and not an
integer:

struct mystruct * myfunc(void)
{
 struct mystruct *mys = NULL;
 mys = kzalloc(sizeof(struct mystruct), GFP_KERNEL);
 if (!mys)
 return ERR_PTR(-ENOMEM);
 [...]
 return mys;
}

The caller code is as follows:

[...]
gmys = myfunc();
if (IS_ERR(gmys)) {
 pr_warn("%s: myfunc alloc failed, aborting...\n", OURMODNAME);
 stat = PTR_ERR(gmys); /* sets 'stat' to the value -ENOMEM */
 goto out_fail_1;
}
[...]
return stat;
out_fail_1:
 return stat;
}

FYI, the inline ERR_PTR(), PTR_ERR(), and IS_ERR() functions all live within the
(kernel header) include/linux/err.h file. The kernel documentation (https:/ /
kernel.readthedocs. io/ en/ sphinx- samples/ kernel- hacking. html#return-
conventions) talks about kernel function return conventions. Also, you can find
example usage for these functions under the crypto/api-samples code within the
kernel source tree: https:/ /www. kernel. org/ doc/ html/ v4. 17/crypto/ api-samples.
html.

The __init and __exit keywords
A niggling leftover: what exactly are the __init and __exit macros we see within
the preceding function signatures? These are merely memory optimization attributes
inserted by the linker.

https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://kernel.readthedocs.io/en/sphinx-samples/kernel-hacking.html#return-conventions
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.17/crypto/api-samples.html

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[163]

The __init macro defines an init.text section for code. Similarly, any data
declared with the __initdata attribute goes into an init.data section. The whole
point here is the code and data in the init function is used exactly once during
initialization. Once it's invoked, it will never be called again; so, once called, it is then
freed up (via free_initmem()).

The deal is similar with the __exit macro, though, of course, this only makes sense
with kernel modules. Once the cleanup function is called, all the memory is freed. If
the code were instead part of the static kernel image (or if module support were
disabled), this macro would have no effect.

Fine, but so far, we have still not explained some practicalities: how exactly can you
get the kernel module object into kernel memory, have it execute, and then unload it,
plus several other operations you might wish to perform. Let's discuss these in the
following section.

Common operations on kernel modules
Now let's delve into how exactly you can build, load, and unload a kernel module.
Besides this, we'll also walk through the basics regarding the tremendously useful
printk() kernel API, details on listing the currently loaded kernel modules with
lsmod(8), and a convenience script for automating some common tasks during
kernel module development. So, let's begin!

Building the kernel module
We definitely urge you to try out our simple Hello, world kernel
module exercise (if you haven't already done so)! To do so, we
assume you have cloned this book's GitHub repository (https:/ /
github. com/ PacktPublishing/ Linux- Kernel- Programming) already.
If not, please do so now (refer to the Technical requirements section
for details).

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[164]

Here, we show step by step how exactly you can build and then insert our first kernel
module into kernel memory. Again, a quick reminder: we have performed these steps
on an x86-64 Linux guest VM (under Oracle VirtualBox 6.1) running the Ubuntu
18.04.3 LTS distribution:

Change to this books' source code chapter directory and sub-directory. Our1.
very first kernel module lives in its own folder (as it should!) called
helloworld_lkm:

 cd <book-code-dir>/ch4/helloworld_lkm

<book-code-dir> is, of course, the folder into which you cloned
this book's GitHub repository; here (see the screenshot, Figure 4.5),
you can see that it's /home/llkd/book_llkd/Linux-Kernel-
Programming/.

Now verify the code base:2.

$ pwd
<book-code-dir>/ch4/helloworld_lkm
$ ls -l
total 8
-rw-rw-r-- 1 llkd llkd 1211 Jan 24 13:01 helloworld_lkm.c
-rw-rw-r-- 1 llkd llkd 333 Jan 24 13:01 Makefile
$

Build it with make:3.

Figure 4.5 – Listing and building our very first Hello, world kernel module

The preceding screenshot shows that the kernel module has been successfully built.
It's the ./helloworld_lkm.ko file. (Also, note that we booted from, and thus have
built the kernel module against, our custom 5.4.0 kernel, built in earlier chapters.)

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[165]

Running the kernel module
In order to have the kernel module run, you need to first load it into kernel memory
space, of course. This is known as inserting the module into kernel memory.

Getting the kernel module into the Linux kernel segment can be done in a few ways,
which all ultimately boil down to invoking one of the [f]init_module(2) system
calls. For convenience, several wrapper utilities exist that will do so (or you can
always write one). We will use the popular insmod(8) (read it as
"insert module") utility below; the parameter for insmod is the pathname to the
kernel module to insert:

$ insmod ./helloworld_lkm.ko
insmod: ERROR: could not insert module ./helloworld_lkm.ko: Operation
not permitted
$

It fails! In fact, it should be pretty obvious why. Think about it: inserting code into the
kernel is, in a very real sense, even superior to being root (superuser) on the system -
again, I remind you: it's kernel code and will run with kernel privilege. If any and every
user is allowed to insert or remove kernel modules, hackers would have a field day!
Deploying malicious code would become a fairly trivial affair. So, for security
reasons, only with root access can you insert or remove kernel modules.

Technically, being root implies that the process' (or thread's) Real
and/or Effective UID (RUID/EUID) value is the special value zero.
Not just that, but the modern kernel "sees" a thread as having
certain capabilities (via the modern and superior POSIX
Capabilities model); only a process/thread with
the CAP_SYS_MODULE capability can (un)load kernel modules. We
refer the reader to the man page on capabilities(7) for more
details.

So, let's again attempt to insert our kernel module into memory, this time
with root privileges via sudo(8):

$ sudo insmod ./helloworld_lkm.ko
[sudo] password for llkd:
$ echo $?
0

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[166]

Now it works! As alluded to earlier, the insmod(8) utility works by invoking the
[f]init_module(2) system call. When might the insmod(8) utility (in effect,
internally the [f]init_module(2) system calls) fail?

There are a few cases:

Permissions: Not run as root or lack of the CAP_SYS_MODULE
capability (errno <- EPERM).
The kernel tunable within the proc filesystem,
/proc/sys/kernel/modules_disabled, is set to 1 (it defaults to 0).
A kernel module with the same name is already in kernel memory (errno
<- EEXISTS).

Okay, all looks good. The $? result being 0 implies that the previous shell command
was successful. That's great, but where is our Hello, world message? Read on!

A quick first look at the kernel printk()
To emit a message, the user space C developer will often use the trusty printf(3)
glibc API (or perhaps the cout when writing C++ code). However, it's important to
understand that in kernel space, there are no libraries. Hence, we simply do not have
access to the good old printf() API. Instead, it has essentially been re-
implemented within the kernel as the printk() kernel API (curious as to where its
code is? its here within the kernel source
tree: kernel/printk/printk.c:printk()).

Emitting a message via the printk() API is simple and very much similar to doing
so with printf(3). In our simple kernel module, here's where the action occurs:

printk(KERN_INFO "Hello, world\n");

Though very similar to printf at first glance, printk is really quite different. In
terms of similarities, the API receives a format string as its parameter. The format
string is pretty much identical to that of printf.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[167]

But the similarities end there. The key difference between printf and printk is this:
the user space printf(3) library API works by formatting a text string as requested
and invoking the write(2) system call, which in turn actually performs a write to
the stdout device, which, by default, is the Terminal window (or console device). The
kernel printk API also formats its text string as requested, but its output destination
differs. It writes to at least one place – the first one in the following list – and possibly
to a few more:

A kernel log buffer in RAM (volatile)
A log file, the kernel log file (non-volatile)
The console device

For now, we shall skip the inner details regarding the workings of
printk. Also, please ignore the KERN_INFO token within the
printk API; we shall cover all this soon enough.

When you emit a message via printk, it's guaranteed that the output goes into a log
buffer in kernel memory (RAM). This, in effect, constitutes the kernel log. It's
important to note that you will never see the printk output directly when working
in graphical mode with an X server process running (the default environment when
working on a typical Linux distro). So, the obvious question here is: how do you see
the kernel log buffer content? There are a few ways. For now, let's just make use of
the quick and easy way.

Use the dmesg(1) utility! By default, dmesg will dump the entire kernel log buffer
content to stdout. Here, we look up the last two lines of the kernel log buffer with it:

$ dmesg | tail -n2
[2912.880797] hello: loading out-of-tree module taints kernel.
[2912.881098] Hello, world
$

There it is, finally: our Hello, world message!

You can simply ignore the loading out-of-tree module
taints kernel. message for now. For security reasons, most
modern Linux distros will mark the kernel as tainted (literally,
"contaminated" or "polluted") if a third party "out-of-tree" (or non-
signed) kernel module is inserted. (Well, it's really more of a
pseudo-legal cover-up along the lines of: "if something goes wrong
from this point in time onward, we are not responsible, and so on..."; you
get the idea).

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[168]

For a bit of variety, here is a screenshot of our Hello, world kernel module being
inserted and removed (details follow) on an x86-64 CentOS 8 guest running the 5.4
Linux LTS kernel (that we custom-built as shown in detail in the first and second
chapters):

Figure 4.6 – Screenshot showing our working with the Hello, world kernel module on a CentOS 8 x86-64 guest

Within the kernel log, as displayed by the dmesg(1) utility, the numbers in the
leftmost column are a simple timestamp, in [seconds.microseconds] format, of
time elapsed since system boot (it is not recommended to treat it as being perfectly
accurate, though). By the way, this timestamp is a Kconfig variable – a kernel config
option – named CONFIG_PRINTK_TIME; it can be overridden by
the printk.time kernel parameter.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[169]

Listing the live kernel modules
Back to our kernel module: so far, we have built it, loaded it into the kernel, and
verified that its entry point, the helloworld_lkm_init() function, got invoked,
thus executing the printk API. So now, what does it do? Well, nothing really; the
kernel module merely (happily?) sits in kernel memory doing absolutely nothing. We
can in fact easily look it up with the lsmod(8) utility:

$ lsmod | head
Module Size Used by
helloworld_lkm 16384 0
isofs 32768 0
fuse 139264 3
tun 57344 0
[...]
e1000 155648 0
dm_mirror 28672 0
dm_region_hash 20480 1 dm_mirror
dm_log 20480 2 dm_region_hash,dm_mirror
dm_mod 151552 11 dm_log,dm_mirror
$

lsmod shows all kernel modules currently residing (or live) in kernel memory, sorted
in reverse chronological order. Its output is column formatted, with three columns
and an optional fourth one. Let's look at each column separately:

The first column displays the name of the kernel module.
The second column is the (static) size in bytes that it's taking in the kernel.
The third column is the module usage count.
The optional fourth column (and more that may follow) is explained in the
next chapter (in the Understanding module stacking section. Also, on recent
x86-64 Linux kernels, a minimum of 16 KB of kernel memory seems to be
taken up by a kernel module.)

So, great: by now you've successfully built, loaded and run your first kernel module
into kernel memory and it basically works: what next? Well, nothing much really
with this one! We simply learn how to unload it in the following section. There's a lot
more to come of course... keep going!

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[170]

Unloading the module from kernel memory
To unload the kernel module, we use the convenience utility rmmod(8) (remove
module):

$ rmmod
rmmod: ERROR: missing module name.
$ rmmod helloworld_lkm
rmmod: ERROR: could not remove 'helloworld_lkm': Operation not
permitted
rmmod: ERROR: could not remove module helloworld_lkm: Operation not
permitted
$ sudo rmmod helloworld_lkm
[sudo] password for llkd:
$ dmesg |tail -n2
[2912.881098] Hello, world
[5551.863410] Goodbye, world
$

The parameter to rmmod(8) is the name of the kernel module (as shown in the first
column of lsmod(8)), not the pathname. Clearly, just as with insmod(8), we need to
run the rmmod(8) utility as the root user for it to succeed.

Here, we can also see that, because of our rmmod, the exit routine (or "destructor")
helloworld_lkm_exit() function of the kernel module got invoked. It in turn
invoked printk, which emitted the Goodbye, world message (which we looked up
with dmesg).

When could rmmod (note that internally, it becomes the delete_module(2) system
call) fail? Here are some cases:

Permissions: If it is not run as root or there is a lack of the
CAP_SYS_MODULE capability (errno <- EPERM).
If the kernel module's code and/or data is being used by another module (if
a dependency exists; this is covered in detail in the next chapter's Module
stacking section) or the module is currently in use by a process (or thread),
then the module usage count will be positive and rmmod will fail (errno
<- EBUSY).
The kernel module did not specify an exit routine (or destructor) with the
module_exit() macro and the CONFIG_MODULE_FORCE_UNLOAD kernel
config option is disabled.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[171]

Several convenience utilities concerned with module management are nothing but
symbolic (soft) links to the single kmod(8) utility (analogous to what the popular
busybox utility does). The wrappers are lsmod(8), rmmod(8), insmod(8),
modinfo(8), modprobe(8), and depmod(8). Take a look at a few of them:

$ ls -l $(which insmod) ; ls -l $(which lsmod) ; ls -l $(which rmmod)
lrwxrwxrwx 1 root root 9 Oct 24 04:50 /sbin/insmod -> /bin/kmod
lrwxrwxrwx 1 root root 9 Oct 24 04:50 /sbin/lsmod -> /bin/kmod
lrwxrwxrwx 1 root root 9 Oct 24 04:50 /sbin/rmmod -> /bin/kmod
$

Note that the precise location of these utilities (/bin, /sbin, or /usr/sbin) can vary
with the distribution.

Our lkm convenience script
Let's round off this first kernel module discussion with a simple yet useful custom Bash
script called lkm that helps you out by automating the kernel module build, load,
dmesg, and unload workflow. Here it is (the complete code is in the root of the book
source tree):

#!/bin/bash
lkm : a silly kernel module dev - build, load, unload - helper
wrapper script
[...]
unset ARCH
unset CROSS_COMPILE
name=$(basename "${0}")

Display and run the provided command.
Parameter(s) : the command to run
runcmd()
{
 local SEP="------------------------------"
 [$# -eq 0] && return
 echo "${SEP}
$*
${SEP}"
 eval "$@"
 [$? -ne 0] && echo " ^--[FAILED]"
}

"main" here
[$# -ne 1] && {
 echo "Usage: ${name} name-of-kernel-module-file (without the .c)"

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[172]

 exit 1
}
[["${1}" = *"."*]] && {
 echo "Usage: ${name} name-of-kernel-module-file ONLY (do NOT put any
extension)."
 exit 1
}
echo "Version info:"
which lsb_release >/dev/null 2>&1 && {
 echo -n "Distro: "
 lsb_release -a 2>/dev/null |grep "Description" |awk -F':' '{print
$2}'
}
echo -n "Kernel: " ; uname -r
runcmd "sudo rmmod $1 2> /dev/null"
runcmd "make clean"
runcmd "sudo dmesg -c > /dev/null"
runcmd "make || exit 1"
[! -f "$1".ko] && {
 echo "[!] ${name}: $1.ko has not been built, aborting..."
 exit 1
}
runcmd "sudo insmod ./$1.ko && lsmod|grep $1"
runcmd dmesg
exit 0

Given the name of the kernel module as a parameter – without any extension part
(such as .c) – the lkm script performs some validity checks, displays some version
information, and then uses a wrapper runcmd() bash function to display the name of
and run a given command, in effect getting the clean/build/load/lsmod/dmesg
workflow done painlessly. Let's try it out on our first kernel module:

$ pwd
<...>/ch4/helloworld_lkm
$../../lkm
Usage: lkm name-of-kernel-module-file (without the .c)
$../../lkm helloworld_lkm
Version info:
Distro: Ubuntu 18.04.3 LTS
Kernel: 5.0.0-36-generic

sudo rmmod helloworld_lkm 2> /dev/null

[sudo] password for llkd:

sudo dmesg -C

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[173]

make || exit 1

make -C /lib/modules/5.0.0-36-generic/build/
M=/home/llkd/book_llkd/Learn-Linux-Kernel-
Development/ch4/helloworld_lkm modules
make[1]: Entering directory '/usr/src/linux-headers-5.0.0-36-generic'
 CC [M] /home/llkd/book_llkd/Learn-Linux-Kernel-
Development/ch4/helloworld_lkm/helloworld_lkm.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC /home/llkd/book_llkd/Learn-Linux-Kernel-
Development/ch4/helloworld_lkm/helloworld_lkm.mod.o
 LD [M] /home/llkd/book_llkd/Learn-Linux-Kernel-
Development/ch4/helloworld_lkm/helloworld_lkm.ko
make[1]: Leaving directory '/usr/src/linux-headers-5.0.0-36-generic'

sudo insmod ./helloworld_lkm.ko && lsmod|grep helloworld_lkm

helloworld_lkm 16384 0

dmesg

[8132.596795] Hello, world
$

All done! Remember to unload the kernel module with rmmod(8).

Congratulations! You have now learned how to write and try out a simple Hello, world
kernel module. Much work remains, though, before you rest on your laurels; the next
section delves into more key details regarding kernel logging and the versatile printk
API.

Understanding kernel logging and printk
There is still a lot to cover regarding the logging of kernel messages via the printk
kernel API. This section delves into some of the details. It's important for a budding
kernel developer like you to clearly understand these.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[174]

In this section, we delve into more detail regarding kernel logging. We come to
understand how exactly printk output is dealt with, looking at its pros and cons. We
discuss the printk log levels, how modern systems log messages via
the systemd journal, and how output can be directed to the console device. We round
off this discussion with a note on rate-limiting printk and user-generated prints,
generating printk's from user space and standardizing the printk output format.

We saw earlier, in the A quick first look at the kernel printk section, the essentials of
using the kernel printk API's functionality. Here, we explore a lot more with respect
to the printk() API's usage. In our simple kernel module, here's the line of code that
emits the "Hello, world" message:

printk(KERN_INFO "Hello, world\n");

Again, printk is similar to printf in terms of the format string and how that works –
but the similarities end there. For emphasis, we repeat: a key difference between
printf and printk is that printf(3) is a user space library API that works by
invoking the write(2) system call, which writes to the stdout device, which by default
is usually the Terminal window (or console device). The printk, on the other hand, is
a kernel space API whose output instead goes to at least one place, the first one shown
in the list below, and possibly to more places:

A kernel log buffer (in RAM; volatile)
A kernel log file (non-volatile)
The console device

Let's examine the kernel log buffer in more detail.

Using the kernel memory ring buffer
The kernel log buffer is simply a memory buffer within a kernel address space where
the printk output is saved (logged). More technically, it's the global
__log_buf[] variable. Its definition in the kernel source is as follows:

kernel/printk/printk.c:
#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[175]

It's architected as a ring buffer; it has a finite size (__LOG_BUF_LEN bytes), and once it's
full, it gets overwritten from byte zero. Hence, it's called a "ring" or circular, buffer).
Here, we can see that the size is based on the Kconfig
variable CONFIG_LOG_BUF_SHIFT (1 << n in C implies 2^n). This value is shown
and can be overridden as part of the kernel (menu)config here: General Setup >
Kernel log buffer size.

It's an integer value with a range of 12 - 25 (we can always
search init/Kconfig and see its spec), with a default value of 18. So, the size of the
log buffer = 218 = 256 KB. However, the actual runtime size is affected by other config
directives as well, notably LOG_CPU_MAX_BUF_SHIFT, which makes the size a
function of the number of CPUs on the system. Furthermore, the relevant Kconfig
file says, "Also this option is ignored when the log_buf_len kernel parameter is used as it
forces an exact (power of two) size of the ring buffer." So, that's interesting; we can often
override defaults by passing a kernel parameter (via the bootloader)!

Kernel parameters are useful, many, and varied, and are well worth checking out. See
the official documentation here: https:/ /www. kernel. org/ doc/ html/ latest/ admin-
guide/kernel-parameters. html. A snippet from the Linux kernel documentation on
the log_buf_len kernel parameter reveals the details:

log_buf_len=n[KMG] Sets the size of the printk ring buffer,
 in bytes. n must be a power of two and greater
 than the minimal size. The minimal size is
defined
 by LOG_BUF_SHIFT kernel config parameter. There
is
 also CONFIG_LOG_CPU_MAX_BUF_SHIFT config
parameter
 that allows to increase the default size
depending
 on the number of CPUs. See init/Kconfig for more
 details.

Whatever the size of the kernel log buffer, two issues when dealing with the printk
API become obvious:

Its messages are being logged in volatile memory (RAM); if the system
crashes or power cycles in any manner, we will lose the precious kernel log
(often eliminating our ability to debug).
The log buffer isn't very large by default, typically just 256 KB; voluminous
prints will overwhelm the ring buffer, making it wrap around, thus losing
information.

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[176]

How can we fix this? Read on...

Kernel logging and systemd's journalctl
An obvious solution to the previously mentioned issues is to write (append) the
kernel printk to a file. This is precisely how most modern Linux distributions are set
up. The location of the log file varies with the distro: conventionally, the Red Hat-
based ones write into the /var/log/messages file and the Debian-based ones
into /var/log/syslog. Traditionally, the kernel printk would hook into the user
space system logger daemon (syslogd) to perform file logging, thus automatically
getting the benefit of more sophisticated features, such as log rotation, compression,
and archival.

Over the past several years, though, system logging has been completely taken over
by a useful and powerful new framework for system initialization
called systemd (it replaces, or often works in addition to, the old SysV
init framework). Indeed, systemd is now routinely used on even embedded Linux
devices. Within the systemd framework, logging is performed by a daemon process
called systemd-journal, and the journalctl(1) utility is the user interface to it.

The detailed coverage of systemd and its associated utilities is
beyond the scope of this book. Please refer to the Further reading
section of this chapter for links to (a lot) more on it.

One key advantage of using the journal to retrieve and interpret logs is that all logs
from applications, libraries, system daemons, the kernel, drivers, and so on are
written (merged) here. This way, we can see a (reverse) chronological timeline of
events without having to manually piece together different logs into a timeline. The
man page on the journalctl(1) utility covers its various options in detail. Here, we
present some (hopefully) convenient aliases based on this utility:

#--- a few journalctl(1) aliases
jlog: current (from most recent) boot only, everything
alias jlog='/bin/journalctl -b --all --catalog --no-pager'
jlogr: current (from most recent) boot only, everything,
in *reverse* chronological order
alias jlogr='/bin/journalctl -b --all --catalog --no-pager --reverse'
jlogall: *everything*, all time; --merge => _all_ logs merged
alias jlogall='/bin/journalctl --all --catalog --merge --no-pager'
jlogf: *watch* log, akin to 'tail -f' mode;
very useful to 'watch live' logs
alias jlogf='/bin/journalctl -f'

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[177]

jlogk: only kernel messages, this (from most recent) boot
alias jlogk='/bin/journalctl -b -k --no-pager'

Note that the -b option current boot implies that the journal is
displayed from the most recent system boot date at the present
moment. A numbered listing of stored system (re)boots can be seen
with journalctl --list-boots.

We deliberately use the --no-pager option as it allows us to further filter the output
with [e]grep(1), awk(1), sort(1), and so on, as required. A simple example of
using journalctl(1) follows:

$ journalctl -k |tail -n2
Mar 17 17:33:16 llkd-vbox kernel: Hello, world
Mar 17 17:47:26 llkd-vbox kernel: Goodbye, world
$

Notice the default log format of the journal:

[timestamp] [hostname] [source]: [... log message ...]

Here [source] is kernel for kernel messages, or the name of the particular
application or service that writes the message.

It's useful to see a couple of usage examples from the man page on journalctl(1):

Show all kernel logs from previous boot:
 journalctl -k -b -1

Show a live log display from a system service apache.service:
 journalctl -f -u apache

The non-volatile logging of kernel messages into files is very useful, of course. Note,
though, that there exist circumstances, often dictated by hardware constraints, that
might render it impossible. For example, a tiny, highly resource-constrained
embedded Linux device might use a small internal flash chip as its storage medium.
Now, not only is it small and all the space is pretty much used up by the apps,
libraries, kernel, and bootloader, it is also a fact that flash-based chips have an
effective limit on the number of erase-write cycles they can sustain before wearing
out. Thus, writing to it a few million times might finish it off! So, sometimes, system
designers deliberately and/or additionally use cheaper external flash memory such as
(micro)SD/MMC cards (for non-critical data) to mitigate this impact, as they're easily
replaceable.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[178]

Let's move on to understanding printk log levels.

Using printk log levels
To understand and use printk log levels, let's begin by reproducing that single line of
code – the first printk from our helloworld_lkm kernel module:

printk(KERN_INFO "Hello, world\n");

Let's now address the elephant in the room: what exactly does KERN_INFO mean?
Firstly, be careful now: it's not what your knee-jerk reaction says it is – a parameter.
No! Notice that there is no comma character between it and the format string; just
white space. KERN_INFO is merely one of eight log levels that a kernel printk gets
logged at. A key thing to understand right away is that this log level is not a priority
of any sort; its presence allows us to filter messages based on log level. The kernel
defines eight possible log levels for printk; here they are:

// include/linux/kern_levels.h
#ifndef __KERN_LEVELS_H__
#define __KERN_LEVELS_H__

#define KERN_SOH "\001" /* ASCII Start Of Header */
#define KERN_SOH_ASCII '\001'

#define KERN_EMERG KERN_SOH "0" /* system is unusable */
#define KERN_ALERT KERN_SOH "1" /* action must be taken
 immediately */
#define KERN_CRIT KERN_SOH "2" /* critical conditions */
#define KERN_ERR KERN_SOH "3" /* error conditions */
#define KERN_WARNING KERN_SOH "4" /* warning conditions */
#define KERN_NOTICE KERN_SOH "5" /* normal but significant
 condition */
#define KERN_INFO KERN_SOH "6" /* informational */
#define KERN_DEBUG KERN_SOH "7" /* debug-level messages */

#define KERN_DEFAULT KERN_SOH "d" /* the default kernel
loglevel */

So, now we see that the KERN_<FOO> log levels are merely strings ("0", "1", ...,
"7") that get prefixed to the kernel message being emitted by printk; nothing more.
This gives us the useful ability to filter messages based on log level. The comment on
the right of each of them clearly shows the developer when to use which log level.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[179]

What's KERN_SOH? That's the ASCII Start Of Header (SOH) value
\001. See the man page on ascii(7); the ascii(1) utility dumps
the ASCII table in various numerical bases. From here, we can
clearly see that numeric 1 (or \001) is the SOH character, a
convention that is followed here.

Let's quickly look at a couple of actual examples from within the Linux kernel source
tree. When the kernel's hangcheck-timer device driver (somewhat akin to a
software watchdog) determines that a certain timer expiry (60 seconds by default)
was delayed for over a certain threshold (by default, 180 seconds), it restarts the
system! Here we show the relevant kernel code – the place where the hangcheck-
timer driver emits printk in this regard:

// drivers/char/hangcheck-timer.c
[...]
if (hangcheck_reboot) {
 printk(KERN_CRIT "Hangcheck: hangcheck is restarting the
machine.\n");
 emergency_restart();
} else {
[...]

Check out how the printk API was called with log level set to KERN_CRIT.

On the other hand, squeaking out an informational message might be just what the
doctor ordered: here, we see the generic parallel printer driver politely informing all
concerned that the printer is on fire (rather understated, yes?):

// drivers/char/lp.c
[...]
 if (last != LP_PERRORP) {
 last = LP_PERRORP;
 printk(KERN_INFO "lp%d on fire\n", minor);
 }

You'd think a device being on fire will qualify the printk to be emitted at the
"emergency" logging level... well, at least
the arch/x86/kernel/cpu/mce/p5.c:pentium_machine_check() function
adheres to this:

// arch/x86/kernel/cpu/mce/p5.c
[...]
 pr_emerg("CPU#%d: Machine Check Exception: 0x%8X (type 0x%8X).\n",
 smp_processor_id(), loaddr, lotype);

 if (lotype & (1<<5)) {

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[180]

 pr_emerg("CPU#%d: Possible thermal failure (CPU on fire
?).\n",
 smp_processor_id());
 }
[...]

(The pr_<foo>() convenience macros are covered next).

An FAQ: if, within the printk(), the log level is not specified, what log level is the
print emitted at? It's 4 by default, that is, KERN_WARNING (the Writing to the
console section reveals why exactly this is). Note, though, that you are expected to
always specify a suitable log level when using printk.

There's an easy way to specify the kernel message log level. This is what we delve
into next.

The pr_<foo> convenience macros
The convenience pr_<foo>() macros given here ease coding pain. The clunky
 printk(KERN_FOO "<format-str>"); is replaced with the elegant
pr_foo("<format-str>");, where <foo> is the log level; their use is encouraged:

// include/linux/printk.h:
[...]
/*
 * These can be used to print at the various log levels.
 * All of these will print unconditionally, although note that
pr_debug()
 * and other debug macros are compiled out unless either DEBUG is
defined
 * or CONFIG_DYNAMIC_DEBUG is set.
 */
#define pr_emerg(fmt, ...) \
 printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__)
#define pr_alert(fmt, ...) \
 printk(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__)
#define pr_crit(fmt, ...) \
 printk(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__)
#define pr_err(fmt, ...) \
 printk(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__)
#define pr_warning(fmt, ...) \
 printk(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__)
#define pr_warn pr_warning
#define pr_notice(fmt, ...) \
 printk(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__)
#define pr_info(fmt, ...) \

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[181]

 printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__)
[...]
/* pr_devel() should produce zero code unless DEBUG is defined */
#ifdef DEBUG
#define pr_devel(fmt, ...) \
 printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__)
#else
#define pr_devel(fmt, ...) \
 no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__)
#endif

The kernel allows us to pass loglevel=n as a kernel command-line
parameter, where n is an integer between 0 and 7, corresponding to
the eight log levels mentioned previously. As expected (as you shall
soon learn), all printk instances with a log level less than that which
was passed will be directed to the console device as well.

Writing a kernel message directly to the console device is at times very useful; the
next section deals with the details on how we can achieve this.

Wiring to the console
Recall that the printk output might go to up to three locations:

The first being the kernel memory log buffer (always)
The second being non-volatile log files
The last one (that we'll address here): the console device

Traditionally, the console device is a pure kernel feature, the initial Terminal window
that the superuser logs into (/dev/console) in a non-graphical environment.
Interestingly, on Linux, we can define several consoles – a teletype terminal (tty)
window (such as /dev/console), a text-mode VGA, a framebuffer, or even a serial
port served over USB (this being common on embedded systems during
development; see more on Linux consoles in the Further reading section of this
chapter).

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[182]

For example, when we connect a Raspberry Pi to an x86-64 laptop via a USB-to-RS232
TTL UART (USB-to-serial) cable (see the Further reading section of this chapter for a
blog article on this very useful accessory and how to set it up on the Raspberry
Pi!) and then use minicom(1) (or screen(1)) to get a serial console, this is what
shows up as the tty device – it's the serial port:

rpi # tty
/dev/ttyS0

The point here is that the console is often the target of important-enough log messages,
including those originating from deep within the kernel. Linux's printk uses a proc-
based mechanism for conditionally delivering its data to the console device. To
understand this better, let's first check out the relevant proc pseudo-file:

$ cat /proc/sys/kernel/printk
4 4 1 7
$

We interpret the preceding four numbers as printk log levels (with 0 being the
highest and 7 the lowest in terms of "urgency"). The preceding four-integer
sequence's meaning is this:

The current (console) log level
- The implication being that all messages less than this value will appear on
the console device!
The default level for messages that lack an explicit log level
The minimum allowed log level
The boot-time default log level

From this, we can see that log level 4 corresponds to KERN_WARNING. Thus, with the
first number being 4 (indeed, the typical default on a Linux distro), all printk instances
lower than log level 4 will appear on the console device, as well as being logged to a file, of
course – in effect, all messages at the following log levels: KERN_EMERG,
KERN_ALERT, KERN_CRIT, and KERN_ERR.

Kernel messages at log level 0 [KERN_EMERG] are always printed to
the console, and indeed to all Terminal windows and the kernel log
file, regardless of any settings.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[183]

It's worth noting that very often, when working on embedded Linux or any kernel
development, you will work on the console device, as is the case with the Raspberry
Pi example just given. Setting the proc printk pseudo-file's first integer value
to 8 will guarantee that all printk instances appear directly on the console, thus making
printk behave like a regular printf would! Here, we show how the root user can
easily set this up:

echo "8 4 1 7" > /proc/sys/kernel/printk

(Of course, this would have to be done as root.) This can be very convenient during
development and test.

On my Raspberry Pi, I keep a startup script that contains the
following line:
[$(id -u) -eq 0] && echo "8 4 1 7" >
/proc/sys/kernel/printk

Thus, when running it as root, this takes effect and
all printk instances now directly appear on the minicom(1) console,
just as printf would.

Talking about the versatile Raspberry Pi, the next section demonstrates running a
kernel module on one.

Writing output to the Raspberry Pi console
On to our second kernel module! Here, we shall emit nine printk instances, one at
each of the eight log levels, plus one via the pr_devel() macro (which is really
nothing but the KERN_DEBUG log level). Let's check out the relevant code:

// ch4/printk_loglvl/printk_loglvl.c
static int __init printk_loglvl_init(void)
{
 pr_emerg ("Hello, world @ log-level KERN_EMERG [0]\n");
 pr_alert ("Hello, world @ log-level KERN_ALERT [1]\n");
 pr_crit ("Hello, world @ log-level KERN_CRIT [2]\n");
 pr_err ("Hello, world @ log-level KERN_ERR [3]\n");
 pr_warn ("Hello, world @ log-level KERN_WARNING [4]\n");
 pr_notice("Hello, world @ log-level KERN_NOTICE [5]\n");
 pr_info ("Hello, world @ log-level KERN_INFO [6]\n");
 pr_debug ("Hello, world @ log-level KERN_DEBUG [7]\n");
 pr_devel("Hello, world via the pr_devel() macro"
 " (eff @KERN_DEBUG) [7]\n");
 return 0; /* success */
}

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[184]

static void __exit printk_loglvl_exit(void)
{
 pr_info("Goodbye, world @ log-level KERN_INFO [6]\n");
}
module_init(printk_loglvl_init);
module_exit(printk_loglvl_exit);

Now, we will discuss the output when running the
preceding printk_loglvl kernel module on a Raspberry Pi device.
If you don't possess one or it's not handy, that's not a problem;
please go ahead and try it out on an x86-64 guest VM.

On the Raspberry Pi device (here I used the Raspberry Pi 3B+ model running the
default Raspberry Pi OS), we log in and get ourselves a root shell via a simple sudo -
s. We then build the kernel module. If you have installed the default Raspberry Pi
image on the Raspberry Pi, all required development tools, kernel headers, and more
will be pre-installed! Figure 4.7 is a screenshot of running our printk_loglvl kernel
module on a Raspberry Pi board. Also, it's important to realize that we're running on
the console device as we are using the aforementioned USB-to-serial cable over the
minicom(1) Terminal emulator app (and not simply over an SSH connection):

Figure 4.7 – The minicom Terminal emulator app window – the console – with the printk_loglvl kernel module output

Notice something a bit different from the x86-64 environment: here, by default, the
first integer in the output of /proc/sys/kernel/printk – the current console log
level – is 3 (not 4). Okay, so this implies that all kernel printk instances at log level less
than log level 3 will appear directly on the console device. Look at the screenshot: this
is indeed the case! Furthermore, and as expected, the printk instance at the
"emergency" log level (0) always appears on the console, indeed on every open
Terminal window.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[185]

Now for the interesting part: let's set (as root, of course) the current console log level
(remember, it's the first integer in the output of /proc/sys/kernel/printk) to the
value 8. This way, all printk instances should appear directly on the console. We test
precisely this here:

Figure 4.8 – The minicom Terminal – in effect, the console – window, with the console log level set to 8

Indeed, as expected, we see all the printk instances on the console device itself
obviating the need to use dmesg.

Hang on a moment, though: whatever happened to the pr_debug() and
pr_devel() macros emitting a kernel message at log level KERN_DEBUG (that is,
integer value 7)? It has not appeared here, nor in the following dmesg output? We
explain this shortly; please read on.

With dmesg(1), of course, all kernel messages – well, at least those still in the kernel
log buffer in RAM – will be revealed. We see this to be the case here:

rpi # rmmod printk_loglvl
rpi # dmesg
[...]
[1408.603812] Hello, world @ log-level KERN_EMERG [0]
[1408.611335] Hello, world @ log-level KERN_ALERT [1]
[1408.618625] Hello, world @ log-level KERN_CRIT [2]
[1408.625778] Hello, world @ log-level KERN_ERR [3]
[1408.625781] Hello, world @ log-level KERN_WARNING [4]

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[186]

[1408.625784] Hello, world @ log-level KERN_NOTICE [5]
[1408.625787] Hello, world @ log-level KERN_INFO [6]
[1762.985496] Goodbye, world @ log-level KERN_INFO [6]
rpi #

All printk's instances – except the KERN_DEBUG ones – are seen as we are looking at
the kernel log via the dmesg utility. So, how do we get a debug message displayed?
That's covered next.

Enabling the pr_debug() kernel messages
Ah yes, pr_debug() turns out to be a bit of a special case: unless the DEBUG symbol is
defined for the kernel module, a printk instance at log level KERN_DEBUG does not
show up. We edit the kernel module's Makefile to enable this. There are (at least) two
ways to set this up:

Insert this line into the Makefile:

CFLAGS_printk_loglvl.o := -DDEBUG

Generically, it's CFLAGS_<filename>.o := -DDEBUG.

We could also just insert this statement into the Makefile:

EXTRA_CFLAGS += -DDEBUG

In our Makefile, we have deliberately kept the -DDEBUG commented out, to begin
with. Now, to try it out, un-comment one of the following commented-out lines:

Enable the pr_debug() as well (rm the comment from one of the lines
below)
#EXTRA_CFLAGS += -DDEBUG
#CFLAGS_printk_loglvl.o := -DDEBUG

Once done, we remove the old stale kernel module from memory, rebuild it, and
insert it using our lkm script. The output reveals that pr_debug() now does take
effect:

exit << exit from the previous root shell >>
$../../lkm printk_loglvl
Version info:
Distro: Ubuntu 18.04.3 LTS
Kernel: 5.4.0-llkd01

sudo rmmod printk_loglvl 2> /dev/null

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[187]

[...]
sudo insmod ./printk_loglvl.ko && lsmod|grep printk_loglvl

printk_loglvl 16384 0

dmesg

[975.271766] Hello, world @ log-level KERN_EMERG [0]
[975.277729] Hello, world @ log-level KERN_ALERT [1]
[975.283662] Hello, world @ log-level KERN_CRIT [2]
[975.289561] Hello, world @ log-level KERN_ERR [3]
[975.295394] Hello, world @ log-level KERN_WARNING [4]
[975.301176] Hello, world @ log-level KERN_NOTICE [5]
[975.306907] Hello, world @ log-level KERN_INFO [6]
[975.312625] Hello, world @ log-level KERN_DEBUG [7]
[975.312628] Hello, world via the pr_devel() macro (eff @KERN_DEBUG)
[7]
$

A partial screenshot (Figure 4.9) of the lkm script's output clearly reveals
the dmesg color-coding, with KERN_ALERT / KERN_CRIT / KERN_ERR background
highlighted in red/in bold red typeface/in red foreground color, respectively, and
KERN_WARNING in bold black typeface, helping us humans quickly spot important
kernel messages:

Figure 4.9 – Partial screenshot of lkm script's output

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[188]

Note that the behavior of pr_debug() is not identical when the dynamic
debug feature (CONFIG_DYNAMIC_DEBUG=y) is enabled.

Device driver authors should note that for the purpose of emitting
debug printk instances, they should avoid using pr_debug().
Instead, it is recommended that a device driver uses
the dev_dbg() macro (additionally passing along a parameter to
the device in question). Also, pr_devel() is meant to be used for
kernel-internal debug printk instances whose output should never
be visible in production systems.

Now, back to the section on console output. So, for perhaps the purpose of kernel
debugging (if nothing else), is there a guaranteed way to ensure that all
printk instances are directed to the console? Yes, indeed – just pass the kernel (boot-
time) parameter called ignore_level. For more details on this, do look up the
description in the official kernel documentation: https:/ / www.kernel. org/ doc/html/
latest/admin-guide/ kernel- parameters. html. Toggling the ignoring of the printk
log level is also possible: as mentioned there, you can turn on the ignoring
of printk log levels by doing this, thus allowing all printk's to appear on the console
device (and conversely, turn it off by echoing N into the same pseudo-file):

sudo bash -c "echo Y > /sys/module/printk/parameters/ignore_loglevel"

The dmesg(1) utility can also be used to control the enabling/disabling of kernel
messages to the console device, as well as the console logging level (that is, the level
numerically below which messages will appear on the console) via various option
switches (in particular, the --console-level option). I leave it to you to browse
through the man page on dmesg(1) for the details.

The next segment deals with another very useful logging feature: rate-limiting.

Rate limiting the printk instances
When we emit printk instances from a code path that is executed very often, the
sheer amount of printk instances might quickly overflow the kernel log buffer (in
RAM; remember that it's a circular buffer), thus overwriting what might well be key
information. Besides that, ever-growing non-volatile log files that then repeat pretty
much the same printk instances (almost) ad infinitum are not a great idea either and
waste disk space, or worse, flash space. For example, think of a large-ish printk in an
interrupt handler code path. What if the hardware interrupt is invoked at a frequency
of, say, 100 Hz, that is, 100 times every single second!

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[189]

To mitigate these issues, the kernel provides an interesting alternative: the rate-
limited printk. The printk_ratelimited() macro has identical syntax to the regular
printk; the key point is that it effectively suppresses regular prints when certain
conditions are fulfilled. The kernel provides two control files
named printk_ratelimit and printk_ratelimit_burst via the proc filesystem
for this purpose. Here, we directly reproduce the sysctl documentation
(from https://www. kernel. org/ doc/ Documentation/ sysctl/ kernel. txt) that
explains the precise meaning of these two (pseudo) files:

printk_ratelimit:
Some warning messages are rate limited. printk_ratelimit specifies
the minimum length of time between these messages (in jiffies), by
default we allow one every 5 seconds.
A value of 0 will disable rate limiting.
==
printk_ratelimit_burst:
While long term we enforce one message per printk_ratelimit
seconds, we do allow a burst of messages to pass through.
printk_ratelimit_burst specifies the number of messages we can
send before ratelimiting kicks in.

On our Ubuntu 18.04.3 LTS guest system, we find that their (default) values are as
follows:

$ cat /proc/sys/kernel/printk_ratelimit
/proc/sys/kernel/printk_ratelimit_burst
5
10
$

This implies that by default, up to 10 instances of the same message occurring within
a 5-second time interval can make it through before rate limiting kicks in.

The printk rate limiter, when it does suppress kernel printk instances, emits a
helpful message mentioning exactly how many earlier printk callbacks were
suppressed. As an example, we have a custom kernel module that makes use of
the Kprobes framework to emit a printk instance prior to every call to schedule(),
the kernel's core scheduling routine.

A kprobe is essentially an instrumentation framework often
leveraged for production system troubleshooting; using it, you can
specify a function that can be set to execute before or after a given
kernel routine. The details are beyond the scope of this book.

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[190]

Now, as scheduling occurs often, a regular printk would cause the kernel log buffer to
quickly overflow. Precisely this sort of situation warrants the use of the rate-limited
printk. Here, we see some sample output from our example kernel module (we don't
show it's code here) using the printk_ratelimited() API via a kprobe that sets
up a pre-handler function called handle_pre_schedule():

[1000.154763] kprobe schedule pre_handler: intr ctx = 0 :process
systemd-journal:237
[1005.162183] handler_pre_schedule: 5860 callbacks suppressed
[1005.162185] kprobe schedule pre_handler: intr ctx = 0 :process
dndX11:1071

A code-level example of using the rate-limited printk is seen in the interrupt handler
code of the Linux kernel's Real-Time Clock (RTC) driver here:
drivers/char/rtc.c:

static void rtc_dropped_irq(struct timer_list *unused)
{
[...]
 spin_unlock_irq(&rtc_lock);
 printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at
%ldHz.\n", freq);
 /* Now we have new data */
 wake_up_interruptible(&rtc_wait);
[...]
}

Don't mix up the printk_ratelimited() macro with the older
(and now deprecated) printk_ratelimit() macro. Also, the
actual rate-limiting code is
in lib/ratelimit.c:___ratelimit().

Also, just as with the pr_<foo> macros we saw earlier, the kernel also provides the
equivalent pr_<foo>_ratelimited macros for generating a kernel printk at log
level <foo> with rate limiting enabled. Here's a quick list of them:

pr_emerg_ratelimited(fmt, ...)
pr_alert_ratelimited(fmt, ...)
pr_crit_ratelimited(fmt, ...)
pr_err_ratelimited(fmt, ...)
pr_warn_ratelimited(fmt, ...)
pr_notice_ratelimited(fmt, ...)
pr_info_ratelimited(fmt, ...)

Can we generate kernel-level messages from user space? Sounds interesting; that's
our next sub-topic.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[191]

Generating kernel messages from the user
space
A popular debug technique that we programmers use is to sprinkle prints at various
points in the code, often allowing us to narrow down the source of an issue. This is
indeed a useful debugging technique and is called instrumenting the code. Kernel
developers often use the venerable printk API for just this purpose.

So, imagine you have written a kernel module and are in the process of debugging it
(by adding several printk's). Your kernel code now emits several printk instances,
which, of course, you can see at runtime via dmesg or some other means. That's fine,
but what if, especially because you're running some automated user space test script,
you'd like to see the point at which the script initiated some action within our kernel
module, by printing out a certain message. As a concrete example, say we want the
log to look something like this:

test_script: msg 1 ; kernel_module: msg n, msg n+1, ..., msg n+m ;
test_script: msg 2 ; ...

We can have our user space test script write a message into the kernel log buffer, just
like a kernel printk would, by writing said message into the special
/dev/kmsg device file:

echo "test_script: msg 1" > /dev/kmsg

Well, hang on – doing so requires running with root access, of course. However,
notice here that a simple sudo(8) before echo just doesn't work:

$ sudo echo "test_script: msg 1" > /dev/kmsg
bash: /dev/kmsg: Permission denied
$ sudo bash -c "echo \"test_script: msg 1\" > /dev/kmsg"
[sudo] password for llkd:
$ dmesg |tail -n1
[55527.523756] test_script: msg 1
$

The syntax used in the second attempt works, but it's just simpler to get yourself a
root shell and carry out tasks such as this.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[192]

One more thing: the dmesg(1) utility has several options designed to make the
output more human-readable; we show some of them via our sample alias
to dmesg here, after which we use it:

$ alias dmesg='/bin/dmesg --decode --nopager --color --ctime'
$ dmesg | tail -n1
user :warn : [Sat Dec 14 17:21:50 2019] test_script: msg 1
$

The message written to the kernel log via the special /dev/kmsg device file will be
printed at the current default log level, typically, 4 : KERN_WARNING. We can
override this by actually prefixing the message with the required log level (as a
number in string format). For example, to write from the user space into the kernel
log at log level 6 : KERN_INFO, use this:

$ sudo bash -c "echo \"<6>test_script: test msg at KERN_INFO\" \
 > /dev/kmsg"
$ dmesg | tail -n2
user :warn : [Fri Dec 14 17:21:50 2018] test_script: msg 1
user :info : [Fri Dec 14 17:31:48 2018] test_script: test msg at
KERN_INFO

We can see that our latter message is emitted at log level 6, as specified within echo.

There is really no way to distinguish between a user-generated kernel message and a
kernel printk()-generated one; they look identical. So, of course, it could be as
simple as inserting some special signature byte or string within the message, such
as @user@, in order to help you distinguish these user-generated prints from the
kernel ones.

Standardizing printk output via the pr_fmt
macro
A last but important point regarding the kernel printk; pretty often, to give context to
your printk() output (where exactly did it occur?), you might write the code like this,
taking advantage of various gcc macros (like __FILE__, __func__, and __LINE__):

pr_warning("%s:%s():%d: kmalloc failed!\n", OURMODNAME, __func__,
__LINE__);

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[193]

This is fine; the problem is, if there are a lot of printk's in your project, it can be fairly
painful to guarantee a standard printk format (for example, first displaying the
module name followed by the function name and possibly the line number, as seen
here) is always followed by everyone working on the project.

Enter the pr_fmt macro; defining this macro right at the beginning of your code (it
must be even before the first #include), guarantees that every single subsequent
printk in your code will be prefixed with the format specified by this macro. Lets take an
example (we show a snippet of code from the next chapter; worry not, it's really very
simple, and serves as a template for your future kernel modules):

// ch5/lkm_template/lkm_template.c
[...]
 */
#define pr_fmt(fmt) "%s:%s(): " fmt, KBUILD_MODNAME, __func__

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
[...]
static int __init lkm_template_init(void)
{
 pr_info("inserted\n");
 [...]

The pr_fmt() macro is highlighted in bold font; it uses the pre-defined
KBUILD_MODNAME macro to substitute the name of your kernel module, and the gcc
__func__ specifier to display the name of the function we're currently running! (You
can even add a %d matched by the corresponding __LINE__ macro to display the line
number). So, bottom line: the pr_info() we emit in the init function of this LKM
will display like this in the kernel log:

[381534.391966] lkm_template:lkm_template_init(): inserted

Notice how the LKM name and the function name are automatically prefixed. This is
very useful and indeed very common; in the kernel, literally hundreds of source files
begin with the pr_fmt(). (A quick search on the 5.4 kernel code base revealed over
2,000 instances of this macro in the code base! We too shall follow this convention,
though not in all our demo kernel modules).

The pr_fmt() also takes effect on the recommended printk usage
for driver authors - via the dev_<foo>() functions.

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[194]

Portability and the printk format specifiers
There's a question to ponder regarding the versatile printk kernel API, how will you
ensure that your printk output looks correct (is correctly formatted) and works
equally well on any CPU regardless of bit width? The portability issue raises its head
here; the good news is that getting familiar with the various format specifiers
provided will help you a great deal in this regard, in effect allowing you to write
arch-independent printks.

It's important to realize that the size_t - pronounced size type - is
a typedef for an unsigned integer; similarly, ssize_t (signed size
type) is a typedef for a signed integer.

Here's a few top-of-mind common printk format specifiers to keep in mind when
writing portable code:

For size_t, ssize_t (signed and unsigned) integers :
use %zd and %zu respectively
Kernel pointers: use %pK for security (hashed values), %px for actual
pointers (don't use this in production!), additionally, use %pa for physical
addresses (must pass it by reference)
Raw buffer as a string of hex characters : %*ph (where * is replaced by the
number of characters; use for buffers within 64 characters, use
the print_hex_dump_bytes() routine for more); variations are available
(see the kernel doc, link follows)
IPv4 addresses with %pI4, IPv6 addresses with %pI6 (variations too)

An exhaustive list of printk format specifiers, which to use when (with examples) is
part of the official kernel documentation here: https:/ /www. kernel. org/doc/
Documentation/ printk- formats. txt. The kernel also explicitly documents the fact
that using the unadorned %p in a printk() statement can lead to security issues
(link: https:/ /www. kernel. org/ doc/ html/latest/ process/ deprecated. html#p-
format-specifier). I urge you to browse through it!

Okay! Let's move towards completing this chapter by learning the basics of how
the Makefile for your kernel module builds the kernel.

https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/Documentation/printk-formats.txt
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier
https://www.kernel.org/doc/html/latest/process/deprecated.html#p-format-specifier

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[195]

Understanding the basics of a kernel
module Makefile
You will have noticed that we tend to follow a one-kernel-module-per-directory rule of
sorts. Yes, that definitely helps keep things organized. So, let's take our second kernel
module, the ch4/printk_loglvl one. To build it, we just cd to its folder,
type make, and (fingers crossed!) voilà, it's done. We have
the printk_loglevel.ko kernel module object freshly generated (which we can
then insmod(8)/rmmod(8)). But how exactly did it get built when we typed make?
Ah, explaining this is the purpose of this section.

As this is our very first chapter that deals with the LKM framework
and its corresponding Makefile, we will keep things nice and
simple, especially with regard to the Makefile here. However, early
in the following chapter, we shall introduce a more sophisticated,
simply better Makefile (that is still quite simple to understand). We
shall then use this better Makefile in all subsequent code; do look
out for it and use it!

As you will know, the make command will by default look for a file named Makefile
in the current directory; if it exists, it will parse it and execute command sequences as
specified within it. Here's our Makefile for the kernel module printk_loglevel
project:

// ch4/printk_loglvl/Makefile
PWD := $(shell pwd)
obj-m += printk_loglvl.o

Enable the pr_debug() as well (rm the comment from the line below)
#EXTRA_CFLAGS += -DDEBUG
#CFLAGS_printk_loglvl.o := -DDEBUG

all:
 make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) modules
install:
 make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD)
modules_install
clean:
 make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) clean

It should go without saying that the Unix Makefile syntax basically demands this:

target: [dependent-source-file(s)]
 rule(s)

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[196]

The rule(s) instances are always prefixed with a [Tab] character, not white space.

Let's gather the basics regarding how this Makefile works. First off, a key point is this:
the kernel's Kbuild system (which we've been mentioning and using since Chapter
2, Building the 5.x Linux Kernel from Source – Part 1), primarily uses two variable strings
of software to build, chained up within the two obj-y and obj-m variables.

The obj-y string has the concatenated list of all objects to build and merge into the
final kernel image files - the uncompressed vmlinux and the compressed (boot-
able) [b]zImage images. Think about it – it makes sense: the y in obj-y stands for
Yes. All kernel built-ins and Kconfig options that were set to Y during the kernel
configuration process (or are Y by default) are chained together via this item, built,
and ultimately woven into the final kernel image files by the Kbuild build system.

On the other hand, it's now easy to see that the obj-m string is a concatenated list of
all kernel objects to build separately, as kernel modules! This is precisely why
our Makefile has this all-important line:

obj-m += printk_loglvl.o

In effect, it tells the Kbuild system to include our code; more correctly, it tells it to
implicitly compile the printk_loglvl.c source code into
the printk_loglvl.o binary object, and then add this object to the obj-m list. Next,
the default rule for make being the all rule, it is processed:

all:
 make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) modules

The processing of this single statement is quite involved; here's what transpires:

The -C option switch to make has the make process change directory (via1.
the chdir(2) system call) to the directory name that follows -C. Thus, it
changes directory to the kernel build folder (which, as we covered earlier,
is the location of the 'limited' kernel source tree that got installed via the
kernel-headers package).

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[197]

Once there, it parses in the content of the kernel's top-level Makefile – that2.
is, the Makefile that resides there, in the root of this limited kernel source
tree. This is a key point. This way, it's guaranteed that all kernel modules
are tightly coupled to the kernel that they are being built against (more on
this a bit later). This also guarantees that kernel modules are built with the
exact same set of rules, that is, the compiler/linker configurations (the
CFLAGS options, the compiler option switches, and so on), as the kernel
image itself is. All this is required for binary compatibility.
Next, you can see the initialization of the variable named M, and that3.
the target specified is modules; hence, the make process now changes
directory to that specified by the M variable, which you can see is set
to $(PWD) – the very folder we started from (the present working directory;
the PWD := $(shell pwd) in the Makefile initializes it to the correct
value)!

So, interestingly, it's a recursive build: the build process, having (very importantly)
parsed the kernel top-level Makefile, now switches back to the kernel module's
directory and builds the module(s) therein.

Did you notice that when a kernel module is built, a fair number of intermediate
working files are generated as well? Among them are modules.order,
<file>.mod.c, <file>.o, Module.symvers, <file>.mod.o,
.<file>.o.cmd, .<file>.ko.cmd, a folder called .tmp_versions/, and, of course,
the kernel module binary object itself, <file>.ko – the whole point of the build
exercise. Getting rid of all these objects, including the kernel module object itself, is
easy: just perform make clean. The clean rule cleans it all up. (We shall delve into
the install target in the following chapter.)

You can look up what the modules.order and
modules.builtin files (and other files) are meant for within the
kernel documentation here: Documentation/kbuild/kbuild.rst.

Also as mentioned previously, we shall, in the following chapter,
introduce and use a more sophisticated Makefile variant - a 'better'
Makefile; it is designed to help you, the kernel module/driver
developer, improve code quality by running targets related to kernel
coding style checks, static analysis, simple packaging, and (a
dummy target) for dynamic analysis.

With that, we conclude this chapter. Well done – you are now well on your way to
learning Linux kernel development!

Writing Your First Kernel Module - LKMs Part 1 Chapter 4

[198]

Summary
In this chapter, we covered the basics of Linux kernel architecture and the
LKM framework. You learned what a kernel module is and why it's useful. We then
wrote a simple yet complete kernel module, a very basic Hello, world. The material
then delved further into how it works, along with how to load it, see the module
listing, and unload it. Kernel logging with printk was covered in some detail, along
with rate limiting printk, generating kernel messages from the user space,
standardizing it's output format, and understanding the basics of the kernel module
Makefile.

That ends this chapter; I urge you to work on the sample code (via the book's GitHub
repository), work on the Questions/assignments, and then proceed on to the next
chapter, continuing our coverage of writing a Linux kernel module.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

5
Writing Your First Kernel

Module - LKMs Part 2
This chapter is the second half of our coverage regarding the Loadable Kernel
Module (LKM) framework and how to write kernel modules using it. To get the most
out of it, I expect you to complete the previous chapter and try out the code and
questions there before tackling this one.

In this chapter, we continue from the point where we left off in the previous one.
Here, we cover making use of a 'better' Makefile for LKMs, cross-compiling a kernel
module for the ARM platform (as a typical example), what module stacking is and
how to do it, and how to set up and use module parameters. Along the way, among
several other things, you will learn about the kernel API/ABI stability (or rather, the
lack thereof!), the key differences between writing userspace and kernel code, auto-
loading a kernel module at system boot, and security concerns and how they can be
addressed. We end with information on the kernel documentation (including coding
style) and contributing to mainline.

In brief, we will cover the following topics in this chapter:

A "better" Makefile template for your kernel modules
Cross-compiling a kernel module
Gathering minimal system information
Licensing kernel modules
Emulating "library-like" features for kernel modules
Passing parameters to a kernel module
Floating point not allowed in the kernel
Auto-loading modules on system boot
Kernel modules and security - an overview
Coding style guidelines for kernel developers
Contributing to the mainline kernel

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[200]

Technical requirements
The technical requirements – the software packages required – for this chapter are
identical to what was shown in the Technical requirements section in Chapter
4, Writing Your First Kernel Module – LKMs Part 1; please refer to it. As always, you can
find the source code for this chapter in this book's GitHub repository. Clone it with
the following:

git clone https://github.com/PacktPublishing/Linux-Kernel-Programming

The code displayed in the book is often just a relevant snippet. Follow along with the
full source code from the repository. For this chapter (and those that follow), more on
the technical requirements is found in the following section.

A "better" Makefile template for your
kernel modules
The preceding chapter introduced you to the Makefile used to generate the kernel
module from source, to install and clean it up. However, as we briefly mentioned
there, I will now introduce what is, in my opinion, a superior, a "better" Makefile, and
explain how it's better.

Ultimately, we all have to write better and more secure code – both user and kernel-
space. The good news is, there are several tools that help improve your code's
robustness and security posture, static and dynamic analyzers being among them (as
several have already been mentioned in Chapter 1, Kernel Workspace Setup, I won't
repeat them here).

I have devised a simple yet useful Makefile "template" of sorts for kernel modules
that includes several targets that help you run these tools. These targets allow you to
perform valuable checks and analysis very easily; stuff you might otherwise forget or
ignore or put off for ever! These targets include the following:

The "usual" ones – the build, install, and clean targets.
Kernel coding style generation and checking (via indent(1) and the
kernel's checkpatch.pl script, respectively).
Kernel static analysis targets (sparse, gcc, and flawfinder), with a
mention of Coccinelle.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[201]

A couple of "dummy" kernel dynamic analysis targets (KASAN
and LOCKDEP / CONFIG_PROVE_LOCKING), encouraging you to configure,
build, and use a "debug" kernel for all your test cases.
A simple tarxz-pkg target that tars and compresses the source files into
the preceding directory. This enables you to transfer the compressed tar-
xz file to any other Linux system, and extract and build the LKM there.
A "dummy" dynamic analysis target, pointing out how you should invest
time in configuring and building a "debug" kernel and using it to catch
bugs! (More on this follows shortly.)

You can find the code (along with a README file as well) in the ch5/lkm_template
directory. To help you understand its use and power and to help you get started, the
following figure simply shows a screenshot of the output the code produces when
run with its help target:

Figure 5.1 – The output of the help target from our "better" Makefile

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[202]

In Figure 5.1, we first do make, followed by pressing the Tab key twice, thus having it
display all available targets. Do study this carefully and use it! For example, running
make sa will cause it to run all its static analysis (sa) targets on your code!

It's also important to note that using this Makefile will require you to have installed a
few packages/ apps on the system; these include (for a base Ubuntu
system) indent(1), linux-headers-$(uname -r), sparse(1), flawfinder(1),
cppcheck(1), and tar(1). (Chapter 1, Kernel Workspace Setup, already specified that
these should be installed.)

Also, note that the so-called dynamic analysis (da) targets mentioned in the Makefile
are merely dummy targets that don't do anything other than print a message. They
are there to remind you to thoroughly test your code by running it on an appropriately
configured "debug" kernel!

Speaking of a 'debug' kernel, the next section shows you how to configure one.

Configuring a "debug" kernel
(For details on configuring and building the kernel, look back to Chapter 2, Building
the 5.x Linux Kernel from Source - Part 1, and Chapter 3, Building the 5.x Linux Kernel
from Source - Part 2).

Running your code on a debug kernel can help you uncover hard-to-spot bugs and
issues. I highly recommend doing so, typically during development and
testing! Here, I minimally expect you to configure your custom 5.4 kernel to have the
following kernel debug config options turned on (within the make menuconfig UI,
you will find most of them under the Kernel Hacking sub-menu; the following list
is with respect to Linux 5.4.0):

CONFIG_DEBUG_INFO

CONFIG_DEBUG_FS (the debugfs pseudo filesystem)
CONFIG_MAGIC_SYSRQ (the Magic SysRq hotkeys feature)
CONFIG_DEBUG_KERNEL

CONFIG_DEBUG_MISC

Memory debugging:
CONFIG_SLUB_DEBUG.
CONFIG_DEBUG_MEMORY_INIT.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[203]

 CONFIG_KASAN: this is the Kernel Address Sanitizer port;
however, as of the time of writing, it only works on 64-bit
systems.

CONFIG_DEBUG_SHIRQ

CONFIG_SCHED_STACK_END_CHECK

Lock debugging:
CONFIG_PROVE_LOCKING: the very powerful lockdep feature to catch
locking bugs! This turns on several other lock debug configs as well,
explained in Chapter 13, Kernel Synchronization - Part 2.
CONFIG_LOCK_STAT

CONFIG_DEBUG_ATOMIC_SLEEP

CONFIG_STACKTRACE

CONFIG_DEBUG_BUGVERBOSE

CONFIG_FTRACE (ftrace: within its sub-menu, turn on at least a couple of
"tracers")
CONFIG_BUG_ON_DATA_CORRUPTION

CONFIG_KGDB (kernel GDB; optional)
CONFIG_UBSAN

CONFIG_EARLY_PRINTK

CONFIG_DEBUG_BOOT_PARAMS

CONFIG_UNWINDER_FRAME_POINTER (selects FRAME_POINTER and
CONFIG_STACK_VALIDATION)

A couple of things to note:
a) Don't worry too much right now if you don't get what all the
previously mentioned kernel debug config options do; by the time
you're done with this book, most of them will be clear.
b) Turning on some Ftrace tracers (or plugins), such
as CONFIG_IRQSOFF_TRACER, would be useful as we actually make
use of it in our Linux Kernel Programming (Part 2) book in the
Handling Hardware Interrupts chapter; (note that though Ftrace itself
may be enabled by default, all its tracers aren't).

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[204]

Note that turning on these config options does entail a performance hit, but that's
okay. We're running a "debug" kernel of this sort for the express purpose of catching
errors and bugs (especially the hard-to-uncover kind!). It can indeed be a life-saver! On
your project, your workflow should involve your code being tested and run on both of the
following:

The debug kernel system, where all required kernel debug config options
are turned on (as previously shown minimally)
The production kernel system (where all or most of the preceding kernel
debug options will be turned off)

Needless to say, we will be using the preceding Makefile style in all the subsequent
LKM code in this book.

Alright, now that you're all set, let's dive into an interesting and practical scenario –
compiling your kernel module(s) for another target (typically ARM).

Cross-compiling a kernel module
In Chapter 3, Building the 5.x Linux Kernel from Source - Part 2, in the Kernel build for the
Raspberry Pi section, we showed how you can cross-compile the Linux kernel for a
"foreign" target architecture (such as ARM, PowerPC, MIPS, and so on). Essentially,
the same can be done for a kernel module as well; you can easily cross-compile a
kernel module by setting up the "special" ARCH and CROSS_COMPILE environment
variables appropriately.

For example, let's imagine we are working on an embedded Linux product; the target
device on which our code will run has an AArch32 (ARM-32) CPU. Why not take an
actual example. Let's cross-compile our Hello, world kernel module for the Raspberry
Pi 3 Single-Board Computer (SBC)!

This is interesting. You will find that although it appears simple and straightforward,
we will end up taking four iterations before we succeed. Why? Read on to find out.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[205]

Setting up the system for cross-compilation
The prerequisites to cross-compile a kernel module are quite clear:

We need the kernel source tree for the target system installed as part of the
workspace on our host system, typically an x86_64 desktop (for our
example, using the Raspberry Pi as a target, please refer to the official
Raspberry Pi documentation here: https:/ /www. raspberrypi. org/
documentation/ linux/ kernel/ building. md).
We now need a cross toolchain. Typically, the host system is an x86_64 and
here, as the target is an ARM-32, we will need an x86_64-to-ARM32 cross
toolchain. Again, as is clearly mentioned in Chapter 3, Building the 5.x Linux
Kernel from Source - Part 2, Kernel Build for the Raspberry Pi, you must
download and install the Raspberry Pi-specific x86_64-to-ARM toolchain as
part of the host system workspace (refer to Chapter 3, Building the 5.x Linux
Kernel from Source - Part 2, to learn how to install the toolchain).

Okay, from this point on, I will assume that you have an x86_64-to-ARM cross
toolchain installed. I will also assume the toolchain prefix is arm-linux-gnueabihf-
; we can quickly check that the toolchain is installed and its binaries added to the
path by trying to invoke the gcc cross-compiler:

$ arm-linux-gnueabihf-gcc
arm-linux-gnueabihf-gcc: fatal error: no input files
compilation terminated.
$

It works – it's just that we have not passed any C program as a parameter to compile,
hence it complains.

You can certainly look up the compiler version as well with
the arm-linux-gnueabihf-gcc --version command.

https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[206]

Attempt 1 – setting the "special" environment
variables
Actually, cross-compiling the kernel module is very easy (or so we think!). Just ensure
that you set the "special" ARCH and CROSS_COMPILE environment
variables appropriately. Follow along with the following steps:

Let's re-build our very first Hello, world kernel module for the Raspberry Pi1.
target. Here's how to build it:

To do so without corrupting the original code, we make a new
folder called cross with a copy of the (helloworld_lkm) code
from Chapter 4, Writing your First Kernel Module - LKMs Part 1, to
begin with.

cd <dest-dir>/ch5/cross

Here, <dest-dir> is the root of the book's GitHub source tree.

Now, run the following command:2.

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

But it doesn't work (or it may work; please see the following info box) straight off the
bat. We get compile failures, as seen here:

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
make -C /lib/modules/5.4.0-llkd01/build/ M=/home/llkd/book_llkd/Linux-
Kernel-Programming/ch5/cross modules
make[1]: Entering directory '/home/llkd/kernels/linux-5.4'
 CC [M] /home/llkd/book_llkd/Linux-Kernel-
Programming/ch5/cross/helloworld_lkm.o
arm-linux-gnueabihf-gcc: error: unrecognized command line option ‘-
fstack-protector-strong’
scripts/Makefile.build:265: recipe for target
'/home/llkd/book_llkd/Linux-Kernel-
Programming/ch5/cross/helloworld_lkm.o' failed
[...]
make: *** [all] Error 2
$

Why did it fail?

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[207]

Assuming all tools are set up as per the technical requirements
discussed earlier, the cross-compile should work. This is because the
Makefile provided in the book's repository is a proper working
one, the Raspberry Pi kernel has been correctly configured and built,
the device is booted off this kernel, and the kernel module is
compiled against it. The purpose here, in this book, is to explain the
details; thus, we begin with no assumptions, and guide you through
the process of correctly performing the cross-compilation.

The clue as to why the preceding cross-compilation attempt failed lies in the fact that
it is attempting to use – build against – the kernel source of the current host system and
not the target's kernel source tree. So, we need to modify the Makefile to point it to the
correct kernel source tree for the target. It's really quite easy to do so. In the following
code, we see the typical way that the (corrected) Makefile code is written:

ch5/cross/Makefile:
To support cross-compiling for kernel modules:
For architecture (cpu) 'arch', invoke make as:
make ARCH=<arch> CROSS_COMPILE=<cross-compiler-prefix>
ifeq ($(ARCH),arm)
 # *UPDATE* 'KDIR' below to point to the ARM Linux kernel source tree
on
 # your box
 KDIR ?= ~/rpi_work/kernel_rpi/linux
else ifeq ($(ARCH),arm64)
 # *UPDATE* 'KDIR' below to point to the ARM64 (Aarch64) Linux kernel
 # source tree on your box
 KDIR ?= ~/kernel/linux-4.14
else ifeq ($(ARCH),powerpc)
 # *UPDATE* 'KDIR' below to point to the PPC64 Linux kernel source
tree
 # on your box
 KDIR ?= ~/kernel/linux-4.9.1
else
 # 'KDIR' is the Linux 'kernel headers' package on your host system;
this
 # is usually an x86_64, but could be anything, really (f.e. building
 # directly on a Raspberry Pi implies that it's the host)
 KDIR ?= /lib/modules/$(shell uname -r)/build
endif

PWD := $(shell pwd)
obj-m += helloworld_lkm.o
EXTRA_CFLAGS += -DDEBUG

all:

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[208]

 @echo
 @echo '--- Building : KDIR=${KDIR} ARCH=${ARCH}
CROSS_COMPILE=${CROSS_COMPILE} EXTRA_CFLAGS=${EXTRA_CFLAGS} ---'
 @echo
 make -C $(KDIR) M=$(PWD) modules
[...]

Look carefully at the (new and "better," as explained in the preceding
section) Makefile and you will see how it works:

Most importantly, we conditionally set the KDIR variable to point to the
correct kernel source tree, depending on the value of the ARCH environment
variable (of course, I've used some pathname to kernel source trees for the
ARM[64] and PowerPC as examples; do substitute the pathname with the
actual path to your kernel source trees)
As usual, we set obj-m += <module-name>.o.
We also set CFLAGS_EXTRA to add the DEBUG symbol (so that the
DEBUG symbol is defined in our LKM and even
the pr_debug()/pr_devel() macros work).
The @echo '<...>' line is equivalent to the shell's echo command; it just
emits some useful information while building (the @ prefix hides the echo
statement itself from displaying).
Finally, we have the "usual" Makefile targets: all, install, and clean –
these are the same as earlier except for this important change: we make it
change directory (via the -C switch) to the value of KDIR!
Though not shown in the preceding code, this "better" Makefile has several
additional useful targets. You should definitely take the time to explore
and use them (as explained in the preceding section; to start, simply type
make help, study the output and try things out).

Having done all this, let's retry the cross-compile with this version and see how it
goes.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[209]

Attempt 2 – pointing the Makefile to the
correct kernel source tree for the target
So now, with the enhanced Makefile described in the previous section, it should work.
In our new directory where we will try this out – cross (as we're cross-compiling,
not that we're angry!) – follow along with these steps:

Attempt the build (for a second time) with the make command appropriate1.
for cross-compilation:

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

--- Building : KDIR=~/rpi_work/kernel_rpi/linux ARCH=arm
CROSS_COMPILE=arm-linux-gnueabihf- EXTRA_CFLAGS=-DDEBUG ---

make -C ~/rpi_work/kernel_rpi/linux
M=/home/llkd/booksrc/ch5/cross modules
make[1]: Entering directory
'/home/llkd/rpi_work/kernel_rpi/linux'

ERROR: Kernel configuration is invalid.
 include/generated/autoconf.h or include/config/auto.conf are
missing.
 Run 'make oldconfig && make prepare' on kernel src to fix it.

 WARNING: Symbol version dump ./Module.symvers
 is missing; modules will have no dependencies and
modversions.
[...]
make: *** [all] Error 2
$

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[210]

The actual reason it failed is that the Raspberry Pi kernel that we're
compiling our kernel module against is still in a "virgin" state. It does not
even have the .config file present (among other required headers, as the
preceding output informs us) in its root directory, which it requires to (at
least) be configured.

To fix this, switch to the root of your Raspberry Pi kernel source tree and2.
follow these steps:

$ cd ~/rpi-work/kernel_rpi/linux
$ make ARCH=arm bcmrpi_defconfig
#
configuration written to .config
#
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- oldconfig
scripts/kconfig/conf --oldconfig Kconfig
#
configuration written to .config
#
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- prepare
scripts/kconfig/conf --silentoldconfig Kconfig
 CHK include/config/kernel.release
 UPD include/config/kernel.release
 WRAP arch/arm/include/generated/asm/bitsperlong.h
 WRAP arch/arm/include/generated/asm/clkdev.h
 [...]
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
 CHK include/config/kernel.release
 CHK include/generated/uapi/linux/version.h
 CHK include/generated/utsrelease.h
 [...]
 HOSTCC scripts/recordmcount
 HOSTCC scripts/sortextable
 [...]
$

Notice that these steps are really quite equivalent to performing a partial build of the
Raspberry Pi kernel! Indeed, if you have already built (cross-compiled) this kernel as
explained earlier in Chapter 3, Building the 5.x Linux Kernel from Source - Part 2, then
the kernel module cross-compilation should just work without the intervening steps
seen here.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[211]

Attempt 3 – cross-compiling our kernel
module
Now that we have a configured Raspberry Pi kernel source tree (on the host system)
and the enhanced Makefile (see the Attempt 2 – pointing the Makefile to the correct kernel
source tree for the target section), it should work. Let's retry:

We (again) attempt to build (cross-compile) the kernel. Issue the1.
make command, passing along the ARCH and CROSS_COMPILE environment
variables as usual:

$ ls -l
total 12
-rw-rw-r-- 1 llkd llkd 1456 Mar 18 17:48 helloworld_lkm.c
-rw-rw-r-- 1 llkd llkd 6470 Jul 6 17:30 Makefile
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

--- Building : KDIR=~/rpi_work/kernel_rpi/linux ARCH=arm
CROSS_COMPILE=arm-linux-gnueabihf- EXTRA_CFLAGS=-DDEBUG ---

make -C ~/rpi_work/kernel_rpi/linux
M=/home/llkd/booksrc/ch5/cross modules
make[1]: Entering directory
'/home/llkd/rpi_work/kernel_rpi/linux'

 WARNING: Symbol version dump ./Module.symvers
 is missing; modules will have no dependencies and
modversions.

Building for: ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
EXTRA_CFLAGS= -DDEBUG
 CC [M] /home/llkd/book_llkd/Linux-Kernel-
Programming/ch5/cross/helloworld_lkm.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC /home/llkd/booksrc/ch5/cross/helloworld_lkm.mod.o
 LD [M] /home/llkd/booksrc/ch5/cross/helloworld_lkm.ko
make[1]: Leaving directory
'/home/llkd/rpi_work/kernel_rpi/linux'
$ file ./helloworld_lkm.ko
./helloworld_lkm.ko: ELF 32-bit LSB relocatable, ARM, EABI5
version 1 (SYSV), BuildID[sha1]=17...e, not stripped
$

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[212]

The build is successful! The helloworld_lkm.ko kernel module has indeed been
cross-compiled for the ARM architecture (using the Raspberry Pi cross toolchain and
kernel source tree).

We can ignore the preceding warning regarding the
Module.symvers file for now. It isn't present as (here) the entire
Raspberry Pi kernel hasn't been built.

Also, FYI, on recent hosts running GCC 9.x or later and kernel
versions 4.9 or later, there are some compiler attribute warnings
emitted. When I tried cross-compiling this kernel module using
arm-linux-gnueabihf-gcc version 9.3.0 and the Raspberry Pi
kernel version 4.14.114, warnings such as this were emitted:

./include/linux/module.h:131:6: warning: ‘init_module’
specifies less restrictive attribute than its target
‘helloworld_lkm_init’: ‘cold’ [-Wmissing-attributes]

Miguel Ojeda points this out (https:/ /lore. kernel. org/ lkml/
CANiq72= T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.
gmail. com/) and has even generated a patch to handle this issue
(https:/ /github. com/ ojeda/ linux/ commits/ compiler-
attributes- backport). As of the time of writing, the patch is
applied in the kernel mainline and in recent Raspberry Pi kernels (so,
the rpi-5.4.y branch works fine but earlier ones such as the
rpi-4.9.y branch don't seem to have it)! Hence the compiler
warnings... effectively, if you do see these warnings, update the
Raspberry Pi branch to rpi-5.4.y or later (or, for now, just ignore
them).

The proof of the pudding is in the eating though. So, we fire up our2.
Raspberry Pi, scp(1) across our cross-compiled kernel module object file
to it, and, as follows (within an ssh(1) session on the Raspberry Pi), try it
out (the following output is directly from the device):

$ sudo insmod ./helloworld_lkm.ko
insmod: ERROR: could not insert module ./helloworld_lkm.ko:
Invalid module format
$

Clearly, insmod(8) in the preceding code fails! It's important to understand
why.

https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://lore.kernel.org/lkml/CANiq72=T8nH3HHkYvWF+vPMscgwXki1Ugiq6C9PhVHJUHAwDYw@mail.gmail.com/
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport
https://github.com/ojeda/linux/commits/compiler-attributes-backport

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[213]

It's really to do with a mismatch in the kernel version that we're attempting to
load the module on and the kernel version the module has been compiled
against.

While logged in to the Raspberry Pi, print out the current Raspberry Pi3.
kernel version we're running on and use the modinfo(8) utility to print
out details regarding the kernel module itself:

rpi ~ $ cat /proc/version
Linux version 4.19.75-v7+ (dom@buildbot) (gcc version 4.9.3
(crosstool-NG crosstool-ng-1.22.0-88-g8460611)) #1270 SMP Tue
Sep 24 18:45:11 BST 2019
rpi ~ $ modinfo ./helloworld_lkm.ko
filename: /home/pi/./helloworld_lkm.ko
version: 0.1
license: Dual MIT/GPL
description: LLKD book:ch5/cross: hello, world, our first
Raspberry Pi LKM
author: Kaiwan N Billimoria
srcversion: 7DDCE78A55CF6EDEEE783FF
depends:
name: helloworld_lkm
vermagic: 5.4.51-v7+ SMP mod_unload modversions ARMv7 p2v8
rpi ~ $

From the preceding output, clearly, here we're running the 4.19.75-v7+ kernel on
the Raspberry Pi. This, in fact, is the kernel I inherited when I installed the
default Raspbian OS on the device's microSD card (it's a deliberate scenario
introduced here, at first not using the 5.4 kernel we built earlier for the Raspberry Pi).
The kernel module, on the other hand, reveals that it's been compiled against the
5.4.51-v7+ Linux kernel (the vermagic string from modinfo(8) reveals this).
Clearly, there's a mismatch. Well, so what?

The Linux kernel has a rule, part of the kernel Application Binary Interface (ABI): it
will only ever insert a kernel module into kernel memory if that kernel module has
been built against it – the precise kernel version, build flags, and even the kernel
configuration options matter!

The built against kernel is the kernel whose source location you
specified in the Makefile (we did so via the KDIR variable
previously).

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[214]

In other words, kernel modules are not binary-compatible with kernels other than
the one they have been built against. For example, if we build a kernel module on,
say, an Ubuntu 18.04 LTS box, then it will only work on a system running this precise
environment (libraries, kernel, or toolchain)! It will not work on a Fedora 29 or an
RHEL 7.x, a Raspberry Pi, and so on. Now – and again, think about this – this does
not mean that kernel modules are completely incompatible. No, they are source-
compatible across different architectures (at least they can or should be written that way).
So, assuming you have the source code, you can always rebuild a kernel module on a
given system and then it will work on that system. It's just that the binary image (the
.ko file) is incompatible with kernels other than the precise one it's built against.

Relax, this issue is actually easy to spot. Look up the kernel log:

$ dmesg |tail -n2
[296.130074] helloworld_lkm: no symbol version for module_layout
[296.130093] helloworld_lkm: version magic '5.4.51-v7+ mod_unload
modversions ARMv6 p2v8 ' should be '4.19.75-v7+ SMP mod_unload
modversions ARMv7 p2v8 '
$

On the device, the currently running kernel is this: 4.19.75-v7+. The kernel literally
tells us that our kernel module has been built against the 5.4.51-v7+ kernel version
(it also shows some of the expected kernel config) and what it should be. There is a
mismatch! Hence the failure to insert the kernel module.

Though we don't use this approach here, there is a way to ensure the successful build
and deployment of third-party out-of-tree kernel modules (as long as their source
code is available), via a framework called DKMS (Dynamic Kernel Module
Support). The following is a quote directly from it:

Dynamic Kernel Module Support (DKMS) is a program/framework that enables generating
Linux kernel modules whose sources generally reside outside the kernel source tree. The
concept is to have DKMS modules automatically rebuilt when a new kernel is installed.

As an example of DKMS usage, the Oracle VirtualBox hypervisor (when running on a
Linux host) uses DKMS to auto-build and keep up to date its kernel modules.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[215]

Attempt 4 – cross-compiling our kernel
module
So, now that we understand the issue, there are two possible solutions:

We must use the required custom configured kernel for the product and
build all our kernel modules against it.
Alternatively, we could rebuild the kernel module to match the current
kernel the device happens to be running.

Now, in typical embedded Linux projects, you will almost certainly have a custom
configured kernel for the target device, one that you must work with. All kernel
modules for the product will/must be built against it. Thus, we follow the first
approach – we must boot the device with our custom configured and built (5.4!)
kernel, and since our kernel module is built against it, it should certainly work now.

We (briefly) covered the kernel build for the Raspberry Pi in
Chapter 3, Building the 5.x Linux Kernel from Source - Part 2. Refer
back there for the details if required.

Okay, I will have to assume that you've followed the steps (covered in Chapter
3, Building the 5.x Linux Kernel from Source - Part 2) and have by now configured and
built a 5.4 kernel for the Raspberry Pi. The nitty-gritty details regarding how to copy
our custom zImage onto the microSD card of the device and so on is not covered
here. I refer you to the official Raspberry Pi documentation here: https:/ / www.
raspberrypi.org/ documentation/ linux/ kernel/ building. md.

Nevertheless, we will point out a convenient way to switch between kernels on the
device (here, I assume the device is a Raspberry Pi 3B+ running a 32-bit kernel):

Copy your custom-built zImage kernel binary into the device's microSD1.
card's /boot partition. Save the original Raspberry Pi kernel image – the
Raspbian one – as kernel7.img.orig.
Copy (scp) the just-cross-compiled kernel module (helloworld_lkm.ko2.
for ARM, done in the previous section) from your host system onto the
microSD card (typically into /home/pi).

https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[216]

Next, again on the device's microSD card, edit the /boot/config.txt file,3.
setting the kernel to boot via the kernel=xxx line. A snippet from this file
on the device shows this:

rpi $ cat /boot/config.txt
[...]
KNB: enable the UART (for the adapter cable: USB To RS232
TTL UART
PL2303HX Converter USB to COM)
enable_uart=1
KNB: select the kernel to boot from via kernel=xxx
#kernel=kernel7.img.orig
kernel=zImage
rpi $

Once saved and rebooted, we log in to the device and retry our kernel4.
module. Figure 5.2 is a screenshot showing the just-cross-
compiled helloworld_lkm.ko LKM being used on the Raspberry Pi
device:

Figure 5.2 – The cross-compiled LKM being used on a Raspberry Pi

Ah, it worked! Notice how, this time, the current kernel version (5.4.51-v7+)
precisely matches that of the kernel the module was built against – in
the modinfo(8) output, we can see that the vermagic string shows it's 5.4.51-
v7+.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[217]

If you do see an issue with rmmod(8) throwing a non-fatal error
(though the cleanup hook is still called), the reason is that you
haven't yet fully set up the newly built kernel on the device. You
will have to copy in all the kernel modules
(under /lib/modules/<kernel-ver>) and run
the depmod(8) utility there. Here, we will not delve further into
these details – as mentioned before, the official documentation for
the Raspberry Pi covers all these steps.

Of course, the Raspberry Pi is a pretty powerful system; you can
install the (default) Raspbian OS along with development tools and
kernel headers and thus compile kernel modules on the board itself!
(No cross-compile required.) Here, though, we have followed the
cross-compile approach as this is typical when working on
embedded Linux projects.

The LKM framework is a rather large piece of work. Plenty more remains to be
explored. Let's get to it. In the next section, we will examine how you can obtain some
minimal system information from within a kernel module.

Gathering minimal system information
In our simple demo from the previous section (ch5/cross/helloworld_lkm.c), we
have hard-coded a printk() to emit a "Hello/Goodbye, Raspberry Pi
world\n" string, regardless of whether or not the kernel module actually runs on a
Raspberry Pi device. For a better, though still quite simplistic, way to "detect" some
system details (such as the CPU or OS), we refer you to our
sample ch5/min_sysinfo/min_sysinfo.c kernel module. In the following code
snippet, we show only the relevant function:

// ch5/min_sysinfo/min_sysinfo.c
[...]
void llkd_sysinfo(void)
{
 char msg[128];

 memset(msg, 0, strlen(msg));
 snprintf(msg, 47, "%s(): minimal Platform Info:\nCPU: ",
__func__);

 /* Strictly speaking, all this #if... is considered ugly and
should be

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[218]

 * isolated as far as is possible */
#ifdef CONFIG_X86
#if(BITS_PER_LONG == 32)
 strncat(msg, "x86-32, ", 9);
#else
 strncat(msg, "x86_64, ", 9);
#endif
#endif
#ifdef CONFIG_ARM
 strncat(msg, "ARM-32, ", 9);
#endif
#ifdef CONFIG_ARM64
 strncat(msg, "Aarch64, ", 10);
#endif
#ifdef CONFIG_MIPS
 strncat(msg, "MIPS, ", 7);
#endif
#ifdef CONFIG_PPC
 strncat(msg, "PowerPC, ", 10);
#endif
#ifdef CONFIG_S390
 strncat(msg, "IBM S390, ", 11);
#endif

#ifdef __BIG_ENDIAN
 strncat(msg, "big-endian; ", 13);
#else
 strncat(msg, "little-endian; ", 16);
#endif

#if(BITS_PER_LONG == 32)
 strncat(msg, "32-bit OS.\n", 12);
#elif(BITS_PER_LONG == 64)
 strncat(msg, "64-bit OS.\n", 12);
#endif
 pr_info("%s", msg);

 show_sizeof();
 /* Word ranges: min & max: defines are in include/linux/limits.h */
 [...]
}
EXPORT_SYMBOL(lkdc_sysinfo);

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[219]

(Additional details that this LKM shows you - like the size of various primitive data
types plus word ranges - is not shown here; please do refer to the source code from
our GitHub repository and try it out for yourself.) The preceding kernel module code
is instructive as it helps demonstrate how you can write portable code. Remember,
the kernel module itself is a binary non-portable object file, but its source code could
(perhaps, should, depending on your project) be written in such a manner so that it's
portable across various architectures. A simple build on (or for) the target architecture
would then have it ready for deployment.

For now, please ignore the EXPORT_SYMBOL() macro used here. We
will cover its usage shortly.

Building and running it on our now familiar x86_64 Ubuntu 18.04 LTS guest, we get
this output:

$ cd ch5/min_sysinfo
$ make
[...]
$ sudo insmod ./min_sysinfo.ko
$ dmesg
[...]
[29626.257341] min_sysinfo: inserted
[29626.257352] llkd_sysinfo(): minimal Platform Info:
 CPU: x86_64, little-endian; 64-bit OS.
$

Great! Similarly (as demonstrated earlier), we can cross-compile this kernel module for
ARM-32 (Raspberry Pi), then transfer (scp(1)) the cross-compiled kernel module to
our Raspberry Pi target and run it there (the following output is from a Raspberry Pi
3B+ running the 32-bit Raspbian OS):

$ sudo insmod ./min_sysinfo.ko
$ dmesg
[...]
[80.428363] min_sysinfo: inserted
[80.428370] llkd_sysinfo(): minimal Platform Info:
 CPU: ARM-32, little-endian; 32-bit OS.
$

This, in fact, reveals something interesting; the Raspberry Pi 3B+ has a native 64-bit
CPU, but by default (as of the time of writing) runs a 32-bit OS, hence the preceding
output. We will leave it to you to install a 64-bit Linux OS on a Raspberry Pi (or other)
device and re-run this kernel module.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[220]

The powerful Yocto Project (https:/ /www. yoctoproject. org/) is one
(industry-standard) way to generate a 64-bit OS for the Raspberry
Pi. Alternatively (and much easier to quickly try), Ubuntu provides
a custom Ubuntu 64-bit kernel and root filesystem for the device
(https:/ /wiki. ubuntu. com/ ARM/ RaspberryPi).

Being a bit more security-aware
Security, of course, is a key concern these days. Professional developers are expected
to write secure code. In recent years, there have been many known exploits against
the Linux kernel (see the Further reading section for more on this). In parallel, many
efforts toward improving Linux kernel security are in place.

In our preceding kernel module (ch5/min_sysinfo/min_sysinfo.c), be wary of
using older-style routines (like the sprintf, strlen, and so on; yes, they're present
within the kernel)! Static analyzers can greatly aid in catching potential security-
related and other bugs; we highly recommend you use them. Chapter 1, Kernel
Workspace Setup, mentions several useful static analysis tools for the kernel. In the
following code, we use one of the sa targets within our our "better" Makefile to run a
relatively simple static analyzer: flawfinder(1) (written by David Wheeler):

$ make [tab][tab]
all clean help install sa_cppcheck sa_gcc
tarxz-pkg checkpatch code-style indent sa
sa_flawfinder sa_sparse
$ make sa_flawfinder
make clean
make[1]: Entering directory '/home/llkd/llkd_book/Linux-Kernel-
Programming/ch5/min_sysinfo'

--- cleaning ---

[...]

--- static analysis with flawfinder ---

flawfinder *.c
Flawfinder version 1.31, (C) 2001-2014 David A. Wheeler.
Number of rules (primarily dangerous function names) in C/C++ ruleset:
169
Examining min_sysinfo.c

FINAL RESULTS:

https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi
https://wiki.ubuntu.com/ARM/RaspberryPi

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[221]

min_sysinfo.c:60: [2] (buffer) char:
 Statically-sized arrays can be improperly restricted, leading to
potential overflows or other issues (CWE-119:CWE-120). Perform bounds
checking, use functions that limit length, or ensure that the size is
larger than the maximum possible length.

[...]

min_sysinfo.c:138: [1] (buffer) strlen:
 Does not handle strings that are not \0-terminated; if given one it
may
 perform an over-read (it could cause a crash if unprotected)
(CWE-126).
[...]

Look carefully at the warning emitted by flawfinder(1) regarding the
strlen() function (among the many it generates!). It is indeed the case we face here!
Remember, uninitialized local variables (such as our msg buffer) have random
content when declared. Thus, the strlen() function may or may not yield the value
we expect.

The output of flawfinder even mentions the CWE number (here,
CWE-126) of the generalized class of security issue that is being seen
here; (do google it and you will see the details. In this instance,
CWE-126 represents the buffer over-read issue: https:/ /cwe. mitre.
org/ data/ definitions/ 126.html).

Similarly, we avoid the use of strncat() and replace it with the strlcat()
function. So, taking security concerns into account, we rewrite the code of
the llkd_sysinfo() function as llkd_sysinfo2().

We also add a few lines of code to show the range (min, max) of both unsigned and
signed variables on the platform (in both base 10 and 16). We leave it to you to read
through. As a simple assignment, run this kernel module on your Linux box(es) and
verify the output.

Now, let's move on to discuss a little bit regarding the licensing of the Linux kernel
and kernel module code.

https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[222]

Licensing kernel modules
As is well known, the Linux kernel code base itself is licensed under the GNU GPL v2
(aka GPL-2.0; GPL stands for General Public License), and as far as most people are
concerned, will remain that way. As briefly mentioned before, in Chapter 4, Writing
Your First Kernel Module – LKMs Part 1, licensing your kernel code is required and
important. Essentially, what the discussion, at least for our purposes, boils down to is
this: if your intention is to directly use kernel code and/or contribute your code
upstream into the mainline kernel (a few notes on this follow), you must release the
code under the same license that the Linux kernel is released under: the GNU
GPL-2.0. For a kernel module, the situation is still a bit "fluid," shall we say. No
matter, to engage the kernel community and have them help (a huge plus), you
should, or are expected to, release the code under the GNU GPL-2.0 license (though
dual-licensing is certainly possible and acceptable).

The license(s) is specified using the MODULE_LICENSE() macro. The following
comment reproduced from the include/linux/module.h kernel header clearly
shows what license "idents" are acceptable (notice the dual-licensing). Obviously, the
kernel community would highly recommend releasing your kernel module under the
GPL-2.0 (GPL v2) and/or another, such as BSD/MIT/MPL. If you are intending to
contribute code upstream to the kernel mainline, it goes without saying that the
GPL-2.0 alone is the license to release under:

// include/linux/module.h
[...]
/*
 * The following license idents are currently accepted as indicating
free
 * software modules
 *
 * "GPL" [GNU Public License v2 or later]
 * "GPL v2" [GNU Public License v2]
 * "GPL and additional rights" [GNU Public License v2 rights and more]
 * "Dual BSD/GPL" [GNU Public License v2
 * or BSD license choice]
 * "Dual MIT/GPL" [GNU Public License v2
 * or MIT license choice]
 * "Dual MPL/GPL" [GNU Public License v2
 * or Mozilla license choice]
 *
 * The following other idents are available
 *
 * "Proprietary" [Non free products]
 *

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[223]

 * There are dual licensed components, but when running with Linux it
is the GPL that is relevant so this is a non issue. Similarly LGPL
linked with GPL is a GPL combined work.
 *
 * This exists for several reasons
 * 1. So modinfo can show license info for users wanting to vet their
setup is free
 * 2. So the community can ignore bug reports including proprietary
modules
 * 3. So vendors can do likewise based on their own policies
 */
#define MODULE_LICENSE(_license) MODULE_INFO(license, _license)
[...]

FYI, the kernel source tree has a LICENSES/ directory under which you will find
detailed information on licenses; a quick ls on this folder reveals the sub-folders
therein:

$ ls <...>/linux-5.4/LICENSES/
deprecated/ dual/ exceptions/ preferred/

We'll leave it to you to take a look, and with this, will leave the discussion on
licensing at that; the reality is that it's a complex topic requiring legal knowledge. You
would be well advised to consult specialist legal staff (lawyers) within your company
(or hire them) with regard to getting the legal angle right for your product or service.

While on the topic, in order to be consistent, recent kernels have a rule: every single
source file's first line must be an SPDX license identifier (see https:/ /spdx. org/ for
details). Of course, scripts will require the first line to specify the interpreter. Also,
some answers to FAQs on the GPL license are addressed here: https:/ /www. gnu. org/
licenses/gpl-faq. html.

More on licensing models, not abusing the MODULE_LICENSE macro, and particularly
the multi-licensing/dual-licensing one, can be found at the link provided in the
Further reading section of this chapter. Now, let's get back to the technical stuff. The
next section explains how you can effectively emulate a library-like feature in kernel
space.

https://spdx.org/
https://spdx.org/
https://spdx.org/
https://spdx.org/
https://spdx.org/
https://spdx.org/
https://spdx.org/
https://spdx.org/
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html
https://www.gnu.org/licenses/gpl-faq.html

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[224]

Emulating "library-like" features for
kernel modules
One of the major differences between user-mode and kernel-mode programming is
the complete absence of the familiar "library" concept in the latter. Libraries are
essentially a collection or archive of APIs, conveniently allowing developers to meet
the important goals, typically: do not reinvent the wheel, software reuse, modularity, and
the like. But within the Linux kernel, libraries just do not exist.

The good news, though, is that broadly speaking, there are two techniques by which
you can achieve a "library-like" functionality in kernel space for our kernel modules:

The first technique: explicitly "link in" multiple source files – including the
"library" code – to your kernel module object.
The second is called module stacking.

Do read on as we discuss these techniques in more detail. A spoiler, perhaps, but
useful to know right away: the first of the preceding techniques is often superior to
the second. Then again, it does depend on the project. Do read the details in the next
section; we list out some pros and cons as we go along.

Performing library emulation via multiple
source files
So far, we have dealt with very simple kernel modules that have had exactly one C
source file. What about the (quite typical) real-world situation where there is more
than one C source file for a single kernel module? All source files will have to be compiled
and then linked together as a single .ko binary object.

For example, say we're building a kernel module project called projx. It consists of
three C source files: prj1.c, prj2.c, and prj3.c. We want the final kernel module
to be called projx.ko. The Makefile is where you specify these relationships, as
shown:

obj-m := projx.o
projx-objs := prj1.o prj2.o prj3.o

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[225]

In the preceding code, note how the projx label has been used after the obj-m
directive and as the prefix for the
-objs directive on the next line. Of course, you can use any label. Our preceding
example will have the kernel build system compile the three individual C source files
into individual object (.o) files, and will then link them all together to form the final
binary kernel module object file, projx.ko, just as we desire.

We can leverage this mechanism in building a small "library" of routines within our
book's source tree (the source files for this 'kernel library' are in the root of the source
tree here: klib_llkd.h and klib_llkd.c). The idea is that other kernel modules
can use the functions within here by linking into them! For example, in the upcoming
Chapter 7, Memory Management Internals - Essentials, we have
our ch7/lowlevel_mem/lowlevel_mem.c kernel module code invoke a function
that resides in our library code, ../../klib_llkd.c. The "linking into" our so-
called "library" code is achieved by putting the following into the lowlevel_mem
kernel module's Makefile:

obj-m += lowlevel_mem_lib.o
lowlevel_mem_lib-objs := lowlevel_mem.o ../../klib_llkd.o

The second line specifies the source files to build (into object files); they are the code
of the lowlevel_mem.c kernel module and the ../../klib_llkd library code.
Then, it links both into a single binary kernel module, lowlevel_mem_lib.ko,
achieving our objective. (Why not work on the assignment 5.1 specified in the
Questions section at the end of this chapter.)

Understanding function and variable scope in
a kernel module
Before delving further, a quick re-look at some basics is a good idea. When
programming with C, you should understand the following:

Variables declared locally within a function are obviously local to it and
only have scope within that function.
Variables and functions prefixed with the static qualifier have scope only
within the current "unit"; effectively, the file they have been declared
within. This is good as it helps reduce namespace pollution. Static (and
global) data variables retain their value within that function.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[226]

Prior to 2.6 Linux (that is, <= 2.4.x, ancient history now), kernel module static and
global variables, as well as all functions, were automatically visible throughout the
kernel. This was, in retrospect, obviously not a great idea. The decision was reversed
from 2.5 (and thus 2.6 onward, modern Linux): all kernel module variables (static
and global data) and functions are by default scoped to be private to their kernel
module only, and are thus invisible outside it. So, if two kernel modules, lkmA and
lkmB have a global named maya, it's unique to each of them; there is no clash.

To change the scope, the LKM framework provides the EXPORT_SYMBOL() macro.
Using it, you can declare a data item or function to be global in scope – in effect,
visible to all other kernel modules as well as to the kernel core.

Let's take a simple example. We have a kernel module called prj_core that contains
a global and a function:

static int my_glob = 5;
static long my_foo(int key)
{ [...]
}

Though both are usable within this kernel module itself, neither can be seen outside
it. This is intentional. To make them visible outside this kernel module, we
can export them:

int my_glob = 5;
EXPORT_SYMBOL(my_glob);

long my_foo(int key)
{ [...]
}
EXPORT_SYMBOL(my_foo);

Now, both have scope outside this kernel module (notice how, in the preceding code
block, the static keyword has been deliberately removed). Other kernel modules (as
well as the core kernel) can now "see" and use them. Precisely, this idea is leveraged in
two broad ways:

First, the kernel exports a well-thought-out subset of global variables and
functions that form a part of its core functionality, as well as that of other
subsystems. Now, these globals and functions are visible and thus usable
from kernel modules! We will see some sample uses shortly.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[227]

Second, kernel module authors (often device drivers) use this very notion
to export certain data and/or functionality so that other kernel modules, at
a higher abstraction level, perhaps, can leverage this design and use this
data and/or functionality – this concept is called module stacking and we will
delve into it shortly with an example.

With the first use case, for example, a device driver author might want to handle a
hardware interrupt from a peripheral device. A common way to do so is via
the request_irq() API, which, in fact, is nothing but a thin (inline) wrapper over
this API:

// kernel/irq/manage.c
int request_threaded_irq(unsigned int irq, irq_handler_t handler,
 irq_handler_t thread_fn, unsigned long
irqflags,
 const char *devname, void *dev_id)
{
 struct irqaction *action;
[...]
 return retval;
}
EXPORT_SYMBOL(request_threaded_irq);

Precisely because the request_threaded_irq() function is exported, it can be called
from within a device driver, which is very often written as a kernel module. Similarly,
developers often require some "convenience" routines – for example, string
processing ones. The Linux kernel, in lib/string.c, provides an implementation of
several common string processing functions (that you expect to be
present): str[n]casecmp, str[n|l|s]cpy, str[n|l]cat, str[n]cmp, strchr[nu
l], str[n|r]chr, str[n]len, and so on. Of course, these are all exported via
the EXPORT_SYMBOL() macro so as to make them visible and thus available to
module authors.

Here, we used the str[n|l|s]cpy notation to imply that the kernel
provides the four functions: strcpy, strncpy,
strlcpy, and strscpy. Note that some interfaces may be
deprecated (strcpy(), strncpy(), and strlcpy()). In general,
always avoid using deprecated stuff documented here: Deprecated
Interfaces, Language Features, Attributes, and Conventions (https:/ /
www. kernel. org/ doc/ html/ latest/ process/ deprecated.
html#deprecated- interfaces- language- features- attributes-
and- conventions).

https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[228]

On the other hand, let's glance at a (tiny) bit of the core CFS (Completely Fair
Scheduler) scheduling code deep within the kernel core. Here,
the pick_next_task_fair() function is the one invoked by the scheduling code
when we need to find another task to context-switch to:

// kernel/sched/fair.c
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct
rq_flags *rf)
{
 struct cfs_rq *cfs_rq = &rq->cfs;
[...]
 if (new_tasks > 0)
 goto again;
 return NULL;
}

We don't really want to study scheduling here (Chapter 10, The CPU Scheduler - Part
1, and Chapter 11, The CPU Scheduler - Part 2, take care of it), the point here is this: as
the preceding function is not marked with the EXPORT_SYMBOL() macro, it cannot
ever be invoked by a kernel module. It remains private to the core kernel.

You can also mark data structures as exported with the same macro. Also, it should
be obvious that only globally scoped data – not local variables – can be marked as
exported.

If you want to see how the EXPORT_SYMBOL() macro works, please
refer to the Further reading section of this chapter, which links to the
book's GitHub repository.

Recall our brief discussion on the licensing of kernel modules. The Linux kernel has a,
shall we say, interesting, proposition: there is also a macro
called EXPORT_SYMBOL_GPL(). It's just like its cousin, the EXPORT_SYMBOL() macro,
except that, yes, the data item or function exported will only be visible to those kernel
modules that include the word GPL within their MODULE_LICENSE() macro! Ah, the
sweet revenge of the kernel community. It is indeed used in several places in the
kernel code base. (I'll leave this as an exercise to you to find occurrences of this macro
in the code; on the 5.4.0 kernel, a quick search with cscope(1) revealed "just" 14,000
odd usage instances!)

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[229]

To view all exported symbols, navigate to the root of your kernel
source tree and issue the make export_report command. Note
though that this works only upon a kernel tree that has been
configured and built.

Let's now look at another key approach to realizing a library-like kernel feature:
module stacking.

Understanding module stacking
The second important idea here – module stacking – is what we will now delve further
into.

Module stacking is a concept that provides a "library-like" feature to kernel module
authors, to a degree. Here, we typically architect our project or product design in such
a manner that we have one or more "core" kernel modules, whose job is to act as a
library of sorts. It will include the data structures and functionality (functions/APIs)
that will be exported to other kernel modules (the preceding section discussed the
exporting of symbols).

To better understand this, let's look at a couple of real examples. To begin with, on
my host system, an Ubuntu 18.04.3 LTS native Linux system, I ran a guest VM(s) over
the Oracle VirtualBox 6.1 hypervisor application. Okay, performing a
quick lsmod(8) on the host system while filtering for the string vbox reveals the
following:

$ lsmod | grep vbox
vboxnetadp 28672 0
vboxnetflt 28672 1
vboxdrv 479232 3 vboxnetadp,vboxnetflt
$

Recall from our earlier discussion that the third column is the usage count. It's 0 in the
first row but has a value of 3 in the third row. Not only that, but also
the vboxdrv kernel module has two kernel modules listed to its right (after the usage
count column). If any kernel modules show up after the third column, they
represent dependencies; read it this way: the kernel modules displayed on the
right depend on the kernel module on the left.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[230]

So, in the preceding example, the vboxnetadp and vboxnetflt kernel modules
depend on the vboxdrv kernel module. Depend on it in what way? They use data
structures and/or functions (APIs) within the vboxdrv core kernel module, of course!
In general, kernel modules showing up on the right of the third column imply they
are using one or more data structures and/or functions of the kernel module on the
left (leading to an increment in the usage count; this usage count is a good example of
a reference counter (here, it's actually a 32-bit atomic variable), something we delve into
in the last chapter). In effect, the vboxdrv kernel module is akin to a "library" (in a
limited sense, with none of the usual userspace connotations associated with user-
mode libraries except that it provides modular functionality). You can see that, in this
snapshot, its usage count is 3 and the kernel modules that depend on it are stacked on
top of it – literally! (You can see them in the preceding two lines of lsmod(1) output.)
Also, notice that the vboxnetflt kernel module has a positive usage count (1) but no
kernel modules show up on its right; this still implies that something is using it at the
moment, typically a process or thread.

FYI, the Oracle VirtualBox kernel modules we see in this example
are actually the implementation of the VirtualBox Guest Additions.
They are essentially a para-virtualization construct, helping to
accelerate the working of the guest VM. Oracle VirtualBox provides
similar functionality for Windows and macOS hosts as well (as do
all the major virtualization vendors).

Another example of module stacking, as promised: running the powerful LTTng
(Linux Tracing Toolkit next generation) framework enables you to perform detailed
system profiling. The LTTng project installs and uses a fairly large number of kernel
modules (typically 40 or more). Several of these kernel modules are "stacked,"
allowing the project to leverage precisely the "library-like" feature we have been
discussing here.

In the following figure (having installed LTTng on a Ubuntu 18.04.4 LTS system), see
a partial screenshot of the lsmod | grep --color=auto "^lttng" output
pertaining to its kernel modules:

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[231]

Figure 5.3 – Heavy module stacking within the LTTng product

As can be seen, the lttng_tracer kernel module has 35 kernel modules on its right
side, indicating that they are "stacked" upon it, using functionality that it provides
(similarly, the lttng_lib_ring_buffer kernel module has 23 kernel modules that
"depend" on it).

Here's some quick scripting magic to see all kernel modules whose usage count is
non-zero (they often – but not always – have some dependent kernel modules show
up on their right):

lsmod | awk '$3 > 0 {print $0}'

An implication of module stacking: you can only successfully rmmod(8) a kernel
module if its usage count is 0; that is, it is not in use. Thus, for the preceding first
example, we can only remove the vboxdrv kernel module after removing the two
dependent kernel modules that are stacked on it (thus getting the usage count down
to 0).

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[232]

Trying out module stacking
Let's architect a very simple proof-of-concept code for module stacking. To do so, we
will build two kernel modules:

The first we will call core_lkm; its job is to act as a "library" of sorts,
making available to the kernel and other modules a couple of functions
(APIs).
Our second kernel module, user_lkm, is the 'user' (or consumer) of the
'library'; it will simply invoke the functions (and use some data) residing
within the first.

To do so, our pair of kernel modules will need to do the following:

The core kernel module must use the EXPORT_SYMBOL() macro to mark
some data and functions as being exported.
The user kernel module must declare the data and/or functions that it
expects to use as being external to it, via the C extern keyword
(remember, exporting data or functionality merely sets up the appropriate
linkage; the compiler still needs to know about the data and/or functions
being invoked).
With recent toolchains, marking the exported function(s) and data items
as static is allowed. A warning results, though; we don't use the static
keyword for exported symbols.
Edit the custom Makefile to build both kernel modules.

The code follows; first, the core or library kernel module. To (hopefully) make this
more interesting, we will copy the code of one of our previous module's functions
– ch5/min_sysinfo/min_sysinfo.c:llkd_sysinfo2() – into this kernel module
and export it, thus making it visible to our second "user" LKM, which will invoke that
function:

Here, we do not show the full code; you can refer to the book's
GitHub repo for it.

// ch5/modstacking/core_lkm.c
#define pr_fmt(fmt) "%s:%s(): " fmt, KBUILD_MODNAME, __func__
#include <linux/init.h>
#include <linux/module.h>

#define MODNAME "core_lkm"

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[233]

#define THE_ONE 0xfedface
MODULE_LICENSE("Dual MIT/GPL");

int exp_int = 200;
EXPORT_SYMBOL_GPL(exp_int);

/* Functions to be called from other LKMs */
void llkd_sysinfo2(void)
{
[...]
}
EXPORT_SYMBOL(llkd_sysinfo2);

#if(BITS_PER_LONG == 32)
u32 get_skey(int p)
#else // 64-bit
u64 get_skey(int p)
#endif
{
#if(BITS_PER_LONG == 32)
 u32 secret = 0x567def;
#else // 64-bit
 u64 secret = 0x123abc567def;
#endif
 if (p == THE_ONE)
 return secret;
 return 0;
}
EXPORT_SYMBOL(get_skey);
[...]

Next is the user_lkm kernel module, the one "stacked" on top of
the core_lkm kernel module:

// ch5/modstacking/user_lkm.c
#define pr_fmt(fmt) "%s:%s(): " fmt, KBUILD_MODNAME, __func__
#define MODNAME "user_lkm"

#if 1
MODULE_LICENSE("Dual MIT/GPL");
#else
MODULE_LICENSE("MIT");
#endif

extern void llkd_sysinfo2(void);
extern long get_skey(int);
extern int exp_int;

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[234]

/* Call some functions within the 'core' module */
static int __init user_lkm_init(void)
{
#define THE_ONE 0xfedface
 pr_info("%s: inserted\n", MODNAME);
 u64 sk = get_skey(THE_ONE);
 pr_debug("%s: Called get_skey(), ret = 0x%llx = %llu\n",
 MODNAME, sk, sk);
 pr_debug("%s: exp_int = %d\n", MODNAME, exp_int);
 llkd_sysinfo2();
 return 0;
}

static void __exit user_lkm_exit(void)
{
 pr_info("%s: bids you adieu\n", MODNAME);
}
module_init(user_lkm_init);
module_exit(user_lkm_exit);

The Makefile remains largely identical to our earlier kernel modules, except that this
time we need two kernel module objects to be built, as follows:

obj-m := core_lkm.o
obj-m += user_lkm.o

Okay, let's try it out:

First, build the kernel modules:1.

$ make

--- Building : KDIR=/lib/modules/5.4.0-llkd02-kasan/build
ARCH= CROSS_COMPILE= EXTRA_CFLAGS=-DDEBUG ---

make -C /lib/modules/5.4.0-llkd02-kasan/build
M=/home/llkd/booksrc/ch5/modstacking modules
make[1]: Entering directory '/home/llkd/kernels/linux-5.4'
 CC [M] /home/llkd/booksrc/ch5/modstacking/core_lkm.o
 CC [M] /home/llkd/booksrc/ch5/modstacking/user_lkm.o
 [...]
 Building modules, stage 2.
 MODPOST 2 modules
 CC [M] /home/llkd/booksrc/ch5/modstacking/core_lkm.mod.o
 LD [M] /home/llkd/booksrc/ch5/modstacking/core_lkm.ko
 CC [M] /home/llkd/booksrc/ch5/modstacking/user_lkm.mod.o
 LD [M] /home/llkd/booksrc/ch5/modstacking/user_lkm.ko
make[1]: Leaving directory '/home/llkd/kernels/linux-5.4'

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[235]

$ ls *.ko
core_lkm.ko user_lkm.ko
$

Note that we're building our kernel modules against our custom
5.4.0 kernel. Do notice its full version is 5.4.0-llkd02-kasan; this
is deliberate. This is the "debug kernel" that I have built and am
using as a test-bed!

Now, let's perform a quick series of tests to demonstrate the module2.
stacking proof of concept. Let's first do it wrongly: we will first attempt to
insert the user_lkm kernel module before inserting the core_lkm module.

This will fail – why? You will realize that the exported functionality (and
data) that the user_lkm kernel module depends on is not (yet) available
within the kernel. More technically, the symbols will not be located within
the kernel's symbol table as the core_lkm kernel module that has them
hasn't been inserted yet:

$ sudo dmesg -C
$ sudo insmod ./user_lkm.ko
insmod: ERROR: could not insert module ./user_lkm.ko: Unknown
symbol in module
$ dmesg
[13204.476455] user_lkm: Unknown symbol exp_int (err -2)
[13204.476493] user_lkm: Unknown symbol get_skey (err -2)
[13204.476531] user_lkm: Unknown symbol llkd_sysinfo2 (err -2)
$

As expected, as the required (to-be-exported) symbols are unavailable,
insmod(8) fails (the precise error message you see in the kernel log may
vary slightly depending on the kernel version and debug config options
set).

Now, let's do it right:3.

$ sudo insmod ./core_lkm.ko
$ dmesg
[...]
[19221.183494] core_lkm: inserted
$ sudo insmod ./user_lkm.ko
$ dmesg
[...]
[19221.183494] core_lkm:core_lkm_init(): inserted
[19242.669208] core_lkm:core_lkm_init():
/home/llkd/book_llkd/Linux-Kernel-

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[236]

Programming/ch5/modstacking/core_lkm.c:get_skey():100: I've
been called
[19242.669212] user_lkm:user_lkm_init(): inserted
[19242.669217] user_lkm:user_lkm:user_lkm_init(): Called
get_skey(), ret = 0x123abc567def = 20043477188079
[19242.669219] user_lkm:user_lkm_init(): exp_int = 200
[19242.669223] core_lkm:llkd_sysinfo2(): minimal Platform
Info:
 CPU: x86_64, little-endian; 64-bit OS.
$

It works as expected! Check out the modules listing with lsmod(8):4.

$ lsmod | egrep "core_lkm|user_lkm"
user_lkm 20480 0
core_lkm 16384 1 user_lkm
$

Notice how, for the core_lkm kernel module, the usage count column has
incremented to 1 and we can now see that the user_lkm kernel module
depends on the core_lkm one. Recall that the kernel module(s) displayed
in the extreme-right columns of lsmod's output depend on the one in the
extreme-left column.

Now, let's remove the kernel modules. Removing the kernel modules has5.
an ordering dependency as well (just as with insertion). Attempting to
remove the core_lkm one first fails, as obviously, there is another module
still in kernel memory relying upon its code/data; in other words, it's still in
use:

$ sudo rmmod core_lkm
rmmod: ERROR: Module core_lkm is in use by: user_lkm
$

Note that if the modules are installed onto the system, then you
could use the modprobe -r <modules...> command to remove
all related modules; we cover this topic in the Auto-loading modules
on system boot section.

The preceding rmmod(8) failure message is self-explanatory. So, let's do it6.
right:

$ sudo rmmod user_lkm core_lkm
$ dmesg
[...]
 CPU: x86_64, little-endian; 64-bit OS.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[237]

[19489.717265] user_lkm:user_lkm_exit(): bids you adieu
[19489.732018] core_lkm:core_lkm_exit(): bids you adieu
$

There, done!

You will notice that in the code of the user_lkm kernel module, the license we release
it under is in a conditional #if statement:

#if 1
MODULE_LICENSE("Dual MIT/GPL");
#else
MODULE_LICENSE("MIT");
#endif

We can see that it's released (by default) under the Dual MIT/GPL license; well, so
what? Think about it: in the code of the core_lkm kernel module, we have the
following:

int exp_int = 200;
EXPORT_SYMBOL_GPL(exp_int);

The exp_int integer is only visible to those kernel modules that run under a GPL
license. So, try this out: change the #if 1 statement in core_lkm to #if 0, thus now
releasing it under an MIT-only license. Now, rebuild and retry. It fails at the build
stage itself:

$ make
[...]
Building for: kver=5.4.0-llkd01 ARCH=x86 CROSS_COMPILE= EXTRA_CFLAGS=-
DDEBUG
 Building modules, stage 2.
 MODPOST 2 modules
FATAL: modpost: GPL-incompatible module user_lkm.ko uses GPL-only
symbol 'exp_int'
[...]
$

The license does matter! Before we wind up this section, here's a quick list of things
that can go wrong with module stacking; that is, things to check:

The wrong order of kernel modules specified at insertion/at removal
Attempting to insert an exported routine that is already in kernel memory –
a namespace collision issue:

$ sudo insmod ./min_sysinfo.ko
[...]

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[238]

$ cd ../modstacking ; sudo insmod ./core_lkm.ko
insmod: ERROR: could not insert module ./core_lkm.ko: Invalid
module format
$ dmesg
[...]
[32077.823472] core_lkm: exports duplicate symbol
llkd_sysinfo2 (owned by min_sysinfo)
$ sudo rmmod min_sysinfo
$ sudo insmod ./core_lkm.ko # now it's ok

License issues caused by the usage of the EXPORT_SYMBOL_GPL() macro

Always look up the kernel log (with dmesg(1) or journalctl(1)).
It often helps to show what actually went awry.

So, let's summarize: for emulating a library-like feature within the kernel module
space, we explored two techniques:

The first technique we used works by linking multiple source files together into
a single kernel module.
This is as opposed to the module stacking technique, where we actually build
multiple kernel modules and "stack" them on top of each other.

Not only does the first technique work well, it also has these advantages:

We do not have to explicitly mark (via EXPORT_SYMBOL()) every
data/function symbol that we use as exported.
The functions are only available to the kernel module to which it is actually
linked to (and not the entire kernel, including other modules). This is a good
thing! All this at the cost of slightly tweaking the Makefile – well worth it.

A downside to the "linking" approach: when linking multiple files, the size of the
kernel module can grow to be large.

This concludes your learning a powerful feature of kernel programming – the ability
to link multiple source files together to form one kernel module, and/or leveraging
the module stacking design, both allowing you to develop more sophisticated kernel
projects.

In the following section, we dive into the details of how you can pass parameters to a
kernel module.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[239]

Passing parameters to a kernel module
A common debugging technique is to instrument your code; that is, insert prints at
appropriate points such that you can follow the path the code takes. Within a kernel
module, of course, we would use the versatile printk function for this purpose. So,
let's say we do something like the following (pseudo-code):

#define pr_fmt(fmt) "%s:%s():%d: " fmt, KBUILD_MODNAME, __func__,
__LINE__
[...]
func_x() {
 pr_debug("At 1\n");
 [...]
 while (<cond>) {
 pr_debug("At 2: j=0x%x\n", j);
 [...]
 }
 [...]
}

Okay, great. But we don't want the debug prints to appear in a production (or release)
version. That's precisely why we're using the pr_debug() : it emits a printk only
when the symbol DEBUG is defined! Indeed, but what if, interestingly, our customer is
an engineering customer and wants to dynamically turn on or turn off these debug prints?
There are several approaches you might take; one is as in the following pseudo-code:

static int debug_level; /* will be init to zero */
func_x() {
 if (debug_level >= 1)
 pr_debug("At 1\n");
 [...]
 while (<cond>) {
 if (debug_level >= 2)
 pr_debug("At 2: j=0x%x\n", j);
 [...]
 }
 [...]
}

Ah, that's nice. So, what we're getting at really is this: what if we can make
the debug_level module variable a parameter to our kernel module? Then, a powerful
thing, the user of your kernel module has control over which debug messages appear
or not.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[240]

Declaring and using module parameters
Module parameters are passed to a kernel module as name=value pairs at module
insertion (insmod) time. For example, assume we have a module parameter named
mp_debug_level; then, we could pass its value at insmod(8) time, like this:

sudo insmod modparams1.ko mp_debug_level=2

Here, the mp prefix stands for module parameter. It's not required to
name it that way, of course, it is pedantic, but might just makes it a
bit more intuitive.

That would be powerful. Now, the end user can decide at exactly what verbosity they
want the debug-level messages. We can even easily arrange for the default value to be
0.

You might wonder: kernel modules have no main() function and hence no
conventional (argc, argv) parameter list, so how exactly, then, do you pass
parameters along? The fact is, it's a bit of linker trickery; just do this: declare your
intended module parameter as a global (static) variable, then specify to the build
system that it's to be treated as a module parameter by employing
the module_param() macro.

This is easy to see with our first module parameter's demo kernel module (as usual,
the full source code and Makefile can be found in the book's GitHub repo):

// ch5/modparams/modparams1/modparams1.c
[...]
/* Module parameters */
static int mp_debug_level;
module_param(mp_debug_level, int, 0660);
MODULE_PARM_DESC(mp_debug_level,
"Debug level [0-2]; 0 => no debug messages, 2 => high verbosity");

static char *mp_strparam = "My string param";
module_param(mp_strparam, charp, 0660);
MODULE_PARM_DESC(mp_strparam, "A demo string parameter");

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[241]

In the static int mp_debug_level; statement, there is no harm
in changing it to static int mp_debug_level = 0; , thus
explicitly initializing the variable to 0, right? Well, no: the kernel's
scripts/checkpatch.pl script output reveals that this is not
considered good coding style by the kernel community:

ERROR: do not initialise statics to 0
#28: FILE: modparams1.c:28:
+static int mp_debug_level = 0;

In the preceding code block, we have declared two variables to be module parameters
via the module_param() macro. The module_param() macro takes three
parameters:

The first parameter: the variable name (which we would like treated as a
module parameter). This should be declared using the static qualifier.
The second parameter: its data type.
The third parameter: permissions (really, its visibility via sysfs; this is
explained as follows).

The MODULE_PARM_DESC() macro allows us to "describe" what the parameter
represents. Think about it, this is how you inform the end user of the kernel module
(or driver) and what parameters are actually available. The lookup is performed via
the modinfo(8) utility. Furthermore, you can specifically print only the information
on parameters to a module by using the -p option switch, as shown:

cd <booksrc>/ch5/modparams/modparams1
make
$ modinfo -p ./modparams1.ko
parm: mp_debug_level:Debug level [0-2]; 0 => no debug
messages, 2 => high verbosity (int)
parm: mp_strparam:A demo string parameter (charp)
$

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[242]

The modinfo(8) output displays available module parameters, if any. Here, we can
see that our modparams1.ko kernel module has two parameters, their name,
description, and data type (within parentheses; charp is character pointer, a string) is
shown. Right, let's now give our demo kernel module a quick spin:

sudo dmesg -C
sudo insmod ./modparams1.ko
dmesg
[42724.936349] modparams1: inserted
[42724.936354] module parameters passed: mp_debug_level=0
mp_strparam=My string param

Here, we see from the dmesg(1) output that, as we did not explicitly pass any kernel
module parameters, the module variables obviously retain their default (original)
values. Let's redo this, this time passing explicit values to the module parameters:

sudo rmmod modparams1
sudo insmod ./modparams1.ko mp_debug_level=2 mp_strparam=\"Hello
modparams1\"
$ dmesg
[...]
[42734.162840] modparams1: removed
[42766.146876] modparams1: inserted
[42766.146880] module parameters passed: mp_debug_level=2
mp_strparam=Hello modparams1
$

It works as expected. Now that we've seen how to declare and pass along some
parameters to a kernel module, let's look at retrieving or even modifying them at
runtime.

Getting/setting module parameters after
insertion
Let's look carefully at the module_param() macro usage in our
preceding modparams1.c source file again:

module_param(mp_debug_level, int, 0660);

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[243]

Notice the third parameter, the permissions (or mode): it's 0660 (which, of course, is an
octal number, implying read-write access for the owner and group and no access for
others). It's a bit confusing until you realize that if the permissions parameter is
specified as non-zero, pseudo-file(s) get created under the sysfs filesystem,
representing the kernel module parameter(s), here: /sys/module/<module-
name>/parameters/:

sysfs is usually mounted under /sys. Also, by default, all pseudo-
files will have the owner and group as root.

So, for our modparams1 kernel module (assuming it's loaded into kernel1.
memory), let's look them up:

$ ls /sys/module/modparams1/
coresize holders/ initsize initstate notes/
parameters/ refcnt sections/ srcversion taint uevent
version
$ ls -l /sys/module/modparams1/parameters/
total 0
-rw-rw---- 1 root root 4096 Jan 1 17:39 mp_debug_level
-rw-rw---- 1 root root 4096 Jan 1 17:39 mp_strparam
$

Indeed, there they are! Not only that, the real beauty of it is that these
"parameters" can now be read and written at will, at any time (though only
with root permission, of course)!

Check it out:2.

$ cat /sys/module/modparams1/parameters/mp_debug_level
cat: /sys/module/modparams1/parameters/mp_debug_level:
Permission denied
$ sudo cat /sys/module/modparams1/parameters/mp_debug_level
[sudo] password for llkd:
2

Yes, the current value of our mp_debug_level kernel module parameter is
indeed 2.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[244]

Let's dynamically change it to 0, implying that no "debug" messages will be3.
emitted by the modparams1 kernel module:

$ sudo bash -c "echo 0 >
/sys/module/modparams1/parameters/mp_debug_level"
$ sudo cat /sys/module/modparams1/parameters/mp_debug_level
0

Voilà, done. You can similarly get and/or set the mp_strparam parameter; we will
leave it to you to try this as a simple exercise. This is powerful stuff: you could write
simple scripts to control a device (or whatever) behavior via kernel module
parameters, get (or cut off) debug info, and so on; the possibilities are quite endless.

Actually, coding the third parameter to module_param() as a literal octal number
(such as 0660) is not considered best programming practice in some circles. Specify
the permissions of the sysfs pseudo-file via appropriate macros (specified
in include/uapi/linux/stat.h), for example:

module_param(mp_debug_level, int, S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP);

However, having said this, our "better" Makefile's checkpatch target (which, of course,
invokes the kernel's scripts/checkpatch.pl "coding-style" Perl script checker)
politely informs us that simply using octal permissions is better:

$ make checkpatch
[...]
checkpatch.pl: /lib/modules/<ver>/build//scripts/checkpatch.pl --no-
tree -f *.[ch]
[...]
WARNING: Symbolic permissions 'S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP' are
not preferred. Consider using octal permissions '0660'.
 #29: FILE: modparams1.c:29:
 +module_param(mp_debug_level, int, S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP);

So, the kernel community disagrees. Hence, we will just use the "usual" octal number
notation of 0660.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[245]

Module parameter data types and validation
In our preceding simple kernel module, we set up two parameters of the integer and
string data types (charp). What other data types can be used? Several, as it turns out:
the moduleparam.h include file reveals all (within a comment, duplicated as
follows):

// include/linux/moduleparam.h
[...]
 * Standard types are:
 * byte, short, ushort, int, uint, long, ulong
 * charp: a character pointer
 * bool: a bool, values 0/1, y/n, Y/N.
 * invbool: the above, only sense-reversed (N = true).

You can even define your own data types, if required. Usually, though, the standard
types more than suffice.

Validating kernel module parameters
All kernel module parameters are optional by default; the user may or may not
explicitly pass them. But what if our project requires that the user must explicitly pass a
value for a given kernel module parameter? We address this here: let's enhance our
previous kernel module, creating another (ch5/modparams/modparams2), the key
difference being that we set up an additional parameter called control_freak. Now,
we require that the user must pass this parameter along at module insertion time:

Let's set up the new module parameter in code:1.

static int control_freak;
module_param(control_freak, int, 0660);
MODULE_PARM_DESC(control_freak, "Set to the project's control
level [1-5]. MANDATORY");

How can we achieve this "mandatory passing"? Well, it's a bit of a hack2.
really: just check at insertion time whether the value is the default (0, here).
If so, then abort with an appropriate message (we also do a simple validity
check to ensure that the integer passed is within a given range). Here's the
init code of ch5/modparams/modparams2/modparams2.c:

static int __init modparams2_init(void)
{
 pr_info("%s: inserted\n", OUR_MODNAME);
 if (mp_debug_level > 0)

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[246]

 pr_info("module parameters passed: "
 "mp_debug_level=%d mp_strparam=%s\n
control_freak=%d\n",
 mp_debug_level, mp_strparam, control_freak);

 /* param 'control_freak': if it hasn't been passed
(implicit guess),
 * or is the same old value, or isn't within the right
range,
 * it's Unacceptable! :-)
 */
 if ((control_freak < 1) || (control_freak > 5)) {
 pr_warn("%s: Must pass along module parameter"
 " 'control_freak', value in the range [1-5];
aborting...\n",
 OUR_MODNAME);
 return -EINVAL;
 }
 return 0; /* success */
}

Also, as a quick demo, notice how we emit a printk, showing the module3.
parameter values only if mp_debug_level is positive.
Finally, on this topic, the kernel framework provides a more rigorous way4.
to "get/set" kernel (module) parameters and perform validity checking on
them via the module_parm_cb() macro (cb for callbacks). We will not
delve into this here; I refer you to a blog article mentioned in the Further
reading document for details on using it.

Now, let's move on to how (and why) we can override a module parameter's name.

Overriding the module parameter's name
To explain this feature, let's take an example from the (5.4.0) kernel source tree: the
direct mapping buffered I/O library driver, drivers/md/dm-bufio.c, has a need to
use the dm_bufio_current_allocated variable as a module parameter. However,
this name is really that of an internal variable and is not highly intuitive to a user of
this driver. The authors of this driver would much prefer to use another name
– current_allocated_bytes – as an alias or name override. Precisely this can be
achieved via the module_param_named() macro, overriding and completely
equivalent to the internal variable name, as follows:

// drivers/md/dm-bufio.c
[...]

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[247]

module_param_named(current_allocated_bytes,
dm_bufio_current_allocated, ulong, S_IRUGO);
MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by
the cache");

So, when the user performs insmod on this driver, they can do stuff like the
following:

sudo insmod <path/to/>dm-bufio.ko current_allocated_bytes=4096 ...

Internally, the actual variable, dm_bufio_current_allocated, will be assigned the
value 4096.

Hardware-related kernel parameters
For security reasons, module or kernel parameters that specify hardware-specific
values have a separate macro – module_param_hw[_named|array](). David
Howells submitted a patch series for these new hardware parameters kernel support
on 1 December 2016. The patch email [https:/ /lwn. net/Articles/ 708274/]
mentions the following:

Provided an annotation for module parameters that specify hardware
parameters (such as io ports, iomem addresses, irqs, dma channels,
fixed
dma buffers and other types).

This will enable such parameters to be locked down in the core
parameter
parser for secure boot support. [...]

That concludes our discussion on kernel module parameters. Let's move on to a
peculiar aspect – that of floating-point usage within the kernel.

https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/
https://lwn.net/Articles/708274/

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[248]

Floating point not allowed in the kernel
Years ago, when working on a temperature sensor device driver, I had an amusing
experience (though it wasn't quite so amusing at the time). Attempting to express a
temperature value in millidegrees Celsius as a "regular" temperature value in degrees
Celsius, I did something like the following:

double temp;
[... processing ...]
temp = temp / 1000.0;
printk(KERN_INFO "temperature is %.3f degrees C\n", temp);

It all went bad from there!

The venerable LDD (Linux Device Drivers, by Corbet, Rubini, and G-K-Hartman) book
pointed out my error – floating-point (FP) arithmetic is not allowed in kernel space!
It's a conscious design decision – saving processor (FP) state, turning on the FP unit,
working on and then turning off and restoring the FP state is just not considered a
worthwhile thing to do while in the kernel. The kernel (or driver) developer is well
advised to just not attempt performing FP work while in kernel space.

Well, then, you ask, how can you do the (in my example) temperature conversion?
Simple: pass the integer millidegrees Celsius value to userspace and perform the FP
work there!

Having said that, there is apparently a way to force the kernel to perform FP: put
your floating-point code between
the kernel_fpu_begin() and kernel_fpu_end() macros. There are a few places
where precisely this technique is used within the kernel code base (typically, some
code paths covering crypto/AES, CRC, and so on). Regardless, the recommendation is
that the typical module (or driver) developer performs only integer arithmetic within the
kernel.

Nevertheless, to test this whole scenario (always remember, the empirical approach –
actually trying things out – is the only realistic way forward!), we write a simple kernel
module that attempts to perform some FP work. The key part of the code is shown
here:

// ch5/fp_in_kernel/fp_in_kernel.c
static double num = 22.0, den = 7.0, mypi;
static int __init fp_in_lkm_init(void)
{
 [...]
 kernel_fpu_begin();

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[249]

 mypi = num/den;
 kernel_fpu_end();
#if 1
 pr_info("%s: PI = %.4f = %.4f\n", OURMODNAME, mypi, num/den);
#endif
 return 0; /* success */
}

It actually works, until we attempt to display the FP value via printk()! At that point, it
goes quite berserk. See the following screenshot:

Figure 5.4 – The output of WARN_ONCE() when we try and print an FP number in kernel space

The key line is Please remove unsupported %f in format string.

This tells us the story. The system does not actually crash or panic as this is a mere
WARNING, spat out to the kernel log via the WARN_ONCE() macro. Do realize, though,
that on a production system, the /proc/sys/kernel/panic_on_warn pseudo-
file will, in all probability, be set to the value 1, causing the kernel to (quite rightly)
panic.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[250]

The section in the preceding screenshot (Figure 5.3) beginning with
Call Trace: is, of course, a peek into the current state of the kernel-
mode stack of the process or thread that was "caught" in the
preceding WARN_ONCE() code path (hang on, you will learn key
details regarding the user- and kernel-mode stacks and so on in
Chapter 6, Kernel Internals Essentials – Processes and Threads).
Interpret the kernel stack by reading it in a bottom-up fashion; so
here, the do_one_initcall function called fp_in_lkm_init
(which belongs to the kernel module in square
brackets, [fp_in_lkm_init]), which then calls printk(), which
then ends up causing all kinds of trouble as it attempts to print a FP
(floating point) quantity!

The moral is clear: avoid using floating-point math within kernel space. Let's now move on
to the topic of how you can install and auto-load kernel modules on system startup.

Auto-loading modules on system boot
Until now, we have written simple "out-of-tree" kernel modules that reside in their
own private directories and have to be manually loaded up, typically via
the insmod(8) or modprobe(8) utilities. In most real-world projects and products,
you will require your out-of-tree kernel module(s) to be auto-loaded at boot. This section
covers how you can achieve this.

Consider we have a kernel module named foo.ko. We assume we have access to the
source code and Makefile. In order to have it auto-load on system boot, you need to
first install the kernel module to a known location on the system. To do so, we expect
that the Makefile for the module contains an install target, typically:

install:
 make -C $(KDIR) M=$(PWD) modules_install

This is not something new; we have been placing the install target within the
Makefile's of our demo kernel modules.

To demonstrate this "auto-load" procedure, we have shown the set of steps to follow
in order to actually install and auto-load on boot our ch5/min_sysinfo kernel module:

First, change directory to the module's source directory:1.

cd <...>/ch5/min_sysinfo

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[251]

Next, it's important to first build the kernel module (with make), and, on2.
success, install it (as you'll soon see, our 'better' Makefile makes the process
simpler by guaranteeing that the build is done first, followed by the install
and the depmod):

make && sudo make install

Assuming it builds, the sudo make install command then installs the
kernel module here, /lib/modules/<kernel-ver>/extra/, as expected
(do see the following info box and tips as well):

$ cd <...>/ch5/min_sysinfo
$ make <-- ensure it's first built 'locally'
 generating the min_sysinfo.ko kernel module
object
[...]
$ sudo make install
Building for: KREL= ARCH= CROSS_COMPILE= EXTRA_CFLAGS=-DDEBUG
make -C /lib/modules/5.4.0-llkd01/build
M=<...>/ch5/min_sysinfo modules_install
make[1]: Entering directory '/home/llkd/kernels/linux-5.4'
 INSTALL <...>/ch5/min_sysinfo/min_sysinfo.ko
 DEPMOD 5.4.0-llkd01
make[1]: Leaving directory '/home/llkd/kernels/linux-5.4'
$ ls -l /lib/modules/5.4.0-llkd01/extra/
total 228
-rw-r--r-- 1 root root 232513 Dec 30 16:23 min_sysinfo.ko
$

During sudo make install, it's possible you might see (non-fatal)
errors regarding SSL; they can be safely ignored. They indicate that
the system failed to "sign" the kernel module. More on this in the
note on security coming up.
Also, just in case you find that sudo make install fails, try the
following approaches:
a) Switch to a root shell (sudo -s) and within it, run the make ;
make install commands.
b) A useful reference: Makefile: installing external Linux kernel module,
StackOverflow, June 2016 (https:/ / unix. stackexchange. com/
questions/ 288540/ makefile- installing- external- linux- kernel-
module).

https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module
https://unix.stackexchange.com/questions/288540/makefile-installing-external-linux-kernel-module

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[252]

Another module utility, called depmod(8), is then typically invoked by3.
default within sudo make install (as can be seen from the preceding
output). Just in case (for whatever reason) this has not occurred, you can
always manually invoke depmod: its job is essentially to resolve module
dependencies (see its man page for details): sudo depmod. Once you install
the kernel module, you can see the effect of depmod(8) with its --dry-
run option switch:

$ sudo depmod --dry-run | grep min_sysinfo
extra/min_sysinfo.ko:
alias symbol:lkdc_sysinfo2 min_sysinfo
alias symbol:lkdc_sysinfo min_sysinfo
$

Auto-load the kernel module on boot: One way is create4.
the /etc/modules-load.d/<foo>.conf config file (of course, you will
need root access to create this file); the simple case: just put the kernel
module's foo name inside, that's it. Any line starting with a # character is
treated as a comment and ignored. For our min_sysinfo example, we
have the following:

$ cat /etc/modules-load.d/min_sysinfo.conf
Auto load kernel module for LLKD book: ch5/min_sysinfo
min_sysinfo
$

FYI, another (even simpler) way to inform systemd to load up our
kernel module is to enter the name of the module into the
(preexisting) /etc/modules-load.d/modules.conf file.

Reboot the system with sync; sudo reboot.5.

Once the system is up, use lsmod(8) and look up the kernel log
(with dmesg(1), perhaps). You should see relevant info pertaining to the kernel
module loading up (in our example, min_sysinfo):

[... system boots up ...]

$ lsmod | grep min_sysinfo
min_sysinfo 16384 0
$ dmesg | grep -C2 min_sysinfo
[...]
[2.395649] min_sysinfo: loading out-of-tree module taints kernel.
[2.395667] min_sysinfo: module verification failed: signature and/or

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[253]

required key missing - tainting kernel
[2.395814] min_sysinfo: inserted
[2.395815] lkdc_sysinfo(): minimal Platform Info:
 CPU: x86_64, little-endian; 64-bit OS.
$

There, it's done: our min_sysinfo kernel module has indeed been auto-loaded into
kernel space on boot!

As you just learned, you must first build your kernel module and then perform the
install; to help automate this, our 'better' Makefile has the following in it's module
installation install target:

// ch5/min_sysinfo/Makefile
[...]
install:
 @echo
 @echo "--- installing ---"
 @echo " [First, invoke the 'make']"
 make
 @echo
 @echo " [Now for the 'sudo make install']"
 sudo make -C $(KDIR) M=$(PWD) modules_install
 sudo depmod

It ensures that, first, the build is done, followed by the install and (explicitly) the
depmod(8).

What if your auto-loaded kernel module requires some (module) parameters passed
at load time? There are two ways to assure that this happens: via a so-called
modprobe config file (under /etc/modprobe.d/) or, if the module's built-in to the
kernel, via the kernel command line.

Here we show the first way: simply setup your modprobe configuration file (as an
example here, we use the name mykmod as the name of our LKM; again, you require
root access to create this file): /etc/modprobe.d/mykmod.conf; in it, you can pass
parameters like this:

options <module-name> <parameter-name>=<value>

As an example, the /etc/modprobe.d/alsa-base.conf modprobe config file on
my x86_64 Ubuntu 20.04 LTS system contains the lines (among several others):

Ubuntu #62691, enable MPU for snd-cmipci
options snd-cmipci mpu_port=0x330 fm_port=0x388

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[254]

A few more points on kernel module auto-loading related items follow.

Module auto-loading – additional details
Once a kernel module has been installed on a system (via sudo make install, as
shown previously), you can also insert it into the kernel interactively (or via a script)
simply by using a "smarter" version of the insmod(8) utility, called modprobe(8).
For our example, we could first rmmod(8) the module and then do the following:

sudo modprobe min_sysinfo

As an interesting aside, consider the following. In cases where there are several kernel
module objects to load (for example, the module stacking design), how does modprobe
know the order in which to load up kernel modules? When performing a build locally,
the build process generates a file called modules.order. It tells utilities such as
modprobe the order in which to load up kernel modules such that all dependencies
are resolved. When kernel modules are installed into the kernel (that is, into
the /lib/modules/$(uname -r)/extra/, or similar, location), the depmod(8)
utility generates a /lib/modules/$(uname -r)/modules.dep file. This contains
the dependency information – it specifies whether a kernel module depends on
another. Using this information, modprobe then loads them up in the required order.
To flesh this out, let's install our module stacking example:

$ cd <...>/ch5/modstacking
$ make && sudo make install
[...]
$ ls -l /lib/modules/5.4.0-llkd01/extra/
total 668K
-rw-r--r-- 1 root root 218K Jan 31 08:41 core_lkm.ko
-rw-r--r-- 1 root root 228K Dec 30 16:23 min_sysinfo.ko
-rw-r--r-- 1 root root 217K Jan 31 08:41 user_lkm.ko
$

Clearly, the two kernel modules from our module stacking example (core_lkm.ko
and user_lkm.ko) are now installed under the expected
location, /lib/modules/$(uname -r)/extra/. Now, check this out:

$ grep user_lkm /lib/modules/5.4.0-llkd01/* 2>/dev/null
/lib/modules/5.4.0-llkd01/modules.dep:extra/user_lkm.ko:
extra/core_lkm.ko
Binary file /lib/modules/5.4.0-llkd01/modules.dep.bin matches
$

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[255]

The first line of output after grep is relevant: depmod has arranged for the
modules.dep file to show that the extra/user_lkm.ko kernel module depends on
the extra/core_lkm.ko kernel module (via the <k1.ko>: <k2.ko>... notation,
implying that the k1.ko module depends on the k2.ko module). Thus, modprobe,
seeing this, loads them in the required order, avoiding any issues.

(FYI, while on this topic, the generated Module.symvers file has information on all
exported symbols.)

Next, recall the new(ish) init framework on Linux, systemd. The fact is, on modern
Linux systems, it's actually systemd that takes care of auto-loading kernel modules at
system boot, by parsing the content of files such as /etc/modules-load.d/* (the
systemd service responsible for this is systemd-modules-load.service(8). For
details, refer to the man page on modules-load.d(5)).

Conversely, sometimes you might find that a certain auto-loaded kernel module is
misbehaving – causing lockups or delays, or it simply doesn't work – and so you
want to definitely disable loading it. This can be done by blacklisting the module. You
can specify this either on the kernel command line (convenient when all else fails!) or
within the (previously mentioned) /etc/modules-load.d/<foo>.conf config
file. On the kernel command line, via module_blacklist=mod1,mod2,..., the
kernel docs shows us the syntax/explanation:

module_blacklist= [KNL] Do not load a comma-separated list of
 modules. Useful for debugging problem
modules.

You can look up the current kernel command line by doing cat
/proc/cmdline.

While on the topic of the kernel command line, several other useful options exist,
enabling us to use the kernel's help for debugging issues concerned with kernel
initialization. As an example, among several others, the kernel provides the following
parameters in this regard (source: https:/ / www.kernel. org/ doc/html/ latest/
admin-guide/kernel- parameters. html):

debug [KNL] Enable kernel debugging (events log level).
[...]
initcall_debug [KNL] Trace initcalls as they are executed. Useful
 for working out where the kernel is dying during
 startup.
[...]

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[256]

ignore_loglevel [KNL] Ignore loglevel setting - this will print /all/
 kernel messages to the console. Useful for
 debugging. We also add it as printk module
 parameter, so users could change it dynamically,
 usually by
/sys/module/printk/parameters/ignore_loglevel.

FYI, and as mentioned earlier in this chapter, there is an alternate framework for
third-party kernel module auto-rebuilding, called Dynamic Kernel Module Support
(DKMS).

The Further reading document for this chapter also provides some helpful links. In
conclusion, auto-loading kernel modules into memory on system startup is a useful
and often required functionality in a product. Building high-quality products requires
a keen understanding of, and the knowledge to build in, security; that's the topic of
the next section.

Kernel modules and security – an
overview
An ironic reality is that enormous efforts spent on improving user space security
considerations have resulted in a pretty large payoff over recent years. A malicious
user performing a viable Buffer Overflow (BoF) attack was well within the realms of
possibility a couple of decades back, but today is really hard to do. Why? Because
there are many layers of beefed-up security mechanisms to prevent many of these
attack classes.

To quickly name a few countermeasures: compiler protections (-
fstack-protector[...],

-Wformat-security, -D_FORTIFY_SOURCE=2, partial/full
RELRO, better sanity and security checker tools (checksec.sh, the
address sanitizers, paxtest, static analysis tools, and so on), secure
libraries, hardware-level protection mechanisms (NX, SMEP, SMAP,
and so on), [K]ASLR, better testing (fuzzing), and so on.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[257]

The irony is that kernel-space attacks have become increasingly common over the last
few years! It has been demonstrated that revealing even a single valid kernel (virtual)
address (and it's corresponding symbol) to a clever attacker can allow her to figure
the location of some key internal kernel structures, paving the way to carry out all
kinds of privilege escalation (privesc) attacks. Thus, even revealing a single innocent-
looking piece of kernel information (such as a kernel address and the symbol it's
associated with) is a potential information leak (or info-leak) and must be prevented
on production systems. Coming up, we will enumerate and briefly describe a few
security features that the Linux kernel provides. However, ultimately, the kernel
developer – you! – have a large role to play: writing secure code, to begin with! Using
our 'better' Makefile is a great way to get started - several targets within it are
concerned with security (all the static analysis ones, for example).

Proc filesystem tunables affecting the system
log
We directly refer you to the man page on proc(5) – very valuable! – to glean
information on these two security-related tunables:

dmesg_restrict

kptr_restrict

First, dmesg_restrict:

dmesg_restrict
/proc/sys/kernel/dmesg_restrict (since Linux 2.6.37)
 The value in this file determines who can see kernel syslog contents.
A value of 0 in this file imposes no restrictions. If the value is 1,
only privileged users can read the kernel syslog. (See syslog(2) for
more details.) Since Linux 3.4, only users with the CAP_SYS_ADMIN
capability may change the value in this file.

The default (on both our Ubuntu and Fedora platforms) is 0:

$ cat /proc/sys/kernel/dmesg_restrict
0

Linux kernels use the powerful fine-granularity POSIX capabilities model.
The CAP_SYS_ADMIN capability essentially is a catch-all for what is traditionally root
(superuser/sysadmin) access. The CAP_SYSLOG capability gives the process (or thread)
the capability to perform privileged syslog(2) operations.

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[258]

As already mentioned, "leaking" a kernel address and the symbol it's associated with
might result in an info-leak-based attack. To help prevent these, kernel and module
authors are advised to always print kernel addresses using a new printf-style
format: instead of the familiar %p or %px to print a kernel address, you should use the
newer %pK format specifier for printing an address. (Using the %px format specifier
ensures the actual address is printed; you'll want to avoid this in production). How
does this help? Read on...

The kptr_restrict tunable (2.6.38 onward) affects the printk() output when
printing kernel addresses; doing printk("&var = %pK\n", &var);
and not the good old printk("&var = %p\n", &var); is considered a security
best practice. Understanding how exactly the kptr_restrict tunable works is key
to this:

kptr_restrict
/proc/sys/kernel/kptr_restrict (since Linux 2.6.38)
 The value in this file determines whether kernel addresses are
exposed via /proc files and other interfaces. A value of 0 in this
file imposes no restrictions. If the value is 1, kernel pointers
printed using the %pK format specifier will be replaced with zeros
unless the user has the CAP_SYSLOG capability. If the value is 2,
kernel pointers printed using the %pK format specifier will be
replaced with zeros regardless of the user's capabilities. The initial
default value for this file was 1, but the default was changed to 0 in
Linux 2.6.39. Since Linux 3.4, only users with the CAP_SYS_ADMIN
capability can change the value in this file.

The default (on both our recent-enough Ubuntu and Fedora platforms) is 1:

$ cat /proc/sys/kernel/kptr_restrict
1

You can – rather, must – change these tunables on production systems to a secure
value (1 or 2) for security. Of course, security measures only work when developers
make use of them; as of the 5.4.0 Linux kernel, there is a total of (just!) 14 uses of
the %pK format specifier in the entire Linux kernel code base (out of a total of about
5,200-odd uses of printk employing the %p, and around 230 explicitly employing the
%px format specifier).

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[259]

a) As procfs is, of course, a volatile filesystem, you can always
make the changes permanent by using the sysctl(8) utility with
the -w option switch (or by directly updating
the /etc/sysctl.conf file).
b) For the purpose of debugging, if you must print an actual kernel
(unmodified) address, you're advised to use the %px format
specifier; do remove these prints on production systems!
c) Detailed kernel documentation on printk format specifiers can
be found at https:/ / www.kernel. org/doc/ html/ latest/ core- api/
printk- formats. html#how- to- get-printk- format- specifiers-
right; do browse through it.

With the advent of hardware-level defects in early 2018 (the now well-
known Meltdown, Spectre, and other processor speculation security issues), there was
a sense of renewed urgency in detecting information leakage, thus enabling developers
and administrators to block them off.

A useful Perl script, scripts/leaking_addresses.pl, was
released in mainline in 4.14 (in November 2017; I am happy to have
lent a hand in this important work: https:/ / github. com/ torvalds/
linux/ commit/ 1410fe4eea22959bd31c05e4c1846f1718300bde), with
more checks being made for detecting leaking kernel addresses.

The cryptographic signing of kernel modules
Once a malicious attacker gets a foothold on a system, they will typically attempt
some kind of privesc vector in order to gain root access. Once this is achieved, the
typical next step is to install a rootkit: essentially, a collection of scripts and kernel
modules that will pretty much take over the system (by "hijacking" system calls,
setting up backdoors and keyloggers, and so on).

Of course, it's not easy – the security posture of a modern production quality Linux
system, replete with Linux Security Modules (LSMs), and so on, means it's not at all
a trivial thing to do, but for a skilled and motivated attacker, anything's possible.
Assuming they have a sufficiently sophisticated rootkit installed, the system is now
considered compromised.

https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://www.kernel.org/doc/html/latest/core-api/printk-formats.html#how-to-get-printk-format-specifiers-right
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde
https://github.com/torvalds/linux/commit/1410fe4eea22959bd31c05e4c1846f1718300bde

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[260]

An interesting idea is this: even with root access, do not allow insmod(8) (or
modprobe(8), or even the underlying [f]init_module(2) system calls) to insert
kernel modules into kernel address space unless they are cryptographically signed
with a security key that is in the kernel's keyring. This powerful security feature was
introduced with the 3.7 kernel (the relevant commit is here: https:/ /git. kernel.
org/pub/scm/linux/ kernel/ git/ torvalds/ linux. git/ commit/ ?id=
106a4ee258d14818467829bf0e12aeae14c16cd7).

The details on performing cryptographic signing of kernel modules
is beyond the scope of this book; you can refer to the official kernel
documentation here: https:/ /www. kernel. org/ doc/ html/ latest/
admin- guide/ module- signing. html.

A few relevant kernel configuration options concerned with this feature are
CONFIG_MODULE_SIG, CONFIG_MODULE_SIG_FORCE, CONFIG_MODULE_SIG_ALL, and
so on. To help understand what exactly this means, see the Kconfig 'help' section
for the first of them, as follows (from init/Kconfig):

config MODULE_SIG
 bool "Module signature verification"
 depends on MODULES
 select SYSTEM_DATA_VERIFICATION
 help
 Check modules for valid signatures upon load: the signature is
simply
 appended to the module. For more information see
 <file:Documentation/admin-guide/module-signing.rst>. Note that this
 option adds the OpenSSL development packages as a kernel build
 dependency so that the signing tool can use its crypto library.

 !!!WARNING!!! If you enable this option, you MUST make sure that the
 module DOES NOT get stripped after being signed. This includes the
 debuginfo strip done by some packagers (such as rpmbuild) and
 inclusion into an initramfs that wants the module size reduced

The MODULE_SIG_FORCE kernel config is a Boolean value (defaults to n). It only
comes into play if MODULE_SIG is turned on. If MODULE_SIG_FORCE is set to y, then
kernel modules must have a valid signature in order to be loaded. If not, loading will
fail. If its value is left as n, this implies that even kernel modules that aren't signed
will be loaded into the kernel, but the kernel will be marked as tainted. This tends to
be the default on a typical modern Linux distribution. In the following code block, we
look up these kernel configs on our x86_64 Ubuntu 20.04.1 LTS guest VM:

$ grep MODULE_SIG /boot/config-5.4.0-58-generic
CONFIG_MODULE_SIG_FORMAT=y

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=106a4ee258d14818467829bf0e12aeae14c16cd7
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html
https://www.kernel.org/doc/html/latest/admin-guide/module-signing.html

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[261]

CONFIG_MODULE_SIG=y
CONFIG_MODULE_SIG_FORCE is not set
CONFIG_MODULE_SIG_ALL=y
[...]

The cryptographic signing of kernel modules is encouraged on production systems
(in recent years, with (I)IoT edge devices becoming more prevalent, security is a key
concern).

Disabling kernel modules altogether
Paranoid folks might want to completely disable the loading (and unloading) of
kernel modules. Rather drastic, but hey, this way you can completely lock down the
kernel space of a system (as well as render any rootkits pretty much harmless). This
can be achieved in two broad ways:

First, by setting the CONFIG_MODULES kernel config to off (it's on, of course,
by default) during kernel config prior to building. Doing this is pretty
drastic – it makes the decision a permanent one!
Second, assuming CONFIG_MODULES is turned on, module loading can be
dynamically turned off at runtime via
the modules_disabled sysctl tunable; take a look at this:

$ cat /proc/sys/kernel/modules_disabled
0

It's off (0) by default, of course. As usual, the man page on proc(5) tells us the story:

/proc/sys/kernel/modules_disabled (since Linux 2.6.31)
 A toggle value indicating if modules are allowed to be loaded in an
otherwise modular kernel. This toggle defaults to off (0), but can be
set true (1). Once true, modules can be neither loaded nor unloaded,
and the toggle cannot be set back to false. The file is present only
if the kernel is built with the CONFIG_MODULES option enabled.

In conclusion, of course, kernel security hardening and malicious attacks are a cat-
and-mouse game. For example, (K)ASLR (we talk about what (K)ASLR means in the
chapters to come on Linux memory management) is quite regularly defeated. Also,
see this article – Effectively bypassing kptr_restrict on Android: http:/ /bits- please.
blogspot.com/2015/ 08/ effectively- bypassing- kptrrestrict- on. html. Security is
not easy; it's always a work in progress. It (almost) goes without saying: developers –
in both user and kernel space – must write code that is security-aware and use tools
and testing on a continuous basis.

http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html
http://bits-please.blogspot.com/2015/08/effectively-bypassing-kptrrestrict-on.html

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[262]

Let's complete this chapter with topics on coding style guidelines for the Linux
kernel, accessing kernel documentation, and how you can go about contributing to
the mainline kernel.

Coding style guidelines for kernel
developers
Many large projects specify their own set of coding guidelines; so does the Linux
kernel community. Adhering to the Linux kernel coding style guidelines is a really
good idea. You can find them officially documented here: https:/ /www. kernel. org/
doc/html/latest/ process/ coding- style.html (please do read it!).

Furthermore, as part of the (quite exhaustive) code-submission checklist(s) for
developers like you wanting to upstream your code, you are expected to run your
patch through a Perl script that checks your code for congruence with the Linux
kernel coding style: scripts/checkpatch.pl.

By default, this script only runs on a well-formatted git patch. It's possible to run it
against standalone C code (as in your out-of-tree kernel module code), as follows (as
our 'better' Makefile indeed does):

<kernel-src>/scripts/checkpatch.pl --no-tree -f <filename>.c

Doing this as a habit on your kernel code is helpful, enabling you to catch those
annoying little issues – plus more serious ones! – that might otherwise hold your
patch up. Again, we remind you: our "better" Makefile's indent and checkpatch
targets are geared toward this.

Besides coding style guidelines, you will find that every now and then, you need to
dig into the elaborate and useful kernel documentation. A gentle reminder: we
covered locating and using the kernel documentation in Chapter 1, Kernel Workspace
Setup, under the Locating and Using the Linux Kernel Documentation section.

We will now complete this chapter by making a brief mention of how you can get
started on a noble objective: contributing code to the mainline Linux kernel project.

https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://www.kernel.org/doc/html/latest/process/coding-style.html

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[263]

Contributing to the mainline kernel
In this book, we typically perform kernel development outside the kernel source
tree, via the LKM framework. What if you are writing code within the kernel tree,
with the explicit goal of upstreaming your code to the kernel mainline? This is a
laudable goal indeed – the whole basis of open source stems from the community's
willingness to put in work and contribute it upstream to the project.

Getting started with contributing to the kernel
The most frequently asked question, of course, is how do I get started? To help with
precisely this, a long and very detailed answer lies within the kernel documentation
here: HOWTO do Linux kernel development: https:/ /www. kernel. org/ doc/ html/
latest/process/ howto. html#howto- do-linux- kernel- development.

As a matter of fact, you can generate the full Linux kernel documentation (via the
make pdfdocs command, in the root of the kernel source tree); once successful, you
will find this PDF document here: <root-of-kernel-source-
tree>/Documentation/output/latex/development-process.pdf.

It is a very detailed guide to the Linux kernel development process, including
guidelines for code submission. A cropped screenshot of this document is shown
here:

Figure 5.5 – (Partial) screenshot of the kernel development docs just generated

https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development
https://www.kernel.org/doc/html/latest/process/howto.html#howto-do-linux-kernel-development

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[264]

As part of this kernel development process, to maintain quality standards, a rigorous
and must-be-followed checklist – a long recipe of sorts! – is very much part of the kernel
patch submission process. The official checklist resides here: Linux Kernel patch
submission checklist: https:/ /www. kernel. org/ doc/html/ latest/ process/ submit-
checklist.html#linux- kernel- patch- submission- checklist.

Though it may seem an onerous task for a kernel newbie, carefully following this
checklist lends both rigor and credibility to your work and ultimately results in
superior code. I strongly encourage you to read through the kernel patch submission
checklist and try out the procedures mentioned therein.

Is there a really practical hands-on tip, an almost guaranteed way to
become a kernel hacker? Of course, keep reading this book! Ha ha,
yes, besides, do partake in the simply awesome Eudyptula
Challenge (http:/ /www. eudyptula- challenge. org/) Oh, hang on,
it's – very unfortunately, and as of the time of writing – closed
down.

Fear not; here's a site with all the challenges (and solutions, but
don't cheat!) posted. Do check it out and try the challenges. This will
greatly accelerate your kernel hacking skills: https:/ /github. com/
agelastic/ eudyptula.

Summary
In this chapter, the second of two on writing a kernel module using the
LKM framework, we covered several (remaining) areas pertaining to this important
topic: among them, using a "better" Makefile for your kernel module, tips on
configuring a debug kernel (it's very important!), cross-compiling a kernel module,
gathering some minimal platform information from within a kernel module, and even
a bit on the licensing of kernel modules. We also looked at emulating library-like
features with two different approaches (one - preferred - the linking approach, and
two, the module stacking approach), using module parameters, avoiding floating-
point, the auto-loading of your kernel modules, and so on. Security concerns and how
they can be addressed are important. Finally, we wrapped up this chapter by
covering kernel coding style guidelines, kernel documentation, and how you can get
started with contributing to the mainline kernel. So, congratulations! You now know
how to develop a kernel module and can even get started on the journey to kernel
upstream contribution.

https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
https://www.kernel.org/doc/html/latest/process/submit-checklist.html#linux-kernel-patch-submission-checklist
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
http://www.eudyptula-challenge.org/
https://github.com/agelastic/eudyptula
https://github.com/agelastic/eudyptula
https://github.com/agelastic/eudyptula
https://github.com/agelastic/eudyptula
https://github.com/agelastic/eudyptula
https://github.com/agelastic/eudyptula
https://github.com/agelastic/eudyptula
https://github.com/agelastic/eudyptula
https://github.com/agelastic/eudyptula
https://github.com/agelastic/eudyptula

Writing Your First Kernel Module - LKMs Part 2 Chapter 5

[265]

In the next chapter, we will delve into an interesting and necessary topic. We will
begin our exploration in some depth into the internals of both the Linux kernel and its
memory management subsystem.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To aid you in delving deeper into the subject with useful materials, we provide a
rather detailed list of online references and links (and at times even books) in a
Further reading markdown document – organized by chapter – in this book's GitHub
repository. The Further reading document is available here: https:/ /github. com/
PacktPublishing/ Linux- Kernel- Programming/ blob/ master/ Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

2
Section 2: Understanding and

Working with the Kernel
A key reason why many struggle with kernel development is a lack of understanding
of its internals. Here, some essentials of kernel architecture, memory management,
and scheduling are covered.

This section comprises the following chapters:

Chapter 6, Kernel Internals Essentials – Processes and Threads
Chapter 7, Memory Management Internals – Essentials
Chapter 8, Kernel Memory Allocation for Module Authors, Part 1
Chapter 9, Kernel Memory Allocation for Module Authors, Part 2

6
Kernel Internals Essentials -

Processes and Threads
Kernel internals, and especially those concerning memory management, are a vast
and complex topic. In this book, we do not intend to delve deep into the gory details
of kernel and memory internals. At the same time, I would like to provide sufficient,
and definitely requisite, background knowledge for a budding kernel or device driver
developer like you to successfully tackle the key topics necessary to understand the
kernel architecture in terms of how processes, threads, and their stacks are managed.
You'll also be able to correctly and efficiently manage dynamic kernel memory (with
the focus on writing kernel or driver code using the Loadable Kernel Module (LKM)
framework). As a side benefit, armed with this knowledge, you will find yourself
becoming more proficient at debugging both user and kernel space code.

I have divided the discussion on essential internals into two chapters, this one and the
next. This chapter covers key aspects of the architecture of Linux kernel internals,
especially with respect to how processes and threads are managed within the kernel.
The following chapter will focus on memory management internals, another critical
aspect of understanding and working with the Linux kernel. Of course, the reality is
that all of these things do not really get covered in a chapter or two but are spread out
across this book (for example, details on the CPU scheduling of processes/threads will
be found in later chapters; similarly for memory internals, hardware interrupts,
synchronization, and so on).

Kernel Internals Essentials - Processes and Threads Chapter 6

[268]

Briefly, these are the topics covered in this chapter:

Understanding process and interrupt contexts
Understanding the basics of the process VAS (virtual address space)
Organizing processes, threads, and their stacks – user and kernel space
Understanding and accessing the kernel task structure
Working with the task structure via current
Iterating over the kernel's task lists

Technical requirements
I assume that you have gone through Chapter 1, Kernel Workspace Setup, and have
appropriately prepared a guest Virtual Machine (VM) running Ubuntu 18.04 LTS (or
a later stable release) and installed all the required packages. If not, I recommend you
do this first.

To get the most out of this book, I strongly recommend you first set up the workspace
environment, including cloning this book's GitHub repository for the code (found
here: https:// github. com/ PacktPublishing/ Linux- Kernel- Programming) and work
on it in a hands-on fashion.

I do assume that you are familiar with basic virtual memory concepts, the user-mode
process Virtual Address Space (VAS) layout of segments, the stack, and so
on. Nevertheless, we do devote a few pages to explaining these basics (in the
Understanding the basics of the process VAS section that soon follows).

Understanding process and interrupt
contexts
In Chapter 4, Writing Your First Kernel Module – LKMs, Part 1, we presented a brief
section entitled Kernel architecture I (if you haven't read it yet, I suggest you do so
before continuing). We will now expand on this discussion.

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Kernel Internals Essentials - Processes and Threads Chapter 6

[269]

It's critical to understand that most modern OSes are monolithic in design. The word
monolithic literally means a single large piece of stone. We shall defer a little later to how
exactly this applies to our favorite OS! For now, we understand monolithic as meaning
this: when a process or thread issues a system call, it switches to (privileged) kernel
mode and executes kernel code, and possibly works on kernel data. Yes, there is no
kernel or kernel thread executing code on its behalf; the process (or
thread) itself executes kernel code. Thus, we say that kernel code executes within the
context of a user space process or thread – we call this the process context. Think
about it, significant portions of the kernel execute precisely this way, including a large
portion of the code of device drivers.

Well, you may ask, now that you understand this, how else – besides process context
– can kernel code execute? There is another way: when a hardware interrupt (from a
peripheral device – the keyboard, a network card, a disk, and so on) fires, the CPU's
control unit saves the current context and immediately re-vectors the CPU to run the
code of the interrupt handler (the interrupt service routine—ISR). Now this code
runs in kernel (privileged) mode too – in effect, this is another, asynchronous, way to
switch to kernel mode! The interrupt code path of many device drivers are executed
like this; we say that the kernel code being executed in this manner is executing in
interrupt context.

So, any and every piece of kernel code is entered by and executes in one of two
contexts:

Process context: The kernel is entered from a system call or
processor exception (such as a page fault) and kernel code is executed,
kernel data worked upon; it's synchronous (top down).
Interrupt context: The is kernel entered from a peripheral chip's hardware
interrupt and kernel code is executed, kernel data worked upon; it's
asynchronous (bottom up).

Figure 6.1 shows the conceptual view: user-mode processes and threads execute in
unprivileged user context; the user mode thread can switch to privileged kernel mode
by issuing a system call. The diagram also shows us that pure kernel threads exist as
well within Linux; they're very similar to user-mode threads, with the key difference
that they only execute in kernel space; they cannot even see the user VAS. A
synchronous switch to kernel mode via a system call (or processor exception) has the
task now running kernel code in process context. (Kernel threads too run kernel code in
process context.) Hardware interrupts, though, are a different ball game – they cause
execution to asynchronously enter the kernel; the code they execute (typically a
device driver's interrupt handler) runs in the so-called interrupt context.

Kernel Internals Essentials - Processes and Threads Chapter 6

[270]

Figure 6.1 shows more details – interrupt context top and bottom halves, kernel
threads and workqueues; we request you to have some patience, we'll cover all this
and much more in later chapters:

Figure 6.1 – Conceptual diagram showing unprivileged user-mode execution and privileged kernel-mode execution with both process and interrupt contexts

Further on in the book, we shall show you how exactly you can check in which
context your kernel code is currently running. Read on!

Understanding the basics of the process
VAS
A fundamental 'rule' of virtual memory is this: all potentially addressable memory is
in a box; that is, it's sandboxed. We think of this 'box' as the process image or
the process VAS. Looking outside the box is disallowed.

Here, we provide only a quick overview of the process user VAS.
For details, please refer to the Further reading section at the end of
this chapter.

Kernel Internals Essentials - Processes and Threads Chapter 6

[271]

The user VAS is divided into homogeneous memory regions called segments or, more
technically, mappings. Every Linux process has at least these mappings (or segments):

Figure 6.2 – Process VAS

Let's go over a quick breakdown of these segments or mappings:

Text segment: This is where the machine code is stored; static (mode: r-x).
Data segment(s): This is where the global and static data variables are
stored (mode: rw-). It is internally divided into three distinct segments:

Initialized data segment: Pre-initialized variables are stored
here; static.
Uninitialized data segment: Uninitialized variables are
stored here (they are auto-initialized to 0 at runtime; this
region is sometimes called the bss); static.
Heap segment: The library APIs for memory allocation and
freeing (the familiar malloc(3) family of routines) get
memory from here. That's also not completely true. On
modern systems, only malloc() instances below
MMAP_THRESHOLD (128 KB by default) get their memory from
the heap. Any higher and it's allocated as a separate
'mapping' in the process VAS (via the powerful mmap(2)
system call). It is a dynamic segment (it can grow/shrink).
The last legally reference-able location on the heap is referred
to as the program break.

Kernel Internals Essentials - Processes and Threads Chapter 6

[272]

Libraries (text, data): All shared libraries that a process dynamically links
into are mapped (at runtime, via the loader) into the process VAS (mode:
r-x/rw-).
Stack: A region of memory that uses the Last In, First Out (LIFO)
semantics; the stack is used for the purpose of implementing a high-level
language's function-calling mechanism. It includes parameter passing, local
variable instantiation (and destruction), and return value propagation. It is
a dynamic segment. On all modern processors (including the x86 and ARM
families), the stack 'grows' toward lower addresses (called a fully descending
stack). Every time a function is called, a stack frame is allocated and
initialized as required; the precise layout of a stack frame is very CPU
dependent (you must refer to the respective CPU Application Binary
Interface (ABI) document for this; see the Further reading section for
references). The SP register (or equivalent) always points to the current
frame, the top of the stack; as stacks grow towards lower (virtual)
addresses, the top of the stack is actually the lowest (virtual) address! It's
non-intuitive but true (mode: rw-).

Of course, you will understand that processes must contain at least one thread of
execution (a thread is an execution path within a process); that one thread typically
being the main() function. In Figure 6.2, as an example, we show three threads of
execution – main, thrd2, and thrd3. Also, as expected, every thread shares
everything in the VAS except for the stack; as you'll know, every thread has its own
private stack. The stack of main is shown at the very top of the process (user) VAS;
the stacks of the thrd2 and thrd3 threads are shown as being between the library
mappings and the stack of main and is illustrated with the two (blue) squares.

I have designed and implemented what I feel is a pretty useful
learning/teaching and debugging utility called procmap (https:/ /
github. com/ kaiwan/ procmap); it's a console-based
process VAS visualization utility. It can actually show you the
process VAS (in quite a bit of detail); we shall commence using it in
the next chapter. Don't let that stop you from trying it out right
away though; do clone it and give it a spin on your Linux system.

Now that you understand the basics of the process VAS, it's time to delve quite a bit
deeper into the kernel internals regarding the process VAS, the user and
kernel address spaces, and their threads and stacks.

https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap

Kernel Internals Essentials - Processes and Threads Chapter 6

[273]

Organizing processes, threads, and their
stacks – user and kernel space
The traditional UNIX process model – Everything is a process; if it's not a process, it's a
file – has a lot going for it. The very fact that it is still the model followed by operating
systems after a span of nearly five decades amply validates this. Of course, nowadays,
the thread is important; a thread is merely an execution path within a process.
Threads share all process resources, including the user VAS, except for the stack. Every
thread has its own private stack region (this makes perfect sense; if not, how could
threads truly run in parallel, as it's the stack that holds execution context).

The other reason we focus on the thread and not the process is made clearer in
Chapter 10, The CPU Scheduler, Part 1. For now, we shall just say this: the thread, not
the process, is the kernel schedulable entity (also known as the KSE). This is actually a
fallout of a key aspect of the Linux OS architecture. On the Linux OS, every thread –
including kernel threads – maps to a kernel metadata structure called the task
structure. The task structure (also known as the process descriptor) is essentially a large
kernel data structure that the kernel uses as an attribute structure. For every thread
alive, the kernel maintains a corresponding task structure (see Figure 6.3, and worry
not, we shall cover more on the task structure in the coming sections).

The next really key point to grasp: we require one stack per thread per privilege level
supported by the CPU. On modern OSes such as Linux, we support two privilege levels
– the unprivileged user mode (or user space) and the privileged kernel mode (or kernel space).
Thus, on Linux, every user space thread alive has two stacks:

A user space stack: This stack is in play when the thread executes user-
mode code paths.
A kernel space stack: This stack is in play when the thread switches to
kernel mode (via a system call or processor exception) and executes kernel
code paths (in process context).

Of course, every good rule has an exception: kernel threads are
threads that live purely within the kernel and thus have a "view"
of only kernel (virtual) address space; they cannot "see" userland.
Hence, as they will only ever execute kernel space code paths, they
have just one stack – a kernel space stack.

Kernel Internals Essentials - Processes and Threads Chapter 6

[274]

Figure 6.3 divides up the address space into two – user space and kernel space. In the
upper part of the diagram – user space – you can see several processes and their user
VASes. In the bottom part – kernel space – you can see, corresponding to every user-
mode thread, a kernel metadata structure (struct task_struct, which we shall cover
a bit later in detail) and the kernel-mode stack of that thread. In addition, we see (at
the very bottom) three kernel threads (labeled kthrd1, kthrd2, and kthrdn); as
expected, they too have a task_struct metadata structure representing their
innards (attributes) and a kernel-mode stack:

Figure 6.3 – Processes, threads, stacks, and task structures – user and kernel VAS

Kernel Internals Essentials - Processes and Threads Chapter 6

[275]

To help make this discussion practical, let's execute a simple Bash script
(ch6/countem.sh) that counts the number of processes and threads currently alive. I
did this on my native x86_64 Ubuntu 18.04 LTS box; see the following resulting
output:

$ cd <booksrc>/ch6
$./countem.sh
System release info:
Distributor ID: Ubuntu
Description: Ubuntu 18.04.4 LTS
Release: 18.04
Codename: bionic

Total # of processes alive = 362
Total # of threads alive = 1234
Total # of kernel threads alive = 181
Thus, total # of user-mode threads alive = 1053
$

I'll leave it to you to look up the code of this simple script
here: ch6/countem.sh. Study the preceding output and understand it. You will
realize, of course, that this is a snapshot of the situation at a certain point in time. It
can and does change.

In the following sections, we divide up the discussion into two parts (corresponding
to the two address spaces) – that of what we see in Figure 6.3 in user space and what
is seen in Figure 6.3 in kernel space. Let's begin with the user space components.

Kernel Internals Essentials - Processes and Threads Chapter 6

[276]

User space organization
With reference to the countem.sh Bash script that we ran in the preceding section,
we will now break it down and discuss some key points, confining ourselves to the
user space portion of the VAS for now. Please take care to read and understand this
(the numbers we refer to in the following discussion are with reference to our sample
run of our countem.sh script in the preceding section). For the sake of better
understanding, I have placed the user space portion of the diagram here:

Figure 6.4 – User space portion of overall picture seen in Figure 6.3

Here (Figure 6.4) you can see three individual processes. Every process has at least
one thread of execution (the main() thread). In the preceding example, we show
three processes P1, P2, and Pn, with one, three, and two threads in them respectively,
including main(). From our preceding sample run of the countem.sh
script, Pn would have n=362.

Do note that these diagrams are purely conceptual. In reality, the
'process' with PID 2 is typically a single-threaded kernel thread
called kthreadd.

Each process consists of several segments (technically, mappings). Broadly, the user-
mode segments (mappings) are as follows:

Text: Code; r-x
Data segments: rw-; consists of three distinct mappings – the initialized
data segment, the uninitialized data segment (or bss), and an 'upward-
growing' heap

Kernel Internals Essentials - Processes and Threads Chapter 6

[277]

Library mappings: For the text and data of each shared library the process
dynamically links to
Downward-growing stack(s)

Regarding these stacks, we saw from our preceding sample run that there are 1,053
user-mode threads currently alive on the system. This implies that there are 1,053 user
space stacks as well, as there will exist one user mode stack for every user-mode
thread alive. Of these user space thread stacks, we can say the following:

One user space stack is always present for the main() thread, it will
be located close to the very top – the high end – of the user VAS; if the
process is single-threaded (only a main()thread), then it will have just one
user-mode stack; the P1 process in Figure 6.4 shows this case.
If the process is multithreaded, it will have one user-mode thread stack per
thread alive (including main()); processes P2 and Pn in Figure 6.4 illustrate
this case. The stacks are allocated either at the time of calling fork(2) (for
main()) or pthread_create(3) (for the remaining threads within the
process), which results in this code path being executed in process context
within the kernel:

sys_fork() --> do_fork() --> _do_fork()

FYI, the pthread_create(3) library API on Linux invokes the (very
Linux-specific) clone(2) system call; this system call ends up calling
_do_fork(); the clone_flags parameter passed along informs the kernel
as to how exactly to create the 'custom process'; in other words, a thread!
These user space stacks are of course dynamic; they can grow/shrink up to
the stack size resource limit (RLIMIT_STACK, typically 8 MB; you can use
the prlimit(1) utility to look it up).

Having seen and understood the user space portion, now let's delve into the kernel
space side of things.

Kernel Internals Essentials - Processes and Threads Chapter 6

[278]

Kernel space organization
Continuing our discussion with reference to the countem.sh Bash script that we ran
in the previous section, we will now break it down and discuss some key points,
confining ourselves to the kernel space portion of the VAS. Please take care to carefully
read and understand this (while reading the numbers that were output in
our preceding sample run of the countem.sh script). For the sake of better
understanding I have placed the kernel space portion of the diagram here (Figure
6.5):

Figure 6.5 – Kernel space portion of overall picture seen in Figure 6.3

Again, from our preceding sample run, you can see that there are 1,053 user-mode
threads and 181 kernel threads currently alive on the system. This yields a total of
1,234 kernel space stacks. How? As mentioned earlier, every user-mode thread has
two stacks – one user-mode stack and one kernel-mode stack. Thus, we'll have 1,053
kernel-mode stacks for each of the user-mode threads, plus 181 kernel-mode stacks
for the (pure) kernel threads (recall, kernel threads have only a kernel-mode stack;
they cannot 'see' user space at all). Let's list a few characteristics of kernel-mode
stacks:

There will be one kernel-mode stack for each application (user-mode)
thread alive, including main().

Kernel Internals Essentials - Processes and Threads Chapter 6

[279]

Kernel-mode stacks are fixed in size (static) and are quite small.
Practically speaking, their size is 2 pages on 32-bit and 4 pages on 64-bit
OSes (with a page typically being 4 KB in size).
They are allocated at thread creation time (usually boils down to
_do_fork()).

Again, let's be crystal clear on this: each user-mode thread has two stacks – a user-
mode stack and a kernel-mode stack. The exception to this rule is kernel threads; they
only have a kernel-mode stack (as they possess no user mapping and thus no user
space 'segments'). In the lower part of Figure 6.5, we show three kernel threads –
kthrd1, kthrd2, and kthrdn (in our preceding sample run, kthrdn would have
n=181). Further, each kernel thread has a task structure and a kernel-mode stack
allocated to it at creation time.

A kernel-mode stack is similar in most respects to its user-mode counterpart – every
time a function is called, a stack frame is set up (the frame layout is particular to the
architecture and forms a part of the CPU ABI document; see the Further
reading section for more on these details); the CPU has a register to track the current
location of the stack (usually called a Stack Pointer (SP)), and the stack "grows"
toward lower virtual addresses. But, unlike the dynamic user-mode stack, the kernel-
mode stack is fixed in size and small.

An important implication of the pretty small (two-page or four-page)
kernel-mode stack size for the kernel / driver developer – be very careful
to not overflow your kernel stack by performing stack-intensive work
(such as recursion).

There exists a kernel configurable to warn you about high (kernel) stack
usage at compile time; here's the text from
the lib/Kconfig.debug file:
CONFIG_FRAME_WARN:
Tell gcc to warn at build time for stack frames
larger than this.
Setting this too low will cause a lot of warnings.
Setting it to 0 disables the warning.
Requires gcc 4.4

Kernel Internals Essentials - Processes and Threads Chapter 6

[280]

Summarizing the current situation
Okay, great, let's now summarize our learning and findings from our
preceding sample run of the countem.sh script:

Task structures:
Every thread alive (user or kernel) has a corresponding task
structure (struct task_struct) in the kernel; this is how
the kernel tracks it and all its attributes are stored here (you'll
learn more in the Understanding and accessing the kernel task
structure section)
With respect to our sample run of our ch6/countem.sh
script:

As there are a total of 1,234 threads (both user
and kernel) alive on the system, this implies a
total of 1,234 task (metadata) structures in kernel
memory (in the code, struct task_struct),
of which we can say the following:
1,053 of these task structures represent user
threads.
The remaining 181 task structures represent
kernel threads.

Stacks:
Every user space thread has two stacks:

A user mode stack (is in play when the thread
executes user-mode code paths)
A kernel mode stack (is in play when the
thread executes kernel-mode code paths)

A pure kernel thread has only one stack - a kernel mode
stack

Kernel Internals Essentials - Processes and Threads Chapter 6

[281]

With respect to our sample run of
our ch6/countem.sh script:

1,053 user space stacks (in user land).
1,053 kernel space stacks (in kernel memory).
181 kernel space stacks (for the 181 kernel
threads that are alive).
This comes together for a grand total of
1053+1053+181 = 2,287 stacks!

While discussing user and kernel-mode stacks, we should also briefly mention this
point: many architectures (including x86 and ARM64) support a separate per-CPU
stack for interrupt handling. When an external hardware interrupt occurs, the CPU's
control unit immediately re-vectors control to, ultimately, the interrupt handling code
(perhaps within a device driver). A separate per-CPU interrupt stack is used to hold
the stack frame(s) for the interrupt code path(s); this helps avoid putting too much
pressure on the existing (small) kernel-mode stack of the process/thread that got
interrupted.

Okay, now that you understand the overall organization of the user and kernel spaces
in terms of processes/threads and their stacks, let's move on to seeing how you can
actually 'view' the content of both the kernel and user space stacks. Besides being
useful for learning purposes, this knowledge can greatly aid you in debugging
situations.

Viewing the user and kernel stacks
The stack is often the key to a debug session. It is the stack, of course, that holds the
current execution context of the process or thread – where it is now – which allows us
to infer what it's doing. More importantly, being able to see and interpret the thread's
call stack (or call chain/backtrace) crucially allows us to understand how exactly we got
here. All this precious information resides in the stack. But wait, there are two stacks
for every thread – the user space and the kernel space stack. How do we view them?

Kernel Internals Essentials - Processes and Threads Chapter 6

[282]

Here, we shall show two broad ways of viewing the kernel and user-mode stacks of a
given process or thread, firstly via the 'traditional' approach, and then a more recent
modern approach (via [e]BPF). Do read on.

Traditional approach to viewing the stacks
Let's first learn to view both the kernel and user-mode stacks of a given process or
thread using what we shall call the 'traditional' approach. Let's begin with the kernel-
mode stack.

Viewing the kernel space stack of a given thread or process
Good news; this is really easy. The Linux kernel makes the stack visible via the usual
mechanism to expose kernel internals to user space – the powerful proc filesystem
interfaces. Just peek under /proc/<pid>/stack.

So, okay, let's look up the kernel-mode stack of our Bash process. Let's say that, on our
x86_64 Ubuntu guest (running the 5.4 kernel), our Bash process' PID is 3085:

On modern kernels, to avoid information leakage, viewing the kernel-
mode stack of a process or thread requires root access as a security
requirement.

$ sudo cat /proc/3085/stack
[<0>] do_wait+0x1cb/0x230
[<0>] kernel_wait4+0x89/0x130
[<0>] __do_sys_wait4+0x95/0xa0
[<0>] __x64_sys_wait4+0x1e/0x20
[<0>] do_syscall_64+0x5a/0x120
[<0>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
$

In the preceding output, each line represents a call frame on the stack. To help
decipher a kernel stack backtrace, it's worth knowing the following points:

It should be read in a bottom-up fashion (from bottom to top).
Each line of output represents a call frame; in effect, a function in the call
chain.
A function name appearing as ?? implies that the kernel cannot reliably
interpret the stack. Ignore it, it's the kernel saying that it's an invalid stack
frame (a 'blip' left behind); the kernel backtrace code is usually right!

Kernel Internals Essentials - Processes and Threads Chapter 6

[283]

On Linux, any foo() system call will typically become
a SyS_foo() function within the kernel. Also, very often but not always,
SyS_foo() is a wrapper that invokes the 'real' code do_foo(). A detail: in
the kernel code, you might see macros of the type
SYSCALL_DEFINEn(foo, ...); the
macro becomes the SyS_foo() routine; the number appended, n , is in the
range [0, 6]; it's the number of parameters being passed to the kernel from
user space for the system call.

Now look again at the preceding output; it should be quite clear: our Bash process is
currently executing the do_wait() function; it got there via a system call, the
wait4() system call! This is quite right; the shell works by forking off a child process
and then waiting for its demise via the wait4(2) system call.

Curious readers (you!) should note that the [<0>] in the leftmost
column of each stack frame displayed in the preceding snippet are
the placeholders for the text (code) address of that function. Again, for
security reasons (to prevent information leakage), it is zeroed out on
modern kernels. (Another security measure related to the kernel and
process layout is discussed in Chapter 7, Memory Management
Internals – Essentials, in the Randomizing the memory layout – KASLR
and User-mode ASLR sections).

Viewing the user space stack of a given thread or process
Ironically, viewing the user space stack of a process or thread seems harder to do on a
typical Linux distro (as opposed to viewing the kernel-mode stack, as we just saw in
the previous section). There is a utility to do so: gstack(1). In reality, it's just a
simple wrapper over a script that invokes gdb(1) in batch mode, getting gdb to
invoke its backtrace command.

Unfortunately, on Ubuntu (18.04 LTS at least), there seems to be an
issue; the gstack program was not found in any native package.
(Ubuntu does have a pstack(1) utility, but, at least on my test VM,
it failed to work well.) A workaround is to simply use gdb directly
(you can always attach <PID> and issue the [thread apply
all] bt command to view the user mode stack(s)).

Kernel Internals Essentials - Processes and Threads Chapter 6

[284]

On my x86_64 Fedora 29 guest system, though, the gstack(1) utility cleanly installs
and runs well; an example is as follows (our Bash process' PID here happens to
be 12696):

$ gstack 12696
#0 0x00007fa6f60754eb in waitpid () from /lib64/libc.so.6
#1 0x0000556f26c03629 in ?? ()
#2 0x0000556f26c04cc3 in wait_for ()
#3 0x0000556f26bf375c in execute_command_internal ()
#4 0x0000556f26bf39b6 in execute_command ()
#5 0x0000556f26bdb389 in reader_loop ()
#6 0x0000556f26bd9b69 in main ()
$

Again, each line represents a call frame. Read it bottom-up. Clearly, Bash executes a
command and ends up invoking the waitpid() system call (in reality on modern
Linux systems, waitpid() is just a glibc wrapper over the actual wait4(2) system
call! Again, simply ignore any call frames labeled??).

Being able to peek into the kernel and user space stacks (as shown in
the preceding snippets), and using utilities including strace(1)
and ltrace(1) for tracing system and library calls of a
process/thread respectively, can be a tremendous aid when
debugging! Don't ignore them.

Now for a 'modern' approach to this question.

[e]BPF – the modern approach to viewing both
stacks
Now – a lot more exciting! – let's learn (the very basics) of using a powerful
modern approach, leveraging (as of the time of writing) very recent technology –
called the extended Berkeley Packet Filter (eBPF; or simply, BPF. We did
mention the [e]BPF project in Chapter 1, Kernel Workspace Setup, under the Additional
useful projects section.) The older BPF has been around a long time and has been used
for network packet tracing; [e]BPF is a recent innovation, available only as of 4.x
Linux kernels (which of course implies that you will need to be on a 4.x or more
recent Linux system to use this approach).

Kernel Internals Essentials - Processes and Threads Chapter 6

[285]

Directly using the underlying kernel-level BPF bytecode technology is (extremely)
difficult to do; thus, the good news is that there are several easy-to-use frontends
(tools and scripts) to this technology. (A diagram showing the current BCC
performance analysis tools can be found at http:/ /www. brendangregg. com/BPF/ bcc_
tracing_tools_ early2019. png; a list of the [e]BPF frontends can be found at http:/ /
www.brendangregg. com/ ebpf. html#frontends; these links are from Brendan Gregg's
blog.) Among the frontends, BCC and bpftrace are considered very useful. Here, we
shall simply provide a quick demonstration using a BCC tool called stackcount
(well, on Ubuntu at least it's named stackcount-bpfcc(8)). Another advantage:
using this tool allows you to see both the kernel and user-mode stacks at once; there's
no need for separate tools.

You can install the BCC tools for your host Linux distro by reading
the installation instructions here: https:/ /github. com/iovisor/
bcc/ blob/ master/ INSTALL. md. Why not on our guest Linux VM?
You can, when running a distro kernel (such as an Ubuntu- or Fedora-
supplied kernel). The reason: the installation of the BCC toolset
includes the installation of the linux-headers-$(uname -r)
package; the latter exists only for distro kernels (and not for our
custom 5.4 kernel that we're running on the guest).

In the following example, we use the stackcount BCC tool (on my x86_64 Ubuntu
18.04 LTS host system) to look up the stacks of our VirtualBox Fedora31 guest process
(the virtual machine is, after all, a process on the host system!). For this tool, you have
to specify a function (or functions) of interest (interestingly, you can specify either a
user space or kernel space function and also use 'wildcards' or a regular expression
when doing so!); only when those function(s) are invoked will the stacks be traced
and reported. As an example, we select any function containing the name malloc:

$ sudo stackcount-bpfcc -p 29819 -r ".*malloc.*" -v -d
Tracing 73 functions for ".*malloc.*"... Hit Ctrl-C to end.
^C
 ffffffff99a56811 __kmalloc_reserve.isra.43
 ffffffff99a59436 alloc_skb_with_frags
 ffffffff99a51f72 sock_alloc_send_pskb
 ffffffff99b2e986 unix_stream_sendmsg
 ffffffff99a4d43e sock_sendmsg
 ffffffff99a4d4e3 sock_write_iter
 ffffffff9947f59a do_iter_readv_writev
 ffffffff99480cf6 do_iter_write
 ffffffff99480ed8 vfs_writev
 ffffffff99480fb8 do_writev
 ffffffff99482810 sys_writev
 ffffffff99203bb3 do_syscall_64

http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/BPF/bcc_tracing_tools_early2019.png
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
http://www.brendangregg.com/ebpf.html#frontends
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md

Kernel Internals Essentials - Processes and Threads Chapter 6

[286]

 ffffffff99c00081 entry_SYSCALL_64_after_hwframe
 --
 7fd0cc31b6e7 __GI___writev
 12bc [unknown]
 600000195 [unknown]
 1
[...]

[e]BPF programs might fail due to the new kernel lockdown feature
being merged into the mainline 5.4 kernel (it's disabled by default
though). It's a Linux Security Module (LSM) that enables an extra
'hard' level of security on Linux systems. Of course, security is a
double-edged sword; having a very secure system implicitly means
that certain things will not work as expected, and this includes some
[e]BPF programs. Do refer to the Further reading section for more on
kernel lockdown.

The -d option switch passed prints the delimiter --; it denotes the boundary between
the kernel-mode and the user-mode stack of the process. (Unfortunately, as most
production user-mode apps will have their symbolic information stripped, most user-
mode stack frames simply show up as "[unknown]".) On this system at least, the
kernel stack frames are very clear though; even the virtual address of the text (code)
function in question is printed on the left. (To help you better understand the stack
trace: firstly, read it bottom-up; next, as mentioned already, on
Linux, any foo() system call will typically become the SyS_foo() function within
the kernel, and often SyS_foo() is a wrapper around do_foo(), the actual worker
function.)

Note that the stackcount-bpfcc tool works only with Linux 4.6+, and requires root
access. Do see its man page for details.

Kernel Internals Essentials - Processes and Threads Chapter 6

[287]

As a second simpler example, we write a simple Hello, world program (with the caveat
that it's in an infinite loop, so that we can capture the underlying write(2) system
calls as they occur), build it with symbolic info enabled (that is, with gcc -g ...),
and use a simple Bash script to perform the same job as previously: tracing the kernel
and user-mode stacks as it executes. (You will find the code
in ch6/ebpf_stacktrace_eg/.) A screenshot showing a sample run (okay, here's an
exception: I've run the script on an x86_64 Ubuntu 20.04 LTS host) looks as follows:

Figure 6.6 – A sample run using the stackcount-bpfcc BCC tool to trace both kernel and user-mode stacks for the write() of our Hello, world process

We have merely scratched the surface here; [e]BPF tools such as
BCC and bpftrace really are the modern, powerful approach to
system, app tracing and performance analysis on the Linux OS. Do
take the time to learn how to use these powerful tools! (Each BCC
tool also has a dedicated man page with examples.) We refer you to
the Further reading section for links on [e]BPF, BCC and bpftrace.

Let's conclude this section by zooming out and looking at an overview of what you
have learned so far!

Kernel Internals Essentials - Processes and Threads Chapter 6

[288]

The 10,000-foot view of the process VAS
Before we conclude this section, it's important to take a step back and see the
complete VASes of each process and how it looks for the system as a whole; in other
words, to zoom out and see the "10,000-foot view" of the complete system address
space. This is what we attempt to do with the following rather large and detailed
diagram (Figure 6.7), an extension or superset of our earlier Figure 6.3.

For those of you reading a hard copy of the book, I'd definitely
recommend you view the book's figures in full color from this PDF
document at https:/ /static. packt- cdn.com/ downloads/
9781789953435_ ColorImages. pdf.

Besides what you have learned about and seen just now – the process user space
segments, the (user and kernel) threads, and the kernel-mode stacks – don't forget
that there is a lot of other metadata within the kernel: the task structures, the kernel
threads, the memory descriptor metadata structures, and so on. They all are very
much a part of the kernel VAS, which is often called the kernel segment. There's more to
the kernel segment than tasks and stacks. It also contains (obviously!) the static kernel
(core) code and data, in effect, all the major (and minor) subsystems of the kernel, the
arch-specific code, and so on (that we spoke about in Chapter 4, Writing Your First
Kernel Module – LKMs Part 1, under the Kernel space components section).

As just mentioned, the following diagram presents an attempt to sum up and present
all (well, much) of this information in one place:

https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf

Kernel Internals Essentials - Processes and Threads Chapter 6

[289]

Figure 6.7 – The 10,000-foot view of the processes, threads, stacks, and task structures of the user and kernel VASes

Kernel Internals Essentials - Processes and Threads Chapter 6

[290]

Whew, quite a thing, isn't it? The red box in the kernel segment of
the preceding diagram encompasses the core kernel code and data – the major kernel
subsystems, and shows the task structures and kernel-mode stacks. The rest of it is
considered non-core stuff; this includes device drivers. (The arch-specific code can
arguably be viewed as core code; we just show it separately here.) Also, don't let the
preceding information overwhelm you; just focus on what we're here for right now –
the processes, threads, their task structures, and stacks. If you're still unclear about it,
be sure to re-read the preceding material.

Now, let's move on to actually understanding and learning how to reference the key
or 'root' metadata structure for every single thread alive – the task structure.

Understanding and accessing the kernel
task structure
As you have learned by now, every single user and kernel space thread is internally
represented within the Linux kernel by a metadata structure containing all its
attributes – the task structure. The task structure is represented in kernel code
as include/linux/sched.h:struct task_struct.

It's often, unfortunately, referred to as the "process descriptor," causing no end of
confusion! Thankfully, the phrase task structure is so much better; it represents a
runnable task, in effect, a thread.

So there we have it: in the Linux design, every process consists of one or more threads
and each thread maps to a kernel data structure called a task structure (struct
task_struct).

The task structure is the "root" metadata structure for the thread – it encapsulates all
the information required by the OS for that thread. This includes information on its
memory (segments, paging tables, usage info, and more), CPU scheduling details, any
files it currently has open, its credentials, capability bitmasks, timers, locks,
Asynchronous I/O (AIO) contexts, hardware context, signaling, IPC objects, resource
limits, (optional) audit, security and profiling info, and many more such details.

Kernel Internals Essentials - Processes and Threads Chapter 6

[291]

Figure 6.8 is a conceptual representation of the Linux kernel task structure and most of
the information (metadata) it contains:

Figure 6.8 – Linux kernel task structure: struct task_struct

As can be seen from Figure 6.8, the task structure holds a huge quantity of information
regarding every single task (process/thread) alive on the system (again, I reiterate:
this includes kernel threads as well). We show – in a compartmentalized conceptual
format in Figure 6.8 – the different kinds of attributes encapsulated within this data
structure. Also, as can be seen, certain attributes will be inherited by a child process or
thread upon fork(2) (or pthread_create(3)); certain attributes will not be
inherited and will be merely reset. (The kernel-mode stack for

For now, at least, suffice it to say that the kernel 'understands' whether a task is a
process or a thread. We'll later demonstrate a kernel
module (ch6/foreach/thrd_showall) that reveals exactly how we can determine
this (hang on, we'll get there!).

Now let's start to understand in more detail some of the more important members of
the huge task structure; read on!

Kernel Internals Essentials - Processes and Threads Chapter 6

[292]

Here, I only intend to give you a 'feel' for the kernel task structure;
we do not delve deep into the details as it's not required for now.
You will find that in later parts of this book, we delve into specific
areas as required.

Looking into the task structure
Firstly, recall that the task structure is essentially the 'root' data structure of the
process or thread – it holds all attributes of the task (as we saw earlier). Thus, it's
rather large; the powerful crash(8) utility (used to analyze Linux crash dump data
or investigate a live system) reports its size on x86_64 to be 9,088 bytes, as does the
sizeof operator.

The task structure is defined in the include/linux/sched.h kernel header (it's a
rather key header). In the following code, we show its definition with the caveat that
we display only a few of its many members. (Also, the annotations in << angle
brackets like this >> are used to very briefly explain the member(s)):

// include/linux/sched.h
struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
 /*
 * For reasons of header soup (see current_thread_info()), this
 * must be the first element of task_struct.
 */
 struct thread_info thread_info; << important flags and
status bits >>
#endif
 /* -1 unrunnable, 0 runnable, >0 stopped: */
 volatile long state;
 [...]
 void *stack; << the location of the kernel-mode
stack >>
 [...]
 /* Current CPU: */
 unsigned int cpu;
 [...]
<< the members that follow are to do with CPU scheduling; some of them
are discussed in Ch 9 & 10 on CPU Scheduling >>
 int on_rq;
 int prio;
 int static_prio;
 int normal_prio;
 unsigned int rt_priority;

Kernel Internals Essentials - Processes and Threads Chapter 6

[293]

 const struct sched_class *sched_class;
 struct sched_entity se;
 struct sched_rt_entity rt;
 [...]

Continuing with the task structure in the following code block, see the members
relating to memory management (mm), the PID and TGID values, the credentials
structure, open files, signal handling, and many more. Again, it's not the intention to
delve into (all of) them in detail; where appropriate, in later sections of this chapter,
and possibly in other chapters of this book, we shall revisit them:

 [...]
 struct mm_struct *mm; << memory management info >>
 struct mm_struct *active_mm;
 [...]
 pid_t pid; << task PID and TGID values; explained below >>
 pid_t tgid;
 [...]
 /* Context switch counts: */
 unsigned long nvcsw;
 unsigned long nivcsw;
 [...]
 /* Effective (overridable) subjective task credentials (COW): */
 const struct cred __rcu *cred;
 [...]
 char comm[TASK_COMM_LEN]; << task name >>
 [...]
 /* Open file information: */
 struct files_struct *files; << pointer to the 'open files' ds
>>
 [...]
 /* Signal handlers: */
 struct signal_struct *signal;
 struct sighand_struct *sighand;
 sigset_t blocked;
 sigset_t real_blocked;
 [...]
#ifdef CONFIG_VMAP_STACK
 struct vm_struct *stack_vm_area;
#endif
 [...]
#ifdef CONFIG_SECURITY
 /* Used by LSM modules for access restriction: */
 void *security;
#endif
 [...]
 /* CPU-specific state of this task: */

Kernel Internals Essentials - Processes and Threads Chapter 6

[294]

 struct thread_struct thread; << task hardware context detail
>>
 [...]
};

Note that the struct task_struct members in the
preceding code are shown with respect to the 5.4.0 kernel source; on
other kernel versions, the members can and do change! Of course, it
should go without saying, this is true of the entire book – all
code/data is presented with regard to the 5.4.0 LTS Linux kernel
(which will be maintained up to December 2025).

Okay, now that you have a better idea of the members within the task structure, how
exactly do you access it and its various members? Read on.

Accessing the task structure with current
You will recall, in our sample run of the preceding countem.sh script (in
the Organizing processes, threads, and their stacks – user and kernel space section), we
found that there are a total of 1,234 threads (both user and kernel) alive on the system.
This implies that there will be a total of 1,234 task structure objects in the kernel
memory.

They need to be organized in a way that the kernel can easily access them as and
when required. Thus, all the task structure objects in kernel memory are chained up
on a circular doubly linked list called the task list. This kind of organization is required
in order for various kernel code paths to iterate over them (commonly
the procfs code, among others). Even so, think on this: when a process or thread is
running kernel code (in process context), how can it find out
which task_struct belongs to it among the perhaps hundreds or thousands that
exist in kernel memory? This turns out to be a non-trivial task. The kernel developers
have evolved a way to guarantee you can find the particular task structure
representing the thread currently running the kernel code. It's achieved via a macro
called current. Think of it this way:

Looking up current yields the pointer to task_struct of the thread that
is running the kernel code right now, in other words, the process context
running right now on some particular processor core.
current is analogous (but of course, not exactly) to what object-oriented
languages call the this pointer.

Kernel Internals Essentials - Processes and Threads Chapter 6

[295]

The implementation of the current macro is very architecture-specific. Here, we do
not delve into the gory details. Suffice it to say that the implementation is carefully
engineered to be fast (typically via an O(1) algorithm). For example, on
some Reduced Instruction Set Computer (RISC) architectures with many general-
purpose registers (such as the PowerPC and Aarch64 processors), a register is
dedicated to holding the value of current!

I urge you to browse the kernel source tree and see the
implementation details
of current (under arch/<arch>/asm/current.h). On the
ARM32, an O(1) calculation yields the result; on AArch64 and
PowerPC it's stored in a register (and thus the lookup is blazing
fast). On x86_64 architectures, the implementation uses a per-cpu
variable to hold current (avoiding the use of costly locking).
Including the <linux/sched.h> header is required to include the
definition of current in your code.

We can use current to dereference the task structure and cull information from
within it; for example, the process (or thread) PID and name can be looked up as
follows:

#include <linux/sched.h>
current->pid, current->comm

In the next section, you will see a full-fledged kernel module that iterates over the
task list, printing out some details from each task structure it encounters along the
way.

Determining the context
As you now know, kernel code runs in one of two contexts:

Process (or task) context
Interrupt (or atomic) context

They are mutually exclusive – kernel code runs in either the process or
atomic/interrupt context at any given point in time.

Kernel Internals Essentials - Processes and Threads Chapter 6

[296]

Often, when writing kernel or driver code, it is imperative for you to first figure
out what context the code that you're working on is running in. One way to learn this
is by employing the following macro:

#include <linux/preempt.h>
 in_task()

It returns a Boolean: True if your code is running in process (or task) context, where
it's – usually – safe to sleep; returning False implies you are in some kind of atomic
or interrupt context where it is never safe to sleep.

You might have come across the usage of
the in_interrupt() macro; if it returns True, your code is within
an interrupt context, if False, it isn't. However, the
recommendation for modern code is to not rely on this macro (due
to the fact that Bottom Half (BH) disabling can interfere with this).
Hence, we recommend using in_task() instead.

Hang on though! It can get a bit tricky: while in_task() returning True does imply
that your code is in process context, this fact by itself does not guarantee that it's
currently safe to sleep. Sleeping really implies invoking the scheduler code and a
subsequent context switch (we cover this in detail in Chapter 10, The CPU Scheduler –
Part 1, and Chapter 11, The CPU Scheduler – Part 2). For example, you could be in
process context but holding a spinlock (a very common lock used within the kernel);
the code between the lock and unlock – the so-called critical section – must run
atomically! This implies that though your code may be in process (or task) context, it
still will cause a bug if it attempts to issue any blocking (sleeping) APIs!

Also, be careful: current is only considered valid when running in process context.

Right; by now you have learned useful background information on the task structure,
how it can be accessed via the current macro, and the caveats to doing so – such as
figuring out the context that your kernel or driver code is currently running in. So
now, let's actually write some kernel module code to examine a bit of the kernel task
structure.

Kernel Internals Essentials - Processes and Threads Chapter 6

[297]

Working with the task structure via
current
Here, we will write a simple kernel module to show a few members of the task
structure and reveal the process context that its init and cleanup code paths run in. To
do so, we cook up a show_ctx() function that uses current to access a few
members of the task structure and display their values. It's invoked from both the init
as well as the cleanup methods, as follows:

For reasons of readability and space constraints, only key parts of
the source code are displayed here. The entire source tree for this
book is available in its GitHub repository; we expect you to clone
and use it: git clone
https://github.com/PacktPublishing/Linux-Kernel-Progr

amming.git.

/* code: ch6/current_affairs/current_affairs.c */
[...]
#include <linux/sched.h> /* current */
#include <linux/cred.h> /* current_{e}{u,g}id() */
#include <linux/uidgid.h> /* {from,make}_kuid() */
[...]
#define OURMODNAME "current_affairs"
[...]

static void show_ctx(char *nm)
{
 /* Extract the task UID and EUID using helper methods provided */
 unsigned int uid = from_kuid(&init_user_ns, current_uid());
 unsigned int euid = from_kuid(&init_user_ns, current_euid());

 pr_info("%s:%s():%d ", nm, __func__, __LINE__);
 if (likely(in_task())) {
 pr_info(
 "%s: in process context ::\n"
 " PID : %6d\n"
 " TGID : %6d\n"
 " UID : %6u\n"
 " EUID : %6u (%s root)\n"
 " name : %s\n"
 " current (ptr to our process context's task_struct)
:\n"
 " 0x%pK (0x%px)\n"
 " stack start : 0x%pK (0x%px)\n",
 nm,

Kernel Internals Essentials - Processes and Threads Chapter 6

[298]

 /* always better to use the helper methods provided */
 task_pid_nr(current), task_tgid_nr(current),
 /* ... rather than the 'usual' direct lookups:
 current->pid, current->tgid, */
 uid, euid,
 (euid == 0?"have":"don't have"),
 current->comm,
 current, current,
 current->stack, current->stack);
 } else
 pr_alert("%s: in interrupt context [Should NOT Happen here!]\n",
nm);
}

As is highlighted in bold in the preceding snippet, you can see that (for some
members) we can simply dereference the current pointer to gain access to
various task_struct members and display them (via the kernel log buffer).

Great! The preceding code snippet does indeed show you how to gain access to a few
task_struct members directly via current; not all members, though, can or should
be accessed directly. Rather, the kernel provides some helper methods to access them;
let's get into this next.

Built-in kernel helper methods and
optimizations
In the preceding code, we made use of a few of the kernel's built-in helper methods to
extract various members of the task structure. This is the recommended approach; for
example, we use task_pid_nr() to peek at the PID member instead of directly via
current->pid. Similarly, the process credentials within the task structure (such as
the EUID members we showed in the preceding code) are abstracted within struct
cred and access to them is provided via helper routines, just like with from_kuid(),
which we used in the preceding code. In a similar fashion, there are several other
helper methods; look them up in include/linux/sched.h just below the struct
task_struct definition.

Kernel Internals Essentials - Processes and Threads Chapter 6

[299]

Why is this the case? Why not simply access task structure members
directly via current-><member-name>? Well, there are various
real reasons; one, perhaps the access requires a lock to be taken (we
cover details on the key topic of locking and synchronization in the
last two chapters of this book). Two, perhaps there's a more optimal
way to access them; read on to see more on this...

Also, as shown in the preceding code, we can easily figure out whether the kernel
code (of our kernel module) is running in the process or interrupt context by
employing the in_task() macro – it returns True if in the process (or task) context,
and False if otherwise.

Interestingly, we also use the likely() macro (it becomes a compiler __built-
in_expect attribute) to give a hint to the compiler's branch prediction setup and
optimize the instruction sequence being fed into the CPU pipeline, thus keeping our
code on the "fast path" (more on this micro-optimization with the
likely()/unlikely() macros can be found in the Further reading section for this
chapter). You will see kernel code often employing the likely()/unlikely()
macros in situations where the developer "knows" whether the code path is likely or
unlikely, respectively.

The preceding [un]likely() macros are a good example of micro-
optimization, of how the Linux kernel leverages
the gcc(1) compiler. In fact, until recently, the Linux kernel
could only be compiled with gcc; recently, patches are slowly
making compilation with clang(1) a reality. (FYI, the modern
Android Open Source Project (AOSP) is compiled with clang.)

Okay, now that we have understood the workings of our kernel module's
show_ctx() function, let's try it out.

Kernel Internals Essentials - Processes and Threads Chapter 6

[300]

Trying out the kernel module to print process
context info
We build our current_affair.ko kernel module (we don't show the build output
here) and then insert it into kernel space (via insmod(8) as usual). Now let's view the
kernel log with dmesg(1), then rmmod(8) it and use dmesg(1) again. The following
screenshot shows this:

Figure 6.9 – The output of the current_affairs.ko kernel module

Clearly, as can be seen from the preceding screenshot, the process context – the process
(or thread) running the kernel code
of current_affairs.ko:current_affairs_init() – is the insmod process (see
the output: 'name : insmod'), and
the current_affairs.ko:current_affairs_exit() process context executing
the cleanup code is the rmmod process!

Notice how the timestamps in the left column ([sec.usec]) in the
preceding figure help us understand that rmmod was called close to
11 seconds after insmod.

There's more to this small demo kernel module than first meets the eye. It's actually
very helpful in understanding Linux kernel architecture. The following section
explains how this is so.

Kernel Internals Essentials - Processes and Threads Chapter 6

[301]

Seeing that the Linux OS is monolithic
Besides the exercise of using the current macro, a key point behind this kernel
module (ch6/current_affairs) is to clearly show you the monolithic nature of the
Linux OS. In the preceding code, we saw that when we performed the
insmod(8) process on our kernel module file (current_affairs.ko), it got inserted
into the kernel and its init code path ran; who ran it? Ah, that question is answered by
checking the output: the insmod process itself ran it in process context, thus proving
the monolithic nature of the Linux kernel! (Ditto with the rmmod(8) process and the
cleanup code path; it was run by the rmmod process in process context.)

Note carefully and clearly: there is no "kernel" (or kernel thread) that
executes the code of the kernel module, it's the user space process
(or thread) itself that, by issuing system calls (recall that both
the insmod(8) and rmmod(8) utilities issue system calls), switches
into kernel space and executes the code of the kernel module. This is
how it is with a monolithic kernel.

Of course, this type of execution of kernel code is what we refer to as running in
process context, as opposed to running in interrupt context. The Linux kernel, though,
isn't considered to be purely monolithic; if so, it would be a single hard-coded piece
of memory. Instead, like all modern OSes, Linux supports modularization (via the
LKM framework).

As an aside, do note that you can create and run kernel threads within
kernel space; they still execute kernel code in process context when
scheduled.

Coding for security with printk
In our previous kernel module demo
(ch6/current_affairs/current_affairs.c), you noticed, I hope, the usage of
printk with the 'special' %pK format specifier. We repeat the relevant code snippet
here:

 pr_info(
 [...]
 " current (ptr to our process context's task_struct) :\n"
 " 0x%pK (0x%px)\n"
 " stack start : 0x%pK (0x%px)\n",
 [...]

Kernel Internals Essentials - Processes and Threads Chapter 6

[302]

 current, (long unsigned)current,
 current->stack, (long unsigned)current->stack); [...]

Recall from our discussion in Chapter 5, Writing Your First Kernel Module – LKMs Part
2, in the Proc filesystem tunables affecting the system log section, that when printing an
address (firstly, you really shouldn't be printing addresses in production) I urged you
to not use the usual %p (or %px) but the %pK format specifier instead. That's what
we've done in the preceding code; this is for security, to prevent a kernel information leak.
With a well-tuned (for security) system, %pK will result in a mere hashed value and
not the actual address being displayed. To show this, we also display the actual
kernel address via the 0x%px format specifier just for contrast.

Interestingly enough, %pK seems to have no effect on a default desktop Ubuntu 18.04
LTS system. Both formats – the %pK and the 0x%px – turn out to print identical values
(as can be seen in Figure 6.9); this is not what's expected. On my x86_64 Fedora 31
VM, though, it does work as expected, yielding a mere hashed (incorrect) value with
%pK and the correct kernel address with 0x%px. Here's the relevant output on my
Fedora 31 VM:

$ sudo insmod ./current_affairs.ko
[...]
$ dmesg
[...]
name : insmod
 current (ptr to our process context's task_struct) :
 0x0000000049ee4bd2 (0xffff9bd6770fa700)
 stack start : 0x00000000c3f1cd84 (0xffffb42280c68000)
[...]

In the preceding output, we can clearly see the difference.

On production systems (embedded or otherwise) be
safe: set kernel.kptr_restrict to 1 (or even better, to 2), thus
sanitizing pointers,
and set kernel.dmesg_restrict to 1 (allowing only privileged
users to read the kernel log).

Now, let's move on to something more interesting: in the following section, you will
learn how to iterate over the Linux kernel's task lists, thus in effect learning how to
obtain kernel-level information on every single process and/or thread alive on the
system.

Kernel Internals Essentials - Processes and Threads Chapter 6

[303]

Iterating over the kernel's task lists
As mentioned earlier, all the task structures are organized in kernel memory in a
linked list called the task list (allowing them to be iterated over). The list data
structure has evolved to become the very commonly used circular doubly linked list. In
fact, the core kernel code to work with these lists has been factored out into a header
called list.h; it's well known and expected to be used for any list-based work.

The include/linux/types.h:list_head data structure forms
the essential doubly linked circular list; as expected, it consists of
two pointers, one to the prev member on the list and one to the
next member.

You can easily iterate over various lists concerned with tasks via conveniently
provided macros in the include/linux/sched/signal.h header file for versions
>= 4.11; note that for kernels 4.10 and older, the macros are in
include/linux/sched.h.

Now, let's make this discussion empirical and hands-on. In the following sections we
will write kernel modules to iterate over the kernel task list in two ways:

One: Iterate over the kernel task list and display all processes alive.
Two: Iterate over the kernel task list and display all threads alive.

We show the detailed code view for the latter case. Read on and be sure to try it out
yourself!

Iterating over the task list I – displaying all
processes
The kernel provides a convenient routine, the for_each_process() macro, which
lets you easily iterate over every process in the task list:

// include/linux/sched/signal.h:
#define for_each_process(p) \
 for (p = &init_task ; (p = next_task(p)) != &init_task ;)

Clearly, the macro expands to a for loop, allowing us to loop over the circular
list. init_task is a convenient 'head' or starting pointer – it points to the task
structure of the very first user space process, traditionally init(1),
now systemd(1).

Kernel Internals Essentials - Processes and Threads Chapter 6

[304]

Note that the for_each_process() macro is expressly designed to
only iterate over the main() thread of every process and not the
('child' or peer) threads.

A brief snippet of our ch6/foreach/prcs_showall kernel module's output is
shown here (when run on our x86_64 Ubuntu 18.04 LTS guest system):

$ cd ch6/foreach/prcs_showall; ../../../lkm prcs_showall
 [...]
 [111.657574] prcs_showall: inserted
 [111.658820] Name | TGID | PID | RUID | EUID
 [111.659619] systemd | 1| 1| 0| 0
 [111.660330] kthreadd | 2| 2| 0| 0
 [...]
 [111.778937] kworker/0:5 | 1123| 1123| 0| 0
 [111.779833] lkm | 1143| 1143| 1000| 1000
 [111.780835] sudo | 1536| 1536| 0| 0
 [111.781819] insmod | 1537| 1537| 0| 0

Notice how, in the preceding snippet, the TGID and PID of each
process are always equal, 'proving' that the for_each_process()
macro only iterates over the main thread of every process (and not
every thread). We explain the details in the following section.

We'll leave the studying and trying out of the sample kernel module
at ch6/foreach/prcs_showall as an exercise for you.

Iterating over the task list II – displaying all
threads
To iterate over each thread that's alive and well on the system, we could use
the do_each_thread() { ... } while_each_thread() pair of macros; we write
a sample kernel module to do just this (here: ch6/foreach/thrd_showall/).

Kernel Internals Essentials - Processes and Threads Chapter 6

[305]

Before diving into the code, let's build it, insmod it (on our x86_64 Ubuntu 18.04 LTS
guest), and see the bottom part of the output it emits via dmesg(1). As displaying the
complete output isn't really possible here – it's far too large – I've shown only the
lower part of the output in the following screenshot. Also, we've reproduced the
header (Figure 6.9) so that you can make sense of what each column represents:

Figure 6.10 – Output from our thrd_showall.ko kernel module

Kernel Internals Essentials - Processes and Threads Chapter 6

[306]

In Figure 6.9, notice how all the (kernel-mode) stack start addresses
(the fifth column) end in zeroes:
 0xffff000, implying that the stack region is always
aligned on a page boundary (as 0x1000 is 4096 in decimal). This will
be the case as kernel-mode stacks are always fixed in size and a
multiple of the system page size (typically 4 KB).

Following convention, in our kernel module, we arrange that if the thread is a kernel
thread, its name shows up within square brackets.

Before continuing on to the code, we first need to examine in a bit of detail the TGID
and PID members of the task structure.

Differentiating between the process and thread – the
TGID and the PID
Think about this: as the Linux kernel uses a unique task structure (struct
task_struct) to represent every thread, and as the unique member within it has a
PID, this implies that, within the Linux kernel, every thread has a unique PID. This gives
rise to an issue: how can multiple threads of the same process share a common PID?
This violates the POSIX.1b standard (pthreads; indeed, for a while Linux was non-
compliant with the standard, creating porting issues, among other things).

To fix this annoying user space standards issue, Ingo Molnar (of Red Hat) proposed
and mainlined a patch way back, in the 2.5 kernel series. A new member called the
Thread Group IDentifier or TGID was slipped into the task structure. This is how it
works: if the process is single-threaded, the tgid and pid values are equal. If it's a
multithreaded process, then the tgid value of the main thread is equal to its pid
value; other threads of the process will inherit the main thread's tgid value but will
retain their own unique pid values.

To understand this better, let's take an actual example from the previous screenshot.
In Figure 6.9, notice how, if a positive integer appears in the last column on the right,
it represents the number of threads in the multithreaded process to its immediate left.

Kernel Internals Essentials - Processes and Threads Chapter 6

[307]

So, check out the VBoxService process seen in Figure 6.9; for your convenience, we
have duplicated that snippet as follows (note that we: eliminated the first column, the
dmesg timestamp, and added the header line, for better readability): it has PID and
TGID values of 938 representing its main thread (called VBoxService; for clarity,
we've shown it in bold font), and a total of nine threads:

 PID TGID current stack-start Thread Name MT?#
 938 938 0xffff9b09e99edb00 0xffffbaffc0b0c000 VBoxService 9
 938 940 0xffff9b09e98496c0 0xffffbaffc0b14000 RTThrdPP
 938 941 0xffff9b09fc30c440 0xffffbaffc0ad4000 control
 938 942 0xffff9b09fcc596c0 0xffffbaffc0a8c000 timesync
 938 943 0xffff9b09fcc5ad80 0xffffbaffc0b1c000 vminfo
 938 944 0xffff9b09e99e4440 0xffffbaffc0b24000 cpuhotplug
 938 945 0xffff9b09e99e16c0 0xffffbaffc0b2c000 memballoon
 938 946 0xffff9b09b65fad80 0xffffbaffc0b34000 vmstats
 938 947 0xffff9b09b6ae2d80 0xffffbaffc0b3c000 automount

What are the nine threads? First, of course, the main thread is VBoxService, and the
eight displayed below it are, by name: RTThrdPP, control, timesync, vminfo,
cpuhotplug, memballoon, vmstats, and automount. How do we know this for
sure? It's easy: look carefully at the first and second columns in the preceding code
block that represent the TGID and PID respectively: if they are the same, it's the main
thread of the process; if the TGID repeats, the process is multithreaded and the PID value
represents the unique IDs of the 'child' threads.

As a matter of fact, it's entirely possible to see the kernel's TGID/PID representation in
user space via the ubiquitous GNU ps(1) command, by using its -LA options
(among other ways to do so):

$ ps -LA
 PID LWP TTY TIME CMD
 1 1 ? 00:00:02 systemd
 2 2 ? 00:00:00 kthreadd
 3 3 ? 00:00:00 rcu_gp
[...]
 938 938 ? 00:00:00 VBoxService
 938 940 ? 00:00:00 RTThrdPP
 938 941 ? 00:00:00 control
 938 942 ? 00:00:00 timesync
 938 943 ? 00:00:03 vminfo
 938 944 ? 00:00:00 cpuhotplug
 938 945 ? 00:00:00 memballoon
 938 946 ? 00:00:00 vmstats
 938 947 ? 00:00:00 automount
 [...]

Kernel Internals Essentials - Processes and Threads Chapter 6

[308]

The ps(1) labels are as follows:

The first column is PID – this is actually representative of the tgid member
of the task structure within the kernel for this task
The second column is LWP (LightWeight Process or thread!) – this is
actually representative of the pid member of the task structure within the
kernel for this task.

Note that only with the ps(1) GNU can you pass parameters
(like -LA) and see the threads; this isn't possible with a lightweight
implementation of ps like that of busybox. It isn't a problem though:
you can always look up the same by looking under procfs; in this
example, under /proc/938/task, you'll see sub-folders
representing the child threads. Guess what: this is actually how
GNU ps works as well!

Okay, on to the code now...

Iterating over the task list III – the code
Now let's see the (relevant) code of our thrd_showall kernel module:

// ch6/foreach/thrd_showall/thrd_showall.c */
[...]
#include <linux/sched.h> /* current */
#include <linux/version.h>
#if LINUX_VERSION_CODE > KERNEL_VERSION(4, 10, 0)
#include <linux/sched/signal.h>
#endif
[...]

static int showthrds(void)
{
 struct task_struct *g, *t; // 'g' : process ptr; 't': thread
ptr
 [...]
#if 0
 /* the tasklist_lock reader-writer spinlock for the task list
'should'
 * be used here, but, it's not exported, hence unavailable to our
 * kernel module */
 read_lock(&tasklist_lock);
#endif
 disp_idle_thread();

Kernel Internals Essentials - Processes and Threads Chapter 6

[309]

A few points to note regarding the preceding code:

We use the LINUX_VERSION_CODE() macro to conditionally include a
header, as required.
Please ignore the locking work for now – usage (or the lack thereof) of
the tasklist_lock() and task_[un]lock() APIs.
Don't forget the CPU idle thread! Every CPU core has a dedicated idle
thread (named swapper/n) that runs when no other thread wants to (n
being the core number, starting with 0). The do .. while loop we run
does not start at this thread (nor does ps(1) ever show it). We include a
small routine to display it, making use of the fact that the hard-coded task
structure for the idle thread is available and exported at init_task (a
detail: init_task always refers to the first CPU's – core # 0 – idle thread).

Let's continue: in order to iterate over every thread alive, we need to use a pair of
macros, forming a loop: the do_each_thread() { ... }
while_each_thread() pair of macros do precisely this, allowing us to iterate over
every thread alive on the system. The following code shows this:

 do_each_thread(g, t) {
 task_lock(t);
 snprintf(buf, BUFMAX-1, "%6d %6d ", g->tgid, t->pid);

 /* task_struct addr and kernel-mode stack addr */
 snprintf(tmp, TMPMAX-1, " 0x%px", t);
 strncat(buf, tmp, TMPMAX);
 snprintf(tmp, TMPMAX-1, " 0x%px", t->stack);
 strncat(buf, tmp, TMPMAX);

 [...] << see notes below >>

 total++;
 memset(buf, 0, sizeof(buf)); << cleanup >>
 memset(tmp, 0, sizeof(tmp));
 task_unlock(t);
 } while_each_thread(g, t);
#if 0
 /* <same as above, reg the reader-writer spinlock for the task
list> */
 read_unlock(&tasklist_lock);
#endif
 return total;
}

Kernel Internals Essentials - Processes and Threads Chapter 6

[310]

Referring to the preceding code, the do_each_thread() { ... }
while_each_thread() pair of macros form a loop, allowing us to iterate over
every thread alive on the system:

We follow a strategy of using a temporary variable (named tmp) to fetch a
data item, which we then append to a 'result' buffer, buf, which we print
once on every loop iteration.
Obtaining the TGID, PID, task_struct, and stack start addresses is
trivial – here, keeping it simple, we just use current to dereference
them (of course, you could use the more sophisticated kernel helper
methods we saw earlier in this chapter to do so as well; here, we wish to
keep it simple). Also notice that here we deliberately do not use the (safer)
%pK printk format specifier but rather the generic %px specifier in order to
display the actual kernel virtual addresses of the task structure and the
kernel-mode stack .
Clean up as required before looping over (increment a counter of total
threads, memset() the temporary buffers to NULL, and so on).
On completion, we return the total number of threads we have iterated
across.

In the following code block, we cover the portion of code that was deliberately left
out in the preceding block. We retrieve the thread's name and print it within square
brackets if it's a kernel thread. We also query the number of threads within the
process. The explanation follows the code:

 if (!g->mm) { // kernel thread
 /* One might question why we don't use the get_task_comm() to
 * obtain the task's name here; the short reason: it causes a
 * deadlock! We shall explore this (and how to avoid it) in
 * some detail in the chapters on Synchronization. For now, we
 * just do it the simple way ...
 */
 snprintf(tmp, TMPMAX-1, " [%16s]", t->comm);
 } else {
 snprintf(tmp, TMPMAX-1, " %16s ", t->comm);
 }
 strncat(buf, tmp, TMPMAX);
 /* Is this the "main" thread of a multithreaded process?
 * We check by seeing if (a) it's a user space thread,
 * (b) its TGID == its PID, and (c), there are >1 threads in
 * the process.
 * If so, display the number of threads in the overall process
 * to the right..
 */

Kernel Internals Essentials - Processes and Threads Chapter 6

[311]

 nr_thrds = get_nr_threads(g);
 if (g->mm && (g->tgid == t->pid) && (nr_thrds > 1)) {
 snprintf(tmp, TMPMAX-1, " %3d", nr_thrds);
 strncat(buf, tmp, TMPMAX);
 }

On the preceding code, we can say the following:

A kernel thread has no user space mapping. The main()
thread's current->mm is a pointer to a structure of type mm_struct and
represents the entire process' user space mapping; if NULL, it stands to
reason that this is a kernel thread (as kernel threads have no user space
mappings); we check and print the name accordingly.
We print the name of the thread as well (by looking up the comm member of
the task structure). You might question why we don't use
the get_task_comm() routine to obtain the task's name here; the short
reason: it causes a deadlock! We shall explore this (and how to avoid it) in
detail in the later chapters on kernel synchronization. For now, again,
we just do it the simple way.
We fetch the number of threads in a given process conveniently via
the get_nr_threads() macro; the rest is explained clearly in the code
comment above the macro in the preceding block.

Great! With this, we complete our discussion (for now) on Linux kernel internals and
architecture with a primary focus on processes, threads, and their stacks.

Summary
In this chapter, we covered the key aspects of kernel internals that will help you as a
kernel module or device driver author to better and more deeply understand the
internal workings of the OS. You examined in some detail the organization of and
relationships between the process and its threads and stacks (in both user and kernel
space). We examined the kernel task_struct data structure and learned how to
iterate over the task list in different ways via kernel modules.

Though it may not be obvious, the fact is that understanding these kernel internal
details is a necessary and required step in your journey to becoming a seasoned
kernel (and/or device driver) developer. The content of this chapter will help you
debug many system programming scenarios and lays the foundation for our deeper
exploration into the Linux kernel, particularly that of memory management.

Kernel Internals Essentials - Processes and Threads Chapter 6

[312]

The next chapter and the couple that follow it are critical indeed: we'll cover what you
need to understand regarding the deep and complex topic of memory management
internals. I suggest you digest the content of this chapter first, browse through
the Further reading links of interest, work on the exercises (Questions section), and
then, get to the next chapter!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

7
Memory Management
Internals - Essentials

Kernel internals, especially regarding memory management, is a vast and complex
topic. In this book, I do not intend to delve into the deep, gory details of kernel
memory internals. At the same time, I would like to provide sufficient – and
definitely required – background knowledge for a budding kernel or device driver
developer like you to successfully tackle this key topic.

Accordingly, this chapter will help you understand to sufficient depth the internals of
how memory management is performed on the Linux OS; this includes delving into
the Virtual Memory (VM) split, examining both the user-mode and kernel segment
of the process to a good level of depth, and covering the basics of how the kernel
manages physical memory. In effect, you will come to understand the memory maps
– both virtual and physical – of the process and the system.

This background knowledge will go a long way in helping you correctly and
efficiently manage dynamic kernel memory (with a focus on writing kernel or driver
code using the Loadable Kernel Module (LKM) framework; this aspect - dynamic
memory management - in a practical fashion is the focal point of the next two
chapters in the book). As an important side benefit, armed with this knowledge, you
will find yourself becoming more proficient at the debugging of both user and kernel-
space code. (The importance of this cannot be overstated! Debugging code is both an
art and a science, as well as a reality.)

In this chapter, the areas we will cover include the following:

Understanding the VM split
Examining the process VAS
Examining the kernel segment
Randomizing the memory layout – [K]ASLR
Physical memory

Memory Management Internals - Essentials Chapter 7

[314]

Technical requirements
I assume that you have gone through Chapter 1, Kernel Workspace Setup, and have
appropriately prepared a guest VM running Ubuntu 18.04 LTS (or a later stable
release) and installed all the required packages. If not, I recommend you do this first.
To get the most out of this book, I strongly recommend you first set up the workspace
environment, including cloning this book's GitHub repository for the code (https:/ /
github.com/PacktPublishing/ Linux- Kernel- Programming), and work on it in a
hands-on fashion.

I assume that you are familiar with basic virtual memory concepts, the user-mode
process Virtual Address Space (VAS) layout of segments, user-and kernel-
mode stacks, the task structure, and so on. If you're unsure on this footing, I strongly
suggest you read the preceding chapter first.

Understanding the VM split
In this chapter, we will broadly be looking at how the Linux kernel manages memory
in two ways:

The virtual memory-based approach, where memory is virtualized (the
usual case)
A view of how the kernel actually organizes physical memory (RAM
pages)

First, let's begin with the virtual memory view, and then discuss physical memory
organization later in the chapter.

As we saw earlier in the previous chapter, in the Understanding the basics of the process
Virtual Address Space (VAS) section, a key property of the process, VAS, is that it is
completely self-contained, a sandbox. You cannot look outside the box. In Chapter 6,
Kernel Internals Essentials – Processes and Threads, Figure 6.2, we saw that the process
VAS ranges from virtual address 0 to what we simply termed the high address. What
is the actual value of this high address? Obviously, it's the highest extent of the VAS
and thus depends on the number of bits used for addressing:

On a Linux OS running on a 32-bit processor (or compiled for 32-bit),
the highest virtual address will be 232 = 4 GB.

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Memory Management Internals - Essentials Chapter 7

[315]

On a Linux OS running on (and compiled for) a 64-bit processor,
the highest virtual address will be 264 = 16 EB. (EB is short for exabyte.
Believe me, it's an enormous quantity. 16 EB is equivalent to the number 16
x 1018.)

For simplicity, to keep the numbers manageable, let's focus for now on the 32-bit
address space (we will certainly cover 64-bit addressing as well). So, according to our
discussions, on a 32-bit system, the process VAS is from 0 to 4 GB – this region
consists of empty space (unused regions, called sparse regions or holes) and valid
regions of memory commonly termed segments (or more correctly, mappings) – text,
data, library, and stack (all of this having been covered in some detail in Chapter 6,
Kernel Internals Essentials – Processes and Threads).

On our journey to understanding virtual memory, it's useful to take up the well-
known Hello, world C program and understand its inner workings on a Linux
system; this is what the next section covers!

Looking under the hood – the Hello, world C
program
Right, is there anyone here who knows how to code the canonical Hello, world C
program? Okay, very amusing, let's check out the one meaningful line therein:

printf("Hello, world.\n");

The process is calling the printf(3) function. Have you written the code of the
printf()? "No, of course not," you say, "it's within the standard libc C library,
typically glibc (GNU libc) on Linux." But hang on, unless the code and data of
printf (and similarly all other library APIs) is actually within the process VAS, how
can we ever access it? (Recall, you can't look outside the box!) For that, the code (and
data) of printf(3) (in fact, of the glibc library) must be mapped within the process
box – the process VAS. It is indeed mapped within the process VAS, in the library
segments or mappings (as we saw in Chapter 6, Kernel Internals Essentials – Processes
and Threads, Figure 6.1). How did this happen?

Memory Management Internals - Essentials Chapter 7

[316]

The reality is that on application startup, as part of the C runtime environment setup,
there is a small Executable and Linkable Format (ELF) binary (embedded into your
a.out binary executable file) called the loader (ld.so or ld-linux.so). It is given
control early. It detects all required shared libraries and memory maps all of them –
the library text (code) and data segments – into the process VAS by opening the
library file(s) and issuing the mmap(2) system call. So, now, once the code and data of
the library are mapped within the process VAS, the process can indeed access it, and
thus – wait for it – the printf() API can be successfully invoked! (We've skipped the
gory details of memory mapping and linkage here).

Further verifying this, the ldd(1) script (the following output is from an x86_64
system) reveals that this is indeed the case:

$ gcc helloworld.c -o helloworld
$./helloworld
Hello, world
$ ldd ./helloworld
 linux-vdso.so.1 (0x00007fffcfce3000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6
(0x00007feb7b85b000)
 /lib64/ld-linux-x86-64.so.2 (0x00007feb7be4e000)
$

A few quick points to note:

Every single Linux process – automatically and by default – links to a
minimum of two objects: the glibc shared library and the program loader
(no explicit linker switch is required).
The name of the loader program varies with the architecture. Here, on our
x86_64 system, it's ld-linux-x86-64.so.2.
In the preceding ldd output, the address within parentheses on the right is
the virtual address of the location of the mapping. For example, in the
preceding output, glibc is mapped into our process VAS at the User
Virtual Address (UVA), which equals 0x00007feb7b85b000. Note that
it's runtime dependent (it also varies due to Address Space Layout
Randomization (ASLR) semantics (seen later)).
For security reasons (and on architectures besides x86), it's considered
better to use the objdump(1) utility to look up details like these.

Memory Management Internals - Essentials Chapter 7

[317]

Try performing strace(1) on the Hello, world binary
executable and you will see numerous mmap() system calls,
mapping in glibc (and other) segments!

Let's further examine our simple Hello, world application more deeply.

Going beyond the printf() API
As you will know, the printf(3) API translates to the write(2) system call, which
of course writes the "Hello, world" string to stdout (by default, the terminal
window or the console device).

We also understand that as write(2) is a system call, this implies that the current
process running this code – the process context – must now switch to kernel mode
and run the kernel code of write(2) (monolithic kernel architecture)! Indeed it does.
But hang on a second: the kernel code of write(2) is in kernel VAS (refer to Chapter
6, Kernel Internals Essentials – Processes and Threads, Figure 6.1). The point here is if the
kernel VAS is outside the box, then how in the world are we going to call it?

Well, it could be done by placing the kernel in a separate 4 GB VAS, but this approach
results in very slow context switching, so it's simply not done.

The way it is engineered is like this: both user and kernel VASes live in the same 'box'
– the available VAS. How exactly? By splitting the available address space between
the user and kernel in some User:Kernel :: u:k ratio. This is called the VM
split (the ratio u:k being typically expressed in gigabytes, terabytes, or even
petabytes).

Memory Management Internals - Essentials Chapter 7

[318]

The following diagram is representative of a 32-bit Linux process having a 2:2 VM
split (in gigabytes); that is, the total 4 GB process VAS is split into 2 GB of user space
and 2 GB of kernel-space. This is often the typical VM split on an ARM-32 system
running the Linux OS:

Figure 7.1 – User:Kernel :: 2:2 GB VM split on an ARM-32 system running Linux

Memory Management Internals - Essentials Chapter 7

[319]

So, now that the kernel VAS is within the box, it's suddenly clear and critical to
understand this: when a user-mode process or thread issues a system call, there is a
context switch to the kernel's 2 GB VAS (various CPU registers, including the stack
pointer, get updated) within the very same process's VAS. The thread issuing the
system call now runs its kernel code in process context in privileged kernel mode
(and works on kernel-space data). When done, it returns from the system call, context
switching back into unprivileged user mode, and is now running user-mode code
within the first 2 GB VAS.

The exact virtual address where the kernel VAS – also known as the kernel
segment – begins is typically represented via the PAGE_OFFSET macro within the
kernel. We will examine this, and some other key macros as well, in the Macros and
variables describing the kernel segment layout section.

Where is this decision regarding the precise location and size of the VM split taken?
Ah, on 32-bit Linux, it's a kernel build-time configurable. It's done within the kernel
build as part of the make [ARCH=xxx] menuconfig procedure – for example, when
configuring the kernel for a Broadcom BCM2835 (or the BCM2837) System on
Chip (SoC) (the Raspberry Pi being a popular board with this very SoC). Here's a
snippet from the official kernel configuration file (the output is from the Raspberry Pi
console):

$ uname -r
5.4.51-v7+
$ sudo modprobe configs << gain access to /proc/config.gz via
this LKM >>
$ zcat /proc/config.gz | grep -C3 VMSPLIT
[...]
CONFIG_BIG_LITTLE is not set
CONFIG_VMSPLIT_3G is not set
CONFIG_VMSPLIT_3G_OPT is not set
CONFIG_VMSPLIT_2G=y
CONFIG_VMSPLIT_1G is not set
CONFIG_PAGE_OFFSET=0x80000000
CONFIG_NR_CPUS=4
[...]

As seen in the preceding snippet, the CONFIG_VMSPLIT_2G kernel config option is set
to y implying that the default VM split is user:kernel :: 2:2. For 32-bit
architectures, the VM split location is tunable (as can be seen in the preceding
snippet, CONFIG_VMSPLIT_[1|2|3]G; CONFIG_PAGE_OFFSET gets set accordingly).
With a 2:2 VM split, PAGE_OFFSET is literally halfway, at the virtual address 0x8000
0000 (2 GB)!

Memory Management Internals - Essentials Chapter 7

[320]

The default VM split for the IA-32 processor (the Intel x86-32) is 3:1 (GB).
Interestingly, the (ancient) Windows 3.x OS running on the IA-32 had the same VM
split, showing that these concepts are essentially OS-agnostic. Later in this chapter,
we will cover several more architectures and their VM split, in addition to other
details.

Configuring the VM split is not directly possible for 64-bit architectures. So, now that
we understand the VM split on 32-bit systems, let's now move on to examining how
it's done on 64-bit systems.

VM split on 64-bit Linux systems
First off, it is worth noting that on 64-bit systems, all 64 bits are not used for
addressing. On a standard or typical Linux OS configuration for the x86_64 with a
(typical) 4 KB page size, we use (the Least Significant Bit (LSB)) 48 bits for
addressing. Why not the full 64 bits? It's simply too much! No existing computer
comes close to having even half of the full 264 = 18,446,744,073,709,551,616 bytes,
which is equivalent to 16 EB (that's 16,384 petabytes) of RAM!

"Why," you might well wonder, "do we equate this with RAM?".
Please read on – more material needs to be covered before this
becomes clear. The Examining the kernel segment section is where you
will understand this fully.

Virtual addressing and address translation
Before diving further into these details, it's very important to clearly understand a
few key points.

Consider a small and typical code snippet from a C program:

int i = 5;
printf("address of i is 0x%x\n", &i);

Memory Management Internals - Essentials Chapter 7

[321]

The address you see the printf() emit is a virtual address and not a physical one.
We distinguish between two kinds of virtual addresses:

If you run this code in a user space process, the address of variable i that
you will see is a UVA.
If you run this code within the kernel, or a kernel module (of course, you'd
then use the printk() API), the address of variable i you will see is a
Kernel Virtual Address (KVA).

Next, a virtual address is not an absolute value (an offset from 0); it's actually a
bitmask:

On a 32-bit Linux OS, the 32 available bits are divided into what's called the
Page Global Directory (PGD) value, the Page Table (PT) value, and the
offset.
These become indices via which the MMU (the Memory Management
Unit that's within the silicon of modern microprocessors), with access to
the kernel page tables for the current process context, performs address
translation.

We do not intend on covering the deep details on MMU-level
address translation here. It's also very arch-specific. Do refer to the
Further reading section for useful links on this topic.

As might be expected, on a 64-bit system, even with 48-bit addressing,
there will be more fields within the virtual address bitmask.

Okay, if this 48-bit addressing is the typical case on the x86_64 processor, then how
are the bits in a 64-bit virtual address laid out? What happens to the unused 16 MSB
bits? The following figure answers the question; it's a representation of the breakup of
a virtual address on an x86_64 Linux system:

Figure 7.2 – Breakup of a 64-bit virtual address on the Intel x86_64 processor with 4 KB pages

Memory Management Internals - Essentials Chapter 7

[322]

Essentially, with 48-bit addressing, we use bits 0 to 47 (the LSB 48 bits) and ignore the
Most Significant Bit (MSB) 16 bits, treating it much as a sign extension. Not so fast
though; the value of the unused sign-extended MSB 16 bits varies with the address
space you are in:

Kernel VAS: MSB 16 bits are always set to 1.
User VAS: MSB 16 bits are always set to 0.

This is useful information! Knowing this, by merely looking at a (full 64-bit) virtual
address, you can therefore tell whether it's a KVA or a UVA:

KVAs on a 64-bit Linux system always follow the format 0xffff
....
UVAs always have the format 0x0000

A word of caution: the preceding format holds true only for
processors (MMUs, really) that self-define virtual addresses as being
KVAs or UVAs; the x86 and ARM family of processors do fall in this
bracket.

As can now be seen (and I reiterate here), the reality is that virtual addresses are not
absolute addresses (absolute offsets from zero, as you might have mistakenly
imagined) but are actually bitmasks. The fact is that memory management is a
complex area where the work is shared: the OS is in charge of creating and
manipulating the paging tables of each process, the toolchain (compiler) generates
virtual addresses, and it's the processor MMU that actually performs runtime
address translation, translating a given (user or kernel) virtual address to a physical
(RAM) address!

We will not delve into further details regarding hardware paging (and various
hardware acceleration technologies, such as the Translation Lookaside Buffer (TLB)
and CPU caches) in this book. This particular topic is well covered by various other
excellent books and reference sites that are mentioned in the Further reading section of
this chapter.

Back to the VAS on a 64-bit processor. The available VAS on a 64-bit system is a
simply gigantic 264 = 16 EB (16 x 1018 bytes!). The story goes that when AMD engineers
were first porting the Linux kernel to the x86_64 (or AMD64) 64-bit processor, they
would have had to decide how to lay out the process and kernel segments within this
enormous VAS. The decision reached has more or less remained identical, even on
today's x86_64 Linux OS. This enormous 64-bit VAS is split as follows. Here, we
assume 48-bit addressing with a 4 KB page size:

Memory Management Internals - Essentials Chapter 7

[323]

Canonical lower half, for 128 TB: User VAS and virtual address ranges
from 0x0 to 0x0000 7fff ffff ffff
Canonical upper half, for 128 TB: Kernel VAS and virtual address ranges
from 0xffff 8000 0000 0000 to 0xffff ffff ffff ffff

The word canonical effectively means as per the law or as per common
convention.

This 64-bit VM split on an x86_64 platform can be seen in the following figure:

Figure 7.3 – The Intel x86_64 (or AMD64) 16 EB VAS layout (48-bit addressing); VM split is User : Kernel :: 128 TB : 128 TB

In the preceding figure, the in-between unused region – a hole or sparse region – is
also called the non-canonical addresses region. Interestingly, with the 48-bit
addressing scheme, the vast majority of the VAS is left unused. This is why we term
the VAS as being very sparse.

Memory Management Internals - Essentials Chapter 7

[324]

The preceding figure is certainly not drawn to scale! Always keep in
mind that this is all virtual memory space, not physical.

To round off our discussion on the VM split, some common user:kernel VM split
ratios for different CPU architectures are shown in the following figure (we assume
an MMU page size of 4 KB):

Figure 7.4 – Common user:kernel VM split ratios for different CPU architectures (for 4 KB page size)

We highlight the third row in bold red as it's considered the common case: running
Linux on the x86_64 (or AMD64) architecture, with a user:kernel :: 128 TB:128
TB VM split. Also, be careful when reading the table: the numbers in the sixth and
eighth columns, End vaddr, are single 64-bit quantities each and not two numbers.
The number may have simply wrapped around. So, for example, in the x86_64 row,
column 6, it's the single number 0x0000 7fff ffff ffff and not two numbers.

The third column, Addr Bits, shows us that, on 64-bit processors, no real-world
processor actually uses all 64 bits for addressing.

Memory Management Internals - Essentials Chapter 7

[325]

Under the x86_64, there are two VM splits shown in the preceding table:

The first one, 128 TB : 128 TB (4-level paging) is the typical VM split being
used on Linux x86_64-bit systems as of today (embedded laptops, PCs,
workstations, and servers). It limits the physical address space to 64 TB (of
RAM).
The second one, 64 PB : 64 PB, is, as of the time of writing at least, still
purely theoretical; it comes with support for what is called 5-level
paging from 4.14 Linux; the assigned VASes (56-bit addressing; a total of
128 petabytes of VAS and 4 PB of physical address space!) is so enormous
that, as of the time of writing, no actual computer is (yet) using it.

Note that the two rows for the AArch64 (ARM-64) architecture running on Linux are
merely representative. The BSP vendor or platform team working on the product
could well use differing splits. As an interesting aside, the VM split on the (old)
Windows 32-bit OS is 2:2 (GB).

What's actually residing within the kernel VAS, or as it's commonly called, the kernel
segment? All kernel code, data structures (including the task structures, the lists, the
kernel-mode stacks, paging tables, and so on), device drivers, kernel modules, and so
on are within here (as the lower half of Figure 6.7 in Chapter 6, Kernel Internals
Essentials – Processes and Threads, showed; we cover precisely this in some detail in the
Understanding the kernel segment section).

It's important to realize that, as a performance optimization on
Linux, kernel memory is always non-swappable; that is, kernel
memory can never be paged out to a swap partition. User space
memory pages are always candidates for paging, unless locked (see
the mlock[all](2) system calls).

With this background, you're now in a position to understand the full process VAS
layout. Read on.

Memory Management Internals - Essentials Chapter 7

[326]

The process VAS – the full view
Once again, refer to Figure 7.1; it shows the actual process VAS layout for a single 32-
bit process. The reality, of course – and this is key – is that all processes alive on the
system have their own unique user-mode VAS but share the same kernel
segment. For some contrast from Figure 7.1, which showed a 2:2 (GB) VM split, the
following figure shows the actual situation for a typical IA-32 system, with a 3:1 (GB)
VM split:

Figure 7.5 – Processes have a unique user VAS but share the kernel segment (32-bit OS); IA-32 with a 3:1 VM split

Notice in the preceding figure how the address space reflects a 3:1 (GB) VM split. The
user address space extends from 0 to 0xbfff ffff (0xc000 0000 is the 3 GB mark;
this is what the PAGE_OFFSET macro is set to), and the kernel VAS extends
from 0xc000 0000 (3 GB) to 0xffff ffff (4 GB).

Later in this chapter, we will cover the usage of a useful utility called procmap. It will
help you literally visualize the VASes, both kernel and user VASes, in detail, similar
to how our preceding diagrams have been showing.

Memory Management Internals - Essentials Chapter 7

[327]

A few things to note:

For the example shown in Figure 7.5, the value
of PAGE_OFFSET is 0xc000 0000.
The figures and numbers we have shown here are not
absolute and binding across all architectures; they tend to
be very arch-specific and many highly vendor-customized
Linux systems may change them.
Figure 7.5 details the VM layout on a 32-bit Linux OS. On
64-bit Linux, the concepts remain identical, it's just the
numbers that (significantly) change. As shown in some
detail in the preceding sections, the VM split on an
x86_64 (with 48-bit addressing) Linux system
becomes User : Kernel :: 128 TB : 128 TB.

Now that the fundamentals of the virtual memory layout of a process are understood,
you will find that it greatly helps in deciphering and making progress in difficult-to-
debug situations. As usual, there's still more to it; sections follow on the user space
and kernel-space memory map (the kernel segment), and some coverage on the
physical memory map as well. Read on!

Examining the process VAS
We have already covered the layout – the segments or mappings – that every
process's VAS is made up of (see the Understanding the basics of the process Virtual
Address Space (VAS) section in Chapter 6, Kernel Internals Essentials – Processes and
Threads). We learned that the process VAS consists of various mappings or segments,
and among them are text (code), data segments, library mappings, and at least one
stack. Here, we expand greatly on that discussion.

Being able to dive deep into the kernel and see various runtime values is an important
skill for a developer like you, as well as the user, QA, sysadmin, DevOps, and so on.
The Linux kernel provides us with an amazing interface to do precisely this – it's, you
guessed it, the proc filesystem (procfs).

Memory Management Internals - Essentials Chapter 7

[328]

This is always present on Linux (at least it should be) and is mounted
under /proc. The procfs system has two primary jobs:

To provide a unified set of (pseudo or virtual) files and directories,
enabling you to look deep into the kernel and hardware internal details.
To provide a unified set of root-writeable files, allowing the sysad to
modify key kernel parameters. These are present under /proc/sys/ and
are termed sysctl – they are the tuning knobs of the Linux kernel.

Familiarity with the proc filesystem is indeed a must. I urge you to check it out, and
read the excellent man page on proc(5) as well. For example, simply doing cat
/proc/PID/status (where PID is, of course, the unique process identifier of a given
process or thread) yields a whole bunch of useful details from the process or thread's
task structure!

Conceptually similar to procfs is the sysfs filesystem, mounted
under /sys (and under it debugfs, typically mounted
at /sys/kernel/debug). sysfs is a representation of 2.6 Linux's
new device and driver model; it exposes a tree of all devices on the
system, as well as several kernel-tuning knobs.

Examining the user VAS in detail
Let's begin by checking out the user VAS of any given process. A pretty detailed map
of the user VAS is made available via procfs, particularly via the /proc/PID/maps
pseudo-file. Let's learn how to use this interface to peek into a process's user space
memory map. We will see two ways:

Directly via the procfs interface's /proc/PID/maps pseudo-file
Using a few useful frontends (making the output more human-digestible)

Let's start with the first one.

Memory Management Internals - Essentials Chapter 7

[329]

Directly viewing the process memory map using
procfs
Looking up the internal process details of any arbitrary process does
require root access, whereas looking up details of a process under your ownership
(including the caller process itself) does not. So, as a simple example, we will look up
the calling process's VAS by using the self keyword in place of the PID. The
following screenshot shows this (on an x86_64 Ubuntu 18.04 LTS guest):

Figure 7.6 – Output of the cat /proc/self/maps command

In the preceding screenshot, you can actually see the user VAS of the cat process – a
veritable memory map of the user VAS of that process! Also, notice that the preceding
procfs output is sorted in ascending order by (user) virtual address (UVA).

Familiarity with using the powerful mmap(2) system call will help
greatly in understanding further discussions. Do (at least) browse
through its man page.

Interpreting the /proc/PID/maps output
To interpret the output of Figure 7.6, read it one line at a time. Each line represents
a segment or mapping of the user-mode VAS of the process in question (in the
preceding example, it's of the cat process). Each line consists of the following fields.

Memory Management Internals - Essentials Chapter 7

[330]

To make it easier, I will show just a single line of output whose fields we will label
and refer to in the following notes:

 start_uva - end_uva mode,mapping start-off mj:mn inode# image-
name
555d83b65000-555d83b6d000 r-xp 00000000 08:01 524313
/bin/cat

Here, the entire line represents a segment, or more correctly, a mapping within the
process (user) VAS. uva is the user virtual address. start_uva and end_uva for each
segment are displayed as the first two fields (or columns). Thus, the length of the
mapping (segment) is easily calculated (end_uva–start_uva bytes). Thus, in the
preceding line, start_uva is 0x555d83b65000 and end_uva is 0x555d83b6d000
(and the length can be calculated to be 32 KB); but, what is this segment? Do read on...

The third field, r-xp, is actually a combination of two pieces of information:

The first three letters represent the mode (permissions) of the segment (in
the usual rwx notation).
The next letter represents whether the mapping is a private one (p) or a
shared one (s). Internally, this is set up by the fourth parameter to
the mmap(2) system call, flags; it's really the mmap(2) system call that is
internally responsible for creating every segment or mapping within a
process!
So, for the preceding sample segment shown, the third field being the value
r-xp, we can now tell it's a text (code) segment and is a private mapping
(as expected).

The fourth field start-off (here, it's the value 0) is the start offset from the
beginning of the file whose contents has been mapped into the process VAS.
Obviously, this value is only valid for file mappings. You can tell whether the current
segment is a file mapping by glancing at the penultimate (sixth) field. For mappings
that are not file-mapped – called anonymous mappings – it's always 0 (examples
would be the mappings representing the heap or stack segments). In our preceding
example line, it's a file mapping (that of /bin/cat) and the offset from the beginning
of that file is 0 bytes (the length of the mapping, as we calculated in the preceding
paragraph, is 32 KB).

Memory Management Internals - Essentials Chapter 7

[331]

The fifth field (08:01) is of the form mj:mn, where mj is the major number and mn is
the minor number of the device file where the image resides. Similar to the fourth
field, it's only valid for file mappings, else it's simply shown as 00:00; in our
preceding example line, it's a file mapping (that of /bin/cat), and the major and
minor numbers (of the device that the file resides on) are 8 and 1, respectively.

The sixth field (524313) represents the inode number of the image file – the file
whose contents are being mapped into the process VAS. The inode is the key data
structure of the VFS (Virtual FileSystem); it holds all metadata of the file object,
everything except for its name (which is in the directory file). Again, this value is only
valid for file mappings and simply shows as 0 otherwise. This is, in fact, a quick way
to tell whether the mapping is file-mapped or an anonymous mapping! In our
preceding example mapping, clearly it's a file mapping (that of /bin/cat), and the
inode number is 524313. Indeed, we can confirm this:

ls -i /bin/cat
524313 /bin/cat

The seventh and last field represents the pathname of the file whose contents are
being mapped into the user VAS. Here, as we're viewing the memory map of
the cat(1) process, the pathname (for the file-mapped segments) is /bin/cat, of
course. If the mapping represents a file, the file's inode number (the sixth field) shows
up as a positive quantity; if not – meaning it's a pure memory or anonymous
mapping with no backing store – the inode number shows up as 0 and this field will
be empty.

It should by now be obvious, but we will point this out nevertheless – it is a key
point: all the preceding addresses seen are virtual, not physical. Furthermore, they
only belong to user space, hence they are termed UVAs and are always accessed (and
translated) via the unique paging tables for that process. Also, the preceding
screenshot was taken on a 64-bit (x86_64) Linux guest. Hence, here, we see 64-bit
virtual addresses.

Though the way the virtual addresses are displayed isn't as a full 64-
bit number – for example, as 0x555d83b65000 and not
as 0x0000555d83b65000 – I want you to notice how, because it's
a user virtual address (a UVA), the MSB 16 bits are zero!

Right, that covers how to interpret a particular segment or mapping, but there seems
to be a few strange ones – the vvar, vdso, and vsyscall mappings. Let's see what
they mean.

Memory Management Internals - Essentials Chapter 7

[332]

The vsyscall page
Did you notice something a tad unusual in the output of Figure 7.6? The very last line
there – the so-called vsyscall entry – maps a kernel page (by now, you know how
we can tell: the MSB 16 bits of its start and end virtual addresses are set). Here, we
just mention the fact that this is an (old) optimization for performing system calls. It
works by alleviating the need to actually switch to kernel mode for a small subset of
syscalls that don't really need to.

Currently, on the x86, these include the gettimeofday(2), time(2), and
getcpu(2) system calls. Indeed, the vvar and vdso (aka vDSO) mappings above it
are (slightly) modern variations on the same theme. If you are interested in finding
out more about this, visit the Further reading section for this chapter.

So, you've now seen how to examine the user space memory map of any given
process by directly reading and interpreting the output of the /proc/PID/maps
(pseudo) file for the process with PID. There are other convenient frontends to do so;
we'll now check out a few.

Frontends to view the process memory map
Besides the raw or direct format via /proc/PID/maps (which we saw how to
interpret in the previous section), there are some wrapper utilities that help us more
easily interpret the user-mode VAS. Among them are the additional
(raw) /proc/PID/smaps pseudo-file, the pmap(1) and smem(8) utilities, and my
own simple utility (christened procmap).

The kernel provides detailed information on each segment or mapping via
the /proc/PID/smaps pseudo-file under proc. Do try cat /proc/self/smaps to
see this for yourself. You will notice that for each segment (mapping), a good amount
of detail information is provided on it. The man page on proc(5) helps explain the
many fields seen.

For both the pmap(1) and smem(8) utilities, I refer you to the man pages on them for
details. For example, with pmap(1), the man page informs us of the more verbose -
X and -XX options:

-X Show even more details than the -x option. WARNING: format changes
according to /proc/PID/smaps
-XX Show everything the kernel provides

Memory Management Internals - Essentials Chapter 7

[333]

Regarding the smem(8) utility, the fact is that it does not show you the process VAS;
rather, it's more about answering an FAQ: namely, ascertaining which process is
taking up the most physical memory. It uses metrics such as Resident Set Size (RSS),
Proportional Set Size (PSS), and Unique Set Size (USS) to throw up a clearer
picture. I will leave the further exploration of these utilities as an exercise to you, dear
reader!

Now, let's move on to exploring how we can use a useful utility – procmap – to view
in quite a bit of detail both the kernel and user memory map of any given process.

The procmap process VAS visualization utility
As a small learning and teaching (and helpful during debug!) project, I have authored
and hosted a small project on GitHub going by the name of procmap, available
here: https:// github. com/ kaiwan/ procmap (do git clone it). A snippet from its
README.md file helps explain its purpose:

procmap is designed to be a console/CLI utility to visualize the
complete memory map of a Linux process, in effect, to visualize the
memory mappings of both the kernel and user mode Virtual Address Space
(VAS).

It outputs a simple visualization, in a vertically-tiled format
ordered by descending virtual address, of the complete memory map of a
given process (see screenshots below). The script has the intelligence
to show kernel and user space mappings as well as calculate and show
the sparse memory regions that will be present. Also, each segment or
mapping is scaled by relative size (and color-coded for readability).
On 64-bit systems, it also shows the so-called non-canonical sparse
region or 'hole' (typically close to 16,384 PB on the x86_64).

https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap

Memory Management Internals - Essentials Chapter 7

[334]

An aside: at the time of writing this material (April/May 2020), the COVID-19
pandemic is in full swing across most of the globe. Similar to the earlier SETI@home
project (https:/ /setiathome. berkeley. edu/), the Folding@home project (https:/ /
foldingathome. org/ category/ covid- 19/) is a distributed computing project that
leverages internet-connected home (or any) computers to help simulate and solve
problems related to COVID-19 treatments (among finding cures for several other
serious diseases that affect us). You can download the software from https:/ /
foldingathome. org/ start- folding/ (install it, and it runs during your system's idle
cycles). I did just this; here's the FAH viewer (a nice GUI showing protein molecules!)
process running on my (native) Ubuntu Linux system:

$ ps -e|grep -i FAH
6190 ? 00:00:13 FAHViewer

Alright, let's interrogate its VAS using the procmap utility. How do we invoke it?
Simple, see what follows (due to a lack of space, I won't show all the information,
caveats, and more here; do try it out yourself):

$ git clone https://github.com/kaiwan/procmap
$ cd procmap
$./procmap
Options:
 --only-user : show ONLY the user mode mappings or segments
 --only-kernel : show ONLY the kernel-space mappings or segments
 [default is to show BOTH]
 --export-maps=filename
 write all map information gleaned to the file you specify in CSV
 --export-kernel=filename
 write kernel information gleaned to the file you specify in CSV
 --verbose : verbose mode (try it! see below for details)
 --debug : run in debug mode
 --version|--ver : display version info.
See the config file as well.
[...]

Do note that this procmap utility is not the same as the procmap utility provided by
BSD Unix. Also, it depends upon the bc(1) and smem(8) utilities; please ensure
they're installed.

https://setiathome.berkeley.edu/
https://setiathome.berkeley.edu/
https://setiathome.berkeley.edu/
https://setiathome.berkeley.edu/
https://setiathome.berkeley.edu/
https://setiathome.berkeley.edu/
https://setiathome.berkeley.edu/
https://setiathome.berkeley.edu/
https://setiathome.berkeley.edu/
https://setiathome.berkeley.edu/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/category/covid-19/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/
https://foldingathome.org/start-folding/

Memory Management Internals - Essentials Chapter 7

[335]

When I run the procmap utility with only --pid=<PID>, it will display both the
kernel and user space VASes of the given process. Now, as we have not yet covered
the details regarding the kernel VAS (or segment), I won't show the kernel-space
detailed output here; let's defer that to the upcoming section, Examining the kernel
segment. As we proceed, you will find partial screenshots of only the user VAS output
from the procmap utility. The complete output can be quite lengthy, depending, of
course, on the process in question; do try it out for yourself.

As you'll see, it attempts to provide a basic visualization of the complete process
memory map – both kernel and user space VAS in a vertically tiled format (as
mentioned, here we just display truncated screenshots):

Figure 7.7 – Partial screenshot: the first line of the kernel VAS output from the procmap utility

Notice, from the preceding (partial) screenshot, a few things:

The procmap (Bash) script auto-detects that we're running on an x86_64 64-
bit system.
Though we're not focused on it right now, the output of the kernel VAS
appears first; this is natural as we show the output ordered by descending
virtual address (Figures 7.1, 7.3 and 7.5 reiterate this)
You can see that the very first line (after the KERNEL VAS
header) corresponds to a KVA at the very top of the VAS – the
value 0xffff ffff ffff ffff (as we're on 64-bit).

Memory Management Internals - Essentials Chapter 7

[336]

Moving on to the next part of the procmap output, let's look at a truncated view of the
upper end of the user VAS of the FAHViewer process:

Figure 7.8 – Partial screenshot: first few lines (high end) of the user VAS output from the procmap utility

Figure 7.8 is a partial screenshot of the procmap output, and shows the user space
VAS; at the very top of it, you can see the (high) end UVA.

Memory Management Internals - Essentials Chapter 7

[337]

On our x86_64 system (recall, this is arch-dependent), the (high) end_uva value is
0x0000 7fff ffff ffff and start_uva is, of course, 0x0. How
does procmap figure out the precise address values? Ah, it's fairly sophisticated: for
the kernel-space memory information, it uses a kernel module (an LKM!) to query the
kernel and sets up a config file depending on the system architecture; user space
details, of course, come from the /proc/PID/maps direct procfs pseudo-file.

As an aside, the kernel component of procmap, a kernel module,
sets up a way to interface with user space – the procmap scripts – by
creating and setting up a debugfs (pseudo) file.

The following screenshot shows a partial screenshot of the low end of the user mode
VAS for the process, right down to the lowest UVA, 0x0:

Figure 7.9 – Partial screenshot: last few lines (low end) of the user VAS output from the procmap utility

Memory Management Internals - Essentials Chapter 7

[338]

The last mapping, a single page, is, as expected, the null trap page (from
UVA 0x1000 to 0x0; we will explain its purpose in the upcoming The null trap
page section).

The procmap utility, then, if enabled in its config file, calculates and displays a few
statistics; this includes the sizes of both the kernel and user-mode VASes, the amount
of user space memory taken up by sparse regions (on 64-bit, as in the preceding
example, it's usually the vast majority of the space!) as an absolute number and a
percentage, the amount of physical RAM reported, and finally, the memory usage
details for this particular process as reported by the ps(1) and smem(8) utilities.

You will find, in general, on a 64-bit system (see Figure 7.3), that the sparse (empty)
memory regions of the process VAS take up close to 100% of the available address
space! (It's often a number such as 127.99[...] TB of VAS out of the 128 TB available.)
This implies that 99.99[...]% of the memory space is sparse (empty)! This is the reality
of the simply enormous VAS on a 64-bit system. Only a tiny fraction of the gigantic
128 TB of VAS (as this is the case on the x86_64) is actually in use. Of course, the
actual amounts of sparse and used VAS depend on the size of the particular
application process.

Being able to clearly visualize the process VAS can aid greatly when debugging or
analyzing issues at a deeper level.

If you're reading this book in its hardcopy format, be sure to
download the full-color PDF of diagrams/figures from the
publisher's website: https:/ /static. packt- cdn. com/ downloads/
9781789953435_ ColorImages. pdf.

You will also see that the statistics printed out at the end of the output (if enabled)
show the number of Virtual Memory Areas (VMAs) set up for the target process. The
following section briefly explains what a VMA is. Let's get to it!

Understanding VMA basics
In the output of /proc/PID/maps, each line of the output is actually extrapolated
from a kernel metadata structure called a VMA. It's quite straightforward, really: the
kernel uses the VMA data structure to abstract what we have been calling
a segment or mapping. Thus, for every single segment in the user VAS, there is a
VMA object maintained by the OS. Please realize that only user space segments or
mappings are governed by the kernel metadata structure called the VMA; the kernel
segment itself has no VMAs.

https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789953435_ColorImages.pdf

Memory Management Internals - Essentials Chapter 7

[339]

So, how many VMAs will a given process have? Well, it's equal to the number
of mappings (segments) in its user VAS. In our example with the FAHViewer process,
it happened to have 206 segments or mappings, implying that there are 206 VMA
metadata objects – representing the 206 user space segments or mappings – for this
process in kernel memory.

Programmatically speaking, the kernel maintains a VMA "chain" (which is actually a
red-black tree data structure for efficiency reasons) via the task structure rooted at
current->mm->mmap. Why is the pointer called mmap? It's very deliberate: every time
an mmap(2) system call – that is, a memory mapping operation – is performed, the
kernel generates a mapping (or "segment") within the calling process's (that is,
within current instances) VAS and a VMA object representing it.

The VMA metadata structure is akin to an umbrella encompassing the mapping and
includes all required information for the kernel to perform various kinds of memory
management: servicing page faults (very common), caching the contents of a file
during I/O into (or out of) the kernel page cache, and so on.

Page fault handling is a very important OS activity, whose
algorithm makes up quite a bit of usage of the kernel VMA objects;
in this book, though, we don't delve into these details as it's largely
transparent to kernel module/driver authors.

Just to give you a feel for it, we will show a few members of the kernel VMA data
structure in the following snippet; the comments alongside help explain their
purpose:

// include/linux/mm_types.h
struct vm_area_struct {
 /* The first cache line has the info for VMA tree walking. */
 unsigned long vm_start; /* Our start address within vm_mm. */
 unsigned long vm_end; /* The first byte after our end
address
 within vm_mm. */
 /* linked list of VM areas per task, sorted by address */
 struct vm_area_struct *vm_next, *vm_prev;
 struct rb_node vm_rb;
 [...]
 struct mm_struct *vm_mm; /* The address space we belong to. */
 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
 unsigned long vm_flags; /* Flags, see mm.h. */
 [...]
 /* Function pointers to deal with this struct. */
 const struct vm_operations_struct *vm_ops;
 /* Information about our backing store: */

Memory Management Internals - Essentials Chapter 7

[340]

 unsigned long vm_pgoff;/* Offset (within vm_file) in PAGE_SIZE
units */
 struct file * vm_file; /* File we map to (can be NULL). */
 [...]
} __randomize_layout

It should now be clearer as to how cat /proc/PID/maps really works under the
hood: when the user space does, say, cat /proc/self/maps, a read(2) system call
is issued by cat; this results in the cat process switching to kernel mode and running
the read(2) system call code within the kernel with kernel privileges. Here, the
kernel Virtual Filesystem Switch (VFS) redirects control to the appropriate procfs
callback handler (function). This code iterates (loops) over every VMA metadata
structures (for current, which is our cat process, of course), sending relevant
information back to user space. The cat process then faithfully dumps the data
received via the read to stdout, and thus we see it: all the segments or mappings of
the process – in effect, the memory map of the user-mode VAS!

Right, with this, we conclude this section, where we have covered details on
examining the process user VAS. This knowledge helps not only with understanding
the precise layout of user-mode VAS but also with debugging user space memory
issues!

Now, let's move on to understanding another critical aspect of memory management
– the detailed layout of the kernel VAS, in other words, the kernel segment.

Examining the kernel segment
As we have talked about in the preceding chapter, and as seen in Figure 7.5, it's really
critical to understand that all processes have their own unique user VAS but share the
kernel space – what we call the kernel segment or kernel VAS. Let's begin this section
by starting to examine some common (arch-independent) regions of the kernel
segment.

Memory Management Internals - Essentials Chapter 7

[341]

The kernel segment's memory layout is very arch (CPU)-dependent. Nevertheless, all
architectures share some commonalities. The following basic diagram represents both
the user VAS and the kernel segment (in a horizontally tiled format), as seen on an
x86_32 with a 3:1 VM split:

Figure 7.10 – User and kernel VASes on an x86_32 with a 3:1 VM split with focus on the lowmem region

Let's go over each region one by one:

The user mode VAS: This is the user VAS; we have covered it in detail in
the preceding chapter as well as earlier sections in this chapter; in this
particular example, it takes 3 GB of VAS (UVAs from 0x0 to 0xbfff
ffff).
All that follows belongs to kernel VAS or the kernel segment; in this
particular example, it takes 1 GB of VAS (KVAs from 0xc000
0000 to 0xffff ffff); let's examine individual portions of it now.
The lowmem region: This is where platform (system) RAM direct-
maps into the kernel. (We will cover this key topic in more detail in
the Direct-mapped RAM and address translation section. If you feel it helps,
you can read that section first and then return here). Skipping a bit ahead
for now, let's just understand that the base location in the kernel segment
where platform RAM is mapped is specified by a kernel macro called
PAGE_OFFSET. The precise value of this macro is very arch-dependent; we
will leave this discussion to a later section. For now, we ask you to just take
it on faith that on the IA-32 with a 3:1 (GB) VM split, the value of
PAGE_OFFSET is 0xc000 0000.

Memory Management Internals - Essentials Chapter 7

[342]

The length or size of the kernel lowmem region is equal to the amount of
RAM on the system. (Well, at least the amount of RAM as seen by the
kernel; enabling the kdump facility, for example, has the OS reserve some
RAM early). The virtual addresses that make up this region are
termed kernel logical addresses as they are at a fixed offset from their
physical counterparts. The core kernel and device drivers can allocate
(physically contiguous!) memory from this region via various APIs (we
cover precisely these APIs in detail in the following two chapters). The
kernel static text (code), data, and BSS (uninitialized data) memory also
resides within this lowmem region.

The kernel vmalloc region: This is a region of the kernel VAS that is
completely virtual. Core kernel and/or device driver code can allocate
virtually contiguous memory from this region using the vmalloc() (and
friends) API. Again, we will cover this in detail in Chapter 8, Kernel
Memory Allocation for Module Authors Part 1, and Chapter 9, Kernel Memory
Allocation for Module Authors Part 2. This is also the so-called ioremap
space.
The kernel modules space: A region of kernel VAS is set aside for memory
taken up by the static text and data of Loadable Kernel Modules (LKMs).
When you perform insmod(8), the underlying kernel code of the resulting
[f]init_module(2) system call allocates memory from this region
(typically via the vmalloc() API) and loads the kernel module's (static)
code and data there.

The preceding figure (Figure 7.10) is deliberately left simplistic and even a bit vague
as the exact kernel virtual memory layout is very arch-dependent. We'll put off the
temptation to draw a detailed diagram for a bit. Instead, to make this discussion less
pedantic and more practical and useful, we'll present, in a soon-to-come section, a
kernel module that queries and prints relevant information regarding the kernel
segment layout. Only then, once we have actual values for various regions of the
kernel segment for a particular architecture, will we present a detailed diagram
depicting this.

Pedantically (as can be seen in Figure 7.10), the addresses belonging
to the lowmem region are termed kernel logical addresses (they're at
a fixed offset from their physical counterparts), whereas the
addresses for the remainder of the kernel segment are termed KVAs.
Though this distinction is made here, please realize that, for all
practical purposes, it's a rather pedantic one: we will often simply
refer to all addresses within the kernel segment as KVAs.

Memory Management Internals - Essentials Chapter 7

[343]

Before that, there are several other pieces of information to cover. Let's begin with
another peculiarity, mostly brought about by the limitations of a 32-bit architecture:
the so-called high memory region of the kernel segment.

High memory on 32-bit systems
Regarding the kernel lowmem region that we briefly discussed previously, an
interesting observation ensues. On a 32-bit system with, say, a 3:1 (GB) VM split (just
as Figure 7.10 depicts), a system with (say) 512 MB of RAM will have its 512 MB RAM
direct-mapped into the kernel starting at PAGE_OFFSET (3 GB or KVA 0xc000 0000).
This is quite clear.

But think about it: what would happen if the system has a lot more RAM, say, 2 GB?
Now, it's obvious that we cannot direct-map the whole of the RAM into the lowmem
region. It just cannot fit (as, in this example, the entire available kernel VAS is just a
gigabyte and RAM is 2 gigabytes)! So, on a 32-bit Linux OS, a certain amount of
memory (typically 768 MB on the IA-32) is allowed to be direct-mapped and thus falls
into the lowmem region. The remaining RAM is indirectly mapped into another
memory zone called ZONE_HIGHMEM (we think of it as a high-memory region or zone
as opposed to lowmem; more on memory zones follows in a later section, Zones).
More correctly, as the kernel now finds it impossible to direct-map all physical
memory at once, it sets up a (virtual) region where it can set up and use temporary
virtual mappings of that RAM. This is the so-called high-memory region.

Don't get confused by the phrase "high memory"; one, it's not
necessarily placed "high" in the kernel segment, and two, this is not
what the high_memory global variable represents – it
(high_memory) represents the upper bound of the kernel's lowmem
region. More on this follows in a later section, Macros and variables
describing the kernel segment layout.

Nowadays, though (and especially with 32-bit systems being used more and more
infrequently), these concerns completely disappear on 64-bit Linux. Think about it: on
64-bit Linux, the kernel segment size is a whopping 128 TB (!) on the x86_64. No
single system in existence has anywhere close to this much RAM. Hence, all platform
RAM can indeed (easily) be direct-mapped into the kernel segment and the need for
ZONE_HIGHMEM (or equivalent) disappears.

Memory Management Internals - Essentials Chapter 7

[344]

Again, the kernel documentation provides details on this "high-memory" region. Take
a look if interested: https:/ /www. kernel. org/ doc/ Documentation/ vm/highmem. txt.

Okay, let's now tackle the thing we've been waiting to do – writing a kernel module
(an LKM) to delve into some details regarding the kernel segment.

Writing a kernel module to show information
about the kernel segment
As we have learned, the kernel segment consists of various regions. Some are
common to all architectures (arch-independent): they include the lowmem region
(which contains, among other things, the uncompressed kernel image – its code, data,
BSS), the kernel modules region, vmalloc/ioremap regions, and so on.

The precise location within the kernel segment where these regions lie, and indeed
which regions may be present, is very arch (CPU)-dependent. To help understand
and pin it down for any given system, let's develop a kernel module that queries and
prints various details regarding the kernel segment (in fact, if asked to, it also prints
some useful user space memory details).

Viewing the kernel segment on a Raspberry Pi via
dmesg
Before jumping into and analyzing the code for such a kernel module, the fact is that
something pretty similar to what we're attempting here – printing the location and
size of various interesting regions within the kernel segment/VAS – is already
performed at early boot on the popular Raspberry Pi (ARM) Linux kernel. In the
following snippet, we show the relevant output from the kernel log when the
Raspberry Pi 3 B+ (running the stock (default) 32-bit Raspberry Pi OS) boots:

rpi $ uname -r
4.19.97-v7+
rpi $ journalctl -b -k
[...]
Apr 02 14:32:48 raspberrypi kernel: Virtual kernel memory layout:
 vector : 0xffff0000 - 0xffff1000 (4 kB)
 fixmap : 0xffc00000 - 0xfff00000 (3072 kB)
 vmalloc : 0xbb800000 - 0xff800000 (1088 MB)
 lowmem : 0x80000000 - 0xbb400000 (948 MB)
 modules : 0x7f000000 - 0x80000000 (16 MB)

https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt

Memory Management Internals - Essentials Chapter 7

[345]

 .text : 0x(ptrval) - 0x(ptrval) (9184 kB)
 .init : 0x(ptrval) - 0x(ptrval) (1024 kB)
 .data : 0x(ptrval) - 0x(ptrval) (654 kB)
 .bss : 0x(ptrval) - 0x(ptrval) (823 kB)
[...]

It's important to note that these preceding prints are very specific to
the OS and device. The default Raspberry Pi 32-bit OS prints this
information out, while others may not: YMMV (Your Mileage May
Vary!). For example, with the standard 5.4 kernel for Raspberry Pi
that I built and ran on the device, these informative prints weren't
present. On recent kernels (as seen in the preceding logs on the
4.19.97-v7+ Raspberry Pi OS kernel), for security reasons – that of
preventing kernel information leakage – many early printk
functions will not display a "real" kernel address (pointer) value;
you might simply see it prints the 0x(ptrval) string.

This 0x(ptrval) output implies that the kernel is deliberately not
showing even a hashed printk (recall the %pK format specifier from
Chapter 5, Writing Your First Kernel Module – LKMs Part 2) as the
system entropy is not yet high enough. If you insist on seeing a
(weakly) hashed printk, you can always pass the
debug_boot_weak_hash kernel parameter at boot (look up details
on kernel boot parameters here: https:/ /www. kernel. org/ doc/
html/ latest/ admin- guide/ kernel- parameters. html).

Interestingly, (as mentioned in the preceding information box), the code that prints
this Virtual kernel memory layout : information is very specific to the
Raspberry Pi kernel patches! It can be found in the Raspberry Pi kernel source tree
here: https:// github. com/ raspberrypi/ linux/ blob/ rpi- 5.4.y/ arch/ arm/ mm/init.
c.

Now, in order for you to query and print similar information, you must first get
familiar with some key kernel macros and globals.; let's do so in the next section.

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c
https://github.com/raspberrypi/linux/blob/rpi-5.4.y/arch/arm/mm/init.c

Memory Management Internals - Essentials Chapter 7

[346]

Macros and variables describing the kernel segment
layout
To write a kernel module that displays relevant kernel segment information, we need
to know how exactly to interrogate the kernel with regard to these details. In this
section, we will briefly describe a few key macros and variables within the kernel
representing the memory of the kernel segment (on most architectures, in descending
order by KVA):

The vector table is a common OS data structure – it's an array of function
pointers (aka a switching or jump table). It is arch-specific: ARM-32 uses it
to initialize its vectors such that when a processor exception or mode
change (such as an interrupt, syscall, page fault, MMU abort, and so
on) occurs, the processor knows what code to run:

Macro or variable Interpretation
VECTORS_BASE Typically ARM-32 only; start KVA of a kernel vector table spanning 1 page

The fix map region is a range of compile-time special or reserved virtual
addresses; they are employed at boot time to fix, into the kernel segment,
required kernel elements that must have memory available for them.
Typical examples include the setup of initial kernel page tables, early
ioremap and vmalloc regions, and so on. Again, it's an arch-dependent
region and is thus used differently on different CPUs:

Macro or variable Interpretation
FIXADDR_START Start KVA of the kernel fixmap region spanning FIXADDR_SIZE bytes

Kernel modules are allocated memory – for their static text and data –
within a specific range in the kernel segment. The precise location of the
kernel module region varies with the architecture. On ARM 32-bit systems,
in fact, it's placed just above the user VAS; while on 64-bit, it's usually
higher up in the kernel segment:

Kernel modules (LKMs) region Memory allocated from here for static code + data of LKMs
MODULES_VADDR Start KVA of the kernel modules region

MODULES_END
End KVA of kernel modules region; size is MODULES_END -
 MODULES_VADDR

Memory Management Internals - Essentials Chapter 7

[347]

KASAN: The modern kernel (4.0 onward for x86_64, 4.4 for ARM64)
employs a powerful mechanism to detect and report memory issues. It's
based on the user space Address SANitizer (ASAN) code base and is thus
called Kernel Address SANitizer (KASAN). Its power lies in ably (via
compile-time instrumentation) detecting memory issues such as Use After
Free (UAF) and Out Of Bounds (OOB) access (including buffer over/under
flows). It, however, works only on 64-bit Linux and requires a rather large
shadow memory region (of a size that is one-eighth that of the kernel VAS,
whose extents we show if it's enabled). It's a kernel configuration feature
(CONFIG_KASAN) and is typically enabled only for debug purposes (but it's
really crucial to keep it enabled during debug and testing!):

KASAN shadow memory region (only
64-bit)

[Optional] (only on 64-bit and only if CONFIG_KASAN
is defined; see more as follows)

KASAN_SHADOW_START Start KVA of the KASAN region

KASAN_SHADOW_END
End KVA of the KASAN region; size
is KASAN_SHADOW_END - KASAN_SHADOW_START

The vmalloc region is the space from where memory for the vmalloc()
(and friends) APIs are allocated; we will cover various memory allocation
APIs in detail in the next two chapters:

The vmalloc region For memory allocated via vmalloc() and friends
VMALLOC_START Start KVA of the vmalloc region

VMALLOC_END
End KVA of the vmalloc region; size is VMALLOC_END -
 VMALLOC_START

The lowmem region – direct-mapped RAM into the kernel segment on a
1:1 :: physical page frame:kernel page basis – is in fact the
region where the Linux kernel maps and manages (typically) all RAM.
Also, it's often set up as ZONE_NORMAL within the kernel (we will cover
zones as well, a bit later):

Lowmem region Direct-mapped memory region

PAGE_OFFSET Start KVA of the lowmem region; also represents the start of the kernel segment
on some architectures and is (often) the VM split value on 32-bit.

high_memory

End KVA of the lowmem region, upper bound of direct-mapped memory; in
effect, this value minus PAGE_OFFSET is the amount of (platform) RAM on the
system (careful, this is not necessarily the case on all arches though); not to be
confused with ZONE_HIGHMEM.

Memory Management Internals - Essentials Chapter 7

[348]

The highmem region or zone is an optional region. It might exist on some
32-bit systems (typically, where the amount of RAM present is greater than
the size of the kernel segment itself). It's often set up as ZONE_HIGHMEM in
this case (we will cover zones a bit later. Also, you can refer back to more
on this highmem region in the earlier section entitled High memory on 32-bit
systems):

Highmem region (only
possible on 32-bit) [Optional] HIGHMEM may be present on some 32-bit systems

PKMAP_BASE
Start KVA of the highmem region, runs until LAST_PKMAP pages;
represents the kernel mapping of so-called high-memory pages (older,
only possible on 32-bit)

The (uncompressed) kernel image itself – its code, init, and data regions –
are private symbols and thus unavailable to kernel modules; we don't
attempt to print them:

Kernel (static) image The content of the uncompressed kernel image (see the
following); not exported and thus unavailable to modules

_text, _etext Start and end KVAs (respectively) of the kernel text (code)
region

__init_begin,
__init_end

Start and end KVAs (respectively) of the kernel init section
region

_sdata, _edata Start and end KVAs (respectively) of the kernel static data
region

__bss_start, __bss_stop Start and end KVAs (respectively) of the kernel BSS
(uninitialized data) region

The user VAS: The last item, of course, is the process user VAS. It's below
the kernel segment (when ordered by descending virtual address), and is of
size TASK_SIZE bytes. It was discussed in detail earlier in this chapter:

User VAS User Virtual Address Space (VAS)
(User-mode VAS
follows)
TASK_SIZE

(Examined in detail earlier via procfs or our procmap utility script); the
kernel macro TASK_SIZE represents the size of the user VAS (bytes).

Well, that's that; we've seen several kernel macros and variables that, in effect,
describe the kernel VAS.

Memory Management Internals - Essentials Chapter 7

[349]

Moving on to the code of our kernel module, you'll soon see that its init method
calls two functions (that matter):

show_kernelseg_info(), which prints relevant kernel segment details
show_userspace_info(), which prints relevant user VAS details (it's
optional, decided via a kernel parameter)

We will start by describing the kernel segment function and seeing its output. Also,
the way the Makefile is set up, it links into the object file of our kernel library
code, klib_llkd.c, and generates a kernel module object called
show_kernel_seg.ko.

Trying it out – viewing kernel segment details
For clarity, we will show only relevant parts of the source code in this section. Do
clone and use the complete code from this book's GitHub repository. Also, recall the
procmap utility mentioned earlier; it has a kernel component, an LKM, which indeed
does a similar job to this one – making kernel-level information available to user
space. With it being more sophisticated, we won't delve into its code here; seeing the
code of the following demo kernel module show_kernel_seg is more than sufficient
here:

// ch7/show_kernel_seg/kernel_seg.c
[...]
static void show_kernelseg_info(void)
{
 pr_info("\nSome Kernel Details [by decreasing address]\n"
 "+---
+\n");
#ifdef CONFIG_ARM
 /* On ARM, the definition of VECTORS_BASE turns up only in kernels
>= 4.11 */
#if LINUX_VERSION_CODE > KERNEL_VERSION(4, 11, 0)
 pr_info("|vector table: "
 " %px - %px | [%4ld KB]\n",
 SHOW_DELTA_K(VECTORS_BASE, VECTORS_BASE + PAGE_SIZE));
#endif
#endif

The preceding code snippet displays the extents of the ARM vector table. Of course,
it's conditional. The output only occurs on an ARM-32 – hence the #ifdef
CONFIG_ARM preprocessor directive. (Also, our use of the %px printk format specifier
ensures the code is portable.)

Memory Management Internals - Essentials Chapter 7

[350]

The SHOW_DELTA_*() macros used here in this demo kernel module are defined in
our convenient.h header and are helpers that enable us to easily display the low
and high values passed to it, calculate the delta (the difference) between the two
quantities passed, and display it; here's the relevant code:

// convenient.h
[...]
/* SHOW_DELTA_*(low, hi) :
 * Show the low val, high val and the delta (hi-low) in either
bytes/KB/MB/GB, as required.
 * Inspired from raspberry pi kernel src: arch/arm/mm/init.c:MLM()
 */
#define SHOW_DELTA_b(low, hi) (low), (hi), ((hi) - (low))
#define SHOW_DELTA_K(low, hi) (low), (hi), (((hi) - (low)) >> 10)
#define SHOW_DELTA_M(low, hi) (low), (hi), (((hi) - (low)) >> 20)
#define SHOW_DELTA_G(low, hi) (low), (hi), (((hi) - (low)) >> 30)
#define SHOW_DELTA_MG(low, hi) (low), (hi), (((hi) - (low)) >> 20),
(((hi) - (low)) >> 30)

In the following code, we show the code snippet that emits printk functions
describing the following region extents:

Kernel module region
(Optional) KASAN region
The vmalloc region
The lowmem, and a possible highmem, region

Regarding the kernel modules region, as explained in the detailed comment in the
following source, we try and keep the order as by descending KVAs:

// ch7/show_kernel_seg/kernel_seg.c
[...]
/* kernel module region
 * For the modules region, it's high in the kernel segment on typical
64-
 * bit systems, but the other way around on many 32-bit systems
 * (particularly ARM-32); so we rearrange the order in which it's
shown
 * depending on the arch, thus trying to maintain a 'by descending
address' ordering. */
#if (BITS_PER_LONG == 64)
 pr_info("|module region: "
 " %px - %px | [%4ld MB]\n",
 SHOW_DELTA_M(MODULES_VADDR, MODULES_END));
#endif

Memory Management Internals - Essentials Chapter 7

[351]

#ifdef CONFIG_KASAN // KASAN region: Kernel Address SANitizer
 pr_info("|KASAN shadow: "
 " %px - %px | [%2ld GB]\n",
 SHOW_DELTA_G(KASAN_SHADOW_START, KASAN_SHADOW_END));
#endif

 /* vmalloc region */
 pr_info("|vmalloc region: "
 " %px - %px | [%4ld MB = %2ld GB]\n",
 SHOW_DELTA_MG(VMALLOC_START, VMALLOC_END));

 /* lowmem region */
 pr_info("|lowmem region: "
 " %px - %px | [%4ld MB = %2ld GB]\n"
#if (BITS_PER_LONG == 32)
 "| (above:PAGE_OFFSET - highmem) |\n",
#else
 "| (above:PAGE_OFFSET - highmem) |\n",
#endif
 SHOW_DELTA_MG((unsigned long)PAGE_OFFSET, (unsigned
long)high_memory));

 /* (possible) highmem region; may be present on some 32-bit systems
*/
#ifdef CONFIG_HIGHMEM
 pr_info("|HIGHMEM region: "
 " %px - %px | [%4ld MB]\n",
 SHOW_DELTA_M(PKMAP_BASE, (PKMAP_BASE) + (LAST_PKMAP *
PAGE_SIZE)));
#endif
[...]
#if (BITS_PER_LONG == 32) /* modules region: see the comment above reg
this */
 pr_info("|module region: "
 " %px - %px | [%4ld MB]\n",
 SHOW_DELTA_M(MODULES_VADDR, MODULES_END));
#endif
 pr_info(ELLPS);
}

Memory Management Internals - Essentials Chapter 7

[352]

Let's build and insert our LKM on the ARM-32 Raspberry Pi 3 B+; the following
screenshot shows it being set up and then the kernel log:

Figure 7.11 – Output from the show_kernel_seg.ko LKM on a Raspberry Pi 3B+ running stock Raspberry Pi 32-bit Linux

As expected, the output we receive regarding the kernel segment perfectly matches
what the stock Raspberry Pi kernel itself prints at boot (you can refer back to the
Viewing the kernel segment on a Raspberry Pi via dmesg section to verify this). As can be
deciphered from the value of PAGE_OFFSET (the KVA 0x8000 0000 in Figure 7.11),
our Raspberry Pi's kernel's VM split is configured as 2:2 (GB) (as the hexadecimal
value 0x8000 0000 is 2 GB in decimal base. Interestingly, the default Raspberry Pi
32-bit OS on the more recent Raspberry Pi 4 Model B device is configured with a 3:1
(GB) VM split).

Technically, on ARM-32 systems, at least, user space is slightly
under 2 GB (2 GB – 16 MB = 2,032 MB) as this 16 MB is taken as the
kernel module region just below PAGE_OFFSET; indeed, exactly this
can be seen in Figure 7.11 (the kernel module region here spans
from 0x7f00 0000 to 0x8000 0000 for 16 MB). Also, as you'll
soon see, the value of the TASK_SIZE macro – the size of the user
VAS – reflects this fact as well.

Memory Management Internals - Essentials Chapter 7

[353]

We present much of this information in the following diagram:

Figure 7.12 – The complete VAS of a process on ARM-32 (Raspberry Pi 3B+) with a 2:2 GB VM split

Do note that due to variations in differing models, the amount of
usable RAM, or even the device tree, the layout shown in Figure 7.12
may not precisely match that on the Raspberry Pi you have.

Okay, now you know how to print relevant kernel segment macros and variables
within a kernel module, helping you understand the kernel VM layout on any Linux
system! In the following section, we will attempt to "see" (visualize) the kernel VAS,
this time via our procmap utility.

The kernel VAS via procmap
Okay, this is interesting: the view of the memory map layout seen in some detail in
the preceding figure is exactly what our aforementioned procmap utility provides! As
promised earlier, let's now see screenshots of the kernel VAS when running procmap
(earlier, we showed screenshots of the user VAS).

Memory Management Internals - Essentials Chapter 7

[354]

To keep in sync with the immediate discussion, we will now show screenshots of
procmap providing a "visual" view of the kernel VAS on the very same Raspberry Pi
3B+ system (we could specify the --only-kernel switch to show only the kernel
VAS; we don't do so here, though). As we have to run procmap on some process, we
arbitrarily choose systemd PID 1; we also use the --verbose option switch. However,
it seems to fail:

Figure 7.13 – Truncated screenshot showing the procmap kernel module build failing

Why did it fail to build the kernel module (that's part of the procmap project)? I
mention this in the project's README.md file (https:/ /github. com/ kaiwan/ procmap/
blob/master/README. md#procmap):

[...]to build a kernel module on the target system, you will require
it to have a kernel development environment setup; this boils down to
having the compiler, make and - key here - the 'kernel headers'
package installed for the kernel version it's currently running upon.
[...]

https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap
https://github.com/kaiwan/procmap/blob/master/README.md#procmap

Memory Management Internals - Essentials Chapter 7

[355]

The kernel headers package for our custom 5.4 kernel (for the Raspberry Pi) isn't
available, hence it fails. While you can conceivably copy in the entire 5.4 Raspberry Pi
kernel source tree onto the device and set up the /lib/module/<kver>/build
symbolic link, this isn't considered the right way to do so. So, what is? Cross-compiling
the procmap kernel module for the Raspberry Pi from your host, of course! We have
covered the details on cross-compiling the kernel itself for the Raspberry Pi here
in Chapter 3, Building the 5.x Linux Kernel from Source - Part 2, in the Kernel Build for
the Raspberry Pi section; it, of course, applies to cross-compiling kernel modules as
well.

I want to stress this point: the procmap kernel module build on the
Raspberry Pi only fails due to the lack of a Raspberry Pi-supplied
kernel headers package when running a custom kernel. If you are
happy to work with the stock (default) Raspberry Pi kernel (earlier
called Raspbian OS), the kernel headers package is certainly
installable (or already installed) and everything will work. Similarly,
on your typical x86_64 Linux distribution, the procmap.ko kernel
module gets cleanly built and inserted at runtime. Do read the
procmap project's README.md file in detail; within it, the section
labeled IMPORTANT: Running procmap on systems other than x86_64
details how to cross-compile the procmap kernel module.

Once you successfully cross-compile the procmap kernel module on your host
system, copy across the procmap.ko kernel module (via scp(1), perhaps) to the
device and place it under the procmap/procmap_kernel directory; now you're
ready to go!

Here's the copied-in kernel module (on the Raspberry Pi):

cd <...>/procmap/procmap_kernel
ls -l procmap.ko
-rw-r--r-- 1 pi pi 7909 Jul 31 07:45 procmap.ko

(You can also run the modinfo(8) utility on it to verify that it's built for ARM.)

Memory Management Internals - Essentials Chapter 7

[356]

With this in place, let's retry our procmap run to display the kernel VAS details:

Figure 7.14 – Truncated screenshot showing the procmap kernel module successfully inserted and various system details

It does work now! As we've specified the verbose option to procmap, you get to see
its detailed progress, as well as – quite usefully – various kernel variables/macros of
interest and their current value.

Memory Management Internals - Essentials Chapter 7

[357]

Okay, let's continue and view what we're really after – the "visual map" of the kernel
VAS on the Raspberry Pi 3B+, in descending order by KVA; the following screenshot
captures this output from procmap:

Figure 7.15 – Partial screenshot of our procmap utility's output showing the complete kernel VAS (Raspberry Pi 3B+ with 32-bit Linux)

Memory Management Internals - Essentials Chapter 7

[358]

The complete kernel VAS – from end_kva (value 0xffff ffff) right to the start of
the kernel, start_kva (0x7f00 0000, which, as you can see, is the kernel module
region) – is displayed. Notice (in green color) the label on the right of certain key
addresses denoting what they are! For completeness, we also included in the
preceding screenshot the kernel-user boundary (and the upper portion of the user
VAS below the kernel segment, just as we have been saying all along!). As the
preceding output is on a 32-bit system, the user VAS immediately follows the kernel
segment. On a 64-bit system though, there is an (enormous!) "non-canonical" sparse
region between the start of the kernel segment and the top of the user VAS. On the
x86_64 (as we have already discussed), it spans the vast majority of the VAS: 16,383.75
petabytes (out of a total VAS of 16,384 petabytes)!

I will leave it as an exercise to you to run this procmap project and carefully study the
output (on your x86_64 or whichever box or VM). It also works well on a BeagleBone
Black embedded board with a 3:1 VM split, showing details as expected. FYI, this
forms an assignment.

I also provide a solution in the form of three (large, stitched-
together) screenshots of procmap's output on a native x86_64
system, a BeagleBone Black (AArch32) board, and the Raspberry Pi
running a 64-bit OS (AArch64) here: solutions_to_assgn/ch7.
Studying the code of procmap, and, especially relevant here, its
kernel module component, will certainly help. It's open source, after
all!

Let's finish this section by glancing at the user segment view that our earlier demo
kernel module – ch7/show_kernel_seg – provides.

Trying it out – the user segment
Now, let's go back to our ch7/show_kernel_seg LKM demo program. We have
provided a kernel module parameter named show_uservas(defaulting to the value
0); when set to 1, some details regarding the process context's user space are displayed
as well. Here's the definition of the module parameter:

static int show_uservas;
module_param(show_uservas, int, 0660);
MODULE_PARM_DESC(show_uservas,
"Show some user space VAS details; 0 = no (default), 1 = show");

Memory Management Internals - Essentials Chapter 7

[359]

Right, on the same device (our Raspberry Pi 3 B+), let's again run our
show_kernel_seg kernel module, this time requesting it to display user space
details as well (via the aforementioned parameter). The following screenshot shows
the complete output:

Figure 7.16 – Screenshot of our show_kernel_seg.ko LKM's output showing both kernel and user VAS details when running on a Raspberry Pi 3B+ with the stock
Raspberry Pi 32-bit Linux OS

This is useful; we can now literally see a (more or less) complete memory map of the
process – both the so-called "upper (canonical) half" kernel-space as well as the "lower
(canonical) half" user space – in one shot (yes, that's right, even though the
procmap project shows this better and in more detail).

Memory Management Internals - Essentials Chapter 7

[360]

I will leave it as an exercise to you to run this kernel module and carefully study the
output on your x86_64, or whichever box or VM. Do carefully go through the code as
well. We printed the user space details that you see in the preceding screenshot, such
as the segment start and end addresses, by dereferencing the mm_struct structure
(the task structure member named mm) from current. Recall, mm is the abstraction of
the user mapping of the process. A small snippet of the code that does this is as
follows:

// ch7/show_kernel_seg/kernel_seg.c
[...]
static void show_userspace_info(void)
{
 pr_info (
 "+------------ Above is kernel-seg; below, user VAS ----------
+\n"
 ELLPS
 "|Process environment "
 " %px - %px | [%4zd bytes]\n"
 "| arguments "
 " %px - %px | [%4zd bytes]\n"
 "| stack start %px\n"
 [...],
 SHOW_DELTA_b(current->mm->env_start, current->mm->env_end),
 SHOW_DELTA_b(current->mm->arg_start, current->mm->arg_end),
 current->mm->start_stack,
 [...]

Remember the so-called null trap page at the very beginning of the user VAS? (Again,
procmap's output – see Figure 7.9 – shows the null trap page.) Let's see what it's for in
the following section.

The null trap page
Did you notice how the preceding diagrams (Figure 7.9) and, in and Figure 7.12, at
the extreme left edge (albeit very small!), a single page at the very beginning of the
user space, named the null trap page? What is it? That's easy: virtual page 0 is given
no permissions (at the hardware MMU/PTE level). Thus, any access to this page, be it
r, w, or x (read/write/execute), will result in the MMU raising what is called a fault or
exception. This will have the processor jump to an OS handler routine (the fault
handler). It runs, killing the culprit trying to access a memory region with no
permissions!

Memory Management Internals - Essentials Chapter 7

[361]

It's very interesting indeed: the OS handler mentioned previously runs in process
context, and guess what current is: why, it's the process (or thread) that initiated
this bad NULL pointer lookup! Within the fault handler code, the SIGSEGV signal is
delivered to the faulting process (current), causing it to die (via a segfault). In a
nutshell, this is how the well-known NULL pointer dereference bug is caught by the
OS.

Viewing kernel documentation on the memory
layout
Back to the kernel segment; obviously, with a 64-bit VAS, the kernel segment is much
larger than on 32-bit. As we saw earlier, it's typically 128 TB on the x86_64. Study
again the VM split table shown previously (Figure 7.4 in the section VM split on 64-bit
Linux systems); there, the fourth column is the VM split for different architectures. You
can see how on the 64-bit Intel/AMD and AArch64 (ARM64), the numbers are much
larger than for their 32-bit counterparts. For arch-specific details, we refer you to the
'official' kernel documentation on the process virtual memory layout here:

Architecture Documentation location in kernel source tree
ARM-32 Documentation/arm/memory.txt.
AArch64 Documentation/arm64/memory.txt.

x86_64

Documentation/x86/x86_64/mm.txt
Note: this document's readability was vastly improved recently (as of the time of
writing) with commit 32b8976 for Linux 4.20: https:/ /github. com/
torvalds/ linux/ commit/ 32b89760ddf4477da436c272be2abc016e169031. I
recommend you browse through this file: https:/ /www. kernel. org/doc/
Documentation/ x86/ x86_ 64/mm. txt.

At the risk of repetition, I urge you to try out this
show_kernel_seg kernel module – and, even better,
the procmap project (https:/ /github. com/ kaiwan/ procmap) – on
different Linux systems and study the output. You can then literally
see the "memory map" – the complete process VAS – of any given
process, which includes the kernel segment! This understanding is
critical when working with and/or debugging issues at the system
layer.

Again, at the risk of overstating it, the previous two sections – covering the detailed
examination of the user and kernel VASes – are very important indeed. Do take the time
required to go over them and work on the sample code and assignments. Great going!

https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://github.com/torvalds/linux/commit/32b89760ddf4477da436c272be2abc016e169031
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap
https://github.com/kaiwan/procmap

Memory Management Internals - Essentials Chapter 7

[362]

Moving along on our journey through the Linux kernel's memory management, let's
now check out another interesting topic – that of the [K]ASLR protection-via-
memory-layout-randomization feature. Read on!

Randomizing the memory layout – KASLR
In infosec circles, it's a well-known fact that, with proc filesystem (procfs) and
various powerful tools at their disposal, a malicious user, knowing in advance the
precise location (virtual addresses) of various functions and/or globals with a
process's VAS, could devise an attack to exploit and ultimately compromise a given
system. Thus, for security, to make it impossible (or at least difficult) for attackers to
rely on "known" virtual addresses, user space as well as kernel space supports ASLR
(Address Space Layout Randomization) and KASLR (Kernel ASLR) techniques
(often pronounced Ass-ler / Kass-ler).

The keyword here is randomization: this feature, when enabled, changes the location of
portions of the process (and kernel) memory layout in terms of absolute numbers as it
offsets portions of memory from a given base address by a random (page-aligned)
quantity. What "portions of memory" exactly are we talking about? With respect to
user space mappings (we will talk about KASLR later), the starting addresses of
shared libraries (their load address), mmap(2)-based allocations (remember, any
malloc() function (/calloc/realloc) above 128 KB becomes an mmap-based
allocation, not off the heap), stack start, the heap, and the vDSO page; all of these can
be randomized at process run (launch) time.

Hence, an attacker cannot depend on, say, a glibc function (such as system(3))
being mapped at a particular fixed UVA in any given process; not only that, the
location will vary every time the process runs! Before ASLR, and on systems where
ASLR is unsupported or turned off, the location of symbols can be ascertained in
advance for a given architecture and software version (procfs plus utilities like
objdump, readelf, nm, and so on make this quite easy).

It's key to realize that [K]ASLR is merely a statistical protection. In fact, typically, not
many bits are available for randomization and thus the entropy isn't very good. This
implies that the page-sized offsets are not too many, even on 64-bit systems, thus
leading to a possibly weakened implementation.

Let's now briefly look at a few more details regarding both user mode and kernel-
mode ASLR (the latter being referred to as KASLR); the following sections cover these
areas, respectively.

Memory Management Internals - Essentials Chapter 7

[363]

User-mode ASLR
User-mode ASLR is usually what is meant by the term ASLR. It being enabled implies
this protection to be available on the user space mapping of every process. Effectively,
ASLR being enabled implies that the absolute memory map of user-mode processes
will vary every time they're run.

ASLR has been supported on Linux for a very long time (since 2005 on 2.6.12). The
kernel has a tunable pseudo-file within procfs, to query and set (as root) the ASLR
status; here it is: /proc/sys/kernel/randomize_va_space.

It can have three possible values; the three values and their meaning are shown in the
following table:

Tunable
value Interpretation of this value in /proc/sys/kernel/randomize_va_space

0
(User mode) ASLR turned OFF; or can be turned off by passing the kernel
parameter norandmaps at boot.

1
(User mode) ASLR is ON: mmap(2) based allocations, the stack, and the vDSO page is
randomized. It also implies that shared library load locations and shared memory
segments are randomized.

2
(User mode) ASLR is ON: all of the preceding (value 1) plus the heap location is
randomized (since 2.6.25); this is the OS value by default.

(As noted in an earlier section, The vsyscall page, the vDSO page is a system call
optimization, allowing some frequently issued system calls (gettimeofday(2) being
a typical one) to be invoked with less overhead. If interested, you can look up more
details on the man page on vDSO(7) here: https:/ /man7. org/ linux/ man- pages/
man7/vdso.7. html.)

User-mode ASLR can be turned off at boot by passing the norandmaps parameter to
the kernel (via the bootloader).

https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html

Memory Management Internals - Essentials Chapter 7

[364]

KASLR
Similar to (user) ASLR – and, more recently, from the 3.14 kernel onward – even
kernel VAS can be randomized (to some extent) by having KASLR enabled. Here, the
base location of the kernel and module code within the kernel segment will be
randomized by a page-aligned random offset from the base of RAM. This remains in
effect for that session; that is, until a power cycle or reboot.

Several kernel configuration variables exist, enabling the platform developer to
enable or disable these randomization options. As an example specific to the x86, the
following is quoted directly from Documentation/x86/x86_64/mm.txt:

"Note that if CONFIG_RANDOMIZE_MEMORY is enabled, the direct mapping
of all physical memory, vmalloc/ioremap space and virtual memory map are
randomized. Their order is preserved but their base will be offset early at boot time."

KASLR can be controlled at boot time by passing a parameter to the kernel (via the
bootloader):

Explicitly turned off by passing the nokaslr parameter
Explicitly turned on by passing the kaslr parameter

So, what is the current setting on your Linux system? And can we change it? Yes, of
course (provided we have root access); the next section shows you how to do so via a
Bash script.

Querying/setting KASLR status with a script
We provide a simple Bash script at <book-source>/ch7/ASLR_check.sh. It checks
for the presence of both (user-mode) ASLR as well as KASLR, printing (color-coded!)
status information about them. It also allows you to change the ASLR value.

Memory Management Internals - Essentials Chapter 7

[365]

Let's give it a spin on our x86_64 Ubuntu 18.04 guest. As our script is programmed to
be color-coded, we show a screenshot of its output here:

Figure 7.17 – Screenshot showing the output when our ch7/ASLR_check.sh Bash script runs on an x86_64 Ubuntu guest

It runs, showing you that (at least on this box) both the user mode as well as KASLR
are indeed turned on. Not only that, we write a small "test" routine to see ASLR
functioning. It's very simple: it runs the following command twice:

grep -E "heap|stack" /proc/self/maps

From what you learned in an earlier section, Interpreting the /proc/PID/maps output,
you can now see in Figure 7.17, that the UVAs for the heap and stack segments are
different in each run, thus proving that the ASLR feature indeed works! For example,
look at the starting heap UVA: in the first run, it's 0x5609 15f8 2000, and in the
second run, it's 0x5585 2f9f 1000.

Memory Management Internals - Essentials Chapter 7

[366]

Next, we will perform a sample run where we pass the parameter 0 to the script, thus
turning ASLR off; the following screenshot shows the (expected) output:

Figure 7.18 – Screenshot showing how ASLR is turned off (via our ch7/ASLR_check.sh script on an x86_64 Ubuntu guest)

This time, we can see that ASLR was on by default, but we turned it off. This is clearly
highlighted in bold font and red in the preceding screenshot. (Do remember to turn it
on again.) Also, as expected, as it's off, the UVAs of both the heap and stack
(respectively) remain the same in both test runs, which is insecure. I will leave it to
you to browse through and understand the source code of the script.

Memory Management Internals - Essentials Chapter 7

[367]

To take advantage of ASLR, applications must be compiled with the
-fPIE and -pie GCC flags (PIE stands for Position Independent
Executable).

Both ASLR and KASLR protect against some types of attack vectors, the return-to-
libc, Return-Oriented Programming (ROP) ones being the typical cases. However,
and unfortunately, white and black hat security being the cat-and-mouse game it is,
defeating [K]ASLR and similar methodologies is something advanced exploits do
quite well. Refer to this chapter's Further reading section (under the Linux kernel
security heading) for more details.

While on the topic of security, many useful tools exist to carry out
vulnerability checks on your system. Check out the following:

The checksec.sh script (http:/ /www. trapkit. de/
tools/ checksec. html) displays various "hardening"
measures and their current status (for both individual
files and processes): RELRO, stack canary, NX-enabled,
PIE, RPATH, RUNPATH, presence of symbols, and
compiler fortification.
grsecurity's PaX suite.
The hardening-check script (an alternative to checksec).
The kconfig-hardened-check Perl script (https:/ /
github. com/ a13xp0p0v/ kconfig- hardened- check) checks
(and suggests) kernel config options for security against
some predefined checklists.
Several others: Lynis, linuxprivchecker.py, memory,
and so on.

So, the next time you see differing kernel or user virtual addresses on multiple runs
or sessions, you will know it's probably due to the [K]ASLR protection feature. Now,
let's complete this chapter by moving on to an exploration of how the Linux kernel
organizes and works with physical memory.

http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check
https://github.com/a13xp0p0v/kconfig-hardened-check

Memory Management Internals - Essentials Chapter 7

[368]

Physical memory
Now that we have examined the virtual memory view, for both user and kernel VASes
in some detail, let's turn to the topic of physical memory organization on the Linux
OS.

Physical RAM organization
The Linux kernel, at boot, organizes and partitions physical RAM into a tree-like
hierarchy consisting of nodes, zones, and page frames (page frames are physical
pages of RAM) (see Figure 7.19 and Figure 7.20). Nodes are divided into zones, and
zones consist of page frames. A node abstracts a physical "bank" of RAM, which will
be associated with one or more processor (CPU) cores. At the hardware level, the
microprocessors are connected to the RAM controller chip(s); any memory controller
chip, and thus any RAM, can be reached from any CPU as well, across an
interconnect. Now, obviously, being able to reach the RAM physically nearest the
core on which a thread is allocating (kernel) memory will lead to performance
enhancement. This very idea is leveraged by hardware and OSes that support the so-
called NUMA model (the meaning is explained shortly).

Nodes
Essentially, nodes are data structures used to denote a physical RAM module on the
system motherboard and its associated controller chipset. Yes, we're talking
actual hardware here being abstracted via software metadata. It's always associated
with a physical socket (or collection of processor cores) on the system motherboard.
Two types of hierarchies exist:

Non-Uniform Memory Access (NUMA) systems: Where the core on which
a kernel allocation request occurs does matter (memory is treated non
uniformly), leading to performance improvements
Uniform Memory Access (UMA) systems: Where the core on which a
kernel allocation request occurs doesn't matter (memory is treated
uniformly)

Memory Management Internals - Essentials Chapter 7

[369]

True NUMA systems are those whose hardware is multicore (two or more CPU cores,
SMP) and have two or more physical "banks" of RAM each of which is associated with
a CPU (or CPUs). In other words, NUMA systems will always have two or more
nodes, whereas UMA systems will have exactly one node (FYI, the data structure that
abstracts a node is called pg_data_t and is defined here:
include/linux/mmzone.h:pg_data_t).

Why all this complexity, you may wonder? Well, it's – what else – all about
performance! NUMA systems (they typically tend to be rather expensive server-class
machines) and the OSes they run (Linux/Unix/Windows, typically) are designed in
such a way that when a process (or thread) on a particular CPU core wants to
perform a kernel memory allocation, the software guarantees that it does so with high
performance by taking the required memory (RAM) from the node closest to the core
(hence the NUMA moniker!). No such benefits accrue to UMA systems (your typical
embedded systems, smartphones, laptops, and desktops), nor do they matter.
Enterprise-class server systems nowadays can have hundreds of processors and
terabytes, even a few petabytes, of RAM! These are almost always architected as
NUMA systems.

With the way that Linux is designed, though – and this is a key point – even regular
UMA systems are treated as NUMA by the kernel (well, pseudo-NUMA). They will
have exactly one node; so that's a quick way to check whether the system is NUMA or
UMA – if there are two or more nodes, it's a true NUMA system; only one, and it's a
"fake NUMA" or pseudo-NUMA box. How can you check? The numactl(8) utility is
one way (try doing numactl --hardware). There are other ways to (via procfs itself).
Hang on a bit, you'll get there...

So, a simpler way to visualize this: on a NUMA box, one or more CPU cores is
associated with a "bank" (a hardware module) of physical RAM. Thus, a NUMA
system is always a Symmetric Multi Processor (SMP) one.

To make this discussion practical, let's briefly visualize the micro-architecture of an
actual server system – one running the AMD Epyc/Ryzen/Threadripper (and the
older Bulldozer) CPUs. It has the following:

A total of 32 CPU cores (as seen by the OS) within two physical sockets
(P#0 and P#1) on the motherboard. Each socket consists of a package of 8x2
CPU cores (8x2, as there are actually 8 physical cores each of which is
hyperthreaded; the OS sees even the hyperthreaded cores as usable cores).
A total of 32 GB of RAM split up into four physical banks of 8 GB each.

Memory Management Internals - Essentials Chapter 7

[370]

Thus, the Linux memory management code, upon detecting this topography at boot,
will set up four nodes to represent it. (We won't delve into the processor's various
(L1/L2/L3/etc) caches here; see the Tip box after the following diagram for a way to
see all of this.)

The following conceptual diagram shows an approximation of the four tree-like
hierarchies – one for each node – formed on some AMD server systems running the
Linux OS. Figure 7.19 conceptually shows the nodes/zones/page frames per physical
RAM bank on the system coupled to different CPU cores:

Figure 7.19 – (An approximate conceptual view of an) AMD server: physical memory hierarchy on Linux

Memory Management Internals - Essentials Chapter 7

[371]

Use the powerful lstopo(1) utility (and its associated hwloc-* –
hardware locality – utilities) to graphically view the hardware
(CPU) topology of your system! (On Ubuntu, install it with sudo
apt install hwloc). FYI, the hardware topography graphic of the
previously mentioned AMD server system, generated by
lstopo(1), can be seen here: https:/ / en.wikipedia. org/ wiki/
CPU_ cache#/ media/ File:Hwloc. png.

To reassert the key point here: for performance (here with respect to Figure 7.19), a
thread running some kernel or driver code in process context on, say, CPU #18 or
above requests the kernel for some RAM. The kernel's MM layer, understanding
NUMA, will have the request serviced (as first priority) from any free RAM page
frames in any zone on NUMA node #2 (that is, from physical RAM bank #2) as it's
"closest" to the processor core that the request was issued upon. Just in case there are
no free page frames available in any zone within NUMA node #2, the kernel has an
intelligent fallback system. It might now go across the interconnect and request RAM
page frames from another node:zone (worry not, we cover these aspects in more
detail in the following chapter).

Zones
Zones can be thought of as Linux's way of smoothing out and dealing with hardware
quirks. These proliferate on the x86, where Linux "grew up," of course. They also deal
with a few software difficulties (look up ZONE_HIGHMEM on the now mostly legacy 32-
bit i386 architecture; we discussed this concept in an earlier section, High memory on
32-bit systems).

https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png
https://en.wikipedia.org/wiki/CPU_cache#/media/File:Hwloc.png

Memory Management Internals - Essentials Chapter 7

[372]

Zones consist of page frames – physical pages of RAM. More technically, a range
of Page Frame Numbers (PFNs) are allocated to each zone within a node:

Figure 7.20 – Another view of the physical memory hierarchy on Linux – nodes, zones, and page frames

In Figure 7.10, you can see a generic (example) Linux system with N nodes (from 0 to
N-1), each node consisting of (say) three zones, each zone being made up of physical
pages of RAM – page frames. The number (and name) of zones per node is
dynamically determined by the kernel at boot. You can check out the hierarchy on a
Linux system by delving under procfs. In the following code, we take a peek into a
native Linux x86_64 system with 16 GB of RAM:

$ cat /proc/buddyinfo
Node 0, zone DMA 3 2 4 3 3 1 0 0 1 1
3
Node 0, zone DMA32 31306 10918 1373 942 505 196 48 16 4 0
0
Node 0, zone Normal 49135 7455 1917 535 237 89 19 3 0 0
0
$

The leftmost column reveals that we have exactly one node – Node 0. This tells us
we're actually on an UMA system, though of course the Linux OS will treat it as a
(pseudo/fake) NUMA system. This single node 0 is split into three zones, labeled DMA,
DMA32, and Normal, and each zone, of course, consists of page frames. For now,
ignore the numbers on the right; we will get to their meaning in the following
chapter.

Memory Management Internals - Essentials Chapter 7

[373]

Another way to notice how Linux "fakes" a NUMA node on UMA systems is visible
from the kernel log. We run the following command on the same native x86_64
system with 16 GB of RAM. For readability, I replaced the first few columns showing
the timestamp and hostname with ellipses:

$ journalctl -b -k --no-pager | grep -A7 "NUMA"
 <...>: No NUMA configuration found
 <...>: Faking a node at [mem 0x0000000000000000-0x00000004427fffff]
 <...>: NODE_DATA(0) allocated [mem 0x4427d5000-0x4427fffff]
 <...>: Zone ranges:
 <...>:DMA [mem 0x0000000000001000-0x0000000000ffffff]
 <...>: DMA32 [mem 0x0000000001000000-0x00000000ffffffff]
 <...>: Normal [mem 0x0000000100000000-0x00000004427fffff]
 <...>: Device empty
 $

We can clearly see that, as the system is detected as not NUMA (thus, UMA), the
kernel fakes a node. The extents of the node are the total amount of RAM on the
system (here, 0x0-0x00000004427fffff, which is indeed 16 GB). We can also see
that on this particular system, the kernel instantiates three zones – DMA, DMA32, and
Normal – to organize the available physical page frames of RAM. This is fine and ties
in with the /proc/buddyinfo output we saw previously. FYI, the data structure
representing the zone on Linux is defined here: include/linux/mmzone.h:struct
zone. We will have occasion to visit it later in the book.

To better understand how the Linux kernel organizes RAM, let's start at the very
beginning – boot time.

Direct-mapped RAM and address translation
At boot, the Linux kernel "maps" all (usable) system RAM (aka platform RAM) directly
into the kernel segment. So, we have the following:

Physical page frame 0 maps to kernel virtual page 0.
Physical page frame 1 maps to kernel virtual page 1.
Physical page frame 2 maps to kernel virtual page 2, and so on.

Thus, we call this a 1:1 or direct mapping, identity-mapped RAM, or linear
addresses. A key point is that all these kernel virtual pages are at a fixed offset from
their physical counterparts (and, as already mentioned, these kernel addresses are
referred to as kernel logical addresses). The fixed offset is
the PAGE_OFFSET value (here, 0xc000 0000).

Memory Management Internals - Essentials Chapter 7

[374]

So, think of this. On a 32-bit system with a 3:1 (GB) VM split, physical address 0x0 =
kernel logical address 0xc000 0000 (PAGE_OFFSET). As already mentioned, the
terminology kernel logical address is applied to kernel addresses that are at a fixed
offset from their physical counterparts. Thus, direct-mapped RAM maps to kernel
logical addresses. This region of direct-mapped memory is often referred to as
the low-memory (or simply, lowmem) region within the kernel segment.

We have already shown an almost identical diagram earlier, in Figure 7.10. In the
following figure, it's slightly modified to actually show you how the first three
(physical) page frames of RAM map to the first three kernel virtual pages (in the
lowmem region of the kernel segment):

Figure 7.21 – Direct-mapped RAM – lowmem region, on 32-bit with a 3:1 (GB) VM split

As an example, Figure 7.21 shows a direct mapping of platform RAM to the kernel
segment on a 32-bit system with a 3:1 (GB) VM split. The point where physical RAM
address 0x0 maps into the kernel is the PAGE_OFFSET kernel macro (in the preceding
figure, it's kernel logical address 0xc000 0000). Notice how Figure 7.21 also shows
the user VAS on the left side, ranging from 0x0 to PAGE_OFFSET-1 (of size
TASK_SIZE bytes). We have already covered details on the remainder of the kernel
segment in the Examining the kernel segment section previously.

Memory Management Internals - Essentials Chapter 7

[375]

Understanding this mapping of physical-to-virtual pages might well tempt you into
reaching these seemingly logical conclusions:

Given a KVA, to calculate the corresponding Physical Address (PA) – that
is, to perform a KVA-to-PA calculation – simply do this:

pa = kva - PAGE_OFFSET

Conversely, given a PA, to calculate the corresponding KVA – that is, to
perform a PA-to-KVA calculation – simply do this:

kva = pa + PAGE_OFFSET

Do refer to Figure 7.21 again. The direct mapping of RAM to the kernel segment
(starting at PAGE_OFFSET) certainly predicates this conclusion. So, it is correct. But
hang on, please pay careful attention here: these address translation calculations
work only for direct-mapped or linear addresses – in other words, KVAs
(technically, the kernel logical addresses) – within the kernel's lowmem region,
nothing else! For all UVAs, and any and all KVAs besides the lowmem region (which
includes module addresses, vmalloc/ioremap (MMIO) addresses, KASAN
addresses, the (possible) highmem region addresses, DMA memory regions, and so
on), it does not work!

As you will anticipate, the kernel does indeed provide APIs to perform these address
conversions; of course, their implementation is arch-dependent. Here they are:

Kernel API What it does

phys_addr_t virt_to_phys(volatile void
*address)

Converts the given virtual address to
its physical counterpart (return
value)

void *phys_to_virt(phys_addr_t address) Converts the given physical address
to a virtual address (return value)

The virt_to_phys() API for the x86 has a comment above it clearly advocating that
this API (and its ilk) are not to be used by driver authors; for clarity and
completeness, we have reproduced the comment in the kernel source here:

// arch/x86/include/asm/io.h
[...]
/**
 * virt_to_phys - map virtual addresses to physical
 * @address: address to remap
 *
 * The returned physical address is the physical (CPU) mapping for
 * the memory address given. It is only valid to use this function on

Memory Management Internals - Essentials Chapter 7

[376]

 * addresses directly mapped or allocated via kmalloc.
 *
 * This function does not give bus mappings for DMA transfers. In
 * almost all conceivable cases a device driver should not be using
 * this function
 */
static inline phys_addr_t virt_to_phys(volatile void *address)
[...]

The preceding comment mentions the (very common) kmalloc() API. Worry not, it's
covered in depth in the following two chapters. Of course, a similar comment to the
preceding is in place for the phys_to_virt() API as well.

So who – sparingly – uses these address conversion APIs (and the
like)? The kernel internal mm code, of course! As a demo, we do
actually use them in at least a couple of places in this book: in the
following chapter, in an LKM called ch8/lowlevel_mem (well
actually, its usage is within a function in our "kernel library"
code, klib_llkd.c).

FYI, the powerful crash(8) utility can indeed translate any given
virtual address to a physical address via its vtop (virtual-to-
physical) command (and vice versa, via its ptov command!).

Moving along, another key point: by mapping all physical RAM into it, do not get
misled into thinking that the kernel is reserving RAM for itself. No, it isn't; it's
merely mapping all of the available RAM, thus making it available for allocation to
anyone who wants it – core kernel code, kernel threads, device drivers, or user space
applications. This is part of the job of the OS; it is the system resource manager, after
all. Of course, a certain portion of RAM will be taken up (allocated) – by the static
kernel code, data, kernel page table, and so on – at boot, no doubt, but you should
realize that this is quite small. As an example, on my guest VM with 1 GB RAM, the
kernel code, data, and BSS typically take up a combined total of about 25 MB of RAM.
All kernel memory comes to about 100 MB, whereas user space memory usage is in
the region of 550 MB! It's almost always user space that is the memory hogger.

You can try using the smem(8) utility with the --system -p option
switches to see a summary of memory usage as percentages (also,
use the --realmem= switch to pass the actual amount of RAM on
the system).

Memory Management Internals - Essentials Chapter 7

[377]

Back to the point: we know that kernel page tables are set up early in the boot
process. So, by the time applications start up, the kernel has all RAM mapped and
available, ready for allocation! Thus, we understand that while the kernel direct-
maps page frames into its VAS, user mode processes are not so lucky – they can
only indirectly map page frames via the paging tables set up by the OS (at process
creation – fork(2) – time) on a per-process basis. Again, it's interesting to realize that
memory mapping via the powerful mmap(2) system call can provide the illusion of
"direct mapping" files or anonymous pages into the user VAS.

A few additional points to note:
(a) For performance, kernel memory (kernel pages) can never be
swapped, even if they aren't in use

(b) Sometimes, you might think, it's quite obvious that user space
memory pages map to (physical) page frames (assuming the page is
resident) via the paging tables set up by the OS on a per-process basis. Yes,
but what about kernel memory pages? Please be very clear on this
point: all kernel pages also map to page frames via the kernel "master"
paging table. Kernel memory, too, is virtualized, just as user space memory
is.

In this regard, for you, the interested reader, a QnA I initiated on
Stack Overflow: How exactly do kernel virtual addresses get translated to
physical RAM?: http:/ / stackoverflow. com/ questions/ 36639607/
how- exactly- do- kernel- virtual- addresses- get- translated- to-
physical- ram.

(c) Several memory optimization techniques have been baked
into the Linux kernel (well, many are configuration options); among
them are Transparent Huge Pages (THPs) and, critical for
cloud/virtualization workloads, Kernel Samepage Merging (KSM,
aka memory de-duplication). I refer you to the Further
reading section of this chapter for more information.

Alright, with this coverage on some aspects of physical RAM management behind us,
we complete this chapter; excellent progress!

http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram
http://stackoverflow.com/questions/36639607/how-exactly-do-kernel-virtual-addresses-get-translated-to-physical-ram

Memory Management Internals - Essentials Chapter 7

[378]

Summary
In this chapter, we delved – in quite some depth – into the big topic of kernel memory
management in a level of detail sufficient for a kernel module or device driver author
like you; also, there's more to come! A key piece of the puzzle – the VM split and how
it's achieved on various architectures running the Linux OS – served as a starting
point. We then moved into a deep examination of both regions of this split: first, user
space (the process VAS) and then the kernel VAS (or kernel segment). Here, we
covered many details and tools/utilities on how to examine it (notably, via the quite
powerful procmap utility). We built a demo kernel module that can literally generate
a pretty complete memory map of the kernel and the calling process. User and kernel
memory layout randomization technology ([K]ASLR) was also briefly discussed. We
closed the chapter by taking a look at the physical organization of RAM within Linux.

All of this information and the concepts learned within this chapter are actually very
useful; not only for designing and writing better kernel/device driver code but very
much also when you encounter system-level issues and bugs.

This chapter has been a long and indeed a critical one; great job on completing it!
Next, in the following two chapters, you will move on to learning key and practical
aspects of how exactly to allocate (and deallocate) kernel memory efficiently, along
with related important concepts behind this common activity. On, on!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

8
Kernel Memory Allocation for

Module Authors - Part 1
In the previous two chapters, one on kernel internal aspects and architecture and the
other on the essentials of memory management internals, we covered key aspects that
serve as required background information for this and the following chapter. In this
and the next chapter, we will get down to the actual allocation and freeing of kernel
memory by various means. We will demonstrate this via kernel modules that you can
test and tweak, elaborate on the whys and hows of it, and provide many real-world
tips and tricks to enable a kernel or driver developer like you to gain maximum
efficiency when working with memory within your kernel module.

In this chapter, we will cover the kernel's two primary memory allocators – the
Page Allocator (PA) (aka Buddy System Allocator (BSA)) and the slab allocator. We
will delve into the nitty-gritty of working with their APIs within kernel modules.
Actually, we will go well beyond simply seeing how to use the APIs, clearly
demonstrating why all is not optimal in all cases, and how to overcome these
situations. Chapter 9, Kernel Memory Allocation for Module Authors – Part 2, will
continue our coverage of the kernel memory allocators, delving into a few more
advanced areas.

In this chapter, we will cover the following topics:

Introducing kernel memory allocators
Understanding and using the kernel page allocator (or BSA)
Understanding and using the kernel slab allocator
Size limitations of the kmalloc API
Slab allocator - a few additional details
Caveats when using the slab allocator

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[380]

Technical requirements
I assume that you have gone through Chapter 1, Kernel Workspace Setup, and have
appropriately prepared a guest Virtual Machine (VM) running Ubuntu 18.04 LTS (or
a later stable release) and installed all the required packages. If not, I highly
recommend you do this first.

To get the most out of this book, I strongly recommend you first set up the workspace
environment, including cloning this book's GitHub repository (https:/ /github. com/
PacktPublishing/ Linux- Kernel- Programming) for the code, and work on it in a
hands-on fashion.

Refer to Hands-On System Programming with Linux, Kaiwan N Billimoria, Packt
(https://www.packtpub. com/ networking- and- servers/ hands- system- programming-
linux) as a prerequisite to this chapter (essential reading, really):

Chapter 1, Linux System Architecture
Chapter 2, Virtual Memory

Introducing kernel memory allocators
The Linux kernel, like any other OS, requires a sturdy algorithm and implementation
to perform a really key task – the allocation and subsequent deallocation of memory
or page frames (RAM). The primary (de)allocator engine in the Linux OS is referred
to as the PA, or the BSA. Internally, it uses a so-called buddy system algorithm to
efficiently organize and parcel out free chunks of system RAM. We will find more on
the algorithm in the Understanding and using the kernel page allocator (or BSA) section.

In this chapter and in this book, when we use the notation
(de)allocate, please read it as both words: allocate and deallocate.

Of course, being imperfect, the page allocator is not the only or always the best way
to obtain and subsequently release system memory. Other technologies exist within
the Linux kernel to do so. High on the list of them is the kernel's slab allocator or slab
cache system (we use the word slab here as the generic name for this type of allocator
as it originated with this name; in practice, though, the internal implementation of the
modern slab allocator used by the Linux kernel is called SLUB (the unqueued slab
allocator); more on this later).

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux
https://www.packtpub.com/networking-and-servers/hands-system-programming-linux

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[381]

Think of it this way: the slab allocator solves some issues and optimizes performance
with the page allocator. What issues exactly? We shall soon see. For now, though, it's
really important to understand that the only way in which to actually (de)allocate
physical memory is via the page allocator. The page allocator is the primary engine
for memory (de)allocation on the Linux OS!

To avoid confusion and repetition, we will from now on refer to this
primary allocation engine as the page allocator. You will understand
that it's also known as the BSA (derived from the name of the
algorithm that drives it).

Thus, the slab allocator is layered upon (or above) the page allocator. Various core
kernel subsystems, as well as non-core code within the kernel, such as device drivers,
can allocate (and deallocate) memory either directly via the page allocator or
indirectly via the slab allocator; the following diagram illustrates this:

Figure 8.1 – Linux's page allocator engine with the slab allocator layered above it

A few things to be clear about at the outset:

The entire Linux kernel and all of its core components and subsystems
(excluding the memory management subsystem itself) ultimately use the
page allocator (or BSA) for memory (de)allocation. This includes non-core
stuff, such as kernel modules and device drivers.
The preceding systems reside completely in kernel (virtual) address space
and are not directly accessible from user space.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[382]

The page frames (RAM) from where the page allocator gets memory
is within the kernel lowmem region, or the direct-mapped RAM region of
the kernel segment (we covered the kernel segment in detail in the
previous chapter)
The slab allocator is ultimately a user of the page allocator, and thus gets its
memory from there itself (which again implies from the kernel lowmem
region)
User space dynamic memory allocation with the familiar malloc family of
APIs does not directly map to the preceding layers (that is,
calling malloc(3) in user space does not directly result in a call to the page
or slab allocator). It does so indirectly. How exactly? You will learn how;
patience! (This key coverage is found in two sections of the next chapter, in
fact, involving demand paging; look out for it as you cover that chapter!)
Also, to be clear, Linux kernel memory is non-swappable. It can never be
swapped out to disk; this was decided in the early Linux days to keep
performance high. User space memory pages are always swappable by
default; this can be changed by the system programmer via the
mlock()/mlockall() system calls.

Now, fasten your seatbelts! With this basic understanding of the page allocator and
slab allocator, let's begin the journey on learning (the basics on) how the Linux
kernel's memory allocators work and, more importantly, how to work well with
them.

Understanding and using the kernel page
allocator (or BSA)
In this section, you will learn about two aspects of the Linux kernel's primary
(de)allocator engine:

First, we will cover the fundamentals of the algorithm behind this software
(called the buddy system).
Then, we will cover the actual and practical usage of the APIs it exposes to
the kernel or driver developer.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[383]

Understanding the basics of the algorithm behind the page allocator is important.
You will then be able to understand the pros and cons of it, and thus, when and
which APIs to use in which situation. Let's begin with its inner workings. Again,
remember that the scope of this book with regard to the internal memory
management details is limited. We will cover it to a depth deemed sufficient and no
more.

The fundamental workings of the page
allocator
We will break up this discussion into a few relevant parts. Let's begin with how the
kernel's page allocator tracks free physical page frames via its freelist data structures.

Freelist organization
The key to the page allocator (buddy system) algorithm is its primary internal
metadata structure. It's called the buddy system freelist and consists of an array of
pointers to (the oh-so-common!) doubly linked circular lists. The index of this array of
pointers is called the order of the list – it's the power to which to raise 2 to. The array
length is from 0 to MAX_ORDER-1. The value of MAX_ORDER is arch-dependent. On the
x86 and ARM, it's 11, whereas on a large-ish system such as the Itanium, it's 17. Thus,
on the x86 and ARM, the order ranges from 2

0
 to 210 ; that is, from 1 to 1,024. What

does that mean? Do read on...

Each doubly linked circular list points to free physical contiguous page frames of size
2order. Thus (assuming a 4 KB page size), we end up with lists of the following:

2
0
 = 1 page = 4 KB chunks

21 = 2 pages = 8 KB chunks
22 = 4 pages = 16 KB chunks
23 = 8 pages = 32 KB chunks
210 = 1024 pages = 1024*4 KB = 4 MB chunks

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[384]

The following diagram is a simplified conceptual illustration of (a single instance of)
the page allocator freelist:

Figure 8.2 – Buddy system/page allocator freelist on a system with 4 KB page size and MAX_ORDER of 11

In the preceding figure, each memory "chunk" is represented by a square box (to keep
it simple, we use the same size in our diagram). Internally, of course, these aren't the
actual memory pages; rather, the boxes represent metadata structures (struct page)
that point to physical memory frames. On the right side of the figure, we show the
size of each physically contiguous free memory chunk that could be enqueued on the
list to the left.

The kernel gives us a convenient (summarized) view into the current state of the page
allocator via the proc filesystem (on our Ubuntu guest VM with 1 GB RAM):

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[385]

Figure 8.3 – Annotated screenshot of sample /proc/buddyinfo output

Our guest VM is a pseudo-NUMA box with one node (Node 0) and two zones (DMA
and DMA32). The numbers following zone XXX are the number of free (physically
contiguous!) page frames in order 0, order 1, order 2, right up to MAX_ORDER-1 (here,
11 – 1 = 10). So, let's take a couple of examples from the preceding output:

There are 35 single-page free chunks of RAM in the order 0 list for
node 0, zone DMA.
In node 0, zone DMA32, order 3, the number shown in Figure 8.3 here
is 678; now, take 2order = 23 = 8 page frames = 32 KB (assuming a page size of 4
KB); this implies that there are 678 32 KB physically contiguous free chunks
of RAM on that list.

It is important to note that each chunk is guaranteed to be physically contiguous
RAM in and of itself. Also, notice that the size of the memory chunks on a given
order is always double that of the previous order (and half that of the next one). This
is, of course, as they're all powers of 2.

Note that MAX_ORDER can (and does) vary with the architecture. On
regular x86 and ARM systems, it's 11, yielding a largest chunk size
of 4 MB of physically contiguous RAM on order 10 of the freelists.
On high-end enterprise server class systems running the Itanium
(IA-64) processor, MAX_ORDER can be as high as 17 (implying a
largest chunk size on order (17-1), thus of 216 = 65,536 pages = 512 MB
chunks of physically contiguous RAM on order 16 of the freelists, for
a 4 KB page size). The IA-64 MMU supports up to eight page sizes
ranging from a mere 4 KB right up to 256 MB. As another example,
with a page size of 16 MB, the order 16 list could potentially
have physically contiguous RAM chunks of size 65,536 * 16 MB = 1
TB each!

Another key point: the kernel keeps multiple BSA freelists – one for
every node:zone that is present on the system! This lends a natural way to allocate
memory on a NUMA system.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[386]

The following diagram shows how the kernel instantiates multiple freelists – one per
node:zone present on the system (diagram credit: Professional Linux Kernel Architecture,
Mauerer, Wrox Press, Oct 2008):

Figure 8.4 – Page allocator (BSA) "freelists," one per node:zone on the system; diagram credit: Professional Linux Kernel Architecture, Mauerer, Wrox Press, Oct
2008

Furthermore, as can be seen in Figure 8.5, when the kernel is called upon to allocate
RAM via the page allocator, it picks the optimal freelist to allocate memory from – the
one associated with the node upon which the thread asking the request is running
(recall the NUMA architecture from the previous chapter). If this node is out of
memory or cannot allocate it for whatever reason, the kernel then uses a fallback list
to figure out which freelist to attempt to allocate memory from. (In reality, the real
picture is even more complex; we provide a few more details in the Page allocator
internals – a few more details section.)

Let's now understand (in a conceptual way) how all of this actually works.

The workings of the page allocator
The actual (de)allocation strategy can be explained by using a simple example. Let's
say a device driver requests 128 KB of memory. To fulfill this request, the (simplified
and conceptual) page allocator algorithm will do this:

The algorithm expresses the amount to be allocated (128 KB here) in pages.1.
Thus, here, it's (assuming a page size of 4 KB) 128/4 = 32 pages.
Next, it determines to what power 2 must be raised to get 32. That's log232,2.
which is 5 (as 25 is 32).
Now, it checks the list on order 5 of the appropriate node:zone page allocator3.
freelist. If a memory chunk is available (it will be of size 25 pages = 128 KB),
dequeue it from the list, update the list, and allocate it to the requester. Job
done! Return to caller.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[387]

Why do we say of the appropriate node:zone page allocator freelist? Does
that mean there's more than one of them? Yes, indeed! We repeat:
the reality is that there will be several freelist data structures, one
each per node:zone on the system. (Also see more details in the
section Page allocator internals – a few more details.)

If no memory chunk is available on the order 5 list (that is, if it's null), then4.
it checks the list on the next order; that is, the order 6-linked list (if it's not
empty, it will have 26 pages = 256 KB memory chunks enqueued on it, each
chunk being double the size of what we want).
If the order 6 list is non-null, then it will take (dequeue) a chunk of memory5.
from it (which will be 256 KB in size, double of what's required), and do the
following:

Update the list to reflect the fact that one chunk is now removed.
Cut the chunk in half, thus obtaining two 128 KB halves or
buddies! (Please see the following information box.)
Migrate (enqueue) one half (of size 128 KB) to the order 5 list.
Allocate the other half (of size 128 KB) to the requester.
Job done! Return to caller.

If the order 6 list is also empty, then it repeats the preceding process with6.
the order 7 list, and so on, until it succeeds.
If all the remaining higher-order lists are empty (null), it will fail the7.
request.

We can cut or slice a memory chunk in half because every chunk on
the list is guaranteed to be physically contiguous memory. Once cut,
we have two halves; each is called a buddy block, hence the name of
this algorithm. Pedantically, it's called the binary buddy system as
we use power-of-2-sized memory chunks. A buddy block is defined
as a block that is of the same size and physically adjacent to another.

You will understand that the preceding description is conceptual. The actual code
implementation is certainly more complex and optimized. By the way, the code – the
heart of the zoned buddy allocator, as its comment mentions, is
here: mm/page_alloc.c:__alloc_pages_nodemask(). Being beyond the scope of
this book, we won't attempt to delve into the code-level details of the allocator.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[388]

Working through a few scenarios
Now that we have the basics of the algorithm, let's consider a few scenarios: first, a
simple straightforward case, and after that, a couple of more complex cases.

The simplest case
Let's say that a kernel-space device driver (or some core code) requests 128 KB and
receives a memory chunk from the order 5 list of one of the freelist data structures. At
some later point in time, it will necessarily free the memory chunk by employing one
of the page allocator free APIs. Now, this API's algorithm calculates – via its order –
that the just-freed chunk belongs on the order 5 list; thus, it enqueues it there.

A more complex case
Now, let's say that, unlike the previous simple case, when the device driver requests
128 KB, the order 5 list is null; thus, as per the page allocator algorithm, we go to the
list on the next order, 6, and check it. Let's say it's non-null; the algorithm now
dequeues a 256 KB chunk and splits (or cuts) it in half. Now, one half (of size 128 KB)
goes to the requester, and the remaining half (again, of size 128 KB) is enqueued on to
the order 5 list.

The really interesting property of the buddy system is what happens when the
requester (the device driver), at some later point in time, frees the memory chunk. As
expected, the algorithm calculates (via its order) that the just-freed chunk belongs on
the order 5 list. But before blindly enqueuing it there, it looks for its buddy block,
and in this case, it (possibly) finds it! It now merges the two buddy blocks into a
single larger block (of size 256 KB) and places (enqueues) the merged block on
the order 6 list. This is fantastic – it has actually helped defragment memory!

The downfall case
Let's make it interesting now by not using a convenient rounded power-of-2 size as
the requirement. This time, let's say that the device driver requests a memory chunk
of size 132 KB. What will the buddy system allocator do? As, of course, it cannot
allocate less memory than requested, it allocates more – you guessed it (see Figure
8.2), the next available memory chunk is on order 7, of size 256 KB. But the consumer
(the driver) is only going to see and use the first 132 KB of the 256 KB chunk allocated
to it. The remaining (124 KB) is wasted (think about it, that's close to 50%
wastage!). This is called internal fragmentation (or wastage) and is the critical failing
of the binary buddy system!

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[389]

You will learn, though, that there is indeed a mitigation to this: a
patch was contributed to deal with similar scenarios (via
the alloc_pages_exact() / free_pages_exact() APIs). We
will cover the APIs to use the page allocator shortly.

Page allocator internals – a few more details
In this book, we do not intend to delve into code-level detail on the internals of the
page allocator. Having said that, here's the thing: in terms of data structures, the zone
structure contains an array of free_area structures. This makes sense; as you've
learned, there can be (and usually are) multiple page allocator freelists on the system,
one per node:zone:

// include/linux/mmzone.h
struct zone {
 [...]
 /* free areas of different sizes */
 struct free_area free_area[MAX_ORDER];
 [...]
};

The free_area structure is the implementation of the doubly-linked circular lists (of
free memory page frames within that node:zone) along with the number of page
frames that are currently free:

struct free_area {
 struct list_head free_list[MIGRATE_TYPES];
 unsigned long nr_free;
};

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[390]

Why is it an array of linked lists and not just one list? Without delving into the details,
we'll mention that, in reality, the kernel layout for the buddy system freelists is more
complex than let on until now: from the 2.6.24 kernel, each freelist we have seen is
actually further broken up into multiple freelists to cater to different page migration
types. This was required to deal with complications when trying to keep memory
defragmented. Besides that, as mentioned earlier, these freelists exist per node:zone on
the system. So, for example, on an actual NUMA system with 4 nodes and 3 zones per
node, there will be 12 (4 x 3) freelists. Not just that, each freelist is actually further
broken down into 6 freelists, one per migration type. Thus, on such a system, a total
of 6 x 12 = 72 freelist data structures would exist system-wide!

If you are interested, dig into the details and check out the output
of /proc/buddyinfo – a nice summary view of the state of the
buddy system freelists (as Figure 8.3 shows). Next, for a more
detailed and realistic view (of the type mentioned previously,
showing all the freelists), look up /proc/pagetypeinfo (requires
root access) – it shows all the freelists (broken up into page
migration types as well).

The design of the page allocator (buddy system) algorithm is one of the best-fit class.
It confers the major benefit of actually helping to defragment physical memory as the
system runs. Briefly, its pros and cons are as follows.

The pros of the page allocator (buddy system) algorithm are as follows:

Helps defragment memory (external fragmentation is prevented)
Guarantees the allocation of a physically contiguous memory chunk
Guarantees CPU cache line-aligned memory blocks
Fast (well, fast enough; the algorithmic time complexity is O(log n))

On the other hand, by far the biggest downside is that internal fragmentation or
wastage can be much too high.

Okay, great! We have covered a good deal of background material on the internal
workings of the page or buddy system allocator. Time to get hands on: let's now dive
into actually understanding and using the page allocator APIs to allocate and free
memory.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[391]

Learning how to use the page allocator APIs
The Linux kernel provides (exposes to the core and modules) a set of APIs to allocate
and deallocate memory (RAM) via the page allocator. These are often referred to as
the low-level (de)allocator routines. The following table summarizes the page
allocation APIs; you'll notice that all the APIs or macros that have two parameters, the
first parameter is called the GFP flags or bitmask; we shall explain it in detail shortly,
please ignore it for now. The second parameters is the order - the order of the
freelist, that is, the amount of memory to allocate is 2order page frames. All prototypes
can be found in include/linux/gfp.h:

API or macro name Comments API signature or macro

__get_free_page()

Allocates exactly one page
frame. The allocated
memory will have random
content; it's a wrapper
around the
__get_free_pages()
API. The return value is a
pointer to the just-allocated
memory's kernel logical
address.

#define
__get_free_page(gfp_mask) \
__get_free_pages((gfp_mask),

0)

__get_free_pages()

Allocates 2order physically
contiguous page frames.
Allocated memory will
have random content; the
return value is a pointer to
the just-allocated memory's
kernel logical address.

unsigned long
__get_free_pages(gfp_t
gfp_mask, unsigned int
order);

get_zeroed_page()

Allocates exactly one page
frame; its contents are set to
ASCII zero (NULL; that is,
it's zeroed out); the return
value is a pointer to the just-
allocated memory's kernel
logical address.

unsigned long
get_zeroed_page(gfp_t
gfp_mask);

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[392]

alloc_page()

Allocates exactly one page
frame. The allocated
memory will have random
content; a wrapper over the
alloc_pages() API; the
return value is a pointer to
the just-allocated memory's
page metadata structure;
can convert it into a kernel
logical address via the
page_address()
function.

#define
alloc_page(gfp_mask) \
alloc_pages(gfp_mask, 0)

alloc_pages()

Allocates 2order physically
contiguous page frames.
The allocated memory will
have random content; the
return value is a pointer to
the start of the just-allocated
memory's page metadata
structure; can convert it into
a kernel logical address via
the page_address()
function.

struct page *
alloc_pages(gfp_t gfp_mask,
unsigned int order);

Table 8.1 – Low-level (BSA/page) allocator – popular exported allocation APIs

All the preceding APIs are exported (via the EXPORT_SYMBOL() macro), and hence
available to kernel module and device driver developers. Worry not, you will soon
see a kernel module that demonstrates using them.

The Linux kernel considers it worthwhile to maintain a (small) metadata structure to
track every single page frame of RAM. It's called the page structure. The point here is,
be careful: unlike the usual semantics of returning a pointer (a virtual address) to the
start of the newly allocated memory chunk, notice how both
the alloc_page() and alloc_pages() APIs mentioned previously return a pointer
to the start of the newly allocated memory's page structure, not the memory chunk
itself (as the other APIs do). You must obtain the actual pointer to the start of the
newly allocated memory by invoking the page_address() API on the page structure
address that is returned. Example code in the Writing a kernel module to demo using the
page allocator APIs section will illustrate the usage of all of the preceding APIs.

Before we can make use of the page allocator APIs mentioned here, though, it's
imperative to understand at least the basics regarding the Get Free Page (GFP) flags,
which are the topic of the section that follows.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[393]

Dealing with the GFP flags
You will notice that the first parameter to all the previous allocator APIs (or macros)
is gfp_t gfp_mask. What does this mean? Essentially, these are GFP flags. These are
flags (there are several of them) used by the kernel's internal memory management
code layers. For all practical purposes, for the typical kernel module (or device driver)
developer, just two GFP flags are crucial (as mentioned before, the rest are for internal
usage). They are as follows:

GFP_KERNEL

GFP_ATOMIC

Deciding which of these to use when performing memory allocation via the page
allocator APIs is important; a key rule to always remember is the following:

If in process context and it is safe to sleep, use the GFP_KERNEL flag. If it is unsafe to
sleep (typically, when in any type of atomic or interrupt context), you must use
the GFP_ATOMIC flag.

Following the preceding rule is critical. Getting this wrong can result in the entire
machine freezing, kernel crashes, and/or random bad stuff happening. So, what
exactly do the statements safe/unsafe to sleep really mean? For this and more, we defer
to the The GFP flags – digging deeper section that follows. It is really important though,
so I definitely recommend you read it.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[394]

Linux Driver Verification (LDV) project: back in Chapter 1,
Kernel Workspace Setup, in the The LDV - Linux Driver Verification -
 project section, we mentioned that this project has useful "rules"
with respect to various programming aspects of Linux modules
(drivers, mostly) as well as the core kernel.

With regard to our current topic, here's one of the rules, a negative
one, implying that you cannot do this: "Using a blocking memory
allocation when spinlock is held" (http:/ /linuxtesting. org/ldv/
online? action= show_ rule rule_ id=0043). When holding a spinlock,
you're not allowed to do anything that might block; this includes
kernel-space memory allocations. Thus, very important, you must
use the GFP_ATOMIC flag when performing a memory allocation in
any kind of atomic or non-blocking context, like when holding a
spinlock (you will learn that this isn't the case with the mutex lock;
you are allowed to perform blocking activities while holding a
mutex). Violating this rule leads to instability and even raises the
possibility of (an implicit) deadlock. The LDV page mentions a
device driver that was violating this very rule and the subsequent
fix (https:/ /git. kernel. org/ pub/scm/ linux/ kernel/ git/
torvalds/ linux. git/ commit/ ? id=
5b0691508aa99d309101a49b4b084dc16b3d7019). Take a look: the
patch clearly shows (in the context of the kzalloc() API, which we
shall soon cover) the GFP_KERNEL flag being replaced with the
GFP_ATOMIC flag.

Another GFP flag commonly used is __GFP_ZERO. Its usage implies to the kernel that
you want zeroed-out memory pages. It's often bitwise-ORed with GFP_KERNEL or
GFP_ATOMIC flags in order to return memory initialized to zero.

The kernel developers do take the trouble to document the GFP
flags in detail. Take a look in include/linux/gfp.h. Within it,
there's a long and detailed comment; it's headed DOC: Useful GFP
flag combinations.

For now, and so that we get off the ground quickly, just understand that using the
Linux kernel's memory allocation APIs with the GFP_KERNEL flag is indeed the
common case for kernel-internal allocations.

http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0043
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5b0691508aa99d309101a49b4b084dc16b3d7019

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[395]

Freeing pages with the page allocator
The flip side of allocating memory is freeing it, of course. Memory leakage in the
kernel is definitely not something you'd like to contribute to. For the page allocator
APIs shown in Table 8.1, here are the corresponding free APIs:

API or macro name Comment API signature or macro

free_page()

Free a (single) page that was allocated via
the __get_free_page(), get_zeroed_page(),
or alloc_page() APIs; it's a simple wrapper over the
free_pages() API

#define
free_page(addr)
__free_pages((addr),
0)

free_pages()
Free multiple pages that were allocated via
the __get_free_pages() or alloc_pages() APIs
(it's actually a wrapper over __free_pages().)

void
free_pages(unsigned
long addr, unsigned
int order)

__free_pages()
(Same as the preceding row, plus) it's the underlying routine
where the work gets done; also, note that the first
parameter is a pointer to the page metadata structure.

void
__free_pages(struct
page *page, unsigned
int order)

Table 8.2 – Common free page(s) APIs to use with the page allocator

You can see that the actual underlying API in the preceding functions is
free_pages(), which itself is just a wrapper over the
mm/page_alloc.c:__free_pages() code. The first parameter to the
free_pages() API is the pointer to the start of the memory chunk being freed; this,
of course, being the return value from the allocation routine. However, the first
parameter to the underlying API, __free_pages(), is the pointer to the page
metadata structure of the start of the memory chunk being freed.

Generally speaking, unless you really know what you are doing,
you're definitely advised to invoke the foo() wrapper routine and
not its internal __foo() routine. One reason to do so is simply
correctness (perhaps the wrapper uses some necessary
synchronization mechanism - like a lock - prior to invoking the
underlying routine). Another reason to do so is validity checking
(which helps code remain robust and secure). Often, the __foo()
routines bypass validity checks in favor of speed.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[396]

As all experienced C/C++ application developers know, allocating and subsequently
freeing memory is a rich source of bugs! This is primarily because C is an unmanaged
language, as far as memory is concerned; hence, you can hit all sorts of memory bugs.
These include the well-known memory leakage, buffer overflows/underflows for both
read/write, double-free, and Use After Free (UAF) bugs.

Unfortunately, it's no different in kernel space; it's just that the consequences are
(much) worse! Be extra careful! Please do take care to ensure the following:

Favor routines that initialize the memory allocated to zero.
Think about and use the appropriate GFP flag when performing an
allocation – more on this in the The GFP flags – digging deeper section, but
briefly, note the following:

When in process context where it's safe to sleep, use
GFP_KERNEL.
When in an atomic context, such as when processing an
interrupt, use GFP_ATOMIC.

When using the page allocator (as we're doing now), try as much as
possible to keep the allocation size as rounded power-of-2 pages (again, the
rationale behind this and ways to mitigate this – when you don't require so
much memory, the typical case – are covered in detail in the coming
sections of this chapter).
You only ever attempt to free memory that you allocated earlier; needless
to say, don't miss freeing it, and don't double-free it.
Keep the original memory chunk's pointer safe from reuse, manipulation
(ptr ++ or something similar), and corruption, so that you can correctly
free it when done.
Check (and recheck!) the parameters passed to APIs. Is a pointer to the
previously allocated block required, or to its underlying page structure?

Finding it difficult and/or worried about issues in production? Don't
forget, you have help! Do learn how to use powerful static analysis
tools found within the kernel itself (Coccinelle, sparse and others,
such as cppcheck or smatch). For dynamic analysis, learn how to
install and use KASAN (the Kernel Address Sanitizer).

Recall the Makefile template I provided in Chapter 5, Writing Your
First Kernel Module – LKMs Part 2, in the A better Makefile
template section. It contains targets that use several of these tools;
please do use it!

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[397]

Alright, now that we've covered both the (common) allocation and free APIs of the
page allocator, it's time to put this learning to use. Let's write some code!

Writing a kernel module to demo using the page
allocator APIs
Let's now get hands on with the low-level page allocator and free APIs that we've
learned about so far. In this section, we will show relevant code snippets, followed by
an explanation where warranted, from our demo kernel module
(ch8/lowlevel_mem/lowlevel_mem.c).

In the primary worker routine, bsa_alloc(), of our small LKM, we highlighted (in
bold font) the code comments that show what we are trying to achieve. A few points
to note:

First, we do something very interesting: we use our small kernel "library"1.
function klib_llkd.c:show_phy_pages() to literally show you how
physical RAM page frames are identity mapped to kernel virtual pages in
the kernel lowmem region! (The exact working of the show_phy_pages()
routine is discussed very shortly):

// ch8/lowlevel_mem/lowlevel_mem.c
[...]
static int bsa_alloc(void)
{
 int stat = -ENOMEM;
 u64 numpg2alloc = 0;
 const struct page *pg_ptr1;

 /* 0. Show the identity mapping: physical RAM page frames
to kernel virtual
 * addresses, from PAGE_OFFSET for 5 pages */
 pr_info("%s: 0. Show identity mapping: RAM page frames :
kernel virtual pages :: 1:1\n", OURMODNAME);
 show_phy_pages((void *)PAGE_OFFSET, 5 * PAGE_SIZE, 1);

Next, we allocate one page of memory via the underlying2.
__get_free_page() page allocator API (that we saw previously in Table
8.1):

 /* 1. Allocate one page with the __get_free_page() API */
 gptr1 = (void *) __get_free_page(GFP_KERNEL);
 if (!gptr1) {
 pr_warn("%s: __get_free_page() failed!\n",

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[398]

OURMODNAME);
 /* As per convention, we emit a printk above saying
that the
 * allocation failed. In practice it isn't required;
the kernel
 * will definitely emit many warning printk's if a
memory alloc
 * request ever fails! Thus, we do this only once
(here; could also
 * use the WARN_ONCE()); from now on we don't
pedantically print any
 * error message on a memory allocation request
failing. */
 goto out1;
 }
 pr_info("%s: 1. __get_free_page() alloc'ed 1 page from the
BSA @ %pK (%px)\n",
 OURMODNAME, gptr1, gptr1);

Notice how we emit a printk function showing the kernel's logical
address. Recall from the previous chapter that this is page allocator memory
that lies very much in the direct-mapped RAM or lowmem region of
the kernel segment/VAS.

Now, for security, we should consistently, and only, use
the %pK format specifier when printing kernel addresses so that a
hashed value and not the real virtual address shows up in the kernel
logs. However, here, in order to show you the actual kernel virtual
address, we also use the %px format specifier (which, like the %pK, is
portable as well; for security, please don't use the %px format
specifier in production!).

Next, notice the detailed comment just after the first
__get_free_page() API (in the preceding snippet) is issued. It mentions
the fact that you don't really have to print an out-of-memory error or
warning messages. (Curious? To find out why, visit https:/ /lkml. org/
lkml/ 2014/ 6/ 10/ 382.) In this example module (as with several earlier ones
and more to follow), we code our printk's (or pr_foo()
macro) instances for portability by using appropriate printk format
specifiers (like the %zd, %zu, %pK, %px, and %pa).

https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382
https://lkml.org/lkml/2014/6/10/382

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[399]

Let's move on to our second memory allocation using the page allocator;3.
see the following code snippet:

/*2. Allocate 2^bsa_alloc_order pages with the
__get_free_pages() API */
 numpg2alloc = powerof(2, bsa_alloc_order); // returns
2^bsa_alloc_order
 gptr2 = (void *) __get_free_pages(GFP_KERNEL|__GFP_ZERO,
bsa_alloc_order);
 if (!gptr2) {
 /* no error/warning printk now; see above comment */
 goto out2;
 }
 pr_info("%s: 2. __get_free_pages() alloc'ed 2^%d = %lld
page(s) = %lld bytes\n"
 " from the BSA @ %pK (%px)\n",
 OURMODNAME, bsa_alloc_order, powerof(2,
bsa_alloc_order),
 numpg2alloc * PAGE_SIZE, gptr2, gptr2);
 pr_info(" (PAGE_SIZE = %ld bytes)\n", PAGE_SIZE);

In the preceding code snippet (see the code comments), we have allocated
23 – that is, 8 – pages of memory via the page
allocator's __get_free_pages() API (as the default value of our module
parameter, bsa_alloc_order, is 3).

An aside: notice that we use the GFP_KERNEL|__GFP_ZERO GFP
flags to ensure that the allocated memory is zeroed out, a best
practice. Then again, zeroing out large memory chunks can result in
a slight performance hit.

Now, we ask ourselves the question: is there a way to verify that the
memory is really physically contiguous (as promised)? It turns out that yes,
we can actually retrieve and print out the physical address of the start of
each allocated page frame and retrieve its Page Frame Number (PFN) as
well.

The PFN is a simple concept: it's just the index or page number – for
example, the PFN of physical address 8192 is 2 (8192/4096). As we've
shown how to (and importantly, when you can) translate kernel
virtual addresses to their physical counterparts earlier (and vice
versa; this coverage is in Chapter 7, Memory Management Internals –
Essentials, in the Direct-mapped RAM and address translation section),
we won't repeat it here.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[400]

To do this work of translating virtual addresses to physical addresses and
checking for contiguity, we write a small "library" function, which is kept in
a separate C file in the root of this book's GitHub source
tree, klib_llkd.c. Our intent is to modify our kernel
module's Makefile to link in the code of this library file as well! (Doing this
properly was covered back in Chapter 5, Writing Your First Kernel Module –
LKMs Part 2, in the Performing library emulation via multiple source files
section.) Here's our invocation of our library routine (just as was done in
step 0):

show_phy_pages(gptr2, numpg2alloc * PAGE_SIZE, 1);

The following is the code of our library routine (in the
<booksrc>/klib_llkd.c source file; again, for clarity, we won't show the
entire code here):

// klib_llkd.c
[...]
/* show_phy_pages - show the virtual, physical addresses and
PFNs of the memory range provided on a per-page basis.
 * @kaddr: the starting kernel virtual address
 * @len: length of the memory piece (bytes)
 * @contiguity_check: if True, check for physical contiguity
of pages
 * 'Walk' the virtually contiguous 'array' of pages one by one
(that is, page by page),
 * printing the virt and physical address (and PFN- page frame
number). This way, we can see
 * if the memory really is *physically* contiguous or not
 */
void show_phy_pages(const void *kaddr, size_t len, bool
contiguity_check)
{
 [...]
 if (len % PAGE_SIZE)
 loops++;
 for (i = 0; i < len/PAGE_SIZE; i++) {
 pa = virt_to_phys(vaddr+(i*PAGE_SIZE));
 pfn = PHYS_PFN(pa);

 if (!!contiguity_check) {
 /* what's with the 'if !!(<cond>) ...' ??
 * a 'C' trick: ensures that the if condition always
evaluates
 * to a boolean - either 0 or 1 */
 if (i && pfn != prev_pfn + 1)

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[401]

 pr_notice(" *** physical NON-contiguity
detected ***\n");
 }
 pr_info("%05d 0x%px %pa %ld\n", i,
vaddr+(i*PAGE_SIZE), &pa, pfn);
 if (!!contiguity_check)
 prev_pfn = pfn;
 }
}

Study the preceding function. We walk through our given memory range,
(virtual) page by (virtual) page, obtaining the physical address and PFN,
which we then emit via printk (notice how we use the %pa format specifier
to port-ably print a physical address - it requires it to be passed by reference
though). Not only that, if the third parameter, contiguity_check, is 1, we
check whether the PFNs are just a single digit apart, thus checking that the
pages are indeed physically contiguous or not. (By the way, the simple
powerof() function that we make use of is also within our library code.)

Hang on, though, a key point: having kernel modules working with
physical addresses is highly discouraged. Only the kernel's internal
memory management code works directly with physical addresses.
There are very few real-world cases of even hardware device drivers
using physical memory directly (DMA is one, and using the
ioremap APIs another).

We only do so here to prove a point – that the memory allocated by
the page allocator (with a single API call) is physically contiguous.
Also, do realize that the virt_to_phys() (and friends) APIs that
we employ are guaranteed to work only on direct-mapped memory
(the kernel lowmem region) and nothing else (not the vmalloc
range, the IO memory ranges, bus memory, DMA buffers, and so
on).

Now, let's continue with the kernel module code:4.

 /* 3. Allocate and init one page with the
get_zeroed_page() API */
 gptr3 = (void *) get_zeroed_page(GFP_KERNEL);
 if (!gptr3)
 goto out3;
 pr_info("%s: 3. get_zeroed_page() alloc'ed 1 page from the
BSA @ %pK (%px)\n",
 OURMODNAME, gptr3, gptr3);

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[402]

As seen in the preceding snippet, we allocate a single page of memory but
ensure it's zeroed out by employing the PA get_zeroed_page() API.
pr_info() shows the hashed and actual KVAs (using the %pK or %px has
the addresses printed in a port-able fashion as well, irrespective of your
running on a 32 or 64-bit system.)

Next, we allocate one page with the alloc_page() API. Careful! It does5.
not return the pointer to the allocated page, but rather the pointer to the
metadata structure page representing the allocated page; here's the
function signature: struct page * alloc_page(gfp_mask). Thus, we
use the page_address() helper to convert it into a kernel logical (or
virtual) address:

/* 4. Allocate one page with the alloc_page() API.
 pg_ptr1 = alloc_page(GFP_KERNEL);
 if (!pg_ptr1)
 goto out4;

 gptr4 = page_address(pg_ptr1);
 pr_info("%s: 4. alloc_page() alloc'ed 1 page from the BSA @
%pK (%px)\n"
 " (struct page addr=%pK (%px)\n)",
 OURMODNAME, (void *)gptr4, (void *)gptr4, pg_ptr1,
pg_ptr1);

In the preceding code snippet, we allocate one page of memory via the
alloc_page() PA API. As explained, we need to convert the page
metadata structure returned by it into a KVA (or kernel logical address) via
the page_address() API.

Next, allocate and init 2^3 = 8 pages with the alloc_pages() API. The6.
same warning as the preceding code snippet applies here too:

 /* 5. Allocate and init 2^3 = 8 pages with the alloc_pages()
API.
 gptr5 = page_address(alloc_pages(GFP_KERNEL, 3));
 if (!gptr5)
 goto out5;
 pr_info("%s: 5. alloc_pages() alloc'ed %lld pages from the
BSA @ %pK (%px)\n",
 OURMODNAME, powerof(2, 3), (void *)gptr5, (void *)gptr5);

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[403]

In the preceding code snippet, we combine alloc_pages() wrapped
within a page_address() API to allocate 2^3 = 8 pages of memory!

Interestingly, we use several local goto statements in the code (do peek at
the code in the repo). Looking carefully at it, you will notice that it actually
keeps error handling code paths clean and logical. This is indeed part of the
Linux kernel coding style guidelines.

Usage of the (sometimes controversial) goto is clearly documented
right here: https:/ /www. kernel. org/ doc/ html/ v5.4/ process/
coding- style. html#centralized- exiting- of-functions. I urge
you to check it out! Once you understand the usage pattern, you'll
find that it helps reduce the all-too-typical memory leakage (and
similar) cleanup errors!

Finally, in the cleanup method, prior to being removed from kernel7.
memory, we free up all the memory chunks we just allocated in
the cleanup code of the kernel module.
In order to link our library klib_llkd code with8.
our lowlevel_mem kernel module, the Makefile changes to have the
following (recall that we learned about compiling multiple source files into
a single kernel module in Chapter 5, Writing Your First Kernel Module –
LKMs Part 2, in the Performing library emulation via multiple source files
section):

 PWD := $(shell pwd)
 obj-m += lowlevel_mem_lkm.o
 lowlevel_mem_lkm-objs := lowlevel_mem.o ../../klib_lkdc.o
 EXTRA_CFLAGS += -DDEBUG

Again, in this sample LKM we often used the %px printk format specifier so
that we can see the actual virtual address and not a hashed value (kernel
security feature). It's okay here, but don't do this in production.

Phew! That was quite a bit to cover. Do ensure you understand the code, and then
read on to see it in action.

Deploying our lowlevel_mem_lkm kernel module
Okay, time to see our kernel module in action! Let's build and deploy it on both a
Raspberry Pi 4 (running the default Raspberry Pi OS) and on an x86_64 VM (running
Fedora 31).

https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions
https://www.kernel.org/doc/html/v5.4/process/coding-style.html#centralized-exiting-of-functions

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[404]

On the Raspberry Pi 4 Model B (here running Raspberry Pi kernel version 5.4.79-
v7l+), we build and then insmod(8) our lowlevel_mem_lkm kernel module. The
following screenshot shows the output:

Figure 8.5 – The lowlevel_mem_lkm kernel module's output on a Raspberry Pi 4 Model B

Check it out! In step 0 of the output in Figure 8.6 our show_phy_pages() library
routine clearly shows that KVA 0xc000 0000 has PA 0x0, KVA 0xc000 1000 has
pa 0x1000, and so on, for five pages (along with the PFN on the right); you can
literally see the 1:1 identity mapping of physical RAM page frames to kernel virtual
pages (in the lowmem region of the kernel segment)!

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[405]

Next, the initial memory allocation with the __get_free_page() API goes through
as expected. More interesting is our case 2. Here, we can clearly see that the physical
address and PFN of each allocated page (from 0 to 7, for a total of 8 pages) are
consecutive, showing that the memory pages allocated are indeed physically
contiguous!

We build and run the same module on an x86_64 VM running Ubuntu 20.04 (running
our custom 5.4 'debug' kernel). The following screenshot shows the output:

Figure 8.6 – The lowlevel_mem_lkm kernel module's output on a x86_64 VM running Ubuntu 20.04

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[406]

This time (refer Figure 8.7), with the PAGE_OFFSET value being a 64-bit quantity (the
value here is 0xffff 8880 0000 0000), you can again clearly see the identity
mapping of physical RAM frames to kernel virtual addresses (for 5 pages). Let's take
a moment and look carefully at the kernel logical addresses returned by the page
allocator APIs. In Figure 8.7, you can see that they are all in the range 0xffff 8880
.... The following snippet is from the kernel source tree
at Documentation/x86/x86_64/mm.txt, documenting (a part of) the virtual
memory layout on the x86_64:

If this all seems new and strange to you, please refer to Chapter 7,
Memory Management Internals – Essentials, particularly the Examining
the kernel segment and Direct-mapped RAM and address
translation sections.

0000000000000000 - 00007fffffffffff (=47 bits) user space, different
per mm hole caused by [47:63] sign extension
ffff800000000000 - ffff87ffffffffff (=43 bits) guard hole, reserved
for hypervisor
ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all
phys. memory
ffffc80000000000 - ffffc8ffffffffff (=40 bits) hole
ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space

It's quite clear, isn't it? The page allocator memory (the buddy system free lists) maps
directly onto free physical RAM within the direct-mapped or lowmem region of the
kernel VAS. Thus, it obviously returns memory from this region. You can see this
region in the preceding documentation output (highlighted in bold font) – the
kernel direct-mapped or lowmem region. Again, I emphasize the fact that the specific
address range used is very arch-specific. In the preceding code, it's the (maximum
possible) range on the x86_64.

Though tempting to claim that you're now done with the page allocator and its APIs,
the reality is that this is (as usual) not quite the case. Do read on to see why – it's
really important to understand these aspects.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[407]

The page allocator and internal fragmentation
Though all looks good and innocent on the surface, I urge you to delve a bit deeper.
Just under the surface, a massive (unpleasant!) surprise might await you: the
blissfully unaware kernel/driver developer. The APIs we covered previously
regarding the page allocator (see Table 8.1) have the dubious distinction of being able
to internally fragment – in simpler terms, waste – very significant portions of kernel
memory!

To understand why this is the case, you must understand at least the basics of the
page allocator algorithm and its freelist data structures. The section The fundamental
workings of the page allocator covered this (just in case you haven't read it, please do so).

In the Working through a few scenarios section, you would have seen that when we
make an allocation request of convenient, perfectly rounded power-of-two-size pages,
it goes very smoothly. However, when this isn't the case – let's say the driver requests
132 KB of memory – then we end up with a major issue: the internal fragmentation or
wastage is very high. This is a serious downside and must be addressed. We will see
how, in two ways, in fact. Do read on!

The exact page allocator APIs
Realizing the vast potential for wastage within the default page allocator (or BSA), a
developer from Freescale Semiconductor (see the information box) contributed a
patch to the kernel page allocator that extends the API, adding a couple of new ones.

In the 2.6.27-rc1 series, on 24 July 2008, Timur Tabi submitted a
patch to mitigate the page allocator wastage issue. Here's the
relevant commit: https:/ /github. com/torvalds/ linux/ commit/
2be0ffe2b29bd31d3debd0877797892ff2d91f4c.

Using these APIs leads to more efficient allocations for large-ish chunks (multiple
pages) of memory with far less wastage. The new (well, it was new back in 2008, at
least) pair of APIs to allocate and free memory are as follows:

#include <linux/gfp.h>
void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
void free_pages_exact(void *virt, size_t size);

https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c
https://github.com/torvalds/linux/commit/2be0ffe2b29bd31d3debd0877797892ff2d91f4c

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[408]

The first parameter to the alloc_pages_exact() API, size, is in bytes, the second
is the "usual" GFP flags value discussed earlier (in the Dealing with the GFP flags
section; GFP_KERNEL for the might-sleep process context cases, and GFP_ATOMIC for
the never-sleep interrupt or atomic context cases).

Note that the memory allocated by this API is still guaranteed to be physically
contiguous. Also, the amount that can be allocated at a time (with one function call) is
limited by MAX_ORDER; in fact, this is true of all the other regular page allocation APIs
that we have seen so far. We will discuss a lot more about this aspect in the upcoming
section, Size limitations of the kmalloc API. There, you'll realize that the discussion is in
fact not limited to the slab cache but to the page allocator as well!

The free_pages_exact() API must only be used to free memory allocated by its
counterpart, alloc_pages_exact(). Also, note that the first parameter to the "free"
routine is of course the value returned by the matching 'alloc' routine (the pointer to
the newly allocated memory chunk).

The implementation of alloc_pages_exact() is simple and clever: it first allocates
the entire memory chunk requested "as usual" via the __get_free_pages() API.
Then, it loops – from the end of the memory to be used to the amount of actually
allocated memory (which is typically far greater) – freeing up those unnecessary
memory pages! So, in our example, if you allocate 132 KB via
the alloc_pages_exact() API, it will actually first internally allocate 256 KB
via __get_free_pages(), but will then free up memory from 132 KB to 256 KB!

Another example of the beauty of open source! A demo of using these APIs can be
found here: ch8/page_exact_loop; we will leave it to you to try it out.

Before we began this section, we mentioned that there were two ways in which the
wastage issue of the page allocator can be addressed. One is by using the more
efficient alloc_pages_exact() and free_pages_exact() APIs, as we just
learned; the other is by using a different layer to allocate memory – the slab allocator.
We will soon cover it; until then, hang in there. Next, let's cover more, crucial to
understand, details on the (typical) GFP flags and how you, the kernel module or
driver author, are expected to use them.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[409]

The GFP flags – digging deeper
With regard to our discussions on the low-level page allocator APIs, the first
parameter to every function is the so-called GFP mask. When discussing the APIs and
their usage, we mentioned a key rule.

If in process context and it is safe to sleep, use the GFP_KERNEL flag. If it is unsafe to sleep
(typically, when in any type of interrupt context or when holding some types of
locks), you must use the GFP_ATOMIC flag.

We elaborate on this in the following sections.

Never sleep in interrupt or atomic contexts
What does the phrase safe to sleep actually mean? To answer this, think of blocking
calls (APIs): a blocking call is one where the calling process (or thread) is put into a
sleep state because it is waiting on something, an event, and the event it is waiting on
has not occurred yet. Thus, it waits – it "sleeps." When, at some future point in time,
the event it is waiting on occurs or arrives, it is woken up by the kernel and proceeds
forward.

One example of a user space blocking API includes sleep(3). Here, the event it is
waiting on is the elapse of a certain amount of time. Another example is read(2) and
its variants, where the event being waited on is storage or network data becoming
available. With wait4(2), the event being waited on is the death or
stoppage/continuing of a child process, and so on.

So, any function that might possibly block can end up spending some time asleep
(while asleep, it's certainly off the CPU run queues, and in a wait queue). Invoking
this possibly blocking functionality when in kernel mode (which, of course, is the mode
we are in when working on kernel modules) is only allowed when in process context. It is
a bug to invoke a blocking call of any sort in a context where it is unsafe to sleep,
such as an interrupt or atomic context. Think of this as a golden rule. This is also
known as sleeping in an atomic context – it's wrong, it's buggy, and it
must never happen.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[410]

You might wonder, how can I know in advance if my code will ever enter
an atomic or interrupt context? In one way, the kernel helps us out:
when configuring the kernel (recall make
menuconfig from Chapter 2, Building the 5.x Linux Kernel from
Source - Part 1), under the Kernel Hacking / Lock
Debugging menu, there is a Boolean tunable called "Sleep inside
atomic section checking". Turn it on! (The config option is
named CONFIG_DEBUG_ATOMIC_SLEEP; you can always grep your
kernel config file for it. Again, in Chapter 5, Writing Your First
Kernel Module - LKMs Part 2, under the Configuring a "debug" kernel
section, this is something you should definitely turn on.)

Another way to think of this situation is how exactly do you put a process or thread
to sleep? The short answer is by having it invoke the scheduling code –
the schedule() function. Thus, by implication of what we have just learned (as a
corollary), schedule() must only be called from within a context where it's safe to
sleep; process context usually is safe, interrupt context never is.

This is really important to keep in mind! (We briefly covered what process and
interrupt context are in Chapter 4, Writing Your First Kernel Module – LKMs Part 1, in
the Process and interrupt contexts section, and how the developer can use
the in_task() macro to determine whether the code is currently running in a
process or interrupt context.) Similarly, you can use the in_atomic() macro; if the
code is an atomic context – where it must typically run to completion without
interruption – it returns True; otherwise, False. You can be in process context but
atomic at the same time – for example, when holding certain kinds of locks (spinlocks;
we will, of course, cover this in the chapters on synchronization later); the converse
cannot happen.

Besides the GFP flags we're focused upon - the GFP_KERNEL and GFP_ATOMIC ones -
the kernel has several other [__]GFP_* flags that are used internally; several for the
express purpose of reclaiming memory. These include (but are not limited to)
__GFP_IO, __GFP_FS, __GFP_DIRECT_RECLAIM, __GFP_KSWAPD_RECLAIM,
__GFP_RECLAIM, __GFP_NORETRY, and so on. In this book, we do not intend to delve
into these details. I refer you to the detailed comment in include/linux/gfp.h that
describes them (also see the Further reading section).

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[411]

Linux Driver Verification (LDV) project: back in Chapter
1, Kernel Workspace Setup, we mentioned that this project has useful
"rules" with respect to various programming aspects of Linux
modules (drivers, mostly) as well as the core kernel.

With regard to our current topic, here's one of the rules, a negative
one, implying that you cannot do this: Not disabling IO during memory
allocation while holding a USB device lock (http:/ /linuxtesting. org/
ldv/ online? action= show_ rule rule_ id=0077). Some quick
background: when you specify the GFP_KERNEL flag, it implicitly
means (among other things) that the kernel can start an IO
(Input/Output; reads/writes) operation to reclaim memory. The
trouble is, at times this can be problematic and should not be done;
to get over this, you're expected use the GFP_NOIO flag as part of the
GFP bitmask when allocating kernel memory.

That's precisely the case that this LDV 'rule' is referring to: here,
between the usb_lock_device() and usb_unlock_device()
APIs, the GFP_KERNEL flag shouldn't be used and the GFP_NOIO flag
should be used instead. (You can see several instances of this flag
being used in this code: drivers/usb/core/message.c). The LDV
page mentions the fact that a couple of USB-related code driver code
source files were fixed to adhere to this rule.

All right, now that you're armed with a good amount of detail on the page allocator
(it is, after all, the internal "engine" of RAM (de)allocation!), its APIs, and how to use
them, let's move on to a very important topic – the motivation(s) behind the slab
allocator, its APIs, and how to use them.

Understanding and using the kernel slab
allocator
As seen in the first section of this chapter, Introducing kernel memory allocators, the slab
allocator or slab cache is layered above the page allocator (or BSA; refer back to Figure
8.1). The slab allocator justifies its very existence with two primary ideas or purposes:

Object caching: Here, it serves as a cache of common "objects," and the
allocation (and subsequent freeing) of frequently allocated data structures
within the Linux kernel, for high performance.

http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0077

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[412]

Mitigate the high wastage (internal fragmentation) of the page allocator by
providing small, conveniently sized caches, typically fragments of a page.

Let's now examine these ideas in a more detailed manner.

The object caching idea
Okay, we begin with the first of these design ideas – the notion of a cache of common
objects. A long time ago, a SunOS developer, Jeff Bonwick, noticed that certain kernel
objects – data structures, typically – were allocated and deallocated frequently within
the OS. He thus had the idea of pre-allocating them in a cache of sorts. This evolved
into what we call the slab cache.

Thus, on the Linux OS as well, the kernel (as part of the boot time initialization) pre-
allocates a fairly large number of objects into several slab caches. The reason:
performance! When core kernel code (or a device driver) requires memory for one of
these objects, it directly requests the slab allocator. If cached, the allocation is almost
immediate (the converse being true as well at deallocation). You might wonder, is all
this really necessary? Indeed it is!

A good example of high performance being required is within the critical code paths
of the network and block IO subsystems. Precisely for this reason, several network
and block IO data structures (the network stack's socket buffer, sk_buff, the block
layer's biovec, and, of course, the core task_struct data structures or objects, being
a few good examples) are auto-cached (pre-allocated) by the kernel within the slab
caches. Similarly, filesystem metadata structures (such as the inode and dentry
structures, and so on), the memory descriptor (struct mm_struct), and several
more are pre-allocated on slab caches. Can we see these cached objects? Yes, just a bit
further down, we will do precisely this (via /proc/slabinfo).

The other reason that the slab (or, more correctly now, the SLUB) allocator has far
superior performance is simply that traditional heap-based allocators tend to allocate
and deallocate memory often, creating "holes" (fragmentation). Because the slab
objects are allocated once (at boot) onto the caches, and freed back there (thus not
really "freed" up), performance remains high. Of course, the modern kernel has the
intelligence to, in a graceful manner, start freeing up the slab caches when the
memory pressure gets too high.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[413]

The current state of the slab caches – the object caches, the number of objects in a
cache, the number in use, the size of each object, and so on – can be looked up in
several ways: a raw view via the proc and sysfs filesystems, or a more human-
readable view via various frontend utilities, such as slabtop(1), vmstat(8), and
slabinfo. In the following code snippet, on a native x86_64 (with 16 GB of
RAM) running Ubuntu 18.04 LTS, we peek at the top 10 lines of output
from /proc/slabinfo:

$ sudo head /proc/slabinfo
slabinfo - version: 2.1
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>
: tunables <limit> <batchcount> <sharedfactor> : slabdata
<active_slabs> <num_slabs> <sharedavail>
lttng_event 0 0 280 29 2 : tunables 0 0 0 : slabdata 0
0 0
kvm_async_pf 0 0 136 30 1 : tunables 0 0 0 : slabdata 0
0 0
kvm_vcpu 0 0 24576 1 8 : tunables 0 0 0 : slabdata 0
0 0
kvm_mmu_page_header 0 0 168 24 1 : tunables 0 0 0 : slabdata 0
0 0
pte_list_desc 0 0 32 128 1 : tunables 0 0 0 : slabdata 0
0 0
i915_request 112 112 576 28 4 : tunables 0 0 0 : slabdata 4
4 0
ext4_groupinfo_4k 6482 6496 144 28 1 : tunables 0 0 0 : slabdata
232 232 0
scsi_sense_cache 325 416 128 32 1 : tunables 0 0 0 : slabdata 13 13 0

A few points to note:

Even reading /proc/slabinfo requires root access (hence, we use
sudo(8)).
In the preceding output, the leftmost column is the name of the slab cache.
It often, but not always, matches the name of the actual data structure
within the kernel that it caches.
Then follows, for each cache, information in this format: <statistics> :
<tunables> : <slabdata>. The meaning of each of the fields shown in
the header line is explained in the man page for slabinfo(5) (look it up
with man 5 slabinfo).

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[414]

Incidentally, the slabinfo utility is one example of user space C code within the
kernel source tree under the tools/ directory (as are several others). It displays a
bunch of slab layer statistics (try it with the -X switch). To build it, do the following:

cd <ksrc-tree>/tools/vm
make slabinfo

A question you might have at this point is, how much memory in total is the slab cache
currently using? This is easily answered by grepping /proc/meminfo for
the Slab: entry, as follows:

$ grep "^Slab:" /proc/meminfo
Slab: 1580772 kB

As is apparent, significant amounts of memory can be used by the slab caches! This,
in fact, is a common feature on Linux that puzzles those new to it: the kernel can
and will use RAM for cache purposes, thus greatly improving performance. It is, of
course, designed to intelligently throttle down the amount of memory used for
caching as the memory pressure increases. On a regular Linux system, a significant
percentage of memory can go toward caching (especially the page cache; it's used to
cache the content of files as IO is performed upon them). This is fine, as long as memory
pressure is low. The free(1) utility clearly shows this (again, on my x86_64 Ubuntu
box with 16 GB of RAM, in this example):

$ free -h
 total used free shared buff/cache
available
Mem: 15Gi 5.5Gi 1.4Gi 704Mi 8.6Gi
9.0Gi
Swap: 7.6Gi 0B 7.6Gi
$

The buff/cache column indicates two caches that the Linux kernel employs – the
buffer and page caches. In reality, among the various caches that the kernel employs,
the page cache is a key one and often accounts for a majority of memory usage.

Look up /proc/meminfo for fine-granularity detail on system
memory usage; the fields displayed are numerous. The man page
on proc(5) describes them under the /proc/meminfo section.

Now that you understand the motivation behind the slab allocator (there's more on
this too), let's dive into learning how to use the APIs it exposes for both the core
kernel as well as module authors.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[415]

Learning how to use the slab allocator APIs
You may have noticed that, so far, we haven't explained the second "design idea"
behind the slab allocator (cache), namely, mitigate the high wastage (internal
fragmentation) of the page allocator by providing small, conveniently sized caches, typically,
fragments of a page. We will see what exactly this means in a practical fashion, along
with the kernel slab allocator APIs.

Allocating slab memory
Though several APIs to perform memory allocation and freeing exist within the slab
layer, there are just a couple of really key ones, with the rest falling into a
"convenience or helper" functions category (which we will of course mention
later). The key slab allocation APIs for the kernel module or device driver author are
as follows:

#include <linux/slab.h>
void *kmalloc(size_t size, gfp_t flags);
void *kzalloc(size_t size, gfp_t flags);

Be sure to include the <linux/slab.h> header file when using any slab allocator
APIs.

The kmalloc() and kzalloc() routines tend to be the most frequently used APIs
for memory allocation within the kernel. A quick check – we're not aiming to be
perfectly precise – with the very useful cscope(1) code browsing utility on the 5.4.0
Linux kernel source tree reveals the (approximate) frequency of
usage: kmalloc() is called around 4,600 times and kzalloc() is called over 11,000
times!

Both functions have two parameters: the first parameter to pass is the size of the
memory allocation required in bytes, while the second is the type of memory to
allocate, specified via the now familiar GFP flags (we already covered this topic in
earlier sections, namely, Dealing with the GFP flags and The GFP flags – digging deeper. If
you're not familiar with them, I suggest you read those sections first).

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[416]

To mitigate the risk of Integer Overflow (IoF) bugs, you should
avoid dynamically calculating the size of memory to allocate (the
first parameter). The kernel documentation warns us regarding
precisely this (link:
https:/ / www. kernel. org/ doc/ html/ latest/ process/ deprecated.
html#open- coded- arithmetic- in-allocator- arguments).

In general, always avoid using deprecated stuff documented here:
Deprecated Interfaces, Language Features, Attributes, and Conventions
(link: https:/ /www. kernel. org/ doc/html/ latest/ process/
deprecated. html#deprecated- interfaces- language- features-
attributes- and- conventions).

Upon successful allocation, the return value is a pointer, the kernel logical address
(remember, it's still a virtual address, not physical) of the start of the memory chunk
(or slab) just allocated. Indeed, you should notice that but for the second parameter,
the kmalloc() and kzalloc() APIs closely resemble their user space counterpart,
the all-too-familiar glibc malloc(3) (and friends) APIs. Don't get the wrong idea,
though: they're completely different. malloc() returns a user space virtual address
and, as mentioned earlier, there is no direct correlation between the user-mode
malloc(3) and the kernel-mode k[m|z]alloc() (so no, a call to malloc() does
not result in an immediate call to kmalloc(); more on this later!).

Next, it's important to understand that the memory returned by these slab allocator
APIs is guaranteed to be physically contiguous. Furthermore, and another key
benefit, the return address is guaranteed to be on a CPU cacheline boundary; that is, it
will be cacheline-aligned. Both of these are important performance-enhancing
benefits.

Every CPU reads and writes data (from and to CPU caches <->
RAM) in an atomic unit called the CPU cacheline. The size of the
cacheline varies with the CPU. You can look this up with
the getconf(1) utility – for example, try doing getconf -a|grep
LINESIZE. On modern CPUs, the cachelines for instructions and
data are often separated out (as are the CPU caches themselves). A
typical CPU cacheline size is 64 bytes.

https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions
https://www.kernel.org/doc/html/latest/process/deprecated.html#deprecated-interfaces-language-features-attributes-and-conventions

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[417]

The content of a memory chunk immediately after allocation by kmalloc() is
random (again, like malloc(3)). Indeed, the reason why kzalloc() is the preferred
and recommended API to use is that it sets to zero the allocated memory. Some
developers argue that the initialization of the memory slab takes some time, thus
reducing performance. Our counter argument is that unless the memory allocation
code is in an extremely time-critical code path (which, you could reasonably argue, is
not good design in the first place, but sometimes can't be helped), you should, as a
best practice, initialize your memory upon allocation. A whole slew of memory bugs and
security side effects can thereby be avoided.

Many parts of the Linux kernel core code certainly use the slab layer
for memory. Within these, there are time critical code paths – good
examples can be found within the network and block IO
subsystems. For maximizing performance, the slab (actually SLUB)
layer code has been written to be lockless (via a lock-free technology
called per-CPU variables). See more on the performance challenges
and implementation details in the Further reading section.

Freeing slab memory
Of course, you must free the allocated slab memory you allocated at some point in the
future (thus not leaking memory); the kfree() routine serves this purpose.
Analogous to the user space free(3) API, kfree() takes a single parameter – the
pointer to the memory chunk to free. It must be a valid kernel logical (or virtual)
address and must have been initialized by, that is, the return value of, one of the slab
layer APIs (k[m|z]alloc() or one of its helpers). Its API signature is simple:

void kfree(const void *);

Just as with free(3), there is no return value. As mentioned before, take care to
ensure that the parameter to kfree() is the precise value returned by
k[m|z]alloc(). Passing an incorrect value will result in memory corruption,
ultimately leading to an unstable system.

There are a few additional points to note.

Let's assume we have allocated some slab memory with kzalloc():

static char *kptr = kzalloc(1024, GFP_KERNEL);

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[418]

Later, after usage, we would like to free it, so we do the following:

if (kptr)
 kfree(kptr);

This code – checking that the value of kptr is not NULL before freeing it – is
unnecessary; just perform kfree(kptr); and it's done.

Another example of incorrect code (pseudo-code) is shown as follows:

static char *kptr = NULL;
 while (<some-condition-is-true>) {
 if (!kptr)
 kptr = kmalloc(num, GFP_KERNEL);
 [... work on the slab memory ...]
 kfree(kptr);
 }

Interesting: here, from the second loop iteration onward, the programmer
has assumed that the kptr pointer variable will be set to NULL upon being freed! This
is definitely not the case (it would have been quite a nice semantic to have though;
also, the same argument applies to the "usual" user space library APIs). Thus, we hit a
dangerous bug: on the loop's second iteration, the if condition will likely turn out to
be false, thus skipping the allocation. Then, we hit the kfree(), which, of course, will
now corrupt memory (due to a double-free bug)! (We provide a demo of this very
case in the LKM here: ch8/slab2_buggy).

With regard to initializing memory buffers after (or during) allocation, just as we
mentioned with regard to allocations, the same holds true for freeing memory. You
should realize that the kfree() API merely returns the just-freed slab to its
corresponding cache, leaving the internal memory content exactly as it was! Thus, just
prior to freeing up your memory chunk, a (slightly pedantic) best practice is to wipe
out (overwrite) the memory content. This is especially true for security reasons (such as
in the case of an "info-leak," where a malicious attacker could conceivably scan freed
memory for "secrets"). The Linux kernel provides the kzfree() API for this express
purpose (the signature is identical to that of kfree()).

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[419]

Careful! In order to overwrite "secrets," a simple memset() of the
target buffer might just not work. Why not? The compiler might
well optimize away the code (as the buffer is no longer to be used).
David Wheeler, in his excellent work Secure Programming HOWTO
(https:/ /dwheeler. com/ secure- programs/), mentions this very fact
and provides a solution: "One approach that seems to work on all
platforms is to write your own implementation of memset with
internal "volatilization" of the first argument." (This code is based on
a workaround proposed by Michael Howard):

void *guaranteed_memset(void *v,int c,size_t n)
{ volatile char *p=v; while (n--) *p++=c; return v; }

"Then place this definition into an external file to force the function
to be external (define the function in a corresponding .h file, and
#include the file in the callers, as is usual). This approach appears
to be safe at any optimization level (even if the function gets
inlined)."

The kernel's kzfree() API should work just fine. Take care when
doing similar stuff in user space.

Data structures – a few design tips
Using the slab APIs for memory allocation in kernel space is highly recommended.
For one, it guarantees both physically contiguous as well as cacheline-aligned
memory. This is very good for performance; in addition, let's check out a few quick
tips that can yield big returns.

CPU caching can provide tremendous performance gains. Thus, especially for time-
critical code, take care to design your data structures for best performance:

Keep the most important (frequently accessed, "hot") members together
and at the top of the structure. To see why, imagine there are five important
members (of a total size of say, 56 bytes) in your data structure; keep them
all together and at the top of the structure. Say the CPU cacheline size is 64
bytes. Now, when your code accesses any one of these five important
members (for anything, read/write), all five members will be fetched into the
CPU cache(s) as the CPU's memory read/writes work in an atomic unit of CPU
cacheline size; this optimizes performance (as working on the cache is
typically multiple times faster than working on RAM).

https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/
https://dwheeler.com/secure-programs/

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[420]

Try and align the structure members such that a single member does not
"fall off a cacheline." Usually, the compiler helps in this regard, but you can
even use compiler attributes to explicitly specify this.
Accessing memory sequentially results in high performance due to
effective CPU caching. However, we can't seriously push the case for
making all our data structures arrays! Experienced designers and
developers know that using linked lists is extremely common. But doesn't
that actually hurt performance? Well, yes, to some extent. Thus, a
suggestion: use linked lists. Keep the "node" of the list as a large data
structure (with "hot" members at the top and together). This way, we try
and maximize the best of both cases as the large structure is essentially an
array. (Think about it, the list of task structures that we saw in Chapter 6,
Kernel Internals Essentials – Processes and Threads, – the task list – is a perfect
real-world example of a linked list with large data structures as nodes).

The upcoming section deals with a key aspect: we learn exactly which slab caches the
kernel uses when allocating (slab) memory via the popular k[m|z]alloc() APIs.

The actual slab caches in use for kmalloc
We'll take a quick deviation – very important, though – before trying out a kernel
module using the basic slab APIs. It's important to understand where exactly the
memory allocated by the k[m|z]alloc() APIs is coming from. Well, it's from the
slab caches, yes, but which ones exactly? A quick grep on the output of sudo
vmstat -m reveals this for us (the following screenshot is on our x86_64 Ubuntu
guest):

Figure 8.7 – Screenshot of sudo vmstat -m showing the kmalloc-n slab caches

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[421]

That's very interesting! The kernel has a slew of dedicated slab caches for generic
kmalloc memory of varying sizes, ranging from 8,192 bytes down to a mere 8 bytes! This
tells us something – with the page allocator, if we had requested, say, 12 bytes of
memory, it would have ended up giving us a whole page (4 KB) – the wastage is just
too much. Here, with the slab allocator, an allocation request for 12 bytes ends up
actually allocating just 16 bytes (from the second-to-last cache seen in Figure 8.8)!
Fantastic.

Also, note the following:

Upon kfree(), the memory is freed back into the appropriate slab cache.
The precise sizing of the slab caches for kmalloc varies with the
architecture. On our Raspberry Pi system (an ARM CPU, of course), the
generic memory kmalloc-N caches ranged from 64 bytes to 8,192 bytes.
The preceding screenshot also reveals a clue. Often, the demand is for
small-to-tiny fragments of memory. As an example, in the preceding
screenshot the column labelled Num represents the Number of currently active
objects, the maximum number is from the 8- and 16-byte kmalloc slab
caches (of course, this may not always be the case. Quick tip: use the
slabtop(1) utility (you'll need to run it as root): the rows towards the top
reveal the current frequently used slab caches.)

Linux keeps evolving, of course. As of the 5.0 mainline kernel, there is a newly
introduced kmalloc cache type, called the reclaimable cache (the naming format
is kmalloc-rcl-N). Thus, performing a grep as done previously on a 5.x kernel will
also reveal these caches:

$ sudo vmstat -m | grep --color=auto "^kmalloc"
kmalloc-rcl-8k 0 0 8192 4
kmalloc-rcl-4k 0 0 4096 8
kmalloc-rcl-2k 0 0 2048 16
[...]
kmalloc-8k 52 52 8192 4
kmalloc-4k 99 120 4096 8
kmalloc-2k 521 560 2048 16
[...]

The new kmalloc-rcl-N caches help internally with more efficiencies (to reclaim
pages under pressure and as an anti-fragmentation measure). However, a module
author like you need not be concerned with these details. (The commit for this work
can be viewed here: https:/ / github. com/ torvalds/ linux/ commit/
1291523f2c1d631fea34102fd241fb54a4e8f7a0.)

https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0
https://github.com/torvalds/linux/commit/1291523f2c1d631fea34102fd241fb54a4e8f7a0

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[422]

vmstat -m is essentially a wrapper over the kernel's
/sys/kernel/slab content (more on this follows). Deep internal
details of the slab caches can be seen using utilities such
as slabtop(1), as well as the powerful crash(1) utility (on a
"live" system, the relevant crash command is kmem -s (or kmem -
S)).

Right! Time to again get hands on with some code to demonstrate the usage of the
slab allocator APIs!

Writing a kernel module to use the basic slab APIs
In the following code snippet, take a look at the demo kernel module code (found
at ch8/slab1/). In the init code, we merely perform a couple of slab layer
allocations (via the kmalloc() and kzalloc() APIs), print some information, and
free the buffers in the cleanup code path (of course, the full source code is accessible
at this book's GitHub repository). Let's look at the relevant parts of the code step by
step.

At the start of the init code of this kernel module, we initialize a global pointer
(gkptr) by allocating 1,024 bytes to it (remember: pointers have no memory!) via
the kmalloc() slab allocation API. Notice that, as we're certainly running in process
context here, and it is thus "safe to sleep," we use the GFP_KERNEL flag for the second
parameter (just in case you want to refer back, the earlier section, The GFP flags –
digging deeper, has it covered):

// ch8/slab1/slab1.c
[...]
#include <linux/slab.h>
[...]
static char *gkptr;
struct myctx {
 u32 iarr[100];
 u64 uarr[100];
 char uname[128], passwd[16], config[16];
};
static struct myctx *ctx;

static int __init slab1_init(void)
{
 /* 1. Allocate slab memory for 1 KB using the kmalloc() */
 gkptr = kmalloc(1024, GFP_KERNEL);
 if (!gkptr) {

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[423]

 WARN_ONCE(1, "%s: kmalloc() failed!\n", OURMODNAME);
 /* As mentioned earlier, there is really no need to print an
 * error msg when a memory alloc fails; the situation
"shouldn't"
 * typically occur, and if it does, the kernel will emit a
chain
 * of messages in any case. Here, we use the WARN_ONCE()
 * macro pedantically, and as this is a 'learning' program..
*/
 goto out_fail1;
 }
 pr_info("kmalloc() succeeds, (actual KVA) ret value = %px\n",
gkptr);
 /* We use the %px format specifier here to show the actual KVA; in
production, Don't! */
 print_hex_dump_bytes("gkptr before memset: ", DUMP_PREFIX_OFFSET,
gkptr, 32);
 memset(gkptr, 'm', 1024);
 print_hex_dump_bytes(" gkptr after memset: ", DUMP_PREFIX_OFFSET,
gkptr, 32);

In the preceding code, also notice that we use the print_hex_dump_bytes() kernel
convenience routine as a convenient way to dump the buffer memory in a human-
readable format. Its signature is:

void print_hex_dump_bytes(const char *prefix_str, int prefix_type,
 const void *buf, size_t len);

Where prefix_str is any string you would like to prefix to each line of the hex
dump; prefix_type is one of DUMP_PREFIX_OFFSET, DUMP_PREFIX_ADDRESS, or
DUMP_PREFIX_NONE, buf is the source buffer to hex-dump; and len is the number of
bytes to dump.

Up next is a typical strategy (a best practice) followed by many device drivers: they
keep all their required or context information in a single data structure, often termed
the driver context structure. We mimic this by declaring a (silly/sample) data structure
called myctx, as well as a global pointer to it called ctx (the structure and pointer
definition is in the preceding code block):

 /* 2. Allocate memory for and initialize our 'context' structure
*/
 ctx = kzalloc(sizeof(struct myctx), GFP_KERNEL);
 if (!ctx)
 goto out_fail2;
 pr_info("%s: context struct alloc'ed and initialized (actual KVA
ret = %px)\n",
 OURMODNAME, ctx);

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[424]

 print_hex_dump_bytes("ctx: ", DUMP_PREFIX_OFFSET, ctx, 32);

 return 0; /* success */
out_fail2:
 kfree(gkptr);
out_fail1:
 return -ENOMEM;
}

After the data structure, we then allocate and initialize ctx to the size of
the myctx data structure via the useful kzalloc() wrapper API. The subsequent
hexdump will show that it is indeed initialized to all zeroes (for readability, we will
only "dump" the first 32 bytes).

Do notice how we handle the error paths using goto; this has already been
mentioned a few times earlier in this book, so we won't repeat ourselves here. Finally,
in the cleanup code of the kernel module, we kfree() both buffers, preventing any
memory leakage:

static void __exit slab1_exit(void)
{
 kfree(ctx);
 kfree(gkptr);
 pr_info("%s: freed slab memory, removed\n", OURMODNAME);
}

A screenshot of a sample run on my Raspberry Pi 4 follows. I used our ../../lkm
convenience script to build, load, and do dmesg:

Figure 8.8 – Partial screenshot of our slab1.ko kernel module in action on a Raspberry Pi 4

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[425]

Okay, now that you have a grip on the basics of using the common slab allocator
APIs, kmalloc(), kzalloc(), and kfree(), let's go further. In the next section, we
will dive into a really key concern – the reality of size limitations on the memory you
can obtain via the slab (and page) allocators. Read on!

Size limitations of the kmalloc API
One of the key advantages of both the page and slab allocators is that the memory
chunk they provide upon allocation is not only virtually contiguous (obviously) but is
also guaranteed to be physically contiguous memory. Now that is a big deal and will
certainly help performance.

But (there's always a but, isn't there!), precisely because of this guarantee, it becomes
impossible to serve up any given large size when performing an allocation. In other
words, there is a definite limit to the amount of memory you can obtain from the slab
allocator with a single call to our dear k[m|z]alloc() APIs. What is the limit? (This
is indeed a really frequently asked question.)

Firstly, you should understand that, technically, the limit is determined by two
factors:

One, the system page size (determined by the PAGE_SIZE macro)
Two, the number of "orders" (determined by the MAX_ORDER macro); that
is, the number of lists in the page allocator (or BSA) freelist data structures
(see Figure 8.2)

With a standard 4 KB page size and a MAX_ORDER value of 11, the maximum
amount of memory that can be allocated with a single kmalloc() or kzalloc() API
call is 4 MB. This is the case on both the x86_64 and ARM architectures.

You might wonder, how exactly is this 4 MB limit arrived at? Think about it: once a slab
allocation request exceeds the maximum slab cache size that the kernel provides
(often 8 KB), the kernel simply passes the request down to the page allocator. The
page allocator's maximum allocable size is determined by MAX_ORDER. With it set
to 11, the maximum allocable buffer size is 2(MAX_ORDER-1) = 210 pages = 1024 pages = 1024 *
4K = 4 MB!

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[426]

Testing the limits – memory allocation with a
single call
A really key thing for developers (and everyone else, for that matter) is to
be empirical in your work! The English word empirical means based on what is
experienced or seen, rather than on theory. This is a critical rule to always follow – do
not simply assume things or take them at face value. Try them out for yourself and
see.

Let's do something quite interesting: write a kernel module that allocates memory
from the (generic) slab caches (via the kmalloc() API, of course). We will do so in a
loop, allocating – and freeing – a (calculated) amount on each loop iteration. The key
point here is that we will keep increasing the amount allocated by a given "step" size.
The loop terminates when kmalloc() fails; this way, we can test just how much
memory we can actually allocate with a single call to kmalloc()(you'll realize, of
course, that kzalloc(), being a simple wrapper over kmalloc(), faces precisely the
same limits).

In the following code snippet, we show the relevant code. The test_maxallocsz()
function is called from the init code of the kernel module:

// ch8/slab3_maxsize/slab3_maxsize.c
[...]
static int stepsz = 200000;
module_param(stepsz, int, 0644);
MODULE_PARM_DESC(stepsz,
"Amount to increase allocation by on each loop iteration
(default=200000");

static int test_maxallocsz(void)
{
 size_t size2alloc = 0;
 void *p;

 while (1) {
 p = kmalloc(size2alloc, GFP_KERNEL);
 if (!p) {
 pr_alert("kmalloc fail, size2alloc=%zu\n", size2alloc);
 return -ENOMEM;
 }
 pr_info("kmalloc(%7zu) = 0x%pK\n", size2alloc, p);
 kfree(p);
 size2alloc += stepsz;
 }

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[427]

 return 0;
}

By the way, notice how our printk() function uses the %zu format
specifier for the size_t (essentially an unsigned integer)
variable? %zu is a portability aid; it makes the variable format
correct for both 32- and 64-bit systems!

Let's build (cross-compile on the host) and insert this kernel module on our Raspberry
Pi device running our custom-built 5.4.51-v7+ kernel; almost immediately, upon
insmod(8), you will see an error message, Cannot allocate memory, printed by
the insmod process; the following (truncated) screenshot shows this:

Figure 8.9 – The first insmod(8) of our slab3_maxsize.ko kernel module on a Raspberry Pi 3 running a custom 5.4.51 kernel

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[428]

This is expected! Think about it, the init function of our kernel module code has
indeed failed with ENOMEM after all. Don't get thrown by this; looking up the kernel
log reveals what actually transpired. The fact is that on the very first test run of this
kernel module, you will find that at the place where kmalloc() fails, the kernel
dumps some diagnostic information, including a pretty lengthy kernel stack trace.
This is due to it invoking a WARN() macro.

So, our slab memory allocations worked, up to a point. To clearly see the failure
point, simply scroll down in the kernel log (dmesg) display. The following screenshot
shows this:

Figure 8.10 – Partial screenshot showing the lower part of the dmesg output (of our slab3_maxsize.ko kernel module) on a Raspberry Pi 3

Aha, look at the last line of output (Figure 8.11): the kmalloc() fails on an allocation
above 4 MB (at 4,200,000 bytes), precisely as expected; until then, it succeeds.

As an interesting aside, notice that we have (quite deliberately) performed the very
first allocation in the loop with size 0; it does not fail:

kmalloc(0, GFP_xxx); returns the zero pointer; on x86[_64], it's the
value 16 or 0x10 (see include/linux/slab.h for details). In effect, it's an
invalid virtual address living in the page 0 NULL pointer trap. Accessing it
will, of course, lead to a page fault (originating from the MMU).

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[429]

Similarly, attempting kfree(NULL); or kfree() of the zero pointer
results in kfree() becoming a no-op.

Hang on, though – an extremely important point to note: in the The actual slab caches in
use for kmalloc section, we saw that the slab caches that are used to allocate memory to
the caller are the kmalloc-n slab caches, where n ranges from 64 to 8192 bytes (on
the Raspberry Pi, and thus the ARM for this discussion). Also, FYI, you can perform a
quick sudo vmstat -m | grep -v "\-rcl\-" | grep --color=auto
"^kmalloc" to verify this.

But clearly, in the preceding kernel module code example, we have allocated
via kmalloc() much larger quantities of memory (right from 0 bytes to 4 MB). The
way it really works is that the kmalloc() API only uses the kmalloc-'n' slab
caches for memory allocations less than or equal to 8,192 bytes (if available); any
allocation request for larger memory chunks is then passed to the underlying page (or
buddy system) allocator! Now, recall what we learned in the previous chapter: the
page allocator uses the buddy system freelists (on a per node:zone basis) and the
maximum size of memory chunks enqueued on the freelists are 2(MAX_ORDER-1) = 210 pages,
which, of course, is 4 MB (given a page size of 4 KB and MAX_ORDER of 11). This
neatly ties in with our theoretical discussions.

So, there we have it: both in theory and in practice, you can now see that (again, given
a page size of 4 KB and MAX_ORDER of 11), the maximum size of memory that can be
allocated via a single call to kmalloc() (or kzalloc()) is 4 MB.

Checking via the /proc/buddyinfo pseudo-file
It's really important to realize that although we figured out that 4 MB of RAM is the
maximum we can get at one shot, it definitely doesn't mean that you will always get
that much. No, of course not. It completely depends upon the amount of free memory
present within the particular freelist at the time of the memory request. Think about
it: what if you are running on a Linux system that has been up for several days (or
weeks). The likelihood of finding physically contiguous 4 MB chunks of free RAM is
quite low (again, this depends upon the amount of RAM on the system and its
workload).

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[430]

As a rule of thumb, if the preceding experiment did not yield a maximum allocation
of what we have deemed to be the maximum size (that is, 4 MB), why not try it on a
freshly booted guest system? Now, the chances of having physically contiguous 4 MB
chunks of free RAM are a lot better. Unsure about this? Let's get empirical again and
look up the content of /proc/buddyinfo – both on an in-use and a freshly booted
system – to figure out whether the memory chunks are available. In the following
code snippet, on our in-use x86_64 Ubuntu guest system with just 1 GB of RAM, we
look it up:

$ cat /proc/buddyinfo
Node 0, zone DMA 225 154 46 30 14 9 1 1 0 0
0
Node 0, zone DMA32 314 861 326 291 138 50 27 2 5 0
0
 order ---> 0 1 2 3 4 5 6 7 8 9
10

As we learned earlier (in the Freelist organization section), the numbers seen in the
preceding code block are in the sequence order 0 to MAX_ORDER-1 (typically, 0 to 11 –
1 = 10), and they represent the number of 2order contiguous free page frames in that
order.

In the preceding output, we can see that we do not have free blocks on the order 10
list (that is, the 4 MB chunks; it's zero). On a freshly booted Linux system, the chances
are high that we will. In the following output, on the same system that's just been
rebooted, we see that there are seven chunks of free physically contiguous 4 MB RAM
available in node 0, zone DMA32:

$ cat /proc/buddyinfo
Node 0, zone DMA 10 2 2 3 3 3 3 2 2 0
0
Node 0, zone DMA32 276 143 349 189 99 3 6 3 6 4
7
 order ---> 0 1 2 3 4 5 6 7 8 9
10

Reiterating this very point, on a Raspberry Pi that has been up for just about a half
hour, we have the following:

rpi ~/ $ cat /proc/buddyinfo
Node 0, zone Normal 82 32 11 6 5 3 3 3 4 4
160

Here, there are 160 4 MB chunks of physically contiguous RAM available (free).

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[431]

Of course, there's more to explore. In the following section, we cover more on using
the slab allocator – the resource-managed API alternative, additional slab helper APIs
that are available, and a note on cgroups and memory in modern Linux kernels.

Slab allocator – a few additional details
A few more key points remain to be explored. First, some information on using the
kernel's resource-managed versions of the memory allocator APIs, followed by a few
additionally available slab helper routines within the kernel, and then a brief look at
cgroups and memory. We definitely recommend you go through these sections as
well. Please, do read on!

Using the kernel's resource-managed memory
allocation APIs
Especially useful for device drivers, the kernel provides a few managed APIs for
memory allocation. These are formally referred to as the device resource-managed or
devres APIs (the link to kernel documentation on this is https:/ /www. kernel. org/
doc/Documentation/ driver- model/ devres. txt). They are all prefixed with devm_;
though there are several of them, we will focus on only one common use case here –
that of using these APIs in place of the usual k[m|z]alloc() ones. They are as
follows:

void * devm_kmalloc(struct device *dev, size_t size, gfp_t
gfp);

void * devm_kzalloc(struct device *dev, size_t size, gfp_t
gfp);

The reason why these resource-managed APIs are useful is that there is no need for the
developer to explicitly free the memory allocated by them. The kernel resource management
framework guarantees that it will automatically free the memory buffer upon driver
detach, or if a kernel module, when the module is removed (or the device is detached,
whichever occurs first). This feature immediately enhances code robustness. Why?
Simple, we're all human and make mistakes. Leaking memory (especially on error
code paths) is indeed a pretty common bug!

https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt
https://www.kernel.org/doc/Documentation/driver-model/devres.txt

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[432]

A few relevant points regarding the usage of these APIs:

A key point – please do not attempt to blindly
replace k[m|z]alloc() with the corresponding devm_k[m|z]alloc()!
These resource-managed allocations are really designed to be used only in
the init and/or probe() methods of a device driver (all drivers that work
with the kernel's unified device model will typically supply
the probe() and remove() (or disconnect()) methods. We will not
delve into these aspects here).
devm_kzalloc() is usually preferred as it initializes the buffer as well.
Internally (as with kzalloc()), it is merely a thin wrapper over
the devm_kmalloc() API.
The second and third parameters are the usual ones, as with
the k[m|z]alloc() APIs – the number of bytes to allocate and the GFP
flags to use. The first parameter, though, is a pointer to struct device.
Quite obviously, it represents the device that your driver is driving.
As the memory allocated by these APIs is auto-freed (on driver detach or
module removal), you don't have to do anything. It can, though, be freed
via the devm_kfree() API. You doing this, however, is usually an
indication that the managed APIs are the wrong ones to use...
Licensing: The managed APIs are exported (and thus available) only to
modules licensed under the GPL (in addition to other possible licenses).

Additional slab helper APIs
There are several helper slab allocator APIs, friends of the k[m|z]alloc() API
family. These include the kcalloc() and kmalloc_array() APIs for allocating
memory for an array, as well as krealloc(), whose behavior is analogous
to realloc(3), the familiar user space API.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[433]

In conjunction with allocating memory for an array of elements, the array_size()
and struct_size() kernel helper routines can be very helpful. In particular,
struct_size() has been heavily used to prevent (and indeed fix) many integer
overflow (and related) bugs when allocating an array of structures, a common task
indeed. As a quick example, here's a small code snippet from
net/bluetooth/mgmt.c:

rp = kmalloc(struct_size(rp, addr, i), GFP_KERNEL);
 if (!rp) {
 err = -ENOMEM; [...]

It's worth browsing through the include/linux/overflow.h kernel header file.

kzfree() is like kfree() but zeroes out the (possibly larger) memory region being
freed. (Why larger? This will be explained in the next section.) Note that this is
considered a security measure but might hurt performance.

The resource-managed versions of these APIs are also available: devm_kcalloc()
and devm_kmalloc_array().

Control groups and memory
The Linux kernel supports a very sophisticated resource management system
called cgroups (control groups), which, in a nutshell, are used to hierarchically
organize processes and perform resource management (more on cgroups, with an
example of cgroups v2 CPU controller usage, can be found in Chapter 11, The CPU
Scheduler - Part 2, on CPU scheduling).

Among the several resource controllers is one for memory bandwidth. By carefully
configuring it, the sysadmin can effectively regulate the distribution of memory on
the system. Memory protection is possible, both as (what is called) hard and best-
effort protection via certain memcg (memory cgroup) pseudo-files (particularly,
the memory.min and memory.low files). In a similar fashion, within a cgroup,
the memory.high and memory.max pseudo-files are the main mechanism to control
the memory usage of a cgroup. Of course, as there is a lot more to it than is mentioned
here, I refer you to the kernel documentation on the new cgroups (v2) here: https:/ /
www.kernel.org/ doc/ html/ latest/ admin-guide/ cgroup- v2. html.

Right, now that you have learned how to use the slab allocator APIs better, let's dive a
bit deeper still. The reality is, there are still a few important caveats regarding the size
of the memory chunks allocated by the slab allocator APIs. Do read on to find out
what they are!

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[434]

Caveats when using the slab allocator
We will split up this discussion into three parts. We will first re-examine some
necessary background (which we covered earlier), then actually flesh out the problem
with two use cases – the first being very simple, and the second a more real-world
case of the issue at hand.

Background details and conclusions
So far, you have learned some key points:

The page (or buddy system) allocator allocates power-of-2 pages to the caller.
The power to raise 2 to is called the order; it typically ranges from 0 to 10
(on both x86[_64] and ARM).
This is fine, except when it's not. When the amount of memory requested is
very small, the wastage (or internal fragmentation) can be huge.
Requests for fragments of a page (less than 4,096 bytes) are very common.
Thus, the slab allocator, layered upon the page allocator (see Figure 8.1) is
designed with object caches, as well as small generic memory caches, to
efficiently fulfill requests for small amounts of memory.
The page allocator guarantees physically contiguous page and cacheline-
aligned memory.
The slab allocator guarantees physically contiguous and cacheline-aligned
memory.

So, fantastic – this leads us to conclude that when the amount of memory required is
large-ish and a perfect (or close) power of 2, use the page allocator. When it's quite
small (less than a page), use the slab allocator. Indeed, the kernel source code
of kmalloc() has a comment that neatly sums up how the kmalloc() API should be
used (reproduced in bold font as follows):

// include/linux/slab.h
[...]
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 * kmalloc is the normal method of allocating memory
 * for objects smaller than page size in the kernel.

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[435]

Sounds great, but there is still a problem! To see it, let's learn how to use another
useful slab API, ksize(). Its signature is as follows:

size_t ksize(const void *);

The parameter to ksize() is a pointer to an existing slab cache (it must be a valid
one). In other words, it's the return address from one of the slab allocator APIs
(typically, k[m|z]alloc()). The return value is the actual number of bytes allocated.

Okay, now that you know what ksize() is for, let's use it in a more practical fashion,
first with a simple use case and then with a better one!

Testing slab allocation with ksize() – case 1
To understand what we're getting at, consider a small example (for readability, we
will not show essential validity checks. Also, as this is a tiny code snippet, we haven't
provided it as a kernel module in the book's code base):

struct mysmallctx {
 int tx, rx;
 char passwd[8], config[4];
} *ctx;

pr_info("sizeof struct mysmallctx = %zd bytes\n", sizeof(struct
mysmallctx));
ctx = kzalloc(sizeof(struct mysmallctx), GFP_KERNEL);
pr_info("(context structure allocated and initialized to zero)\n"
 "*actual* size allocated = %zu bytes\n", ksize(ctx));

The resulting output on my x86_64 Ubuntu guest system is as follows:

$ dmesg
[...]
sizeof struct mysmallctx = 20 bytes
(context structure allocated and initialized to zero)
actual size allocated = 32 bytes

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[436]

So, we attempted to allocate 20 bytes with kzalloc(), but actually obtained 32 bytes
(thus incurring a wastage of 12 bytes, or 60%!). This is expected. Recall the kmalloc-
n slab caches – on x86, there is one for 16 bytes and another for 32 bytes (among the
many others). So, when we ask for an amount in between the two, we obviously get
memory from the higher of the two. (Incidentally, and FYI, on our ARM-based
Raspberry Pi system, the smallest slab cache for kmalloc is 64 bytes, so, of course, we
get 64 bytes when we ask for 20 bytes.)

Note that the ksize() API works only on allocated slab memory;
you cannot use it on the return value from any of the page allocator
APIs (which we saw in the Understanding and using the kernel page
allocator (or BSA) section).

Now for the second, and more interesting, use case.

Testing slab allocation with ksize() – case 2
Okay, now, let's extend our previous kernel module (ch8/slab3_maxsize)
to ch8/slab4_actualsize. Here, we will perform the same loop, allocating
memory with kmalloc() and freeing it as before, but this time, we will also
document the actual amount of memory allocated to us in each loop iteration by the
slab layer, by invoking the ksize() API:

// ch8/slab4_actualsize/slab4_actualsize.c
static int test_maxallocsz(void)
{
 size_t size2alloc = 100, actual_alloced;
 void *p;

 pr_info("kmalloc(n) : Actual : Wastage : Waste %%\n");
 while (1) {
 p = kmalloc(size2alloc, GFP_KERNEL);
 if (!p) {
 pr_alert("kmalloc fail, size2alloc=%zu\n", size2alloc);
 return -ENOMEM;
 }
 actual_alloced = ksize(p);
 /* Print the size2alloc, the amount actually allocated,
 * the delta between the two, and the percentage of waste
 * (integer arithmetic, of course :-) */
 pr_info("kmalloc(%7zu) : %7zu : %7zu : %3zu%%\n",
 size2alloc, actual_alloced, (actual_alloced-size2alloc),
 (((actual_alloced-size2alloc)*100)/size2alloc));

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[437]

 kfree(p);
 size2alloc += stepsz;
 }
 return 0;
}

The output of this kernel module is indeed interesting to scan! In the following figure,
we show a partial screenshot of the output I got on my x86_64 Ubuntu 18.04 LTS
guest running our custom built 5.4.0 kernel:

Figure 8.11 – Partial screenshot of our slab4_actualsize.ko kernel module in action

The module's printk output can be clearly seen in the preceding screenshot. The
remainder of the screen is diagnostic information from the kernel – this is emitted as a
kernel-space memory allocation request failed. All this kernel diagnostic information
is a result of the first invocation of the kernel calling the WARN_ONCE() macro, as the
underlying page allocator code, mm/page_alloc.c:__alloc_pages_nodemask() –
the "heart" of the buddy system allocator, as it's known - failed! This should typically
never occur, hence the diagnostics (the details on the kernel diagnostics is beyond this
book's scope, so we will leave this aside. Having said that, we do examine the kernel
stack backtrace to some extent in coming chapters).

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[438]

Interpreting the output from case 2
Look closely at the preceding screenshot (Figure 8.12; here, we will simply ignore the
kernel diagnostics emitted by the WARN() macro, which got invoked because a kernel-
level memory allocation failed!). The Figure 8.12 output has five columns, as follows:

The timestamp from dmesg(1); we ignore it.
kmalloc(n): The number of bytes requested by kmalloc() (where n is the
required amount).
The actual number of bytes allocated by the slab allocator (revealed via
ksize()).
The wastage (bytes): The difference between the actual and required bytes.
The wastage as a percentage.

As an example, in the second allocation, we requested 200,100 bytes, but actually
obtained 262,144 bytes (256 KB). This makes sense, as this is the precise size of one of
the page allocator lists on a buddy system freelist (it's order 6, as 26 = 64 pages = 64 x 4 =
256 KB; see Figure 8.2). Hence, the delta, or wastage really, is 262,144 - 200,100 = 62,044
bytes, which, when expressed as a percentage, is 31%.

It's like this: the closer the requested (or required) size gets to the kernel's available (or
actual) size, the less the wastage will be; the converse is true as well. Let's look at
another example from the preceding output (the snipped output is reproduced as
follows for clarity):

[...]
[92.273695] kmalloc(1600100) : 2097152 : 497052 : 31%
[92.274337] kmalloc(1800100) : 2097152 : 297052 : 16%
[92.275292] kmalloc(2000100) : 2097152 : 97052 : 4%
[92.276297] kmalloc(2200100) : 4194304 : 1994204 : 90%
[92.277015] kmalloc(2400100) : 4194304 : 1794204 : 74%
[92.277698] kmalloc(2600100) : 4194304 : 1594204 : 61%
[...]

From the preceding output, you can see that when kmalloc() requests 1,600,100
bytes (around 1.5 MB), it actually gets 2,097,152 bytes (exactly 2 MB), and the wastage
is 31%. The wastage then successively reduces as we get closer to an allocation "boundary"
or threshold (the actual size of the kernel's slab cache or page allocator memory chunk)
as it were: to 16%, then down to 4%. But look: with the next allocation, when we
cross that threshold, asking for just over 2 MB (2,200,100 bytes), we actually get 4
MB, a wastage of 90%! Then, the wastage again drops as we move closer to the 4 MB
memory size...

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[439]

This is important! You might think you're being very efficient by mere use of the slab
allocator APIs, but in reality, the slab layer invokes the page allocator when the
amount of memory requested is above the maximum size that the slab layer can
provide (typically, 8 KB, which is often the case in our preceding experiments). Thus,
the page allocator, suffering from its usual wastage issues, ends up allocating far
more memory than you actually require, or indeed ever use. What a waste!

The moral: check and recheck your code that allocates memory with the slab APIs. Run trials
on it using ksize() to figure out how much memory is actually being allocated, not
how much you think is being allocated.

There are no shortcuts. Well, there is one: if you require less than a page of memory (a
very typical use case), just use the slab APIs. If you require more, the preceding
discussion comes into play. Another thing: using the alloc_pages_exact() /
free_pages_exact() APIs (covered in the One Solution – the exact page allocator
APIs section) should help reduce wastage as well.

Graphing it
As an interesting aside, we use the well-known gnuplot(1) utility to plot a graph
from the previously gathered data. Actually, we have to minimally modify the kernel
module to only output what we'd like to graph: the required (or requested) amount of
memory to allocate (x axis), and the percentage of waste that actually occurred at
runtime (y axis). You can find the code of our slightly modified kernel module in the
book's GitHub repository here: ch8/slab4_actualsz_wstg_plot (https:/ /
github.com/PacktPublishing/ Linux- Kernel- Programming/ tree/ master/ ch8/ slab4_
actualsize).

So, we build and insert this kernel module, "massage" the kernel log, saving the data
in an appropriate column-wise format as required by gnuplot (in a file called
2plotdata.txt). While we do not intend to delve into the intricacies of using
gnuplot(1) here (refer to the Further reading section for a tutorial link), in the
following code snippet, we show the essential commands to generate our graph:

gnuplot> set title "Slab/Page Allocator: Requested vs Actually
allocated size Wastage in Percent"
gnuplot> set xlabel "Required size"
gnuplot> set ylabel "%age Waste"
gnuplot> plot "2plotdata.txt" using 1:100 title "Required Size" with
points, "2plotdata.txt" title "Wastage %age" with linespoints
gnuplot>

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[440]

Lo and behold, the plot:

Figure 8.12 – A graph showing the size requested by kmalloc() (x axis) versus the wastage incurred (as a percentage; y axis)

This "saw-tooth"-shaped graph helps visualize what you just learned. The closer a
kmalloc() (or kzalloc(), or indeed any page allocator API) allocation request size
is to any of the kernel's predefined freelist sizes, the less wastage there is. But the
moment this threshold is crossed, the wastage zooms up (spikes) to close to 100% (as
seen by the literally vertical lines in the preceding graph).

So, with this, we've covered a significant amount of stuff. As usual, though, we're not
done: the next section very briefly highlights the actual slab layer implementations
(yes, there are several) within the kernel. Let's check it out!

Slab layer implementations within the kernel
In closing, we mention the fact that there are at least three different mutually
exclusive kernel-level implementations of the slab allocator; only one of them can be
in use at runtime. The one to be used at runtime is selected at the time of configuring
the kernel (you learned this procedure in detail in Chapter 2, Building the 5.x Linux
Kernel from Source – Part 1). The relevant kernel configuration options are as follows:

CONFIG_SLAB

CONFIG_SLUB

CONFIG_SLOB

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[441]

The first (SLAB) is the early, well-supported (but quite under-optimized) one; the
second one (SLUB, the unqueued allocator) is a major improvement on the first, in terms
of memory efficiency, performance, and better diagnostics, and is the one selected by
default. The SLOB allocator is a drastic simplification and, as per the kernel config
help, "does not perform well on large systems."

Summary
In this chapter, you learned – to a good level of detail – how both the page (or buddy
system) as well as the slab allocators work. Recall that the actual "engine" of allocating
(and freeing) RAM within the kernel is ultimately the page (or buddy system)
allocator, the slab allocator being layered on top of it to provide optimization for
typical less-than-a-page-in-size allocation requests and to efficiently allocate several
well-known kernel data structures ('objects').

You learned how to efficiently use the APIs exposed by both the page and slab
allocators, with several demo kernel modules to help show this in a hands-on
manner. A good deal of focus was (quite rightly) given to the real issue of the
developer issuing a memory request for a certain N number of bytes, but you learned
that it can be very sub-optimal, with the kernel actually allocating much more (the
wastage can climb to very close to 100%)! You now know how to check for and
mitigate these cases. Well done!

The following chapter covers more on optimal allocation strategies, as well as some
more advanced topics on kernel memory allocation, including the creation of custom
slab caches, using the vmalloc interfaces, what the OOM killer is all about, and more.
So, first ensure you've understood the content of this chapter and worked on the
kernel modules and assignments (as follows). Then, let's get you on to the next one!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn

Kernel Memory Allocation for Module Authors - Part 1 Chapter 8

[442]

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

9
Kernel Memory Allocation for

Module Authors - Part 2
The previous chapter covered the basics (and a lot more!) on using the available APIs
for memory allocation via both the page (BSA) and the slab allocators within the
kernel. In this chapter, we will delve further into this large and interesting topic. We
cover the creation of custom slab caches, the vmalloc interfaces, and very
importantly, given the wealth of choice, which APIs to use in which situation.
Internal kernel details regarding the dreaded Out Of Memory (OOM) killer and
demand paging help round off these important topics.

These areas tend to be one of the key aspects to understand when working with
kernel modules, especially device drivers. A Linux system project's sudden crash
with merely a Killed message on the console requires some explanation, yes!? The
OOM killer's the sweet chap behind this...

 Briefly, within this chapter, these are the main areas covered:

Creating a custom slab cache
Debugging at the slab layer
Understanding and using the kernel vmalloc() API
Memory allocation in the kernel – which APIs to use when
Stayin' alive - the OOM killer

Technical requirements
I assume that you have gone through Chapter 1, Kernel Workspace Setup, and have
appropriately prepared a guest VM running Ubuntu 18.04 LTS (or a later stable
release) and installed all the required packages. If not, I highly recommend you do
this first.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[444]

Also, the last section of this chapter has you deliberately run a very memory-intensive
app; so intensive that the kernel will take some drastic action! Obviously, I highly
recommend you try out stuff like this on a safe, isolated system, preferably a
Linux test VM (with no important data on it).

To get the most out of this book, I strongly recommend you first set up the workspace
environment, including cloning this book's GitHub repository for the code, and work
on it in a hands-on fashion. The GitHub repository can be found at https:/ /github.
com/PacktPublishing/ Linux- Kernel- Programming.

Creating a custom slab cache
As explained in detail in the previous chapter, a key design concept behind slab
caches is the powerful idea of object caching. By caching frequently used objects –
data structures, really – performance receives a boost. So, think about this: what if
we're writing a driver, and in that driver, a certain data structure (an object) is very
frequently allocated and freed? Normally, we would use the
usual kzalloc() (or kmalloc()) followed by the kfree() APIs to allocate and free
this object. The good news, though: the Linux kernel sufficiently exposes the slab
layer API to us as module authors, allowing us to create our own custom slab caches. In
this section, you'll learn how you can leverage this powerful feature.

Creating and using a custom slab cache
within a kernel module
In this section, we're about to create, use, and subsequently destroy a custom slab
cache. At a broad level, we'll be performing the following steps:

Creating a custom slab cache of a given size with1.
the kmem_cache_create() API. This is often done as part of the init code
path of the kernel module (or within the probe method when in a driver).
Using the slab cache. Here we will do the following:2.

Issue the kmem_cache_alloc() API to allocate a single1.
instance of the custom object(s) within your slab cache.
Use the object.2.
Free it back to the cache with the kmem_cache_free() API.3.

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[445]

Destroying the custom slab cache when done3.
with kmem_cache_destroy(). This is often done as part of the cleanup
code path of the kernel module (or within the remove/detach/disconnect
method when in a driver).

Let's explore each of these APIs in a bit of detail. We start with the creation of a
custom (slab) cache.

Creating a custom slab cache
First, of course, let's learn how to create the custom slab cache. The signature of the
kmem_cache_create() kernel API is as follows:

#include <linux/slab.h>
struct kmem_cache *kmem_cache_create(const char *name, unsigned int
size,
 unsigned int align, slab_flags_t flags, void (*ctor)(void
*));

The first parameter is the name of the cache - as will be revealed by proc (and hence
by other wrapper utilities over proc, such as vmstat(8), slabtop(1), and so on). It
usually matches the name of the data structure or object being cached (but does not
have to).

The second parameter, size, is really the key one – it's the size in bytes for each
object within the new cache. Based on this object size (using a best-fit algorithm), the
kernel's slab layer constructs a cache of objects. The actual size of each object within
the cache will be (slightly) larger than what's requested, due to three reasons:

One, we can always provide more, but never less, than the memory
requested.
Two, some space for metadata (housekeeping information) is required.
Three, the kernel is limited in being able to provide a cache of the exact size
required. It uses the memory of the closest possible matching size (recall
from Chapter 8, Kernel Memory Allocation for Module Authors – Part 1, in
the Caveats when using the slab allocator section, where we clearly saw that
more (sometimes a lot!) memory could actually be used).

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[446]

Recall from Chapter 8, Kernel Memory Allocation for Module Authors –
Part 1, that the ksize() API can be used to query the actual size of
the allocated object. There is another API with which we can query
the size of the individual objects within the new slab cache:
unsigned int kmem_cache_size(struct kmem_cache *s);.
You shall see this being used shortly.

The third parameter, align, is the alignment required for the objects within the cache.
If unimportant, just pass it as 0. Quite often though, there are very particular
alignment requirements, for example, ensuring that the object is aligned to the size of
a word on the machine (32 or 64 bits). To do so, pass the value as sizeof(long) (the
unit for this parameter is bytes, not bits).

The fourth parameter, flags, can either be 0 (implying no special behavior), or the
bitwise-OR operator of the following flag values. For clarity, we directly reproduce
the information on the following flags from the comments within the source
file, mm/slab_common.c:

// mm/slab_common.c
[...]
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialized memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to
check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline. This can be beneficial if you're counting cycles as
closely
 * as davem.
[...]

Let's quickly check the flags out:

The first of the flags, SLAB_POISON, provides slab poisoning, that is,
initializing the cache memory to a previously known value (0xa5a5a5a5).
Doing this can help during debug situations.
The second flag, SLAB_RED_ZONE, is interesting, inserting red
zones (analogous to guard pages) around the allocated buffer. This is a
common way of checking for buffer overflow errors. It's almost always
used in a debug context (typically during development).

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[447]

The third possible flag, SLAB_HWCACHE_ALIGN, is very commonly used and
is in fact recommended for performance. It guarantees that all the cache
objects are aligned to the hardware (CPU) cacheline size. This is precisely
how the memory allocated via the popular k[m|z]alloc() APIs are
aligned to the hardware (CPU) cacheline.

Finally, the fifth parameter to kmem_cache_create() is very interesting too: a
function pointer, void (*ctor)(void *);. It is modeled as a constructor
function (as in object orientation and OOP languages). It conveniently allows you to
initialize the slab object from the custom slab cache the moment it's allocated! As one
example of this feature in action within the kernel, see the code of the Linux Security
Module (LSM) called integrity here:

 security/integrity/iint.c:integrity_iintcache_init()

It invokes the following:

iint_cache = kmem_cache_create("iint_cache", sizeof(struct
integrity_iint_cache),
 0, SLAB_PANIC, init_once);

The init_once() function initializes the cached object instance (that was just
allocated). Remember, the constructor function is called whenever new pages are
allocated by this cache.

Though it may seem counter-intuitive, the fact is that the modern
Linux kernel is quite object-oriented in design terms. The code, of
course, is mostly plain old C, a traditional procedural language.
Nevertheless, a vast number of architecture implementations within
the kernel (the driver model being a big one) are quite object-
oriented in design: method dispatch via virtual function pointer
tables - the strategy design pattern, and so on. See a two-part article
on LWN depicting this in some detail here: Object-oriented design
patterns in the kernel, part 1, June 2011 (https:/ /lwn. net/ Articles/
444910/).

The return value from the kmem_cache_create() API is a pointer to the newly
created custom slab cache on success, and NULL on failure. This pointer is usually
kept global, as you will require access to it in order to actually allocate objects from it
(our next step).

https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[448]

It's important to understand that the kmem_cache_create() API can only be called
from process context. A fair bit of kernel code (including many drivers) create and
use their own custom slab caches. For example, in the 5.4.0 Linux kernel, there are
over 350 instances of this API being invoked.

All right, now that you have a custom (slab) cache available, how exactly do you use
it to allocate memory objects? Read on; the next section covers precisely this.

Using the new slab cache's memory
So, okay, we created a custom slab cache. To make use of it, you must issue
the kmem_cache_alloc() API. Its job: given the pointer to a slab cache (which you
just created), it allocates a single instance of an object on that slab cache (in fact, this is
really how the k[m|z]alloc() APIs work under the hood). Its signature is as
follows (of course, remember to always include the <linux/slab.h> header for all
slab-based APIs):

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags);

Let's look at its parameters:

The first parameter to kmem_cache_alloc() is the pointer to the (custom)
cache that we created in the previous step (the pointer being the return
value from the kmem_cache_create()API).
The second parameter is the usual GFP flags to pass along (remember the
essential rule: use GFP_KERNEL for normal process-context allocations,
else GFP_ATOMIC if in any kind of atomic or interrupt context).

As with the now-familiar k[m|z]alloc() APIs, the return value is a pointer to the
newly allocated memory chunk – a kernel logical address (it's a KVA of course).

Use the newly allocated memory object, and when done, do not forget to free it with
the following:

void kmem_cache_free(struct kmem_cache *, void *);

Here, take note of the following with respect to the kmem_cache_free() API:

The first parameter to kmem_cache_free() is, again, the pointer to the
(custom) slab cache that you created in the previous step (the return value
from kmem_cache_create()).

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[449]

The second parameter is the pointer to the memory object you wish to free
– the object instance that you were just allocated
with kmem_cache_alloc() – and thus have it return to the cache specified
by the first parameter!

Similar to the k[z]free() APIs, there is no return value.

Destroying the custom cache
When completely done (often in the cleanup or exit code path of the kernel module,
or your driver's remove method), you must destroy the custom slab cache that you
created earlier using the following line:

void kmem_cache_destroy(struct kmem_cache *);

The parameter, of course, is the pointer to the (custom) cache that you created in the
previous step (the return value from the kmem_cache_create() API).

Now that you have understood the procedure and its related APIs, let's get hands on
with a kernel module that creates its own custom slab cache, uses it, and then
destroys it.

Custom slab – a demo kernel module
Time to get our hands dirty with some code! Let's look at a simple demonstration of
using the preceding APIs to create our very own custom slab cache. As usual, we
show only relevant code here. I urge you to clone the book's GitHub repository and
try it out yourself! You can find the code for this file
at ch9/slab_custom/slab_custom.c.

In our init code path, we first call the following function to create our custom slab
cache:

// ch9/slab_custom/slab_custom.c
#define OURCACHENAME "our_ctx"
/* Our 'demo' structure, that (we imagine) is often allocated and
freed;
 * hence, we create a custom slab cache to hold pre-allocated
'instances'
 * of it... Its size: 328 bytes.
 */
struct myctx {

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[450]

 u32 iarr[10];
 u64 uarr[10];
 char uname[128], passwd[16], config[64];
};
static struct kmem_cache *gctx_cachep;

In the preceding code, we declare a (global) pointer (gctx_cachep) to the to-be-
created custom slab cache – which will hold objects; namely, our fictional often
allocated data structure, myctx.

In the following, see the code that creates the custom slab cache:

static int create_our_cache(void)
{
 int ret = 0;
 void *ctor_fn = NULL;

 if (use_ctor == 1)
 ctor_fn = our_ctor;
 pr_info("sizeof our ctx structure is %zu bytes\n"
 " using custom constructor routine? %s\n",
 sizeof(struct myctx), use_ctor==1?"yes":"no");

 /* Create a new slab cache:
 * kmem_cache_create(const char *name, unsigned int size, unsigned
int
 align, slab_flags_t flags, void (*ctor)(void *)); */
 gctx_cachep = kmem_cache_create(OURCACHENAME, // name of our cache
 sizeof(struct myctx), // (min) size of each object
 sizeof(long), // alignment
 SLAB_POISON | /* use slab poison values (explained
soon) */
 SLAB_RED_ZONE | /* good for catching buffer
under|over-flow bugs */
 SLAB_HWCACHE_ALIGN, /* good for performance */
 ctor_fn); // ctor: here, on by default

 if (!gctx_cachep) {
 [...]
 if (IS_ERR(gctx_cachep))
 ret = PTR_ERR(gctx_cachep);
 }
 return ret;
}

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[451]

Hey, that's interesting: notice that our cache creation API supplies a constructor
function to help initialize any newly allocated object; here it is:

/* The parameter is the pointer to the just allocated memory 'object'
from
 * our custom slab cache; here, this is our 'constructor' routine; so,
we
 * initialize our just allocated memory object.
 */
static void our_ctor(void *new)
{
 struct myctx *ctx = new;
 struct task_struct *p = current;

 /* TIP: to see how exactly we got here, insert this call:
 * dump_stack();
 * (read it bottom-up ignoring call frames that begin with '?') */
 pr_info("in ctor: just alloced mem object is @ 0x%llx\n", ctx);

 memset(ctx, 0, sizeof(struct myctx));
 /* As a demo, we init the 'config' field of our structure to some
 * (arbitrary) 'accounting' values from our task_struct
 */
 snprintf(ctx->config, 6*sizeof(u64)+5, "%d.%d,%ld.%ld,%ld,%ld",
 p->tgid, p->pid,
 p->nvcsw, p->nivcsw, p->min_flt, p->maj_flt);
}

The comments in the preceding code are self-explanatory; do take a look. The
constructor routine, if set up (depending on the value of our use_ctor module
parameter; it's 1 by default), will be auto-invoked by the kernel whenever a new
memory object is allocated to our cache.

Within the init code path, we call a use_our_cache() function. It allocates an
instance of our myctx object via the kmem_cache_alloc() API, and if our custom
constructor routine is enabled, it runs, initializing the object. We then dump its
memory to show that it was indeed initialized as coded, freeing it when done (for
brevity, we'll leave out showing the error code paths):

 obj = kmem_cache_alloc(gctx_cachep, GFP_KERNEL);
 pr_info("Our cache object size is %u bytes; ksize=%lu\n",
 kmem_cache_size(gctx_cachep), ksize(obj));
 print_hex_dump_bytes("obj: ", DUMP_PREFIX_OFFSET, obj,
sizeof(struct myctx));
 kmem_cache_free(gctx_cachep, obj);

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[452]

Finally, in the exit code path, we destroy our custom slab cache:

kmem_cache_destroy(gctx_cachep);

The following output from a sample run helps us understand how it works. The
following is just a partial screenshot showing the output on our x86_64 Ubuntu 18.04
LTS guest running the Linux 5.4 kernel:

Figure 9.1 – Output of our slab_custom kernel module on an x86_64 VM

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[453]

Great! Hang on though, a couple of key points to take note of here:

As our constructor routine is enabled by default (the value of
our use_ctor module parameter is 1), it runs whenever a new object
instance is allocated by the kernel slab layer to our new cache. Here, we
performed just a single kmem_cache_alloc(), yet our constructor routine
has run 21 times, implying that the kernel's slab code (pre)allocated 21
objects to our brand new cache! Of course, this number varies.
Two, something very important to notice! As seen in the preceding
screenshot, the size of each object is seemingly 328 bytes (as shown by all
these three APIs: sizeof(),
kmem_cache_size(), and ksize()). However, again, this is not really
true! The actual size of the object as allocated by the kernel is larger; we can
see this via vmstat(8):

$ sudo vmstat -m | head -n1
Cache Num Total Size Pages
$ sudo vmstat -m | grep our_ctx
our_ctx 0 21 768 21
$

As highlighted in the preceding code, the actual size of each allocated object
is not 328 bytes but 768 bytes (the exact number varies; in one case I saw it
as 448 bytes). Just as we saw earlier, this is important for you to realize, and
indeed check for. We show another way to quite easily check this in the
Debugging at the slab layer section that follows.

FYI, you can always check out the man page of vmstat(8) for the
precise meaning of each column seen earlier.

We'll round off the discussion on creating and using custom slab caches with the slab
shrinker interface.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[454]

Understanding slab shrinkers
Caches are good for performance. Visualize reading the content of a large file from
disk as opposed to reading its content from RAM. There's no question that the RAM-
based I/O is much faster! As can be imagined, the Linux kernel leverages these ideas
and thus maintains several caches – the page cache, dentry cache, inode cache, slab
caches, and so on. These caches indeed greatly help performance, but, thinking about
it, are not actually a mandatory requirement. When memory pressure reaches high
levels (implying that too much memory is in use and too little is free), the Linux
kernel has mechanisms to intelligently free up caches (aka memory reclamation - it's a
continuous ongoing process; kernel threads (typically named kswapd*) reclaim
memory as part of their housekeeping chores; more on this in the Reclaiming memory –
a kernel housekeeping task and OOM section).

In the case of the slab cache(s), the fact is that some kernel subsystems and drivers
create their own custom slab caches as we covered earlier in this chapter. For the
purpose of integrating well and cooperating with the kernel, best practice demands
that your custom slab cache code is expected to register a shrinker interface. When
this is done, and when memory pressure gets high enough, the kernel might well
invoke several slab shrinker callbacks, which are expected to ease the memory
pressure by freeing up (shrinking) slab objects.

The API to register a shrinker function with the kernel is
the register_shrinker() API. The single parameter to it (as of Linux 5.4) is a
pointer to a shrinker structure. This structure contains (among other housekeeping
members) two callback routines:

The first routine, count_objects(), merely counts and returns the
number of objects that would be freed (when it is actually invoked). If it
returns 0, this implies that the number of freeable memory objects cannot
be determined now, or that we should not even attempt to free any right
now.
The second routine, scan_objects(), is invoked only if the first callback
routine returns a non-zero value; it's the one that, when invoked by the slab
cache layer, actually frees up, or shrinks, the slab cache in question. It
returns the actual number of objects freed up in this reclaim cycle,
or SHRINK_STOP if the reclaim attempt could not progress (due to possible
deadlocks).

We'll now wrap up the discussion on the slab layer with a quick summation of the
pros and cons of using this layer for memory (de)allocation—very important for you
as a kernel/driver author to be keenly aware of!

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[455]

The slab allocator – pros and cons – a
summation
In this section, we very briefly summarize things you have already learned by now.
This is intended as a way for you to quickly look up and recollect these key points!

The pros of using the slab allocator (or slab cache) APIs to allocate and free kernel
memory are as follows:

(Very) fast (as it uses pre-cached memory objects).
A physically contiguous memory chunk is guaranteed.
Hardware (CPU) cacheline-aligned memory is guaranteed when
the SLAB_HWCACHE_ALIGN flag is used when creating the cache. This is the
case for kmalloc(), kzalloc(), and so on.
You can create your own custom slab cache for particular (frequently alloc-
ed/freed) objects.

The cons of using the slab allocator (or slab cache) APIs are the following:

A limited amount of memory can be allocated at a time; typically, just 8 KB
directly via the slab interfaces, or up to 4 MB indirectly via the page
allocator on most current platforms (of course, the precise upper limits are
arch-dependent).
Using the k[m|z]alloc() APIs incorrectly: asking for too much memory,
or asking for a memory size just over a threshold value (discussed in detail
in Chapter 8, Kernel Memory Allocation for Module Authors – Part 1, under
the Size limitations of the kmalloc API section), can certainly lead to internal
fragmentation (wastage). It's designed to only really optimize for the
common case – for allocations of a size less than one page.

Now, let's move on to another really key aspect for the kernel/driver developer –
effectively debugging when things go wrong with respect to memory
allocations/freeing, particularly within the slab layer.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[456]

Debugging at the slab layer
Memory corruption is unfortunately a very common root cause of bugs. Being able to
debug them is a key skill. We'll now look at a few ways to go about this. Before diving
into the details, remember that the following discussion is with respect to the SLUB
(the unqueued allocator) implementation of the slab layer. This is the default on most
Linux installations (we mentioned in Chapter 8, Kernel Memory Allocation for Module
Authors – Part 1, under the Slab layer implementations within the kernel section, that
current Linux kernels have three mutually exclusive implementations of the slab
layer).

Also, our intention here is not to discuss in-depth kernel debug tools with respect to
memory debugging—that is a large topic by itself that unfortunately lies beyond the
scope of this book. Nevertheless, I will say that you would do well to gain familiarity
with the powerful frameworks/tools that have been mentioned, particularly the
following:

KASAN (the Kernel Address Sanitizer; available for x86_64 and AArch64,
4.x kernels onward)
SLUB debug techniques (covered here)
kmemleak (though KASAN is superior)
kmemcheck (note though that kmemcheck was removed in Linux 4.15)

Don't forget to look for links to these in the Further reading section. Okay, let's get
down to a few useful ways to help a developer debug code at the slab layer.

Debugging through slab poisoning
One very useful feature is so-called slab poisoning. The term poisoning in this context
implies poking memory with certain signature bytes or a pattern that is easily
recognizable. The prerequisite to using this, though, is that
the CONFIG_SLUB_DEBUG kernel configuration option is on. How can you check?
Simple:

$ grep -w CONFIG_SLUB_DEBUG /boot/config-5.4.0-llkd01
CONFIG_SLUB_DEBUG=y

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[457]

The =y seen in the preceding code indicates that it's indeed on. Now (assuming it's
turned on) if you create a slab cache with the SLAB_POISON flag (we covered the
creation of a slab cache in the Creating a custom slab cache section), then, when the
memory is allocated, it's always initialized to the special value or memory
pattern 0x5a5a5a5a – it's poisoned (it's quite intentional: the hex value 0x5a is the
ASCII character Z for zero)! So, think about it, if you spot this value in a kernel
diagnostic message or dump, also called an Oops, there's a good chance that this is an
(unfortunately pretty typical) uninitialized memory bug or UMR (short for
Uninitialized Memory Read), perhaps.

Why use the word perhaps in the preceding sentence? Well, simply
because debugging deeply hidden bugs is a really difficult thing to
do! The symptoms that might present themselves are not necessarily
the root cause of the issue at hand. Thus, hapless developers are fairly
often led down the proverbial garden path by various red herrings!
The reality is that debugging is both an art and a science; deep
knowledge of the ecosystem (here, the Linux kernel) goes a really
long way in helping you effectively debug difficult situations.

If the SLAB_POISON flag is unset, uninitialized slab memory is set
to the 0x6b6b6b6b memory pattern (hex 0x6b is ASCII character k (see Figure
9.2)). Similarly, when the slab cache memory is freed up and CONFIG_SLUB_DEBUG is
on, the kernel writes the same memory pattern (0x6b6b6b6b ; 'k') into it. This can
be very useful too, allowing us to spot (what the kernel thinks is) uninitialized or free
memory.

The poison values are defined in include/linux/poison.h as follows:

/* ...and for poisoning */
#define POISON_INUSE 0x5a /* for use-uninitialized poisoning */
#define POISON_FREE 0x6b /* for use-after-free poisoning */
#define POISON_END 0xa5 /* end-byte of poisoning */

With respect to the kernel's SLUB implementation of the slab allocator, let's check out
a summary view of how and when (the specific circumstances are determined by
the following if part) the slab poisoning occurs, along with its type in the following
pseudocode:

if CONFIG_SLUB_DEBUG is enabled
 AND the SLAB_POISON flag is set
 AND there's no custom constructor function
 AND it's type-safe-by-RCU

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[458]

Then the slab poisoning occurs as follows:

The slab memory is set to POISON_INUSE (0x5a = ASCII 'Z') upon
initialization; the code for this is here: mm/slub.c:setup_page_debug().
The slab object is set to POISON_FREE (0x6b = ASCII
'k') upon initialization in mm/slub.c:init_object().
The slab object's last byte is set to POISON_END (0xa5) upon initialization
in mm/slub.c:init_object().

(So, because of the way the slab layer performs these slab memory initializations, we
end up with the value 0x6b (ASCII k) as the initial value of just-allocated slab
memory). Notice that for this to work, you shouldn't install a custom constructor
function. Also, you can ignore the it's-type-safe-by-RCU directive for now; it's
usually the case (that is, the "is type-safe-by-RCU" is true; FYI, RCU (Read Copy
Update) is an advanced synchronization technology that's beyond this book's scope).
As can be seen from how slabs are initialized when running in SLUB debug mode, the
memory content is effectively initialized to the value POISON_FREE (0x6b = ASCII
'k'). Thus, if this value ever changes after the memory is freed, the kernel can detect
this and trigger a report (via printk). This, of course, is a case of the well-known Use
After Free (UAF) memory bug! Similarly, writing before or after the redzone regions
(these are in effect guard regions and are typically initialized to 0xbb) will trigger a
write buffer under/overflow bug, which the kernel reports. Useful!

Trying it out – triggering a UAF bug
To help you understand this better, we'll show an example via screenshots in this
section. Implement the following steps:

Firstly, ensure you enable the CONFIG_SLUB_DEBUG kernel config (it1.
should be set to y; this is typically the case on distro kernels)
Next, boot the system while including the kernel command-line2.
slub_debug= directive (this turns on full SLUB debug; or you could pass a
finer granularity variant such as slub_debug=FZPU (see the kernel
documentation here for an explanation of each field: https:/ /www. kernel.
org/ doc/ Documentation/ vm/ slub. txt); as a demo, on my Fedora 31 guest
VM, I passed the kernel command line as follows - the important thing
here, the slub_debug=FZPU is highlighted in bold font:

$ cat /proc/cmdline
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.4.0-llkd01
root=/dev/mapper/fedora_localhost--live-root ro

https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[459]

resume=/dev/mapper/fedora_localhost--live-swap
rd.lvm.lv=fedora_localhost-live/root
rd.lvm.lv=fedora_localhost-live/swap rhgb slub_debug=FZPU 3

(More detail on the slub_debug parameter is in the next section SLUB
debug options at boot and runtime).

Write a kernel module that creates a new custom slab cache (which of3.
course has a memory bug!). Ensure no constructor function is specified
(sample code is here: ch9/poison_test; I'll leave it as an exercise for you
to browse through the code and test it).

We try it out here: allocate some slab memory via kmem_cache_alloc()4.
(or equivalent). Here's a screenshot (Figure 9.2) showing the allocated
memory, and the same region after performing a quick memset() setting
the first 16 bytes to z (0x7a):

Figure 9.2 – Slab memory after allocation and memset() of the first 16 bytes

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[460]

Now, for the bug! In the cleanup method, we free the allocated slab and5.
then reuse it by attempting to do another memset() upon it, thus triggering
the UAF bug. Again, we show the kernel log via another screenshot (Figure
9.3):

Figure 9.3 – The kernel reporting the UAF bug!

Notice how the kernel reports this (the first text in red in the preceding figure) as a
Poison overwritten bug. This is indeed the case: we overwrote the 0x6b poison
value with 0x21 (which, quite intentionally is the ASCII character !). After freeing a
buffer that originated from the slab cache, if the kernel detects any value other than
the poison value (POISON_FREE = 0x6b = ASCII 'k') within the payload, it
triggers the bug. (Also notice, the redzone - guard - areas are initialized to the value
0xbb).

The next section provides a few more details on the SLUB layer debug options
available.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[461]

SLUB debug options at boot and runtime
Debugging kernel-level slab issues when using the SLUB implementation (the
default) is very powerful as the kernel has full debugging information available. It's
just that it's turned off by default. There are various ways (viewports) via which we
can turn on and look at slab debug-level information; a wealth of details is available!
Some of the ways to do so include the following:

Passing the slub_debug= string on the kernel command line (via the
bootloader of course). This turns on full SLUB kernel-level debugging.
The specific debug information to be seen can be fine-tuned via options
passed to the slub_debug= string (passing nothing after the = implies that
all SLUB debug options are enabled); for example,
passing slub_debug=FZ turns on the following options:

F: Sanity checks on
(enables SLAB_DEBUG_CONSISTENCY_CHECKS); note that
turning this on can slow down the system.
Z: Red zoning.

Even if the SLUB debug feature has not been turned on via the kernel
command line, we can still enable/disable it by writing 1 (as root) to
suitable pseudo-files under /sys/kernel/slab/<slab-name>:

Recall our earlier demo kernel module (ch9/slab_custom);
once loaded into the kernel, see the theoretical and actual
size of each allocated object like this:

$ sudo cat /sys/kernel/slab/our_ctx/object_size
/sys/kernel/slab/our_ctx/slab_size
328 768

Several other pseudo-files are present as well; doing ls(1)
on /sys/kernel/slab/<name-of-slab>/ will reveal
them. For example, look up the constructor function to
our ch9/slab_custom slab cache by performing cat on
the pseudo-file at /sys/kernel/slab/our_ctx/ctor:

$ sudo cat /sys/kernel/slab/our_ctx/ctor
our_ctor+0x0/0xe1 [slab_custom]

You can find quite some relevant details in this (very useful!) document here: Short
users guide for SLUB (https:/ /www. kernel. org/ doc/Documentation/ vm/ slub. txt).

https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[462]

Also, a quick look under the kernel source tree's tools/vm folder will reveal some
interesting programs (slabinfo.c being the relevant one here) and a script to
generate graphs (via gnuplot(1)). The document mentioned in the preceding
paragraph provides usage details on plot generation as well.

As an important aside, the kernel has an enormous (and useful!)
number of kernel parameters that can be optionally passed to it at
boot (via the bootloader). See the complete list here in
the documentation: The kernel’s command-line parameters (https:/ /
www. kernel. org/ doc/ html/ latest/ admin- guide/ kernel-
parameters. html).

Well, this (finally) concludes our coverage of the slab allocator (from the previous
chapter continuing into this one). You have learned that it's layered above the page
allocator and solves two key things: one, it allows the kernel to create and maintain
object caches so that the allocation and freeing of some important kernel data
structures can be performed very efficiently; two, this includes generic memory
caches allowing you to allocate small amounts of RAM - fragments of a page - with
very little overhead (unlike the binary buddy system allocator). The fact is simply
this: the slab APIs are the really commonly employed ones by drivers; not only that,
modern driver authors exploit the resource-managed devm_k{m,z}alloc() APIs;
we encourage you to do so. Be careful though: we examined in detail how more
memory than you think might actually be allocated (use ksize() to figure out just
how much). You also learned how to create a custom slab cache, and, importantly,
how to go about debugging at the slab layer.

Now let's learn what the vmalloc() API is, how and when to use it for kernel
memory allocation.

Understanding and using the kernel
vmalloc() API
As we have learned in the previous chapter, ultimately there is just one engine for
memory allocation within the kernel – the page (or buddy system) allocator. Layered
on top is the slab allocator (or slab cache) machinery. In addition, there is
another completely virtual address space within the kernel's address space from
where virtual pages can be allocated at will – this is called the kernel vmalloc region.

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[463]

Of course, ultimately, once a virtual page is actually used (by something in the kernel
or in user space via a process or thread) - it's physical page frame that it's mapped to
is really allocated via the page allocator (this is ultimately true of all user space
memory frames as well, though in an indirect fashion; more on this later in the
Demand paging and OOM section).

Within the kernel segment or VAS (we covered all this in some detail in Chapter 7,
Memory Management Internals - Essentials, under the Examining the kernel
segment section), is the vmalloc address space, extending
from VMALLOC_START to VMALLOC_END-1. It's a completely virtual region to begin
with, that is, its virtual pages initially are not mapped to any physical page frames.

For a quick refresher, revisit the diagram of the user and kernel
segments – in effect, the complete VAS – by re-examining Figure
7.12. You will find this in Chapter 7, Memory Management Internals -
Essentials, under the Trying it out – viewing kernel segment
details section.

In this book, our purpose is not to delve into the gory internal details regarding the
kernel's vmalloc region. Instead, we present enough information for you, the module
or driver author, to use this region for the purpose of allocating virtual memory at
runtime.

Learning to use the vmalloc family of APIs
You can allocate virtual memory (in kernel space of course) from the
kernel's vmalloc region using the vmalloc() API:

#include <linux/vmalloc.h>
void *vmalloc(unsigned long size);

Some key points to note on the vmalloc:

The vmalloc() API allocates contiguous virtual memory to the caller.
There is no guarantee that the allocated region will be physically
contiguous; it may or may not be (in fact, the larger the allocation, the less
the chance that it's physically contiguous).
The content of the virtual pages allocated is, in theory, random; in practice,
it appears to be arch-dependent (the x86_64, at least, seems to zero out the
memory region); of course, (at the risk of a slight performance hit) you're
recommended to ensure memory zeroing out by employing the vzalloc()
wrapper API

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[464]

The vmalloc() (and friends) APIs must only ever be invoked from a
process context (as it might cause the caller to sleep).
The return value of vmalloc() is the KVA (within the kernel vmalloc
region) on success or NULL on failure.
The start of the vmalloc memory just allocated is guaranteed to be on a
page boundary (in other words, it's always page-aligned).
The actual allocated memory (from the page allocator) might well be larger
than what's requested (as again, it internally allocates sufficient pages to
cover the size requested)

It will strike you that this API seems very similar to the familiar user
space malloc(3). Indeed it is at first glance, except that, of course, it's a kernel
space allocation (and again, remember that there is no direct correlation between the
two).

This being the case, how is vmalloc() helpful to us module or driver authors? When
you require a large virtually contiguous buffer of a size greater than the slab APIs
(that is, k{m|z}alloc() and friends) can provide – recall that it's typically 4 MB with
a single allocation on both ARM and x86[_64]) – then you should use vmalloc!

FYI, the kernel uses vmalloc() for various reasons, some of them as follows:

Allocating space for the (static) memory of kernel modules when they are
loaded into the kernel (in kernel/module.c:load_module()).
If CONFIG_VMAP_STACK is defined, then vmalloc() is used for the
allocation of the kernel-mode stack of every thread
(in kernel/fork.c:alloc_thread_stack_node()).
Internally, while servicing an operation called ioremap().
Within the Linux socket filter (bpf) code paths, and so on.

For convenience, the kernel provides the vzalloc() wrapper API (analogous to
kzalloc()) to allocate and zero out the memory region – a good coding practice, no
doubt, but one that might hurt time-critical code paths slightly:

void *vzalloc(unsigned long size);

Once you are done with using the allocated virtual buffer, you must of course free it:

void vfree(const void *addr);

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[465]

As expected, the parameter to vfree() is the return address from
v[m|z]alloc() (or even the underlying __vmalloc() API that these invoke).
Passing NULL causes it to just harmlessly return.

In the following snippet, we show some sample code from
our ch9/vmalloc_demo kernel module. As usual, I urge you to clone the book's
GitHub repository and try it out yourself (for brevity, we don't show the whole of the
source code in the following snippet; we show the primary
vmalloc_try() function invoked by the module's init code).

Here is the first part of the code. If the vmalloc() API fails by any chance, we
generate a warning via the kernel's pr_warn() helper. Do note that the
following pr_warn() helper isn't really required; being pedantic here, we keep it...
ditto for the remaining cases, as follows:

// ch9/vmalloc_demo/vmalloc_demo.c
#define pr_fmt(fmt) "%s:%s(): " fmt, KBUILD_MODNAME, __func__
[...]
#define KVN_MIN_BYTES 16
#define DISP_BYTES 16
static void *vptr_rndm, *vptr_init, *kv, *kvarr, *vrx;

static int vmalloc_try(void)
{
 if (!(vptr_rndm = vmalloc(10000))) {
 pr_warn("vmalloc failed\n");
 goto err_out1;
 }
 pr_info("1. vmalloc(): vptr_rndm = 0x%pK (actual=0x%px)\n",
 vptr_rndm, vptr_rndm);
 print_hex_dump_bytes(" content: ", DUMP_PREFIX_NONE, vptr_rndm,
 DISP_BYTES);

The vmalloc() API in the preceding code block allocates a contiguous kernel virtual
memory region of (at least) 10,000 bytes; in reality, the memory is page-aligned! We
employ the kernel's print_hex_dump_bytes() helper routine to dump the first 16
bytes of this region.

Moving on, see the following code employ the vzalloc() API to again allocate
another contiguous kernel virtual memory region of (at least) 10,000 bytes (it's page-
aligned memory though); this time, the memory contents are set to zeroes:

 /* 2. vzalloc(); memory contents are set to zeroes */
 if (!(vptr_init = vzalloc(10000))) {
 pr_warn("%s: vzalloc failed\n", OURMODNAME);

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[466]

 goto err_out2;
 }
 pr_info("2. vzalloc(): vptr_init = 0x%pK (actual=0x%px)\n",
 vptr_init, (TYPECST)vptr_init);
 print_hex_dump_bytes(" content: ", DUMP_PREFIX_NONE, vptr_init,
 DISP_BYTES);

A couple of points regarding the following code: one, notice the error handling with
goto (at the target labels of multiple goto instances, where we use vfree() to free
up previously allocated memory buffers as required), typical of kernel code. Two, for
now, please ignore the kvmalloc(), kcalloc(), and __vmalloc() friend routines;
we'll cover them in the Friends of vmalloc() section:

 /* 3. kvmalloc(): allocate 'kvn' bytes with the kvmalloc(); if kvn
is
 * large (enough), this will become a vmalloc() under the hood, else
 * it falls back to a kmalloc() */
 if (!(kv = kvmalloc(kvn, GFP_KERNEL))) {
 pr_warn("kvmalloc failed\n");
 goto err_out3;
 }
 [...]

 /* 4. kcalloc(): allocate an array of 1000 64-bit quantities and
zero
 * out the memory */
 if (!(kvarr = kcalloc(1000, sizeof(u64), GFP_KERNEL))) {
 pr_warn("kvmalloc_array failed\n");
 goto err_out4;
 }
 [...]
 /* 5. __vmalloc(): <seen later> */
 [...]
 return 0;
err_out5:
 vfree(kvarr);
err_out4:
 vfree(kv);
err_out3:
 vfree(vptr_init);
err_out2:
 vfree(vptr_rndm);
err_out1:
 return -ENOMEM;
}

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[467]

In the cleanup code path of our kernel module, we of course free the allocated
memory regions:

static void __exit vmalloc_demo_exit(void)
{
 vfree(vrx);
 kvfree(kvarr);
 kvfree(kv);
 vfree(vptr_init);
 vfree(vptr_rndm);
 pr_info("removed\n");
}

We'll leave it to you to try out and verify this demo kernel module.

Now, let's delve briefly into another really key aspect – how exactly does a user space
malloc(), or a kernel space vmalloc(), memory allocation become physical
memory? Do read on to find out!

A brief note on memory allocations and
demand paging
Without delving into deep detail regarding the internal workings of vmalloc() (or
the user space malloc()), we'll nevertheless cover some crucial points that a
competent kernel/driver developer like you must understand.

First and foremost, vmalloc-ed virtual memory has to, at some point (when used),
become physical memory. This physical memory is allocated via the one and only
way that it can be in the kernel – via the page (or buddy system) allocator. How this
happens is a bit indirect and is briefly explained as follows.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[468]

When using vmalloc(), a key point should be understood: vmalloc() only causes
virtual memory pages to be allocated (they are merely marked as reserved by the OS).
No physical memory is actually allocated at this time. The actual physical page
frames corresponding to the virtual ones only get allocated – that too on a page-by-
page basis – when these virtual pages are touched in any manner, such as for reads,
writes, or executions. This key principle of not actually allocating physical memory
until the program or process actually attempts to use it is referred to by various
names – demand paging, lazy allocation, on-demand allocation, and so on. In fact, the
documentation states this very fact:

"vmalloc space is lazily synchronized into the different PML4/PML5 pages of the
processes using the page fault handler ..."

It's quite enlightening to clearly understand how memory allocation really works for
vmalloc() and friends, and indeed, for the user space glibc malloc() family of
routines – it's all via demand paging! Meaning, the successful return of these APIs
really does not mean anything in terms of physical memory allocation. When
vmalloc(), or indeed a user space malloc(), returns success, all that has really
happened so far is that a virtual memory region has been reserved; no physical
memory has actually been allocated yet! The actual allocation of a physical page frame
only happens on a per-page basis as and when the virtual page is accessed (for anything:
reading, writing, or execution).

But how does this happen internally? The answer, in brief: whenever the kernel or a
process accesses a virtual address, the virtual address is interpreted by the Memory
Management Unit (MMU), which is a part of the silicon on the CPU core. The
MMU's Translation Lookaside Buffer (TLB) (we don't have the luxury of being able
to delve into all of this here, sorry!) will now be checked for a hit. If so, the memory
translation (virtual-to-physical address) is already available; if not, we have a TLB-
miss. If so, the MMU will now walk the paging tables of the process, effectively
translating the virtual address and thus obtaining the physical address. It puts this on
the address bus, and the CPU goes on its merry way.

But, think on this, what if the MMU cannot find a matching physical address? This
can happen for a number of reasons, one of them being our case here – we don't
(yet) have a physical page frame, only a virtual page. At this point, the MMU
essentially gives up as it cannot handle it. Instead, it invokes the OS's page fault
handler code – an exception or fault handler that runs in the process's context – in the
context of current. This page fault handler actually resolves the situation; in our
case, with vmalloc() (or indeed even the user space malloc()!), it requests the page
allocator for a single physical page frame (at order 0) and maps it to the virtual page.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[469]

It's equally important to realize that this demand paging (or lazy allocation) is not the
case for kernel memory allocations carried out via the page (buddy system) and the slab
allocator. There, when memory is allocated, understand that actual physical page
frames are allocated immediately. (In reality on Linux, it's all very fast because, recall,
the buddy system freelists have already mapped all system physical RAM into the
kernel lowmem region and can therefore use it at will.)

Recall what we did in an earlier program, ch8/lowlevel_mem; there, we used our
show_phy_pages() library routine to display the virtual address, the physical
address, and Page Frame Number (PFN) for a given memory range, thereby verifying
that the low-level page allocator routines really do allocate physically contiguous
memory chunks. Now, you might think, why not call this same function in
this vmalloc_demo kernel module? If the PFNs of the allocated (virtual) pages are
not consecutive, we again prove that, indeed, it's only virtually contiguous. It sounds
tempting to try, but it doesn't work! Why? Simply because, as stated earlier (in
Chapter 8, Kernel Memory Allocation for Module Authors – Part 1): do not attempt to
translate from virtual to physical any addresses other than direct-mapped (identity-
mapped / lowmem region) ones – the ones the page or slab allocators supply. It just
doesn't work with vmalloc.

A few more points on vmalloc and some associated information follow; do read on.

Friends of vmalloc()
In many cases, the precise API (or memory layer) used to perform a memory
allocation does not really matter to the caller. So, a pattern of usage that emerged in a
lot of in-kernel code paths went something like the following pseudocode:

kptr = kmalloc(n);
if (!kptr) {
 kptr = vmalloc(n);
 if (unlikely(!kptr))
 <... failed, cleanup ...>
}
<ok, continue with kptr>

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[470]

The cleaner alternative to this kind of code is the kvmalloc() API. Internally, it
attempts to allocate the requested n bytes of memory like this: first, via the more
efficient kmalloc(); if it succeeds, fine, we have quickly obtained physically
contiguous memory and are done; if not, it falls back to allocating the memory via the
slower but surer vmalloc() (thus obtaining virtually contiguous memory). Its
signature is as follows:

#include <linux/mm.h>
void *kvmalloc(size_t size, gfp_t flags);

(Remember to include the header file.) Note that for the (internal) vmalloc() to go
through (if it comes to that), only the GFP_KERNEL flag must be supplied. As usual,
the return value is a pointer (a kernel virtual address) to the allocated memory,
or NULL on failure. Free the memory obtained with kvfree:

void kvfree(const void *addr);

Here, the parameter of course is the return address from kvmalloc().

Similarly, and analogous to the {k|v}zalloc() APIs, we also have
the kvzalloc() API, which of course zeroes the memory content. I'd suggest you use
it in preference to the kvmalloc() API (with the usual caveat: it's safer but a bit
slower).

Further, you can use the kvmalloc_array() API to allocate virtual contiguous
memory for an array of items. It allocates n elements of size bytes each. Its
implementation is shown as follows:

// include/linux/mm.h
static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
{
 size_t bytes;
 if (unlikely(check_mul_overflow(n, size, &bytes)))
 return NULL;
 return kvmalloc(bytes, flags);
}

A key point here: notice how a validity check for the dangerous integer overflow
(IoF) bug is made; that's important and interesting; do write robust code
by performing similar validity checks in your code where required.

Next, the kvcalloc() API is functionally equivalent to the calloc(3) user space
API, and is just a simple wrapper over the kvmalloc_array() API:

void *kvcalloc(size_t n, size_t size, gfp_t flags);

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[471]

We also mention that for code requiring NUMA awareness (we covered NUMA and
associated topics in Chapter 7, Memory Management Internals – Essentials, under the
Physical RAM organization section), the following APIs are available, with which we
can specify the particular NUMA node to allocate the memory from as a parameter
(this being the point to NUMA systems; do see the information box that follows
shortly):

void *kvmalloc_node(size_t size, gfp_t flags, int node);

Similarly, we have the kzalloc_node() API as well, which sets the memory content
to zero.

In fact, generically, most of the kernel-space memory APIs we have
seen ultimately boil down to one that takes a NUMA node as a
parameter. For example, take the call chain for one of the primary
page allocator APIs, the __get_free_page() API:
__get_free_page() -> __get_free_pages()
-> alloc_pages() -> alloc_pages_current()

 -> __alloc_pages_nodemask() .
The __alloc_pages_nodemask() API is considered to be the heart
of the zoned buddy allocator; notice its fourth parameter, the
(NUMA) nodemask:
mm/page_alloc.c:struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int
order,
 int
preferred_nid, nodemask_t *nodemask);

Of course, you must free the memory you take; for the preceding kv*() APIs (and
the kcalloc() API), free the memory obtained with kvfree().

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[472]

Another internal detail worth knowing about, and a reason
the k[v|z]malloc[_array]() APIs are useful: with a
regular kmalloc(), the kernel will indefinitely retry allocating the
memory requested if it's small enough (this number currently being
defined as CONFIG_PAGE_ALLOC_COSTLY_ORDER, which is 3,
implying 8 pages or less); this can actually hurt performance! With
the kvmalloc() API, this indefinite retrying is not done (this
behavior is specified via the GFP
flags __GFP_NORETRY|__GFP_NOWARN), thus speeding things up.
An LWN article goes into detail regarding the rather weird
indefinite-retry semantics of the slab allocator: The "too small to fail"
memory-allocation rule, Jon Corbet, December 2014 (https:/ /lwn. net/
Articles/ 627419/).

With regard to the vmalloc_demo kernel module we saw in this section, take a quick
look at the code again (ch9/vmalloc_demo/vmalloc_demo.c). We use
kvmalloc() as well as kcalloc() (steps 3 and 4 in the comments). Let's run it on an
x86_64 Fedora 31 guest system and see the output:

Figure 9.4 – Output on loading our vmalloc_demo.ko kernel module

We can see the actual return (kernel virtual) address from the APIs in the preceding
output - note that they all belong within the kernel's vmalloc region. Notice the return
address of kvmalloc()(step 3 in Figure 9.4); let's search for it under proc:

$ sudo grep "^0x00000000fb2af97f" /proc/vmallocinfo
0x00000000fb2af97f-0x00000000ddc1eb2c 5246976 0xffffffffc04a113d
pages=1280 vmalloc vpages N0=1280

https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[473]

There it is! We can clearly see how using the kvmalloc() API for a large quantity of
memory (5 MB) resulted in the vmalloc() API being internally invoked (the
kmalloc() API would have failed and would not have emitted a warning, nor
retried) and thus, as you can see, the hit under /proc/vmallocinfo.

To interpret the preceding fields of /proc/vmallocinfo, refer to the kernel
documentation here: https:/ /www. kernel. org/ doc/Documentation/ filesystems/
proc.txt.

Something for you to try out here: in our ch9/vmalloc_demo kernel
module, change the amount of memory to be allocated via
kvmalloc() by passing kvnum=<# bytes to alloc> as a module
parameter.

FYI, the kernel provides an internal helper API, the vmalloc_exec() - it's (again) a
wrapper over the vmalloc() API, and is used to allocate a virtually contiguous
memory region that has execute permissions set upon it. An interesting user is the
kernel module allocation code path (kernel/module.c:module_alloc()); the
space for the kernel module's (executable section) memory is allocated via this
routine. This routine isn't exported though.

The other helper routine we mention is vmalloc_user(); it's (yet again) a wrapper
over the vmalloc() API, and is used to allocate a zeroed-out virtually contiguous
memory region suitable for mapping into user VAS. This routine is exported; it's
used, for example, by several device drivers as well as the kernel's performance
events ring buffer.

Specifying the memory protections
What if you intend to specify certain specific memory protections (a combination of
read, write, and execute protections) for the memory pages you allocate? In this case,
use the underlying __vmalloc() API (it is exported). Consider the following
comment in the kernel source (mm/vmalloc.c):

* For tight control over page level allocator and protection flags
* use __vmalloc() instead.

The signature of the __vmalloc() API shows how we can achieve this:

void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot);

https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[474]

FYI, from the 5.8 kernel, the __vmalloc() function's third
parameter - pgprot_t prot - has been removed (as there weren't
any users for page permissions besides the usual ones; https:/ /
github. com/ torvalds/ linux/commit/
88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca). Tells us another
thing regarding the kernel community - if a feature isn't being used
by anyone, it's simply removed.

The first two parameters are the usual suspects – the size of the memory required in
bytes and the GFP flags for the allocation. The third parameter is the one of interest
here: prot represents the memory protection bitmask that we can specify for the
memory pages. For example, to allocate 42 pages that are set to be read-only (r--),
we could do the following:

vrx = __vmalloc(42 * PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RO);

And subsequently, of course, call vfree() to free the memory back to the system.

Testing it – a quick Proof of Concept
We'll try a quick Proof of Concept in our vmalloc_demo kernel module. We allocate a
region of memory specifying the page protection to be read-only (or RO) via the
__vmalloc() kernel API. We then test it by reading and writing to the read-only
memory region. A code snippet from it is seen as follows.

Note that we have kept the (silly) WR2ROMEM_BUG macro in the following code
undefined by default, so that you, innocent reader, don't have our
evil vmalloc_demo kernel module simply crash on you. So in order to try this PoC,
please un-comment the define statement (as shown here), thus allowing the buggy
code to execute:

static int vmalloc_try(void)
{
 [...]
 /* 5. __vmalloc(): allocate some 42 pages and set protections to
RO */
/* #undef WR2ROMEM_BUG */
#define WR2ROMEM_BUG /* 'Normal' usage: keep this commented out, else
we
 * will crash! Read the book, Ch 9, for details
:-) */
 if (!(vrx = __vmalloc(42*PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RO)))
{

https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca
https://github.com/torvalds/linux/commit/88dca4ca5a93d2c09e5bbc6a62fbfc3af83c4fca

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[475]

 pr_warn("%s: __vmalloc failed\n", OURMODNAME);
 goto err_out5;
 }
 pr_info("5. __vmalloc(): vrx = 0x%pK (actual=0x%px)\n", vrx, vrx);
 /* Try reading the memory, should be fine */
 print_hex_dump_bytes(" vrx: ", DUMP_PREFIX_NONE, vrx, DISP_BYTES);
#ifdef WR2ROMEM_BUG
 /* Try writing to the RO memory! We find that the kernel crashes
 * (emits an Oops!) */
 *(u64 *)(vrx+4) = 0xba;
#endif
 return 0;
 [...]

Upon running, at the point where we attempt to write to the read-only memory, it
crashes! See the following partial screenshot (Figure 9.5; from running it on our
x86_64 Fedora guest):

Figure 9.5 – The kernel Oops that occurs when we try and write to a read-only memory region!

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[476]

This proves that, indeed, the __vmalloc() API we performed had successfully set
the memory region to read-only. Again, the details on the interpretation of the
preceding (partially seen) kernel diagnostics or Oops message lie beyond this book's
scope. Nevertheless, it's quite easy to see the root cause of the issue highlighted in the
preceding figure: the following lines literally pinpoint the reason for this bug:

BUG: unable to handle page fault for address: ffffa858c1a39004
#PF: supervisor write access in kernel mode
#PF: error_code(0x0003) - permissions violation

In user space applications, performing a similar memory protection
setting upon an arbitrary memory region can be done via
the mprotect(2) system call; do look up its man page for usage
details (it even kindly provides example code!).

Why make memory read-only?
Specifying memory protections at allocation time to, say, read-only may appear to be
a pretty useless thing to do: how would you then initialize that memory to some
meaningful content? Well, think about it – guard pages are the perfect use case for
this scenario (similar to the redzone pages that the SLUB layer keeps when in debug
mode); it is useful indeed.

What if we wanted read-only pages for some purpose other than guard pages? Well,
instead of using __vmalloc(), we might avail of some alternate means: perhaps
memory mapping some kernel memory into user space via an mmap() method, and
using the mprotect(2) system call from a user space app to set up appropriate
protections (or even setting up protections through well-known and tested LSM
frameworks, such as SELinux, AppArmor, Integrity, and so on).

We conclude this section with a quick comparison between the typical kernel memory
allocator APIs: kmalloc() and vmalloc().

The kmalloc() and vmalloc() APIs – a quick
comparison
A quick comparison between the kmalloc() (or kzalloc()) and vmalloc() (or
vzalloc()) APIs is presented in the following table:

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[477]

Characteristic kmalloc() or kzalloc() vmalloc() or vzalloc()
Memory allocated
is Physically contiguous Virtually (logically) contiguous

Memory
alignment

Aligned to hardware (CPU)
cacheline Page-aligned

Minimum
granularity

Arch-dependent; as low as 8 bytes
on x86[_64] 1 page

Performance

Much faster (physical RAM
allocated) for small memory
allocations (the typical case); ideal
for allocations < 1 page

Slower, demand-paged (only virtual
memory allocated; lazy allocation of RAM
involving the page fault handler); can
service large (virtual) allocations

Size limitation Limited (to typically 4 MB)
Very large (the kernel vmalloc region can
even be several terabytes on 64-bit
systems, though much less on 32-bit)

Suitability

Suitable for almost all use cases
where performance matters, the
memory required is small, including
DMA (still, use the DMA API); can
work in atomic/interrupt contexts

Suitable for large software (virtually)
contiguous buffers; slower, cannot be
allocated in atomic/interrupt contexts

This does not imply that one is superior to the other. Their usage depends upon the
circumstances. This leads us into our next – indeed very important – topic: how do
you decide which memory allocation API to use when? Making the right decision is
actually critical for the best possible system performance and stability – do read on to
find out how to make that choice!

Memory allocation in the kernel – which
APIs to use when
A really quick summation of what we have learned so far: the kernel's underlying
engine for memory allocation (and freeing) is called the page (or buddy system)
allocator. Ultimately, every single memory allocation (and subsequent free) goes
through this layer. It has its share of problems though, the chief one being internal
fragmentation or wastage (due to its minimum granularity being a page). Thus we
have the slab allocator (or slab cache) layered above it, providing the power of object
caching and caching fragments of a page (helping alleviate the page allocator's
wastage issues). Also, don't forget that you can create your own custom slab caches,
and, as we have just seen, the kernel has a vmalloc region and APIs to allocate virtual
pages from within it.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[478]

With this information in mind, let's move along. To understand which API to use
when, let's first look at the kernel memory allocation API set.

Visualizing the kernel memory allocation API
set
The following conceptual diagram shows us the Linux kernel's memory allocation
layers as well as the prominent APIs within them; note the following:

Here we only show the (typically used) APIs exposed by the kernel to
module/driver authors (with the exception being the one that ultimately
performs the allocations – the __alloc_pages_nodemask() API right at
the bottom!).
For brevity, we haven't shown the corresponding memory-freeing APIs.

The following is a diagram showing several of the (exposed to module / driver
authors) kernel memory allocation APIs:

Figure 9.6 – Conceptual diagram showing the kernel's memory allocation API set (for module / driver authors)

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[479]

Now that you have seen the wealth of (exposed) memory allocation APIs available,
the following sections delve into helping you make the right decision as to which to
use under what circumstances.

Selecting an appropriate API for kernel
memory allocation
With all this choice of APIs, how do we choose? Though we have already talked
about this very case in this chapter as well as the previous one, we'll again summarize
it as it's very important. Broadly speaking, there are two ways to look at it – the API
to use depends upon the following:

The amount of memory required
The type of memory required

We will illustrate both cases in this section.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[480]

First, to decide which API to use by the type, amount, and contiguity of the memory
to be allocated, scan through the following flowchart (starting at the upper right from
the label Start here):

Figure 9.7 – Decision flowchart for which kernel memory allocation API(s) to use for a module/driver

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[481]

Of course, it's not trivial; not only that, I'd like to remind you to recall the detailed
discussions we covered earlier in this chapter, including the GFP flags to use (and the
do not sleep in atomic context rule); in effect, the following:

When in any atomic context, including interrupt contexts, ensure you only
use the GFP_ATOMIC flag.
Else (process context), you decide whether to use the GFP_ATOMIC or
GFP_KERNEL flag; use GFP_KERNEL when it's safe to sleep
Then, as covered under the Caveats when using the slab allocator
section: when using the k[m|z]alloc() API and friends, make sure to
check the actual allocated memory with ksize().

Next, to decide which API to use by the type of memory to be allocated, scan
through the following table:

Type of memory
required Allocation method APIs

Kernel modules, typical
case: regular usage for
small amounts (less
than one page),
physically contiguous

Slab allocator
k[m|z]alloc(), kcalloc(), and
 krealloc()

Device drivers: regular
usage for small amounts
(< 1 page), physically
contiguous; suitable for
driver probe() or
init methods;
recommended for
drivers

Resource-managed
APIs devm_kzalloc() and devm_kmalloc()

Physically contiguous,
general-purpose usage Page allocator

__get_free_page[s](),
get_zeroed_page(), and
alloc_page[s][_exact]()

Physically contiguous,
for Direct Memory
Access (DMA)

Purpose-built DMA
API layer, with
CMA (or slab/page
allocator)

(not covered here: dma_alloc_coherent(),
dma_map_[single|sg](), Linux DMA Engine
APIs, and so on)

Virtually contiguous
(for large software-only
buffers)

Indirect via page
allocator v[m|z]alloc()

Virtually or physically
contiguous, when
unsure of runtime size

Either slab or
vmalloc region kvmalloc[_array]()

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[482]

Custom data structures
(objects)

Creates and uses a
custom slab cache

kmem_cache_[create|destroy]() and
 kmem_cache_[alloc|free]()

(Of course, there is some overlap with this table and the flowchart in Figure 9.7). As a
generic rule of thumb, your first choice should be the slab allocator APIs, that is
via kzalloc() or kmalloc(); these are the most efficient for typical allocations of
less than a page in size. Also, recall that when unsure of the runtime size required,
you could use the kvmalloc() API. Again, if the size required happens to be a
perfectly rounded power-of-2 number of pages (2

0
, 21, ..., 2MAX_ORDER-1 pages), then using

the page allocator APIs will be optimal.

A word on DMA and CMA
On the topic of DMA, though its study and usage is beyond the scope of this book, I
would nevertheless like to mention that Linux has a purpose-built set of APIs for
DMA christened the DMA Engine. Driver authors performing DMA operations are
very much expected to use these APIs and not directly use the slab or page allocator
APIs (subtle hardware issues do turn up).

Further, several years back, Samsung engineers successfully merged a patch into the
mainline kernel called the Contiguous Memory Allocator (CMA). Essentially, it
allows the allocation of large physically contiguous memory chunks (of a size over the
typical 4 MB limit!). This is required for DMA on some memory-hungry devices (you
want to stream that ultra-HD quality movie on a big-screen tablet or TV?). The cool
thing is that the CMA code is transparently built into the DMA Engine and DMA
APIs. Thus, as usual, driver authors performing DMA operations should just stick to
using the Linux DMA Engine layer.

If you are interested in learning more about DMA and CMA, see the
links provided in the Further reading section for this chapter.

Also, realize that our discussion has mostly been with regard to the typical kernel
module or device driver author. Within the OS itself, the demand for single pages
tends to be quite high (due to the OS servicing demand paging via the page fault
handler – what are called minor faults). Thus, under the hood, the memory
management subsystem tends to issue the __get_free_page[s]() APIs quite
frequently. Also, to service the memory demand for the page cache (and other internal
caches), the page allocator plays an important role.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[483]

All right, well done, with this you have (almost!) completed our two chapters of
coverage on the various kernel memory allocation layers and APIs (for module/driver
authors)! Let's finish off this large topic with a remaining important area – the Linux
kernel's (fairly controversial) OOM killer; do read on!

Stayin' alive – the OOM killer
Let's first cover a few background details regarding kernel memory management,
particularly the reclaiming of free memory. This will put you in a position to
understand what the kernel OOM killer component is, how to work with it, and
even how to deliberately invoke it.

Reclaiming memory – a kernel housekeeping
task and OOM
As you will be aware, the kernel tries, for optimal performance, to keep the working
set of memory pages as high up as possible in the memory pyramid (or hierarchy).

The so-called memory pyramid (or memory hierarchy) on a system
consists of (in order, from smallest size but fastest speed to largest
size but slowest): CPU registers, CPU caches (LI, L2, L3, ...), RAM,
and swap (raw disk/flash/SSD partition). In our following
discussion, we ignore CPU registers as their size is minuscule.

So, the processor uses its hardware caches (L1, L2, and so on) to hold the working set
of pages. But of course, CPU cache memory is very limited, thus it will soon run out,
causing the memory to spill over into the next hierarchical level – RAM. On modern
systems, even many embedded ones, there's quite a bit of RAM; still, if and when the
OS does run low on RAM, it spills over the memory pages that can no longer fit in
RAM into a raw disk partition – swap. Thus the system continues to work well, albeit
at a significant performance cost once swap is (often) used.

The Linux kernel, in an effort to ensure that a given minimum amount of free
memory pages are available at all times within RAM, continually performs
background page reclamation work – indeed, you can think of this as routine
housekeeping. Who actually performs this work? The kswapd kernel thread(s) are
continually monitoring memory usage on the system and invoke a page reclaim
mechanism when they sense that memory is running low.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[484]

This page reclamation work is done on a per node:zone basis. The kernel uses so-
called watermark levels – min, low, and high – per node:zone to determine when to
reclaim memory pages in an intelligent fashion. You can always look
up /proc/zoneinfo to see the current watermark levels. (Note that the unit of
watermark levels is pages.) Also, as we mentioned earlier, caches are typically the
first victims and are shrunk down as memory pressure increases.

But let's play devil's advocate: what if all of this memory reclamation work doesn't
help, and memory pressure keeps increasing to the point where the complete
memory pyramid is exhausted, where a kernel allocation of even a few pages fails (or
infinitely retries, which, frankly, is just as useless, perhaps worse)? What if all CPU
caches, RAM, and swap are (almost completely) full!? Well, most systems just die at
this point (actually, they don't die, they just become so slow that it appears as though
they're permanently hung). The Linux kernel, though, being Linux, tends to be
aggressive in these situations; it invokes a component aptly named the
OOM killer. The OOM killer's job – you guessed it! – is to identify and summarily kill
the memory-hogger process (by sending it the fatal SIGKILL signal; it could even end
up killing a whole bunch of processes).

As you might imagine, it has had its fair share of controversy. Early versions of the
OOM killer have been (quite rightly) criticized. Recent versions use superior
heuristics that work quite well.

You can find more information on the improved OOM killer work
(the kick-in strategy and the OOM reaper thread) in this LWN
article (December 2015): Toward more predictable and reliable out-of-
memory handling: https:/ /lwn. net/Articles/ 668126/ .

Deliberately invoking the OOM killer
To test the kernel OOM killer, we shall have to put enormous memory pressure on
the system. Thus, the kernel will unleash its weapon – the OOM killer, which, once
invoked, will identify and kill some process (or processes). Hence, obviously, I highly
recommend you try out stuff like this on a safe isolated system, preferably a test
Linux VM (with no important data on it).

https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/
https://lwn.net/Articles/668126/

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[485]

Invoking the OOM killer via Magic SysRq
The kernel provides an interesting feature dubbed Magic SysRq: essentially, certain
keyboard key combinations (or accelerators) result in a callback to some kernel code.
For example, assuming it's enabled, pressing the Alt-SysRq-b key combination on
an x86[_64] system results in a cold reboot! Take care, don't just type anything, do
read the relevant documentation here: https:/ /www. kernel. org/ doc/
Documentation/ admin- guide/ sysrq. rst.

Let's try some interesting things; we run the following on our Fedora Linux VM:

$ cat /proc/sys/kernel/sysrq
16

This shows that the Magic SysRq feature is partially enabled (the kernel
documentation mentioned at the start of this section gives the details). To fully enable
it, we run the following:

$ sudo sh -c "echo 1 > /proc/sys/kernel/sysrq"

Okay, so to get to the point here: you can use Magic SysRq to invoke the OOM killer!

Careful! Invoking the OOM killer, via Magic SysRq or otherwise,
will cause some process – typically the heavy one(s) – to
unconditionally die!

How? As root, just type the following:

echo f > /proc/sysrq-trigger

Look up the kernel log to see whether anything interesting occurred!

Invoking the OOM killer with a crazy allocator
program
We'll also demonstrate in the following section a more hands-on and interesting way
by which you can (most probably) invite the OOM killer in. Write a simple user space
C program that behaves as a crazy allocator, performing (typically) tens of thousands
of memory allocations, writing something to each page, and, of course, never freeing
up the memory, thus putting tremendous pressure on memory resources.

https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst
https://www.kernel.org/doc/Documentation/admin-guide/sysrq.rst

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[486]

As usual, we show only the most relevant parts of the source code in the following
snippet; please refer to and clone the book's GitHub repo for the full code; remember,
this is a user-mode app not a kernel module:

// ch9/oom_killer_try/oom_killer_try.c
#define BLK (getpagesize()*2)
static int force_page_fault = 0;
int main(int argc, char **argv)
{
 char *p;
 int i = 0, j = 1, stepval = 5000, verbose = 0;
 [...]
 do {
 p = (char *)malloc(BLK);
 if (!p) {
 fprintf(stderr, "%s: loop #%d: malloc failure.\n",
 argv[0], i);
 break;
 }

 if (force_page_fault) {
 p[1103] &= 0x0b; // write something into a byte of the 1st
page
 p[5227] |= 0xaa; // write something into a byte of the 2nd
page
 }
 if (!(i % stepval)) { // every 'stepval' iterations..
 if (!verbose) {
 if (!(j%5)) printf(". ");
 [...]
 }
 i++;
 } while (p && (i < atoi(argv[1])));

In the following code block, we show some output obtained when running our crazy
allocator program on an x86_64 Fedora 31 VM running our custom 5.4.0 Linux kernel:

$ cat /proc/sys/vm/overcommit_memory /proc/sys/vm/overcommit_ratio
0
50
$ << explained below >>

$./oom-killer-try
Usage: ./oom-killer-try alloc-loop-count force-page-fault[0|1]
[verbose_flag[0|1]]
$./oom-killer-try 2000000 0
./oom-killer-try: PID 28896
.....

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[487]

.....

.....Killed
$

The Killed message is the giveaway! The user mode process has been killed by the
kernel. The reason becomes obvious once we glance at the kernel log – it's the OOM
killer, of course (we show the kernel log in the Demand paging and OOM section).

Understanding the rationale behind the OOM
killer
Glance at the preceding output of our oom_killer_try app: (in this particular run)
33 periods (.) appear before the dreaded Killed message. In our code, we emit a
. (via printf) every 5,000 times we make an allocation (of 2 pages or 8 KB). Thus,
here, we have 33 times 5 periods, meaning 33 * 5 = 165 times => 165 * 5000 * 8K ~=
6,445 MB. Thus, we can conclude that, after our process (virtually) allocated
approximately 6,445 MB (~ 6.29 GB) of memory, the OOM killer terminated our
process! You now need to understand why this occurred at this particular number.

On this particular Fedora Linux VM, the RAM is 2 GB and the swap space is 2 GB; thus,
the total available memory in the memory pyramid = (CPU caches +) RAM + swap.

This is 4 GB (to keep it simple, let's just ignore the fairly insignificant amount of
memory within the CPU caches). But then, it begs the question, why didn't the kernel
invoke the OOM killer at the 4 GB point (or lower)? Why only at around 6 GB? This
is an interesting point: the Linux kernel follows a VM overcommit policy,
deliberately over-committing memory (to a certain extent). To understand this, see
the current vm.overcommit setting:

$ cat /proc/sys/vm/overcommit_memory
0

This is indeed the default (0). The permissible values (settable only by root) are as
follows:

0: Allow memory overcommitting using a heuristic algorithm (see more in
the following section); the default.

1: Always overcommit; in other words, never refuse any malloc(3);
useful for some types of scientific apps that use sparse memory.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[488]

2: The following notes are direct quotes from the kernel documentation
(https:/ / www. kernel. org/ doc/html/ v4. 18/vm/ overcommit- accounting.
html#overcommit- accounting):

"Don't overcommit. The total address space commit for the system is not permitted
to exceed swap plus a configurable amount (default is 50%) of physical RAM.
Depending on the amount you use, in most situations this means a process will not
be killed while accessing pages but will receive errors on memory allocation as
appropriate. Useful for applications that want to guarantee their memory
allocations will be available in the future without having to initialize every page"

The overcommit extent is determined by the overcommit ratio:

$ cat /proc/sys/vm/overcommit_ratio
50

We'll examine two cases in the following sections.

Case 1 – vm.overcommit set to 2, overcommit
turned off
Firstly, remember, this is not the default. With the overcommit_memory tunable set
to 2, the formula used to calculate the total (possibly overcommitted) available
memory is as follows:

Total available memory = (RAM + swap) * (overcommit_ratio/100);

This formula only applies when vm.overcommit == 2.

On our Fedora 31 VM, with vm.overcommit == 2 and 2 GB each of RAM and swap,
this yields the following (in gigabytes):

Total available memory = (2 + 2) * (50/100) = 4 * 0.5 = 2 GB

This value – the (over)commit limit – is also seen
in /proc/meminfo as the CommitLimit field.

https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting
https://www.kernel.org/doc/html/v4.18/vm/overcommit-accounting.html#overcommit-accounting

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[489]

Case 2 – vm.overcommit set to 0, overcommit on,
the default
This is the default. vm.overcommit is set to 0 (not 2): with this, the kernel effectively
calculates the total (over)committed memory size as follows:

Total available memory = (RAM + swap) * (overcommit_ratio + 100)%;

This formula only applies when vm.overcommit == 0.

On our Fedora 31 VM, with vm.overcommit == 0 and 2 GB each of RAM and swap,
this formula yields the following (in gigabytes):

 Total available memory = (2 + 2) * (50+100)% = 4 * 150% = 6 GB

So the system effectively pretends that there is a grand total of 6 GB of memory
available. So now we understand: when our oom_killer_try process allocated huge
amounts of memory and this limit (6 GB) was exceeded, the OOM killer jumped in!

We now understand that the kernel provides several VM
overcommit tunables under /proc/sys/vm, allowing the system
administrator (or root) to fine-tune it (including switching it off by
setting vm.overcommit to the value 2). At first glance, it may
appear tempting to do so, to simply turn it off. Do pause though and
think it through; leaving the VM overcommit at the kernel defaults
is best on most workloads.

(For example, setting the vm.overcommit value to 2 on my Fedora
31 guest VM caused the effective available memory to change to just
2 GB. The typical memory usage, especially with the GUI running,
far exceeded this, causing the system to be unable to even log in the
user in GUI mode!) The following links help throw more light on the
subject: Linux kernel documentation: https:/ /www. kernel. org/
doc/ Documentation/vm/overcommit-accounting and What are the
disadvantages of disabling memory overcommit in Linux? : https:/ / www.
quora. com/ What- are- the- disadvantages- of-disabling- memory-
overcommit- in- Linux . (Do see the Further reading section for more.)

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux
https://www.quora.com/What-are-the-disadvantages-of-disabling-memory-overcommit-in-Linux

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[490]

Demand paging and OOM
Recall the really important fact we learned earlier in the chapter, in the A brief note on
memory allocations and demand paging section: because of the demand paging (or lazy
allocation) policy that the OS uses, when a memory page is allocated
by malloc(3)(and friends), it only actually causes virtual memory space to be
reserved in a region of the process VAS; no physical memory is allocated at this time.
Only when you perform some action on any byte(s) of the virtual page – a read, write,
or execute – does the MMU raise a page fault (a minor fault) and the OS's page fault
handler runs as a result. If it deems that this memory access is legal, it allocates a
physical frame (via the page allocator).

In our simple oom_killer_try app, we manipulate this very idea via it's third
parameter, force_page_fault: when set as 1, we emulate precisely this situation by
writing something, anything really, into a byte - any byte - of each of the two pages
allocated per loop iteration (peek at the code again if you need to).

So, now that you know this, let's re-run our app with the third
parameter, force_page_fault, set to 1, to indeed force page faults! Here's the
output that resulted when I ran this on my Fedora 31 VM (on our custom 5.4.0
kernel):

$ cat /proc/sys/vm/overcommit_memory /proc/sys/vm/overcommit_ratio
0
50
$ free -h
 total used free shared buff/cache
available
Mem: 1.9Gi 1.0Gi 76Mi 12Mi 866Mi
773Mi
Swap: 2.1Gi 3.0Mi 2.1Gi
$./oom-killer-try
Usage: ./oom-killer-try alloc-loop-count force-page-fault[0|1]
[verbose_flag[0|1]]
$./oom-killer-try 900000 1
./oom_killer_try: PID 2032 (verbose mode: off)
.....
.....Killed
$
$ free -h
 total used free shared buff/cache
available
Mem: 1.9Gi 238Mi 1.5Gi 2.0Mi 192Mi
1.6Gi
Swap: 2.1Gi 428Mi 1.6Gi

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[491]

$

This time, you can literally feel the system struggle as it fights for memory. This time,
it runs out of memory much sooner as actual physical memory was allocated. (From the
preceding output, we see in this particular case 15 x 5 + 1 dots (. or periods); that is,
15 times 5 dots + 1 dot => = 76 times => 76 * 5000 loop iterations * 8K per iteration ~=
2969 MB virtually and physically allocated!)

Apparently, at this point, one of two things occurred:

The system ran out of both RAM and swap, thus failing to allocate a page
and thus inviting the OOM killer in.
The calculated (artificial) kernel VM commit limit was exceeded.

We can easily look up this kernel VM commit value (again on the Fedora 31 VM
where I ran this):

$ grep CommitLimit /proc/meminfo
CommitLimit: 3182372 kB

This works out to about 3,108 MB (well over our calculation of 2,969 MB). So here, it's
likely that with all the RAM and swap space being used to run the GUI and existing
apps, the first case came into play.

Also notice how, before running our program, the amount of memory used by the
larger system caches (the page and buffer caches) is significant. The column entitled
buff/cache in the output of the free(1) utility shows this. Before running our
crazy allocator app, 866 MB out of 2 GB was being used for the page cache. Once our
program runs, though, it applies so much memory pressure on the OS that
tremendous amounts of swapping – the paging out of RAM pages to the raw disk
partition called "swap" – is performed and literally all caches are freed up. Inevitably
(as we refuse to free any memory), the OOM killer jumps in and kills us, causing
large amounts of memory to be reclaimed. The free memory and the cache usage
right after the OOM killer cleans up are 1.5 GB and 192 MB respectively. (The cache
usage right now is low; it will increase as the system runs.)

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[492]

Looking up the kernel log reveals that indeed, the OOM killer has paid us a visit!
Note that the following partial screenshot shows only the stack dump on the x86_64
Fedora 31 VM running the 5.4.0 kernel:

Figure 9.8 – The kernel log after the OOM killer, showing the kernel call stack

Read the kernel-mode stack in Figure 9.8 in a bottom-up fashion (ignoring the frames
that start with ?): clearly, a page fault occurred; you can see the call frames:
page_fault() | do_page_fault() | [...
] | __hande_mm_fault() | __do_fault() | [...
] | __alloc_pages_nodemask() .

Think about it, this is completely normal: the fault was raised by the MMU as it was
trying to service a virtual page with no physical counterpart. The OS's fault handling
code runs (in process context, implying that current runs its code!); it ultimately
leads to the OS invoking the page allocator
routine's __alloc_pages_nodemask() function, which as we learned earlier is
literally the heart of the zoned buddy system (or page) allocator – the engine of
memory allocation!

What isn't normal, is that this time it
(the __alloc_pages_nodemask() function) failed! This is deemed a critical issue
and caused the OS to invoke the OOM killer (you can see the out_of_memory call
frame in the preceding figure).

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[493]

Toward the latter part of its diagnostic dump, the kernel tries hard to justify its reason
for killing a given process. It shows a table of all threads, their memory usage (and
various other statistics). Actually, these statistics being displayed occurs due
to sysctl : /proc/sys/vm/oom_dump_tasks being on (1) by default. Here's a
sampling (in the following output, we have eliminated the leftmost timestamp
column of dmesg to make the data more readable):

[...]
Tasks state (memory values in pages):
[pid] uid tgid total_vm rss pgtables_bytes swapents
oom_score_adj name
[607] 0 607 11774 8 106496 361 -250 systemd-
journal
[622] 0 622 11097 0 90112 1021 -1000 systemd-
udevd
[732] 0 732 7804 0 69632 153 -1000 auditd

 [...]

[1950] 1000 1950 56717 1 77824 571 0 bash
[2032] 1000 2032 755460 434468 6086656 317451 0
oom_killer_try
oom-
kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=
0,global_oom,task_memcg=/user.slice/user-1000.slice/session-3.scope,ta
sk=oom_killer_try,pid=2032,uid=1000
Out of memory: Killed process 2032 (oom_killer_try) total-
vm:3021840kB, anon-rss:1737872kB, file-rss:0kB, shmem-rss:0kB,
UID:1000 pgtables:6086656kB oom_score_adj:0
oom_reaper: reaped process 2032 (oom_killer_try), now anon-rss:0kB,
file-rss:0kB, shmem-rss:0kB
$

In the preceding output, we have highlighted in bold the rss (Resident Set Size)
column as it's a good indication of physical memory usage by the process in question
(the unit is KB). Clearly, our oom_killer_try process is using an enormous amount
of physical memory. Also, notice how its number of swap entries (swapents) is very
high. Modern kernels (4.6 onward) use a specialized oom_reaper kernel thread to
perform the work of reaping (killing) the victim process (the last line of the preceding
output shows that this kernel thread reaped our wonderful oom_killer_try
process!). Interestingly, the Linux kernel's OOM can be thought of as a (last)
defense against fork bombs and similar (Distributed) Denial of Service ((D)DoS)
attacks.

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[494]

Understanding the OOM score
In order to speed up the discovery of what the memory-hogging process is at crunch
time (when the OOM killer is invoked), the kernel assigns and maintains an OOM
score on a per-process basis (you can always look up the value in
the /proc/<pid>/oom_score pseudo-file).

The OOM score range is 0 to 1000:

An OOM score of 0 implies that the process is not using any memory
available to it
An OOM score of 1000 implies the process is using 100 percent of the
memory available to it

Obviously, the process with the highest OOM score wins. Its reward – it is instantly
killed by the OOM killer (talk about dry humor). Not so fast though: the kernel has
heuristics to protect important tasks. For example, the baked-in heuristics imply that
the OOM killer will not select as its victim any root-owned process, a kernel thread,
or a task that has a hardware device open.

What if we would like to ensure that a certain process will never be killed by the OOM
killer? It's quite possible to do so, though it does require root access. The kernel
provides a tunable, /proc/<pid>/oom_score_adj, an OOM adjustment value (with
the default being 0). The net OOM score is the sum of the oom_score value and the
adjustment value:

 net_oom_score = oom_score + oom_score_adj;

Thus, setting the oom_score_adj value of a process to 1000 pretty much guarantees
that it will be killed, whereas setting it to -1000 has exactly the opposite effect – it
will never be selected as a victim.

A quick way to query (and even set) a process's OOM score (as well as it's OOM
adjustment value) is via the choom(1) utility. For example, to query the OOM score
and OOM adjustment value of the systemd process, just do choom -p 1. We did the
obvious thing - wrote a simple script (that internally uses choom(1)) to query the
OOM score of all processes currently alive on the system (it's here:
ch9/query_process_oom.sh; do try it out on your box). Quick tip: the (ten)
processes with the highest OOM score on the system can quickly be seen with (the
third column is the net OOM score):

./query_process_oom.sh | sort -k3n | tail

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[495]

With this, we conclude this section and indeed this chapter.

Summary
In this chapter, we continued where we left off in the previous chapter. We covered,
in a good amount of detail, how you can create and use your own custom slab caches
(useful when your driver or module very frequently allocates and frees a certain data
structure), and how to use some kernel infrastructure to help you debug slab (SLUB)
memory issues. We then learned about and used the kernel vmalloc APIs (and
friends), including how to set up given memory protections on memory pages. With
the wealth of memory APIs and strategies available to you, how do you select which
one to use in a given situation? We covered this important concern with a useful
decision chart and table. Finally, we delved into understanding what exactly the
kernel's OOM killer component is and how to work with it.

As I have mentioned before, sufficiently deep knowledge of the Linux memory
management internals and exported API set will go a long way in helping you as a
kernel module and/or device driver author. The reality, as we well know, is that a
significant amount of time is spent by developers on troubleshooting and debugging
code; the intricate knowledge and skills gained here will help you better navigate
these mazes.

This completes the explicit coverage of Linux kernel memory management in this
book. Though we have covered many areas, we have also left out or only skimmed
over some of them.

The fact is that Linux memory management is a huge and complex topic, well worth
understanding for the purposes of learning, writing more efficient code, and
debugging complex situations.

Learning the (basic) usage of the powerful crash(1) utility (used to look deep within
the kernel, via either a live session or a kernel dumpfile), and then re-looking at this
and the previous chapter's content armed with this knowledge is indeed a powerful
way to learn!

Great job on having covered Linux memory management! The next two chapters will
have you learning about another core OS topic – how CPU scheduling is performed on
the Linux OS. Take a breather, work on the following assignments and questions, and
browse through the Further reading materials that capture your interest. Then,
revitalized, jump into the next exciting area with me!

Kernel Memory Allocation for Module Authors - Part 2 Chapter 9

[496]

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

10
The CPU Scheduler - Part 1

In this chapter and the next, you will dive into the details regarding a key OS topic –
that is, CPU scheduling on the Linux OS. I will try and keep the learning more hands-
on, by asking (and answering) typical questions and performing common tasks
related to scheduling. Understanding how scheduling works at the level of the OS is
not only important from a kernel (and driver) developer viewpoint, but it will also
automatically make you a better system architect (even for user space applications).

We shall begin by covering essential background material; this will include the
Kernel Schedulable Entity (KSE) on Linux, as well as the POSIX scheduling policies
that Linux implements. We will then move on to using tools – perf and others – to
visualize the flow of control as the OS runs tasks on CPUs and switches between
them. This is useful to know when profiling apps as well! After that, we will dive
deeper into the details of how exactly CPU scheduling works on Linux, covering
modular scheduling classes, Completely Fair Scheduling (CFS), the running of the
core schedule function, and so on. Along the way, we will also cover how you can
programmatically (and dynamically) query and set the scheduling policy and priority
of any thread on the system.

In this chapter, we will cover the following areas:

Learning about the CPU scheduling internals – part 1 – essential
background
Visualizing the flow
Learning about the CPU scheduling internals – part 2
Threads – which scheduling policy and priority
Learning about the CPU scheduling internals – part 3

Now, let's get started with this interesting topic!

The CPU Scheduler - Part 1 Chapter 10

[498]

Technical requirements
I assume that you have gone through Chapter 1, Kernel Workspace Setup, and have
appropriately prepared a guest Virtual Machine (VM) running Ubuntu 18.04 LTS (or
a later stable release) and installed all the required packages. If not, I highly
recommend you do this first.

To get the most out of this book, I strongly recommend you first set up the workspace
environment, including cloning this book's GitHub repository for the code and
working on it in a hands-on fashion. The repository can be found here: https:/ /
github.com/PacktPublishing/ Linux- Kernel- Programming.

Learning about the CPU scheduling
internals – part 1 – essential background
Let's take a quick look at the essential background information we require to
understand CPU scheduling on Linux.

Note that in this book, we do not intend to cover material that
competent system programmers on Linux should already be well
aware of; this includes basics such as process (or thread) states, the
state machine and transitions on it, and more information on what
real time is, the POSIX scheduling policies, and so on. This (and
more) has been covered in some detail in my earlier book: Hands-On
System Programming with Linux, published by Packt in October 2018.

What is the KSE on Linux?
As you learned in Chapter 6, Kernel Internals Essentials – Processes and Threads, in the
Organizing processes, threads, and their stacks – user and kernel space section, every
process – in fact, every thread alive on the system – is bestowed with a task structure
(struct task_struct) and both a user-mode as well as a kernel-mode stack.

Here, the key question to ask is: when scheduling is performed, what object does it act
upon, in other words, what is the Kernel Schedulable Entity, the KSE? On Linux, the
KSE is a thread, not a process (of course, every process contains a minimum of one
thread). Thus, the thread is the granularity level at which scheduling is performed.

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

The CPU Scheduler - Part 1 Chapter 10

[499]

An example will help explain this: if we have a hypothetical situation where we have
one CPU core and 10 user space processes, consisting of three threads each, plus five
kernel threads, then we have a total of (10 x 3) + 5, which equals 35 threads. Each of
them, except for the five kernel threads, has a user and kernel stack and a task
structure (the kernel threads only have kernel stacks and task structures; all of this
has been thoroughly explained in Chapter 6, Kernel Internals Essentials – Processes and
Threads, in the Organizing processes, threads, and their stacks – user and kernel
space section). Now, if all these 35 threads are runnable, they then compete for the
single processor (though it's unlikely that they're all runnable simultaneously, but
let's just consider it for the sake of discussion), then we now have 35 threads in
competition for the CPU resource, not 10 processes and five kernel threads.

Now that we understand that the KSE is a thread, we will (almost) always refer to the
thread in the context of scheduling. Now that this is understood, let's move on to the
scheduling policies Linux implements.

The POSIX scheduling policies
It's important to realize that the Linux kernel does not have just one algorithm that
implements CPU scheduling; the fact is, the POSIX standard specifies a minimal three
scheduling policies (algorithms, in effect) that a POSIX-compliant OS must adhere to.
Linux goes above and beyond, implementing these three as well as more, with a
powerful design called scheduling classes (more on this in the Understanding modular
scheduling classes section later in this chapter).

Again, information on the POSIX scheduling policies on Linux (and
more) is covered in more detail in my earlier book, Hands-On System
Programming with Linux, published by Packt in October 2018.

The CPU Scheduler - Part 1 Chapter 10

[500]

For now, let's just briefly summarize the POSIX scheduling policies and what effect
they have in the following table:

Scheduling policy Key points Priority scale

SCHED_OTHER or
 SCHED_NORMAL

Always the default; threads with this policy are
non-real-time; internally implemented as
a Completely Fair Scheduling (CFS) class (seen
later in the A word on CFS and the vruntime
value section).
The motivation behind this schedule policy is
fairness and overall throughput.

Real-time priority is
0; the non-real-time
priority is called the nice
value: it ranges from -20
to +19 (a lower number
implies superior
priority) with a base of 0

SCHED_RR

The motivation behind this schedule policy is a
(soft) real-time policy that's moderately
aggressive.
Has a finite timeslice (typically defaulting to 100
ms).
A SCHED_RR thread will yield the processor IFF
(if and only if):
- It blocks on I/O (goes to sleep).
- It stops or dies.
- A higher-priority real-time thread becomes
runnable (which will preempt this one).
- Its timeslice expires.

(Soft) real-time:
1 to 99 (a higher number
implies superior
priority)

SCHED_FIFO

The motivation behind this schedule policy is a (soft) real-
time policy that's (by comparison, very) aggressive.
A SCHED_FIFO thread will yield the processor IFF:
- It blocks on I/O (goes to sleep).
- It stops or dies.
- A higher-priority real-time thread becomes runnable
(which will preempt this one).
It has, in effect, infinite timeslice.

 (same as SCHED_RR)

SCHED_BATCH
The motivation behind this schedule policy is a
scheduling policy that's suitable for non-interactive batch
jobs, less preemption.

 Nice value range (-20 to
+19)

SCHED_IDLE

Special case: typically the PID 0 kernel thread
(traditionally called the swapper; in reality, it's the per
CPU idle thread) uses this policy. It's always guaranteed
to be the lowest-priority thread on the system and only
runs when no other thread wants the CPU.

The lowest priority of all
(think of it as being
below the nice value +19)

The CPU Scheduler - Part 1 Chapter 10

[501]

It's important to note that when we say real-time in the preceding
table, we really mean soft (or at best, firm) real time and not hard real
time as in an Real-Time Operating System (RTOS). Linux is a
GPOS, a general-purpose OS, not an RTOS. Having said that, you
can convert vanilla Linux into a true hard real-time RTOS by
applying an external patch series (called the RTL, supported by the
Linux Foundation); you'll learn how to do precisely this in the
following chapter in the Converting mainline Linux into an RTOS
section.

Notice that a SCHED_FIFO thread in effect has infinite timeslice and runs until it
wishes or one of the preceding mentioned conditions comes true. At this point, it's
important to understand that we're only concerned with thread (KSE) scheduling
here; on an OS such as Linux, the reality is that hardware (and software) interrupts are
always superior and will always preempt even (kernel or user space) SCHED_FIFO
threads! Do refer back to Figure 6.1 to see this. Also, we will cover hardware
interrupts in detail in Chapter 14, Handling Hardware Interrupts. For our discussion
here, we will ignore interrupts for the time being.

The priority scaling is simple:

Non-real-time threads (SCHED_OTHER) have a real-time priority of 0; this
ensures that they cannot even compete with real-time threads. They use an
(old UNIX-style) priority value called the nice value, which ranges from
-20 to +19 (-20 being the highest priority and +19 the worst).

The way it's implemented on modern Linux, each nice level
corresponds to an approximate 10% change (or delta, plus or minus)
in CPU bandwidth, which is a significant amount.

Real-time threads (SCHED_FIFO / SCHED_RR) have a real-time priority
scale from 1 to 99, 1 being the least and 99 being the highest priority. Think
of it this way: on a non-preemptible Linux system with one CPU, a
SCHED_FIFO priority 99 thread spinning in an unbreakable infinite loop
will effectively hang the machine! (Of course, even this will be preempted
by interrupts – both hard and soft; see Figure 6.1.

The CPU Scheduler - Part 1 Chapter 10

[502]

The scheduling policy and priorities (both the static nice value and real-time priority)
are members of the task structure, of course. The scheduling class that a thread
belongs to is exclusive: a thread can only belong to one scheduling policy at a given
point in time (worry not, we'll cover scheduling classes in some detail later in the
CPU scheduling internals – part 2 section).

Also, you should realize that on a modern Linux kernel, there are other scheduling
classes (stop-schedule and deadline) that are in fact superior (in priority) to the
FIFO/RR ones we mentioned earlier. Now that you have an idea of the basics, let's
move on to something pretty interesting: how we can actually visualize the flow of
control. Read on!

Visualizing the flow
Multicore systems have led to processes and threads executing concurrently on
different processors. This is useful for gaining higher throughput and thus
performance, but also causes synchronization headaches with shared writable data.
So, for example, on a hardware platform with, say, four processor cores, we can
expect processes (and threads) to execute in parallel on them. This is nothing new; is
there a way, though, to actually see which processes or threads are executing on
which CPU core – that is, a way to visualize a processor timeline? It turns out there
are indeed a few ways to do so. In the following sections, we will look at one
interesting way with perf, followed later by others (with LTTng, Trace Compass, and
Ftrace).

Using perf to visualize the flow
Linux, with its vast arsenal of developer and Quality Assurance (QA) tools, has a
really powerful one in perf(1). In a nutshell, the perf toolset is the modern way to
perform CPU profiling on a Linux box. (Besides a few tips, we do not cover perf in
detail in this book.)

The CPU Scheduler - Part 1 Chapter 10

[503]

Akin to the venerable top(1) utility, to get a thousand-foot view of
what's eating the CPU (in a lot more detail than top(1)), the
perf(1) set of utilities is excellent. Do note, though, that, quite
unusually for an app, perf is tightly coupled with the kernel that it
runs upon. It's important that you install the linux-tools-
$(uname -r) package first. Also, the distribution package will not
be available for the custom 5.4 kernel we have built; so, when using
perf, I suggest you boot your guest VM with one of the standard
(or distro) kernels, install the linux-tools-$(uname -r) package,
and then try using perf. (Of course, you can always manually build
perf from within the kernel source tree, under the tools/perf/
folder.)

With perf installed and running, do try out these perf commands:

sudo perf top
sudo perf top --sort comm,dso
sudo perf top -r 90 --sort pid,comm,dso,symbol

(By the way, comm implies the name of the command/process, dso is
an abbreviation for dynamic shared object). Using an alias makes it easier; try this
one (in one line) for even more verbose details (the call stack can be expanded too!):

alias ptopv='sudo perf top -r 80 -f 99 --sort pid,comm,dso,symbol --
demangle-kernel -v --call-graph dwarf,fractal'

The man page on perf(1) provides the details; use the man perf-<foo> notation
– for example, man perf-top – to get help with perf top.

One way to use perf is to obtain an idea of what task is running on what CPU; this is
done via the timechart sub-command in perf. You can record events using perf,
both system-wide as well as for a specific process. To record events system-wide, run
the following command:

sudo perf timechart record

Terminate the recording session with a signal (^C). This will generate a binary data
file named perf.data by default. It can now be examined with the following:

sudo perf timechart

The CPU Scheduler - Part 1 Chapter 10

[504]

This command generates a Scalable Vector Graphics (SVG) file! It can be viewed
with vector drawing utilities (such as Inkscape, or via the display command in
ImageMagick) or simply within a web browser. It can be quite fascinating to study
the time chart; I urge you to try it out. Do note, though, that the vector images can be
quite large and therefore take a while to open.

A system-wide sampling run on a native Linux x86_64 laptop running Ubuntu 18.10
is shown as follows:

$ sudo perf timechart record
[sudo] password for <user>:
^C[perf record: Woken up 18 times to write data]
[perf record: Captured and wrote 6.899 MB perf.data (196166 samples)
]
$ ls -lh perf.data
-rw------- 1 root root 7.0M Jun 18 12:57 perf.data
$ sudo perf timechart
Written 7.1 seconds of trace to output.svg.

It is possible to configure perf to work with non-root access. Here,
we don't; we just run perf as root via sudo(8).

A screenshot of the SVG file generated by perf is seen in the following screenshot. To
view the SVG file, you can simply drag and drop it into your web browser:

Figure 10.1 – (Partial) screenshot showing the SVG file generated by sudo perf timechart

The CPU Scheduler - Part 1 Chapter 10

[505]

In the preceding screenshot, as one example, you can see that the EMT-0 thread is
busy and takes maximum CPU cycles (the phrase CPU 3 is unfortunately unclear;
look closely in the purple bar below CPU 2). This makes sense; it's the thread
representing the Virtual CPU (VCPU) of VirtualBox where we are running Fedora 29
(EMT stands for emulator thread)!

You can zoom in and out of this SVG file, studying the scheduling and CPU events
that are recorded by default by perf. The following figure, a partial screenshot when
zoomed in 400% to the CPU 1 region of the preceding screenshot, shows
htop running on CPU #1 (the purple band literally shows the slice when it executed):

Figure 10.2 – Partial screenshot of perf timechart's SVG file, when zoomed in 400% to the CPU 1 region

What else? By using the -I option switch to perf timechart record, you can
request only system-wide disk I/O (and network, apparently) events be recorded.
This could be especially useful as, often, the real performance bottlenecks are caused
by I/O activity (and not the CPU; I/O is usually the culprit!). The man page on perf-
timechart(1) details further useful options; for example, --callchain to perform
stack backtrace recording. As another example, the --highlight <name> option
switch will highlight all tasks with the name <name>.

The CPU Scheduler - Part 1 Chapter 10

[506]

You can convert perf's binary perf.data record file into the
popular Common Trace Format (CTF) file format, using perf data
convert -- all --to-ctf, where the last argument is the
directory where the CTF file(s) get stored. Why is this useful? CTF is
the native data format used by powerful GUI visualizers and
analyzer tools such as Trace Compass (seen later in Chapter 11, The
CPU Scheduler – Part 2, under the Visualization with LTTng and Trace
Compass section).

However, there is a catch, as mentioned in the Trace Compass Perf
Profiling user guide (https:/ /archive. eclipse. org/
tracecompass. incubator/ doc/ org.eclipse. tracecompass.
incubator. perf. profiling. doc. user/ User- Guide. html): "Not all
Linux distributions have the ctf conversion builtin. One needs to compile
perf (thus linux) with environment variables LIBBABELTRACE=1 and
LIBBABELTRACE_DIR=/path/to/libbabeltrace to enable that support."

Unfortunately, as of the time of writing, this is the case with
Ubuntu.

Visualizing the flow via alternate (CLI)
approaches
There are, of course, alternate ways to visualize what's running on each processor; we
mention a couple here and have saved one other interesting one (LTTng) for
Chapter 11, The CPU Scheduler – Part 2, under the Visualization with LTTng and Trace
Compass section):

With perf(1), again, run the sudo perf sched record command; this
records activity. Stop by terminating it with the ^C signal, followed by
sudo perf sched map to see a (CLI) map of execution on the
processor(s).
Some simple Bash scripting can show what's executing on a given core (a
simple wrapper over ps(1)). In the following snippet, we show sample
Bash functions; for example, the following c0() function shows what is
currently executing on CPU core #0, while c1() does the same for core #1:

Show thread(s) running on cpu core 'n' - func c'n'
function c0()
{

https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.perf.profiling.doc.user/User-Guide.html

The CPU Scheduler - Part 1 Chapter 10

[507]

 ps -eLF | awk '{ if($5==0) print $0}'
}
function c1()
{
 ps -eLF | awk '{ if($5==1) print $0}'
}

While on the broad topic of perf, Brendan Gregg has a very useful
series of scripts that perform a lot of the hard work required when
monitoring production Linux systems using perf; do take a look at
them here: https:/ / github. com/ brendangregg/ perf- tools (some
distributions include them as a package called perf-tools[-
unstable]).

Do give these alternatives (including the perf-tools[-unstable] package) a try!

Learning about the CPU scheduling
internals – part 2
This section delves into kernel CPU scheduling internals in some detail, the emphasis
being on the core aspect of the modern design, modular scheduler classes.

Understanding modular scheduling classes
Ingo Molnar, a key kernel developer, (along with others) redesigned the internal
structure of the kernel scheduler, introducing a new approach called scheduling
classes (this was back in October 2007 with the release of the 2.6.23 kernel).

As a side note, the word class here isn't a coincidence; many Linux
kernel features are intrinsically, and quite naturally, designed with
an object-oriented nature. The C language, of course, does not allow
us to express this directly in code (hence the preponderance of
structures with both data and function pointer members, emulating
a class). Nevertheless, the design is very often object-oriented (as
you shall again see with the driver model in the Linux Kernel
Programming Part 2 book). Please see the Further reading section of
this chapter for more details on this.

https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools

The CPU Scheduler - Part 1 Chapter 10

[508]

A layer of abstraction was introduced under the core scheduling code, the
schedule() function. This layer under schedule() is generically called the
scheduling classes and is modular in design. Note that the word modular here implies
that scheduler classes can be added or removed from the inline kernel code; it has
nothing to do with the Loadable Kernel Module (LKM) framework.

The basic idea is this: when the core scheduler code (encapsulated by the
schedule() function) is invoked, understanding that there are various available
scheduling classes under it, it iterates over each of the classes in a predefined priority
order, asking each if it has a thread (or process) that requires scheduling onto a
processor (how exactly, we shall soon see).

As of the 5.4 Linux kernel, these are the scheduler classes within the kernel, listed in
priority order, with the highest priority first:

// kernel/sched/sched.h
[...]
extern const struct sched_class stop_sched_class;
extern const struct sched_class dl_sched_class;
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;

There we have it, the five scheduler classes – stop-schedule, deadline, (soft) real time,
fair, and idle – in priority order, highest to lowest. The data structures that abstracts
these scheduling classes, struct sched_class, are strung together on a singly
linked list, which the core scheduling code iterates over. (You will come to what the
sched_class structure is later; ignore it for now).

Every thread is associated with it's own unique task structure (task_struct); within
the task structure, the policy member specifies the scheduling policy that the thread
adheres to (typically one of SCHED_FIFO, SCHED_RR, or SCHED_OTHER). It's exclusive
- a thread can only adhere to one scheduling policy at any given point in time (it can
be changed though). Similarly, another member of the task structure, struct
sched_class, holds the modular scheduling class that the thread belongs to (which
is also exclusive). Both the scheduling policy and priority are dynamic and can be
queried and set programmatically (or via utilities; you will soon see this).

The CPU Scheduler - Part 1 Chapter 10

[509]

So knowing this, you will now realize that all threads that adhere to
either the SCHED_FIFO or SCHED_RR scheduling policy, map to
the rt_sched_class (for their sched_class within the task structure), all threads
that are SCHED_OTHER (or SCHED_NORMAL) map to the fair_sched_class, and the
idle thread (swapper/n, where n is the CPU number starting from 0) always maps
to idle_sched_class scheduling class.

When the kernel needs to schedule, this is the essential call sequence:

schedule() --> __schedule() --> pick_next_task()

The actual iteration over the preceding scheduling classes occurs here; see the
(partial) code of pick_next_task(), as follows:

// kernel/sched/core.c
 /*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, struct
rq_flags *rf)
{
 const struct sched_class *class;
 struct task_struct *p;
 /* Optimization: [...] */
 [...]
 for_each_class(class) {
 p = class->pick_next_task(rq, NULL, NULL);
 if (p)
 return p;
 }

 /* The idle class should always have a runnable task: */
 BUG();
}

The preceding for_each_class() macro sets up a for loop to iterate over all
scheduling classes. Its implementation is as follows:

// kernel/sched/sched.h
[...]
#ifdef CONFIG_SMP
#define sched_class_highest (&stop_sched_class)
#else
#define sched_class_highest (&dl_sched_class)
#endif

The CPU Scheduler - Part 1 Chapter 10

[510]

#define for_class_range(class, _from, _to) \
 for (class = (_from); class != (_to); class = class->next)

#define for_each_class(class) \
 for_class_range(class, sched_class_highest, NULL)

You can see from the preceding implementation that the code results in each class,
from sched_class_highest to NULL (implying the end of the linked list they're on),
being asked, via the pick_next_task() "method", who to schedule next. Now, the
scheduling class code determines whether it has any candidates that want to execute.
How? That's simple actually; it merely looks up its runqueue data structure.

Now, this is a key point: the kernel maintains one runqueue for every processor core and for
every scheduling class! So, if we have a system with, say, eight CPU cores, then we will
have 8 cores * 5 sched classes = 40 runqueues! Runqueues are in fact implemented as
per-CPU variables, an interesting lock-free technique (exception: on
Uniprocessor (UP) systems, the stop-sched class does not exist):

Figure 10.3 – There is a runqueue per CPU core per scheduling class

Please note that in the preceding diagram, the way I show the runqueues makes them
perhaps appear as arrays. That isn't the intention at all, it's merely a conceptual
diagram. The actual runqueue data structure used depends on the scheduling class
(the class code implements the runqueue after all). It could be an array of linked lists
(as with the real-time class), a tree - a red-black (rb) tree - as with the fair class), and
so on.

The CPU Scheduler - Part 1 Chapter 10

[511]

To help better understand the scheduler class model, we will devise an example: let's
say, on an Symmetric Multi Processor (SMP) or multicore) system, we have 100
threads alive (in both user and kernel space). Among them, we have a few competing
for the CPUs; that is, they are in the ready-to-run (run) state, implying they are
runnable and thus enqueued on runqueue data structures:

Thread S1: Scheduler class, stop-sched (SS)
Threads D1 and D2: Scheduler class, Deadline (DL)
Threads RT1 and RT2: Scheduler class, Real Time (RT)
Threads F1, F2, and F3: Scheduler class, CFS (or fair)
Thread I1: Scheduler class, idle.

Imagine that, to begin with, thread F2 is on a processor core, happily executing code.
At some point, the kernel wishes to context switch to some other task on that CPU
(what triggers this? You shall soon see). On the scheduling code path, the kernel code
ultimately ends up in the kernel/sched/core.c:void schedule(void) kernel
routine (again, code-level details follow later). What's important to understand for
now is that the pick_next_task() routine, invoked by schedule(), iterates over
the linked list of scheduler classes, asking each whether it has a candidate to run. It's
code path (conceptually, of course) looks something like this:

Core scheduler code (schedule()): "Hey, SS, do you have any threads that1.
want to run?"
SS class code: Iterates over its runqueue and does find a runnable thread; it2.
thus replies: "Yes, I do, it's thread S1."
Core scheduler code (schedule()): "Okay, let's context switch to S1."3.

And the job is done. But what if there is no runnable thread S1 on the SS runqueue for
that processor (or it has gone to sleep, or is stopped, or it's on another CPU's
runqueue). Then, SS will say "no" and the next most important scheduling class, DL,
will be asked. If it has potential candidate threads that want to run (D1 and D2, in our
example), its class code will identify which of D1 or D2 should run, and the kernel
scheduler will faithfully context switch to it. This process continues for the RT and
fair (CFS) scheduling classes. (A picture's worth a thousand words, right: see Figure
10.4).

The CPU Scheduler - Part 1 Chapter 10

[512]

In all likelihood (on your typical moderately loaded Linux system), there will be no
SS, DL, or RT candidate threads that want to run on the CPU in question, and there
often will be at least one fair (CFS) thread that will want to run; hence, it will be
picked and context-switched to. If there's none that wants to run (no SS/DL/RT/CFS
class thread wants to run), it implies that the system is presently idle (lazy chap).
Now, the idle class is asked whether it wants to run: it always says yes! This makes
sense: after all, it is the CPU idle thread's job to run on the processor when no one else
needs to. Hence, in such a case, the kernel switches context to the idle thread
(typically labelled swapper/n, where n is the CPU number that it's executing upon
(starting from 0)).

Also, note that the swapper/n (CPU idle) kernel thread does not show up in the
ps(1) listing, though it's always present (recall the code we demonstrated in Chapter
6, Kernel Internals Essentials – Processes and Threads, here:
ch6/foreach/thrd_showall/thrd_showall.c. There, we wrote
a disp_idle_thread() routine to show some details of the CPU idle thread as even
the kernel's do_each_thread() { ... } while_each_thread() loop that we
employed there does not show the idle thread).

The following diagram neatly sums up the way the core scheduling code invokes the
scheduling classes in priority order, context switching to the ultimately selected next
thread:

Figure 10.4 – Iterating over every scheduling class to pick the task that will run next

The CPU Scheduler - Part 1 Chapter 10

[513]

In the following chapter, you shall learn, among other things, how to visualize kernel
flow via some powerful tools. There, precisely this work of iterating over modular
scheduler classes is actually seen.

Asking the scheduling class
How exactly does the core scheduler code (pick_next_task()) ask the scheduling
classes whether they have any threads that want to run? We have already seen this,
but I feel it's worthwhile repeating the following code fragment for clarity (called
mostly from __schedule() and also from the thread migration code path):

// kernel/sched/core.c
[...]
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, struct
rq_flags *rf)
{
 const struct sched_class *class;
 struct task_struct *p;
 [...]
 for_each_class(class) {
 p = class->pick_next_task(rq, NULL, NULL);
 if (p)
 return p;
 }
 [...]

Notice the object orientation in action: the class->pick_next_task() code, for all
practical purposes, is invoking a method, pick_next_task(), of the scheduling
class, class! The return value, conveniently, is the pointer to the task structure of the
picked task, which the code now context switches to.

The preceding paragraph implies, of course, that there is a class structure,
embodying what we really mean by the scheduling class. Indeed, this is the case: it
contains all possible operations, as well as useful hooks, that you might require in a
scheduling class. It's (surprisingly) called the sched_class structure:

// location: kernel/sched/sched.h
[...]
struct sched_class {
 const struct sched_class *next;
 [...]
 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int
flags);
 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int

The CPU Scheduler - Part 1 Chapter 10

[514]

flags);
 [...]
 struct task_struct * (*pick_next_task)(struct rq *rq,
 struct task_struct *prev,
 struct rq_flags *rf);
 [...]
 void (*task_tick)(struct rq *rq, struct task_struct *p, int
queued);
 void (*task_fork)(struct task_struct *p);
 [...]
};

(There are many more members to this structure than we've shown here; do look it up
in the code). As should be obvious by now, each scheduling class instantiates this
structure, appropriately populating it with methods (function pointers, of course).
The core scheduling code, iterating over the linked list of scheduling classes (as well
as elsewhere in the kernel), invokes - as long as it's not NULL- the methods and hook
functions as required.

As an example, let's consider how the fair scheduling class (CFS) implements its
scheduling class:

// kernel/sched/fair.c
const struct sched_class fair_sched_class = {
 .next = &idle_sched_class,
 .enqueue_task = enqueue_task_fair,
 .dequeue_task = dequeue_task_fair,
 [...]
 .pick_next_task = pick_next_task_fair,
 [...]
 .task_tick = task_tick_fair,
 .task_fork = task_fork_fair,
 .prio_changed = prio_changed_fair,
 [...]
};

So now you see it: the code used by the fair sched class to pick the next task to run
(when asked by the core scheduler), is the function pick_next_task_fair(). FYI,
the task_tick and task_fork members are good examples of scheduling class
hooks; these functions will be invoked by the scheduler core on every timer tick (that
is, each timer interrupt, which fires – in theory, at least – CONFIG_HZ times a second)
and when a thread belonging to this scheduling class forks, respectively.

The CPU Scheduler - Part 1 Chapter 10

[515]

An interesting in-depth Linux kernel project, perhaps: create your
own scheduling class with its particular methods and hooks,
implementing its internal scheduling algorithm(s). Link all the bits
and pieces as required (into the scheduling classes-linked list,
inserted at the desired priority, and so on) and test! Now you can
see why they're called modular scheduling classes.

Great – now that you understand the architecture behind how the modern modular
CPU scheduler works, let's take a brief look at the algorithm behind CFS, perhaps the
most used scheduling class on generic Linux.

A word on CFS and the vruntime value
Since version 2.6.23, CFS has been the de facto kernel CPU scheduling code for
regular threads; the majority of threads are SCHED_OTHER, which is driven by CFS.
The driver behind CFS is fairness and overall throughput. In a nutshell, within its
implementation, the kernel keeps track of the actual CPU runtime (at nanosecond
granularity) of every runnable CFS (SCHED_OTHER) thread; the thread with the
smallest runtime is the thread that most deserves to run and will be awarded the
processor on the next scheduling switch. Conversely, threads that continually
hammer on the processor will accumulate a large amount of runtime and will thus be
penalized (it's quite karmic, really)!

Without delving into too many details regarding the internals of the CFS
implementation, embedded within the task structure is another data
structure, struct sched_entity, which contains within it an unsigned 64-bit value
called vruntime. This is, at a simplistic level, the monotonic counter that keeps track
of the amount of time, in nanoseconds, that the thread has accumulated (run) on the
processor.

In practice, here, a lot of code-level tweaks, checks, and balances are required. For
example, often, the kernel will reset the vruntime value to 0, triggering another
scheduling epoch. Also, there are various tunables under
/proc/sys/kernel/sched_*, to help better fine-tune the CPU scheduler behavior.

The CPU Scheduler - Part 1 Chapter 10

[516]

How CFS picks the next task to run is encapsulated in
the kernel/sched/fair.c:pick_next_task_fair() function. In theory, the way
CFS works is simplicity itself: enqueue all runnable tasks (for that CPU) onto the
runqueue, which is an rb-tree (a type of self-balancing binary search tree), in such a
manner that the task that has spent the least amount of time on the processor is the
leftmost leaf node on the tree, with succeeding nodes to the right representing the
next task to run, then the one after that.

In effect, scanning the tree from left to right gives a timeline of future task execution.
How is this assured? By using the aforementioned vruntime value as the key via
which tasks are enqueued onto the rb-tree!

When the kernel needs to schedule, and it asks CFS, the CFS class code - we've
already mentioned it, the pick_next_task_fair() function - simply picks the
leftmost leaf node on the tree, returning the pointer to the task structure embedded there;
it's, by definition, the task with the lowest vruntime value, effectively, the one that
has run the least! (Traversing a tree is a O(log n) time-complexity algorithm, but due
to some code optimization and a clever caching of the leftmost leaf node in effect
render it into a very desirable O(1) algorithm!) Of course, the actual code is a lot more
complex than is let on here; it requires several checks and balances. We won't delve
into the gory details here.

We refer those of you that are interested in learning more on CFS to
the kernel documentation on the topic, at https:/ /www. kernel. org/
doc/ Documentation/ scheduler/ sched- design- CFS. txt.

Also, the kernel contains several tunables under
/proc/sys/kernel/sched_* that have a direct impact on
scheduling. Notes on these and how to use them can be found on
the Tuning the Task Scheduler page (https:/ /documentation. suse.
com/ sles/ 12- SP4/ html/ SLES-all/ cha- tuning- taskscheduler.
html), and an excellent real-world use case can be found in the
article at https:/ /www. scylladb. com/ 2016/ 06/10/ read- latency-
and- scylla- jmx- process/ .

Now let's move onto learning how to query the scheduling policy and priority of any given thread.

https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/%20Documentation/scheduler/sched-design-CFS.txt
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-tuning-taskscheduler.html
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/
https://www.scylladb.com/2016/06/10/read-latency-and-scylla-jmx-process/

The CPU Scheduler - Part 1 Chapter 10

[517]

Threads – which scheduling policy and
priority
In this section, you'll learn how to query the scheduling policy and priority of any
given thread on the system. (But what about programmatically querying and setting
the same? We defer that discussion to the following chapter, in the Querying and
setting a thread’s scheduling policy and priority section.)

We learned that, on Linux, the thread is the KSE; it's what actually gets scheduled and
runs on the processor. Also, Linux has several choices for the scheduling policy (or
algorithm) to use. The policy, as well as the priority to allocate to a given task (process
or thread), is assigned on a per-thread basis, with the default always being the
SCHED_OTHER policy with real-time priority 0.

On a given Linux system, we can always see all processes alive (via a simple ps -
A), or, with GNU ps, even every thread alive (ps -LA). This does not tell us, though,
what scheduling policy and priority these tasks are running under; how do we query
that?

This turns out to be pretty simple: on the shell, the chrt(1) utility is admirably
suited to query and set a given process' scheduling policy and/or priority. Issuing
chrt with the -p option switch and providing the PID as a parameter has it display
both the scheduling policy as well as the real-time priority of the task in question; for
example, let's query this for the init process (or systemd) PID 1:

$ chrt -p 1
pid 1's current scheduling policy: SCHED_OTHER
pid 1's current scheduling priority: 0
$

As usual, the man page on chrt(1) provides all the option switches and their usage;
do take a peek at it.

The CPU Scheduler - Part 1 Chapter 10

[518]

In the following (partial) screenshot, we show a run of a simple Bash script
(ch10/query_task_sched.sh, a wrapper over chrt, essentially) that queries and
displays the scheduling policy and real-time priority of all the alive threads (at the
point they're run):

Figure 10.5 – (Partial) screenshot of our ch10/query_task_sched.sh Bash script in action

A few things to notice:

In our script, by using GNU ps(1), with ps -LA, we're able to capture all
the threads that are alive on the system; their PID and TID are displayed.
As you learned in Chapter 6, Kernel Internals Essentials – Processes and
Threads, the PID is the user space equivalent of the kernel TGID and the
TID is the user space equivalent of the kernel PID. We can thus conclude
the following:

If the PID and TID match, it - the thread seen in that row (the
third column has its name) - is the main thread of the
process.
If the PID and TID match and the PID shows up only once,
it's a single-threaded process.
If we have the same PID multiple times (leftmost column)
with varying TIDs (second column), those are the child (or
worker) threads of the process. Our script shows this by
indenting the TID number a bit to the right.

The CPU Scheduler - Part 1 Chapter 10

[519]

Notice how the vast majority of threads on a typical Linux box (even
embedded) will tend to be non real-time (the SCHED_OTHER policy). On a
typical desktop, server, or even embedded Linux, the majority of threads
will be SCHED_OTHER (the default policy), with a few real-time threads
(FIFO/RR). Deadline (DL) and Stop-Sched (SS) threads are very rare
indeed.
Do notice the following observations regarding the real-time threads that
showed up in the preceding output:

Our script highlights any real-time threads (one with
policy: SCHED_FIFO or SCHED_RR) by displaying an asterisk
on the extreme right.
Moreover, any real-time threads with a real-time priority of
99 (the maximum possible value) will have three asterisks on
the extreme right (these tend to be specialized kernel
threads).

The SCHED_RESET_ON_FORK flag, when Boolean ORed with the scheduling
policy, has the effect of disallowing any children (via fork(2)) to inherit a
privileged scheduling policy (a security measure).
Changing the scheduling policy and/or priority of a thread can be
performed with chrt(1); however, you should realize that this is a
sensitive operation requiring root privileges (or, nowadays, the preferred
mechanism should be the capabilities model, the CAP_SYS_NICE capability
being the capability bit in question).

We will leave it to you to examine the code of the script
(ch10/query_task_sched.sh). Also, be aware (beware!) that performance and shell
scripting do not really go together (so don't expect much in terms of performance
here). Think about it, every external command issued within a shell script (and we
have several here, such as awk, grep, and cut) involves a fork-exec-wait semantic
and context switching. Also, these are all executing within a loop.

The tuna(8) program can be used to both query and set various
attributes; this includes process-/thread-level scheduling
policy/priority and a CPU affinity mask, as well as IRQ affinity.

The CPU Scheduler - Part 1 Chapter 10

[520]

You might ask, will the (few) threads with the SCHED_FIFO policy and a real-time
priority of 99 always hog the system's processors? No, not really; the reality is that
these threads are asleep most of the time. When the kernel does require them to
perform some work, it wakes them up. Now, precisely due to their real-time policy
and priority, it's pretty much guaranteed that they will get a CPU and execute for as
long as is required (going back to sleep once the work is done). The key point: when
they require the processor, they will get it (somewhat akin to an RTOS, but without
the iron-clad guarantees and determinism that an RTOS delivers).

How exactly does the chrt(1) utility query (and set) the real-time scheduling
policy/priority? Ah, that should be obvious: as they reside within the task structure in
kernel Virtual Address Space (VAS), the chrt process must issue a system call.
There are several system call variations that perform these tasks: the one used by
chrt(1) is the sched_getattr(2) to query, and the sched_setattr(2) system
call is to set the scheduling policy and priority. (Be sure to look up the man page on
sched(7) for details on these and more scheduler-related system calls.) A quick
strace(1) on chrt will indeed verify this!

$ strace chrt -p 1
[...]
sched_getattr(1, {size=48, sched_policy=SCHED_OTHER, sched_flags=0,
sched_nice=0, sched_priority=0, sched_runtime=0, sched_deadline=0,
sched_period=0}, 48, 0) = 0
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 6), ...}) = 0
write(1, "pid 1's current scheduling polic"..., 47) = 47
write(1, "pid 1's current scheduling prior"..., 39) = 39
[...] $

Now that you have the practical knowledge to query (and even set) a thread's
scheduling policy/priority, it's time to dig a bit deeper. In the following section, we
delve further into the internal workings of Linux's CPU scheduler. We figure out who
runs the code of the scheduler and when it runs. Curious? Read on!

The CPU Scheduler - Part 1 Chapter 10

[521]

Learning about the CPU scheduling
internals – part 3
In the preceding sections, you learned that the core kernel scheduling code is
anchored within the void schedule(void) function, and that the modular
scheduler classes are iterated over, ending up with a thread picked to be context-
switched to. All of this is fine; a key question now is: who and when, exactly, is
the schedule() code path run?

Who runs the scheduler code?
A subtle yet key misconception regarding how scheduling works is unfortunately
held by many: we imagine that some kind of kernel thread (or some such entity)
called the "scheduler" is present, that periodically runs and schedules tasks. This is
just plain wrong; in a monolithic OS such as Linux, scheduling is carried out by the
process contexts themselves, the regular threads that run on the CPU!

In fact, the scheduling code is always run by the process context that is currently
executing the code of the kernel, in other words, by current.

This may also be an appropriate time to remind you of what we shall call one of the
golden rules of the Linux kernel: scheduling code must never ever run in any kind of atomic
or interrupt context. In other words, interrupt context code must be guaranteed to be
non-blocking; this is why you cannot call kmalloc() with the GFP_KERNEL flag in an
interrupt context – it might block! But with the GFP_ATOMIC flag, it's all right as that
instructs the kernel memory management code to never block. Also, kernel
preemption is disabled while the schedule code runs; this makes sense.

When does the scheduler run?
The job of the OS scheduler is to arbitrate access to the processor (CPU) resource,
sharing it between competing entities (threads) that want to use it. But what if the
system is busy, with many threads continually competing for and acquiring the
processor? More correctly, what we're really getting at is: in order to ensure fair
sharing of the CPU resource between tasks, you must ensure that the policeman in the
picture, the scheduler itself, runs periodically on the processor. Sounds good, but how
exactly can you ensure that?

The CPU Scheduler - Part 1 Chapter 10

[522]

Here's a (seemingly) logical way to go about it: invoke the scheduler when the timer
interrupt fires; that is, it gets a chance to run CONFIG_HZ times a second (which is
often set to the value 250)! Hang on, though, we learned a golden rule in Chapter
8, Kernel Memory Allocation for Module Authors – Part 1, in the Never sleep in interrupt or
atomic contexts section: you cannot invoke the scheduler in any kind of atomic or
interrupt context; thus invoking it within the timer interrupt code path is certainly
disqualified. So, what does the OS do?

The way it's actually done is that both the timer interrupt context, and the process
context code paths, are used to make scheduling work. We will briefly describe the
details in the following section.

The timer interrupt part
Within the timer interrupt (in the code of
kernel/sched/core.c:scheduler_tick(), wherein interrupts are disabled), the
kernel performs the meta work necessary to keep scheduling running smoothly; this
involves the constant updating of the per CPU runqueues as appropriate, load
balancing work, and so on. Please be aware that the actual schedule() function is
never called here. At best, the scheduling class hook function (for the process context
current that was interrupted), sched_class:task_tick(), if non-null, is invoked.
For example, for any thread belonging to the fair (CFS) class, the update of the
vruntime member (the virtual runtime, the (priority-biased) time spent on the
processor by the task) is done here in task_tick_fair().

More technically, all this work described in the preceding paragraph
occurs within the timer interrupt soft IRQ, TIMER_SOFTIRQ.

Now, a key point, it's the scheduling code that decides: do we need to preempt
current? Within this timer interrupt code path, if the kernel detects that the current
task has exceeded its time quantum or must, for any reason, be preempted (perhaps
there is another runnable thread now on the runqueue with higher priority than it),
the code sets a "global" flag called need_resched. (The reason we put the word
global within quotes is that it's not really a kernel-wide global; it's actually simply a
bit within current instance's thread_info->flags bitmask named
TIF_NEED_RESCHED. Why? It's actually faster to access the bit that way!) It's worth
emphasizing that, in the typical (likely) case, there will be no need to preempt
current, thus the thread_info.flags:TIF_NEED_RESCHED bit will remain clear. If
set, scheduler activation will occur soon; but when exactly? Do read on...

The CPU Scheduler - Part 1 Chapter 10

[523]

The process context part
Once the just-described timer interrupt portion of the scheduling housekeeping work
is done (and, of course, these things are done very quickly indeed), control is handed
back to the process context (the thread, current) that was rudely interrupted. It will
now be running what we think of as the exit path from the interrupt. Here, it
checks whether the TIF_NEED_RESCHED bit is set – the need_resched() helper
routine performs this task. If it returns True, this indicates the immediate need for a
reschedule to occur: the kernel calls schedule()! Here, it's fine to do so, as we are
now running in process context. (Always keep in mind: all this code we're talking
about here is being run by current, the process context in question.)

Of course, now the key question becomes where exactly is the code that will
recognize whether the TIF_NEED_RESCHED bit has been set (by the previously
described timer interrupt part)? Ah, this becomes the crux of it: the kernel arranges
for several scheduling opportunity points to be present within the kernel code base.
Two scheduling opportunity points are as follows:

Return from the system call code path.
Return from the interrupt code path.

So, think about it: every time any thread running in user space issues a system call,
that thread is (context) switched to kernel mode and now runs code within the kernel,
with kernel privilege. Of course, system calls are finite in length; when done, there is
a well-known return path that they will follow in order to switch back to user mode
and continue execution there. On this return path, a scheduling opportunity point is
introduced: a check is made to see whether the TIF_NEED_RESCHED bit within its
thread_info structure is set. If yes, the scheduler is activated.

FYI, the code to do this is arch-dependent; on x86 it's
here: arch/x86/entry/common.c:exit_to_usermode_loop(). Within it, the
section relevant to us here is:

static void exit_to_usermode_loop(struct pt_regs *regs, u32
cached_flags)
{
[...]
 if (cached_flags & _TIF_NEED_RESCHED)
 schedule();

The CPU Scheduler - Part 1 Chapter 10

[524]

Similarly, after handling an (any) hardware interrupt (and any associated soft IRQ
handlers that needed to be run), after the switch back to process context within the
kernel (an artifact within the kernel – irq_exit()), but before restoring context to
the task that was interrupted, the kernel checks the TIF_NEED_RESCHED bit: if it is set,
schedule() is invoked.

Let's summarize the preceding discussion on the setting and recognition of
the TIF_NEED_RESCHED bit:

The timer interrupt (soft IRQ) sets the thread_info:flags
TIF_NEED_RESCHED bit in the following cases:

If preemption is required by the logic within the scheduling
class's scheduler_tick() hook function; for example, on
CFS, if the current task's vruntime value exceeds that of
another runnable thread by a given threshold (typically 2.25
ms; the relevant tunable is
/proc/sys/kernel/sched_min_granularity_ns).
If a higher-priority thread becomes runnable (on the same
CPU and thus runqueue; via try_to_wake_up()).

In process context, this is what occurs: on both the interrupt return and
system call return path, check the value of TIF_NEED_RESCHED:

If it's set (1), call schedule(); otherwise, continue
processing.

As an aside, these scheduling opportunity points – the return from a
hardware interrupt or a system call – also serve as signal recognition
points. If a signal is pending on current, it is serviced before
restoring context or returning to user space.

Preemptible kernel
Let's take a hypothetical situation: you're running on a system with one CPU. An
analog clock app is running on the GUI along with a C program, a.out, whose one
line of code is (groan) while(1);. So, what do you think: will the CPU hogger while 1
process indefinitely hog the CPU, thus causing the GUI clock app to stop ticking (will
its second hand stop moving altogether)?

The CPU Scheduler - Part 1 Chapter 10

[525]

A little thought (and experimentation) will reveal that, indeed, the GUI clock app
keeps ticking in spite of the naughty CPU hogger app! Actually, this is really the
whole point of having an OS-level scheduler: it can, and does, preempt the CPU-
hogging user space process. (We briefly discussed the CFS algorithm previously; CFS
will cause the aggressive CPU hogger process to accumulate a huge vruntime value
and thus move more to the right on its rb-tree runqueue, thus penalizing itself!) All
modern OSes support this type of preemption – it's called user-mode preemption.

But now, consider this: what if you write a kernel module that performs the same
while(1) infinite loop on a single processor system? This could be a problem: the
system will now simply hang. How will the OS preempt itself (as we understand that
kernel modules run in kernel mode at kernel privilege)? Well, guess what: for many
years now, Linux has provided a build-time configuration option to make the kernel
preemptible, CONFIG_PREEMPT. (Actually, this is merely evolution toward the long-
term goal of cutting down latencies and improving the kernel and scheduler
response. A large body of this work came from earlier, and some ongoing, efforts: the
Low Latency (LowLat) patches, (the old) RTLinux work, and so on. We will cover
more on real-time (RTOS) Linux - RTL - in the following chapter.) Once
this CONFIG_PREEMPT kernel config option is turned on and the kernel is built and
booted into, we're now running on a preemptible kernel – where the OS has the
ability to preempt itself.

To check out this option, within make menuconfig, navigate to
General Setup | Preemption Model.

There are essentially three available kernel config options as far as preemption goes:

Preemption type Characteristics Appropriate for

CONFIG_PREEMPT_NONE
Traditional model, geared
toward high overall
throughput.

Server/enterprise-class and
compute-intensive systems

CONFIG_PREEMPT_VOLUNTARY

Preemptible kernel (desktop);
more explicit preemption
opportunity points within the
OS; leads to lower latencies,
better app response. Typically
the default for distros.

Workstations/desktops,
laptops running Linux for the
desktop

The CPU Scheduler - Part 1 Chapter 10

[526]

CONFIG_PREEMPT

LowLat kernel; (almost) the
entire kernel is preemptible;
implies involuntary
preemption of even kernel
code paths is now possible;
yields even lower latencies
(tens of us to low hundreds us
range on average) at the cost
of slightly lower throughput
and slight runtime overhead.

Fast multimedia systems
(desktops, laptops, even
modern embedded products:
smartphones, tablets, and so
on)

The kernel/Kconfig.preempt kbuild configuration file contains the relevant menu
entries for the preemptible kernel options. (As you will see in the following chapter,
when building Linux as an RTOS, a fourth choice for kernel preemption appears.)

CPU scheduler entry points
The detailed comments present in (just before) the core kernel scheduling
function kernel/sched/core.c:__schedule() are well worth reading through;
they specify all the possible entry points to the kernel CPU scheduler. We have
simply reproduced them here directly from the 5.4 kernel code base, so do take a
look. Keep in mind: the following code is being run in process context by the process
(thread, really) that's going to kick itself off the CPU by ultimately context-switching
to some other thread! And this thread is who? Why, it's current, of course!

The __schedule() function has (among others) two local variables, pointer to struct
task_struct named prev and next. The pointer named prev is set to rq->curr,
which is nothing but current! The pointer named next will be set to the task that's
going to be context-switched to, that's going to run next! So, you see: current runs
the scheduler code, performing the work and then kicking itself off the processor by
context-switching to next! Here's the large comment we mentioned:

// kernel/sched/core.c
/*
 * __schedule() is the main scheduler function.
 * The main means of driving the scheduler and thus entering this
function are:
 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 * 2. TIF_NEED_RESCHED flag is checked on interrupt and user space
return
 * paths. For example, see arch/x86/entry_64.S.
 *
 * To drive preemption between tasks, the scheduler sets the flag

The CPU Scheduler - Part 1 Chapter 10

[527]

in timer
 * interrupt handler scheduler_tick().
 *
 * 3. Wakeups don't really cause entry into schedule(). They add a
 * task to the run-queue and that's it.
 *
 * Now, if the new task added to the run-queue preempts the current
 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 * called on the nearest possible occasion:
 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
 *
 * - in syscall or exception context, at the next outmost
 * preempt_enable(). (this might be as soon as the wake_up()'s
 * spin_unlock()!)
 *
 * - in IRQ context, return from interrupt-handler to
 * preemptible context
 *
 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not
set)
 * then at the next:
 * - cond_resched() call
 * - explicit schedule() call
 * - return from syscall or exception to user-space
 * - return from interrupt-handler to user-space
 * WARNING: must be called with preemption disabled!
 */

The preceding code is a large comment detailing how exactly the kernel CPU core
scheduling code – __schedule() – can be invoked. Small relevant snippets of
__schedule() itself can be seen in the following code, reiterating the points we have
been discussing:

static void __sched notrace __schedule(bool preempt)
{
 struct task_struct *prev, *next;
 [...] struct rq *rq;
 int cpu;

 cpu = smp_processor_id();
 rq = cpu_rq(cpu);
 prev = rq->curr; << this is 'current' ! >>

 [...]

 next = pick_next_task(rq, prev, &rf); << here we 'pick' the task
to run next in an 'object-
 oriented' manner, as

The CPU Scheduler - Part 1 Chapter 10

[528]

discussed earlier in detail ... >>
 clear_tsk_need_resched(prev);
 clear_preempt_need_resched();

 if (likely(prev != next)) {
 [...]
 /* Also unlocks the rq: */
 rq = context_switch(rq, prev, next, &rf);
 [...]
}

A quick word on the actual context switch follows.

The context switch
To finish this discussion, a quick word on the (scheduler) context switch. The job of
the context switch (in the context of the CPU scheduler) is quite obvious: before
simply switching to the next task, the OS must save the state of the previous, that is,
the currently executing, task; in other words, the state of current. You will recall
from Chapter 6, Kernel Internals Essentials – Processes and Threads, that the task
structure holds an inline structure to store/retrieve the thread's hardware context; it's
the member struct thread_struct thread (on the x86, it's always the very last
member of the task struct). In Linux, an inline
function, kernel/sched/core.c:context_switch(), performs the job, switching
from the prev task (that is, from current) to the next task, the winner of this
scheduling round or preemption. This switch is essentially performed in two (arch-
specific) stages:

The memory (MM) switch: Switch an arch-specific CPU register to point to
the memory descriptor structure (struct mm_struct) of next. On the
x86[_64], this register is called CR3 (Control Register 3); on ARM, it's called
the TTBR0 (Translation Table Base Register 0) register.
The actual CPU switch: Switch from prev to next by saving the stack and
CPU register state of prev and restoring the stack and CPU register state of
next onto the processor; this is done within the switch_to() macro.

A detailed implementation of the context switch is not something we shall cover here;
do check out the Further reading section for more resources.

The CPU Scheduler - Part 1 Chapter 10

[529]

Summary
In this chapter, you learned about several areas and facets of the versatile Linux
kernel's CPU scheduler. Firstly, you saw how the actual KSE is a thread and not a
process, followed by gaining an appreciation of the available scheduling policies that
the OS implements. Next, you understood that to support multiple CPUs in a
superbly scalable fashion, the kernel powerfully mirrors this with a design that
employs one runqueue per CPU core per scheduling class. How to query any given
thread's scheduling policy and priority, and deeper details on the internal
implementation of the CPU scheduler, were then covered. We focused on how the
modern scheduler leverages the modular scheduling classes design, who exactly runs
the actual scheduler code and when, and ended with a brief note on the context
switch.

The next chapter has you continue on this journey, gaining more insight and details
on the workings of the kernel-level CPU scheduler. I suggest you first fully digest this
chapter's content, work on the questions given, and then move on to the next chapter.
Great going!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

11
The CPU Scheduler - Part 2

In this, our second chapter on the Linux kernel CPU scheduler, we continue our
coverage from the previous chapter. In the preceding chapter, we covered several key
areas regarding the workings (and visualization) of the CPU scheduler on the Linux
OS. This included topics on what exactly the KSE on Linux is, the POSIX scheduling
policies that Linux implements, using perf to see the scheduler flow, and how the
design of the modern scheduler is based upon modular scheduling classes. We also
covered how to query any thread's scheduling policy and priority (using a couple of
command line utilities), and delved deeper into the internal workings of the OS
scheduler.

With this background in place, we're now ready to explore more on the CPU
scheduler on Linux; in this chapter, we shall cover the following areas:

Visualizing the flow with LTTng and trace-cmd
Understanding, querying, and setting the CPU affinity mask
Querying and setting a thread's scheduling policy and priority
CPU bandwidth control with cgroups
Converting mainline Linux into an RTOS
Latency and its measurement

We do expect that you've read (or have the equivalent knowledge of) the previous
chapter before tackling this one.

Technical requirements
I assume you have gone through Chapter 1, Kernel Workspace Setup, and have
appropriately prepared a guest Virtual Machine (VM) running Ubuntu 18.04 LTS (or
a later stable release) and installed all the required packages. If not, I highly
recommend you do this first.

The CPU Scheduler - Part 2 Chapter 11

[531]

To get the most out of this book, I strongly recommend you first set up the
workspace environment, including cloning this book's GitHub repository for the
code, and work on it in a hands-on fashion. The repository can be found
here: https:// github. com/ PacktPublishing/ Linux- Kernel- Programming.

Visualizing the flow with LTTng and trace-
cmd
In the previous chapter, we saw how we can visualize the flow of threads across the
processor(s) with perf (and a few alternatives). Now, we proceed to do so with more
powerful, more visual profiling tools: with LTTng (and the Trace Compass GUI) and
with trace-cmd (an Ftrace frontend and the KernelShark GUI).

Do note that the intent here is to introduce you to these powerful tracing technologies
only; we do not have the scope nor space required to do full justice to these topics.

Visualization with LTTng and Trace Compass
The Linux Trace Toolkit Next Generation (LTTng) is a set of open source tools
enabling you to simultaneously trace both user and kernel space. A bit ironically,
tracing the kernel is easy, whereas tracing user space (apps, libraries, and even
scripts) requires the developer to manually insert instrumentation (so-called
tracepoints) into the application (the tracepoint instrumentation for the kernel is
supplied by LTTng as kernel modules). The high-quality LTTng documentation is
available online here: https:/ /lttng. org/ docs/ v2. 12/ (covering version 2.12 as of
the time of writing).

We do not cover the installation of LTTng here; the details are available at https:/ /
lttng.org/docs/ v2. 12/ #doc- installing- lttng. Once installed (it's kind of heavy –
on my native x86_64 Ubuntu system, there are over 40 kernel modules loaded up
pertaining to LTTng!), using LTTng - for a system-wide kernel session as we do here -
is easy and is performed in two distinct stages: recording, followed by data analysis;
these steps follow. (As this book is focused on kernel development, we don't cover
using LTTng to trace user space apps.)

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng
https://lttng.org/docs/v2.12/#doc-installing-lttng

The CPU Scheduler - Part 2 Chapter 11

[532]

Recording a kernel tracing session with LTTng
You can record a system-wide kernel tracing session as follows (here, we deliberately
keep the discussion as simple as possible):

Create a new session and set the output directory to <dir> for saving1.
tracing metadata:

sudo lttng create <session-name> --output=<dir>

Simply enable all kernel events (can lead to a large amount of tracing2.
metadata being generated though):

sudo lttng enable-event --kernel --all

Start recording a "kernel session":3.

sudo lttng start

Allow some time to elapse (the longer you trace for, the more the disk space
that's used by the tracing metadata). During this period, all kernel activity is
being recorded by LTTng.

Stop recording:4.

sudo lttng stop

Destroy the session; don't worry, this does not delete the tracing metadata:5.

sudo lttng destroy

All the preceding commands should be run with admin privileges (or equivalent).

I have a few wrapper scripts to perform tracing with (LTTng, Ftrace,
trace-cmd) at https:/ / github. com/ kaiwan/ L5_ debug_ trg/ tree/
master/ kernel_ debug/ tracing; do check them out.

The tracing metadata files (in the Common Trace Format (CTF) file format) gets
saved to the preceding specified output directory.

https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing
https://github.com/kaiwan/L5_debug_trg/tree/master/kernel_debug/tracing

The CPU Scheduler - Part 2 Chapter 11

[533]

Reporting with a GUI – Trace Compass
The data analysis can be performed in two broad ways – using a CLI-based system
typically packaged along with LTTng called babeltrace, or via a sophisticated GUI
called Trace Compass. The GUI is far more appealing; we only show its basic usage
here.

Trace Compass is a powerful cross-platform GUI application and integrates well with
Eclipse. In fact, we quote directly from the Eclipse Trace Compass site (https:/ /
projects.eclipse. org/ projects/ tools. tracecompass):

"Eclipse Trace Compass is an open source application to solve performance and reliability
issues by reading and analyzing logs or traces of a system. Its goal is to provide views, graphs,
metrics, and more to help extract useful information from traces, in a way that is more user-
friendly and informative than huge text dumps."

It can be downloaded (and installed) from here: https:/ / www.eclipse. org/
tracecompass/.

Trace Compass minimally requires a Java Runtime
Environment (JRE) to be installed as well. I installed one on my
Ubuntu 20.04 LTS system with sudo apt install openjdk-14-
jre.

Once installed, fire up Trace Compass, click on the File | Open Trace menu, and
navigate to the output directory where you saved the trace metadata for your tracing
session in the preceding steps. Trace Compass will read the metadata and display it
visually, along with various perspectives and tool views made available. A partial
screenshot from our brief system-wide kernel tracing session is shown here (Figure
11.1); you can literally see the context switch (shown as the sched_switch event –
see the Event type column) from the gnome-shell process to the swapper/1 kernel
thread (the idle thread running on CPU #1):

https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/

The CPU Scheduler - Part 2 Chapter 11

[534]

Figure 11.1 – Trace Compass GUI showing a sample kernel tracing session obtained via LTTng

Look carefully at the preceding screenshot (Figure 11.1); in the lower horizontal pane,
not only do you get to see which kernel function executed, you also get (under the
column labeled Contents) the parameter list along with the value each parameter had
at the time! This can be very useful indeed.

Visualizing with trace-cmd
Modern Linux kernels (from 2.6.27) embed a very powerful tracing engine
called Ftrace. Ftrace is the rough kernel equivalent of the user
space strace(1) utility, but that would be short-selling it! Ftrace allows the sysad
(or developer, tester, or anyone with root privileges really) to literally look under the
hood, seeing every single function being executed in kernel space, who (which
thread) executed it, how long it ran for, what APIs it invoked, with interrupts (hard
and soft) included as they occur, various types of latency measurements, and more.
You can use Ftrace to learn about how system utilities, applications, and the kernel
actually work, as well as to perform deep tracing at the level of the OS.

Here, in this book, we refrain from delving into the depths of raw Ftrace usage (as it
deviates from the subject at hand); instead, it is just quicker and easier to use a user
space wrapper over Ftrace, a more convenient interface to it, called trace-
cmd(1) (again, we only scratch the surface, showing an example of how trace-
cmd can be used).

The CPU Scheduler - Part 2 Chapter 11

[535]

For Ftrace details and usage, the interested reader will find this
kernel document useful: https:/ / www.kernel. org/ doc/
Documentation/ trace/ ftrace. rst.

Most modern Linux distros will allow the installation of trace-cmd via their package
management system; on Ubuntu, for example, sudo apt install trace-cmd is
sufficient to install it (if required for a custom Linux on, say, ARM, you can always
cross-compile it from the source on its GitHub repository: https:/ /git. kernel. org/
pub/scm/linux/ kernel/ git/ rostedt/ trace- cmd. git/tree/).

Let's perform a simple trace-cmd session; first, we shall record data samples while
the ps(1) utility runs; then we shall examine the captured data both via the trace-
cmd report Command-Line Interface (CLI) as well as a GUI frontend
called KernelShark (it's in fact part of the trace-cmd package).

Recording a sample session with trace-cmd record
In this section, we record a session with trace-cmd(1); we use a few (of the many
possible) option switches to trace-cmd record; as usual, the man pages
on trace-cmd-foo(1) (substitute foo with check-events, hist, record, report,
reset, and so on) are very useful for finding various option switches and usage
details. A few of the useful option switches particularly for trace-cmd record are
as follows:

-o: Specifies the output filename (if not specified, it defaults to
trace.dat).
-p: The plugin to use, one of function, function_graph,
preemptirqsoff, irqsoff, preemptoff, and wakeup; here, in our small
demo, we use the function-graph plugin (several other plugins can be
configured in the kernel as well).
-F: The command (or app) to trace; this is very useful, allowing you to
specify exactly which process (or thread) to exclusively trace (otherwise,
tracing all threads can result in a lot of noise when attempting to decipher
the output); similarly, you can use the -P option switch to specify the PID
to trace.
-r priority: Runs the trace-cmd threads at the real-time priority
specified (the typical range being 1 to 99; we shall cover querying and
setting a thread's scheduling policy and priority shortly); this gives a better
bet on trace-cmd being able to capture samples as required.

https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/
https://git.kernel.org/pub/scm/linux/kernel/git/rostedt/trace-cmd.git/tree/

The CPU Scheduler - Part 2 Chapter 11

[536]

Here, we run a quick demo: we run ps -LA; while it runs, all kernel traffic it
generates is (exclusively) captured by trace-cmd via it's record functionality (we
employ the function-graph plugin):

$ sudo trace-cmd record -o trace_ps.dat -r 99 -p function_graph -F ps
-LA
plugin 'function_graph'
PID LWP TTY TIME CMD
 1 1 ? 00:01:42 systemd
 2 2 ? 00:00:00 kthreadd
[...]
32701 734 tty2 00:00:00 ThreadPoolForeg
CPU 2: 48176 events lost
CPU0 data recorded at offset=0x761000
[...]
CPU3 data recorded at offset=0xf180000
114688 bytes in size
$ ls -lh trace_ps.dat
-rw-r--r-- 1 root root 242M Jun 25 11:23 trace_ps.dat
$

A rather large data file results (as we captured all events and did a ps -LA displaying
all threads alive, it took a while, and thus the data samples captured are large-ish.
Also realize that by default, kernel tracing is performed across all CPUs on the
system; you can change this via the -M cpumask option.)

In the preceding example, we captured all events. The -e option
switch to trace-cmd(1) allows you to specify a class of events to
trace; for example, to trace the ping(1) utility and capture only
events related to networking and kernel memory, run the following
command:
sudo trace-cmd record -e kmem -e net -p

function_graph -F ping -c1 packtpub.com.

The CPU Scheduler - Part 2 Chapter 11

[537]

Reporting and interpretation with trace-cmd report
(CLI)
Continuing from the preceding section, on the command line, we can get a (very!)
detailed report of what occurred within the kernel when the ps process ran; use the
trace-cmd report command to see this. We also pass along the -l option switch: it
displays the report in what is referred to as Ftrace's latency format, revealing many
useful details; the -i switch of course specifies the input file to use:

trace-cmd report -i ./trace_ps.dat -l > report_tc_ps.txt

Now it gets very interesting! We show a few partial screenshots of the (huge) output
file that we opened with vim(1); first we have the following:

Figure 11.2 – A partial screenshot showing the output of the trace-cmd report

Look at Figure 11.2; the call to the kernel API, schedule(), is deliberately
highlighted and in bold font (Figure 11.2, on line 785303!). In order to interpret
everything on this line, we must understand each (white-space delimited) column;
there are eight of them:

Column 1: Here, it's just the line number in the file that vim shows (let's
ignore it).
Column 2: This is the process context that invoked this function (the
function itself is in column #8); clearly, here, the process is ps-PID (its PID
is appended after a - character).

The CPU Scheduler - Part 2 Chapter 11

[538]

Column 3: useful! A series of five characters, which shows up in latency
format (we used the -l option switch to trace-cmd record, remember!);
this (in our preceding case, it's 2.N..) is very useful and can be interpreted
as follows:

The very first character is the CPU core it was running upon
(so here it was core #2) (note that, as a general rule, besides
the first one, if the character is a period ., it means it's zero or
not applicable).
The second character represents the hardware interrupt
status:

. implies the default hardware interrupts
are enabled.
d implies hardware interrupts are
currently disabled.

The third character represents the need_resched bit (we
explained this in the previous chapter, in the When does the
scheduler run? section):

. implies it's cleared.
N implies it's set (which implies that the kernel
requires rescheduling to be performed ASAP!).

The fourth character has meaning only when an interrupt is
in progress, otherwise, it is merely a ., implying we are in a
process context; if an interrupt is in progress – implying
we're in an interrupt context – its value is one of the
following:

h implies we are executing in a hardirq (or top
half) interrupt context.
H implies we are executing in a hardirq that
occurred within a softirq.
s implies we are executing in a softirq (or
bottom half) interrupt context.

The CPU Scheduler - Part 2 Chapter 11

[539]

The fifth character represents the preemption count or depth;
if it's a ., it's zero, implying the kernel is running in a
preemptible state; if nonzero, an integer number shows up,
implying that many kernel-level lock(s) have been taken,
forcing the kernel into a non-preemptible state.
By the way, the output is very similar to Ftrace's raw output
except that in the case of raw Ftrace, we would see only four
characters – the first one (the CPU core number) does not
show up here; it shows up as the leftmost column instead;
here's a partial screenshot of the raw Ftrace (not trace-cmd)
latency format:

Figure 11.3 – A partial screenshot focused on raw Ftrace's four-character latency format (fourth field)

The preceding screenshot was culled directly from the raw
Ftrace output.

So, interpreting our example for the call to schedule(), we
can see that the characters are 2.N.. implying that the
process ps with PID 22922 was executing on CPU core #2 in
a process context (no interrupts) and the need-resched
(technically, thread_info.flags:TIF_NEED_RESCHED) bit
was set (indicating the need for a reschedule ASAP!).

The CPU Scheduler - Part 2 Chapter 11

[540]

(Back to the remaining columns in Figure 11.2 now)
Column 4: Timestamp in seconds:microseconds format.
Column 5: The name of the event that occurred (here, as we've used
the function_graph plugin, it will be either funcgraph_entry or
fungraph_exit, implying function entry or exit respectively).
Column 6 [optional]: The duration of the preceding function call with the
time taken shown along with its unit (us = microseconds); a prefix character
is used to denote whether the function execution took a long time (we
simply treat it as part of this column); from the kernel Ftrace
documentation (here: https:/ /www. kernel. org/ doc/ Documentation/
trace/ ftrace. rst), we have this:

+, which implies that a function surpassed 10 microseconds
!, which implies that a function surpassed 100 microseconds
#, which implies that a function surpassed 1,000
microseconds
*, which implies that a function surpassed 10 milliseconds
@, which implies that a function surpassed 100 milliseconds
$, which implies that a function surpassed 1 second

Column 7: Just the separator character |.
Column 8: The extreme-right column is the name of the kernel function
being executed; an open brace on the right, {, implies the function is
invoked just now; the column with only a close brace, }, implies the
preceding function's end (matching the open brace).

This level of detail can be extremely valuable in both troubleshooting kernel (and
even user space) issues, and understanding the flow of the kernel in great detail.

When trace-cmd record is used without the -p function-
graph option switch, we do lose the nicely indented function call
graph-like output, but we do gain something as well: you will now
see all function parameters along with their runtime values to the
right of every single function call! A truly valuable aid at times.

https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst
https://www.kernel.org/doc/Documentation/trace/ftrace.rst

The CPU Scheduler - Part 2 Chapter 11

[541]

I can't resist showing another snippet from the same report – another interesting
example with regard to the very things we learned about how scheduling classes
work on modern Linux (covered in the previous chapter); this actually shows up here
in the trace-cmd output:

Figure 11.4 – A partial screenshot of trace-cmd report output

Interpret the preceding screenshot (Figure 11.4) closely: the second line (with the
right-most function name column in bold font, as are the two functions immediately
following it) shows that the pick_next_task_stop() function was invoked; this
implies that a schedule occurred and the core scheduling code within the kernel went
through its routine – it walks the linked list of scheduling classes in priority order,
asking each whether it has a thread to schedule; if they do, the core scheduler context
switches to it (as was explained in some detail in the previous chapter, in the Modular
scheduling classes section).

In Figure 11.4, you literally see this happen: the core scheduling code asks the stop-
sched (SS), deadline (DL), and real-time (RT) classes whether they have any thread
that wants to run, by invoking, in turn,
the pick_next_task_stop(), pick_next_task_dl(), and pick_next_task_rt(
) functions. Apparently, for all of them, the answer is no, as the next function to run
is that of the fair (CFS) class (why doesn't the pick_next_task_fair() function
show up in the preceding screenshot then? Ah, again, that's code optimization for
you: the kernel developers understand that this being the likely case, they check for it
and directly invoke the fair class code most of the time).

What we've covered here on the powerful Ftrace framework and the trace-cmd
utility is just the basics; I urge you to look up the man pages on trace-cmd-
<foo>(where <foo> is replaced with record, report, and so on) there are typically
good examples shown there. Also, there are several very well-written articles on
Ftrace (and trace-cmd) – please refer to the Further reading section for them.

The CPU Scheduler - Part 2 Chapter 11

[542]

Reporting and interpretation with a GUI frontend
More good news: the trace-cmd toolset includes a GUI frontend, for more human-
friendly interpretation and analysis, called KernelShark (though, in my opinion, it
isn't as full-featured as Trace Compass is). Installing it on Ubuntu/Debian is as simple
as doing sudo apt install kernelshark.

Below, we run kernelshark, passing the trace data file output from our
preceding trace-cmd record session as the parameter to it (adjust the parameter to
KernelShark to refer to the location where you've saved the tracing metadata):

$ kernelshark ./trace_ps.dat

A screenshot of KernelShark running with the preceding trace data is shown here:

Figure 11.5 – A screenshot of the kernelshark GUI displaying the earlier-captured data via trace-cmd

Interesting; the ps process ran on CPU #2 (as we saw with the CLI version
previously). Here, we also see the functions executed in the lower tiled horizontal
window pane; as an example, we have highlighted the entry
for pick_next_task_fair(). The columns are quite obvious, with
the Latency column format (four characters, not five) interpreted as we explained
previously for (raw) Ftrace.

The CPU Scheduler - Part 2 Chapter 11

[543]

Quick quiz: What does the Latency format field dN.., seen in
Figure 11.5, imply?

Answer: It implies that, currently, right now, we have the following:

First column d: Hardware interrupts are disabled.
Second column N: The need_resched bit is set (implying
the need to invoke the scheduler at the next available
scheduling opportunity point).
Third column .: The kernel
pick_next_task_fair() function's code is running in a
process context (the task being ps with a PID of 22545;
remember, Linux is a monolithic kernel!).
Fourth column .: The preemption depth (count) is zero,
implying the kernel is in a preemptible state.

Now that we have covered using these powerful tools to help generate and visualize
data related to kernel execution and scheduling, let's move on to another area: in the
next section, we focus on another important aspect – what exactly a thread's CPU
affinity mask is, and how you can programmatically (and otherwise) get/set it.

Understanding, querying, and setting the
CPU affinity mask
The task structure, the root data structure containing several dozen thread attributes,
has a few attributes directly pertaining to scheduling: the priority (the nice as well as
the RT priority values), the scheduling class structure pointer, the runqueue the
thread is on (if any), and so on.

Among these is an important member, the CPU affinity bitmask (the actual structure
member is cpumask_t cpus_allowed). This also tells you that the CPU affinity
bitmask is a per-thread quantity; this makes sense - the KSE on Linux is a thread, after
all. It's essentially an array of bits, each bit representing a CPU core (with sufficient
bits available within the variable); if the bit corresponding to a core is set (1), the
thread is allowed to be scheduled on and execute on that core; if cleared (0), it's not.

The CPU Scheduler - Part 2 Chapter 11

[544]

By default, all the CPU affinity mask bits are set; thus, the thread can run on any core.
For example, on a box with (the OS seeing) four CPU cores, the default CPU affinity
bitmask for each thread would be binary 1111 (0xf). (Glance at Figure 11.6 to see
how the CPU affinity bitmask looks, conceptually speaking.)

At runtime, the scheduler decides which core the thread will actually run upon. In
fact, think about it, it's really implicit: by default, each CPU core has a runqueue
associated with it; every runnable thread will be on a single CPU runqueue; it's thus
eligible to run and by default runs on the CPU that it's runqueue represents. Of
course, the scheduler has a load balancer component that can migrate threads to other
CPU cores (runqueues, really) as the need arises (kernel threads called migration/n,
where n is the core number assist in this task).

The kernel does expose APIs to user space (system calls, of
course, sched_{s,g}etaffinity(2) and their pthread wrapper library APIs),
which allows an application to affine, or associate, a thread (or multiple threads) to
particular CPU cores as it sees fit (and by the same logic, we can do this within the
kernel as well for any given kernel thread). For example, setting the CPU affinity
mask to 1010 binary, which equals 0xa in hexadecimal, implies that the thread can
execute only upon CPU cores one and three (counting starts from zero).

A key point: though you can manipulate the CPU affinity mask, the recommendation
is to avoid doing so; the kernel scheduler understands the CPU topography in detail
and can best load-balance the system.

Having said that, explicitly setting the CPU affinity mask of a thread can be beneficial
due to the following reasons:

Cache invalidation (and thus unpleasant cache "bouncing") can be greatly
reduced by ensuring a thread always runs on the same CPU core.
Thread migration costs between cores are effectively eliminated.
CPU reservation—a strategy to bestow the core(s) exclusively to one thread
by guaranteeing all other threads are explicitly not allowed to execute upon
that core.

The first two are useful in some corner cases; the third one, CPU reservation, tends to
be a technique used in some time-critical real-time systems where the cost of doing so
is justified. Performing CPU reservation in practice is quite difficult to do though,
requiring OS-level intervention at (every!) thread creation; the cost might be
prohibitive. For this reason, this is actually implemented by specifying that a certain
CPU (or more) be isolated from all tasks; the Linux kernel provides a kernel
parameter, isolcpus, for this very job.

The CPU Scheduler - Part 2 Chapter 11

[545]

In this regard, we quote directly from the man page on
the sched_{s,g}etaffinity(2) system calls:

The isolcpus boot option can be used to isolate one or more CPUs at boot time, so
that no processes are scheduled onto those CPUs. Following the use of this boot
option, the only way to schedule processes onto the isolated CPUs is
via sched_setaffinity() or the cpuset(7) mechanism. For further information, see the
kernel source file Documentation/admin-guide/kernel-parameters.txt. As noted in
that file, isolcpus is the preferred mechanism of isolating CPUs (versus the
alternative of manually setting the CPU affinity of all processes on the system).

Note, though, the previously mentioned isolcpus kernel
parameter is now considered deprecated; it's preferable to use the
cgroups cpusets controller instead (cpusets is a cgroup feature or
controller; we do have some coverage on cgroups later in this
chapter, in the CPU bandwidth control with cgroups section).

We refer you to more details in the kernel parameter documentation
(here: https:/ /www. kernel. org/ doc/ Documentation/ admin- guide/
kernel- parameters. txt), specifically under the parameter labeled
isolcpus=.

Now that you understand the theory behind it, let's actually write a user space C
program to query and/or set the CPU affinity mask of any given thread.

Querying and setting a thread's CPU affinity
mask
As a demonstration, we provide a small user space C program to query and set a user
space process (or thread's) CPU affinity mask. Querying the CPU affinity mask is
achieved with the sched_getaffinity(2) system call and by setting it with its
counterpart:

#define _GNU_SOURCE
#include <sched.h>

int sched_getaffinity(pid_t pid, size_t cpusetsize,
 cpu_set_t *mask);
int sched_setaffinity(pid_t pid, size_t cpusetsize,
 const cpu_set_t *mask);

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

The CPU Scheduler - Part 2 Chapter 11

[546]

A specialized data type called cpu_set_t is what is used to represent the CPU
affinity bitmask; it's quite sophisticated: its size is dynamically allocated based on the
number of CPU cores seen on the system. This CPU mask (of type cpu_set_t) must
first be initialized to zero; the CPU_ZERO() macro achieves this (several similar helper
macros exist; do refer to the man page on CPU_SET(3)). The second parameter in
both the preceding system calls is the size of the CPU set (we simply use
the sizeof operator to obtain it).

To understand this better, it's instructive to see a sample run of our code
(ch11/cpu_affinity/userspc_cpuaffinity.c); we run it on a native Linux
system with 12 CPU cores:

Figure 11.6 – Our demo user space app showing the CPU affinity mask

Here, we have run the app with no parameters. In this mode, it queries the CPU
affinity mask of itself (meaning, of the userspc_cpuaffinity calling process). We
print out the bits of the bitmask: as you can clearly see in the preceding screenshot,
it's binary 1111 1111 1111 (which is equivalent to 0xfff), implying that by default
the process is eligible to run on any of the 12 CPU cores available on the system.

The app detects the number of CPU cores available by running the nproc(1) utility
via the useful popen(3) library API. Do note though, that the value returned by
nproc is the number of CPU cores available to the calling process; it may be less than
the actual number of CPU cores (it's usually the same); the number of available cores
can be changed in a few ways, the proper way being via the cgroup cpuset resource
controller (we cover some information on cgroups later in this chapter).

The querying code is as follows:

// ch11/cpu_affinity/userspc_cpuaffinity.c

static int query_cpu_affinity(pid_t pid)
{
 cpu_set_t cpumask;

 CPU_ZERO(&cpumask);

The CPU Scheduler - Part 2 Chapter 11

[547]

 if (sched_getaffinity(pid, sizeof(cpu_set_t), &cpumask) < 0) {
 perror("sched_getaffinity() failed");
 return -1;
 }
 disp_cpumask(pid, &cpumask, numcores);
 return 0;
}

Our disp_cpumask() function draws the bitmask (we leave it to you to check it out).

If additional parameters are passed – the PID of the process (or thread), as the first
parameter, and a CPU bitmask, as the second parameter – we then attempt to set the
CPU affinity mask of that process (or thread) to the value passed. Of course, changing
the CPU affinity bitmask requires you to own the process or have root privileges
(more correctly, to have the CAP_SYS_NICE capability).

A quick demo: in Figure 11.7, nproc(1) shows us the number of CPU cores; then, we
run our app to query and set our shell process's CPU affinity mask. On a laptop, let's
say that the affinity mask of bash is 0xfff (binary 1111 1111 1111) to begin with,
as expected; we change it to 0xdae (binary 1101 1010 1110) and query it again to
verify the change:

Figure 11.7 – Our demo app queries then sets the CPU affinity mask of bash to 0xdae

The CPU Scheduler - Part 2 Chapter 11

[548]

Okay, this is interesting: to begin with, the app correctly detects the number of CPU
cores available to it as 12; it then queries the (default) CPU affinity mask of the bash
process (as we pass its PID as the first parameter); it shows up, as 0xfff, as expected.
Then, as we've also passed a second parameter – the bitmask to now set (0xdae) – it
does so, setting the CPU affinity mask of bash to 0xdae. Now, as the terminal
window we're on is this very same bash process, running nproc again shows the
value as 8, not 12! That's indeed correct: the bash process now has only eight CPU
cores available to it. (This is as we don't revert the CPU affinity mask to its original
value on exit.)

Here's the relevant code to set the CPU affinity mask:

// ch11/cpu_affinity/userspc_cpuaffinity.c
static int set_cpu_affinity(pid_t pid, unsigned long bitmask)
{
 cpu_set_t cpumask;
 int i;

 printf("\nSetting CPU affinity mask for PID %d now...\n", pid);
 CPU_ZERO(&cpumask);

 /* Iterate over the given bitmask, setting CPU bits as required */
 for (i=0; i<sizeof(unsigned long)*8; i++) {
 /* printf("bit %d: %d\n", i, (bitmask >> i) & 1); */
 if ((bitmask >> i) & 1)
 CPU_SET(i, &cpumask);
 }

 if (sched_setaffinity(pid, sizeof(cpu_set_t), &cpumask) < 0) {
 perror("sched_setaffinity() failed");
 return -1;
 }
 disp_cpumask(pid, &cpumask, numcores);
 return 0;
}

In the preceding code snippet, you can see we first set up the cpu_set_t bitmask
appropriately (by looping over each bit) and then employ the
sched_setaffinity(2) system call to set the new CPU affinity mask on the given
pid.

The CPU Scheduler - Part 2 Chapter 11

[549]

Using taskset(1) to perform CPU affinity
Akin to how (in the preceding chapter) we used the convenient user space utility
program, chrt(1) to get (or set) a process' (or thread's) scheduling policy and/or
priority, you can use the user space taskset(1) utility to get and/or set a given
process' (or thread's) CPU affinity mask. A couple of quick examples follow; note that
these examples were run on an x86_64 Linux system with 4 CPU cores:

Use taskset to query the CPU affinity mask of systemd (PID 1):

$ taskset -p 1
pid 1's current affinity mask: f
$

Use taskset to ensure that the compiler – and its descendants (the
assembler and linker) – run only on the first two CPU cores; the first
parameter to taskset is the CPU affinity bitmask (03 is binary 0011):

$ taskset 03 gcc userspc_cpuaffinity.c -o userspc_cpuaffinity
-Wall

Do look up the man page on taskset(1) for complete usage details.

Setting the CPU affinity mask on a kernel thread
As an example, if we want to demonstrate a synchronization technique called per-
CPU variables, we are required to create two kernel threads and guarantee that each
of them runs on a separate CPU core. To do so, we must set the CPU affinity mask of
each kernel thread (the first one to 0, the second to 1, in order to have them execute
on only CPUs 0 and 1 respectively). The thing is, it's not a clean job – quite a hack, to
be honest, and definitely not recommended. The following comment from that code
shows why:

 /* ch17/6_percpuvar/6_percpuvar.c */
 /* WARNING! This is considered a hack.
 * As sched_setaffinity() isn't exported, we don't have access to it
 * within this kernel module. So, here we resort to a hack: we use
 * kallsyms_lookup_name() (which works when CONFIG_KALLSYMS is
defined)
 * to retrieve the function pointer, subsequently calling the
function
 * via it's pointer (with 'C' what you do is only limited by your
 * imagination :).
 */

The CPU Scheduler - Part 2 Chapter 11

[550]

 ptr_sched_setaffinity = (void
*)kallsyms_lookup_name("sched_setaffinity");

Later, we invoke the function pointer, in effect invoking
the sched_setaffinity code, like so:

 cpumask_clear(&mask);
 cpumask_set_cpu(cpu, &mask); // 1st param is the CPU number, not
bitmask
 /* !HACK! sched_setaffinity() is NOT exported, we can't call it
 * sched_setaffinity(0, &mask); // 0 => on self
 * so we invoke it via it's function pointer */
 ret = (*ptr_sched_setaffinity)(0, &mask); // 0 => on self

Unconventional and controversial; it does work, but please avoid hacks like this in
production.

Now that you know how to get/set a thread's CPU affinity mask, let's move on to the
next logical step: how to get/set a thread's scheduling policy and priority! The next
section delves into the details.

Querying and setting a thread’s
scheduling policy and priority
In Chapter 10, The CPU Scheduler – Part 1, in the Threads – which scheduling policy and
priority section, you learned how to query the scheduling policy and priority of any
given thread via chrt(1) (we also demonstrated a simple bash script to do so).
There, we mentioned the fact that chrt(1) internally invokes
the sched_getattr(2) system call in order to query these attributes.

Very similarly, setting the scheduling policy and priority can be performed either by
using the chrt(1) utility (making it simple to do so within a script, for example), or
programmatically within a (user space) C application with
the sched_setattr(2) system call. In addition, the kernel exposes other APIs:
sched_{g,s}etscheduler(2) and its pthread library wrapper APIs,
pthread_{g,s}etschedparam(3) (as these are all user space APIs, we leave it to
you to browse through their man pages to get the details and try them out for
yourself).

The CPU Scheduler - Part 2 Chapter 11

[551]

Within the kernel – on a kernel thread
As you know by now, the kernel is most certainly not a process nor a thread. Having
said that, the kernel does contain kernel threads; like their user space counterparts,
kernel threads can be created as required (from within the core kernel, a device
driver, a kernel module). They are schedulable entities (KSEs!) and, of course, each of
them has a task structure; thus, their scheduling policy and priority can be queried or
set as required..

So, to the point at hand: to set the scheduling policy and/or priority of a kernel thread,
the kernel typically makes use of
the kernel/sched/core.c:sched_setscheduler_nocheck() (GFP exported)
kernel API; here, we show its signature and an example of its typical usage; the
comments that follow make it quite self-explanatory:

// kernel/sched/core.c
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT
priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission. For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 *
 * Return: 0 on success. An error code otherwise.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
 const struct sched_param *param)
{
 return _sched_setscheduler(p, policy, param, false);
}
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);

The CPU Scheduler - Part 2 Chapter 11

[552]

One good example of the kernel's usage of kernel threads is when the kernel (quite
commonly) uses threaded interrupts. Here, the kernel must create a dedicated kernel
thread with the SCHED_FIFO (soft) real-time scheduling policy and a real-time
priority value of 50 (halfway between), for interrupt handling purposes. The
(relevant) code to do this is shown here as an example of setting scheduling policy
and priority on a kernel thread:

// kernel/irq/manage.c
static int
setup_irq_thread(struct irqaction *new, unsigned int irq, bool
secondary)
{
 struct task_struct *t;
 struct sched_param param = {
 .sched_priority = MAX_USER_RT_PRIO/2,
 };
 [...]
 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m);
 [...]

(Here, we don't show the code that creates the kernel thread via the
kthread_create() API. Also, FYI, MAX_USER_RT_PRIO is the value 100.)

Now that you understand to a good extent how CPU scheduling works at the level of
the OS, we'll move on to yet another quite compelling discussion – that of cgroups;
read on!

CPU bandwidth control with cgroups
In the hazy past, the kernel community struggled mightily with a rather vexing issue:
though scheduling algorithms and their implementations – the early 2.6.0 O(1)
scheduler, and a little later (with 2.6.23), the Completely Fair Scheduler (CFS) –
promised, well, completely fair scheduling, it really wasn't. Think about this for a
moment: let's say you are logged into a Linux server along with nine other people.
Everything else being equal, it is likely that processor time is (more or less) fairly
shared between all ten people; of course, you will understand that it's not really
people that run, it's processes and threads that run on their behalf.

The CPU Scheduler - Part 2 Chapter 11

[553]

For now at least, let's assume it's mostly fairly shared. But, what if you write a user
space program that, in a loop, indiscriminately spawns off several new threads, each
of which perform a lot of CPU-intensive work (and perhaps as an added bonus,
allocates large swathes of memory as well; a file (un)compressor app perhaps) in each
loop iteration!? The CPU bandwidth allocation is no longer fair in any real sense of
the term, your account will effectively hog the CPUs (and perhaps other system
resources, such as memory, as well)!

A solution that precisely and effectively allocated and managed CPU (and other
resource) bandwidth was required; ultimately, Google engineers obliged with patches
that put the modern-day cgroups solution into the Linux kernel (in version 2.6.24). In
a nutshell, cgroups is a kernel feature that allows the system administrator (or anyone
with root access) to perform bandwidth allocation and fine-grained resource
management on the various resources (or controllers, as they are called in the cgroup
lexicon) on a system. Do note: using cgroups, it's not just the processors (CPU
bandwidth), but also memory, network, block I/O (and more) bandwidth that can be
carefully allocated and monitored as required by your project or product.

So, hey, you're interested now! How do you enable this cgroups feature? Simple – it's
a kernel feature you enable (or disable) at quite a fine granularity in the usual way:
by configuring the kernel! The relevant menu (via the convenient make menuconfig
interface) is General setup / Control Group support. Try this: grep your
kernel config file for CGROUP; if required, tweak your kernel config, rebuild, reboot
with the new kernel, and test. (We covered kernel configuration in detail back in
Chapter 2, Building the 5.x Linux Kernel from Source – Part 1, and the kernel build and
install in Chapter 3, Building the 5.x Linux Kernel from Source – Part 2.)

Good news: cgroups is enabled by default on any (recent enough)
Linux system that runs the systemd init framework. As mentioned
just now, you can query the cgroup controllers enabled by grep-
ping your kernel config file, and modify the config as desired.

From it's initiation in 2.6.24, cgroups, like all other kernel features, continually
evolves. Fairly recently, a point was reached where sufficiently improved cgroup
features became incompatible with the old, resulting in a new cgroup release, one
christened cgroups v2 (or simply cgroups2); this was declared production-ready in
the 4.5 kernel series (with the older one now referred to as cgroups v1 or as the legacy
cgroups implementation). Note that, as of the time of this writing, both can and do
exist together (with some limitations; many applications and frameworks still use the
older cgroups v1 and are yet to migrate to v2).

The CPU Scheduler - Part 2 Chapter 11

[554]

A detailed rationale of why to use cgroups v2 as opposed to cgroups
v1 can be found within the kernel documentation here: https:/ /
www. kernel. org/ doc/ html/ latest/ admin- guide/ cgroup- v2.
html#issues- with- v1- and-rationales- for- v2

The man page on cgroups(7) describes in some detail the interfaces and various
available (resource) controllers (or subsystems as they are sometimes referred to); for
cgroups v1, they are cpu, cpuacct, cpuset, memory, devices, freezer, net_cls,
blkio, perf_event, net_prio, hugetlb, pids, and rdma. We refer interested
readers to said man page for details; as an example, the PIDS controller is very useful
in preventing fork bombs (often, a silly but nevertheless deadly DoS attack where
the fork(2) system call is issued within an infinite loop!), allowing you to limit the
number of processes that can be forked off from that cgroup (or its descendants). On a
Linux box with cgroups v1 running, peek at the content of /proc/cgroups: it reveals
the v1 controllers available and their current usage.

Control groups are exposed via a purpose-built synthetic (pseudo) filesystem,
typically mounted under /sys/fs/cgroup. In cgroups v2, all controllers are
mounted in a single hierarchy (or tree). This is unlike cgroups v1, where multiple
controllers could be mounted under multiple hierarchies or groups. The modern init
framework, systemd, is a user of both the v1 and v2 cgroups. The cgroups(7) man
page indeed mentions the fact that systemd(1) auto-mounts a cgroups v2 filesystem
during startup (at /sys/fs/cgroup/unified).

In cgroups v2, these are the supported controllers (or resource limiters or subsystems,
if you will): cpu, cpuset, io, memory, pids, perf_event, and rdma (the first five
being commonly deployed).

In this chapter, the focus is on CPU scheduling; thus, we do not delve further into
other controllers, but limit our discussions to an example of using the cgroups v2 cpu
controller to limit CPU bandwidth allocation. For more on employing the other
controllers, we refer you to the resources mentioned previously (along with several
more found in the Further reading section of this chapter).

Looking up cgroups v2 on a Linux system
First, let's look up the available v2 controllers; to do so, locate the cgroups v2 mount
point; it's usually here:

$ mount | grep cgroup2
cgroup2 on /sys/fs/cgroup/unified type cgroup2

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#issues-with-v1-and-rationales-for-v2

The CPU Scheduler - Part 2 Chapter 11

[555]

 (rw,nosuid,nodev,noexec,relatime,nsdelegate)
$ sudo cat /sys/fs/cgroup/unified/cgroup.controllers
$

Hey, there aren't any controllers present in cgroup2!? Actually, it will be this way in
the presence of mixed cgroups, v1 and v2, which is the default (as of the time of
writing). To exclusively make use of the later version – and thus have all configured
controllers visible – you must first disable cgroups v1 by passing this kernel
command-line parameter at boot: cgroup_no_v1=all (recall, all available kernel
parameters can be conveniently seen here: https:/ /www. kernel. org/ doc/
Documentation/ admin- guide/ kernel- parameters. txt).

After rebooting the system with the preceding option, you can check that the kernel
parameters you specified (via GRUB on an x86, or perhaps via U-Boot on an
embedded system) have indeed been parsed by the kernel:

$ cat /proc/cmdline
 BOOT_IMAGE=/boot/vmlinuz-4.15.0-118-generic root=UUID=<...> ro
console=ttyS0,115200n8 console=tty0 ignore_loglevel quiet splash
cgroup_no_v1=all 3
$

Okay; now let's retry looking up the cgroup2 controllers; you should find that it's
typically mounted under /sys/fs/cgroup/ - the unified folder is no longer
present (now that we've booted with the cgroup_no_v1=all parameter):

$ cat /sys/fs/cgroup/cgroup.controllers
cpu io memory pids

Ah, now we see them (the exact controllers you see depend on how the kernel's
configured).

The rules governing the working of cgroups2 is beyond this book's scope; if you'd like
to, I suggest you read through it here: https:/ /www. kernel. org/ doc/ html/ latest/
admin-guide/cgroup- v2. html#control- group- v2. Also, all
the cgroup.<foo> pseudo files under a cgroup are described in detail in the Core
Interface Files section (https:/ / www. kernel. org/doc/ html/ latest/ admin- guide/
cgroup-v2.html#core- interface- files). Similar information is presented, in a
simpler way, within the excellent man page on cgroups(7) (look it up with man 7
cgroups on Ubuntu).

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#control-group-v2
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#core-interface-files

The CPU Scheduler - Part 2 Chapter 11

[556]

Trying it out – a cgroups v2 CPU controller
Let's try something interesting: we shall create a new sub-group under the cgroups v2
hierarchy on the system. We'll then set up a CPU controller for it, run a couple of test
processes (that hammer away on the system's CPU cores), and set a user-specified
upper limit on how much CPU bandwidth these processes can actually make use of!

Here, we outline the steps you will typically take to do this (all of these steps require
you to be running with root access):

Ensure your kernel supports cgroups v2:1.
You should be running on a 4.5 or later kernel.
In the presence of mixed cgroups (both legacy v1 and newer v2,
which, as of the time of writing, is the default), check that your
kernel command line includes the cgroup_no_v1=all string.
Here, we shall assume that the cgroup v2 hierarchy is supported
and mounted at /sys/fs/cgroup.

Add a cpu controller to the cgroups v2 hierarchy; this is achieved by doing2.
this, as root:

echo "+cpu" > /sys/fs/cgroup/cgroup.subtree_control

The kernel documentation on cgroups v2 (https:/ /www. kernel.
org/ doc/ html/ latest/ admin-guide/ cgroup- v2. html#cpu) does
mention this point: WARNING: cgroup2 doesn’t yet support control of
realtime processes and the cpu controller can only be enabled when all RT
processes are in the root cgroup. Be aware that system management
software may already have placed RT processes into nonroot cgroups
during the system boot process, and these processes may need to be moved
to the root cgroup before the cpu controller can be enabled.

Create a sub-group: this is done by simply creating a directory with the3.
required sub-group name under the cgroup v2 hierarchy; for example, to
create a sub-group called test_group, use the following:

mkdir /sys/fs/cgroup/test_group

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu

The CPU Scheduler - Part 2 Chapter 11

[557]

The interesting bit's here: set up the max allowable CPU bandwidth for the4.
processes that will belong to this sub-group; this is effected by writing into
the <cgroups-v2-mount-point>/<sub-group>/cpu.max (pseudo) file.
For clarity, the explanation of this file, as per the kernel documentation
(https:/ / www. kernel. org/ doc/html/ latest/ admin- guide/ cgroup- v2.
html#cpu- interface- files), is reproduced here:

cpu.max
A read-write two value file which exists on non-root cgroups.
The default is “max 100000”. The maximum bandwidth limit. It’s
in the following format:
$MAX $PERIOD
which indicates that the group may consume upto $MAX in each
$PERIOD duration. “max” for $MAX indicates no limit. If only
one number is written, $MAX is updated.

In effect, all processes in the sub-control group will be collectively
allowed to run for $MAX out of a period of $PERIOD microseconds; so, for
example, with MAX = 300,000 and PERIOD = 1,000,000, we're
effectively allowing all processes within the sub-control group to run for 0.3
seconds out of a period of 1 second!

Insert some processes into the new sub-control group; this is achieved by5.
writing their PIDs into the <cgroups-v2-mount-point>/<sub-
group>/cgroup.procs pseudo-file:

You can further verify that they actually belong to this sub-group
by looking up the content of each process's
/proc/<PID>/cgroup pseudo-file; if it contains a line of the
form 0::/<sub-group>, then it indeed belongs to the sub-
group!

That's it; the processes under the new sub-group will now perform their work6.
under the CPU bandwidth constraint imposed; when done, they will die as
usual... you can remove (or delete) the sub-group with a simple
rmdir <cgroups-v2-mount-point>/<sub-group>.

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#cpu-interface-files

The CPU Scheduler - Part 2 Chapter 11

[558]

A bash script that actually carries out the preceding steps is available here:
ch11/cgroups_v2_cpu_eg/cgv2_cpu_ctrl.sh. Do check it out! To make it
interesting, it allows you to pass the maximum allowed CPU bandwidth – the $MAX
value discussed in step 4! Not only that; we deliberately write a test script (simp.sh)
that hammers on the CPU(s) – they generate integer values that we redirect to files.
Thus, the number of integers they generated during their lifetime is an indication of
how much CPU bandwidth was available to them... this way, we can test the script
and actually see cgroups (v2) in action!

A couple of test runs here will help you understand this:

$ sudo ./cgv2_cpu_ctrl.sh
[sudo] password for <username>:
Usage: cgv2_cpu_ctrl.sh max-to-utilize(us)
 This value (microseconds) is the max amount of time the processes in
the sub-control
 group we create will be allowed to utilize the CPU; it's relative to
the period,
 which is the value 1000000;
 So, f.e., passing the value 300,000 (out of 1,000,000) implies a max
CPU utilization
 of 0.3 seconds out of 1 second (i.e., 30% utilization).
 The valid range for the $MAX value is [1000-1000000].
$

You're expected to run it as root and to pass, as a parameter, the $MAX value (the
usage screen seen previously quite clearly explains it, including displaying the valid
range (the microseconds value)).

The CPU Scheduler - Part 2 Chapter 11

[559]

In the following screenshot, we run the bash script with the parameter 800000,
implying a CPU bandwidth of 800,000 out of a period of 1,000,000; in effect, a quite
high CPU utilization of 0.8 seconds out of every 1 second on the CPU (80%):

Figure 11.8 – Screenshot of running our cgroups v2 CPU controller demo bash script with an effective max CPU bandwidth of 80%

The CPU Scheduler - Part 2 Chapter 11

[560]

Study our script's output in Figure 11.8; you can see that it does its job: after verifying
cgroup v2 support, it adds a cpu controller and creates a sub-group (called
test_group). It then proceeds to launch two test processes called j1 and j2 (in
reality, they're just symbolic links to our simp.sh script). Once launched, they run of
course. The script then queries and adds their PIDs to the sub-control group (as
shown in step 5). We give the two processes 5 seconds to run; the script then displays
the content of the files into which they wrote. It's designed such that job j1 writes
integers starting from 1, and job j2 writes integers starting from 900. In the
preceding screenshot, you can clearly see that, in their lifetime, and under the
effectively 80% CPU bandwidth available to it, job j1 emits numbers from 1 to 68;
similarly (under the same constraints), job j2 emits numbers from 900 to 965 (a
similar quantity of work, in effect). The script then cleans up, killing off the jobs and
deleting the sub-group.

However, to really appreciate the effect, we run our script again (study the following
output), but this time with a maximum CPU bandwidth of just 1,000 (the $MAX value)
– in effect, a max CPU utilization of just 0.1%!:

$ sudo ./cgv2_cpu_ctrl.sh 1000
[+] Checking for cgroup v2 kernel support
[+] Adding a 'cpu' controller to the cgroups v2 hierarchy
[+] Create a sub-group under it (here: /sys/fs/cgroup/test_group)

Now allowing 1000 out of a period of 1000000 by all processes (j1,j2)
in this
sub-control group, i.e., .100% !

[+] Launch processes j1 and j2 (slinks to /home/llkd/Learn-Linux-
Kernel-Development/ch11/cgroups_v2_cpu_eg/simp.sh) now ...
[+] Insert processes j1 and j2 into our new CPU ctrl sub-group
Verifying their presence...
0::/test_group
Job j1 is in our new cgroup v2 test_group
0::/test_group
Job j2 is in our new cgroup v2 test_group

............... sleep for 5 s

[+] killing processes j1, j2 ...
./cgv2_cpu_ctrl.sh: line 185: 10322 Killed ./j1 1 > ${OUT1}
cat 1stjob.txt
1 2 3
cat 2ndjob.txt

The CPU Scheduler - Part 2 Chapter 11

[561]

900 901
[+] Removing our cpu sub-group controller
rmdir: failed to remove '/sys/fs/cgroup/test_group': Device or
resource busy
./cgv2_cpu_ctrl.sh: line 27: 10343 Killed ./j2 900 > ${OUT2}
$

What a difference! This time our jobs j1 and j2 could literally emit between just two
and three integers (the values 1 2 3 for job j1 and 900 901 for job j2, as seen in the
preceding output), clearly proving the efficacy of the cgroups v2 CPU controller.

Containers, essentially lightweight VMs (to some extent), are
currently a hot commodity. The majority of container technologies
in use today (Docker, LXC, Kubernetes, and others) are, at heart, a
marriage of two built-in Linux kernel technologies, namespaces,
and cgroups.

With that, we complete our brief coverage of a really powerful and useful kernel
feature: cgroups. Let's move on to the final section of this chapter: learning how you
can turn regular Linux into a real-time operating system!

Converting mainline Linux into an RTOS
Mainline or vanilla Linux (the kernel you download from https:/ /kernel. org) is
decidedly not a Real-Time Operating System (RTOS); it's a General Purpose
Operating System (GPOS; as is Windows, macOS, Unix). In an RTOS, where hard
real-time characteristics come into play, not only must the software obtain the correct
result, there are deadlines associated with doing so; it must guarantee it meets these
deadlines, every single time. The mainline Linux OS, though not an RTOS, does a
tremendous job: it easily qualifies as being a soft real-time OS (one where deadlines
are met most of the time). Nevertheless, true hard real-time domains (for example,
military operations, many types of transport, robotics, telecom, factory floor
automation, stock exchanges, medical electronics, and so on) require an RTOS.

Another key point in this context is that of determinism: an oft missed point
regarding real-time is that the software response time need not always be really fast
(responding, say, within a few microseconds); it may be a lot slower (in the range of,
say, tens of milliseconds); by itself, that isn't what really matters in an RTOS.
What does matter is that the system is reliable, working in the same consistent
manner and always guaranteeing the deadline is met.

https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org
https://kernel.org

The CPU Scheduler - Part 2 Chapter 11

[562]

For example, the time taken to respond to a scheduling request, should be consistent
and not bounce all over the place. The variance from the required time (or baseline) is
often referred to as the jitter; an RTOS works to keep the jitter tiny, even negligible. In
a GPOS, this is often impossible and the jitter can vary tremendously - at one point
being low and the next very high. Overall, the ability to maintain a stable even
response with minimal jitter - even in the face of extreme workload pressures - is
termed determinism, and is the hallmark of an RTOS. To provide such a deterministic
response, algorithms must, as far as possible, be designed to correspond to O(1) time
complexity.

Thomas Gleixner, along with community support, has worked toward that goal for a
long while now; for many years, in fact, ever since the 2.6.18 kernel, there have been
offline patches that convert the Linux kernel into an RTOS. These patches can be
found, for many versions of the kernel, here: https:/ /mirrors. edge. kernel. org/
pub/linux/kernel/ projects/ rt/ . The older name for this project was PREEMPT_RT;
later (October 2015 onward), the Linux Foundation (LF) took over stewardship of this
project – a very positive step! – and renamed it the Real-Time Linux (RTL)
Collaborative Project (https:/ /wiki. linuxfoundation. org/ realtime/ rtl/
start#the_rtl_ collaborative_ project), or RTL (don't confuse this project with co-
kernel approaches such as Xenomai or RTAI, or the older and now-defunct attempt
called RTLinux).

An FAQ, of course, is "why aren't these patches in mainline itself?" Well, it turns out
that:

Much of the RTL work has indeed been merged into the mainline kernel;
this includes important areas such as the scheduling subsystem, mutexes,
lockdep, threaded interrupts, PI, tracing, and so on. In fact, an ongoing
primary goal of RTL is to get it merged as much as is feasible (we show a
table summarizing this in the Mainline and RTL – technical differences
summarized section).
Linus Torvalds deems that Linux, being primarily designed and architected
as a GPOS, should not have highly invasive features that only an RTOS
really requires; so, though patches do get merged in, it's a slow deliberated
process.

We have included several interesting articles and references to RTL (and hard real
time) in the Further reading section of this chapter; do take a look.

https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project
https://wiki.linuxfoundation.org/realtime/rtl/start#the_rtl_collaborative_project

The CPU Scheduler - Part 2 Chapter 11

[563]

What you're going to do next is interesting indeed: you will learn how to patch the
mainline 5.4 LTS kernel with the RTL patches, configure it, build, and boot it; you will
thus end up running an RTOS – Real-Time Linux or RTL! We shall do this on our
x86_64 Linux VM (or native system).

We won't stop there; you will then learn more – the technical differences between
regular Linux and RTL, what system latency is, and how, practically, to measure it.
To do so, we shall first apply the RTL patch on the kernel source of the Raspberry Pi
device, configure and build it, and use it as a test-bed for system latency
measurement using the cyclictest app (you'll also learn to use modern BPF tools for
measuring scheduler latencies). Let's get a move on, first building an RTL kernel for
our 5.4 kernel on an x86_64!

Building RTL for the mainline 5.x kernel (on
x86_64)
In this section, you will learn, in a step-by-step, hands-on fashion, how exactly to
patch, configure, and build Linux as an RTOS. As mentioned in the preceding section,
these real-time patches have been around a long while; it's time to make use of them.

Obtaining the RTL patches
Navigate to https:/ /mirrors. edge. kernel. org/pub/ linux/ kernel/ projects/ rt/5.
4/ (or, if you're on an alternate kernel, go to one directory level above this and select
the required kernel version):

Figure 11.9 – Screenshot of the RTL patches for the 5.4 LTS Linux kernels

https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/

The CPU Scheduler - Part 2 Chapter 11

[564]

You will quickly notice that the RTL patches are available for only some versions of
the kernel in question (here, 5.4.y); more on this follows. In the preceding screenshot,
you can spot two broad types of patch files – interpret it as follows:

patch-<kver>rt[nn].patch.[gz|xz]: The prefix is patch-; this is the
complete collection of patches required to patch the mainline kernel
(version <kver>) in one unified (and compressed) file.
patches-<kver>-rt[nn].patch.[gz|xz]: The prefix is patches-; this
compressed file contains every individual patch (as a separate file) that
went into making up the patch series for this version of RTL.

(Also, as you should be aware, <fname>.patch.gz and <fname>.patch.xz are the
same archive; it's just that the compressor differs – the .sign files are the PGP
signature files.)

We shall use the first type; download the patch-<kver>rt[nn].patch.xz file to
your target system by clicking on the link (or via wget(1)).

Notice that for the 5.4.x kernels (as of the time of writing), the RTL patches seem to be
present only for version 5.4.54 and 5.4.69 (and not for 5.4.0, the kernel that we have
been working with all along).

In fact, the particular kernel version that the RTL patches apply
against can certainly vary from what I've mentioned here at the time
of this writing. That's expected - just follow the steps substituting
the release number you're using with what's mentioned here.

Don't be worried – we shall show you a workaround in a moment. This is indeed
going to be the case; the community cannot feasibly build patches against every single
kernel release – there are just too many. This does have an important implication:
either we patch our 5.4.0 kernel to, say, 5.4.69, or, we simply download the 5.4.69
kernel to begin with and apply the RTL patches against it.

The CPU Scheduler - Part 2 Chapter 11

[565]

The first approach is doable but is more work (especially in the absence of a patching
tools such as git/ketchup/quilt or similar; here, we choose not to use git to apply
patches, just working on the stable kernel tree instead). As the Linux kernel patches
are incremental, we will have to download every single patch from 5.4.0 until 5.4.69 (a
total of 69 patches!), and apply them successively and in order: first 5.4.1, then 5.4.2,
then 5.4.3, and so on until the final one! Here, to help keep things simple, since we
know that the kernel to patch against is 5.4.69, it's just easier to download and extract
it instead. So, head on over to https:/ / www.kernel. org/ and do so. Thus, here, we
end up downloading two files:

The compressed kernel source for mainline 5.4.69: https:/ /mirrors. edge.
kernel. org/ pub/ linux/ kernel/ v5.x/ linux- 5.4. 69.tar. xz

The RTL patch for 5.4.69: https:/ /mirrors. edge. kernel. org/ pub/linux/
kernel/ projects/ rt/ 5. 4/patches- 5. 4.69- rt39. tar.xz

(As explained in detail in Chapter 3, Building the 5.x Linux Kernel from Source – Part 2,
if you intend to cross-compile the kernel for another target, the usual procedure is to
build it on a suitably powerful workstation, so download it there.)

Next, extract both the RTL patch file as well as the kernel code base tar.xz file to
obtain the kernel source tree (here, it's version 5.4.69; of course, these details have
been well covered back in Chapter 2, Building the 5.x Linux Kernel from Source – Part
1). By now, your working directory content should look similar to this:

$ ls -lh
total 106M
drwxrwxr-x 24 kaiwan kaiwan 4.0K Oct 1 16:49 linux-5.4.69/
-rw-rw-r-- 1 kaiwan kaiwan 105M Oct 13 16:35 linux-5.4.69.tar.xz
-rw-rw-r-- 1 kaiwan kaiwan 836K Oct 13 16:33 patch-5.4.69-rt39.patch
$

(FYI, the unxz(1) utility can be used to extract the .xz-compressed patch file.) For
the curious reader: take a peek at the patch (the file patch-5.4.69-rt39.patch), to
see all the code-level changes wrought to bring about a hard real-time kernel; it's non-
trivial of course! An overview of the technical changes will be seen in the upcoming
Mainline and RTL – technical differences summarized section. Now that we have things in
place, let's begin by applying the patch to the stable 5.4.69 kernel tree; the following
section covers just this.

https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.69.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/patches-5.4.69-rt39.tar.xz

The CPU Scheduler - Part 2 Chapter 11

[566]

Applying the RTL patch
Ensure you keep the extracted patch file, patch-5.4.69-rt39.patch, in the
directory immediately above the 5.4.69 kernel source tree (as seen previously). Now,
let's apply the patch. Careful – (obviously) don't attempt to apply the compressed file
as the patch; extract and use the uncompressed patch file. To ensure that the patch
applies correctly, we first employ the --dry-run (dummy run) option to patch(1):

$ cd linux-5.4.69
$ patch -p1 --dry-run < ../patch-5.4.69-rt39.patch
checking file Documentation/RCU/Design/Expedited-Grace-
Periods/Expedited-Grace-Periods.html
checking file Documentation/RCU/Design/Requirements/Requirements.html
[...]
checking file virt/kvm/arm/arm.c
$ echo $?
0

All's well, let's now actually apply it:

$ patch -p1 < ../patch-5.4.69-rt39.patch
patching file Documentation/RCU/Design/Expedited-Grace-
Periods/Expedited-Grace-Periods.html
patching file Documentation/RCU/Design/Requirements/Requirements.html
[...]

Great – we have the patched kernel for RTL ready now!

Of course, there are multiple ways and various shortcuts that can be employed; for
example, you can also achieve the preceding via the xzcat ../patch-5.4.69-
rt39.patch.xz | patch -p1 command (or similar).

Configuring and building the RTL kernel
We have covered the kernel configuration and build steps in detail in Chapter 2,
Building the 5.x Linux Kernel from Source – Part 1, and Chapter 3, Building the 5.x Linux
Kernel from Source – Part 2, hence we shan't repeat it here. Pretty much everything
remains the same; the only significant difference being that we must configure this
kernel to take advantage of RTL (this is explained on the new RTL wiki site, here:
https://wiki.linuxfoundation. org/ realtime/ documentation/ howto/
applications/preemptrt_ setup).

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup

The CPU Scheduler - Part 2 Chapter 11

[567]

To cut down the kernel features to be built to approximately match the present
system configuration, we first, within the kernel source tree directory
(linux-5.4.69), do the following (we also covered this back in Chapter 2, Building
the 5.x Linux Kernel from Source - Part 1, under the Tuned kernel config via the
localmodconfig approach section):

$ lsmod > /tmp/mylsmod
$ make LSMOD=/tmp/mylsmod localmodconfig

Next, fire up the kernel configuration with make menuconfig:

Navigate to the General setup sub-menu:1.

Figure 11.10 – make menuconfig / General setup: configuring the RTL-patched kernel

Once there, scroll down to the Preemption Model sub-menu; we see it2.
highlighted in the preceding screenshot, along with the fact that the
currently (by default) selected preemption model is Voluntary Kernel
Preemption (Desktop).
Pressing Enter here leads us into the Preemption Model sub-menu:3.

The CPU Scheduler - Part 2 Chapter 11

[568]

Figure 11.11 – make menuconfig / General setup / Preemption Model: configuring the RTL-patched kernel

There it is! Recall from the previous chapter, in the Preemptible kernel section,
we described the fact that this very kernel configuration menu had three
items (the first three seen in Figure 11.11). Now it has four. The fourth item
– the Fully Preemptible Kernel (Real-Time) option – has been
added on thanks to the RTL patch we just applied!

So, to configure the kernel for RTL, scroll down and select the Fully4.
Preemptible Kernel (Real-Time) menu option (refer Figure 11.1).
This corresponds to the kernel CONFIG_PREEMPT_RT config macro,
whose < Help > is quite descriptive (do take a gander); it does, in fact,
conclude with the statement: select this if you are building a kernel for systems
which require real-time guarantees.

In earlier versions of the kernel (including 5.0.x), the Preemption
Model sub-menu displayed five choices; two were for RT: one was
termed Basic RT and the other was what we see here as the fourth
choice – now (5.4.x) they've simply been folded into one true real-
time option.

Once you have selected the fourth option and saved and exited the5.
menuconfig UI, (re)check that the full preemptible kernel – in effect, RTL –
is selected:

$ grep PREEMPT_RT .config
CONFIG_PREEMPT_RT=y

All right, looks good! (Of course, before building, you can tweak other
kernel config options as required for your product.)

The CPU Scheduler - Part 2 Chapter 11

[569]

Let's now build the RTL kernel:6.

make -j4 && sudo make modules_install install

Once it successfully builds and installs, reboot the system; at boot, press a7.
key to display the GRUB bootloader menu (holding down one of the Shift
keys can help ensure the GRUB menu is displayed at boot); within the
GRUB menu, select the newly built 5.4.69-rtl RTL kernel (in fact, the
kernel just installed is usually the default one selected at boot). It should
boot now; once logged in and on a shell, let's verify the kernel version:

$ uname -r
5.4.69-rt39-rtl-llkd1

Notice CONFIG_LOCALVERSION set to the value -rtl-llkd1. (Also, with uname -a,
the PREEMPT RT string will be seen.) We're now - as promised - running Linux, RTL,
as a hard real-time operating system, an RTOS!

It's very important to understand, though, that for true hard real time, simply having
a hard real-time kernel is not enough; you must also very carefully design and write
your user space (apps, libraries, and tooling) as well as your kernel modules / drivers,
to conform to real time as well. For example, frequent page faulting can throw
determinism out of the proverbial window and result in high latencies (and high
jitter). (Recall what you learned in Chapter 9, Kernel Memory Allocation for Module
Authors – Part 2, in the A brief note on memory allocations and demand paging section.
Page faulting is a fact of life and can and does often occur; minor page faults will
usually cause little to worry about. But in a hard RT scenario? And in any case, "major
faults" will hamper performance.) Techniques such as using mlockall(2) to lock
down all the pages of a real-time application process might well be required. This and
several other techniques and tips for writing real-time code are provided here:
https://rt.wiki. kernel. org/ index. php/HOWTO:_ Build_ an_ RT-application.
(Similarly, topics regarding CPU affinity and shielding, cpuset management, IRQ
prioritization, and so on can be found on the older RT wiki site mentioned previously;
https://rt.wiki. kernel. org/ index. php/Main_ Page.)

So, great – you now know how to configure and build Linux as an RTOS! I encourage
you to try this out for yourself. Moving along, we'll next summarize the key
differences between the standard and RTL kernels.

https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page

The CPU Scheduler - Part 2 Chapter 11

[570]

Mainline and RTL – technical differences
summarized
To give you a deeper understanding of this interesting topic area, in this section, we
delve further into it: we summarize the key differences between the standard (or
mainline) and RTL kernels.

In the following table, we summarize some of the key differences between the
standard (or mainline) and RTL kernels. A primary goal of the RTL project is to
ultimately become fully integrated into the regular mainline kernel tree. As this
process is evolutionary, the merging of patches from RTL into mainline is slow but
steady; interestingly, as you can see from the rightmost column in the following table,
most of (around 80% at the time of writing) the RTL work has actually been already
merged into the mainline kernel, and it continues to be:

Component /
Feature

Standard or mainline
(vanilla) Linux

RTL (fully preemptible / hard real-
time Linux)

RT work
merged into
mainline?

Spinlocks
The spinlock critical
section is non-
preemptible kernel code

As preemptible as is humanly
possible; called "sleeping spinlocks"!
In effect, spinlocks have been
converted into mutexes.

No

Interrupt handling

Traditionally done via the
top and bottom half
(hardirq/tasklet/softirq)
mechanism

Threaded interrupts: the majority of
interrupt processing is done within a
kernel thread (2.6.30, June 2009).

Yes

HRTs (High-
Resolution Timers)

Available here due to
merge from RTL

Timers with nanosecond resolution
(2.6.16, March 2006). Yes

RW locks Unbounded; writers may
starve

Fair RW locks with bounded writer
latency. No

lockdep Available here due to
merge from RTL

Very powerful (kernel space) tool to
detect and prove locking correctness
or the lack thereof.

Yes

Tracing
Some tracing technologies
available here due to
merge from RTL

Ftrace's origins (and to some extent
perf's) were with the RT developers
attempting to find latency issues.

Yes

Scheduler
Many scheduler features
available here due to
merge from RTL

Work on real-time scheduling as well
as the deadline scheduling class
(SCHED_DEADLINE) was first done
here (3.14, March 2014); also, full
tickless operation (3.10, June 2013).

Yes

The CPU Scheduler - Part 2 Chapter 11

[571]

(Don't worry – we shall definitely cover many of the preceding details in subsequent
chapters of the book.)

Of course, a well-known (at least it should be) rule of thumb is simply this: there is no
silver bullet. This implies, of course, that no one solution will fit every need.

Please, if you haven't yet done so, do yourself a huge favor and read
the still-so-relevant book The Mythical Man-Month: Essays on Software
Engineering by Frederick P Brooks.

As mentioned in Chapter 10, The CPU Scheduler – Part 1, in the Preemptible kernel
section, the Linux kernel can be configured with the CONFIG_PREEMPT option; this is
often referred to as the low-latency (or LowLat) kernel and provides near real-time
performance. In many domains (virtualization, telecoms, and so on) using a LowLat
kernel might turn out to be better than using a hard real-time RTL kernel, mainly due
to RTL's overheads. You often find that, with hard real-time, user space apps can
suffer from throughput, reduced CPU availability, and thus higher latencies. (Refer to
the Further reading section for a whitepaper from Ubuntu that conducts a comparison
between a vanilla distro kernel, a low-latency preemptible, and a fully preemptible –
effectively an RTL – kernel.)

With latencies in mind, the following section will help you understand what exactly is
meant by system latencies; then, you'll learn some ways to measure it on a live
system. On, on!

Latency and its measurement
We often come across the term latency; what exactly does it mean in the context of the
kernel? A synonym for latency is delay and that's a good hint. The latency (or delay) is
the time taken to react – in our context here, the time between the kernel scheduler
waking up a user space thread (or process), thus making it runnable, and the time
when it does actually run on the processor is the scheduling latency. (Do be aware,
though, the term scheduling latency is also used in another context, to mean the time
interval within which every runnable task is guaranteed to run at least once; the
tunable is here: /proc/sys/kernel/sched_latency_ns, and, at least on recent
x86_64 Linux, defaults to 24 ms). Similarly, the time elapsed from when a hardware
interrupt occurs (say a network interrupt) to when it's actually serviced by it's handler
routine, is the interrupt latency.

The CPU Scheduler - Part 2 Chapter 11

[572]

The cyclictest user space program was written by Thomas Gleixner; its purpose: to
measure kernel latencies. Its output values are in microseconds units. The average
and maximum latency values are usually the ones of interest – if they fall within the
acceptable range for the system, then all's good; if not, it points to perhaps product-
specific redesign and/or kernel configuration tweaking, checking other time-critical
code paths (including user space), and so on.

Let's use the cyclictest process itself as an example to clearly understand scheduling
latency. The cyclictest process is run; internally, it issues nanosleep(2) (or, if the -n
option switch is passed, the clock_nanosleep(2) system call), putting itself into a
sleep state for the time interval specified. As these *sleep() system calls are
obviously blocking, the kernel internally enqueues the cyclictest (for simplicity, we
refer to it as ct in the following diagram) process into a wait queue, simply a kernel
data structure that holds sleeping tasks.

A wait queue is associated with an event; when that event occurs, the kernel awakens
all tasks sleeping on that event. Here, the event in question is the expiry of a timer;
this is communicated by the timer hardware by emitting a hardware interrupt (or
IRQ); this starts the chain of events that must happen to make the cyclictest process
wake up and run on the processor. The key point here, of course, is that it's easier said
than done: many potential delays might occur on the path to the process actually
running on a processor core! This is what the following diagram seeks to convey – the
potential sources of latency:

Figure 11.12 – The path to waking, context-switching, and running the cyclictest (ct) process; several latencies can occur

The CPU Scheduler - Part 2 Chapter 11

[573]

(Some of the preceding inputs stem from the excellent presentation Using and
Understanding the Real-Time Cyclictest Benchmark, Rowand, Oct 2013.) Study Figure
11.12 carefully; it shows the timeline from the hardware interrupt's assertion due to
timer expiry (at time t0, as the sleep issued via the nanosleep() API by the
cyclictest process is done at time t1), through IRQ handling (t1 to t3), and the
wakeup of the ct process – as a result of which it gets enqueued into the runqueue
(between t3 and t4) of the core it will eventually run upon.

From there, it will eventually become the highest priority, or best or most deserving,
task for the scheduling class it belongs to (at time t6; we covered these details in the
preceding chapter), thus, it will preempt the currently running thread (t6). The
schedule() code will then execute (time t7 to t8), the context switch will occur at
the tail-end of schedule(), and finally(!), and the cyclictest process will actually
execute on a processor core (time t9). Though it might at first appear complex, the
reality is that this is a simplified diagram as several other potential latency sources
have been omitted (for example, latencies due to IPI, SMI, cache migration, multiple
occurrences of the preceding events, additional interrupts firing at an inopportune
moment causing more delays, and so on).

A rule of thumb for determining the maximum latency value of a user space task
running with real-time priority is the following:

max_latency = CLK_WAVELENGTH x 105 s

As an example, the Raspberry Pi Model 3 CPU clock runs at a frequency of 1 GHz; its
wavelength (the time between one clock cycle to the next) is the inverse of the
frequency, that is, 10-9 or 1 nanosecond. So, from the preceding equation, the
theoretical maximum latency should be (within) 10-7 seconds which is about 10 ns
(nanoseconds). As you shall soon discover, this is merely theoretical.

Measuring scheduling latency with cyclictest
To make this more interesting (as well as to run the latency test on a constrained
system), we shall perform latency measurements using the well-known cyclictest app
– while the system is under some amount of load (via the stress(1) utility) – on the
equally well-known Raspberry Pi device. This section is divided into four logical
parts:

First, set up the working environment on the Raspberry Pi device.1.
Second, download and apply the RT patches on the kernel source,2.
configure, and build it.

The CPU Scheduler - Part 2 Chapter 11

[574]

Third, install the cyclictest app, as well as a few other required packages3.
(including stress), on the device.
Fourth, run the test cases and analyze the results (even plotting graphs to4.
help do so).

The first step and most parts of the second have already been covered in detail in
Chapter 3, Building the 5.x Linux Kernel from Source – Part 2, in the Kernel build for the
Raspberry Pi section. This includes downloading the Raspberry Pi-specific kernel
source tree, configuring the kernel, and installing an appropriate toolchain; we won't
repeat this information here. The only significant difference here is that we shall first
have to apply the RT patches to the kernel source tree and configure for hard real-
time; we cover this in the next section.

Let's get going!

Getting and applying the RTL patchset
Check the mainline or distribution kernel version that is running on your Raspberry
Pi device (substitute the Raspberry Pi with any other device you may be running
Linux on); for example, on the Raspberry Pi 3B+ I'm using, it's running the stock
Raspbian (or Raspberry Pi OS) GNU/Linux 10 (buster) with the 5.4.51-v7+ kernel.

We'd like to build an RTL kernel for the Raspberry Pi with the closest possible
matching kernel to the standard one it's currently running; for our case here, with it
running 5.4.51[-v7+], the closest available RTL patches are for kernel versions 5.4.y-
rt[nn] (https:// mirrors. edge. kernel. org/pub/ linux/ kernel/ projects/ rt/ 5.4/);
we shall come back to this shortly...

Let's go step by step:

The steps to download the Raspberry Pi specific kernel source tree onto1.
your host system disk have already been covered in Chapter 3, Building the
5.x Linux Kernel from Source – Part 2, in the Kernel build for the Raspberry Pi
section; do refer to it and obtain the source tree.

https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.4/

The CPU Scheduler - Part 2 Chapter 11

[575]

Once this step completes, you should see a directory named linux; it holds2.
the Raspberry Pi kernel source for (as of the time of writing) kernel version
5.4.y. What's the value of y? That's easy; just do the following:

$ head -n4 linux/Makefile
SPDX-License-Identifier: GPL-2.0
VERSION = 5
PATCHLEVEL = 4
SUBLEVEL = 70

The SUBLEVEL variable here is the value of y; clearly, it's 70, making the
kernel version 5.4.70.

Next, let's download the appropriate real-time (RTL) patch: the best one3.
would be an exact match, that is, the patch should be named something like
patch-5.4.70-rt[nn].tar.xz. Lucky for us, it does indeed exist on the
server; let's get it (notice that we download the patch-<kver>-rt[nn]
file; it's simpler to work with as it's the unified patch):
wget https://mirrors.edge.kernel.org/pub/linux/kernel/proj

ects/rt/5.4/patch-5.4.70-rt40.patch.xz.

This does raise the question: what if the versions of the available
RTL patches do not precisely match that of the device's kernel
version? Well, unfortunately, that does happen. In cases like this, to
have the best chance of applying it against the device kernel, select
the closest match and attempt to apply it; it often succeeds with
perhaps minor warnings... If not, you will have to either manually
tweak the code base to suit the patchset, or just switch to using a
kernel version for which the RTL patch exists (recommended).

Don't forget to uncompress the patch file!

Now apply the patch (as shown previously, in the Applying the RTL patch4.
section):

cd linux
patch -p1 < ../patch-5.4.70-rt40.patch

The CPU Scheduler - Part 2 Chapter 11

[576]

Configure the patched kernel, turning on the CONFIG_PREEMPT_RT kernel 5.
config option (as explained previously):

First, though, as we learned in Chapter 3, Building the 5.x Linux1.
Kernel from Source – Part 2, it's critical that you set up the initial
kernel config appropriately for the target; here, as the target
device is the Raspberry Pi 3[B+], do this:

make ARCH=arm bcm2709_defconfig

Customize your kernel configuration with the make ARCH=arm2.
menuconfig command. Here, of course, you should go to
General setup / Preemption Model, and select the fourth
option, CONFIG_PREEMPT_RT, to turn on the hard real-time
preemption features.

I shall also assume that you have an appropriate toolchain for x86_64-to-6.
ARM32 for the Raspberry Pi installed:

make -j4 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- zImage
modules dtbs

Hint: Installing an appropriate toolchain (for x86_64-to-ARM32) can
be as simple as sudo apt install crossbuild-essential-
armhf. Now build the kernel (again, identical to the process we
described previously, in the Configuring and building the RTL kernel
section), with the difference being that we cross-compile it (using
the x86_64-to-ARM32 cross-compiler we installed previously).

Install the just-built kernel modules; ensure you specify the location as the7.
SD card's root filesystem with the INSTALL_MOD_PATH environment
variable (else it might overwrite your host's modules, which would be
disastrous!). Let's say that the microSD card's second partition (which
contains the root filesystem) is mounted under /media/${USER}/rootfs,
then do the following (in one single line):

sudo env PATH=$PATH make ARCH=arm CROSS_COMPILE=arm-linux-
gnueabihf- INSTALL_MOD_PATH=/media/${USER}/rootfs
modules_install

The CPU Scheduler - Part 2 Chapter 11

[577]

Copy across the image files (the bootloader files, the kernel zImage file,8.
the Device Tree Blobs (DTBs), the kernel modules) onto the Raspberry Pi
SD card (these details are covered in the official Raspberry Pi
documentation here: https:/ /www.raspberrypi. org/ documentation/
linux/ kernel/ building. md; we have also (lightly) covered this in Chapter
3, Building the 5.x Linux Kernel from Source – Part 2).
Test: boot the Raspberry Pi with the new kernel image in the SD card. You9.
should be able to log in to a shell (typically over ssh). Verify the kernel
version and config:

rpi ~ $ uname -a
Linux raspberrypi 5.4.70-rt40-v7-llkd-rtl+ #1 SMP PREEMPT_RT
Thu Oct 15 07:58:13 IST 2020 armv7l GNU/Linux
rpi ~ $ zcat /proc/config.gz |grep PREEMPT_RT
CONFIG_PREEMPT_RT=y

We are indeed running a hard real-time kernel on the device! So, good – that takes
care of the "prep" portion; you are now in a position to proceed with the next step.

Installing cyclictest (and other required packages)
on the device
We intend to run test cases via the cyclictest app against both the standard and the
newly minted RTL kernel. This implies, of course, that we must first obtain the
cyclictest sources and build it on the device (note that the work here is being carried
out on the Raspberry Pi).

Here's an article that does this very thing: Latency of Raspberry Pi 3 on
Standard and Real-Time Linux 4.9 Kernel: https:/ /metebalci. com/
blog/ latency- of- raspberry- pi- 3-on- standard- and- real- time-
linux- 4. 9- kernel/ .

It mentions an issue faced running the RTL kernel on the Raspberry
Pi 3 as well as a workaround (important!): (in addition to the usual
ones) pass along these two kernel
parameters: dwc_otg.fiq_enable=0 and
dwc_otg.fiq_fsm_enable=0. You can put these in the
/boot/cmdline.txt file on the device.

First, do ensure that all required packages are installed onto your Raspberry Pi:

sudo apt install coreutils build-essential stress gnuplot libnuma-dev

https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://www.raspberrypi.org/documentation/linux/kernel/building.md
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/
https://metebalci.com/blog/latency-of-raspberry-pi-3-on-standard-and-real-time-linux-4.9-kernel/

The CPU Scheduler - Part 2 Chapter 11

[578]

The libnuma-dev package is optional and may not be available on the Raspberry Pi
OS (you can proceed even without it).

Let's now get the source code of cyclictest:

git clone git://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git

A bit peculiarly, initially, there will exist precisely one file, the README. Read it
(surprise, surprise). It informs you how to obtain and build the stable version; it's
simple, just do the following:

git checkout -b stable/v1.0 origin/stable/v1.0
make

Happily for us, the Open Source Automation Development Lab (OSADL) has a very
useful bash script wrapper over cyclictest; it runs cyclictest and even plots a latency
graph. Grab the script from here: https:/ / www.osadl. org/uploads/ media/
mklatencyplot. bash (explanatory note on it: https:/ /www. osadl. org/ Create- a-
latency-plot-from- cyclictest- hi. bash-script- for- latency- plot. 0. html? no_
cache=1sword_list[0]= cyclictest). I have lightly modified it for our purposes; it's
here in the GitHub repository for this book:
ch11/latency_test/latency_test.sh.

Running the test cases
To get a good idea regarding the system (scheduling) latencies, we shall run three test
cases; in all three, the cyclictest app will sample system latency while the
stress(1) utility is putting the system under load:

Raspberry Pi 3 model B+ (4 CPU cores) running the 5.4 32-bit RTL-patched1.
kernel
Raspberry Pi 3 model B+ (4 CPU cores) running the standard 5.4 32-bit2.
Raspberry Pi OS kernel
x86_64 (4 CPU cores) Ubuntu 20.04 LTS running the standard 5.43.
(mainline) 64-bit kernel

We use a small wrapper script called runtest over the latency_test.sh script for
convenience. It runs the latency_test.sh script to measure system latency while
running the stress(1) utility; it invokes stress with the following parameters, to
impose CPU, I/O, and memory loads on the system:

stress --cpu 6 --io 2 --hdd 4 --hdd-bytes 1MB --vm 2 --vm-bytes 128M -
-timeout 1h

https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/uploads/media/mklatencyplot.bash
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html?&no_cache=1&sword_list%5B0%5D=cyclictest

The CPU Scheduler - Part 2 Chapter 11

[579]

(FYI, a later version of stress called stress-ng is available as well.) While the
stress app executes, loading the system, the cyclictest(8) app samples system
latencies, writing its stdout to a file:

sudo cyclictest --duration=1h -m -Sp90 -i200 -h400 -q >output

(Do refer to the man pages on both stress(1) and cyclictest(8) to understand
the parameters.) It will run for an hour (for more accurate results, I suggest you run
the test for a longer duration – perhaps 12 hours). Our runtest script (and the
underlying ones) internally runs cyclictest with appropriate parameters; it
captures and displays the minimum, average, and maximum latency wall clock time
taken (via time(1)), and generates a histogram plot. Note that here, we
run cyclictest for a (maximum) duration of an hour.

By default, our runtest wrapper script has a variable LAT with the
pathname to the latency_tests directory set as
follows: LAT=~/booksrc/ch11/latency_tests. Ensure that
you first update it to reflect the location of the latency_tests
directory on your system.

A screenshot of running the scripts for our test case #1 – on the Raspberry Pi 3B+
running the RTL kernel – is seen here:

Figure 11.13 – Running our first test case for cyclictest on a Raspberry Pi 3B+ on the RTL kernel while under stress

Study the preceding screenshot; you can clearly see the system details, the kernel
version (notice it's the RTL-patched PREEMPT_RT kernel!), and cyclictest's latency
measurement results for the minimum, average, and maximum (scheduling) latency.

The CPU Scheduler - Part 2 Chapter 11

[580]

Viewing the results
We carry out a similar procedure for the remaining two test cases and summarize the
results of all three in Figure 11.14:

Figure 11.14 – Results of the (simplistic) test cases we ran showing the min/avg/max latencies for different kernels and systems while under some stress

Interesting; though the maximum latency of the RTL kernel is much below the other
standard kernels, both the minimum and, more importantly, average latencies are
superior for the standard kernels. This ultimately results in superior overall
throughput for the standard kernels (this very same point was stressed upon earlier).

The latency_test.sh bash script invokes the gnuplot(1) utility to generate
graphs, in such a manner that the title line shows the minimum/average/maximum
latency values (in microseconds) and the kernel the test was run upon. Recollect that
test case #1 and #2 ran on the Raspberry Pi 3B+ device, whereas test case #3 ran on a
generic (and more powerful) x86_64 system). See here the gnuplot-ed graphs (for all
three test cases):

Figure 11.15 – Test case #1 plot: cyclictest latency measurement on Raspberry Pi 3B+ running the 5.4 RTL kernel

The CPU Scheduler - Part 2 Chapter 11

[581]

Figure 11.15 shows the graph plotted by gnuplot(1) (called from within
our ch11/latency_test/latency_test.sh script) for test case #1. The Device
Under Test (DUT), the Raspberry Pi 3B+, has four CPU cores (as seen by the OS).
Notice how the graph shows us the story – the vast majority of samples are on the
upper left, implying that, most of the time, the latency was very small (between
100,000 to 1 million latency samples (y-axis) fall between a few microseconds to 50
microseconds (x-axis)!). That's really good! Of course, there will be outliers at the
other extreme – samples on all CPU cores have much higher latencies (between 100
and 256 microseconds) though the number of samples is much smaller. The cyclictest
app gives us the minimum, average, and maximum system latency values. With the
RTL-patched kernel, while the max latency is actually excellent (quite low), the
average latency can be fairly high:

Figure 11.16 – Test case #2 plot: cyclictest latency measurement on Raspberry Pi 3B+ running the standard (mainline) 5.4 kernel

Figure 11.16 shows the plot for test case #2. Again, as with the previous test case – in
fact, even more pronounced here – the vast majority of system latency samples exhibit
very low latency! The standard kernel thus does a tremendous job; even the average
latency is a "decent" value. However, the worst-case (max) latency value can be very
large indeed – showing us exactly why it's not an RTOS. For most workloads, the
latency tends to be excellent "usually", but a few corner cases will tend to show up. In
other words, it's not deterministic – the key characteristic of an RTOS:

The CPU Scheduler - Part 2 Chapter 11

[582]

Figure 11.17 – Test case #3 plot: cyclictest latency measurement on an x86_64 Ubuntu 20.04 LTS running the standard (mainline) 5.4 kernel

Figure 11.17 shows the plot for test case #3. The variance – or jitter – here is even
more pronounced (again, non-deterministic!), though the minimum and average
system latency values are really very good. Of course, it's run on a far more powerful
system – a desktop-class x86_64 – than the previous two test cases. The max latency
value – the few corner cases, although there are more of them here – tends to be quite
high. Again, it's not an RTOS – it's not deterministic.

Did you notice how the graphs clearly exhibit jitter: with test case #1 having the least
amount (the graph tends to drop down to the x-axis quite quickly - meaning a very
tiny number of latency samples, if not zero, exhibit high(er) latencies) and test case #3
having the most jitter (with much of the graph remaining well above the x axis!).

Again, we emphasize this point: the results quite clearly show that it's deterministic (a
very small amount of jitter) with an RTOS and highly non-deterministic with a GPOS!
(As a rule of thumb, standard Linux will result in approximately +/- 10 microseconds
of jitter for interrupt processing, whereas on a microcontroller running an RTOS, the
jitter will be far less, around +/- 10 nanoseconds!)

Doing this experiment, you will realize that benchmarking is a tricky thing; you
shouldn't read too much into a few test runs (running the tests for a long while,
having a large sample set, is important). Testing with realistic work loads you expect
to experience on the system would be a far better way to see which kernel
configuration yields superior performance; it does indeed vary with the workload!

The CPU Scheduler - Part 2 Chapter 11

[583]

(An interesting case study by Canonical shows statistics for regular, low-latency, and
real-time kernels for certain workloads; look it up in the Further reading section of this
chapter.) As mentioned before, quite often, the superior max latency characteristics of
an RTL kernel can lead to inferior overall throughput (user space might suffer from
reduced CPU due to RTL's rather ruthless prioritization).

Measuring scheduler latency via modern BPF
tools
Without going into too many details, we'd be amiss to leave out the recent and
powerful [e]BPF Linux kernel feature and it's associated frontends; there are a few to
specifically measure scheduler and runqueue-related system latencies. (We covered
the installation of the [e]BPF tools back in Chapter 1, Kernel Workspace Setup under
the Modern tracing and performance analysis with [e]BPF section).

The following table summarizes some of these tools (BPF frontends); all these tools
need to be run as root (as with any BPF tool); they show their output as a histogram
(with the time in microseconds by default):

BPF tool What it measures

runqlat-bpfcc Time a task spends waiting on a runqueue for it's turn to run on the
processor

runqslower-bpfcc

(read as runqueue slower); time a task spends waiting on a runqueue for
it's turn to run on the processor, showing only those threads that exceed a
given threshold, which is 10 ms by default (can be tuned by passing the
time threshold as a parameter, in microseconds); in effect, you can see
which tasks face (relatively) long scheduling delays

runqlen-bpfcc Shows scheduler runqueue length + occupancy (number of threads
currently enqueued, waiting to run)

The tools can also provide these metrics on a per-task basis, for every process on the
system or even by PID namespace (for container analysis; of course, these options
depend on the tool in question). Do look up more details (and even example usage!)
from the man pages (section 8) on these tools.

There are even more [e]BPF frontends related to scheduling:
cpudist- cpudist-bpfcc, cpuunclaimed-bpfcc, offcputime-
bpfcc, wakeuptime-bpfcc, and so on. See the Further reading
section for resources.

The CPU Scheduler - Part 2 Chapter 11

[584]

So, there you are: by now, you're able to not only understand but even measure
system latencies (via both the cyclictest app and a few modern BPF tools).

We close this chapter with a few miscellaneous, yet useful small (kernel space)
routines to check out:

rt_prio(): Given the priority as a parameter, returns a Boolean to
indicate whether it's a real-time task or not.
rt_task(): Based on the priority value of the task, given the task structure
pointer as a parameter, returns a Boolean to indicate whether it's a real-
time task or not (a wrapper over rt_prio()).
task_is_realtime(): Similar, but based on the scheduling policy of the
task. Given the task structure pointer as a parameter, returns a Boolean to
indicate whether it's a real-time task or not.

Summary
In this, our second chapter on CPU scheduling on the Linux OS, you have learned
several key things. Among them, you learned how to visualize kernel flow with
powerful tools such as LTTng and the Trace Compass GUI, as well as with the
trace-cmd(1) utility, a convenient frontend to the kernel's powerful Ftrace
framework. You then saw how to programatically query and set any thread's CPU
affinity mask. This naturally led to a discussion on how you
can programmatically query and set any thread's scheduling policy and priority. The
whole notion of being "completely fair" (via the CFS implementation) was brought
into question, and some light was shed on the elegant solution called cgroups. You
even learned how to leverage the cgroups v2 CPU controller to allocate CPU
bandwidth as desired to processes in a sub-group. We then understood that though
Linux is a GPOS, an RTL patchset very much exists, which, once applied and the
kernel is configured and built, has you running Linux as a true hard real-time system,
an RTOS.

Finally, you learned how to measure latencies on the system, via both the cyclictest
app as well as a few modern BPF tools. We even tested with cyclictest on a Raspberry
Pi 3 device, measuring and contrasting them on an RTL and a standard kernel.

That's quite a bit! Do take the time to properly understand the material, and work on
it in a hands-on fashion.

The CPU Scheduler - Part 2 Chapter 11

[585]

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https://github.com/PacktPublishing/Linux-Kernel-
Programming/blob/master/Further_Reading.md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

3
Section 3: Delving Deeper

Here you will learn about an advanced and critical topic: the concepts behind, the
need for, and the usage of kernel synchronization technologies and APIs.

This section comprises the following chapters:

Chapter 12, Kernel Synchronization - Part 1
Chapter 13, Kernel Synchronization - Part 2

12
Kernel Synchronization - Part

1
As any developer familiar with programming in a multithreaded environment (or
even a single-threaded one where multiple processes work on shared memory, or
where interrupts are a possibility) is well aware, there is a need for synchronization
whenever two or more threads (code paths in general) may race; that is, their
outcome cannot be predicted. Pure code itself is never an issue as its permissions are
read/executed (r-x); reading and executing code simultaneously on multiple CPU
cores is not only perfectly fine and safe, but it's encouraged (it results in better
throughput and is why multithreading is a good idea). However, the moment you're
working on shared writeable data is the moment you need to start being very careful!

The discussions around concurrency and its control – synchronization – are varied,
especially in the context of a complex piece of software such as a Linux kernel (its
subsystems and related regions, such as device drivers), which is what we're dealing
with in this book. Thus, for convenience, we will split this large topic into two
chapters, this one and the next.

In this chapter, we will cover the following topics:

Critical sections, exclusive execution, and atomicity
Concurrency concerns within the Linux kernel
Mutex or spinlock? Which to use when
Using the mutex lock
Using the spinlock
Locking and interrupts

Let's get started!

Kernel Synchronization - Part 1 Chapter 12

[588]

Critical sections, exclusive execution,
and atomicity
Imagine you're writing software for a multicore system (well, nowadays, it's typical
that you will work on multicore systems, even on most embedded projects). As we
mentioned in the introduction, running multiple code paths in parallel is not only
safe, it's desirable (why spend those dollars otherwise, right?). On the other hand,
concurrent (parallel and simultaneous) code paths within which shared writeable
data (also known as shared state) is accessed in any manner is where you are
required to guarantee that, at any given point in time, only one thread can work on
that data at a time! This is really key; why? Think about it: if you allow multiple
concurrent code paths to work in parallel on shared writeable data, you're literally
asking for trouble: data corruption (a "race") can occur as a result.

What is a critical section?
A code path that can execute in parallel and that works on (reads and/or writes)
shared writeable data (shared state) is called a critical section. They require protection
from parallelism. Identifying and protecting critical sections from simultaneous
execution is an implicit requirement for correct software that you – the
designer/architect/developer – must handle.

A critical section is a piece of code that must run either exclusively; that is, alone
(serialized), or atomically; that is, indivisibly, to completion, without interruption.

By exclusively, we're implying that at any given point in time, one thread is running
the code of the critical section; this is obviously required for data safety reasons.

This notion also brings up the important concept of atomicity: a single atomic
operation is one that is indivisible. On any modern processor, two operations are
considered to always be atomic; that is, they cannot be interrupted and will run to
completion:

The execution of a single machine language instruction.
Reads or writes to an aligned primitive data type that is within the
processor's word size (typically 32 or 64 bits); for example, reading or
writing a 64-bit integer on a 64-bit system is guaranteed to be atomic.
Threads reading that variable will never see an in-between, torn, or dirty
result; they will either see the old or the new value.

Kernel Synchronization - Part 1 Chapter 12

[589]

So, if you have some lines of code that work upon shared (global or static) writeable
data, it cannot – in the absence of any explicit synchronization mechanism – be
guaranteed to run exclusively. Note that at times, running the critical section's
code atomically, as well as exclusively, is required, but not all the time.

When the code of the critical section is running in a safe-to-sleep process context
(such as typical file operations on a driver via a user app (open, read, write, ioctl,
mmap, and so on), or the execution path of a kernel thread or workqueue), it might
well be acceptable to not have the critical section being truly atomic. However, when
its code is running in a non-blocking atomic context (such as a hardirq, tasklet, or
softirq), it must run atomically as well as exclusively (we shall cover these points in more
detail in the Mutex or spinlock? Which to use when section).

A conceptual example will help clarify things. Let's say that three threads (from user
space app(s)) attempt to open and read from your driver more or less simultaneously
on a multicore system. Without any intervention, they may well end up running the
critical section's code in parallel, thus working on the shared writable data in parallel,
thus very likely corrupting it! For now, let's look at a conceptual diagram to see how
non-exclusive execution within a critical section's code path is wrong (we won't
even talk about atomicity here):

Figure 12.1 – A conceptual diagram showing how a critical section code path is violated by having >1 thread running within it simultaneously

Kernel Synchronization - Part 1 Chapter 12

[590]

As shown in the preceding diagram, in your device driver, within its (say) read
method, you're having it run some code in order to perform its job (reading some
data from the hardware). Let's take a more in-depth look at this diagram in terms of
data accesses being made at different points in time:

From time t0 to t1: None or only local variable data is accessed. This is
concurrent-safe, with no protection required, and can run in parallel (since
each thread has its own private stack).
From time t1 to t2: Global/static shared writeable data is accessed. This
is not concurrent-safe; it's a critical section and thus must be protected
from concurrent access. It should only contain code that runs exclusively
(alone, exactly one thread at a time, serialized) and, perhaps, atomically.
From time t2 to t3: None or only local variable data is accessed. This is
concurrent-safe, with no protection required, and can run in parallel (since
each thread has its own private stack).

In this book, we assume that you are already aware of the need
to synchronize critical sections; we will not discuss this particular
topic any further. Those of you who are interested may refer to my
earlier book, Hands-On System Programming with Linux (Packt,
October 2018), which covers these points in detail (especially Chapter
15, Multithreading with Pthreads Part II – Synchronization).

So, knowing this, we can now restate the notion of a critical section while also
mentioning when the situation arises (shown in square brackets and italics in the
bullet points). A critical section is code that must run as follows:

(Always) Exclusively: Alone (serialized)
(When in an atomic context) Atomically: Indivisibly, to completion,
without interruption

In the next section, we'll look at a classic scenario – the increment of a global integer.

Kernel Synchronization - Part 1 Chapter 12

[591]

A classic case – the global i ++
Think of this classic example: a global i integer is being incremented within a
concurrent code path, one within which multiple threads of execution can
simultaneously execute. A naive understanding of computer hardware and software
will lead you to believe that this operation is obviously atomic. However, the reality
is that modern hardware and software (the compiler and OS) are much more
sophisticated than you may imagine, thus causing all kinds of invisible (to the app
developer) performance-driven optimizations.

We won't attempt to delve into too much detail here, but the reality
is that modern processors are extremely complex: among the many
technologies they employ toward better performance, a few are
superscalar and super-pipelined execution in order to execute
multiple independent instructions and several parts of various
instructions in parallel (respectively), performing on-the-fly
instruction and/or memory reordering, caching memory in complex
hierarchical on-CPU caches, false sharing, and so on! We will delve
into some of these details in Chapter 13, Kernel Synchronization –
Part 2, in the Cache effects – false sharing and Memory barriers sections.

The paper What every systems programmer should know about
concurrency by Matt Kline, April 2020, (https:/ /assets. bitbashing.
io/ papers/ concurrency- primer. pdf) is superb and a must-read on
this subject; do read it!

All of this makes for a situation that's more complex than it appears to be at first
glance. Let's continue with the classic i ++:

static int i = 5;
[...]
foo()
{
 [...]
 i ++; // is this safe? yes, if truly atomic... but is it truly
atomic??
}

https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf
https://assets.bitbashing.io/papers/concurrency-primer.pdf

Kernel Synchronization - Part 1 Chapter 12

[592]

Is this increment safe by itself? The short answer is no, you must protect it. Why? It's
a critical section – we're accessing shared writeable data for a read and/or write
operation. The longer answer is that it really depends on whether the increment
operation is truly atomic (indivisible); if it is, then i ++ poses no danger in the
presence of parallelism – if not, it does! So, how do we know whether i ++ is truly
atomic or not? Two things determine this:

The processor's Instruction Set Architecture (ISA), which determines
(among several things related to the processor at a low level) the machine
instructions that execute at runtime.
The compiler.

If the ISA has the facility to employ a single machine instruction to perform an integer
increment, and the compiler has the intelligence to use it, then it's truly atomic – it's
safe and doesn't require locking. Otherwise, it's not safe and requires locking!

Try this out: Navigate your browser to this wonderful compiler explorer
website: https:/ / godbolt. org/ . Select C as the programming language and then, in
the left pane, declare the global i integer and increment within a function. Compile in
the right pane with an appropriate compiler and compiler options. You'll see the
actual machine code generated for the C high-level i ++; statement. If it's indeed a
single machine instruction, then it will be safe; if not, you will require locking. By and
large, you will find that you can't really tell: in effect, you cannot afford to assume
things – you will have to assume it's unsafe by default and protect it! This can be seen
in the following screenshot:

Figure 12.2 – Even with the latest stable gcc version but no optimization, the x86_64 gcc produces multiple instructions for the i ++

https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/

Kernel Synchronization - Part 1 Chapter 12

[593]

The preceding screenshot clearly shows this: the yellow background regions in the
left- and right-hand panes is the C source and the corresponding assembly generated
by the compiler, respectively (based on the x86_64 ISA and the compiler's
optimization level). By default, with no optimization, i ++ becomes three machine
instructions. This is exactly what we expect: it corresponds to the fetch (memory to
register), the increment, and the store (register to memory)! Now, this is not atomic; it's
entirely possible that, after one of the machine instructions executes, the control unit
interferes and switches the instruction stream to a different point. This could even
result in another process or thread being context switched in!

The good news is that with a quick -O2 in the Compiler options... window, i
++ becomes just one machine instruction – truly atomic! However, we can't predict
these things in advance; one day, your code may execute on a fairly low-end ARM
(RISC) system, increasing the chance that multiple machine instructions are required
for i ++. (Worry not – we shall cover an optimized locking technology specifically
for integers in the Using the atomic integer operators section).

Modern languages provide native atomic operators; for C/C++, it's
fairly recent (from 2011); the ISO C++11 and the ISO C11 standards
provide ready-made and built-in atomic variables for this. A little
googling will quickly reveal them to you. Modern glibc also makes
use of them. As an example, if you've worked with signaling in user
space, you will know to use the volatile sig_atomic_t data
type to safely access and/or update an atomic integer within signal
handlers. What about the kernel? In the next chapter, you'll learn
about the Linux kernel's solution to this key issue. We'll cover this in
the Using the atomic integer operators and Using the atomic bit
operators sections.

The Linux kernel is, of course, a concurrent environment: multiple threads of
execution run in parallel on multiple CPU cores. Not only that, but even on uni-
processor (UP/single CPU) systems, the presence of hardware interrupts, traps, faults,
exceptions, and software signals can cause data integrity issues. Needless to say,
protecting against concurrency at required points in the code path is easier said than
done; identifying and protecting critical sections using technologies such as locking –
as well as other synchronization primitives and technologies – is absolutely essential,
which is why this is the core subject matter of this chapter and the next.

Kernel Synchronization - Part 1 Chapter 12

[594]

Concepts – the lock
We require synchronization because of the fact that, without any intervention,
threads can concurrently execute critical sections where shared writeable data (shared
state) is being worked upon. To defeat concurrency, we need to get rid of parallelism,
and we need to serialize code that's within the critical section – the place where the
shared data is being worked upon (for reading and/or writing).

To force a code path to become serialized, a common technique is to use a lock.
Essentially, a lock works by guaranteeing that precisely one thread of execution can
"take" or own the lock at any given point in time. Thus, using a lock to protect a
critical section in your code will give you what we're after – running the critical
section's code exclusively (and perhaps atomically; more on this to come):

Figure 12.3 – A conceptual diagram showing how a critical section code path is honored, given exclusivity, by using a lock

The preceding diagram shows one way to fix the situation mentioned previously:
using a lock to protect the critical section! How does the lock (and unlock) work,
conceptually?

Kernel Synchronization - Part 1 Chapter 12

[595]

The basic premise of a lock is that whenever there is contention for it – that is, when
multiple competing threads (say, n threads) attempt to acquire the lock
(the LOCK operation) – exactly one thread will succeed. This is called the "winner" or
the "owner" of the lock. It sees the lock API as a non-blocking call and thus continues
to run happily – and exclusively – while executing the code of the critical section (the
critical section is effectively the code between the lock and the unlock
operations!). What happens to the n-1 "loser" threads? They (perhaps) see the lock
API as a blocking call; they, to all practical effect, wait. Wait upon what? The
unlock operation, of course, which is performed by the owner of the lock (the "winner"
thread)! Once unlocked, the remaining n-1 threads now compete for the next
"winner" slot; of course, exactly one of them will "win" and proceed forward; in the
interim, the n-2 losers will now wait upon the (new) winner's unlock; this repeats
until all n threads (finally and sequentially) acquire the lock.

Now, locking works of course, but – and this should be quite intuitive – it results in
(pretty steep!) overhead, as it defeats parallelism and serializes the execution flow!
To help you visualize this situation, think of a funnel, with the narrow stem being the
critical section where only one thread can fit at a time. All other threads get choked;
locking creates bottlenecks:

Figure 12.4 – A lock creates a bottleneck, analogous to a physical funnel

Kernel Synchronization - Part 1 Chapter 12

[596]

Another oft-mentioned physical analog is a highway with several lanes merging into
one very busy – and choked with traffic – lane (a poorly designed toll booth,
perhaps). Again, parallelism – cars (threads) driving in parallel with other cars in
different lanes (CPUs) – is lost, and serialized behavior is required – cars are forced to
queue one behind the other.

Thus, it is imperative that we, as software architects, try and design our
products/projects so that locking is minimally required. While completely eliminating
global variables is not practically possible in most real-world projects, optimizing and
minimizing their usage is required. We shall cover more regarding this, including
some very interesting lockless programming techniques, later.

Another really key point is that a newbie programmer might naively assume that
performing reads on a shared writeable data object is perfectly safe and thus requires
no explicit protection (with the exception of an aligned primitive data type that is
within the size of the processor's bus); this is untrue. This situation can lead to what's
called dirty or torn reads, a situation where possibly stale data can be read as another
writer thread is simultaneously writing while you are – incorrectly, without locking –
reading the very same data item.

Since we're on the topic of atomicity, as we just learned, on a typical modern
microprocessor, the only things guaranteed to be atomic are a single machine
language instruction or a read/write to an aligned primitive data type within the
processor bus's width. So, how can we mark a few lines of "C" code so that they're
truly atomic? In user space, this isn't even possible (we can come close, but cannot
guarantee atomicity).

How do you "come close" to atomicity in user space apps? You can
always construct a user thread to employ a SCHED_FIFO policy and
a real-time priority of 99. This way, when it wants to run, pretty
much nothing besides hardware interrupts/exceptions can preempt
it. (The old audio subsystem implementation heavily relied on this.)

In kernel space, we can write code that's truly atomic. How, exactly? The short
answer is that we can use spinlocks! We'll learn about spinlocks in more detail
shortly.

Kernel Synchronization - Part 1 Chapter 12

[597]

A summary of key points
Let's summarize some key points regarding critical sections. It's really important to go
over these carefully, keep these handy, and ensure you use them in practice:

A critical section is a code path that can execute in parallel and that works
upon (reads and/or writes) shared writeable data (also known as "shared
state").
Because it works on shared writable data, the critical section requires
protection from the following:

Parallelism (that is, it must run alone/serialized/in a mutually
exclusive fashion)
When running in an atomic (interrupt) non-blocking context
– atomically: indivisibly, to completion, without interruption.
Once protected, you can safely access your shared state until
you "unlock".

Every critical section in the code base must be identified and protected:
Identifying critical sections is critical! Carefully review your
code and make sure you don't miss them.
Protecting them can be achieved via various technologies;
one very common technique is locking (there's also lock-free
programming, which we'll look at in the next chapter).
A common mistake is only protecting critical sections that
write to global writeable data; you must also protect critical
sections that read global writeable data; otherwise, you risk a
torn or dirty read! To help make this key point clear,
visualize an unsigned 64-bit data item being read and written
on a 32-bit system; in such a case, the operation can't be
atomic (two load/store operations are required). Thus, what
if, while you're reading the value of the data item in one
thread, it's being simultaneously written to by another
thread!? The writer thread takes a "lock" of some sort but
because you thought reading is safe, the lock isn't taken by
the reader thread; due to an unfortunate timing coincidence,
you can end up performing a partial/torn/dirty read! We will
learn how to overcome these issues by using various
techniques in the coming sections and the next chapter.
Another deadly mistake is not using the same lock to protect
a given data item.

Kernel Synchronization - Part 1 Chapter 12

[598]

Failing to protect critical sections leads to a data race, a
situation where the outcome – the actual value of the data
being read/written – is "racy", which means it varies,
depending on runtime circumstances and timing. This is
known as a bug. (A bug that, once in "the field", is extremely
difficult to see, reproduce, determine its root cause, and fix.
We will cover some very powerful stuff to help you with this
in the next chapter, in the Lock debugging within the
kernel section; be sure to read it!)

Exceptions: You are safe (implicitly, without explicit protection) in the
following situations:

When you are working on local variables. They're allocated
on the private stack of the thread (or, in the interrupt context,
on the local IRQ stack) and are thus, by definition, safe.
When you are working on shared writeable data in code that
cannot possibly run in another context; that is, it's serialized
by nature. In our context, the init and cleanup methods of an
LKM qualify (they run exactly once, serially, on insmod and
rmmod only).
When you are working on shared data that is truly constant
and read-only (don't let C's const keyword fool you,
though!).

Locking is inherently complex; you must carefully think, design, and
implement this to avoid deadlocks. We'll cover this in more detail in
the Locking guidelines and deadlocks section.

Concurrency concerns within the Linux
kernel
Recognizing critical sections within a piece of kernel code is of critical importance;
how can you protect it if you can't even see it? The following are a few guidelines to
help you, as a budding kernel/driver developer, recognize where concurrency
concerns – and thus critical sections – may arise:

The presence of Symmetric Multi-Processor (SMP) systems (CONFIG_SMP)
The presence of a preemptible kernel
Blocking I/O

Kernel Synchronization - Part 1 Chapter 12

[599]

Hardware interrupts (on either SMP or UP systems)

These are critical points to understand, and we will discuss each in this section.

Multicore SMP systems and data races
The first point is pretty obvious; take a look at the pseudocode shown in the
following screenshot:

Figure 12.5 – Pseudocode – a critical section within a (fictional) driver's read method; it's wrong as there's no locking

It's a similar situation to what we showed in Figures 12.1 and 12.3; it's just that here,
we're showing the concurrency in terms of pseudocode. Clearly, from time t2 to time
t3, the driver is working on some global shared writeable data, thus making this a
critical section.

Kernel Synchronization - Part 1 Chapter 12

[600]

Now, visualize a system with, say, four CPU cores (an SMP system); two user space
processes, P1 (running on, say, CPU 0) and P2 (running on, say, CPU 2), can
concurrently open the device file and simultaneously issue a read(2) system call.
Now, both processes will be concurrently executing the driver read "method", thus
simultaneously working on shared writeable data! This (the code between t2 and
t3) is a critical section, and since we are in violation of the fundamental exclusivity
rule – critical sections must be executed by only a single thread at any point in time –
we can very well end up corrupting the data, the application, or worse.

In other words, this is now a data race; depending on delicate timing coincidences,
we may or may not generate an error (a bug). This very uncertainty – the delicate
timing coincidence – is what makes finding and fixing errors like this
extremely difficult (it can escape your testing effort).

This aphorism is all too unfortunately true: Testing can detect the
presence of errors, not their absence. Adding to this, you're worse off if
your testing fails to catch races (and bugs), allowing them free rein
in the field.

You might feel that since your product is a small embedded system running on one
CPU core (UP), this discussion regarding controlling concurrency (often, via locking)
does not apply to you. We beg to differ: pretty much all modern products, if they
haven't already, will move to multicore (in their next-generation phases, perhaps).
More importantly, even UP systems have concurrency concerns, as we shall explore.

Preemptible kernels, blocking I/O, and data
races
Imagine you're running your kernel module or driver on a Linux kernel that's been
configured to be preemptible (that is, CONFIG_PREEMPT is on; we covered this topic
in Chapter 10, The CPU Scheduler – Part 1). Consider that a process, P1, is running the
driver's read method code in the process context, working on the global array. Now,
while it's within the critical section (between time t2 and t3), what if the
kernel preempts process P1 and context switches to another process, P2, which is just
waiting to execute this very code path? It's dangerous, and again, a data race.
This could well happen on even a UP system!

Kernel Synchronization - Part 1 Chapter 12

[601]

Another scenario that's somewhat similar (and again, could occur on either a single
core (UP) or multicore system): process P1 is running through the critical section of
the driver method (between time t2 and t3; again, see Figure 12.5). This time, what
if, within the critical section, it hits a blocking call?

A blocking call is a function that causes the calling process context to be put to sleep,
waiting upon an event; when that event occurs, the kernel will "wake up" the
task, and it will resume execution from where it left off. This is also known as
blocking on I/O and is very common; many APIs (including several user space library
and system calls, as well as several kernel APIs, are blocking by nature). In such a
case, process P1 is effectively context switches off the CPU and goes to sleep, which
means that the code of schedule() runs and enqueues it onto a wait queue. In the
interim, before P1 gets switched back, what if another process, P2, is scheduled to
run? What if that process is also running this particular code path? Think about it – by
the time P1 is back, the shared data could have changed "underneath it", causing all
kinds of errors; again, a data race, a bug!

Hardware interrupts and data races
Finally, envision this scenario: process P1 is, again, innocently running the driver's
read method code; it enters the critical section (between time t2 and t3; again,
see Figure 12.5). It makes some progress but then, alas, a hardware interrupt triggers
(on the same CPU)! (You will learn about it detail in Linux Kernel Programming (Part
2).) On the Linux OS, hardware (peripheral) interrupts have the highest priority; they
preempt any code (including kernel code) by default. Thus, process (or thread) P1
will be at least temporarily shelved, thus losing the processor; the interrupt handling
code will preempt it and run.

Well, you might be wondering, so what? Indeed, this is a completely commonplace
occurrence! Hardware interrupts fire very frequently on modern systems, effectively
(and literally) interrupting all kinds of task contexts (do a quick vmstat 3 on your
shell; the column under system labeled in shows the number of hardware interrupts
that fired on your system in the last 1 second!). The key question to ask is this: is the
interrupt handling code (either the hardirq top half or the so-called tasklet or softirq
bottom half, whichever occurred), sharing and working upon the same shared writable
data of the process context that it just interrupted?

Kernel Synchronization - Part 1 Chapter 12

[602]

If this is true, then, Houston, we have a problem – a data race! If not, then your
interrupted code is not a critical section with respect to the interrupt code path, and
that's fine. The fact is that the majority of device drivers do handle interrupt(s); thus,
it is the driver author's (your!) responsibility to ensure that no global or static data –
in effect, no critical sections – are shared between the process context and interrupt
code paths. If they are (which does happen), you must somehow protect that data
from data races and possible corruption.

These scenarios might leave you feeling that protecting against these concurrency
concerns is a really tall order; how exactly can you accomplish data safety in the face
of critical sections existing, along with various possible concurrency
concerns? Interestingly, the actual APIs are not hard to learn to use; again, we
emphasize that recognizing critical sections is the key thing to do.

Again, the basics regarding how a lock (conceptually) works,
locking guidelines (very important; we'll recap on them shortly),
and the types of and how to prevent deadlocks, are all dealt with in
my earlier book, Hands-On System Programming with Linux (Packt,
Oct 2018). This books covers these points in detail in Chapter
15, Multithreading with Pthreads Part II – Synchronization.

Without further ado, let's dive into the primary synchronization technology that will
serve to protect our critical sections – locking.

Locking guidelines and deadlocks
Locking, by its very nature, is a complex beast; it tends to give rise to complex
interlocking scenarios. Not understanding it well enough can lead to both
performance headaches and bugs – deadlocks, circular dependencies, interrupt-
unsafe locking, and more. The following locking guidelines are key to ensuring
correctly written code when using locking:

Locking granularity: The 'distance' between the lock and the unlock (in
effect, the length of the critical section) should not be coarse (too long a
critical section) it should be 'fine enough'; what does this mean? The points
below explain this:

You need to be careful here. When you're working on large
projects, keeping too few locks is a problem, as is keeping too
many! Too few locks can lead to performance issues (as the
same locks are repeatedly used and thus tend to be highly
contended).

Kernel Synchronization - Part 1 Chapter 12

[603]

Having a lot of locks is actually good for performance, but
not good for complexity control. This also leads to another
key point to understand: with many locks in the code base,
you should be very clear on which lock protects which
shared data object. It's completely meaningless if you use,
say, lockA to protect mystructX, but in a code path far
away (perhaps an interrupt handler) you forget this and try
and use some other lock, lockB, for protection when
working on the same structure! Right now, these things
might sound obvious, but (as experienced developers know),
under sufficient pressure, even the obvious isn't always
obvious!
Try and balance things out. In large projects, using one lock
to protect one global (shared) data structure is typical.
(Naming the lock variable well can become a big problem in
itself! This is why we place the lock that protects a data
structure within it as a member.)

Lock ordering is critical; locks must be taken in the same order
throughout, and their order should be documented and followed by all the
developers working on the project (annotating locks is useful too; more on
this in the section on lockdep in the next chapter). Incorrect lock ordering
often leads to deadlocks.
Avoid recursive locking as much as possible.
Take care to prevent starvation; verify that a lock, once taken, is indeed
released "quickly enough".
Simplicity is key: Try to avoid complexity or over-design, especially with
regard to complex scenarios involving locks.

On the topic of locking, the (dangerous) issue of deadlocks arises. A deadlock is the
inability to make any progress; in other words, the app and/or kernel component(s)
appear to hang indefinitely. While we don't intend to delve into the gory details of
deadlocks here, I will quickly mention some of the more common types of deadlock
scenarios that can occur:

Simple case, single lock, process context:
We attempt to acquire the same lock twice; this results in
a self-deadlock.

Kernel Synchronization - Part 1 Chapter 12

[604]

Simple case, multiple (two or more) locks, process context – an example:
On CPU 0, thread A acquires lock A and then wants lock B.
Concurrently, on CPU 1, thread B acquires lock B and then
wants lock A.
The result is a deadlock, often called the AB-BA deadlock.
It can be extended; for example, the AB-BC-CA circular
dependency (A-B-C lock chain) results in a deadlock.

Complex case, single lock, and process and interrupt contexts:
Lock A takes in an interrupt context.
What if an interrupt occurs (on another core) and the
handler attempts to take lock A? Deadlock is the result! Thus,
locks acquired in the interrupt context must always be used
with interrupts disabled. (How? We will look at this in more
detail when we cover spinlocks.)

More complex cases, multiple locks, and process and interrupt (hardirq and
softirq) contexts

In simpler cases, always following the lock ordering guideline is sufficient:
always obtain and release locks in a well-documented order (we will provide an
example of this in kernel code in the Using the mutex lock section). However, this can
get very complex; complex deadlock scenarios can trip up even experienced
developers. Luckily for us, lockdep – the Linux kernel's runtime lock dependency
validator – can catch every single deadlock case! (Don't worry – we shall get there:
we'll cover lockdep in detail in the next chapter). When we cover spinlocks (the Using
the spinlock section), we'll come across process and/or interrupt context scenarios
similar to the ones mentioned previously; the type of spinlock to use is made clear
there.

Kernel Synchronization - Part 1 Chapter 12

[605]

With regard to deadlocks, a pretty detailed presentation on lockdep
was given by Steve Rostedt at a Linux Plumber's Conference (back
in 2011); the relevant slides are informative and explore both simple
and complex deadlock scenarios, as well as how lockdep can detect
them (https:/ / blog. linuxplumbersconf. org/ 2011/ ocw/ sessions/
153).

Also, the reality is that not just deadlock, but even livelock
situations, can be just as deadly! Livelock is essentially a situation
similar to deadlock; it's just that the state of the participating task is
running and not waiting. An example, an interrupt "storm" can
cause a livelock; modern network drivers mitigate this effect by
switching off interrupts (under interrupt load) and resorting to a
polling technique called New API; Switching Interrupts (NAPI)
(switching interrupts back on when appropriate; well, it's more
complex than that, but we leave it at that here).

For those of you who've been living under a rock, you will know that the Linux
kernel has two primary types of locks: the mutex lock and the spinlock. Actually,
there are several more types, including other synchronization (and "lockless"
programming) technology, all of which will be covered in the course of this chapter
and the next.

Mutex or spinlock? Which to use when
The exact semantics of learning to use the mutex lock and the spinlock are
quite simple (with appropriate abstraction within the kernel API set, making it even
easier for the typical driver developer or module author). The critical question in this
situation is a conceptual one: what really is the difference between the two locks?
More to the point, under which circumstances should you use which lock? You will
learn the answers to these questions in this section.

https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153

Kernel Synchronization - Part 1 Chapter 12

[606]

Taking our previous driver read method's pseudocode (Figure 12.5) as a base
example, let's say that three threads – tA, tB, and tC – are running in parallel (on an
SMP system) through this code. We shall solve this concurrency issue, while avoiding
any data races, by taking or acquiring a lock prior to the start of the critical section
(time t2), and release the lock (unlock) just after the end of the critical section code
path (time t3). Let's take a look at the pseudocode once more, this time with locking to
ensure it's correct:

Figure 12.6 – Pseudocode – a critical section within a (fictional) driver's read method; correct, with locking

When the three threads attempt to simultaneously acquire the lock, the system
guarantees that only exactly one of them will get it. Let's say that tB (thread B) gets
the lock: it's now the "winner" or "owner" thread. This means that threads tA and tC
are the "losers"; what do they do? They wait upon the unlock! The moment the
"winner" (tB) completes the critical section and unlocks the lock, the battle
resumes between the previous losers; one of them will be the next winner and the
process repeats.

Kernel Synchronization - Part 1 Chapter 12

[607]

The key difference between the two lock types – the mutex and the spinlock – is based
on how the losers wait upon the unlock. With the mutex lock, the loser threads are
put to sleep; that is, they wait by sleeping. The moment the winner performs the
unlock, the kernel awakens the losers (all of them) and they run, again competing for
the lock. (In fact, mutexes and semaphores are sometimes referred to as sleeplocks.)

With the spinlock, however, there is no question of sleeping; the losers wait by
spinning upon the lock until it is unlocked. Conceptually, this looks as follows:

while (locked) ;

Note that this is only conceptual. Think about it a moment – this is actually polling.
However, as a good programmer, you will understand, that polling is usually
considered a bad idea. Why, then, does the spinlock work this way? Well, it doesn't; it
has only been presented in this manner for conceptual purposes. As you will soon
understand, spinlocks only really have meaning on multicore (SMP) systems. On
such systems, while the winner thread is away and running the critical section code,
the losers wait by spinning on other CPU cores! In reality, at the implementation
level, the code that's used to implement the modern spinlock is highly optimized (and
arch-specific) and does not work by trivially "spinning" (for example, many
spinlock implementations for ARM use the wait for event (WFE) machine language
instruction, which has the CPU optimally wait in a low power state; see the Further
reading section for several resources on the internal implementation of spinlocks).

Determining which lock to use – in theory
How the spinlock is implemented is really not our concern here; the fact that the
spinlock has a lower overhead than the mutex lock is of interest to us. How so? It's
simple, really: for the mutex lock to work, the loser thread has to go to sleep. To do
so, internally, the schedule() function gets called, which means the loser sees the
mutex lock API as a blocking call! A call to the scheduler will ultimately result in the
processer being context-switched off. Conversely, when the owner thread unlocks the
lock, the loser thread(s) must be woken up; again, it will be context-switched back
onto the processor. Thus, the minimal "cost" of the mutex lock/unlock operation is the
time it takes to perform two context switches on the given machine. (See the
Information Box in the next section.) By relooking at the preceding screenshot once
more, we can determine a few things, including the time spent in the critical section
(the "locked" code path); that is, t_locked = t3 - t2.

Kernel Synchronization - Part 1 Chapter 12

[608]

Let's say that t_ctxsw represents the time to context switch. As we've learned, the
minimal cost of the mutex lock/unlock operation is 2 * t_ctxsw. Now, let's say that
the following expression is true:

t_locked < 2 * t_ctxsw

In other words, what if the time spent within the critical section is less than the time
taken for two context switches? In this case, using the mutex lock is just wrong as this
is far too much overhead; more time is being spent performing metawork than actual
work – a phenomenon known as thrashing. It's this precise use case – the presence of
very short critical sections – that's often the case on modern OSes such as Linux. So, in
conclusion, for short non-blocking critical sections, using a spinlock is (far) superior
to using a mutex lock.

Determining which lock to use – in practice
So, operating under the t_locked < 2 * t_ctxsw "rule" might be great in theory,
but hang on: are you really expected to precisely measure the context switch time and
the time spent in the critical section of each and every case where one (critical section)
exists? No, of course not – that's pretty unrealistic and pedantic.

Practically speaking, think about it this way: the mutex lock works by having the
loser threads sleep upon the unlock; the spinlock does not (the losers "spin"). Let's
recall one of our golden rules of the Linux kernel: a kernel cannot sleep (call
schedule()) in any kind of atomic context. Thus, we can never use the mutex lock in
an interrupt context, or indeed in any context where it isn't safe to sleep; using the
spinlock, however, would be fine. (Remember, a blocking API is one that puts the
calling context to sleep by calling schedule().) Let's summarize this:

Is the critical section running in an atomic (interrupt) context, or, in a
process context, where it cannot sleep? Use the spinlock.
Is the critical section running in a process context and sleep in the critical
section is necessary? Use the mutex lock.

Of course, using the spinlock is considered lower overhead than using the mutex;
thus, you can even use the spinlock in the process context (such as our fictional
driver's read method), as long as the critical section does not block (sleep).

Kernel Synchronization - Part 1 Chapter 12

[609]

[1] The time taken for a context switch is varied; it largely depends
on the hardware and the OS quality. Recent (September 2018)
measurements show that context switching time is in the region of
1.2 to 1.5 us (microseconds) on a pinned-down CPU, and around 2.2
us without pinning (https:/ /eli. thegreenplace. net/ 2018/
measuring- context- switching- and- memory- overheads- for- linux-
threads/).

Both hardware and the Linux OS have improved tremendously,
and because of that, so has the average context switching time. An
old (December 1998) Linux Journal article determined that on an x86
class system, the average context switch time was 19 us
(microseconds), and that the worst-case time was 30 us.

This brings up the question, how do we know if the code is currently running in a
process or interrupt context? Easy: our PRINT_CTX() macro (within our
convenient.h header) shows us this:

if (in_task())
 /* we're in process context (usually safe to sleep / block) */
else
 /* we're in an atomic or interrupt context (cannot sleep / block)
*/

(The details of our PRINT_CTX() macro's implementation are covered in Linux Kernel
Programming (Part 2)).

Now that you understand which one – mutex or spinlock – to use and when, let's get
into the actual usage. We'll begin with how to use the mutex lock!

Using the mutex lock
Mutexes are also called sleepable or blocking mutual exclusion locks. As you have
learned, they are used in the process context if the critical section can sleep (block).
They must not be used within any kind of atomic or interrupt context (top halves,
bottom halves such as tasklets or softirqs, and so on), kernel timers, or even the
process context where blocking is not allowed.

https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/

Kernel Synchronization - Part 1 Chapter 12

[610]

Initializing the mutex lock
A mutex lock "object" is represented in the kernel as a struct mutex data structure.
Consider the following code:

#include <linux/mutex.h>
struct mutex mymtx;

To use a mutex lock, it must be explicitly initialized to the unlocked
state. Initialization can be performed statically (declare and initialize the object) with
the DEFINE_MUTEX() macro, or dynamically via the mutex_init() function (this is
actually a macro wrapper over the __mutex_init() function).

For example, to declare and initialize a mutex object called mymtx, we can
use DEFINE_MUTEX(mymtx);.

We can also do this dynamically. Why dynamically? Often, the mutex lock is a
member of the (global) data structure that it protects (clever!). For example, let's say
we have the following global context structure in our driver code (note that this code
is fictional):

struct mydrv_priv {
 <member 1>;
 <member 2>;
 [...]
 struct mutex mymtx; /* protects access to mydrv_priv */
 [...]
};

Then, in your driver's (or LKM's) init method, do the following:

static int init_mydrv(struct mydrv_priv *drvctx)
{
 [...]
 mutex_init(drvctx->mymtx);
 [...]
}

Keeping the lock variable as a member of the (parent) data structure it protects is a
common (and clever) pattern that's used within Linux; this approach has the added
benefit of avoiding namespace pollution and is unambiguous about which mutex
protects which shared data item (a bigger problem than it might appear to be at first,
especially in enormous projects such as the Linux kernel!).

Kernel Synchronization - Part 1 Chapter 12

[611]

Keep the lock protecting a global or shared data structure as a
member within that data structure.

Correctly using the mutex lock
Typically, you can find very insightful comments within the kernel source tree. Here's
a great one that neatly summarizes the rules you must follow to correctly use a mutex
lock; please read this carefully:

// include/linux/mutex.h
/*
 * Simple, straightforward mutexes with strict semantics:
 *
 * - only one task can hold the mutex at a time
 * - only the owner can unlock the mutex
 * - multiple unlocks are not permitted
 * - recursive locking is not permitted
 * - a mutex object must be initialized via the API
 * - a mutex object must not be initialized via memset or copying
 * - task may not exit with mutex held
 * - memory areas where held locks reside must not be freed
 * - held mutexes must not be reinitialized
 * - mutexes may not be used in hardware or software interrupt
 * contexts such as tasklets and timers
 *
 * These semantics are fully enforced when DEBUG_MUTEXES is
 * enabled. Furthermore, besides enforcing the above rules, the mutex
 * [...]

As a kernel developer, you must understand the following:

A critical section causes the code path to be serialized, defeating parallelism.
Due to this, it's imperative that you keep the critical section as short as
possible. A corollary to this is lock data, not code.
Attempting to reacquire an already acquired (locked) mutex lock – which is
effectively recursive locking – is not supported and will lead to a self-
deadlock.

Kernel Synchronization - Part 1 Chapter 12

[612]

Lock ordering: This is a very important rule of thumb for preventing
dangerous deadlock situations. In the presence of multiple threads and
multiple locks, it is critical that the order in which locks are taken is documented
and strictly followed by all the developers working on the project. The actual
lock ordering itself isn't sacrosanct, but the fact that once it's been decided
on it must be followed, is. While browsing through the kernel source tree,
you will come across many places where the kernel developers ensure this
is done, and they (usually) write a comment regarding this for other
developers to see and follow. Here's a sample comment from the slab
allocator code (mm/slub.c):

/*
 * Lock order:
 * 1. slab_mutex (Global Mutex)
 * 2. node->list_lock
 * 3. slab_lock(page) (Only on some arches and for debugging)

Now that we understand how mutexes work from a conceptual standpoint (and we
understand their initialization), let's learn how to make use of the lock/unlock APIs.

Mutex lock and unlock APIs and their usage
The actual locking and unlocking APIs for the mutex lock are as follows. The
following code shows how to lock and unlock a mutex, respectively:

void __sched mutex_lock(struct mutex *lock);
void __sched mutex_unlock(struct mutex *lock);

(Ignore __sched here; it's just a compiler attribute that has this function disappear in
the WCHAN output, which shows up in procfs and with certain option switches to
ps(1) (such as -l)).

Again, the comments within the source code in kernel/locking/mutex.c are very
detailed and descriptive; I encourage you to take a look at this file in more detail.
We've only shown some of its code here, which has been taken directly from the 5.4
Linux kernel source tree:

// kernel/locking/mutex.c
[...]
/**
 * mutex_lock - acquire the mutex
 * @lock: the mutex to be acquired
 *
 * Lock the mutex exclusively for this task. If the mutex is not

Kernel Synchronization - Part 1 Chapter 12

[613]

 * available right now, it will sleep until it can get it.
 *
 * The mutex must later on be released by the same task that
 * acquired it. Recursive locking is not allowed. The task
 * may not exit without first unlocking the mutex. Also, kernel
 * memory where the mutex resides must not be freed with
 * the mutex still locked. The mutex must first be initialized
 * (or statically defined) before it can be locked. memset()-ing
 * the mutex to 0 is not allowed.
 *
 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 * checks that will enforce the restrictions and will also do
 * deadlock debugging)
 *
 * This function is similar to (but not equivalent to) down().
 */
void __sched mutex_lock(struct mutex *lock)
{
 might_sleep();

 if (!__mutex_trylock_fast(lock))
 __mutex_lock_slowpath(lock);
}
EXPORT_SYMBOL(mutex_lock);

might_sleep() is a macro with an interesting debug property; it catches code that's
supposed to execute in an atomic context but doesn't! (Explanation
for might_sleep() can be found in the Linux Kernel Programming (Part 2) book). So,
think about it: might_sleep(), which is the first line of code in mutex_lock(),
implies that this code path should not be executed by anything that's in an atomic
context since it might sleep. This means that you should only use the mutex in the
process context when it's safe to sleep!

A quick and important reminder: The Linux kernel can be
configured with a large number of debug options; in this context,
the CONFIG_DEBUG_MUTEXES config option will help you catch
possible mutex-related bugs, including deadlocks. Similarly, under
the Kernel Hacking menu, you will find a large number of debug-
related kernel config options. We discussed this in Chapter 5,
Writing Your First Kernel Module – LKMs Part 2. There are several
very useful kernel configs with regard to lock debugging; we shall
cover these in the next chapter, in the Lock debugging within the
kernel section.

Kernel Synchronization - Part 1 Chapter 12

[614]

Mutex lock – via [un]interruptible sleep?
As usual, there's more to the mutex than what we've seen so far. You already know
that a Linux process (or thread) cycles through various states of a state machine. On
Linux, sleeping has two discrete states – an interruptible sleep and an uninterruptible
sleep. A process (or thread) in an interruptible sleep is sensitive, which means it will
respond to user space signals, whereas a task in an uninterruptible sleep is not
sensitive to user signals.

In a human-interactive application with an underlying driver, as a general rule of
thumb, you should typically put a process into an interruptible sleep (while it's
blocking upon the lock), thus leaving it up to the end user as to whether to abort the
application by pressing Ctrl + C (or some such mechanism involving signals). There is
a design rule that's often followed on Unix-like systems: provide mechanism,
not policy. Having said this, on non-interactive code paths, it's often the case that you
must wait on the lock to wait indefinitely, with the semantic that a signal that's been
delivered to the task should not abort the blocking wait. On Linux, the
uninterruptible case turns out to be the most common one.

So, here's the thing: the mutex_lock() API always puts the calling task into an
uninterruptible sleep. If this is not what you want, use the
mutex_lock_interruptible() API to put the calling task into an interruptible
sleep. There is one difference syntax-wise; the latter returns an integer value of 0 on
success and -EINTR (remember the 0/-E return convention) on failure (due to signal
interruption).

In general, using mutex_lock() is faster than using
mutex_lock_interruptible(); use it when the critical section is short (thus pretty
much guaranteeing that the lock is held for a short while, which is a very desirable
characteristic).

The 5.4.0 kernel contains over 18,500 and just over 800 instances of
calling the mutex_lock() and
mutex_lock_interruptible() APIs, respectively; you can check
this out via the powerful cscope(1) utility on the kernel
source tree.

Kernel Synchronization - Part 1 Chapter 12

[615]

In theory, the kernel provides a mutex_destroy() API as well. This is the opposite
of mutex_init(); its job is to mark the mutex as being unusable. It must only be
invoked once the mutex is in the unlocked state, and once invoked, the mutex cannot
be used. This is a bit theoretical because, on regular systems, it just reduces to an
empty function; only on a kernel with CONFIG_DEBUG_MUTEXES enabled does it
become actual (simple) code. Thus, we should use this pattern when working with
the mutex, as shown in the following pseudocode:

DEFINE_MUTEX(...); // init: initialize the mutex object
/* or */ mutex_init();
[...]
 /* critical section: perform the (mutex) locking, unlocking */
 mutex_lock[_interruptible]();
 << ... critical section ... >>
 mutex_unlock();
 mutex_destroy(); // cleanup: destroy the mutex object

Now that you have learned how to use the mutex lock APIs, let's put this knowledge
to use. In the next section, we will build on top of one of our earlier (poorly written –
no protection!) "misc" drivers by employing the mutex object to lock critical sections
as required.

Mutex locking – an example driver
We have created a simple device driver code example in the Linux Kernel
Programming (Part 2) book in the Writing a Simple misc Character Device Driver
chapter; that is, miscdrv_rdwr. There, we wrote a simple misc class character device
driver and used a user space utility program (miscdrv_rdwr/rdwr_drv_secret.c)
to read and write a (so-called) secret from and to the device driver's memory.

However, what we glaringly (egregiously is the right word here!) failed to do in that
code is protect shared (global) writeable data! This will cost us dearly in the real
world. I urge you to take some time to think about this: it isn't viable that two (or
three or more) user mode processes open the device file of this driver, and then
concurrently issue various I/O reads and writes. Here, the global shared writable data
(in this particular case, two global integers and the driver context data structure)
could easily get corrupted.

Kernel Synchronization - Part 1 Chapter 12

[616]

So, let's learn from and correct our mistakes by making a copy of this driver (we will
now call it ch12/1_miscdrv_rdwr_mutexlock/1_miscdrv_rdwr_mutexlock.c)
and rewriting some portions of it. The key point is that we must use mutex locks to
protect all critical sections. Instead of displaying the code here (it's in this book's
GitHub repository at https:/ / github. com/PacktPublishing/ Linux- Kernel-
Programming, after all, please do git clone it!), let's do something interesting: let's
look at a "diff" (the differences – the delta generated by diff(1)) between the older
unprotected version and the newer protected code version. The output here has been
truncated:

$ pwd
<...>/ch12/1_miscdrv_rdwr_mutexlock
$ diff -u ../../ch12/miscdrv_rdwr/miscdrv_rdwr.c
miscdrv_rdwr_mutexlock.c > miscdrv_rdwr.patch
$ cat miscdrv_rdwr.patch
[...]
+#include <linux/mutex.h> // mutex lock, unlock, etc
 #include "../../convenient.h"
[...]
-#define OURMODNAME "miscdrv_rdwr"
+#define OURMODNAME "miscdrv_rdwr_mutexlock"

+DEFINE_MUTEX(lock1); // this mutex lock is meant to protect the
integers ga and gb
[...]
+ struct mutex lock; // this mutex protects this data structure
 };
[...]

Here, we can see that in the newer safe version of the driver, we have declared and
initialized a mutex variable called lock1; we shall use it to protect the (just for
demonstration purposes) two global integers, ga and gb, within our driver. Next,
importantly, we declared a mutex lock named lock within the "driver context"
data structure; that is, drv_ctx. This will be used to protect any and all access to
members of that data structure. It is initialized within the init code:

+ mutex_init(&ctx->lock);
+
+ /* Initialize the "secret" value :-) */
 strscpy(ctx->oursecret, "initmsg", 8);
- dev_dbg(ctx->dev, "A sample print via the dev_dbg(): driver
initialized\n");
+ /* Why don't we protect the above strscpy() with the mutex lock?
+ * It's working on shared writable data, yes?
+ * Yes, BUT this is the init code; it's guaranteed to run in
exactly

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Kernel Synchronization - Part 1 Chapter 12

[617]

+ * one context (typically the insmod(8) process), thus there is
+ * no concurrency possible here. The same goes for the cleanup
+ * code path.
+ */

This detailed comment clearly explains why we don't need to lock/unlock around
strscpy(). Again, this should be obvious, but local variables are implicitly private to
each process context (as they reside in that process or thread's kernel mode stack) and
therefore require no protection (each thread/process has a separate instance of the
variable, so no one steps on anyone's toes!). Before we forget, the cleanup code path
(which is invoked via the rmmod(8) process context), must destroy the mutexes:

-static void __exit miscdrv_rdwr_exit(void)
+static void __exit miscdrv_exit_mutexlock(void)
 {
+ mutex_destroy(&lock1);
+ mutex_destroy(&ctx->lock);
 misc_deregister(&llkd_miscdev);
 }

Now, let's look at the diff of the driver's open method:

+
+ mutex_lock(&lock1);
+ ga++; gb--;
+ mutex_unlock(&lock1);
+
+ dev_info(dev, " filename: \"%s\"\n"
 [...]

This is where we manipulated the global integers, making this a critical section; unlike
the previous version of this program (in Linux Kernel Programming (Part 2)), here, we
do protect this critical section with the lock1 mutex. So, there it is: the critical section
here is the code ga++; gb--;: the code between the (mutex) lock and unlock
operations.

Kernel Synchronization - Part 1 Chapter 12

[618]

But (there's always a but, isn't there?), all is not well! Take a look at the
printk function (dev_info()) following the mutex_unlock() line of code:

+ dev_info(dev, " filename: \"%s\"\n"
+ " wrt open file: f_flags = 0x%x\n"
+ " ga = %d, gb = %d\n",
+ filp->f_path.dentry->d_iname, filp->f_flags, ga, gb);

Does this look okay to you? No, look carefully: we are reading the value of the global
integers, ga and gb. Recall the fundamentals: in the presence of concurrency (which is
certainly a possibility here in this driver's open method), even reading shared writeable
data without the lock is potentially unsafe. If this doesn't make sense to you, please think:
what if, while one thread is reading the integers, another is simultaneously updating
(writing) them; what then? This kind of situation is called a dirty read (or a torn
read); we might end up reading stale data and must be protected against. (The fact is
that this isn't really a great example of a dirty read as, on most processors, reading
and writing single integer items does tend to be an atomic operation. However, we
must not assume such things – we must simply do our job and protect it.)

In fact, there's another similar bug-in-waiting: we have read data from the open file
structure (the filp pointer) without bothering to protect it (indeed, the open file
structure has a lock; we're supposed to use it! We shall do so later).

The precise semantics of how and when things such as dirty
reads occur does tend to be very arch (machine)-dependent;
nevertheless, our job as module or driver authors is clear: we must
ensure that we protect all critical sections. This includes reads upon
shared writable data.

Kernel Synchronization - Part 1 Chapter 12

[619]

For now, we shall just flag these as potential errors (bugs). We will take care of this in
the Using the atomic integer operators section, in a more performance-friendly manner.
Looking at the diff of the driver's read method reveals something interesting (ignore
the line numbers shown here; they might change):

Figure 12.7 – The diff of the driver's read() method; see the usage of the mutex lock in the newer version

We have now used the driver context structure's mutex lock to protect the critical
sections. The same goes for both the write and close (release) methods of the device
driver (generate the patch for yourself and take a look).

Kernel Synchronization - Part 1 Chapter 12

[620]

Note that the user mode app remains unchanged, which means for us to test the new
safer version, we must continue using the user mode app
at ch12/miscdrv_rdwr/rdwr_drv_secret.c. Running and testing code such as
this driver code on a debug kernel, which contains various locking errors and
deadlock detection capabilities, is crucial (we'll return to these "debug" capabilities in
the next chapter, in the Lock debugging within the kernel section).

In the preceding code, we took the mutex lock just before the copy_to_user()
routine; that's fine. However, we only release it after dev_info(). Why not release it
before this printk, thus shortening the critical section?

A closer look at dev_info() reveals why it's within the critical section. We are
printing the values of three variables here: the number of bytes read
by secret_len and the number of bytes that are "transmitted" and "received"
by ctx->tx and ctx->rx, respectively. secret_len is a local variable and does not
require protection, but the other two variables are within the global driver context
structure and thus do require protection, even from (possibly dirty) reads.

The mutex lock – a few remaining points
In this section, we will cover a few additional points regarding mutexes.

Mutex lock API variants
First, let's take a look at a few variants of the mutex lock API; besides the interruptible
variant (described in the Mutex lock – via [un]interruptible sleep? section), we have the
trylock, killable, and io variants.

The mutex trylock variant
What if you would like to implement a busy-wait semantic; that is, test for the
availability of the (mutex) lock and, if available (meaning it's currently unlocked),
acquire/lock it and continue with the critical section code path? If this is not available
(it's currently in the locked state), do not wait for the lock; instead, perform some
other work and retry. In effect, this is a non-blocking mutex lock variant and is called
the trylock; the following flowchart shows how it works:

Kernel Synchronization - Part 1 Chapter 12

[621]

Figure 12.8 – The "busy wait" semantic, a non-blocking trylock operation

The API for this trylock variant of the mutex lock is as follows:

int mutex_trylock(struct mutex *lock);

This API's return value signifies what transpired at runtime:

A return value of 1 indicates that the lock has been successfully acquired.
A return value of 0 indicates that the lock is currently contended (locked).

Though it might sound tempting to, do not attempt to use
the mutex_trylock() API to figure out if a mutex lock is in a
locked or unlocked state; this is inherently "racy". Next, note that
using this trylock variant in a highly contended lock path may well
reduce your chances of acquiring the lock. The trylock variant has
been traditionally used in deadlock prevention code that might need
to back out of a certain lock order sequence and be retried via
another sequence (ordering).

Kernel Synchronization - Part 1 Chapter 12

[622]

Also, with respect to the trylock variant, even though the literature uses the term try
and acquire the mutex atomically, it does not work in an atomic or interrupt context – it
only works in the process context (as with any type of mutex lock). As usual, the lock
must be released by mutex_unlock() being invoked by the owner context.

I suggest that you try working on the trylock mutex variant as an exercise. See
the Questions section at the end of this chapter for an assignment!

The mutex interruptible and killable variants
As you have already learned, the mutex_lock_interruptible() API is used when
the driver (or module) is willing to acknowledge any (user space) signal interrupting
it (and returns -ERESTARTSYS to tell the kernel VFS layer to perform signal handling;
the user space system call will fail with errno set to EINTR). An example can be
found in the module handling code in the kernel, within the delete_module(2)
system call (which rmmod(8) invokes):

// kernel/module.c
[...]
SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 unsigned int, flags)
{
 struct module *mod;
 [...]
 if (!capable(CAP_SYS_MODULE) || modules_disabled)
 return -EPERM;
 [...]
 if (mutex_lock_interruptible(&module_mutex) != 0)
 return -EINTR;
 mod = find_module(name);
 [...]
out:
 mutex_unlock(&module_mutex);
 return ret;
}

Notice how the API returns -EINTR on failure. (The SYSCALL_DEFINEn() macro
becomes a system call signature; n signifies the number of parameters this particular
system call accepts. Also, notice the capability check – unless you are running as root
or have the CAP_SYS_MODULE capability (or module loading is completely disabled),
the system call just returns a failure (-EPERM).)

Kernel Synchronization - Part 1 Chapter 12

[623]

If, however, your driver is only willing to be interrupted by fatal signals (those that
will kill the user space context), then use the mutex_lock_killable() API (the
signature is identical to that of the interruptible variant).

The mutex io variant
The mutex_lock_io() API is identical in syntax to the mutex_lock() API; the
only difference is that the kernel thinks that the wait time of the loser thread(s) is the
same as waiting for I/O (the code comment in
kernel/locking/mutex.c:mutex_lock_io() clearly documents this; take a look).
This can matter accounting-wise.

You can find fairly exotic APIs such as
mutex_lock[_interruptible]_nested() within the kernel, with
the emphasis here being on the nested suffix. However, note that
the Linux kernel does not prefer developers to use nested (or
recursive) locking (as we mentioned in the Correctly using the mutex
lock section). Also, these APIs only get compiled in the presence
of the CONFIG_DEBUG_LOCK_ALLOC config option; in effect, the
nested APIs were added to support the kernel lock validator
mechanism. They should only be used in special circumstances
(where a nesting level must be incorporated between instances of
the same lock type).

In the next section, we will answer a typical FAQ: what's the difference between the
mutex and semaphore objects? Does Linux even have a semaphore object? Read on to
find out!

The semaphore and the mutex
The Linux kernel does provide a semaphore object, along with the usual operations
you can perform on a (binary) semaphore:

A semaphore lock acquire via the down[_interruptible]() (and
variations) APIs
A semaphore unlock via the up() API.

In general, the semaphore is an older implementation, so it's advised
that you use the mutex lock in place of it.

Kernel Synchronization - Part 1 Chapter 12

[624]

An FAQ worth looking at, though, is this: what is the difference between a mutex and
a semaphore? They appear to be conceptually similar, but are actually quite different:

A semaphore is a more generalized form of a mutex; a mutex lock can
be acquired (and subsequently released or unlocked) exactly once, while a
semaphore can be acquired (and subsequently released) multiple times.
A mutex is used to protect a critical section from simultaneous access,
while a semaphore should be used as a mechanism to signal
another waiting task that a certain milestone has been reached (typically, a
producer task posts a signal via the semaphore object, which a consumer
task is waiting to receive, in order to continue with further work).
A mutex has the notion of ownership of the lock and only the owner
context can perform the unlock; there is no ownership for a binary
semaphore.

Priority inversion and the RT-mutex
A word of caution when using any kind of locking is that you should carefully design
and code to prevent the dreaded deadlock scenarios that could arise (more on this in
the next chapter in the The lock validator lockdep – catch locking issues early section).

Aside from deadlocks, there is another risky scenario that arises when using the
mutex: that of priority inversion (again, we will not delve into the details in this
book). Suffice it to say that the unbounded priority inversion case can be a deadly
one; the end result is that the product's high(est) priority thread is kept off the CPU
for too long.

As I covered in some detail in my earlier book, Hands-on System
Programming with Linux, it's precisely this priority inversion issue
that struck NASA's Mars Pathfinder robot, on the Martian surface
no less, back in July 1997! See the Further reading section of this
chapter for interesting resources about this, something that every
software developer should be aware of!

Kernel Synchronization - Part 1 Chapter 12

[625]

The userspace Pthreads mutex implementation certainly has priority inheritance (PI)
semantics available. But what about within the Linux kernel? For this, Ingo Molnar
provided the PI-futex-based RT-mutex (a real-time mutex; in effect, a mutex extended
to have PI capabilities. futex(2) is a sophisticated system call that provides a fast
userspace mutex). These become available when the CONFIG_RT_MUTEXES config
option is enabled. Quite similar to the "regular" mutex semantics, RT-mutex APIs are
provided to initialize, (un)lock, and destroy the RT-mutex object. (This code has been
merged into the mainline kernel from Ingo Molnar's -rt tree). As far as actual usage
is concerned, the RT-mutex is used for internally implementing the PI futex (the
futex(2) system call itself internally implements the userspace Pthreads mutex).
Besides this, the kernel locking self-test code and the I2C subsystem uses the RT-
mutex directly.

Thus, for a typical module (or driver) author, these APIs are not going to be used very
frequently. The kernel does provide some documentation on the internal design of
the RT-mutex at https:/ / www. kernel. org/doc/ Documentation/ locking/ rt- mutex-
design.rst (covering priority inversion, priority inheritance, and more).

Internal design
A word on the reality of the internal implementation of the mutex lock deep within
the kernel fabric: Linux tries to implement a fast path approach when possible.

A fast path is the most optimized high-performance type of code
path; for example, one with no locks and no blocking. The intent is
to have code follow this fast path as far as possible. Only when it
really isn't possible does the kernel fall back to a (possible) "mid
path", and then a "slow path", approach; it still works but is slow(er).

This fast path is taken in the absence of contention for the lock (that is, the lock is in
an unlocked state to begin with). So, the lock is locked with no fuss, pretty much
immediately. If, however, the mutex is already locked, then the kernel typically uses a
mid path optimistic spinning implementation, making it more of a hybrid
(mutex/spinlock) lock type. If even this isn't possible, the "slow path" is followed – the
process context attempting to get the lock may well enter the sleep state. If you're
interested in its internal implementation, more details can be found within the official
kernel documentation: https:/ /www. kernel. org/ doc/ Documentation/ locking/
mutex-design.rst.

https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst
https://www.kernel.org/doc/Documentation/locking/mutex-design.rst

Kernel Synchronization - Part 1 Chapter 12

[626]

LDV (Linux Driver Verification) project: back in Chapter 1, Kernel
Workspace Setup, in the section The LDV – Linux Driver Verification –
project, we mentioned that this project has useful "rules" with respect
to various programming aspects of Linux modules (drivers, mostly)
as well as the core kernel.

With regard to our current topic, here's one of the rules: Locking a
mutex twice or unlocking without prior locking (http:/ /linuxtesting.
org/ ldv/ online? action= show_ rulerule_ id= 0032). It mentions the
kind of things you cannot do with the mutex lock (we have already
covered this in the Correctly using the mutex lock section). The
interesting thing here: you can see an actual example of a bug – a
mutex lock double-acquire attempt, leading to (self) deadlock – in a
kernel driver (as well as the subsequent fix).

Now that you've understood how to use the mutex lock, let's move on and look at the
other very common lock within the kernel – the spinlock.

Using the spinlock
In the Mutex or spinlock? Which to use when section, you learned when to use the
spinlock instead of the mutex lock and vice versa. For convenience, we have
reproduced the key statements we provided previously here:

Is the critical section running in an atomic (interrupt) context or in a
process context where it cannot sleep? Use the spinlock.
Is the critical section running in a process context and sleep in the
critical section is necessary? Use the mutex lock.

In this section, we shall consider that you've now decided to use the spinlock.

Spinlock – simple usage
For all the spinlock APIs, you must include the relevant header file; that is, include
<linux/spinlock.h>.

http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0032

Kernel Synchronization - Part 1 Chapter 12

[627]

Similar to the mutex lock, you must declare and initialize the spinlock to the unlocked
state before use. The spinlock is an "object" that's declared via the typedef data type
named spinlock_t (internally, it's a structure defined in
include/linux/spinlock_types.h). It can be initialized dynamically via the
spin_lock_init() macro:

spinlock_t lock;
spin_lock_init(&lock);

Alternatively, this can be performed statically (declared and initialized)
with DEFINE_SPINLOCK(lock);.

As with the mutex, declaring a spinlock within the (global/static) data structure is
meant to protect against concurrent access, and is typically a very good idea. As we
mentioned earlier, this very idea is made use of within the kernel often; as an
example, the data structure representing an open file on the Linux kernel is called
struct file:

// include/linux/fs.h
struct file {
 [...]
 struct path f_path;
 struct inode *f_inode; /* cached value */
 const struct file_operations *f_op;
 /*
 * Protects f_ep_links, f_flags.
 * Must not be taken from IRQ context.
 */
 spinlock_t f_lock;
 [...]
 struct mutex f_pos_lock;
 loff_t f_pos;
 [...]

Check it out: for the file structure, the spinlock variable named f_lock is the
spinlock that protects the f_ep_links and f_flags members of the file data
structure (it also has a mutex lock to protect another member; that is, the file's current
seek position – f_pos).

Kernel Synchronization - Part 1 Chapter 12

[628]

How do you actually lock and unlock the spinlock? There are quite a few variations
on the API that are exposed by the kernel to us module/driver authors; the simplest
form of the spin(un)lock APIs are as folows:

void spin_lock(spinlock_t *lock);
<< ... critical section ... >>
void spin_unlock(spinlock_t *lock);

Note that there is no spinlock equivalent of the mutex_destroy() API.

Now, let's see the spinlock APIs in action!

Spinlock – an example driver
Similar to what we did with our mutex locking sample driver (the Mutex locking – an
example driver section), to illustrate the simple usage of a spinlock, we shall make a
copy of our earlier ch12/1_miscdrv_rdwr_mutexlock driver as a starting template
and then place it in a new kernel driver; that is, ch12/2_miscdrv_rdwr_spinlock.
Again, here, we'll only show small parts of the diff (the differences, the delta
generated by diff(1)) between that program and this one (we won't show every line
of the diff, only the relevant portions):

// location: ch12/2_miscdrv_rdwr_spinlock/
+#include <linux/spinlock.h>
[...]
-#define OURMODNAME "miscdrv_rdwr_mutexlock"
+#define OURMODNAME "miscdrv_rdwr_spinlock"
[...]
static int ga, gb = 1;
-DEFINE_MUTEX(lock1); // this mutex lock is meant to protect the
integers ga and gb
+DEFINE_SPINLOCK(lock1); // this spinlock protects the global integers
ga and gb
[...]
+/* The driver 'context' data structure;
+ * all relevant 'state info' reg the driver is here.
 */
 struct drv_ctx {
 struct device *dev;
@@ -63,10 +66,22 @@
 u64 config3;
 #define MAXBYTES 128
 char oursecret[MAXBYTES];
- struct mutex lock; // this mutex protects this data structure
+ struct mutex mutex; // this mutex protects this data structure

Kernel Synchronization - Part 1 Chapter 12

[629]

+ spinlock_t spinlock; // ...so does this spinlock
 };
 static struct drv_ctx *ctx;

This time, to protect the members of our drv_ctx global data structure, we have both
the original mutex lock and a new spinlock. This is quite common; the mutex lock
protects member usage in a critical section where blocking can occur, while the
spinlock is used to protect members in critical sections where blocking (sleeping –
recall that it might sleep) cannot occur.

Of course, we must ensure that we initialize all the locks so that they're in the
unlocked state. We can do this in the driver's init code (continuing with the patch
output):

- mutex_init(&ctx->lock);
+ mutex_init(&ctx->mutex);
+ spin_lock_init(&ctx->spinlock);

In the driver's open method, we replace the mutex lock with the spinlock to
protect the increments and decrements of the global integers:

 * open_miscdrv_rdwr()
@@ -82,14 +97,15 @@

 PRINT_CTX(); // displays process (or intr) context info

- mutex_lock(&lock1);
+ spin_lock(&lock1);
 ga++; gb--;
- mutex_unlock(&lock1);
+ spin_unlock(&lock1);

Now, within the driver's read method, we use the spinlock instead of the mutex to
protect some critical sections:

 static ssize_t read_miscdrv_rdwr(struct file *filp, char __user
*ubuf, size_t count, loff_t *off)
 {
- int ret = count, secret_len;
+ int ret = count, secret_len, err_path = 0;
 struct device *dev = ctx->dev;

- mutex_lock(&ctx->lock);
+ spin_lock(&ctx->spinlock);
 secret_len = strlen(ctx->oursecret);
- mutex_unlock(&ctx->lock);
+ spin_unlock(&ctx->spinlock);

Kernel Synchronization - Part 1 Chapter 12

[630]

However, that's not all! Continuing with the driver's read method, carefully take a
look at the following code and comment:

[...]
@@ -139,20 +157,28 @@
 * member to userspace.
 */
 ret = -EFAULT;
- mutex_lock(&ctx->lock);
+ mutex_lock(&ctx->mutex);
+ /* Why don't we just use the spinlock??
+ * Because - VERY IMP! - remember that the spinlock can only be
used when
+ * the critical section will not sleep or block in any manner;
here,
+ * the critical section invokes the copy_to_user(); it very much
can
+ * cause a 'sleep' (a schedule()) to occur.
+ */
 if (copy_to_user(ubuf, ctx->oursecret, secret_len)) {
[...]

When protecting data where the critical section has possibly blocking APIs – such as
in copy_to_user() – we must only use a mutex lock! (Due to lack of space, we
haven't displayed more of the code diff here; we expect you to read through the
spinlock sample driver code and try it out for yourself.)

Test – sleep in an atomic context
You have already learned that the one thing we should not do is sleep (block) in any kind
of atomic or interrupt context. Let's put this to the test. As always, the empirical
approach – where you test things for yourself rather than relying on other's
experiences – is key!

How exactly can we test this? Easy: we shall use a simple integer module
parameter, buggy, that, when set to 1 (the default value being 0), executes a code path
within our spinlock's critical section that violates this rule. We shall invoke the
schedule_timeout() API (which, as you learned in Chapter 15, Timers, Kernel
Threads, and More, in the Understanding how to use the *sleep() blocking APIs section)
internally invokes schedule(); it's how we go to sleep in the kernel space).
Here's the relevant code:

// ch12/2_miscdrv_rdwr_spinlock/2_miscdrv_rdwr_spinlock.c
[...]

Kernel Synchronization - Part 1 Chapter 12

[631]

static int buggy;
module_param(buggy, int, 0600);
MODULE_PARM_DESC(buggy,
"If 1, cause an error by issuing a blocking call within a spinlock
critical section");
[...]
static ssize_t write_miscdrv_rdwr(struct file *filp, const char __user
*ubuf,
 size_t count, loff_t *off)
{
 int ret, err_path = 0;
 [...]
 spin_lock(&ctx->spinlock);
 strscpy(ctx->oursecret, kbuf, (count > MAXBYTES ? MAXBYTES :
count));
 [...]
 if (1 == buggy) {
 /* We're still holding the spinlock! */
 set_current_state(TASK_INTERRUPTIBLE);
 schedule_timeout(1*HZ); /* ... and this is a blocking call!
 * Congratulations! you've just engineered a bug */
 }
 spin_unlock(&ctx->spinlock);
 [...]
}

Now, for the interesting part: let's test this (buggy) code path in two kernels: first, in
our custom 5.4 "debug" kernel (the kernel where we have enabled several kernel
debug configuration options (mostly from the Kernel Hacking menu in make
menuconfig), as explained back in Chapter 5, Writing Your First Kernel Module –
LKMs Part 2), and second, on a generic distro (we usually run on Ubuntu) 5.4 kernel
without any relevant kernel debug options enabled.

Testing on a 5.4 debug kernel
First of all, ensure you've built the custom 5.4 kernel and that all the required kernel
debug config options enabled (again, look back to Chapter 5, Writing Your First
Kernel Module – LKMs Part 2, the Configuring a debug kernel section if you need
to). Then, boot off your debug kernel (here, it's named 5.4.0-llkd-dbg). Now, build
the driver (in ch12/2_miscdrv_rdwr_spinlock/) against this debug kernel (the
usual make within the driver's directory should do this; you might find that, on the
debug kernel, the build is noticeably slower!):

$ lsb_release -a 2>/dev/null | grep "^Description" ; uname -r
Description: Ubuntu 20.04.1 LTS

Kernel Synchronization - Part 1 Chapter 12

[632]

5.4.0-llkd-dbg
$ make
[...]
$ modinfo ./miscdrv_rdwr_spinlock.ko
filename:
/home/llkd/llkd_src/ch12/2_miscdrv_rdwr_spinlock/./miscdrv_rdwr_spinlo
ck.ko
[...]
description: LLKD book:ch12/2_miscdrv_rdwr_spinlock: simple misc char
driver rewritten with spinlocks
[...]
parm: buggy:If 1, cause an error by issuing a blocking call within a
spinlock critical section (int)
$ sudo virt-what
virtualbox
kvm
$

As you can see, we're running our custom 5.4.0 "debug" kernel on our x86_64 Ubuntu
20.04 guest VM.

How do you know whether you're running on a virtual machine
(VM) or on the "bare metal" (native) system? virt-what(1) is a
useful little script that shows this (you can install it on Ubuntu
with sudo apt install virt-what).

To run our test case, insert the driver into the kernel and set the buggy module
parameter to 1. Invoking the driver's read method (via our user space app; that
is, ch12/miscdrv_rdwr/rdwr_test_secret) isn't an issue, as shown here:

$ sudo dmesg -C
$ sudo insmod ./miscdrv_rdwr_spinlock.ko buggy=1
$../../ch12/miscdrv_rdwr/rdwr_test_secret
Usage: ../../ch12/miscdrv_rdwr/rdwr_test_secret opt=read/write
device_file ["secret-msg"]
 opt = 'r' => we shall issue the read(2), retrieving the 'secret' form
the driver
 opt = 'w' => we shall issue the write(2), writing the secret message
<secret-msg>
 (max 128 bytes)
$
$../../ch12/miscdrv_rdwr/rdwr_test_secret r
/dev/llkd_miscdrv_rdwr_spinlock
Device file /dev/llkd_miscdrv_rdwr_spinlock opened (in read-only
mode): fd=3
../../ch12/miscdrv_rdwr/rdwr_test_secret: read 7 bytes from
/dev/llkd_miscdrv_rdwr_spinlock

Kernel Synchronization - Part 1 Chapter 12

[633]

The 'secret' is:
 "initmsg"
$

Next, we issue a write(2) to the driver via the user mode app; this time, our buggy
code path gets executed. As you saw, we issued a schedule_timeout() within a
spinlock critical section (that is, between the lock and unlock). The debug kernel
detects this as a bug and spawns (impressively large) debug diagnostics into the
kernel log (note that bugs like this can quite possibly hang your system, so test this on
a VM first):

Figure 12.9 – Kernel diagnostics being triggered by the "scheduling in atomic context" bug we've deliberately hit here

Kernel Synchronization - Part 1 Chapter 12

[634]

The preceding screenshot shows part of what transpired (follow along while viewing
the driver code
in ch12/2_miscdrv_rdwr_spinlock/2_miscdrv_rdwr_spinlock.c):

First, we have our user mode app's process context (rdwr_test_secre;1.
notice how the name is truncated to the first 16 characters, including the
NULL byte), which enters the driver's write method; that
is, write_miscdrv_rdwr(). This can be seen in the output of our useful
PRINT_CTX() macro (we've reproduced this line here):

miscdrv_rdwr_spinlock:write_miscdrv_rdwr(): 004)
rdwr_test_secre :23578 | ...0 /* write_miscdrv_rdwr() */

It copies in the new 'secret' from the user space writer process and writes it,2.
for 24 bytes.
It then "takes" the spinlock, enters the critical section, and copies this data3.
to the oursecret member of our driver's context structure.
After this, if (1 == buggy) { evaluates to true.4.
Then, it calls schedule_timeout(), which is a blocking API (as it5.
internally calls schedule()), triggering the bug, which is helpfully
highlighted in red:

BUG: scheduling while atomic: rdwr_test_secre/23578/0x00000002

The kernel now dumps a good deal of the diagnostic output. Among the6.
first things to be dumped is the call stack.

The call stack or stack backtrace (or "call trace") of the kernel mode stack of the
process – here, it's our user space app, rdwr_drv_secret, which is running our
(buggy) driver's code in the process context – can be clearly seen in Figure 12.9. Each
line after the Call Trace: header is essentially a call frame on the kernel stack.

As a tip, ignore the stack frames that begin with the ? symbol; they are literally
questionable call frames, in all likelihood "leftovers" from previous stack usage in the
same memory region. It's worth taking a small memory-related diversion here: this is
how stack allocation really works; stack memory isn't allocated and freed on a per-call
frame basis as that would be frightfully expensive. Only when a stack memory page
is exhausted is a new one automatically faulted in! (Recall our discussions in Chapter
9, Kernel Memory Allocation for Module Authors – Part 2, in the A brief note on memory
allocations and demand paging section.) So, the reality is that, as code calls and returns
from functions, the same stack memory page(s) tend to keep getting reused.

Kernel Synchronization - Part 1 Chapter 12

[635]

Not only that, but for performance reasons, the memory isn't wiped each time,
leading to leftovers from previous frames often appearing. (They can literally "spoil"
the picture. However, fortunately, the modern stack call frame tracing algorithms are
usually able to do a superb job in figuring out the correct stack trace.)

Following the stack trace bottom-up (always read it bottom-up), we can see that, as
expected, our user space write(2) system call (it often shows up as (something like)
SyS_write or, on the x86, as __x64_sys_write, though not visible in Figure 12.9)
invokes the kernel's VFS layer code (you can see vfs_write() here, which calls
__vfs_write()), which further invokes our driver's write method; that
is, write_miscdrv_rdwr()! This code, as we well know, invokes the buggy code
path where we call schedule_timeout(), which, in turn, invokes schedule()
(and __schedule()), causing the whole BUG: scheduling while atomic bug to
trigger.

The format of the scheduling while atomic code path is retrieved from the
following line of code, which can be found in kernel/sched/core.c:

printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
prev->comm, prev->pid, preempt_count());

Interesting! Here, you can see that it printed the following string:

 BUG: scheduling while atomic: rdwr_test_secre/23578/0x00000002

After atomic:, it prints the process name – the PID – and then invokes the
preempt_count() inline function, which prints the preempt depth; the preempt depth
is a counter that's incremented every time a lock is taken and decremented on every
unlock. So, if it's positive, this implies that the code is within a critical or atomic
section; here, it shows as the value 2.

Note that this bug gets neatly served up during this test run precisely
because the CONFIG_DEBUG_ATOMIC_SLEEP debug kernel config option is turned on.
It's on because we're running a custom "debug kernel" (kernel version 5.4.0)! The
config option details (you can interactively find and set this option in make
menuconfig, under the Kernel Hacking menu) are as follows:

// lib/Kconfig.debug
[...]
config DEBUG_ATOMIC_SLEEP
 bool "Sleep inside atomic section checking"
 select PREEMPT_COUNT
 depends on DEBUG_KERNEL
 depends on !ARCH_NO_PREEMPT

Kernel Synchronization - Part 1 Chapter 12

[636]

 help
 If you say Y here, various routines which may sleep will become
very
 noisy if they are called inside atomic sections: when a spinlock is
 held, inside an rcu read side critical section, inside preempt
disabled
 sections, inside an interrupt, etc...

Testing on a 5.4 non-debug distro kernel
As a contrasting test, we will now perform the very same thing on our Ubuntu 20.04
LTS VM, which we'll boot via its default generic 'distro' 5.4 Linux kernel that is
typically not configured as a 'debug' kernel (here, the CONFIG_DEBUG_ATOMIC_SLEEP
kernel config option hasn't been set).

First, we insert our (buggy) driver. Then, when we run our rdwr_drv_secret
process in order to write the new secret to the driver, the buggy code path gets
executed. However, this time, the kernel does not crash, nor does it report any issues at all
(looking at the dmesg(1) output validates this):

$ uname -r
5.4.0-56-generic
$ sudo insmod ./miscdrv_rdwr_spinlock.ko buggy=1
$../../ch12/miscdrv_rdwr/rdwr_test_secret w
/dev/llkd_miscdrv_rdwr_spinlock "passwdcosts500bucksdude"
Device file /dev/llkd_miscdrv_rdwr_spinlock opened (in write-only
mode): fd=3
../../ch12/miscdrv_rdwr/rdwr_test_secret: wrote 24 bytes to
/dev/llkd_miscdrv_rdwr_spinlock
$ dmesg
[...]
[65.420017] miscdrv_rdwr_spinlock:miscdrv_init_spinlock(): LLKD misc
driver (major # 10) registered, minor# = 56, dev node is
/dev/llkd_miscdrv_rdwr
[81.665077] miscdrv_rdwr_spinlock:miscdrv_exit_spinlock():
miscdrv_rdwr_spinlock: LLKD misc driver deregistered, bye
[86.798720] miscdrv_rdwr_spinlock:miscdrv_init_spinlock():
VERMAGIC_STRING = 5.4.0-56-generic SMP mod_unload
[86.799890] miscdrv_rdwr_spinlock:miscdrv_init_spinlock(): LLKD misc
driver (major # 10) registered, minor# = 56, dev node is
/dev/llkd_miscdrv_rdwr
[130.214238] misc llkd_miscdrv_rdwr_spinlock: filename:
"llkd_miscdrv_rdwr_spinlock"
 wrt open file: f_flags = 0x8001
 ga = 1, gb = 0
[130.219233] misc llkd_miscdrv_rdwr_spinlock: stats: tx=0, rx=0

Kernel Synchronization - Part 1 Chapter 12

[637]

[130.219680] misc llkd_miscdrv_rdwr_spinlock: rdwr_test_secre wants
to write 24 bytes
[130.220329] misc llkd_miscdrv_rdwr_spinlock: 24 bytes written,
returning... (stats: tx=0, rx=24)
[131.249639] misc llkd_miscdrv_rdwr_spinlock: filename:
"llkd_miscdrv_rdwr_spinlock"
 ga = 0, gb = 1
[131.253511] misc llkd_miscdrv_rdwr_spinlock: stats: tx=0, rx=24
$

We know that our write method has a deadly bug, yet it doesn't seem to fail in any
manner! This is really bad; it's this kind of thing that can erroneously lead you to
conclude that your code is just fine when there's actually a nasty bug silently lying in
wait to pounce one fine day!

To help us investigate what exactly is going on under the hood, let's run our test
app (the rdwr_drv_secret process) once more, but this time via the powerful
trace-cmd(1) tool (a very useful wrapper over the Ftrace kernel infrastructure; the
following is its truncated output:

The Linux kernel's Ftrace infrastructure is the kernel's primary
tracing infrastructure; it provides a detailed trace of pretty much
every function that's been executed in the kernel space. Here, we are
leveraging Ftrace via a convenient frontend: the trace-cmd(1)
utility. These are indeed very powerful and useful debug tools;
we've mentioned several others in Chapter 1, Kernel Workspace
Setup, but unfortunately, the details are beyond the scope of this
book. Check out the man pages to learn more.

$ sudo trace-cmd record -p function_graph -F
../../ch12/miscdrv_rdwr/rdwr_test_secret w
/dev/llkd_miscdrv_rdwr_spinlock "passwdcosts500bucks"
$ sudo trace-cmd report -I -S -l > report.txt
$ sudo less report.txt
[...]

Kernel Synchronization - Part 1 Chapter 12

[638]

The output can be seen in the following screenshot:

Figure 12.10 – A partial screenshot of the trace-cmd(1) report output

As you can see, the write(2) system call from our user mode app becomes, as
expected, vfs_write(), which itself (after security checks) invokes __vfs_write(),
which, in turn, invokes our driver's write method – the write_miscdrv_rdwr()
function!

In the (large) Ftrace output stream, we can see that the
schedule_timeout() function has indeed been invoked:

Figure 12.11 – A partial screenshot of the trace-cmd(1) report output, showing the (buggy!) calls to schedule_timeout() and schedule() within an atomic context

A few lines of output after schedule_timeout(), we can clearly see
schedule() being invoked! So, there we have it: our driver has (deliberately, of
course) performed something buggy – calling schedule() in an atomic context. But
again, the key point here is that on this Ubuntu system, we are not running a "debug"
kernel, which is why we have the following:

$ grep DEBUG_ATOMIC_SLEEP /boot/config-5.4.0-56-generic
CONFIG_DEBUG_ATOMIC_SLEEP is not set
$

Kernel Synchronization - Part 1 Chapter 12

[639]

This is why the bug isn't being reported! This proves the usefulness of running test
cases – and indeed performing kernel development – on a "debug" kernel, a kernel
with many debug features enabled. (As an exercise, if you haven't done so already,
prepare a "debug" kernel and run this test case on it.)

LDV (Linux Driver Verification) project: back in Chapter 1, Kernel
Workspace Setup, in the section The LDV – Linux Driver Verification –
project, we mentioned that this project has useful "rules" with respect
to various programming aspects of Linux modules (drivers, mostly)
as well as the core kernel.

With regard to our current topic, here's one of the rules: Usage of spin
lock and unlock functions (http:/ / linuxtesting. org/ ldv/ online?
action= show_ rule rule_ id=0039). It mentions key points with
regard to the correct usage of spinlocks; interestingly, here, it shows
an actual bug instance in a driver where a spinlock was attempted to
be released twice – a clear violation of the locking rules, leading to
an unstable system.

Locking and interrupts
So far, we have learned how to use the mutex lock and, for the spinlock, the basic
spin_[un]lock() APIs. A few other API variations on the spinlock exist, and we
shall examine the more common ones here.

To understand exactly why you may need other APIs for spinlocks, let's go over a
scenario: as a driver author, you find that the device you're working on asserts a
hardware interrupt; accordingly, you write the interrupt handler for it (You can learn
great detail about it in the Linux Kernel Programming (Part 2) book). Now, while
implementing a read method for your driver, you find that you have a non-blocking
critical section within it. This is easy to deal with: as you have learned, you should
use a spinlock to protect it. Great! But what if, while in the read method's critical
section, the device's hardware interrupt fires? As you're aware, hardware interrupts
preempt anything and everything; thus, control will go to the interrupt handler code
preempting the driver's read method.

http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039
http://linuxtesting.org/ldv/online?action=show_rule&rule_id=0039

Kernel Synchronization - Part 1 Chapter 12

[640]

The key question here: is this an issue? That answer depends both on what your
interrupt handler and your read method were doing and how they were
implemented. Let's visualize a few scenarios:

The interrupt handler (ideally) uses only local variables, so even if the
read method were in a critical section, it really doesn't matter; the interrupt
handling will complete very quickly and control will be handed back to
whatever was interrupted (again, there's more to it than this; as you know,
any existing bottom-half, such as a tasklet or softirq, may also need to
execute). In other words, as such, there is really no race in this case.
The interrupt handler is working on (global) shared writeable data but
not on the data items that your read method is using. Thus, again, there is
no conflict and no race with the read code. What you should realize, of
course, is that the interrupt code does have a critical section and that it must be
protected (perhaps with another spinlock).
The interrupt handler is working on the same global shared writeable data
that your read method is using. In this case, we can see that the potential
for a race definitely exists, so we need locking!

Let's focus on the third case. Obviously, we should use a spinlock to protect the
critical section within the interrupt handling code (recall that using a mutex is
disallowed when we're in any kind of interrupt context). Also, unless we use the very
same spinlock in both the read method and the interrupt handler's code path, they will
not be protected at all! (Be careful when working with locks; take the time to think
through your design and code in detail.)

Let's try and make this a bit more hands-on (with pseudocode for now): let's say we
have a global (shared) data structure named gCtx; we're operating on it in both the
read method as well as the interrupt handler (hardirq handler) within our driver.
Since it's shared, it's a critical section and therefore requires protection; since we are
running in an atomic (interrupt) context, we can't use a mutex, so we must use a
spinlock instead (here, the spinlock variable is called slock). The following
pseudocode shows some timestamps (t1, t2, ...) for this situation:

// Driver read method ; WRONG !
driver_read(...) << time t0 >>
{
 [...]
 spin_lock(&slock);
 <<--- time t1 : start of critical section >>
... << operating on global data object gCtx >> ...
 spin_unlock(&slock);
 <<--- time t2 : end of critical section >>

Kernel Synchronization - Part 1 Chapter 12

[641]

 [...]
} << time t3 >>

The following pseudocode is for the device driver's interrupt handler:

handle_interrupt(...) << time t4; hardware interrupt fires!
>>
{
 [...]
 spin_lock(&slock);
 <<--- time t5: start of critical section >>
 ... << operating on global data object gCtx >> ...
 spin_unlock(&slock);
 <<--- time t6 : end of critical section >>
 [...]
} << time t7 >>

This can be summed up with the following diagram:

Figure 12.12 – Timeline – the driver's read method and hardirq handler run sequentially when working on global data; there's no issues here

Kernel Synchronization - Part 1 Chapter 12

[642]

Luckily, everything has gone well – "luckily" because the hardware interrupt
fired after the read function's critical section completed. Surely we can't count on luck
as the exclusive safety stamp of our product! The hardware interrupt is
asynchronous; what if it fired at a less opportune time (for us) – say, while the read
method's critical section is running between time t1 and t2? Well, isn't the spinlock
going to do its job and protect our data?

At this point, the interrupt handler's code will attempt to acquire the same spinlock
(&slock). Wait a minute – it cannot "get" it as it's currently locked! In this situation,
it "spins", in effect waiting on the unlock. But how can it be unlocked? It cannot, and
there we have it: a (self) deadlock.

Interestingly, the spinlock is more intuitive and makes sense on an SMP (multicore)
system. Let's assume that the read method is running on CPU core 1; the interrupt
can be delivered on another CPU core, say core 2. The interrupt code path will "spin"
on the lock on CPU core 2, while the read method, on core 1, completes the critical
section and then unlocks the spinlock, thus unblocking the interrupt handler.
But what about on UP (uniprocessor, with only one CPU core)? How will it work
then? Ah, so here's the solution to this conundrum: when "racing" with interrupts,
regardless of uniprocessor or SMP, simply use the _irq variant of the spinlock API:

#include <linux/spinlock.h>
void spin_lock_irq(spinlock_t *lock);

The spin_lock_irq() API internally disables interrupts on the processor core that
it's running on; that is, the local core. So, by using this API in our read method,
interrupts will be disabled on the local core, thus making any possible "race"
impossible via interrupts. (If the interrupt does fire on another CPU core, the spinlock
technology will simply work as advertised, as discussed previously!)

The spin_lock_irq() implementation is pretty nested (as with
most of the spinlock functionality), yet fast; down the line, it ends up
invoking the local_irq_disable() and preempt_disable()
macros, disabling both interrupts and kernel preemption on the
local processor core that it's running on. (Disabling hardware
interrupts has the (desirable) side effect of disabling kernel
preemption as well.)

Kernel Synchronization - Part 1 Chapter 12

[643]

spin_lock_irq() pairs off with the corresponding spin_unlock_irq() API. So,
the correct usage of the spinlock for this scenario (as opposed to what we saw
previously) is as follows:

// Driver read method ; CORRECT !
driver_read(...) << time t0 >>
{
 [...]
 spin_lock_irq(&slock);
 <<--- time t1 : start of critical section >>
[now all interrupts + preemption on local CPU core are masked
(disabled)]
... << operating on global data object gCtx >> ...
 spin_unlock_irq(&slock);
 <<--- time t2 : end of critical section >>
 [...]
} << time t3 >>

Before patting ourselves solidly on the back and taking the rest of the day off, let's
consider another scenario. This time, on a more complex product (or project), it's
quite possible that, among the several developers working on the code base, one has
deliberately set the interrupt mask to a certain value, thus blocking some interrupts
while allowing others. For the sake of our example, let's say that this has occurred
earlier, at some point in time t0. Now, as we described previously, another developer
(you!) comes along, and in order to protect a critical section within the driver's read
method, uses the spin_lock_irq() API. Sounds correct, yes? Yes, but this API has
the power to turn off (mask) all hardware interrupts (and kernel preemption, which we'll
ignore for now) on the local CPU core. It does so by manipulating, at a low level, the
(very arch-specific) hardware interrupt mask register. Let's say that setting a
bit corresponding to an interrupt to 1 enables that interrupt, while clearing the bit (to
0) disables or masks it. Due to this, we may end up with the following scenario:

time t0: The interrupt mask is set to some value, say, 0x8e (10001110b),
enabling some and disabling some interrupts. This is important to the
project (here, for simplicity, we're assuming there's an 8-bit mask register)
[... time elapses ...].
time t1: Just before entering the driver read method's critical section, call
spin_lock_irq(&slock);. This API will have the internal effect of
clearing all the bits in the interrupt mask registered to 0, thus disabling all
interrupts (as we think we desire).

Kernel Synchronization - Part 1 Chapter 12

[644]

time t2: Now, hardware interrupts cannot fire on this CPU core, so we go
ahead and complete the critical section. Once we're done, we call
spin_unlock_irq(&slock);. This API will have the internal effect of
setting all the bits in the interrupt mask register to 1, reenabling all
interrupts.

However, the interrupt mask register has now been wrongly "restored" to a value of
0xff (11111111b), not the value 0x8e as the original developer wants, requires, and
assumes! This can (and probably will) break something in the project.

The solution is quite straightforward: don't assume anything, simply save and
restore the interrupt mask. This can be achieved with the following API pair:

#include <linux/spinlock.h>
 unsigned long spin_lock_irqsave(spinlock_t *lock, unsigned long
flags);
 void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags);

The first parameter to both the lock and unlock functions is the spinlock variable to
use. The second parameter, flags, must be a local variable of the unsigned long type.
This will be used to save and restore the interrupt mask:

spinlock_t slock;
spin_lock_init(&slock);
[...]
driver_read(...)
{
 [...]
 spin_lock_irqsave(&slock, flags);
 << ... critical section ... >>
 spin_unlock_irqrestore(&slock, flags);
 [...]
}

To be pedantic, spin_lock_irqsave() is not an API, but a macro;
we've shown it as an API for readability. Also, although the return
value of this macro is not void, it's an internal detail (the
flags parameter variable is updated here).

Kernel Synchronization - Part 1 Chapter 12

[645]

What about if a tasklet or a softirq (a bottom-half interrupt mechanism) has a critical
section that "races" with your process-context code paths? In such situations, using
the spin_lock_bh() routine is likely what's required since it can disable bottom
halves on the local processor and then take the spinlock, thus safeguarding the critical
section (similar to the way that spin_lock_irq[save]() protects the critical section
in the process context by disabling hardware interrupts on the local core):

void spin_lock_bh(spinlock_t *lock);

Of course, overhead does matter in highly performance-sensitive code paths (the
network stack being a great example). Thus, using the simplest form of spinlocks will
help with more complex variants. Having said that, though, there are certainly going
to be occasions that demand the use of the stronger forms of the spinlock API. For
example, on the 5.4.0 Linux kernel, this is an approximation of the number of usage
instances of different forms of the spinlock APIs we have seen: spin_lock(): over
9,400 usage instances; spin_lock_irq(): over 3,600 usage instances;
spin_lock_irqsave(): over 15,000 usage instances; and spin_lock_bh(): over
3,700 usage instances. (We don't draw any major inference from this; it's just that we
wish to point out that using the stronger form of spinlock APIs is quite widespread in
the Linux kernel).

Finally, let's provide a very brief note on the internal implementation of the spinlock:
in terms of under-the-hood internals, the implementation tends to be very arch-
specific code, often comprised of atomic machine language instructions that execute
very fast on the microprocessor. On the popular x86[_64] architecture, for example,
the spinlock ultimately boils down to an atomic test-and-set machine instruction on a
member of the spinlock structure (typically implemented via the cmpxchg machine
language instruction). On ARM machines, as we mentioned earlier, it's often the wfe
(Wait For Event, as well as the SetEvent (SEV)) machine instruction at the heart of the
implementation. (You will find resources regarding its internal implementation in
the Further reading section). Regardless, as a kernel or driver author, you should only
use the exposed APIs (and macros) when using spinlocks.

Kernel Synchronization - Part 1 Chapter 12

[646]

Using spinlocks – a quick summary
Let's quickly summarize spinlocks:

Simplest, lowest overhead: Use the non-irq spinlock
primitives, spin_lock()/spin_unlock(), when protecting critical
sections in the process context (there's either no interrupts to deal with or
there are interrupts, but we do not race with them at all; in effect, use this
when interrupts don't come into play or don't matter).
Medium overhead: Use the irq-disabling (as well as kernel preemption
disabling) versions, spin_lock_irq() / spin_unlock_irq(), when
interrupts are in play and do matter (the process and interrupt contexts can
"race"; that is, they share global data).
Strongest (relatively), high overhead: This is the safest way to use a
spinlock. It does the same as the medium overhead, except it performs a
save-and-restore on the interrupt mask via the spin_lock_irqsave() /
spin_unlock_irqrestore() pair, so as to guarantee that the previous
interrupt mask settings aren't inadvertently overwritten, which could
happen with the previous case.

As we saw earlier, the spinlock – in the sense of "spinning" on the processor it's
running on when awaiting the lock – is impossible on UP (how can you spin on the
one CPU that's available while another thread runs simultaneously on the very same
CPU?). Indeed, on UP systems, the only real effect of the spinlock APIs is that it can
disable hardware interrupts and kernel preemption on the processor! On SMP
(multicore) systems, however, the spinning logic actually comes into play, and thus
the locking semantics work as expected. But hang on – this should not stress you,
budding kernel/driver developer; in fact, the whole point is that you should simply
use the spinlock APIs as described and you will never have to worry about UP versus
SMP; the details of what is done and what isn't are all hidden by the internal
implementation.

Though this book is based on the 5.4 LTS kernel, a new feature was
added to the 5.8 kernel from the Real-Time Linux (RTL, previously
called PREEMPT_RT) project, which deserves a quick mention here:
"local locks". While the main use case for local locks is for (hard)
real-time kernels, they help with non-real-time kernels too, mainly
for lock debugging via static analysis, as well as runtime debugging
via lockdep (we cover lockdep in the next chapter). Here's the LWN
article on the subject: https:/ /lwn. net/ Articles/ 828477/ .

https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/

Kernel Synchronization - Part 1 Chapter 12

[647]

With this, we complete the section on spinlocks, an extremely common and key lock
used in the Linux kernel by virtually all its subsystems, including drivers.

Summary
Congratulations on completing this chapter!

Understanding concurrency and its related concerns is absolutely critical for any
software professional. In this chapter, you learned key concepts regarding critical
sections, the need for exclusive execution within them, and what atomicity means.
You then learned why we need to be concerned with concurrency while writing code
for the Linux OS. After that, we delved into the actual locking technologies – mutex
locks and spinlocks – in detail. You also learned what lock you should use and when.
Finally, learning how to handle concurrency concerns when hardware interrupts (and
their possible bottom halves) are in play was covered.

But we aren't done yet! There are many more concepts and technologies we need to
learn about, which is just what we will do in the next, and final, chapter of this book. I
suggest that you digest the content of this chapter well first by browsing through it,
as well as the resources in the Further reading section and the exercises provided,
before diving into the last chapter!

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ solutions_ to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

13
Kernel Synchronization - Part

2
This chapter continues the discussion from the previous chapter, on the topic of
kernel synchronization and dealing with concurrency within the kernel in general. I
suggest that if you haven't already, first read the previous chapter, and then continue
with this one.

Here, we shall continue our learning with respect to the vast topic of
kernel synchronization and handling concurrency when in kernel space. As before,
the material is targeted at kernel and/or device driver developers. In this chapter, we
shall cover the following:

Using the atomic_t and refcount_t interfaces
Using the RMW atomic operators
Using the reader-writer spinlock
Cache effects and false sharing
Lock-free programming with per-CPU variables
Lock debugging within the kernel
Memory barriers – an introduction

Kernel Synchronization - Part 2 Chapter 13

[649]

Using the atomic_t and refcount_t
interfaces
In our simple demo misc character device driver
program's (miscdrv_rdwr/miscdrv_rdwr.c) open method (and elsewhere), we
defined and manipulated two static global integers, ga and gb:

static int ga, gb = 1;
[...]
ga++; gb--;

By now, it should be obvious to you that this – the place where we operate on these
integers – is a potential bug if left as is: it's shared writable data (in a shared state) and
therefore a critical section, thus requiring protection against concurrent access. You get it;
so, we progressively improved upon this. In the previous chapter, understanding the
issue, in our ch12/1_miscdrv_rdwr_mutexlock/1_miscdrv_rdwr_mutexlock.c
program, we first used a mutex lock to protect the critical section. Later, you learned
that using a spinlock to protect non-blocking critical sections such as this one would be
(far) superior to using a mutex in terms of performance; so, in our next
driver, ch12/2_miscdrv_rdwr_spinlock/2_miscdrv_rdwr_spinlock.c, we
used a spinlock instead:

spin_lock(&lock1);
ga++; gb--;
spin_unlock(&lock1);

That's good, but we can do better still! Operating upon global integers turns out to be
such a common occurrence within the kernel (think of reference or resource counters
getting incremented and decremented, and so on) that the kernel provides a class of
operators called the refcount and atomic integer operators or interfaces; these are
very specifically designed to atomically (safely and indivisibly) operate on only
integers.

Kernel Synchronization - Part 2 Chapter 13

[650]

The newer refcount_t versus older atomic_t
interfaces
At the outset of this topic area, it's important to mention this: from the 4.11 kernel,
there is a newer and better set of interfaces christened the refcount_t APIs, meant
for a kernel space object's reference counters. It greatly improves the security posture
of the kernel (via much-improved Integer OverFlow (IoF) and Use After Free (UAF)
protection as well as memory ordering guarantees, which the older atomic_t APIs
lack). The refcount_t interfaces, like several other security technologies used on
Linux, have their origins in work done by The PaX Team – https:/ /pax. grsecurity.
net/ (it was called PAX_REFCOUNT).

Having said that, the reality is that (as of the time of writing) the older atomic_t
interfaces are still very much in use within the kernel core and drivers (they are
slowly being converted, with the older atomic_t interfaces being moved to the
newer refcount_t model and the API set). Thus, in this topic, we cover both,
pointing out differences and mentioning which refcount_t API supersedes an
atomic_t API wherever applicable. Think of the refcount_t interfaces as a variant
of the (older) atomic_t interfaces, which are specialized toward reference counting.

A key difference between the atomic_t operators and the refcount_t ones is that
the former works upon signed integers whereas the latter is essentially designed to
work upon only an unsigned int quantity; more specifically, and this is important,
it works only within a strictly specified range: 1 to UINT_MAX-1 (or [1..INT_MAX]
when !CONFIG_REFCOUNT_FULL). The kernel has a config option named
CONFIG_REFCOUNT_FULL; if set, it performs a (slower and more thorough) "full"
reference count validation. This is beneficial for security but can result in slightly
degraded performance (the typical default is to keep this config turned off; it's the
case with our x86_64 Ubuntu guest).

Attempting to set a refcount_t variable to 0 or negative, or to [U]INT_MAX or
above, is impossible; this is good for preventing integer underflow/overflow issues
and thus preventing the use-after-free class bug in many cases! (Well, it's not
impossible; it results in a (noisy) warning being fired via the WARN() macro.) Think
about it, refcount_t variables are meant to be used only for kernel object reference
counting, nothing else.

https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/
https://pax.grsecurity.net/

Kernel Synchronization - Part 2 Chapter 13

[651]

Thus, this is indeed the required behavior; the reference counter must start at a
positive value (typically 1 when the object is newly instantiated), is incremented (or
added to) whenever the code gets or takes a reference, and is decremented (or
subtracted from) whenever the code puts or leaves a reference on the object. You are
expected to carefully manipulate the reference counter (matching your gets and puts),
always keeping its value within the legal range.

Quite non-intuitively, at least for the generic arch-independent refcount
implementation, the refcount_t APIs are internally implemented over the
atomic_t API set. For example, the refcount_set() API – which atomically sets a
refcount's value to the parameter passed – is implemented like this within the kernel:

// include/linux/refcount.h
/**
 * refcount_set - set a refcount's value
 * @r: the refcount
 * @n: value to which the refcount will be set
 */
static inline void refcount_set(refcount_t *r, unsigned int n)
{
 atomic_set(&r->refs, n);
}

It's a thin wrapper over atomic_set() (which we will cover very shortly). The
obvious FAQ here is: why use the refcount API at all? There are a few reasons:

The counter saturates at the REFCOUNT_SATURATED value (which is set
to UINT_MAX by default) and will not budge once there. This is critical: it
avoids wrapping the counter, which could cause weird and spurious UAF
bugs; this is even considered as a key security fix (https:/ / kernsec. org/
wiki/ index. php/ Kernel_ Protections/ refcount_ t).
Several of the newer refcount APIs do provide memory
ordering guarantees; in particular the refcount_t APIs – as compared to
their older atomic_t cousins – and the memory ordering guarantees they
provide are clearly documented at https:/ /www. kernel. org/ doc/ html/
latest/ core- api/ refcount- vs- atomic. html#refcount- t-api- compared-
to-atomic- t (do have a look if you're interested in the low-level details).
Also, realize that arch-dependent refcount implementations (when they
exist; for example, x86 does have it, while ARM doesn't) can differ from the
previously-mentioned generic one.

https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://kernsec.org/wiki/index.php/Kernel_Protections/refcount_t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t

Kernel Synchronization - Part 2 Chapter 13

[652]

What exactly is memory ordering and how does it affect us? The fact
is, it's a complex topic and, unfortunately, the inner details on this
are beyond the scope of this book. It's worth knowing the basics: I
suggest you read up on the Linux-Kernel Memory Model (LKMM),
which includes coverage on processor memory ordering and more.
We refer you to good documentation on this here: Explanation of the
Linux-Kernel Memory Model (https:/ /github. com/torvalds/ linux/
blob/ master/ tools/ memory- model/ Documentation/ explanation.
txt).

The simpler atomic_t and refcount_t
interfaces
Regarding the atomic_t interfaces, we should mention that all the following
atomic_t constructs are for 32-bit integers only; of course, with 64-bit integers now
being commonplace, 64-bit atomic integer operators are available as well. Typically,
they are semantically identical to their 32-bit counterparts with the difference being in
the name (atomic_foo() becomes atomic64_foo()). So the primary data type for
64-bit atomic integers is called atomic64_t (AKA atomic_long_t). The
refcount_t interfaces, on the other hand, cater to both 32 and 64-bit integers.

The following table shows how to declare and initialize an atomic_t
and refcount_t variable, side by side so that you can compare and contrast them:

(Older) atomic_t (32-bit only) (Newer) refcount_t (both 32- and 64-bit)
Header file
to include

<linux/atomic.h> <linux/refcount.h>

Declare and
initialize a
variable

static atomic_t gb =
ATOMIC_INIT(1);

static refcount_t gb =
REFCOUNT_INIT(1);

Table 17.1 – The older atomic_t versus the newer refcount_t interfaces for reference counting: header and init

https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt

Kernel Synchronization - Part 2 Chapter 13

[653]

The complete set of all the atomic_t and refcount_t APIs available within the
kernel is pretty large; to help keep things simple and clear in this section, we only list
some of the more commonly used (atomic 32-bit) and refcount_t interfaces in the
following table (they operate upon a generic atomic_t or refcount_t variable, v):

Operation (Older) atomic_t interface (Newer) refcount_t interface [range: 0
to [U]INT_MAX]

Header file to include <linux/atomic.h> <linux/refcount.h>

Declare and initialize
a variable

static atomic_t v
= ATOMIC_INIT(1);

static refcount_t v
= REFCOUNT_INIT(1);

Atomically read the
current value of v

int
atomic_read(atomic_t
*v)

unsigned int
refcount_read(const
refcount_t *v)

Atomically set v to the
value i

void
atomic_set(atomic_t
*v, i)

void
refcount_set(refcount_t
*v, int i)

Atomically increment the
v value by 1

void
atomic_inc(atomic_t
*v)

void
refcount_inc(refcount_t
*v)

Atomically decrement the
v value by 1

void
atomic_dec(atomic_t
*v)

void
refcount_dec(refcount_t
*v)

Atomically add the value
of i to v

void atomic_add(i,
atomic_t *v)

void refcount_add(int i,
refcount_t *v)

Atomically subtract the
value of i from v

void atomic_sub(i,
atomic_t *v)

void refcount_sub(int i,
refcount_t *v)

Atomically add the value
of i to v and return the
result

int
atomic_add_return(i,
atomic_t *v)

bool
refcount_add_not_zero(int
i, refcount_t *v) (not a precise
match; adds i to v unless it's 0.)

Atomically subtract the
value of i from v and
return the result

int
atomic_sub_return(i,
atomic_t *v)

bool
refcount_sub_and_test(int
i, refcount_t *r) (not a precise
match; subtracts i from v and tests;
returns true if resulting refcount is 0,
else false.)

Table 17.2 – The older atomic_t versus the newer refcount_t interfaces for reference counting: APIs

You've now seen several atomic_t and refcount_t macros and APIs; let's quickly
check out a few examples of their usage in the kernel.

Kernel Synchronization - Part 2 Chapter 13

[654]

Examples of using refcount_t within the kernel code
base
In one of our demo kernel modules regarding kernel threads
(in ch15/kthread_simple/kthread_simple.c), we created a kernel thread and
then employed the get_task_struct() inline function to mark the kernel thread's
task structure as being in use. As you can now guess, the get_task_struct()
routine increments the task structure's reference counter – a refcount_t variable
named usage – via the refcount_inc() API:

// include/linux/sched/task.h
static inline struct task_struct *get_task_struct(struct task_struct
*t)
{
 refcount_inc(&t->usage);
 return t;
}

The converse routine, put_task_struct(), performs the subsequent decrement on
the reference counter. The actual routine employed by it internally,
refcount_dec_and_test(), tests whether the new refcount value has dropped to 0;
if so, it returns true, and if this is the case, it implies that the task structure isn't being
referenced by anyone. The call to __put_task_struct() frees it up:

static inline void put_task_struct(struct task_struct *t)
{
 if (refcount_dec_and_test(&t->usage))
 __put_task_struct(t);
}

 Another example of the refcounting APIs in use within the kernel is found in
kernel/user.c (which helps track the number of processes, files, and so on that a
user has claimed via a per-user structure):

Figure 13.1 – Screenshot showing the usage of the refcount_t interfaces in kernel/user.c

Kernel Synchronization - Part 2 Chapter 13

[655]

Look up the refcount_t API interface documentation (https:/ /
www. kernel. org/ doc/ html/ latest/ driver- api/ basics.
html#reference- counting); refcount_dec_and_lock_irqsave()
returns true and withholds the spinlock with interrupts disabled if
able to decrement the reference counter to 0, and false otherwise.

As an exercise for you, convert our
earlier ch16/2_miscdrv_rdwr_spinlock/miscdrv_rdwr_spinlock.c driver
code to use refcount; it has the integers ga and gb, which, when being read or written,
were protected via a spinlock. Now, make them refcount variables and use the
appropriate refcount_t APIs when working on them.

Careful! Don't allow their values to go out of the allowed range, [0..[U]INT_MAX]!
(Recall that the range is [1..UINT_MAX-1] for full refcount validation
(CONFIG_REFCOUNT_FULL being on) and [1..INT_MAX] when it's not full validation
(the default)). Doing so typically leads to the WARN() macro being invoked (the code
for this demo seen in Figure 13.1 isn't included in our GitHub repository):

Figure 13.2 – (Partial) screenshot showing the WARN() macro firing when we wrongly attempt to set a refcount_t variable to <= 0

https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting

Kernel Synchronization - Part 2 Chapter 13

[656]

The kernel has an interesting and useful test infrastructure called the
Linux Kernel Dump Test Module (LKDTM);
see drivers/misc/lkdtm/refcount.c for many test cases being
run on the refcount interfaces, which you can learn from... FYI, you
can also use LKDTM via the kernel's fault injection framework to
test and evaluate the kernel's reaction to faulty scenarios (see the
documentation here: Provoking crashes with Linux Kernel Dump Test
Module (LKDTM) – https:/ / www.kernel. org/ doc/html/ latest/
fault- injection/ provoke- crashes. html#provoking- crashes-
with- linux- kernel- dump- test- module- lkdtm).

The atomic interfaces covered so far all operate on 32-bit integers; what about on 64-
bit? That's what follows.

64-bit atomic integer operators
As mentioned at the start of this topic, the set of atomic_t integer operators we have
dealt with so far all operate on traditional 32-bit integers (this discussion doesn't
apply to the newer refcount_t interfaces; they anyway operate upon both 32 and
64-bit quantities). Obviously, with 64-bit systems becoming the norm rather than the
exception nowadays, the kernel community provides an identical set of
atomic integer operators for 64-bit integers. The difference is as follows:

Declare the 64-bit atomic integer as a variable of type atomic64_t (that
is, atomic_long_t).
For all operators, in place of the atomic_ prefix, use the
atomic64_ prefix.

So, take the following examples:

In place of ATOMIC_INIT(), use ATOMIC64_INIT().
In place of atomic_read(), use atomic64_read().
In place of atomic64_dec_if_positive(), use
atomic64_dec_if_positive().

https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm
https://www.kernel.org/doc/html/latest/fault-injection/provoke-crashes.html#provoking-crashes-with-linux-kernel-dump-test-module-lkdtm

Kernel Synchronization - Part 2 Chapter 13

[657]

Recent C and C++ language standards – C11 and C++11 – provide an
atomic operations library that helps developers implement atomicity
in an easier fashion due to the implicit language support; we won't
delve into this aspect here. A reference can be found here (C11 also
has pretty much the same equivalents): https:/ /en. cppreference.
com/ w/ c/ atomic.

Note that all these routines – both the 32- and 64-bit atomic _operators – are arch-
independent. A key point worth repeating is that any and all operations performed
upon an atomic integer must be done by declaring the variable as atomic_t and via
the methods provided. This includes initialization and even a (integer)
read operation.

In terms of internal implementation, a foo() atomic integer operator is typically a
macro that becomes an inline function, which in turn invokes the arch-
specific arch_foo() function. As usual, glancing through the official kernel
documentation on atomic operators is always a good idea (within the kernel source
tree, it's here: Documentation/atomic_t.txt; go to https:/ / www.kernel. org/ doc/
Documentation/ atomic_ t.txt). It neatly categorizes the numerous atomic integer
APIs into distinct sets. FYI, arch-specific memory ordering issues do affect the internal
implementation. Here, we won't delve into the internals. If interested, refer to this
page on the official kernel documentation site at https:/ /www. kernel. org/ doc/ html/
v4.16/core-api/ refcount- vs- atomic. html#refcount- t-api- compared- to-atomic- t
(also, details on memory ordering go beyond the scope of this book; check out the
kernel documentation at https:/ /www. kernel. org/ doc/ Documentation/ memory-
barriers.txt for more on this).

We haven't attempted to show all the atomic and refcount APIs here (it's really not
necessary); the official kernel documentation covers it:

atomic_t interfaces:
Semantics and Behavior of Atomic and Bitmask Operations
(https:/ / www. kernel. org/doc/ html/ v5. 4/core- api/
atomic_ ops. html#semantics- and- behavior- of-atomic-
and- bitmask- operations)
API ref: Atomics (https:/ /www. kernel. org/ doc/ html/
latest/ driver- api/ basics. html#atomics)

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/v4.16/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/v5.4/core-api/atomic_ops.html#semantics-and-behavior-of-atomic-and-bitmask-operations
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics
https://www.kernel.org/doc/html/latest/driver-api/basics.html#atomics

Kernel Synchronization - Part 2 Chapter 13

[658]

(Newer) refcount_t interfaces for kernel object reference counting:
refcount_t API compared to atomic_t (https:/ / www.
kernel. org/ doc/html/ latest/ core- api/ refcount- vs-
atomic. html#refcount- t- api-compared- to- atomic- t)
API ref: Reference counting (https:/ /www. kernel. org/ doc/
html/ latest/ driver- api/ basics. html#reference-
counting)

Let's move on to the usage of a typical construct when working on drivers – Read
Modify Write (RMW). Read on!

Using the RMW atomic operators
A more advanced set of atomic operators called the RMW APIs is available as well.
Among its many uses (we show a list in the coming section) is that of performing
atomic RMW operations on bits, in other words, performing bitwise operations
atomically (safely, indivisibly). As a device driver author operating upon device or
peripheral registers, this is indeed something you will find yourself using.

The material in this section assumes you have at least a base
understanding of accessing peripheral device (chip) memory and
registers; we have covered this in detail in Chapter 13, Working with
Hardware I/O Memory. Please ensure you understand it before
moving further.

Very often, you'll need to perform bit operations (with the bitwise AND & and
bitwise OR | being the most commonplace operators) on registers; this is done to
modify its value, setting and/or clearing some bits within it. The thing is, merely
performing some C manipulation to query or set device registers isn't quite enough.
No, sir: don't forget about concurrency issues! Read on for the full story.

RMW atomic operations – operating on device
registers
Let's quickly go over some basics first: a byte consists of 8 bits, numbered from bit 0,
the Least Significant Bit (LSB), to bit 7, the Most Significant Bit (MSB). (This is
actually formally defined as the BITS_PER_BYTE macro in include/linux/bits.h,
along with a few other interesting definitions.)

https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/core-api/refcount-vs-atomic.html#refcount-t-api-compared-to-atomic-t
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting
https://www.kernel.org/doc/html/latest/driver-api/basics.html#reference-counting

Kernel Synchronization - Part 2 Chapter 13

[659]

A register is basically a small piece of memory within the peripheral device; typically,
its size, the register bit width, is one of 8, 16, or 32 bits. The device registers provide
control, status, and other information and are often programmable. This, in fact, is
largely what you as a driver author will do – program the device registers
appropriately to make the device do something, and query it.

To flesh out this discussion, let's consider a hypothetical device that has two registers:
a status register and a control register, each 8 bits wide. (In the real world, every
device or chip has a datasheet that will provide a detailed specification of the chip and
register-level hardware; this becomes an essential document for the driver author).
Hardware folks usually design devices in such a way that several registers are
sequentially clubbed together in a larger piece of memory; this is called register
banking. By having the base address of the first register and the offset to each
following one, it becomes easy to address any given register (here, we won't delve
into how exactly registers are "mapped" into the virtual address space on an OS such
as Linux). For example, the (purely hypothetical) registers may be described like this
in a header file:

#define REG_BASE 0x5a00
#define STATUS_REG (REG_BASE+0x0)
#define CTRL_REG (REG_BASE+0x1)

Now, say that in order to turn on our fictional device, the datasheet informs us we
can do so by setting bit 7 (the MSB) of the control register to 1. As every driver author
quickly learns, there is a hallowed sequence for modifying registers:

Read the register's current value into a temporary variable.1.
Modify the variable to the desired value.2.
Write back the variable to the register.3.

This is often called the RMW sequence; so, great, we write the (pseudo)code like this:

turn_on_dev()
{
 u8 tmp;

 tmp = ioread8(CTRL_REG); /* read: current register value into tmp
*/
 tmp |= 0x80; /* modify: set bit 7 (MSB) */
 iowrite8(tmp, CTRL_REG); /* write: new tmp value into register */
}

Kernel Synchronization - Part 2 Chapter 13

[660]

(FYI, the actual routines used on Linux MMIO – memory-mapped I/O – are
ioread[8|16|32]() and iowrite[8|16|32]().)

A key point here: this isn't good enough; the reason is concurrency, data races! Think
about it: a register (both CPU and device registers) is in fact a global shared writable
memory location; thus, accessing it constitutes a critical section, which you have to take
care to protect from concurrent access! The how is easy; we could just use a spinlock
(for now at least). It's trivial to modify the preceding pseudocode to insert the
spin_[un]lock() APIs in the critical section – the RMW sequence.

However, there is an even better way to achieve data safety when dealing with small
quantities such as integers; we have already covered it: atomic operators! Linux,
however, goes further, providing a set of atomic APIs for both of the following:

Atomic non-RMW operations (the ones we saw earlier, in the Using the
atomic_t and refcount_t interfaces section)
Atomic RMW operations; these include several types of operators that can
be categorized into a few distinct classes: arithmetic, bitwise, swap
(exchange), reference counting, miscellaneous, and barriers

Let's not reinvent the wheel; the kernel documentation (https:/ /www. kernel. org/
doc/Documentation/ atomic_ t. txt) has all the information required. We'll show just
a relevant portion of this document as follows, quoting directly from
the Documentation/atomic_t.txt kernel code base:

// Documentation/atomic_t.txt
[...]
Non-RMW ops:
 atomic_read(), atomic_set()
 atomic_read_acquire(), atomic_set_release()

RMW atomic operations:

Arithmetic:
 atomic_{add,sub,inc,dec}()
 atomic_{add,sub,inc,dec}_return{,_relaxed,_acquire,_release}()
 atomic_fetch_{add,sub,inc,dec}{,_relaxed,_acquire,_release}()

Bitwise:
 atomic_{and,or,xor,andnot}()
 atomic_fetch_{and,or,xor,andnot}{,_relaxed,_acquire,_release}()

https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt

Kernel Synchronization - Part 2 Chapter 13

[661]

Swap:
 atomic_xchg{,_relaxed,_acquire,_release}()
 atomic_cmpxchg{,_relaxed,_acquire,_release}()
 atomic_try_cmpxchg{,_relaxed,_acquire,_release}()

Reference count (but please see refcount_t):
 atomic_add_unless(), atomic_inc_not_zero()
 atomic_sub_and_test(), atomic_dec_and_test()

Misc:
 atomic_inc_and_test(), atomic_add_negative()
 atomic_dec_unless_positive(), atomic_inc_unless_negative()
[...]

Good; now that you're aware of these RMW (and non-RMW) operators, let's get
practical – we'll check out how to use the RMW operators for bit operations next.

Using the RMW bitwise operators
Here, we'll focus on employing the RMW bitwise operators; we'll leave it to you to
explore the others (refer to the kernel docs mentioned). So, let's think again about
how to more efficiently code our pseudocode example. We can set (to 1) any given bit
in any register or memory item using the set_bit() API:

void set_bit(unsigned int nr, volatile unsigned long *p);

This atomically – safely and indivisibly – sets the nrth bit of p to 1. (The reality is that
the device registers (and possibly device memory) are mapped into kernel virtual
address space and thus appear to be visible as though they are RAM locations – such
as the address p here. This is called MMIO and is the common way by which driver
authors map in and work with device memory. Again, we cover this in Linux Kernel
Programming (Part 2))

Thus, with the RMW atomic operators, we can safely achieve what we've (incorrectly)
attempted previously – turning on our (fictional) device – with a single line of code:

set_bit(7, CTRL_REG);

Kernel Synchronization - Part 2 Chapter 13

[662]

The following table summarizes common RMW bitwise atomic APIs:

RMW bitwise atomic API Comment
void set_bit(unsigned int nr, volatile
unsigned long *p);

Atomically set (set to 1) the nrth bit
of p.

void clear_bit(unsigned int nr,
volatile unsigned long *p)

Atomically clear (set to 0) the nrth bit
of p.

void change_bit(unsigned int nr,
volatile unsigned long *p)

Atomically toggle the nrth bit of p.

The following APIs return the previous value of the bit being
operated upon (nr)

int test_and_set_bit(unsigned int nr,
volatile unsigned long *p)

Atomically set the nrth bit
of p returning the previous value (kernel
API doc at https:/ /www. kernel.
org/ doc/ htmldocs/ kernel- api/
API- test- and- set-bit. html).

int test_and_clear_bit(unsigned int
nr, volatile unsigned long *p)

Atomically clear the nrth bit
of p returning the previous value.

int test_and_change_bit(unsigned int
nr, volatile unsigned long *p)

Atomically toggle the nrth bit
of p returning the previous value.

Table 17.3 – Common RMW bitwise atomic APIs

Careful: these atomic APIs are not just atomic with respect to the
CPU core they're running upon, but now with respect to all/other
cores. In practice, this implies that if you're performing atomic
operations in parallel on multiple CPUs, that is, if they (can) race,
then it's a critical section and you must protect it with a lock
(typically a spinlock)!

Trying out a few of these RMW atomic APIs will help build your confidence in using
them; we do so in the section that follows.

https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html
https://www.kernel.org/doc/htmldocs/kernel-api/API-test-and-set-bit.html

Kernel Synchronization - Part 2 Chapter 13

[663]

Using bitwise atomic operators – an example
Let's check out a quick kernel module that demonstrates the usage of the Linux
kernel's RMW atomic bit operators (ch13/1_rmw_atomic_bitops). You should
realize that these operators can work on any memory, both a (CPU or device) register
or RAM; here, we operate on a simple static global variable (named mem) within the
example LKM. It's very simple; let's check it out:

// ch13/1_rmw_atomic_bitops/rmw_atomic_bitops.c
[...]
#include <linux/spinlock.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include "../../convenient.h"
[...]
static unsigned long mem;
static u64 t1, t2;
static int MSB = BITS_PER_BYTE - 1;
DEFINE_SPINLOCK(slock);

We include the required headers and declare and initialize a few global variables
(notice how our MSB variable uses BIT_PER_BYTE). We employ a simple
macro, SHOW(), to display the formatted output with the printk. The init code path
is where the actual work is done:

[...]
#define SHOW(n, p, msg) do { \
 pr_info("%2d:%27s: mem : %3ld = 0x%02lx\n", n, msg, p, p); \
} while (0)
[...]
static int __init atomic_rmw_bitops_init(void)
{
 int i = 1, ret;

 pr_info("%s: inserted\n", OURMODNAME);
 SHOW(i++, mem, "at init");

 setmsb_optimal(i++);
 setmsb_suboptimal(i++);

 clear_bit(MSB, &mem);
 SHOW(i++, mem, "clear_bit(7,&mem)");

 change_bit(MSB, &mem);
 SHOW(i++, mem, "change_bit(7,&mem)");

 ret = test_and_set_bit(0, &mem);

Kernel Synchronization - Part 2 Chapter 13

[664]

 SHOW(i++, mem, "test_and_set_bit(0,&mem)");
 pr_info(" ret = %d\n", ret);

 ret = test_and_clear_bit(0, &mem);
 SHOW(i++, mem, "test_and_clear_bit(0,&mem)");
 pr_info(" ret (prev value of bit 0) = %d\n", ret);

 ret = test_and_change_bit(1, &mem);
 SHOW(i++, mem, "test_and_change_bit(1,&mem)");
 pr_info(" ret (prev value of bit 1) = %d\n", ret);

 pr_info("%2d: test_bit(%d-0,&mem):\n", i, MSB);
 for (i = MSB; i >= 0; i--)
 pr_info(" bit %d (0x%02lx) : %s\n", i, BIT(i), test_bit(i,
&mem)?"set":"cleared");

 return 0; /* success */
}

The RMW atomic operators we use here are highlighted in bold font. A key part of
this demo is to show that using the RMW bitwise atomic operators is not only much
easier but also much faster than using the traditional approach where we manually
perform the RMW operation within the confines of a spinlock. Here are the two
functions for both of these approaches:

/* Set the MSB; optimally, with the set_bit() RMW atomic API */
static inline void setmsb_optimal(int i)
{
 t1 = ktime_get_real_ns();
 set_bit(MSB, &mem);
 t2 = ktime_get_real_ns();
 SHOW(i, mem, "set_bit(7,&mem)");
 SHOW_DELTA(t2, t1);
}
/* Set the MSB; the traditional way, using a spinlock to protect the
RMW
 * critical section */
static inline void setmsb_suboptimal(int i)
{
 u8 tmp;

 t1 = ktime_get_real_ns();
 spin_lock(&slock);
 /* critical section: RMW : read, modify, write */
 tmp = mem;
 tmp |= 0x80; // 0x80 = 1000 0000 binary
 mem = tmp;
 spin_unlock(&slock);

Kernel Synchronization - Part 2 Chapter 13

[665]

 t2 = ktime_get_real_ns();

 SHOW(i, mem, "set msb suboptimal: 7,&mem");
 SHOW_DELTA(t2, t1);
}

We call these functions early in our init method; notice that we take timestamps (via
the ktime_get_real_ns() routine) and display the time taken via our
SHOW_DELTA() macro (defined in our convenient.h header). Right, here's the
output:

Figure 13.3 – Screenshot of output from our ch13/1_rmw_atomic_bitops LKM, showing off some of the atomic RMW operators at work

(I ran this demo LKM on my x86_64 Ubuntu 20.04 guest VM.) The modern approach
– via the set_bit() RMW atomic bitwise API – took, in this sample run, just 415
nanoseconds to execute; the traditional approach was about 265 times slower! The
code (via set_bit()) is so much simpler as well...

On a somewhat related note to the atomic bitwise operators, the following section is a
very brief look at the highly efficient APIs available within the kernel for searching a
bitmask – a fairly common operation in the kernel, as it turns out.

Kernel Synchronization - Part 2 Chapter 13

[666]

Efficiently searching a bitmask
Several algorithms depend on performing a really fast search of a bitmask; several
scheduling algorithms (such as SCHED_FIFO and SCHED_RR, which you learned about
in Chapter 10, The CPU Scheduler – Part 1, and Chapter 11, The CPU Scheduler – Part
2) often internally require this. Implementing this efficiently becomes important
(especially for OS-level performance-sensitive code paths). Hence, the kernel provides
a few APIs to scan a given bitmask (these prototypes are found in include/asm-
generic/bitops/find.h):

unsigned long find_first_bit(const unsigned long

*addr, unsigned long size): Finds the first set bit in a memory
region; returns the bit number of the first set bit, else (no bits are set)
returns @size.
unsigned long find_first_zero_bit(const unsigned long

*addr, unsigned long size): Finds the first cleared bit in a memory
region; returns the bit number of the first cleared bit, else (no bits are
cleared) returns @size.
Other routines
include find_next_bit(), find_next_and_bit(), find_last_bit().

Looking through the <linux/bitops.h> header reveals other quite interesting
macros as well, such as for_each_{clear,set}_bit{_from}().

Using the reader-writer spinlock
Visualize a piece of kernel (or driver) code wherein a large, global, doubly linked
circular list (with a few thousand nodes) is being searched. Now, since the data
structure is global (shared and writable), accessing it constitutes a critical section that
requires protection.

Assuming a scenario where searching the list is a non-blocking operation, you'd
typically use a spinlock to protect the critical section. A naive approach might
propose not using a lock at all since we're only reading data within the list, not
updating it. But, of course (as you have learned), even a read on shared writable data
has to be protected to protect against an inadvertent write occurring simultaneously,
thus resulting in a dirty or torn read.

Kernel Synchronization - Part 2 Chapter 13

[667]

So, we conclude that we require the spinlock; we imagine the pseudocode might look
something like this:

spin_lock(mylist_lock);
for (p = &listhead; (p = next_node(p)) != &listhead;) {
 << ... search for something ...
 found? break out ... >>
}
spin_unlock(mylist_lock);

So, what's the problem? Performance, of course! Imagine several threads on a
multicore system ending up at this code fragment more or less at the same time; each
will attempt to take the spinlock, but only one winner thread will get it, iterate over
the entire list, and then perform the unlock, allowing the next thread to proceed. In
other words, as expected, execution is now serialized, dramatically slowing things
down. But it can't be helped; or can it?

Enter the reader-writer spinlock. With this locking construct, it's required that all
threads performing reads on the protected data will ask for a read lock, whereas any
thread requiring write access to the list will ask for an exclusive write lock. A read
lock will be granted immediately to any thread that asks as long as no write lock is
currently in play. In effect, this construct allows all readers concurrent access to the data,
meaning, in effect, no real locking at all. This is fine, as long as there are only readers. The
moment a writer thread comes along, it requests a write lock. Now, normal locking
semantics apply: the writer will have to wait for all readers to unlock. Once that
happens, the writer gets an exclusive write lock and proceeds. So now, if any readers
or writers attempt access, they will be forced to wait to spin upon the writer's unlock.

Thus, for those situations where the access pattern to data is such
that reads are performed very often and writes are rare, and the
critical section is a fairly long one, the reader-writer spinlock is a
performance-enhancing one.

Reader-writer spinlock interfaces
Having used spinlocks, using the reader-writer variant is straightforward; the lock
data type is abstracted as the rwlock_t structure (in place of spinlock_t) and, in
terms of API names, simply substitute read or write in place of spin:

#include <linux/rwlock.h>
rwlock_t mylist_lock;

Kernel Synchronization - Part 2 Chapter 13

[668]

The most basic APIs of the reader-writer spinlock are as follows:

void read_lock(rwlock_t *lock);
void write_lock(rwlock_t *lock);

As an example, the kernel's tty layer has code to handle a Secure Attention Key
(SAK); the SAK is a security feature, a means to prevent a Trojan horse-type
credentials hack by killing all processes associated with the TTY device. This will
happen when the user presses the SAK (https:/ / www.kernel. org/ doc/html/ latest/
security/sak.html). When this actually happens (that is, when the user presses the
SAK, mapped to the Alt-SysRq-k sequence by default), within its code path, it has
to iterate over all tasks, killing the entire session and any threads that have the TTY
device open. To do so, it must take, in read mode, a reader-writer spinlock called
tasklist_lock. The (truncated) relevant code is seen as follows, with
read_[un]lock() on tasklist_lock highlighted:

// drivers/tty/tty_io.c
void __do_SAK(struct tty_struct *tty)
{
 [...]
 read_lock(&tasklist_lock);
 /* Kill the entire session */
 do_each_pid_task(session, PIDTYPE_SID, p) {
 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
task_pid_nr(p), p->comm);
 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 } while_each_pid_task(session, PIDTYPE_SID, p);
 [...]
 /* Now kill any processes that happen to have the tty open */
 do_each_thread(g, p) {
 [...]
 } while_each_thread(g, p);
 read_unlock(&tasklist_lock);

As an aside, you may recall that, back in the Iterating over the task list section
in Chapter 6, Kernel Internals Essentials – Processes and Threads, we did something
kind of similar: we wrote a kernel module (ch6/foreach/thrd_show_all) that
iterated over all threads in the task list, spewing out a few details about each thread.
So, now that we understand the deal regarding concurrency, shouldn't we have taken
this very lock – tasklist_lock – the reader-writer spinlock protecting the task list?
Yes, but it didn't work (insmod(8) failed with the message thrd_showall:
Unknown symbol tasklist_lock (err -2)). The reason, of course, is that
this tasklist_lock variable is not exported and thus is unavailable to our kernel
module.

https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html
https://www.kernel.org/doc/html/latest/security/sak.html

Kernel Synchronization - Part 2 Chapter 13

[669]

As another example of a reader-writer spinlock within the kernel code base, the ext4
filesystem uses one when working with its extent status tree. We don't intend to delve
into the details here; we will simply mention the fact that a reader-writer spinlock
(within the inode structure, inode->i_es_lock) is quite heavily used here to protect
the extent status tree against data races (fs/ext4/extents_status.c).

There are many such examples within the kernel source tree; many places in the
network stack including the ping code (net/ipv4/ping.c) use rwlock_t, routing
table lookup, neighbor, PPP code, filesystems, and so on.

Just as with regular spinlocks, we have the typical variations on the reader-writer
spinlock APIs: {read,write}_lock_irq{save}() paired with the corresponding
{read,write}_unlock_irq{restore}(), as well as
the {read,write}_{un}lock_bh() interfaces. Note that even the read IRQ lock
disables kernel preemption.

A word of caution
Issues do exist with reader-writer spinlocks. One typical issue with it is that,
unfortunately, writers can starve when blocking on several readers. Think about it:
let's say that three reader threads currently have the reader-writer lock. Now, a writer
comes along wanting the lock. It has to wait until all three readers perform the
unlock. But what if, in the interim, more readers come along (which is entirely
possible)? This becomes a disaster for the writer, who has to now wait even longer –
in effect, starve. (Carefully instrumenting or profiling the code paths involved might
be necessary to figure out whether this is indeed the case.)

Not only that, cache effects – known as cache ping-pong – can and do occur quite often
when several reader threads on different CPU cores are reading the same shared state
in parallel (while holding the reader-writer lock); we in fact discuss this in the Cache
effects and false sharing section). The kernel documentation on spinlocks (https:/ /www.
kernel.org/doc/ Documentation/ locking/ spinlocks. txt) says pretty much the
same thing. Here's a quote directly from it: "NOTE! reader-writer locks require more
atomic memory operations than simple spinlocks. Unless the reader critical section is long, you
are better off just using spinlocks." In fact, the kernel community is working toward
removing reader-writer spinlocks as far as is possible, moving them to superior lock-
free techniques (such as RCU - Read Copy Update, an advanced lock-free
technology). Thus, gratuitous use of reader-writer spinlocks is ill advised.

https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt

Kernel Synchronization - Part 2 Chapter 13

[670]

The neat and simple kernel documentation on the usage of
spinlocks (written by Linus Torvalds himself), which is well worth
reading, is available here: https:/ /www. kernel. org/ doc/
Documentation/ locking/ spinlocks. txt.

The reader-writer semaphore
We earlier mentioned the semaphore object (Chapter 12, Kernel Synchronization – Part
1, in the The semaphore and the mutex section), contrasting it with the mutex. There,
you understood that it's preferable to simply use a mutex. Here, we point out that
within the kernel, just as there exist reader-writer spinlocks, so do there exist reader-
writer semaphores. The use cases and semantics are similar to that of the reader-writer
spinlock. The relevant macros/APIs are (within <linux/rwsem.h>)
{down,up}_{read,write}_{trylock,killable}(). A common example within
the struct mm_struct structure (which is itself within the task structure) is that one
of the members is a reader-writer semaphore: struct rw_semaphore mmap_sem;.

Rounding off this discussion, we'll merely mention a couple of other related
synchronization mechanisms within the kernel. A synchronization mechanism that is
heavily used in user space application development (we're thinking particularly
of the Pthreads framework in Linux user space) is the Condition Variable (CV). In a
nutshell, it provides the ability for two or more threads to synchronize with each
other based on the value of a data item or some specific state. Its equivalent within
the Linux kernel is called the completion mechanism. Please find details on its usage
within the kernel documentation at https:/ /www. kernel. org/doc/ html/ latest/
scheduler/completion. html#completions- wait- for-completion- barrier- apis.

The sequence lock is used in mostly write situations (as opposed to the reader-write
spinlock/semaphore locks, which are suitable in mostly read scenarios), where the
writes far exceed the reads on the protected variable. As you can imagine, this isn't
a very common occurrence; a good example of using sequence locks is the update of
the jiffies_64 global.

For the curious, the jiffies_64 global's update code begins
here: kernel/time/tick-
sched.c:tick_do_update_jiffies64(). This function figures
out whether an update to jiffies is required, and if
so, calls do_timer(++ticks); to actually update it. All the while,
the write_seq[un]lock(&jiffies_lock); APIs provide
protection over the mostly write-critical section.

https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/Documentation/locking/spinlocks.txt
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis
https://www.kernel.org/doc/html/latest/scheduler/completion.html#completions-wait-for-completion-barrier-apis

Kernel Synchronization - Part 2 Chapter 13

[671]

Cache effects and false sharing
Modern processors make use of several levels of parallel cache memory within them,
in order to provide a very significant speedup when working on memory (we
briefly touched upon this in Chapter 8, Kernel Memory Allocation for Module Authors –
Part 1, in the Allocating slab memory section). We realize that modern CPUs do not
really read and write RAM directly; no, when the software indicates that a byte of
RAM is to be read starting at some address, the CPU actually reads several bytes – a
whole cacheline of bytes (typically 64 bytes) from the starting address into all the
CPU caches (say, L1, L2, and L3: levels 1, 2, and 3). This way, accessing the next few
elements of sequential memory results in a tremendous speedup as it's first checked
for in the caches (first in L1, then L2, then L3, and a cache hit becomes likely). The
reason it's (much) faster is simple: accessing CPU cache memory takes typically one to
a few (single-digit) nanoseconds, whereas accessing RAM can take anywhere
between 50 and 100 nanoseconds (of course, this depends on the hardware system in
question and the amount of money you're willing to shell out!).

Software developers take advantage of such phenomena by doing things such as the
following:

Keeping important members of a data structure together (hopefully, within
a single cacheline) and at the top of the structure
Padding a structure member such that we don't fall off a cacheline (again,
these points have been covered in Chapter 8, Kernel Memory Allocation for
Module Authors – Part 1, in the Data structures – a few design tips section)

However, risks are involved and things do go wrong. As an example, consider two
variables declared like so: u16 ax = 1, bx = 2; (u16 denotes an unsigned 16-bit
integer value).

Now, as they have been declared adjacent to each other, they will, in all likelihood,
occupy the same CPU cacheline at runtime. To understand what the issue is, let's take
an example: consider a multicore system with two CPU cores, with each core having
two CPU caches, L1 and L2, as well as a common or unified L3 cache. Now, a thread,
T1, is working on variable ax and another thread, T2, is concurrently (on another
CPU core) working on variable bx. So, think about it: when thread T1, running
on CPU 0, accesses ax from main memory (RAM), its CPU caches will get populated
with the current values of ax and bx (as they fall within the same cacheline!).
Similarly, when thread T2, running on, say, CPU 1, accesses bx from RAM, its CPU
caches will get populated with the current values of both variables as well. Figure 13.4
conceptually depicts the situation:

Kernel Synchronization - Part 2 Chapter 13

[672]

Figure 13.4 – Conceptual depiction of the CPU cache memory when threads T1 and T2 work in parallel on two adjacent variables, each on a distinct one

Fine so far; but what if T1 performs an operation, say, ax ++, while concurrently,
T2 performs bx ++? Well, so what? (By the way, you might wonder: why aren't they
using a lock? The interesting thing is, it's quite irrelevant to this discussion; there's no
data race as each thread is accessing a different variable. The issue is with the fact that
they're in the same CPU cacheline.)

Here's the issue: cache coherency. The processor and/or the OS in conjunction with
the processor (this is all very arch-dependent stuff) will have to keep the caches and
RAM synchronized or coherent with each other. Thus, the moment T1 modifies ax,
that particular cacheline of CPU 0 will have to be invalidated, that is, a CPU 0-cache-
to-RAM flush of the CPU cacheline will occur to update RAM to the new value,
and then immediately, a RAM-to-CPU 1-cache update must also occur to keep
everything coherent!

But the cacheline contains bx as well, and, as we said, bx has also been modified on
CPU 1 by T2. Thus, at about the same time, the CPU 1 cacheline will be flushed to
RAM with the new value of bx and subsequently updated to CPU 0's caches (all the
while, the unified L3 cache too will be read from/updated as well). As you can
imagine, any updates on these variables will result in a whole lot of traffic over the
caches and RAM; they will bounce. In fact, this is often referred to as cache ping-
pong! This effect is very detrimental, significantly slowing down processing. This
phenomenon is known as false sharing.

Kernel Synchronization - Part 2 Chapter 13

[673]

Recognizing false sharing is the hard part; we must look for variables living on a
shared cacheline that are updated by different contexts (threads or whatever else)
simultaneously.

Interestingly, an earlier implementation of a key data structure in
the memory management layer,
include/linux/mmzone.h:struct zone, suffered from this very
same false sharing issue: two spinlocks that were declared adjacent
to each other! This has long been fixed (we briefly discussed memory
zones in Chapter 7, Memory Management Internals – Essentials, in
the Physical RAM organization/zones section).

How do you fix this false sharing? Easy: just ensure that the variables are spaced
far enough apart to guarantee that they do not share the same cacheline (dummy
padding bytes are often inserted between variables for this purpose). Do refer to the
references to false sharing in the Further reading section as well.

Lock-free programming with per-CPU
variables
As you have learned, when operating upon shared writable data, the critical section
must be protected in some manner. Locking is perhaps the most common technology
used to effect this protection. It's not all rosy, though, as performance can suffer. To
realize why, consider a few analogies to a lock: one would be a funnel, with the stem
of the funnel just wide enough to allow one thread at a time to flow through, no
more. Another is a single toll booth on a busy highway or a traffic light at a busy
intersection. These analogies help us visualize and understand why locking can cause
bottlenecks, slowing performance down to a crawl in some drastic cases. Worse, these
adverse effects can be multiplied on high-end multicore systems with a few hundred
cores; in effect, locking doesn't scale well.

Another issue is that of lock contention; how often is a particular lock being acquired?
Increasing the number of locks within a system has the benefit of lowering the
contention for a particular lock between two or more processes (or threads). This is
called lock proficiency. However, again, this is not scalable to an enormous extent:
after a while, having thousands of locks on a system (the case with the Linux kernel,
in fact) is not good news – the chances of subtle deadlock conditions arising is
multiplied significantly.

Kernel Synchronization - Part 2 Chapter 13

[674]

So, many challenges exist – performance issues, deadlocks, priority inversion
risks, convoying (due to lock ordering, fast code paths might need to wait for the first
slower one that's taken a lock that the faster ones also require), and so on. Evolving
the kernel in a scalable manner a whole level further has mandated the use of lock-free
algorithms and their implementation within the kernel. These have led to several
innovative techniques, among them being per-CPU (PCP) data, lock-free data
structures (by design), and RCU.

In this book, though, we elect to cover only per-CPU as a lock-free programming
technique in some detail. The details regarding RCU (and its associated lock-free data
structure by design) are beyond this book's scope. Do refer to the Further
reading section of this chapter for several useful resources on RCU, its meaning, and
its usage within the Linux kernel.

Per-CPU variables
As the name suggests, per-CPU variables work by keeping a copy of the variable,
the data item in question, assigned to each (live) CPU on the system. In effect, we get
rid of the problem area for concurrency, the critical section, by avoiding the sharing of
data between threads. With the per-CPU data technique, since every CPU refers to its
very own copy of the data, a thread running on that processor can manipulate it
without any worry of racing. (This is roughly analogous to local variables; as locals
are on the private stack of each thread, they aren't shared between threads, thus
there's no critical section and no need for locking.) Here, too, the need for locking is
thus eliminated – making it a lock-free technology!

So, think of this: if you are running on a system with four live CPU cores, then a per-
CPU variable on that system is essentially an array of four elements: element
0 represents the data value on the first CPU, element 1 the data value on the second
CPU core, and so on. Understanding this, you'll realize that per-CPU variables are
also roughly analogous to the user space Pthreads Thread Local Storage (TLS)
implementation where each thread automatically obtains a copy of the (TLS) variable
marked with the __thread keyword. There, and here with per-CPU variables, it
should be obvious: use per-CPU variables for small data items only. This is because
the data item is reproduced (copied) with one instance per CPU core (on a high-end
system with a few hundred cores, the overheads do climb). We mention some
examples of per-CPU usage in the kernel code base (in the Per-CPU usage within the
kernel section).

Kernel Synchronization - Part 2 Chapter 13

[675]

Now, when working with per-CPU variables, you must use the helper methods
(macros and APIs) provided by the kernel and not attempt to directly access them
(much like we saw with the refcount and atomic operators).

Working with per-CPU
Let's approach the helper APIs and macros (methods) for per-CPU data by dividing
the discussion into two portions. First, you will learn how to allocate, initialize, and
subsequently free a per-CPU data item. Then, you will learn how to work with
(read/write) it.

Allocating, initialization, and freeing per-CPU variables
There are broadly two types of per-CPU variables: statically and dynamically
allocated ones. Statically allocated per-CPU variables are allocated at compile time
itself, typically via one of these macros: DEFINE_PER_CPU or DECLARE_PER_CPU.
Using the DEFINE one allows you to allocate and initialize the variable. Here's an
example of allocating a single integer as a per-CPU variable:

#include <linux/percpu.h>
DEFINE_PER_CPU(int, pcpa); // signature: DEFINE_PER_CPU(type,
name)

Now, on a system with, say, four CPU cores, it would conceptually appear like this
at initialization:

Figure 13.5 – Conceptual representation of a per-CPU data item on a system with four live CPUs

(The actual implementation is quite a bit more complex than this, of course; please
refer to the Further reading section of this chapter to see more on the internal
implementation.)

Kernel Synchronization - Part 2 Chapter 13

[676]

In a nutshell, using per-CPU variables is good for performance enhancement on time-
sensitive code paths because of the following:

We avoid using costly, performance-busting locks.
The access and manipulation of a per-CPU variable is guaranteed to remain
on one particular CPU core; this eliminates expensive cache effects such as
cache ping-pong and false sharing (covered in the Cache effects and false
sharing section).

Dynamically allocating per-CPU data can be achieved via the alloc_percpu() or
alloc_percpu_gfp() wrapper macros, simply passing the data type of the object to
allocate as per-CPU, and, for the latter, passing along the gfp allocation flag as well:

alloc_percpu[_gfp](type [,gfp]);

The underlying __alloc_per_cpu[_gfp]() routines are exported via
EXPORT_SYMBOL_GPL() (and thus can be employed only when an LKM is released
under a GPL-compatible license).

As you've learned, the resource-managed devm_*() API variants
allow you (typically when writing drivers) to conveniently use these
routines to allocate memory; the kernel will take care of freeing it,
helping prevent leakage scenarios. The devm_alloc_percpu(dev,
type) macro allows you to use this as a resource-managed version
of __alloc_percpu().

The memory allocated via the preceding routine(s) must subsequently be freed using
the void free_percpu(void __percpu *__pdata) API.

Performing I/O (reads and writes) on per-CPU variables
A key question, of course, is how exactly can you access (read) and update (write) to
per-CPU variables? The kernel provides several helper routines to do so; let's take a
simple example to understand how. We define a single integer per-CPU variable, and
at a later point in time, we want to access and print its current value. You should
realize that, being per-CPU, the value retrieved will be auto-calculated based on the
CPU core the code is currently running on; in other words, if the following code is
running on core 1, then in effect, the pcpa[1] value is fetched (it's not done exactly
like this; this is just conceptual):

DEFINE_PER_CPU(int, pcpa);
int val;
[...]

Kernel Synchronization - Part 2 Chapter 13

[677]

val = get_cpu_var(pcpa);
pr_info("cpu0: pcpa = %+d\n", val);
put_cpu_var(pcpa);

The pair of {get,put}_cpu_var() macros allows us to safely retrieve or modify
the per-CPU value of the given per-CPU variable (its parameter). It's important to
understand that the code between get_cpu_var() and put_cpu_var() (or
equivalent) is, in effect, a critical section – an atomic context – where kernel preemption
is disabled and any kind of blocking (or sleeping) is disallowed. If you do anything here that
blocks (sleeps) in any manner, it's a kernel bug. For example, see what happens if you
try to allocate memory via vmalloc() within the get_cpu_var()/put_cpu_var()
pair of macros:

void *p;
val = get_cpu_var(pcpa);
p = vmalloc(20000);
pr_info("cpu1: pcpa = %+d\n", val);
put_cpu_var(pcpa);
vfree(p);
[...]

$ sudo insmod <whatever>.ko
$ dmesg
[...]
BUG: sleeping function called from invalid context at mm/slab.h:421
[67641.443225] in_atomic(): 1, irqs_disabled(): 0, pid: 12085, name:
thrd_1/1
[...]
$

(By the way, calling the printk() (or pr_<foo>()) wrappers as we do within the
critical section is fine as they're non-blocking.) The issue here is that the vmalloc()
API is possibly a blocking one; it might sleep (we discussed it in detail in Chapter 9,
Kernel Memory Allocation for Module Authors – Part 2, in the Understanding and using the
kernel vmalloc() API section), and the code between
the get_cpu_var()/put_cpu_var() pair must be atomic and non-blocking.

Internally, the get_cpu_var() macro invokes preempt_disable(), disabling
kernel preemption, and put_cpu_var() undoes this by invoking
preempt_enable(). As seen earlier (in the chapters on CPU scheduling), this can be
nested and the kernel maintains a preempt_count variable to figure out
whether kernel preemption is actually enabled or disabled.

Kernel Synchronization - Part 2 Chapter 13

[678]

The upshot of all this is that you must carefully match the {get,put}_cpu_var()
macros when using them (for example, if we call the get macro twice, we must also
call the corresponding put macro twice).

The get_cpu_var() is an lvalue and can thus be operated upon; for example, to
increment the per-CPU pcpa variable, just do the following:

get_cpu_var(pcpa) ++;
put_cpu_var(pcpa);

You can also (safely) retrieve the current per-CPU value via the macro:

per_cpu(var, cpu);

So, to retrieve the per-CPU pcpa variable for every CPU core on the system, use the
following:

for_each_online_cpu(i) {
 val = per_cpu(pcpa, i);
 pr_info(" cpu %2d: pcpa = %+d\n", i, val);
}

FYI, you can always use the smp_processor_id() macro to figure
out which CPU core you're currently running upon; in fact, this is
precisely how our convenient.h:PRINT_CTX() macro does it.

In a similar manner, the kernel provides routines to work with pointers to variables
that require to be per-CPU, the {get,put}_cpu_ptr() and per_cpu_ptr() macros.
These macros are heavily employed when working with a per-CPU data structure (as
opposed to just a simple integer); we safely retrieve the pointer to the structure of the
CPU we're currently running upon, and use it (per_cpu_ptr()).

Per-CPU – an example kernel module
A hands-on session with our sample per-CPU demo kernel module will definitely
help in using this powerful feature (code here: ch13/2_percpu). Here, we define and
use two per-CPU variables:

A statically allocated and initialized per-CPU integer
A dynamically allocated per-CPU data structure

Kernel Synchronization - Part 2 Chapter 13

[679]

As an interesting way to help demo per-CPU variables, let's do this: we shall arrange
for our demo kernel module to spawn off a couple of kernel threads. Let's call them
thrd_0 and thrd_1. Furthermore, once created, we shall make use of the CPU mask
(and API) to affine our thrd_0 kernel thread on CPU 0 and our thrd_1 kernel thread
on CPU 1 (hence, they will be scheduled to run on only these cores; of course, we
must test this code on a VM with at least two CPU cores).

The following code snippets illustrate how we define and use the per-CPU variables
(we leave out the code that creates the kernel threads and sets up their CPU affinity
masks, as they are not relevant to the coverage of this chapter; nevertheless, it's key to
browse through the full code and try it out!):

// ch13/2_percpu/percpu_var.c
[...]
/*--- The per-cpu variables, an integer 'pcpa' and a data structure --
- */
/* This per-cpu integer 'pcpa' is statically allocated and initialized
to 0 */
DEFINE_PER_CPU(int, pcpa);

/* This per-cpu structure will be dynamically allocated via
alloc_percpu() */
static struct drv_ctx {
 int tx, rx; /* here, as a demo, we just use these two members,
 ignoring the rest */
 [...]
} *pcp_ctx;
[...]

static int __init init_percpu_var(void)
{
 [...]
 /* Dynamically allocate the per-cpu structures */
 ret = -ENOMEM;
 pcp_ctx = (struct drv_ctx __percpu *) alloc_percpu(struct
drv_ctx);
 if (!pcp_ctx) {
 [...]
}

Why not use the resource-managed devm_alloc_percpu() instead? Yes, you should
when appropriate; here, though, as we're not writing a proper driver, we don't have a
struct device *dev pointer handy, which is the required first parameter to
devm_alloc_percpu().

Kernel Synchronization - Part 2 Chapter 13

[680]

By the way, I faced an issue when coding this kernel module; to set
the CPU mask (to change the CPU affinity for each of our kernel
threads), the kernel API is the sched_setaffinity() function,
which, unfortunately for us, is not exported, thus preventing us from
using it. So, we perform what is definitely considered a hack: obtain
the address of the uncooperative function via
kallsyms_lookup_name() (which works when
CONFIG_KALLSYMS is defined) and then invoke it as a
function pointer. It works, but is most certainly not the right way to
code.

Our design idea is to create two kernel threads and have each of them differently
manipulate the per-CPU data variables. If these were ordinary global variables, this
would certainly constitute a critical section and we would of course require a lock;
but here, precisely because they are per-CPU and because we guarantee that our
threads run on separate cores, we can concurrently update them with differing data!
Our kernel thread worker routine is as follows; the argument to it is the thread
number (0 or 1). We accordingly branch off and manipulate the per-CPU data (we
have our first kernel thread increment the integer three times, while our second
kernel thread decrements it three times):

/* Our kernel thread worker routine */
static int thrd_work(void *arg)
{
 int i, val;
 long thrd = (long)arg;
 struct drv_ctx *ctx;
 [...]

 /* Set CPU affinity mask to 'thrd', which is either 0 or 1 */
 if (set_cpuaffinity(thrd) < 0) {
 [...]
 SHOW_CPU_CTX();

 if (thrd == 0) { /* our kthread #0 runs on CPU 0 */
 for (i=0; i<THRD0_ITERS; i++) {
 /* Operate on our perpcu integer */
 val = ++ get_cpu_var(pcpa);
 pr_info(" thrd_0/cpu0: pcpa = %+d\n", val);
 put_cpu_var(pcpa);

 /* Operate on our perpcu structure */
 ctx = get_cpu_ptr(pcp_ctx);
 ctx->tx += 100;
 pr_info(" thrd_0/cpu0: pcp ctx: tx = %5d, rx = %5d\n",

Kernel Synchronization - Part 2 Chapter 13

[681]

 ctx->tx, ctx->rx);
 put_cpu_ptr(pcp_ctx);
 }
 } else if (thrd == 1) { /* our kthread #1 runs on CPU 1 */
 for (i=0; i<THRD1_ITERS; i++) {
 /* Operate on our perpcu integer */
 val = -- get_cpu_var(pcpa);
 pr_info(" thrd_1/cpu1: pcpa = %+d\n", val);
 put_cpu_var(pcpa);
 /* Operate on our perpcu structure */
 ctx = get_cpu_ptr(pcp_ctx);
 ctx->rx += 200;
 pr_info(" thrd_1/cpu1: pcp ctx: tx = %5d, rx = %5d\n",
 ctx->tx, ctx->rx);
 put_cpu_ptr(pcp_ctx);
 }
 }
 disp_vars();
 pr_info("Our kernel thread #%ld exiting now...\n", thrd);
 return 0;
}

The effect at runtime is interesting; see the following kernel log:

Figure 13.6 – Screenshot showing the kernel log when our ch13/2_percpu/percpu_var LKM runs

In the last three lines of output in Figure 13.6, you can see a summary of the values of
our per-CPU data variables on CPU 0 and CPU 1 (we show it via
our disp_vars() function). Clearly, for the per-CPU pcpa integer (as well as the
pcp_ctx data structure), the values are different as expected, without explicit locking.

Kernel Synchronization - Part 2 Chapter 13

[682]

The kernel module just demonstrated uses
the for_each_online_cpu(i) macro to display the value of our
per-CPU variables on each online CPU. Next, what if you have, say,
six CPUs on your VM but want only two of them to be "live" at
runtime? There are several ways to arrange this; one is to pass
the maxcpus=n parameter to the VM's kernel at boot – you can see if
it's there by looking up /proc/cmdline:
$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-5.4.0-llkd-dbg
root=UUID=1c4<...> ro console=ttyS0,115200n8
console=tty0 quiet splash 3 maxcpus=2

Also notice that we're running on our custom 5.4.0-llkd-
dbg debug kernel.

Per-CPU usage within the kernel
Per-CPU variables are quite heavily used within the Linux kernel; one interesting case
is in the implementation of the current macro on the x86 architecture (we covered
using the current macro in Chapter 6, Kernel Internals Essentials – Processes and
Threads, in the Accessing the task structure with current section). The fact is that
current is looked up (and set) every so often; keeping it as a per-CPU ensures that
we keep its access lock-free! Here's the code that implements it:

// arch/x86/include/asm/current.h
[...]
DECLARE_PER_CPU(struct task_struct *, current_task);
static __always_inline struct task_struct *get_current(void)
{
 return this_cpu_read_stable(current_task);
}
#define current get_current()

The DECLARE_PER_CPU() macro declares the variable named current_task as
a per-CPU variable of type struct task_struct *. The get_current() inline
function invokes the this_cpu_read_stable() helper on this per-CPU variable,
thus reading the value of current on the CPU core that it's currently running on
(read the comment at https:/ / elixir. bootlin. com/ linux/ v5.4/ source/ arch/ x86/
include/asm/percpu. h#L383 to see what this routine's about). Okay, that's fine, but
an FAQ: where does this current_task per-CPU variable get updated? Think about
it: the kernel must change (update) current whenever its context switches to another
task.

https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/include/asm/percpu.h#L383

Kernel Synchronization - Part 2 Chapter 13

[683]

That's exactly the case; it is indeed updated within the context-switching code
(arch/x86/kernel/process_64.c:__switch_to(); at https:/ /elixir. bootlin.
com/linux/v5. 4/ source/ arch/ x86/ kernel/ process_ 64. c#L504):

__visible __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
 [...]
 this_cpu_write(current_task, next_p);
 [...]
}

Next, a quick experiment to show per-CPU usage within the kernel code base via
__alloc_percpu(): run cscope -d in the root of the kernel source tree (this
assumes you've already built the cscope index via make cscope). In
the cscope menu, under the Find functions calling this function: prompt,
type __alloc_percpu. The result is as follows:

Figure 13.7 – (Partial) screenshot of the output of cscope -d showing kernel code that calls the __alloc_percpu() API

This, of course, is just a partial list of per-CPU usage within the kernel code base,
tracking only use via the __alloc_percpu() underlying API. Searching for
functions calling alloc_percpu[_gfp]() (wrappers over
__alloc_percpu[_gfp]()) reveals many more hits.

With this, having completed our discussions on kernel synchronization techniques
and APIs, let's finish this chapter by learning about a key area: tools and tips when
debugging locking issues within kernel code!

https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504
https://elixir.bootlin.com/linux/v5.4/source/arch/x86/kernel/process_64.c#L504

Kernel Synchronization - Part 2 Chapter 13

[684]

Lock debugging within the kernel
The kernel has several means to help debug difficult situations with regard to kernel-
level locking issues, deadlock being a primary one.

Just in case you haven't already, do ensure you've first read the
basics on synchronization, locking, and deadlock guidelines from
the previous chapter (Chapter 12, Kernel Synchronization – Part 1,
especially the Exclusive execution and atomicity and Concurrency
concerns within the Linux kernel sections).

With any debug scenario, there are different points at which debugging occurs, and
thus perhaps differing tools and techniques that should/could be used. Very broadly
speaking, a bug might be noticed at, and thus debugged at, a few different points in
time (within the Software Development Life Cycle (SDLC), really):

During development
After development but before release (testing, Quality Assurance (QA),
and so on)
After internal release
After release, in the field

A well-known and unfortunately true homily: the "further" a bug is exposed from
development, the costlier it is to fix! So you really do want to try and find and fix
them as early as possible!

As this book is focused squarely on kernel development, we shall focus here on a few
tools and techniques for debugging locking issues at development time.

Important: We expect that by now, you're running on a debug
kernel, that is, a kernel deliberately configured for
development/debug purposes. Performance will take a hit, but that's
okay – we're out bug hunting now! We covered the configuration of
a typical debug kernel in Chapter 5, Writing Your First Kernel Module
– LKMs Part 2, in the Configuring a debug kernel section, and have
even provided a sample kernel configuration file for debugging
here: ch5/kconfigs/sample_kconfig_llkd_dbg.config.
Specifics on configuring the debug kernel for lock debugging are in
fact covered next.

Kernel Synchronization - Part 2 Chapter 13

[685]

Configuring a debug kernel for lock
debugging
Due to its relevance and importance to lock debugging, we will take a quick look at a
key point from the Linux Kernel patch submission checklist document (https:/ /www.
kernel.org/doc/ html/ v5. 4/ process/ submit- checklist. html) that's most relevant
to our discussions here, on enabling a debug kernel (especially for lock debugging):

// https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
[...]
12. Has been tested with CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT,
CONFIG_DEBUG_SLAB, CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES,
CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_ATOMIC_SLEEP, CONFIG_PROVE_RCU and
CONFIG_DEBUG_OBJECTS_RCU_HEAD all simultaneously enabled.
13. Has been build- and runtime tested with and without CONFIG_SMP and
CONFIG_PREEMPT.

16. All codepaths have been exercised with all lockdep features
enabled.
[...]

Though not covered in this book, I cannot fail to mention a
very powerful dynamic memory error detector called Kernel
Address SANitizer (KASAN). In a nutshell, it uses compile-time
instrumentation-based dynamic analysis to catch common memory-
related bugs (it works with both GCC and Clang). ASan (Address
Sanitizer), contributed by Google engineers, is used to monitor
and detect memory issues in user space apps (covered in some detail
and compared with valgrind in the Hands-On System Programming
for Linux book). The kernel equivalent, KASAN, has been available
since the 4.0 kernel for both x86_64 and AArch64 (ARM64, from 4.4
Linux). Details (on enabling and using it) can be found within the
kernel documentation (https:/ /www. kernel. org/ doc/ html/ v5. 4/
dev- tools/ kasan. html#the- kernel- address- sanitizer- kasan); I
highly recommend you enable it in your debug kernel.

As we saw back in Chapter 2, Building the 5.x Linux Kernel from Source – Part 1, we can
configure our Linux kernel specifically for our requirements. Here (within the root of
the 5.4.0 kernel source tree), we perform make menuconfig and navigate to the
Kernel hacking / Lock Debugging (spinlocks, mutexes, etc...) menu
(see Figure 13.8, taken on our x86_64 Ubuntu 20.04 LTS guest VM):

https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/process/submit-checklist.html
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan
https://www.kernel.org/doc/html/v5.4/dev-tools/kasan.html#the-kernel-address-sanitizer-kasan

Kernel Synchronization - Part 2 Chapter 13

[686]

Figure 13.8 – (Truncated) screenshot of the kernel hacking / Lock Debugging (spinlocks, mutexes, etc...) menu with required items enabled for our debug kernel

Figure 13.8 is a (truncated) screenshot of the < Kernel hacking >
Lock Debugging (spinlocks, mutexes, etc...) menu with required items
enabled for our debug kernel.

Instead of interactively having to go through each menu item
and selecting the <Help> button to see what it's about, a much
simpler way to gain the same help information is to peek inside the
relevant Kconfig file (that describes the menu). Here, it's
lib/Kconfig.debug, as all debug-related menus are there. For our
particular case, search for the menu "Lock Debugging
(spinlocks, mutexes, etc...)" string, where the
Lock Debugging section begins (see the following table).

The following table summarizes what each kernel lock debugging configuration
option helps debug (we haven't shown all of them and, for some of them, have
directly quoted from the lib/Kconfig.debug file):

Lock debugging menu title What it does

Lock debugging: prove locking
correctness (CONFIG_PROVE_LOCKING)

This is the lockdep kernel option – turn it on to get
rolling proof of lock correctness at all times. Any
possibility of locking-related deadlock is reported even
before it actually occurs; very useful! (Explained shortly in
more detail.)

Lock usage statistics (CONFIG_LOCK_STAT) Tracks lock contention points (explained shortly in more detail).
RT mutex debugging, deadlock detection
(CONFIG_DEBUG_RT_MUTEXES)

"This allows rt mutex semantics violations and rt mutex
related deadlocks (lockups) to be detected and reported automatically."

Kernel Synchronization - Part 2 Chapter 13

[687]

Spinlock and rw-lock debugging: basic checks
(CONFIG_DEBUG_SPINLOCK)

Turning this on (along with CONFIG_SMP) helps catch missing
spinlock initialization and other common spinlock errors.

Mutex debugging: basic checks
(CONFIG_DEBUG_MUTEXES)

"This feature allows mutex semantics violations to be detected and
reported."

RW semaphore debugging: basic checks
(CONFIG_DEBUG_RWSEMS)

Allows mismatched RW semaphore locks and unlocks to
be detected and reported.

Lock debugging: detect incorrect freeing of live
locks (CONFIG_DEBUG_LOCK_ALLOC)

"This feature will check whether any held lock (spinlock, rwlock, mutex
or rwsem) is incorrectly freed by the kernel, via any of the memory-
freeing routines (kfree(), kmem_cache_free(),
free_pages(), vfree(), etc.), whether a live lock is
incorrectly reinitialized
via spin_lock_init()/mutex_init()/etc., or whether
there is any lock held during task exit."

Sleep inside atomic section checking
(CONFIG_DEBUG_ATOMIC_SLEEP)

"If you say Y here, various routines which may sleep will become
very noisy if they are called inside atomic sections: when a spinlock
is held, inside an rcu read side critical section, inside preempt
disabled sections, inside an interrupt, etc..."

Locking API boot-time self-tests
(CONFIG_DEBUG_LOCKING_API_SELFTESTS)

"Say Y here if you want the kernel to run a short self-test during bootup.
The self-test checks whether common types of locking bugs are detected
by debugging mechanisms or not. (if you disable lock debugging then
those bugs wont be detected of course.) The following locking APIs are
covered: spinlocks, rwlocks,
mutexes and rwsems."

Torture tests for locking
(CONFIG_LOCK_TORTURE_TEST)

"This option provides a kernel module that runs torture tests on kernel
locking primitives. The kernel module may be built after the fact on the
running kernel to be tested, if desired." (Can be built either inline with
'Y' or externally as a module with 'M')."

Table 17.4 – Typical kernel lock debugging configuration options and their meaning

As suggested previously, turning on all or most of these lock debug options within a
debug kernel used during development and testing is a good idea. Of course, as
expected, doing so might considerably slow down execution (and use more memory);
as in life, this is a trade-off you have to decide on: you gain detection of common
locking issues, errors, and deadlocks, at the cost of speed. It's a trade-off you should
be more than willing to make, especially when developing (or refactoring) the code.

The lock validator lockdep – catching locking
issues early
The Linux kernel has a tremendously useful feature begging to be taken advantage of
by kernel developers: a runtime locking correctness or locking dependency validator;
in short, lockdep. The basic idea is this: the lockdep runtime comes into play
whenever any locking activity occurs within the kernel – the taking or the release of
any kernel-level lock, or any locking sequence involving multiple locks.

Kernel Synchronization - Part 2 Chapter 13

[688]

This is tracked or mapped (see the following paragraph for more on the performance
impact and how it's mitigated). By applying well-known rules for correct locking
(you got a hint of this in the previous chapter in the Locking guidelines and
deadlock section), lockdep then makes a conclusion regarding the validity of the
correctness of what was done.

The beauty of it is that lockdep achieves 100% mathematical proof (or closure) that a
lock sequence is correct or not. The following is a direct quote from the kernel
documentation on the topic (https:/ /www.kernel. org/ doc/html/ v5. 4/locking/
lockdep-design. html):

"The validator achieves perfect, mathematical ‘closure’ (proof of locking correctness)
in the sense that for every simple, standalone single-task locking sequence that
occurred at least once during the lifetime of the kernel, the validator proves it with a
100% certainty that no combination and timing of these locking sequences can
cause any class of lock related deadlock."

Furthermore, lockdep warns you (by issuing the WARN*() macros) of any violation
of the following classes of locking bugs: deadlocks/lock inversion scenarios, circular
lock dependencies, and hard IRQ/soft IRQ safe/unsafe locking bugs. This information
is precious; validating your code with lockdep can save hundreds of wasted hours of
productivity by catching locking issues early. (FYI, lockdep tracks all locks and their
locking sequence or "lock chains"; these can be viewed through
/proc/lockdep_chains).

A word on performance mitigation: you might well imagine that, with literally
thousands or more lock instances floating around, it would be absurdly slow to
validate every single lock sequence (yes, in fact, it turns out to be a task of order
O(N^2) algorithmic time complexity!). This would just not work; so, lockdep works
by verifying any locking scenario (say, on a certain code path, lock A is taken, then
lock B is taken – this is referred to as a lock sequence or lock chain) only once, the very
first time it occurs. (It knows this by maintaining a 64-bit hash for every lock chain it
encounters.)

https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html

Kernel Synchronization - Part 2 Chapter 13

[689]

Primitive user space approaches: A very primitive – and certainly
not guaranteed – way to try and detect deadlocks is via user space
by simply using GNU ps(1); doing ps -LA -o state,pid,cmd
| grep "^D" prints any threads in the D – uninterruptible
sleep (TASK_UNINTERRUPTIBLE) – state. This could – but may not –
be due to a deadlock; if it persists for a long while, chances are
higher that it is a deadlock. Give it a try! Of course, lockdep is a far
superior solution. (Note that this only works with GNU ps, not the
lightweight ones such as busybox ps.)

Other useful user space tools are strace(1) and ltrace(1) –
they provide a detailed trace of every system and library call,
respectively, issued by a process (or thread); you might be able to
catch a hung process/thread and see where it got stuck (using
strace -p <PID> might be especially useful on a hung process).

The other point that you need to be clear about is this: lockdep will issue warnings
regarding (mathematically) incorrect locking even if no deadlock actually occurs at
runtime! lockdep offers proof that there is indeed an issue that could conceivably
cause a bug (deadlock, unsafe locking, and so on) at some point in the future if no
corrective action is taken; it's usually dead right; take it seriously and fix the issue.
(Then again, typically, nothing in the software universe is 100% correct 100% of the
time: what if a bug creeps into the lockdep code itself? There's even
a CONFIG_DEBUG_LOCKDEP config option. The bottom line is that we, the human
developers, must carefully assess the situation, checking for false positives.)

Next, lockdep works upon a lock class; this is simply a "logical" lock as opposed to
"physical" instances of that lock. For example, the kernel's open file data structure,
struct file, has two locks – a mutex and a spinlock – and each of them is
considered a lock class by lockdep. Even if a few thousand instances of struct
file exist in memory at runtime, lockdep will track it as a class only. For more
detail on lockdep's internal design, we refer you to the official kernel documentation
on it (https://www. kernel. org/ doc/ html/v5. 4/locking/ lockdep- design. html).

https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html
https://www.kernel.org/doc/html/v5.4/locking/lockdep-design.html

Kernel Synchronization - Part 2 Chapter 13

[690]

Examples – catching deadlock bugs with
lockdep
Here, we shall assume that you've by now built and are running upon a debug kernel
with lockdep enabled (as described in detail in the Configuring a debug kernel for lock
debugging section). Verify that it is indeed enabled:

$ uname -r
5.4.0-llkd-dbg
$ grep PROVE_LOCKING /boot/config-5.4.0-llkd-dbg
CONFIG_PROVE_LOCKING=y
$

Okay, good! Now, let's get hands-on with some deadlocks, seeing how lockdep will
help you catch them. Read on!

Example 1 – catching a self deadlock bug with
lockdep
As a first example, let's travel back to one of our kernel modules from Chapter 6,
Kernel Internals Essentials – Processes and Threads, in the Iterating over the task
list section, here: ch6/foreach/thrd_showall/thrd_showall.c. Here, we looped
over each thread, printing some details from within its task structure; with regard to
this, here's a code snippet where we obtain the name of the thread (recall that it's in a
member of the task structure called comm):

// ch6/foreach/thrd_showall/thrd_showall.c
static int showthrds(void)
{
 struct task_struct *g = NULL, *t = NULL; /* 'g' : process ptr;
't': thread ptr */
 [...]
 do_each_thread(g, t) { /* 'g' : process ptr; 't': thread ptr */
 task_lock(t);
 [...]
 if (!g->mm) { // kernel thread
 snprintf(tmp, TMPMAX-1, " [%16s]", t->comm);
 } else {
 snprintf(tmp, TMPMAX-1, " %16s ", t->comm);
 }
 snprintf(buf, BUFMAX-1, "%s%s", buf, tmp);
 [...]

Kernel Synchronization - Part 2 Chapter 13

[691]

This works, but there appears to be a better way to do it: instead of directly looking
up the thread's name with t->comm (as we do here), the kernel provides
the {get,set}_task_comm() helper routines to both get and set the name of the
task. So, we rewrite the code to use the get_task_comm() helper macro; the first
parameter to it is the buffer to place the name into (it's expected that you've allocated
memory to it), and the second parameter is the pointer to the task structure of the
thread whose name you are querying (the following code snippet is from
here: ch13/3_lockdep/buggy_thrdshow_eg/thrd_showall_buggy.c):

// ch13/3_lockdep/buggy_lockdep/thrd_showall_buggy.c
static int showthrds_buggy(void)
{
 struct task_struct *g, *t; /* 'g' : process ptr; 't': thread ptr
*/
 [...]
 char buf[BUFMAX], tmp[TMPMAX], tasknm[TASK_COMM_LEN];
 [...]
 do_each_thread(g, t) { /* 'g' : process ptr; 't': thread ptr */
 task_lock(t);
 [...]
 get_task_comm(tasknm, t);
 if (!g->mm) // kernel thread
 snprintf(tmp, sizeof(tasknm)+3, " [%16s]", tasknm);
 else
 snprintf(tmp, sizeof(tasknm)+3, " %16s ", tasknm);
 [...]

When compiled and inserted into the kernel on our test system (a VM, thank
goodness), it can get weird, or even just simply hang! (When I did this, I was able to
retrieve the kernel log via dmesg(1) before the system became completely
unresponsive.).

Kernel Synchronization - Part 2 Chapter 13

[692]

What if your system just hangs upon insertion of this LKM? Well,
that's a taste of the difficulty of kernel debugging! One thing you can
try (which worked for me when trying this very example on a
x86_64 Fedora 29 VM) is to reboot the hung VM and look up the
kernel log by leveraging systemd's powerful journalctl(1) utility
with the journalctl --since="1 hour ago" command; you
should be able to see the printks from lockdep now. Again,
unfortunately, it's not guaranteed that the key portion of the kernel
log is saved to disk (at the time it hung) for journalctl to be able
to retrieve. This is why using the kernel's kdump feature – and then
performing postmortem analysis of the kernel dump image file with
crash(8) – can be a lifesaver (see resources on using kdump and
crash in the Further reading section for this chapter).

Glancing at the kernel log, it becomes clear: lockdep has caught a (self) deadlock (we
show relevant parts of the output in the screenshot):

Figure 13.9 – (Partial) screenshot showing the kernel log after our buggy module is loaded; lockdep catches the self deadlock!

Kernel Synchronization - Part 2 Chapter 13

[693]

Though a lot more detail follows (including the stack backtrace of the kernel stack
of insmod(8) – as it was the process context, in this case, register values, and so on),
what we see in the preceding figure is sufficient to deduce what happened. Clearly,
lockdep tells us insmod/2367 is trying to acquire lock:, followed by but
task is already holding lock:. Next (look carefully at Figure 13.9), the lock
that insmod is holding is (p->alloc_lock) (for now, ignore what follows it; we will
explain it shortly) and the routine that actually attempts to acquire it (shown after
at:) is __get_task_comm+0x28/0x50. Now, we're getting somewhere: let's figure
out what exactly occurred when we called get_task_comm(); we find that it's a
macro, a wrapper around the actual worker routine, __get_task_comm(). Its code is
as follows:

// fs/exec.c
char *__get_task_comm(char *buf, size_t buf_size, struct task_struct
*tsk)
{
 task_lock(tsk);
 strncpy(buf, tsk->comm, buf_size);
 task_unlock(tsk);
 return buf;
}
EXPORT_SYMBOL_GPL(__get_task_comm);

Ah, there's the problem: the __get_task_comm() function attempts to reacquire the
very same lock that we're already holding, causing (self) deadlock! Where did we acquire it?
Recall that the very first line of code in our (buggy) kernel module after entering the
loop is where we call task_lock(t), and then just a few lines later, we invoke
get_task_comm(), which internally attempts to reacquire the very same lock: the
result is self deadlock:

do_each_thread(g, t) { /* 'g' : process ptr; 't': thread ptr */
 task_lock(t);
 [...]
 get_task_comm(tasknm, t);

Furthermore, finding which particular lock this is easy; look up the code of
the task_lock() routine:

// include/linux/sched/task.h */
static inline void task_lock(struct task_struct *p)
{
 spin_lock(&p->alloc_lock);
}

Kernel Synchronization - Part 2 Chapter 13

[694]

So, it all makes sense now; it's a spinlock within the task structure
named alloc_lock, just as lockdep informs us.
lockdep's report has some amount of puzzling notations. Take the following lines:

[1021.449384] insmod/2367 is trying to acquire lock:
[1021.451361] ffff88805de73f08 (&(&p->alloc_lock)->rlock){+.+.}, at:
__get_task_comm+0x28/0x50
[1021.453676]
 but task is already holding lock:
[1021.457365] ffff88805de73f08 (&(&p->alloc_lock)->rlock){+.+.}, at:
showthrds_buggy+0x13e/0x6d1 [thrd_showall_buggy]

Ignoring the timestamp, the number in the leftmost column of the second line seen in
the preceding code block is the 64-bit lightweight hash value used to identify this
particular lock sequence. Notice it's precisely the same as the hash in the following
line; so, we know it's the very same lock being acted upon! {+.+.} is lockdep's
notation for what state this lock was acquired in (the meaning: + implies lock
acquired with IRQs enabled, . implies lock acquired with IRQs disabled and not in
the IRQ context, and so on). These are explained in the kernel documentation
(https://www.kernel. org/ doc/ Documentation/ locking/ lockdep- design. txt); we'll
leave it at that.

A detailed presentation on interpreting lockdep output was given
by Steve Rostedt at a Linux Plumber's Conference (back in 2011); the
relevant slides are informative, exploring both simple and complex
deadlock scenarios and how lockdep can detect them:
Lockdep: How to read its cryptic output (https:/ /blog.
linuxplumbersconf. org/ 2011/ ocw/sessions/ 153).

Fixing it
Now that we understand the issue here, how do we fix it? Seeing lockdep's report
(Figure 13.9) and interpreting it, it's quite simple: (as mentioned) since the task
structure spinlock named alloc_lock is already taken at the start of the do-while
loop (via task_lock(t)), ensure that before calling the get_task_comm() routine
(which internally takes and releases this same lock), you unlock it, then perform
get_task_comm(), then lock it again.

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153
https://blog.linuxplumbersconf.org/2011/ocw/sessions/153

Kernel Synchronization - Part 2 Chapter 13

[695]

The following screenshot (Figure 13.10) shows the difference (via the diff(1) utility)
between the older buggy version
(ch13/3_lockdep/buggy_thrdshow_eg/thrd_showall_buggy.c) and the
newer fixed version of our code
(ch13/3_lockdep/fixed_lockdep/thrd_showall_fixed.c):

Figure 13.10 – (Partial) screenshot showing the key part of the difference between the buggy and fixed versions of our demo thrdshow LKM

Great; another example follows – that of catching an AB-BA deadlock!

Example 2 – catching an AB-BA deadlock with
lockdep
As one more example, let's check out a (demo) kernel module that quite deliberately
creates a circular dependency, which will ultimately result in a deadlock. The code
is here: ch13/3_lockdep/deadlock_eg_AB-BA. We've based this module on our
earlier one (ch13/2_percpu); as you'll recall, we create two kernel threads and
ensure (by using a hacked sched_setaffinity()) that each kernel thread runs on a
unique CPU core (the first kernel thread on CPU core 0 and the second on core 1).

Kernel Synchronization - Part 2 Chapter 13

[696]

This way, we have concurrency. Now, within the threads, we have them work with
two spinlocks, lockA and lockB. Understanding that we have a process context with
two or more locks, we document and follow a lock ordering rule: first take lockA, then
lockB. Great; so, one way it should not be done is like this:

kthread 0 on CPU #0 kthread 1 on CPU #1
 Take lockA Take lockB
 <perform work> <perform work>
 (Try and) take lockA
 < ... spins forever :
 DEADLOCK ... >
(Try and) take lockB
< ... spins forever :
 DEADLOCK ... >

This, of course, is the classic AB-BA deadlock! Because the program (kernel thread 1,
actually) ignored the lock ordering rule (when the lock_ooo module parameter is set
to 1), it deadlocks. Here's the relevant code (we haven't bothered showing the whole
program here; please clone this book's GitHub repository at https:/ /github. com/
PacktPublishing/ Linux- Kernel- Programming and try it out yourself):

// ch13/3_lockdep/deadlock_eg_AB-BA/deadlock_eg_AB-BA.c
[...]
/* Our kernel thread worker routine */
static int thrd_work(void *arg)
{
 [...]
 if (thrd == 0) { /* our kthread #0 runs on CPU 0 */
 pr_info(" Thread #%ld: locking: we do:"
 " lockA --> lockB\n", thrd);
 for (i = 0; i < THRD0_ITERS; i ++) {
 /* In this thread, perform the locking per the lock
ordering 'rule';
 * first take lockA, then lockB */
 pr_info(" iteration #%d on cpu #%ld\n", i, thrd);
 spin_lock(&lockA);
 DELAY_LOOP('A', 3);
 spin_lock(&lockB);
 DELAY_LOOP('B', 2);
 spin_unlock(&lockB);
 spin_unlock(&lockA);
 }

https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming
https://github.com/PacktPublishing/Linux-Kernel-Programming

Kernel Synchronization - Part 2 Chapter 13

[697]

Our kernel thread 0 does it correctly, following the lock ordering rule; the code
relevant to our kernel thread 1 (continued from the previous code) is as follows:

 [...]
 } else if (thrd == 1) { /* our kthread #1 runs on CPU 1 */
 for (i = 0; i < THRD1_ITERS; i ++) {
 /* In this thread, if the parameter lock_ooo is 1,
violate the
 * lock ordering 'rule'; first (attempt to) take lockB,
then lockA */
 pr_info(" iteration #%d on cpu #%ld\n", i, thrd);
 if (lock_ooo == 1) { // violate the rule, naughty
boy!
 pr_info(" Thread #%ld: locking: we do: lockB -->
lockA\n",thrd);
 spin_lock(&lockB);
 DELAY_LOOP('B', 2);
 spin_lock(&lockA);
 DELAY_LOOP('A', 3);
 spin_unlock(&lockA);
 spin_unlock(&lockB);
 } else if (lock_ooo == 0) { // follow the rule, good boy!
 pr_info(" Thread #%ld: locking: we do: lockA -->
lockB\n",thrd);
 spin_lock(&lockA);
 DELAY_LOOP('B', 2);
 spin_lock(&lockB);
 DELAY_LOOP('A', 3);
 spin_unlock(&lockB);
 spin_unlock(&lockA);
 }
 [...]

Build and run it with the lock_ooo kernel module parameter set to 0 (the default);
we find that, obeying the lock ordering rule, all is well:

$ sudo insmod ./deadlock_eg_AB-BA.ko
$ dmesg
[10234.023746] deadlock_eg_AB-BA: inserted (param: lock_ooo=0)
[10234.026753] thrd_work():115: *** thread PID 6666 on cpu 0 now ***
[10234.028299] Thread #0: locking: we do: lockA --> lockB
[10234.029606] iteration #0 on cpu #0
[10234.030765] A
[10234.030766] A
[10234.030847] thrd_work():115: *** thread PID 6667 on cpu 1 now ***
[10234.031861] A
[10234.031916] B
[10234.032850] iteration #0 on cpu #1

Kernel Synchronization - Part 2 Chapter 13

[698]

[10234.032853] Thread #1: locking: we do: lockA --> lockB
[10234.038831] B
[10234.038836] Our kernel thread #0 exiting now...
[10234.038869] B
[10234.038870] B
[10234.042347] A
[10234.043363] A
[10234.044490] A
[10234.045551] Our kernel thread #1 exiting now...
$

Now, we run it with the lock_ooo kernel module parameter set to 1 and find that, as
expected, the system locks up! We've disobeyed the lock ordering rule, and we pay
the price as the system deadlocks! This time, rebooting the VM and doing
journalctl --since="10 min ago" got me lockdep's report:

==
WARNING: possible circular locking dependency detected
5.4.0-llkd-dbg #2 Tainted: G OE
--
thrd_0/0/6734 is trying to acquire lock:
ffffffffc0fb2518 (lockB){+.+.}, at: thrd_work.cold+0x188/0x24c
[deadlock_eg_AB_BA]

but task is already holding lock:
ffffffffc0fb2598 (lockA){+.+.}, at: thrd_work.cold+0x149/0x24c
[deadlock_eg_AB_BA]

which lock already depends on the new lock.
[...]
other info that might help us debug this:

 Possible unsafe locking scenario:

 CPU0 CPU1
 ---- ----
 lock(lockA);
 lock(lockB);
 lock(lockA);
 lock(lockB);

 *** DEADLOCK ***

[... lots more output follows ...]

Kernel Synchronization - Part 2 Chapter 13

[699]

The lockdep report is quite amazing. Check out the lines after the sentence
Possible unsafe locking scenario:; it pretty much precisely shows what
actually occurred at runtime – the out-of-order (ooo) locking sequence on CPU1 :
lock(lockB); --> lock(lockA);! Since lockA is already taken by the kernel
thread on CPU 0, the kernel thread on CPU 1 spins forever – the root cause of this
AB-BA deadlock.

Furthermore, quite interestingly, soon after module insertion (with lock_ooo set to
1), the kernel also detected a soft lockup bug. The printk is directed to our console at
log level KERN_EMERG, allowing us to see this even though the system appears to be
hung. It even shows the relevant kernel threads where the issue originated (again,
this output is on my x86_64 Ubuntu 20.04 LTS VM running the custom 5.4.0 debug
kernel):

Message from syslogd@seawolf-VirtualBox at Dec 24 11:01:51 ...
kernel:[10939.279524] watchdog: BUG: soft lockup - CPU#0 stuck for
22s! [thrd_0/0:6734]
Message from syslogd@seawolf-VirtualBox at Dec 24 11:01:51 ...
kernel:[10939.287525] watchdog: BUG: soft lockup - CPU#1 stuck for
23s! [thrd_1/1:6735]

(FYI, the code that detected this and spewed out the preceding messages is
here: kernel/watchdog.c:watchdog_timer_fn()).

One additional note: the /proc/lockdep_chains output also "proves" the incorrect
locking sequence was taken (or exists):

$ sudo cat /proc/lockdep_chains
[...]
irq_context: 0
[000000005c6094ba] lockA
[000000009746aa1e] lockB
[...]
irq_context: 0
[000000009746aa1e] lockB
[000000005c6094ba] lockA

Also, recall that lockdep reports only once – the first time – that a lock rule on any
kernel lock is violated.

Kernel Synchronization - Part 2 Chapter 13

[700]

lockdep – annotations and issues
Let's wrap up this coverage with a couple more points on the powerful lockdep
infrastructure.

lockdep annotations
In user space, you will be familiar with using the very useful assert() macro. There,
you assert a Boolean expression, a condition (for example, assert(p == 5);). If
the assertion is true at runtime, nothing happens and execution continues; when the
assertion is false, the process is aborted and a noisy printf() to stderr indicates
which assertion and where it failed. This allows developers to check for runtime
conditions that they expect. Thus, assertions can be very valuable – they help catch
bugs!

In a similar manner, lockdep allows the kernel developer to assert that a lock is held
at a particular point, via the lockdep_assert_held() macro. This is called a
lockdep annotation. The macro definition is displayed here:

// include/linux/lockdep.h
#define lockdep_assert_held(l) do { \
 WARN_ON(debug_locks && !lockdep_is_held(l)); \
 } while (0)

The assertion failing results in a warning (via WARN_ON()). This is very valuable as it
implies that though that lock l is supposed to be held now, it really isn't. Also notice
that these assertions only come into play when lock debugging is enabled (this is the
default when lock debugging is enabled within the kernel; it only gets turned off
when an error occurs within lockdep or the other kernel locking infrastructure). The
kernel code base, in fact, uses lockdep annotations all over the place, both in the core
as well as the driver code. (There are a few variations on the lockdep assertion of
the form lockdep_assert_held*() as well as the rarely used
lockdep_*pin_lock() macros.)

Kernel Synchronization - Part 2 Chapter 13

[701]

lockdep issues
A couple of issues can arise when working with lockdep:

Repeated module loading and unloading can cause lockdep's internal lock
class limit to be exceeded (the reason, as explained within the kernel
documentation, is that loading a x.ko kernel module creates a new set of
lock classes for all its locks, while unloading x.ko does not remove them;
it's actually reused). In effect, either don't repeatedly load/unload modules
or reset the system.
Especially in those cases where a data structure has an enormous number
of locks (such as an array of structures), failing to properly initialize every
single lock can result in lockdep lock-class overflow.

The debug_locks integer is set to 0 whenever lock debugging is disabled (even on a
debug kernel); this can result in this message showing up: *WARNING* lock
debugging disabled!! - possibly due to a lockdep warning. This could
even happen due to lockdep issuing warnings earlier. Reboot your system and retry.

Though this book is based on the 5.4 LTS kernel, a powerful feature
was (very recently as of the time of writing) merged into the 5.8
kernel: the Kernel Concurrency Sanitizer (KCSAN). It's a data race
detector for the Linux kernel that works via compile-time
instrumentation. You can find more details in these LWN articles:
Finding race conditions with KCSAN, LWN, October 2019 (https:/ /
lwn. net/ Articles/ 802128/) and Concurrency bugs should fear the big
bad data-race detector (part 1), LWN, April 2020 (https:/ /lwn. net/
Articles/ 816850/).

Also, FYI, several tools do exist for catching locking bugs and
deadlocks in user space apps. Among them are the well-known
helgrind (from the Valgrind suite), TSan (Thread Sanitizer),
which provides compile-time instrumentation to check for data
races in multithreaded applications, and lockdep itself; lockdep can
be made to work in user space as well (as a library)! Moreover, the
modern [e]BPF framework provides the deadlock-bpfcc(8)
frontend. It's designed specifically to find potential deadlocks (lock
order inversions) in a given running process (or thread).

https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/802128/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/
https://lwn.net/Articles/816850/

Kernel Synchronization - Part 2 Chapter 13

[702]

Lock statistics
A lock can be contended, which is when, a context wants to acquire the lock but it has
already been taken, so it must wait for the unlock to occur. Heavy contention can
create severe performance bottlenecks; the kernel provides lock statistics with a view
to easily identifying heavily contended locks. Enable lock statistics by turning on
the CONFIG_LOCK_STAT kernel configuration option (without this, the
/proc/lock_stat entry will not be present, the typical case on most distribution
kernels).

The lock stats code takes advantage of the fact that lockdep inserts hooks into the
locking code path (the __contended, __acquired, and __released hooks) to
gather statistics at these crucial points. The neatly written kernel documentation on
lock statistics (https:/ /www. kernel. org/doc/ html/ latest/ locking/ lockstat.
html#lock-statistics) conveys this information (and a lot more) with a useful state
diagram; do look it up.

Viewing lock stats
A few quick tips and essential commands to view lock statistics are as follows (this
assumes, of course, that CONFIG_LOCK_STAT is on):

Do what? Command
Clear lock stats sudo sh -c "echo 0 > /proc/lock_stat"

Enable lock stats
sudo sh -c "echo 1 >
/proc/sys/kernel/lock_stat"

Disable lock stats
sudo sh -c "echo 0 >
/proc/sys/kernel/lock_stat"

Next, a simple demo to see locking statistics: we write a very simple Bash
script, ch13/3_lockdep/lock_stats_demo.sh (check out its code in this book's
GitHub repo). It clears and enables locking statistics, then simply runs the cat
/proc/self/cmdline command. This will actually trigger a chain of code to run
deep within the kernel (within fs/proc mostly); several global – shared writable –
data structures will need to be looked up. This will constitute a critical section and
thus locks will be acquired. Our script will disable lock stats, and then grep the
locking statistics to see a few locks, filtering out the rest:

egrep "alloc_lock|task|mm" /proc/lock_stat

https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics
https://www.kernel.org/doc/html/latest/locking/lockstat.html#lock-statistics

Kernel Synchronization - Part 2 Chapter 13

[703]

On running it, the output we obtained is as follows (again, on our x86_64 Ubuntu
20.04 LTS VM running our custom 5.4.0 debug kernel):

Figure 13.11 – Screenshot showing our lock_stats_demo.sh script running, displaying some of the lock statistics

(The output in Figure 13.11 is pretty long horizontally and thus wraps.) The time
displayed is in microseconds. The class name field is the lock class; we can see
several locks associated with the task and memory structures (task_struct and
mm_struct)! Instead of duplicating the material, we refer you to the
kernel documentation on lock statistics, which explains each of the preceding fields
(con-bounces, waittime*, and so on; hint: con is short for contended) and how to
interpret the output. As expected, see, in Figure 13.11, in this simple case, the
following:

The first field, class_name, is the lock class; the (symbolic) name of the
lock is seen here.
There's really no contention for locks (fields 2 and 3).
The wait times (waittime*, fields 3 to 6) are 0.
The acquisitions field (#9) is the total number of times the lock was
acquired (taken); it's positive (and even goes to over 300 for mm_struct
semaphore &mm->mmap_sem*).

Kernel Synchronization - Part 2 Chapter 13

[704]

The last four fields, 10 to 13, are the cumulative lock hold time statistics
(holdtime-{min|max|total|avg}). Again, here, you can see that
mm_struct mmap_sem* locks have the longest average hold time.
(Notice the task structure's spinlock named alloc_lock is taken as well;
we came across it in the Example 1 – catching a self deadlock bug
with lockdep section).

The most contended locks on the system can be looked up via sudo
grep ":" /proc/lock_stat | head. Of course, you should
realize that this is from when the locking statistics were last reset
(cleared).

Note that lock statistics can get disabled due to lock debugging being disabled; for
example, you might come across this:

$ sudo cat /proc/lock_stat
lock_stat version 0.4
WARNING lock debugging disabled!! - possibly due to a lockdep
warning

This warning might necessitate you rebooting the system.

All right, you're almost there! Let's finish this chapter with some brief coverage of
memory barriers.

Memory barriers – an introduction
Last but not least, let's briefly address another concern – that of the memory barrier.
What does it mean? Sometimes, a program flow becomes unknown to the human
programmer as the microprocessor, the memory controllers, and the compiler can
reorder memory reads and writes. In the majority of cases, these "tricks" remain
benign and optimized. But there are cases – typically across hardware boundaries,
such as CPU cores on multicore systems, CPU to peripheral device, and vice versa on
UniProcessor (UP) – where this reordering should not occur; the original and intended
memory load and store sequences must be honored. The memory barrier (typically
machine-level instructions embedded within the *mb*() macros) is a means to
suppress such reordering; it's a way to force both the CPU/memory controllers and
the compiler to order instruction/data in a desired sequence.

Kernel Synchronization - Part 2 Chapter 13

[705]

Memory barriers can be placed into the code path by using the following
macros: #include <asm/barrier.h>:

rmb(): Inserts a read (or load) memory barrier into the instruction stream
wmb(): Inserts a write (or store) memory barrier into the instruction stream
mb(): A general memory barrier; quoting directly from the kernel
documentation on memory barriers (https:/ /www. kernel. org/doc/
Documentation/ memory- barriers. txt), "A general memory barrier gives a
guarantee that all the LOAD and STORE operations specified before the barrier
will appear to happen before all the LOAD and STORE operations specified after
the barrier with respect to the other components of the system."

The memory barrier ensures that unless the preceding instruction or data access
executes, the following ones will not, thus maintaining the ordering. On some (rare)
occasions, DMA being the likely one, driver authors use memory barriers. When
using DMA, it's important to read the kernel documentation (https:/ /www. kernel.
org/doc/Documentation/ DMA- API- HOWTO. txt). It mentions where memory barriers
are to be used and the perils of not using them; see the example that follows for more
on this.

As the placement of memory barriers is typically a fairly perplexing thing to get right
for many of us, we urge you to refer to the relevant technical reference manual for the
processor or peripheral you're writing a driver for, for more details. For example,
on the Raspberry Pi, the SoC is the Broadcom BCM2835 series; referring to its
peripherals manual – the BCM2835 ARM Peripherals manual (https:/ / www.
raspberrypi.org/ app/ uploads/ 2012/ 02/BCM2835- ARM- Peripherals.
pdf), section 1.3, Peripheral access precautions for correct memory ordering – is helpful to
sort out when and when not to use memory barriers.

An example of using memory barriers in a
device driver
As one example, take the Realtek 8139 "fast Ethernet" network driver. In order to
transmit a network packet via DMA, it must first set up a DMA (transmit) descriptor
object. For this particular hardware (NIC chip), the DMA descriptor object is defined
as follows:

// drivers/net/ethernet/realtek/8139cp.c
struct cp_desc {
 __le32 opts1;

https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

Kernel Synchronization - Part 2 Chapter 13

[706]

 __le32 opts2;
 __le64 addr;
};

The DMA descriptor object, christened struct cp_desc, has three "words." Each of
them has to be initialized. Now, to ensure that the descriptor is correctly interpreted
by the DMA controller, it's often critical that the writes to the DMA descriptor are
seen in the same order as the driver author intends. To guarantee this, memory
barriers are used. In fact, the relevant kernel documentation – the Dynamic DMA
mapping Guide (https:/ /www. kernel. org/doc/ Documentation/ DMA-API- HOWTO. txt) –
tells us to ensure that this is indeed the case. So, for example, when setting up the
DMA descriptor, you must code it as follows to get correct behavior on all platforms:

desc->word0 = address;
wmb();
desc->word1 = DESC_VALID;

Thus, check out how the DMA transmit descriptor is set up in practice (by the Realtek
8139 driver code, as follows):

// drivers/net/ethernet/realtek/8139cp.c
[...]
static netdev_tx_t cp_start_xmit([...])
{
 [...]
 len = skb->len;
 mapping = dma_map_single(&cp->pdev->dev, skb->data, len,
PCI_DMA_TODEVICE);
 [...]
 struct cp_desc *txd;
 [...]
 txd->opts2 = opts2;
 txd->addr = cpu_to_le64(mapping);
 wmb();
 opts1 |= eor | len | FirstFrag | LastFrag;
 txd->opts1 = cpu_to_le32(opts1);
 wmb();
 [...]

The driver, acting upon what the chip's datasheet requires, requires that the words
txd->opts2 and txd->addr are stored to memory, followed by the storage of the
txd->opts1 word. As the order in which these writes go through is important, the driver
makes use of the wmb() write memory barrier. (Also, FYI, RCU is certainly a user of
appropriate memory barriers to enforce memory ordering.)

https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

Kernel Synchronization - Part 2 Chapter 13

[707]

Furthermore, using the READ_ONCE() and WRITE_ONCE() macros on individual
variables absolutely guarantees that the compiler and the CPU will do what you mean. It
will preclude compiler optimizations as required, use memory barriers as required,
and guarantee cache coherency when multiple threads on different cores
simultaneously access the variable in question.

For details, do refer to the kernel documentation on memory barriers (https:/ /www.
kernel.org/doc/ Documentation/ DMA- API-HOWTO. txt). It has a detailed
section entitled WHERE ARE MEMORY BARRIERS NEEDED?. The good news is that
it's mostly taken care of under the hood; for a driver author, it's only when
performing operations such as setting up DMA descriptors or initiating and ending
CPU-to-peripheral (and vice versa) communication that you might require a barrier.

One last thing – an (unfortunate) FAQ: will using the volatile keyword magically
make concurrency concerns disappear? Of course not. The volatile keyword
merely instructs the compiler to disable common optimizations around that variable
(things outside this code path could also modify the variable marked as volatile),
that's all. This is often required and useful when working with MMIO. With regard to
memory barriers, interestingly, the compiler won't reorder reads or writes on a
variable marked as volatile with respect to other volatile variables. Still, atomicity
is a separate construct, not guaranteed by using the volatile keyword.

Summary
Well, what do you know!? Congratulations, you have done it, you have completed
this book!

In this chapter, we continued from the previous chapter in our quest to learn more
about kernel synchronization. Here, you learned how to more efficiently and safely
perform locking on integers, via both atomic_t and the newer refcount_t
interface. Within this, you learned how the typical RMW sequence can be atomically
and safely employed in a common activity for driver authors – updating a device's
registers. The reader-writer spinlock, interesting and useful, though with several
caveats, was then covered. You saw how easy it is to mistakenly create adverse
performance issues caused by unfortunate caching side effects, including looking at
the false sharing problem and how to avoid it.

https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

Kernel Synchronization - Part 2 Chapter 13

[708]

A boon to developers – lock-free algorithms and programming techniques – was then
covered in some detail, with a focus on per-CPU variables within the Linux kernel.
It's important to learn how to use these carefully (especially the more advanced forms
such as RCU). Finally, you learned what memory barriers are and where they are
typically used.

Your long journey in working within the Linux kernel (and related areas, such as
device drivers) has begun in earnest now. Do realize, though, that without constant
hands-on practice and actually working on these materials, the fruits quickly fade
away... I urge you to stay in touch with these topics and others. As you grow in
knowledge and experience, contributing to the Linux kernel (or any open source
project for that matter) is a noble endeavor, one you would do well to undertake.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding
this chapter's material: https:/ / github. com/ PacktPublishing/ Linux- Kernel-
Programming/tree/ master/ questions. You will find some of the questions answered
in the book's GitHub repo: https:/ /github. com/ PacktPublishing/ Linux-Kernel-
Programming/tree/master/solutions_to_assgn.

Further reading
To help you delve deeper into the subject with useful materials, we provide a rather
detailed list of online references and links (and at times, even books) in a Further
reading document in this book's GitHub repository. The Further reading document is
available here: https:/ /github. com/ PacktPublishing/ Linux- Kernel- Programming/
blob/master/Further_ Reading. md.

https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/questions
https://github.com/PacktPublishing/Learn-Linux-Kernel-Development/tree/master/solutions_to_assgn
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md
https://github.com/PacktPublishing/Linux-Kernel-Programming/blob/master/Further_Reading.md

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Linux Device Driver Development
John Madieu

ISBN: 978-1-78934-204-8

Explore and adopt Linux kernel helpers for locking, work deferral, and
interrupt management
Understand the Regmap subsystem to manage memory accesses and work
with the IRQ subsystem
Get to grips with the PCI subsystem and write reliable drivers for PCI
devices
Write full multimedia device drivers using ALSA SoC and the V4L2
framework
Build power-aware device drivers using the kernel power management
framework
Find out how to get the most out of miscellaneous kernel subsystems such
as NVMEM and Watchdog

https://www.packtpub.com/product/mastering-linux-device-driver-development/9781789342048

Other Books You May Enjoy

[711]

Hands-On System Programming with Linux
Kaiwan N Billimoria

ISBN: 978-1-78899-847-5

Explore the theoretical underpinnings of Linux system architecture
Understand why modern OSes use virtual memory and dynamic memory
APIs
Get to grips with dynamic memory issues and effectively debug them
Learn key concepts and powerful system APIs related to process
management
Effectively perform file IO and use signaling and timers
Deeply understand multithreading concepts, pthreads APIs,
synchronization and scheduling

https://www.packtpub.com/product/hands-on-system-programming-with-linux/9781788998475

Other Books You May Enjoy

[712]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

/
/proc/buddyinfo pseudo-file
 memory allocation, checking via 429, 430

1
10,000-foot view
 of process VAS 288, 290

6
64-bit atomic integer operators 656, 657
64-bit Linux guest
 installing 14

A
AB-BA deadlock, with lockdep
 catching, example 695, 696, 697, 699
Address Sanitizer (ASan) 685
Address Space Layout Randomization (ASLR)

316

Advanced Linux Sound Architecture (ALSA) 59
Android Open Source Project (AOSP) 299
anonymous mappings 330
Application Binary Interface (ABI) 213
Application Programming Interfaces (APIs) 146
arch-independent 657
atomic context sleep
 testing 630
 testing, on 5.4 debug kernel 631, 632, 634,

635

 testing, on 5.4 non-debug kernel 636, 637,
638, 639

atomic integer operators 649
atomic non-RMW operations 660
atomic RMW operations 660
atomic_t interfaces
 about 652, 653

 using 649
atomicity 588

B
basic input/output system (BIOS) 15, 114
BeagleBone Black (BBB)
 about 22
 reference link 24
Berkeley Packet Filter (BPF) 38
bitmask
 searching, efficiently 666
bitwise atomic operators
 using, example 663, 664, 665
blocking call 409, 601
blocking I/O 600, 601
Board Support Package (BSP) 67, 72
boot process
 basics, on x86 114, 115
bootloader setup 107
Bottom Half (BH) 296
Buffer Overflow (BoF) attack 256
busy-wait semantic 620

C
cache effects 671, 672, 673
cache ping-pong 672
CentOS 8 Linux
 download link 24
cgroups v2 CPU controller
 using 556, 557, 560, 561
cgroups v2
 on Linux system 554, 555
clang 35
Coccinelle
 about 200
 reference link 34
command-line interface (CLI) 535

[714]

Common Trace Format (CTF) 506, 532
Completely Fair Scheduler (CFS) 228, 500,

515, 516, 552
Condition Variable (CV) 670
console
 wiring to 181, 183
Contiguous Memory Allocator (CMA) 482
control groups 433
CoverityScan
 reference link 35
Cppcheck
 reference link 34
CPU affinity mask
 about 543, 544, 545
 querying 543, 544, 545
 setting 543, 544, 545
 setting, on kernel thread 549, 550
CPU affinity
 performing, with taskset(1) 549
CPU bandwidth control
 with cgroups 552, 554
CPU scheduler
 context switch 528
 entry points 526, 527, 528
CPU scheduling internals, scheduler code
 preemptible kernels 524, 525, 526
 process context part 523, 524
 running 521
 timer interrupt part 522
CPU scheduling internals
 about 507, 521
 CFS 515, 516
 essential background 498
 flow, visualizing 502
 flow, visualizing via alternate (CLI)

approaches 506
 flow, visualizing with perf 502, 503, 504, 505
 KSE, on Linux 498
 modular scheduling classes 507, 508, 509,

510, 511, 512, 513
 need for, running scheduler code 521
 POSIX scheduling policies 499, 501, 502
 vruntime value 515, 516
CPU scheduling policy
 threads 517, 518, 520

CPU scheduling priority
 threads 517, 518, 520
critical section
 about 588, 590
 global i ++ 591, 592, 593
 key points 597, 598
 lock concept 594, 595, 596
 section 589
cross compiler
 installing 28
cross-toolchain
 about 27
 installing 27, 130
 package, installing via apt 131
 package, installing via source repo 131
custom slab cache
 creating 444, 445, 446, 447
 creating, within kernel module 444
 demo kernel module 449, 451, 452, 453
 destroying 449
 memory, using 448
 slab allocator, pros and cons 455
 slab shrinker interface 454
cyclictest
 system latency, measuring with 573

D
data analysis
 performing, with Trace Compass 533, 534
data corruption 588
data races 599, 600, 601
Deadline (DL) 511
deadline (DL) class 541
deadlock 603
deadlock bugs, catching with lockdep
 examples 690, 691, 692, 693, 694
 fixing it 694, 695
debug kernel
 configuring 202, 204
 configuring, for lock debugging 685, 686,

687

demand paging 467, 469, 490, 491, 493
demo kernel module 449, 451, 452, 453
Device Tree Blobs (DTBs) 51, 97, 577
Device Under Test (DUT) 581

[715]

Direct Memory Access (DMA) 481, 482
dirty or torn reads 618
dirty reads 596
Discretionary Access Control (DAC) 60
dynamic analysis 202
Dynamic Kernel Module Support (DKMS) 214,

256

dynamic shared object (dso) 503

E
Eclipse Trace Compass
 installation link 533
embedded Linux systems
 kernel configuration for 66, 67
emulator thread (EMT) 505
End Of Life (EOL) 48
entry points 158
Eudyptula Challenge
 URL 264
exact page allocator APIs 407, 408
exclusive execution 588
exclusive write lock 667
Executable and Linkable Format (ELF) 316
exit points 158
extended Berkeley Packet Filter (eBPF) 38,

284

F
false sharing 671, 672, 673
fast path 625
Fedora Workstation
 download link 24
Fedora, as VirtualBox guest
 reference link 20
Flawfinder
 reference link 34
floating-point usage 248, 249
flow
 visualizing 502
 visualizing, via alternate (CLI) approaches

506, 507
 visualizing, with perf 502, 503, 504, 505
Free and Open Source Software (FOSS) 21
Ftrace 534
Ftrace kernel infrastructure 637

G
General Public License (GPL) 222
General Purpose Operating System (GPOS)

501, 561
Get Free Page (GFP) flags
 about 392, 409
 dealing with 393, 394
Git tree
 cloning 54, 55
GNU General Public License (GNU GPL) 61
GNU GRUB bootloader
 used, for booting VM 122, 124
GRand Unified Bootloader (GRUB) bootloader
 about 118
 basics, customizing 119, 120
 customizing 118
 default kernel, selecting to boot 120, 121
 VM, booting via GNU GRUB bootloader 122,

124

GRUB prompt
 experimenting 124, 125
guard pages 476
guest VM
 Linux, running as 14
GUI frontend
 interpretation with 542, 543
 reporting with 542, 543

H
hardware interrupts and data race 601
Hello, world C program
 about 315, 317
 printf() API 317, 319
Hello, world LKM C code 155
high-memory region 343
holes 315

I
I/O (reads and writes)
 performing, on per-CPU variables 676, 678
initial ram filesystem (initramfs) framework
 about 107, 111, 113
 boot process, basics on x86 114, 115
 need for 111

[716]

 overview 115, 117, 118
initramfs image
 about 106
 generating 107, 109, 110
 generating, on Fedora 30 108, 109
Instruction Set Architecture (ISA) 592
integer overflow (IoF) 470, 650
Inter-Process Communication (IPC) 59
internal fragmentation (wastage) 388
interrupt contexts 268, 269, 270
interrupt handler
 about 639, 641, 642, 643, 644, 645
 scenarios 640
interrupt service routine (ISR) 269

J
Java Runtime Environment (JRE) 35, 533
journalctl 177

K
kaiwanTECH
 reference link 21
Kconfig files
 about 88, 89
 menu item, creating in 89, 90, 91, 92
Kconfig language 92, 93, 94
Kernel Address Sanitizer (KASAN) 347, 396,

456, 685
Kernel Address Sanitizer port 203
Kernel ASLR (KASLR)
 about 364
 status, querying with script 364, 367
 used, for randomizing memory layout 362
kernel build (kbuild)
 about 84, 85
 configuration, differences 85, 87
 dealing with, compiler switch issues 139
 dealing with, missing OpenSSL development

headers 139, 140
 executing 137
 for site 136, 137
 minimum version requisites 136
 miscellaneous tips 135
 preliminaries for 43
 shell syntax, for building procedure 138

 system 63, 64
 using, for Raspberry Pi 128, 129
kernel code base
 refcount_t interfaces, using example 654,

655, 656
Kernel Concurrency Sanitizer (KCSAN) 701
kernel configuration
 creating, with localmodconfig approach 70,

72

 distribution config, using as starting point 67
 for typical embedded Linux systems 66, 67
 starting point, obtaining 65
 tuning, via localmodconfig approach 68, 70
 tuning, via make menuconfig UI 73, 74, 75
kernel developers
 coding style guidelines 262
kernel documentation
 generating, from source 34
 reference link 660
 viewing, on memory layout 361
kernel headers 157
kernel image
 building 97, 98, 99, 101, 102
kernel logging 173, 174
kernel memory allocation API
 selecting 479, 481, 482
 using 477
 visualizing 478, 479
kernel memory allocators 380, 381, 382
kernel memory ring buffer
 using 174, 175
kernel memory
 module, unloading from 170
kernel menu
 customizing 87
kernel messages
 generating, from user space 191, 192
kernel model cross-compilation
 about 211, 213, 214, 215, 216, 217
 environment variables 208
 Makefile, pointing 209, 210
 special environment variables, setting 206
 system, setting up 205
kernel modules
 and security 256

[717]

 auto-loading 254, 256
 auto-loading, on system boot 250, 253
 building 97, 98, 99, 101, 102, 164
 cross-compiling 204
 cryptographic signing 259, 261
 custom slab cache, creating 444
 custom slab cache, using 444
 data types and validation 245
 disabling 261
 features 104
 function 225, 228
 getting/setting, after insertion 242, 244
 hardware-related kernel parameters 247
 installing 103, 105, 106
 library emulation, performing via multiple

source files 224, 225
 library-like features, emulating 224
 licensing 222, 223
 locating, within kernel source 103
 Makefile templates 200, 202
 operations 163
 parameters name, overriding 246
 parameters, declaring 240, 242
 parameters, passing 239
 parameters, using 240, 242
 parameters, validating 245
 proc filesystem tunables, that affect system

log 257, 259
 running 165, 166
 stacking 229, 231, 232, 237
 URL 259
 used, for printing process context info 300
 variable scope 225, 228
 within kernel source tree 152, 153, 154
 writing 155
 writing, to use basic slab APIs 422, 423, 425
kernel page allocator
 using 382
kernel printk() 166, 167, 168
Kernel release
 nomenclature 44, 45
 URL 45
Kernel Schedulable Entity (KSE)
 on Linux 498
kernel segment layout

 fix map region 346
 highmem region 348
 KASAN 347
 kernel modules 346
 lowmem region 347
 user VAS 348
 vector layout 346
 vmalloc region 347
kernel segment
 details, viewing 349, 352, 353
 examining 340
 high memory, on 32-bit systems 343
 information, displaying with kernel module

344

 kernel modules space 342
 kernel VAS, via procmap 353, 357, 358
 kernel vmalloc region 342
 lowmem region 341
 macros and variables, for describing layout

346, 349
 null trap page 360
 user segment 358, 360
 viewing, on Raspberry Pi via dmesg 344
Kernel Self Protection Project (KSPP) 87
kernel slab allocator
 using 411
kernel source trees
 about 57, 58, 59, 61, 62
 cloning 129
 extracting 56, 57
 types 48, 50
kernel space components
 block IO 148
 core kernel 147
 Inter-Process Communication (IPC) support

148

 Memory Management (MM) 147
 network protocol stack 148
 sound support 148
 Virtual Filesystem Switch (VFS) 148
 virtualization support 148
kernel space stack
 about 273
 traditional approach, to viewing 282
 viewing 281

[718]

 viewing, of given thread or process 282, 283
 viewing, with eBPF 284, 286, 287
kernel space
 about 145
 current situation, summarizing 280, 281
 organizing 273, 274, 275, 278, 279
kernel task structure
 about 290, 291, 292, 293, 294
 accessing 290, 291
 accessing, with current 294, 295
 built-in kernel helper methods 298, 299
 context, determining 295, 296
 optimizations 298, 299
 working with, via current 297, 298
kernel threads (kthreads)
 about 551, 552
 CPU affinity mask, setting on 549, 550
kernel tracing session
 recording, with LTTng 532
Kernel Virtual Address (KVA) 321
Kernel Virtual Machine (KVM) 59, 148
kernel vmalloc() API
 about 469, 470, 472, 473
 demand paging 468, 469
 learning 463
 memory allocation 468, 469
 memory protections, specifying 473
 usage, learning 463, 465, 466, 467
 using 462
kernel's configuration
 verifying 126, 127
kernel's task lists
 code 308, 309, 310, 311
 iterating over 303
 processes, displaying 303, 304
 threads, displaying 304, 306
kernel
 architecture 145, 146
 building 132, 133, 134
 building, from source steps 51, 52
 configuring 132, 133, 134
 development workflow 45, 46, 47, 48
 lock debugging within 684
 per-CPU variables, using within 682, 683
 slab layer implementations 440

killable variant 622
Klocwork
 reference link 35
kmalloc() API
 size limitations 425
 versus vmalloc() API 476
kprobe 189
ksize()
 slab allocation, testing 435, 436

L
Last In, First Out (LIFO) 272
latency
 about 571, 572, 573
 measurement 571, 572, 573
Least Significant Bit (LSB) 320, 658
library 146
Library APIs
 reference link 147
Linux Device Drivers (LDD) 248
Linux distributions 24
Linux Driver Verification (LDV) 39
Linux Foundation (LF)
 about 562
 URL 43
Linux kernel documentation
 locating 32
 reference link 489
Linux Kernel Dump Test Module (LKDTM)
 about 656
 reference link 656
Linux kernel source tree
 downloading 53, 54
 Git tree, cloning 54, 55
 obtaining 52
Linux Kernel Space Verification
 reference link 40
Linux kernel, concurrency concerns
 about 598
 blocking I/O 600, 601
 data races 600, 601
 hardware interrupts and data race 601
 locking guidelines and deadlocks 602, 604
 multicore SMP systems and data race 599,

600

[719]

 preemptible kernels 600, 601
Linux kernel
 address translation 373, 376
 configuring 62
 default configuration, arriving 64, 65
 direct-mapped RAM 373, 376
 kbuild build system 63, 64
 physical memory 368
 physical RAM organization 368
 static analysis tools 34
Linux man pages
 using 30
Linux OS
 monolithic nature, verifying 301
Linux Security Modules (LSMs) 60, 259, 286,

447

Linux system
 cgroups v2 554, 555
Linux Tracing Toolkit next generation (LTTng)
 about 35, 230, 531
 reference link 35
 used, for recording kernel tracing session

532

 used, for threads flow visualization 531
Linux Verification Center
 URL 40
Linux-Kernel Memory Model (LKMM) 652
Linux
 Kernel Schedulable Entity (KSE) on 498
 running, as guest VM 14
live kernel modules
 listing 169
lkm convenience script 171, 172
LKM framework 150, 151, 152
Loadable Kernel Modules (LKMs)
 about 61, 342
 exploring 150
loader 316
localmodconfig approach
 kernel configuration, creating with 70, 72
 kernel configuration, tuning via 68, 70
lock concept 594
lock debugging
 debug kernel, configuring 685, 686, 687
 within kernel 684

lock proficiency 673
lock statistics
 about 702
 viewing 702, 703, 704
lock validator lockdep 687, 688, 689
lock-free programming
 with per-CPU variables 673, 674
lockdep annotation 700
lockdep
 about 604, 687
 issues 701
locking 639, 641, 642, 643, 644, 645
locking deadlocks 602, 604
locking guidelines 602, 604
Long-Term Stable (LTS) 46
Low Latency (LowLat) kernel 525, 571
lowlevel_mem_lkm kernel module
 deploying 403, 405, 406
LTTng documentation
 reference link 531
LTTng installation
 reference link 531

M
mainline 5.x kernel
 RTL, building for 563
mainline kernel
 contributing to 263, 264
 versus RTL kernel 570, 571
mainline Linux
 converting, into RTOS 561, 563
make menuconfig UI
 kernel configuration, tuning via 73, 74, 75
 using 76, 77, 78, 79, 80, 81, 82, 83
Makefile
 basics 195, 196, 197
Mandatory Access Control (MAC) 60
mappings 315
memory 433
memory allocation
 about 467, 469
 with single call 426, 427, 428, 429
memory barrier
 about 704, 705
 using, in device driver example 705, 707

[720]

memory management (mm) 59
Memory Management Unit (MMU) 321, 468
memory ordering 651
memory overcommit in Linux, disadvantages
 reference link 489
memory protection
 PoC, testing 474, 476
 read-only 476
merge window 47
minimal system information
 gathering 217, 219
 security 220, 221
MMIO – memory-mapped I/O 660
modern BPF tools
 scheduler latency, measuring via 583, 584
modular scheduling classes
 about 507, 508, 509, 510, 511, 512, 513
 asking 513, 514, 515
module macros 158
module
 unloading, from kernel memory 170
Most Significant Bit (MSB) 658
multicore SMP systems 599, 600
mutex interruptible 622
mutex io variant 623
mutex lock API variants
 about 620
 mutex interruptible and killable variant 622
 mutex io variant 623
 mutex trylock variant 620, 622
mutex lock, key points
 about 620
 internal design 625
 mutex lock API variants 620
 priority inversion 624
 RT-mutex 624
 semaphore 623
mutex lock
 APIs, unlocking 612, 613
 APIs, usage 612, 613
 device driver, example 615, 617, 618, 620
 initializing 610
 need for 605, 607
 usage, determining in theory 607
 using 609, 611, 612

 versus spinlock 607
 via interruptible sleep 614, 615
mutex trylock variant 620, 622

N
nodes 368, 371
non-canonical addresses 323
Non-Uniform Memory Access (NUMA) systems

368

O
object caching 411, 412, 413, 414
older atomic_t interfaces
 versus newer refcount_t interfaces 650, 651
Open Source Automation Development Lab

(OSADL) 578
Open Source Software (OSS) 14
Oracle VirtualBox 6.x 14
Oracle VirtualBox Guest Additions
 installing 17, 18, 19, 26
Oracle VirtualBox kernel modules 230
Oracle VirtualBox
 URL 14
Out Of Bounds (OOB) 347
out-of-memory (OOM) killer
 about 483, 484, 490, 491, 493
 default 489
 invoking 484
 invoking, via Magic SysRq 485
 invoking, with allocator program 485, 486
 memory, reclaiming 483
 output 487
 overcommit on 489
 overcommit turned off 488
 vm.overcommit set to 0 489
 vm.overcommit set to 2 488
out-of-memory (OOM) score 494

P
page allocator APIs
 kernel module, writing to demo 397, 399,

401, 403
 using 391, 392
page allocator
 and internal fragmentation 407

[721]

 freelist organization 383, 384, 385, 386
 internals 389, 390
 used, for freeing pages 395, 396
 workings 383, 386, 387
Page Frame Numbers (PFNs) 372, 469
Page Global Directory (PGD) 321
per-CPU variables
 about 674, 675
 allocating 675, 676
 freeing 675, 676
 I/O (reads and writes), performing on 676,

678

 initialization 675, 676
 kernel module, example 678, 679, 680
 lock-free programming 673, 674
 using, within kernel 682, 683
 working with 675
perf
 used, for visualizing flow 502, 503, 504, 505
Physical Address (PA) 375
PID
 versus Thread Group IDentifier 306, 307,

308

portability 194
Position Independent Executable (PIE) 139,

366, 367
POSIX scheduling policies 499, 501, 502
pr_debug() kernel messages
 enabling 186, 188
pr_foo convenience macros 180
preemptible kernels 524, 525, 526, 600, 601
printk format specifiers 194
printk instances
 rate limiting 188, 189, 190
printk log levels
 using 178, 179
printk output
 standardizing, via the pr_fmt macro 192, 193
printk
 about 173, 174
 used, for coding security 301, 302
priority inheritance (PI) 625
priority inversion 624
privilege escalation (privesc) attacks 257
proc filesystem (procfs) 77, 362

process context part 523, 524
process contexts 268, 269, 270
process memory map
 /proc/PID/maps output, interpreting 329, 331
 frontends 332
 VAS visualization utility 333, 335, 338
 viewing, with procfs 329
 vsyscall page 332
process VAS
 10,000-foot view of 288, 290
 basics 270, 271, 272
procmap utility 36
Proof of Concept (PoC) 474
Proportional Set Size (PSS) 333

Q
QEMU
 about 21
 installing 27
 URL 27
Quality Assurance (QA) 502, 684
Quick Emulator 21

R
Raspberry Pi console
 output, writing to 183, 184, 185
Raspberry Pi
 kernel build, using 128, 129
 reference link 21, 24, 67
 URL 67
 working with 20, 21
Read Copy Update (RCU) 669
Read Modify Write (RMW) 658
reader-writer semaphore 670
reader-writer spinlock
 about 667
 interfaces 667, 668, 669
 using 666, 667
 word of caution 669
Real Time (RT) 511
real-time (RT) class 541
Real-Time Linux (RTL) 562, 646
Real-Time Operating System (RTOS)
 about 501
 mainline Linux, converting into 561, 563

[722]

red-black (rb) tree 510
Reduced Instruction Set Computer (RISC) 295
refcount 649
refcount_t interfaces
 about 652, 653
 using 649
 using, within kernel code base example 654,

655, 656
 versus atomic_t interfaces 650, 651
release candidate (rc) 46
release kernels, types
 -next tress kernels 49
 -rc kernels 49
 distribution kernels 49
 LTS kernels 49
 mainline kernels 49
 prepatches kernels 49
 stable kernels 49
 super LTS (SLTS) kernels 49
Request For Comments (RFCs) 59
Resident Set Size (RSS) 333
resource-managed memory allocation APIs
 using 431, 432
return values
 0/-E return convention 159, 160, 161
 __exit keyword 163
 __init keyword 162
 about 159
 ERR_PTR macro 161
 PTR_ERR macro 161, 162
Return-Oriented Programming (ROP) 367
RMW atomic operators
 device registers, operating 658, 659, 660
 using 658
RMW bitwise operators
 using 661, 662
RT-mutex 624
RT-mutex implementation design
 reference link 625
RTL kernel
 building 566, 567, 569
 configuring 566, 567, 569
 versus mainline kernel 570, 571
RTL patches
 applying 566

 obtaining 563, 564, 565
RTL
 building, for mainline 5.x kernel 563
RTLinux 562

S
Scalable Vector Graphics (SVG) 504
scenarios, page allocator
 complex case 388
 downfall case 388
 simplest case 388
scheduler latency
 measuring, via modern BPF tools 583, 584
scheduling classes 507
Secure Attention Key (SAK)
 about 668
 reference link 668
segments 315
semaphore 623
shared state 588
shared writeable data 588
Simple Embedded ARM Linux System (SEALS)

38

Simultaneous Multi-Threading (SMT) 98
Single-Board Computer (SBC) 20, 128, 204
slab allocation, testing with ksize()
 about 436, 437
 output, graphing 439, 440
 output, interpreting 438, 439
slab allocation
 testing, with ksize() 435, 436
slab allocator APIs
 data structures 419
 using 415
slab allocator
 about 380, 431
 background details 434
 caveats 434
 conclusions 434
 cons 455
 pros 455
slab caches
 about 380
 using, for kmalloc 420, 421
slab helper APIs 432, 433

[723]

slab layer implementations
 within kernel 440
slab layer
 debugging 456
 debugging, through slab poisoning 456, 458
 SLUB debug options, at boot and runtime

461, 462
 UAF bug, triggering 458, 460
slab memory
 allocating 415, 417
 freeing 417, 418
slab poisoning 456
slab shrinker interface 454
SLUB debug options
 at boot and runtime 461, 462
Smatch
 reference link 34
Software Development Life Cycle (SDLC) 684
software packages
 installing 25, 26
SonarQube
 reference link 35
Source Code Management (SCM) tool 46
source lines of code (SLOC) 98
sparse regions 315
Sparse
 reference link 34
SPDX license identifier
 URL 223
Sphinx 34
spinlock
 about 604
 atomic context sleep, testing 630
 device driver, example 628, 629, 630
 key statements 626
 medium overhead 646
 need for 605, 607
 simplest, lowest overhead 646
 strongest, high overhead 646
 usage 626, 628
 usage, determining in practice 608
 usage, determining in theory 607
 using 626, 646
 versus mutex 607
Stack Pointer (SP) 279

static analysis 202
stop-sched (SS) class 511, 541
swapper 500
Symmetric Multi Processor (SMP) 511, 598
system call 147
system call APIs
 reference link 147
system latency measuring, with cyclictest
 about 573
 cyclictest, installing 577, 578
 results, viewing 580, 581, 582
 RTL patchset, applying 574, 576, 577
 RTL patchset, obtaining 574, 576, 577
 test cases, running 578, 579
System on Chip (SoC) 20, 319
systemd 115, 176

T
taskset(1)
 using, to perform CPU affinity 549
thrashing 608
Thread Group IDentifier
 about 306
 versus PID 306, 307, 308
Thread Local Storage (TLS) 674
Thread Sanitizer (TSan) 701
thread's CPU affinity mask
 querying 545, 546, 547, 548
 setting 545, 546, 547, 548
threads flow visualization
 with LTTng 531
 with Trace Compass 531
thread’s scheduling policy
 querying 550
 setting 550
thread’s scheduling priority
 querying 550
 setting 550
timer interrupt part 522
tldr variant 31
torn reads 596
Trace Compass GUI
 reference link 35
Trace Compass
 about 533

 used, for performing data analysis 533, 534
 used, for threads flow visualization 531
trace-cmd record
 sample session, recording with 535, 536
trace-cmd report (CLI)
 interpretation with 537, 538, 540, 541
 reporting with 537, 538, 540, 541
trace-cmd
 used, for threads flow visualization 531, 534
tracepoints 531
Translation Lookaside Buffer (TLB) 322, 468

U
UAF bug
 triggering 458, 460
Ubuntu 18.04 LTS Desktop 23
Uninitialized Memory Reads (UMR) 457
Unique Set Size (USS) 333
UNIX process model 273
Use After Free (UAF) 40, 347, 458, 650
user space stack
 about 273, 280
 traditional approach, to viewing 282
 viewing 281
 viewing, of given thread or process 283, 284
 viewing, with eBPF 284, 286, 287
user space
 about 145
 kernel messages, generating from 191, 192
 organizing 273, 274, 275, 276, 277
user VAS
 examining 328
 process memory map, viewing with procfs

329

User Virtual Address (UVA) 316
user-mode ASLR 363
user-mode preemption 525
Userspace IO Drivers (UIO) 77

V
Virtual Address Spaces (VASes)
 about 36, 147, 520
 layout process 326, 327
 process, examining 327
 user VAS 328
Virtual CPU (VCPU) 505
Virtual Filesystem Switch (VFS) 59, 148, 340
Virtual Machine (VM)
 about 99, 632
 booting, via GNU GRUB bootloader 122, 124
Virtual Memory Areas (VMAs) 338, 340
VM overcommit policy 487
VM split, on 64-bit Linux systems
 about 320
 address translation 320, 324, 325
 virtual addressing 320, 324, 325
VM split
 about 314, 317
 on 64-bit Linux systems 320
vmalloc() API
 versus kmalloc() API 476
VMware Workstation 14
vruntime value 515, 516

X
x86 system
 virtualization extension support 15, 17

Y
Yocto
 URL 140
Your Mileage May Vary(YMMV) 345

Z
zones 371, 373

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1: The Basics
	Chapter 1: Kernel Workspace Setup
	Technical requirements
	Running Linux as a guest VM
	Installing a 64-bit Linux guest
	Turn on your x86 system's virtualization extension support
	Allocate sufficient space to the disk
	Install the Oracle VirtualBox Guest Additions

	Experimenting with the Raspberry Pi

	Setting up the software – distribution and packages
	Installing software packages
	Installing the Oracle VirtualBox guest additions
	Installing required software packages
	Installing a cross toolchain and QEMU
	Installing a cross compiler

	Important installation notes

	Additional useful projects
	Using the Linux man pages
	The tldr variant

	Locating and using the Linux kernel documentation
	Generating the kernel documentation from source

	Static analysis tools for the Linux kernel
	Linux Trace Toolkit next generation
	The procmap utility
	Simple Embedded ARM Linux System FOSS project
	Modern tracing and performance analysis with [e]BPF
	The LDV - Linux Driver Verification - project

	Summary
	Questions
	Further reading

	Chapter 2: Building the 5.x Linux Kernel from Source - Part 1
	Technical requirements
	Preliminaries for the kernel build
	Kernel release nomenclature
	Kernel development workflow – the basics
	Types of kernel source trees

	Steps to build the kernel from source
	Step 1 – obtaining a Linux kernel source tree
	Downloading a specific kernel tree
	Cloning a Git tree

	Step 2 – extracting the kernel source tree
	A brief tour of the kernel source tree

	Step 3 – configuring the Linux kernel
	Understanding the kbuild build system
	Arriving at a default configuration
	Obtaining a good starting point for kernel configuration
	Kernel config for typical embedded Linux systems
	Kernel config using distribution config as a starting point
	Tuned kernel config via the localmodconfig approach

	Getting started with the localmodconfig approach
	Tuning our kernel configuration via the make menuconfig UI
	Sample usage of the make menuconfig UI

	More on kbuild
	Looking up the differences in configuration

	Customizing the kernel menu – adding our own menu item
	The Kconfig* files
	Creating a new menu item in the Kconfig file
	A few details on the Kconfig language

	Summary
	Questions
	Further reading

	Chapter 3: Building the 5.x Linux Kernel from Source - Part 2
	Technical requirements
	Step 4 – building the kernel image and modules
	Step 5 – installing the kernel modules
	Locating the kernel modules within the kernel source
	Getting the kernel modules installed

	Step 6 – generating the initramfs image and bootloader setup
	Generating the initramfs image on Fedora 30 and above
	Generating the initramfs image – under the hood

	Understanding the initramfs framework
	Why the initramfs framework?
	Understanding the basics of the boot process on the x86
	More on the initramfs framework

	Step 7 – customizing the GRUB bootloader
	Customizing GRUB – the basics
	Selecting the default kernel to boot into
	Booting our VM via the GNU GRUB bootloader
	Experimenting with the GRUB prompt

	Verifying our new kernel's configuration
	Kernel build for the Raspberry Pi
	Step 1 – cloning the kernel source tree
	Step 2 – installing a cross-toolchain
	First method – package install via apt
	Second method – installation via the source repo

	Step 3 – configuring and building the kernel

	Miscellaneous tips on the kernel build
	Minimum version requirements
	Building a kernel for another site
	Watching the kernel build run
	A shortcut shell syntax to the build procedure
	Dealing with compiler switch issues
	Dealing with missing OpenSSL development headers

	Summary
	Questions
	Further reading

	Chapter 4: Writing Your First Kernel Module - LKMs Part 1
	Technical requirements
	Understanding kernel architecture – part 1
	User space and kernel space
	Library and system call APIs
	Kernel space components

	Exploring LKMs
	The LKM framework
	Kernel modules within the kernel source tree

	Writing our very first kernel module
	Introducing our Hello, world LKM C code
	Breaking it down
	Kernel headers
	Module macros
	Entry and exit points
	Return values
	The 0/-E return convention
	The ERR_PTR and PTR_ERR macros
	The __init and __exit keywords

	Common operations on kernel modules
	Building the kernel module
	Running the kernel module
	A quick first look at the kernel printk()
	Listing the live kernel modules
	Unloading the module from kernel memory
	Our lkm convenience script

	Understanding kernel logging and printk
	Using the kernel memory ring buffer
	Kernel logging and systemd's journalctl
	Using printk log levels
	The pr_<foo> convenience macros
	Wiring to the console
	Writing output to the Raspberry Pi console
	Enabling the pr_debug() kernel messages

	Rate limiting the printk instances
	Generating kernel messages from the user space
	Standardizing printk output via the pr_fmt macro
	Portability and the printk format specifiers

	Understanding the basics of a kernel module Makefile
	Summary
	Questions
	Further reading

	Chapter 5: Writing Your First Kernel Module - LKMs Part 2
	Technical requirements
	A "better" Makefile template for your kernel modules
	Configuring a "debug" kernel

	Cross-compiling a kernel module
	Setting up the system for cross-compilation
	Attempt 1 – setting the "special" environment variables
	Attempt 2 – pointing the Makefile to the correct kernel source tree for the target
	Attempt 3 – cross-compiling our kernel module
	Attempt 4 – cross-compiling our kernel module

	Gathering minimal system information
	Being a bit more security-aware

	Licensing kernel modules
	Emulating "library-like" features for kernel modules
	Performing library emulation via multiple source files
	Understanding function and variable scope in a kernel module
	Understanding module stacking
	Trying out module stacking

	Passing parameters to a kernel module
	Declaring and using module parameters
	Getting/setting module parameters after insertion
	Module parameter data types and validation
	Validating kernel module parameters
	Overriding the module parameter's name
	Hardware-related kernel parameters

	Floating point not allowed in the kernel
	Auto-loading modules on system boot
	Module auto-loading – additional details

	Kernel modules and security – an overview
	Proc filesystem tunables affecting the system log
	The cryptographic signing of kernel modules
	Disabling kernel modules altogether

	Coding style guidelines for kernel developers
	Contributing to the mainline kernel
	Getting started with contributing to the kernel

	Summary
	Questions
	Further reading

	Section 2: Understanding and Working with the Kernel
	Chapter 6: Kernel Internals Essentials - Processes and Threads
	Technical requirements
	Understanding process and interrupt contexts
	Understanding the basics of the process VAS
	Organizing processes, threads, and their stacks – user and kernel space
	User space organization
	Kernel space organization
	Summarizing the current situation

	Viewing the user and kernel stacks
	Traditional approach to viewing the stacks
	Viewing the kernel space stack of a given thread or process
	Viewing the user space stack of a given thread or process

	[e]BPF – the modern approach to viewing both stacks

	The 10,000-foot view of the process VAS

	Understanding and accessing the kernel task structure
	Looking into the task structure
	Accessing the task structure with current
	Determining the context

	Working with the task structure via current
	Built-in kernel helper methods and optimizations
	Trying out the kernel module to print process context info
	Seeing that the Linux OS is monolithic
	Coding for security with printk

	Iterating over the kernel's task lists
	Iterating over the task list I – displaying all processes
	Iterating over the task list II – displaying all threads
	Differentiating between the process and thread – the TGID and the PID

	Iterating over the task list III – the code

	Summary
	Questions
	Further reading

	Chapter 7: Memory Management Internals - Essentials
	Technical requirements
	Understanding the VM split
	Looking under the hood – the Hello, world C program
	Going beyond the printf() API

	VM split on 64-bit Linux systems
	Virtual addressing and address translation

	The process VAS – the full view

	Examining the process VAS
	Examining the user VAS in detail
	Directly viewing the process memory map using procfs
	Interpreting the /proc/PID/maps output
	The vsyscall page

	Frontends to view the process memory map
	The procmap process VAS visualization utility

	Understanding VMA basics

	Examining the kernel segment
	High memory on 32-bit systems
	Writing a kernel module to show information about the kernel segment
	Viewing the kernel segment on a Raspberry Pi via dmesg
	Macros and variables describing the kernel segment layout
	Trying it out – viewing kernel segment details
	The kernel VAS via procmap
	Trying it out – the user segment
	The null trap page

	Viewing kernel documentation on the memory layout

	Randomizing the memory layout – KASLR
	User-mode ASLR
	KASLR
	Querying/setting KASLR status with a script

	Physical memory
	Physical RAM organization
	Nodes
	Zones

	Direct-mapped RAM and address translation

	Summary
	Questions
	Further reading

	Chapter 8: Kernel Memory Allocation for Module Authors - Part 1
	Technical requirements
	Introducing kernel memory allocators
	Understanding and using the kernel page allocator (or BSA)
	The fundamental workings of the page allocator
	Freelist organization
	The workings of the page allocator
	Working through a few scenarios
	The simplest case
	A more complex case
	The downfall case

	Page allocator internals – a few more details

	Learning how to use the page allocator APIs
	Dealing with the GFP flags
	Freeing pages with the page allocator
	Writing a kernel module to demo using the page allocator APIs
	Deploying our lowlevel_mem_lkm kernel module
	The page allocator and internal fragmentation
	The exact page allocator APIs

	The GFP flags – digging deeper
	Never sleep in interrupt or atomic contexts

	Understanding and using the kernel slab allocator
	The object caching idea
	Learning how to use the slab allocator APIs
	Allocating slab memory
	Freeing slab memory
	Data structures – a few design tips
	The actual slab caches in use for kmalloc
	Writing a kernel module to use the basic slab APIs

	Size limitations of the kmalloc API
	Testing the limits – memory allocation with a single call
	Checking via the /proc/buddyinfo pseudo-file

	Slab allocator – a few additional details
	Using the kernel's resource-managed memory allocation APIs
	Additional slab helper APIs
	Control groups and memory

	Caveats when using the slab allocator
	Background details and conclusions
	Testing slab allocation with ksize() – case 1
	Testing slab allocation with ksize() – case 2
	Interpreting the output from case 2
	Graphing it

	Slab layer implementations within the kernel

	Summary
	Questions
	Further reading

	Chapter 9: Kernel Memory Allocation for Module Authors - Part 2
	Technical requirements
	Creating a custom slab cache
	Creating and using a custom slab cache within a kernel module
	Creating a custom slab cache
	Using the new slab cache's memory
	Destroying the custom cache

	Custom slab – a demo kernel module
	Understanding slab shrinkers
	The slab allocator – pros and cons – a summation

	Debugging at the slab layer
	Debugging through slab poisoning
	Trying it out – triggering a UAF bug

	SLUB debug options at boot and runtime

	Understanding and using the kernel vmalloc() API
	Learning to use the vmalloc family of APIs
	A brief note on memory allocations and demand paging
	Friends of vmalloc()
	Specifying the memory protections
	Testing it – a quick Proof of Concept
	Why make memory read-only?

	The kmalloc() and vmalloc() APIs – a quick comparison

	Memory allocation in the kernel – which APIs to use when
	Visualizing the kernel memory allocation API set
	Selecting an appropriate API for kernel memory allocation
	A word on DMA and CMA

	Stayin' alive – the OOM killer
	Reclaiming memory – a kernel housekeeping task and OOM
	Deliberately invoking the OOM killer
	Invoking the OOM killer via Magic SysRq
	Invoking the OOM killer with a crazy allocator program

	Understanding the rationale behind the OOM killer
	Case 1 – vm.overcommit set to 2, overcommit turned off
	Case 2 – vm.overcommit set to 0, overcommit on, the default

	Demand paging and OOM
	Understanding the OOM score

	Summary
	Questions
	Further reading

	Chapter 10: The CPU Scheduler - Part 1
	Technical requirements
	Learning about the CPU scheduling internals – part 1 – essential background
	What is the KSE on Linux?
	The POSIX scheduling policies

	Visualizing the flow
	Using perf to visualize the flow
	Visualizing the flow via alternate (CLI) approaches

	Learning about the CPU scheduling internals – part 2
	Understanding modular scheduling classes
	Asking the scheduling class
	A word on CFS and the vruntime value

	Threads – which scheduling policy and priority
	Learning about the CPU scheduling internals – part 3
	Who runs the scheduler code?
	When does the scheduler run?
	The timer interrupt part
	The process context part
	Preemptible kernel
	CPU scheduler entry points
	The context switch

	Summary
	Questions
	Further reading

	Chapter 11: The CPU Scheduler - Part 2
	Technical requirements
	Visualizing the flow with LTTng and trace-cmd
	Visualization with LTTng and Trace Compass
	Recording a kernel tracing session with LTTng
	Reporting with a GUI – Trace Compass

	Visualizing with trace-cmd
	Recording a sample session with trace-cmd record
	Reporting and interpretation with trace-cmd report (CLI)
	Reporting and interpretation with a GUI frontend

	Understanding, querying, and setting the CPU affinity mask
	Querying and setting a thread's CPU affinity mask
	Using taskset(1) to perform CPU affinity
	Setting the CPU affinity mask on a kernel thread

	Querying and setting a thread’s scheduling policy and priority
	Within the kernel – on a kernel thread

	CPU bandwidth control with cgroups
	Looking up cgroups v2 on a Linux system
	Trying it out – a cgroups v2 CPU controller

	Converting mainline Linux into an RTOS
	Building RTL for the mainline 5.x kernel (on x86_64)
	Obtaining the RTL patches
	Applying the RTL patch
	Configuring and building the RTL kernel

	Mainline and RTL – technical differences summarized

	Latency and its measurement
	Measuring scheduling latency with cyclictest
	Getting and applying the RTL patchset
	Installing cyclictest (and other required packages) on the device
	Running the test cases
	Viewing the results

	Measuring scheduler latency via modern BPF tools

	Summary
	Questions
	Further reading

	Section 3: Delving Deeper
	Chapter 12: Kernel Synchronization - Part 1
	Critical sections, exclusive execution, and atomicity
	What is a critical section?
	A classic case – the global i ++
	Concepts – the lock
	A summary of key points

	Concurrency concerns within the Linux kernel
	Multicore SMP systems and data races
	Preemptible kernels, blocking I/O, and data races
	Hardware interrupts and data races
	Locking guidelines and deadlocks

	Mutex or spinlock? Which to use when
	Determining which lock to use – in theory
	Determining which lock to use – in practice

	Using the mutex lock
	Initializing the mutex lock
	Correctly using the mutex lock
	Mutex lock and unlock APIs and their usage
	Mutex lock – via [un]interruptible sleep?

	Mutex locking – an example driver
	The mutex lock – a few remaining points
	Mutex lock API variants
	The mutex trylock variant
	The mutex interruptible and killable variants
	The mutex io variant

	The semaphore and the mutex
	Priority inversion and the RT-mutex
	Internal design

	Using the spinlock
	Spinlock – simple usage
	Spinlock – an example driver
	Test – sleep in an atomic context
	Testing on a 5.4 debug kernel
	Testing on a 5.4 non-debug distro kernel

	Locking and interrupts
	Using spinlocks – a quick summary

	Summary
	Questions
	Further reading

	Chapter 13: Kernel Synchronization - Part 2
	Using the atomic_t and refcount_t interfaces
	The newer refcount_t versus older atomic_t interfaces
	The simpler atomic_t and refcount_t interfaces
	Examples of using refcount_t within the kernel code base

	64-bit atomic integer operators

	Using the RMW atomic operators
	RMW atomic operations – operating on device registers
	Using the RMW bitwise operators
	Using bitwise atomic operators – an example

	Efficiently searching a bitmask

	Using the reader-writer spinlock
	Reader-writer spinlock interfaces
	A word of caution
	The reader-writer semaphore

	Cache effects and false sharing
	Lock-free programming with per-CPU variables
	Per-CPU variables
	Working with per-CPU
	Allocating, initialization, and freeing per-CPU variables
	Performing I/O (reads and writes) on per-CPU variables

	Per-CPU – an example kernel module
	Per-CPU usage within the kernel

	Lock debugging within the kernel
	Configuring a debug kernel for lock debugging
	The lock validator lockdep – catching locking issues early
	Examples – catching deadlock bugs with lockdep
	Example 1 – catching a self deadlock bug with lockdep
	Fixing it

	Example 2 – catching an AB-BA deadlock with lockdep

	lockdep – annotations and issues
	lockdep annotations
	lockdep issues

	Lock statistics
	Viewing lock stats

	Memory barriers – an introduction
	An example of using memory barriers in a device driver

	Summary
	Questions
	Further reading

	About Packt
	Other Books You May Enjoy
	Index

