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Foreword

Desislav Andreev and Stanimir Lukanov are leading engineers in C++ programming. I have known 
and worked with Desislav for more than 12 years in my capacity as a Professor and Head of the 
Department - Computer Systems in the Faculty of Computer Systems and Technologies at the Technical 
University of Sofia, Bulgaria. 

In the ever-evolving landscape of software development, certain principles remain timeless: the pursuit 
of excellence, the thirst for knowledge, and the audacity to innovate. In this book, C++ Programming 
for Linux Systems: Create robust enterprise software for Linux and Unix-based operating systems, the 
professional experience and skills of Desislav and Stanimir are used for presenting a unique combination 
of fundamental OS knowledge with programming skills. The authors have embraced the challenges 
of C++ and embarked on the ambitious quest to share their knowledge and insights with the broader 
community. In this age of rapid technological advancement, their passion and dedication to creating 
robust software solutions are nothing short of inspiring.

C++ has long been the language of choice for building powerful and efficient software systems, and 
it finds its natural home on Linux and Unix-based platforms. The authors’ decision to focus on these 
operating systems is a testament to their understanding of the importance of crafting software that can 
withstand the rigors of enterprise-level demands. They guide you through the subtle of C++ language 
and demonstrate how to harness its full potential within the Linux environment.

One of the most compelling aspects of this book is its practicality. The authors don’t just teach theory, 
but rather they provide knowledge and proper examples needed to tackle real-world challenges. 
From concurrent system programming and process management to process communication and 
process scheduling, you will gain a deep understanding of how C++ can be harnessed for building 
high-quality software.

In this book, Desislav and Stanimir, as two industry experts, have distilled their collective knowledge 
and experience into an invaluable resource for all those who seek to navigate the complex and exciting 
world of system programming on Linux and Unix-based platforms. 

This book serves as both a comprehensive introduction for those new to system programming and 
software design in Linux environment and a valuable resource for experienced developers looking 
to expand their expertise. 

Whether you are a student eager to embark on a journey of discovery or a professional seeking to 
sharpen your skills, C++ Programming for Linux Systems offers something for everyone. 

Prof. Milena Lazarova

Head of Department “Computer Systems”, Faculty Computer Systems and Technologies,  
Technical University of Sofia
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Preface

Greetings, dear reader! You are among friends. Welcome to this journey of advanced skills, unexpected 
surprises, cunning knowledge, and novel programming tools. Suppose you are an experienced 
software engineer who knows how to write quality code and is aware of some build and operating 
systems. You have also met several computer architectures and fixed one or two bugs. And how about 
the following: You are a student who just learns how to do the job of a software engineer. You want 
to be a good professional someday. And you want to be the expert, whom others call, whenever the 
software behaves unpredictably. Or you just have picked up this book out of initial interest, still not 
knowing what to expect. Then perfect!

We challenge you to remember any situations in your practice, where, to this day, you have no 
explanation of what happened. No, we do not mean the supernatural – although this topic is rather 
arcane. We speak about the system and how we conduct its behavior as professional engineers. Our 
code is just an instrument that tells the machine what to do. So, let’s say you have remembered that 
one bug that has been bugging you for some time – how do you proceed? What if it stands between 
you and your next promotion? How about when it disappoints a client that is important to you? Or 
you just want to impress your teacher. We get you! We are there, too.

Do not be fooled, though. We give you the opportunity to enrich the way you engineer through some 
fundamental pointers, but we do not have all the answers. We strongly believe that changing the way 
you see how code works will make you a more robust expert, no matter your professional field. And 
you should care because the world of technology is rapidly advancing. It is impossible to keep up with 
every innovation, algorithm, language, operating system, and architecture. But you could start asking 
yourself the right questions at the right moment. You have the possibility to know how to optimize 
further, design better, validate your environment, and encourage yourself to understand your own 
work thoroughly.

We challenge you again. This time to be more self-aware and efficient through our experience and 
expertise. There are some sophisticated real-world challenges that we so impatiently want to share 
with you. Please remember, it will take you some time. As friends, we hope you enjoy this book and 
share the exciting parts with others. Chop-chop... Let’s go!

Who this book is for
This book is for programmers and developers who want to boost their programming knowledge in 
C++ for Linux and Unix-based operating systems. Whether you are a beginner looking to learn how to 
use C++ in such an environment or an experienced programmer looking to explore the latest C++20 
features applicable to system programming, you’ll find this book helpful.
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What this book covers
Chapter 1, Getting Started with the Linux Systems and the POSIX Standard, introduces the reader to 
the reasoning behind the existence of different operating systems. The Linux specifics are discussed, 
and the reader proceeds to the fundamentals of Unix-based OS programming. The kernel space and 
user spaces are mentioned as the System Call Interface is explained thoroughly. Afterward, we use 
this opportunity to present POSIX and some standard function calls in order to let the reader grasp 
the benefits of the system programming.

Chapter 2, Learning More about Process Management, expands on learnings from the previous chapter 
and states that if the operating system is the main resource manager, then the process is the main 
resource user. It does so through a routine, which could get complex and needs to be well analyzed. 
Therefore, the chapter goes through the main process’s life cycle - its startup, running, and final states. 
The nature of the thread is presented as well. We go through the OS’s scheduling algorithms as well. 
A sample C++ application is introduced and its main() function is discussed as an entry point. In 
addition, different ways to initiate a process are presented: fork(), vfork(), and exec(). Other 
fundamental functions such as wait(), exit(), pthread_create(), and pthread_join() 
are discussed as well.

Chapter 3, Navigating through the Filesystems, shows how the file is the basic resource representation 
in Linux - both for data and access to I/O devices. This abstraction allows the user to manipulate 
streams or store data in the same manner, through the same system interfaces. The file system 
structure - metadata and inodes, is discussed. Examples of C++ file system operations are presented 
to the reader. We use this opportunity to introduce the pipes as an initial instrument for inter-process 
communication. The string_view C++20 object is offered as well. At the end, we mention signal 
handling as it will be required for later chapters.

Chapter 4, Diving Deep into the C++ Object, guides the reader through some core C++ features like 
the process of object creation and its initialization. We discuss lifetime object problems, temporaries, 
RVO, RAII pattern, and C++20. We also cover function objects and lambda expressions together with 
their specifics and guidance on how to use them. Next, we will get deeper into lambdas. In the end, 
we will focus on some specific examples of how to use lambdas in STL and multithreading.

Chapter 5, Handling Errors with C++, explores the different kinds of error reporting in C++ programming 
for Unix-based operating systems, such as error codes, exceptions, and asserts. We will discuss the 
best practices in exception handling and exception manipulation and what happens with uncaught 
exceptions in the system. We will discuss the exception specifications and why we prefer the noexcept 
keyword. We will go through the performance impact when using exceptions and the mechanics 
behind them. Next, we will discuss how we can use std::optional to handle errors. At the end, 
we will discuss what std::uncaught_exceptions functionality provides.
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Chapter 6, Concurrent System Programming with C++, discusses the fundamentals and the theory 
behind processes and threads in Unix-based operating systems. We will go through the changes in 
the memory model of C++ in order to natively support concurrency. We will get acquainted with the 
C++ primitives which enable multithreading support - thread, jthread, and task. Next, we will learn 
how to synchronize the execution of parallel code using C++ synchronization primitives. We will 
also investigate what STL provides in the direction of parallel algorithms. In the end, we will learn 
how to write lock-free code.

Chapter 7, Proceeding with Inter-process Communication, guides readers through the basic IPC 
mechanisms in the Linux environment (as they already have the impression of the multithreading’s 
challenges). It is important that the processes are able to communicate with each other easily, therefore, 
we go quickly through message queues. They allow the exchange of data without blocking processes. 
We will spend some time discussing synchronization mechanisms – semaphore and mutex- and then 
proceed with the shared memory. It provides quick access to some data and, at the same time, allows 
heterogeneous systems to have a common point for data exchange. At last, the sockets are frequently 
used, but mainly for their possibility to allow communication between computer systems on the network.

Chapter 8, Using Clocks, Timers, and Signals in Linux, introduces the signals and timers in Unix-based 
operating systems. We will initially present how the signaling system works and how the user can 
effectively manage the time of operations. We will cover what C++ language provides as functionality 
to handle clocks and timers. We will introduce the standard time API, std::chrono, predefined 
clocks and times. Next, we will cover how to use them correctly and what to expect from them. Next, 
we will focus on the duration capabilities that the standard provides and user-defined clocks. Ultimately, 
we will cover the calendar and time zone libraries introduced in C++20.

Chapter 9, Understanding the C++ Memory Model, explores some new C++20 features. It guides the 
reader through some crucial remarks on how and why to manage dynamic resources. It proceeds 
with a discussion on the conditional variables and mutex usages, as well as lazy initialization and 
cache friendliness. An introduction to the C++ memory order follows as we discuss ways to choose 
from different synchronization mechanisms. The spinlock/ticketlock techniques are also presented.

Chapter 10, Using Coroutines in C++ for System Programming, talks about coroutines, an already 
existing term with implementations in some programming languages, but now they are introduced in 
C++20. They are described as stackless functions suspended during execution and resumed later. The 
chapter discusses those exact valuable features in the area of system programming. Their disadvantages 
are also discussed, for example, keeping the suspended coroutine state on the heap. Some practical 
usages are presented.

To get the most out of this book
Some familiarity with the basics of the C++ language and POSIX programming in C language is 
required before starting with this book. Prior knowledge of the fundamentals of Linux and Unix will 
be helpful but not necessary.
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Software covered in the book Operating system requirements
C++20 Linux Mint 21
GCC12.2
godbolt.org

If you are using the digital version of this book, we advise you to type the code yourself or access the 
code from the book’s GitHub repository (a link is available in the next section). Doing so will help 
you avoid any potential errors in copying and pasting code.

Each chapter has its respective Technical requirements. All examples are run through them. The code 
is system-dependent, so it might not work directly in your environment.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/C-Programming-for-Linux-Systems. If there’s an update to the 
code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The 
example uses the open() and close() POSIX functions, which try to open and close a file from 
the filesystem of our Linux test environment.”

A block of code is set as follows:

if (ecode.value() == EEXIST)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

std::for_each(v1.begin(), v1.end(),
                  [&mean, sum{0.0}, count{0}, text](const double& val) 
mutable

Any command-line input or output is written as follows:

$ ./test

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read C++ Programming for Linux Systems, we’d love to hear your thoughts! Please click 
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1805129007
https://packt.link/r/1805129007
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Part 1: 
Securing the 

Fundamentals

This part of the book will provide you with the necessary instruments to get into the advanced topics 
of system programming. Experienced readers will find it helpful, too, as some of the C++20 features 
are practically presented in the area of system programming. This part ensures that the readers are on 
the same page with the presented subjects and provides the opportunity to extract the best from the 
technical examples. At the same time, it notes important aspects of the Linux system development.

This part has the following chapters:

•	 Chapter 1, Getting Started with Linux Systems and the POSIX Standard

•	 Chapter 2, Learning More about Process Management

•	 Chapter 3, Navigating through the Filesystems

•	 Chapter 4, Diving Deep into the C++ Object

•	 Chapter 5, Handling Errors with C++





1
Getting Started with  

Linux Systems and the  
POSIX Standard

This book is about Linux and how we use C++ in Linux environments to manage critical resources. 
The C++ language is continuously improving, as you’ll explore in the following chapters. Before we 
go there, we’d like to spend some time in this chapter developing a fundamental understanding of 
operating systems (OSs). You are going to learn more about the origins of some specific techniques, 
the system call interface and the Portable Operating System Interface (POSIX).

Your choice of OS matters. Although OSs were created with a single purpose, nowadays their roles 
differ. Much is expected of them as well. Each OS has its own strengths and weaknesses, which 
we are going to discuss briefly. Linux is in widespread use across multiple technological areas and 
has a huge community worldwide, so it is perfect for our practical purposes. In our experience, 
programming in Linux or other Unix-based OS environments is rather common. Wherever your 
expertise resides – from Internet of Things (IoT) devices and embedded software development to 
mobile devices, supercomputing, or spacecraft – there is a good chance that you will cross paths with 
a Linux distribution at some point.

Use this chapter as an introduction to system programming. Even if you are already familiar with 
the topic, take your time to revisit the terms and details. Most of them are covered by college courses 
or are taken as common knowledge, but it is nonetheless important for us to explain some of the 
fundamentals here to make sure we will be on the same page in the chapters to come.

In this chapter, we are going to cover the following main topics:

•	 Getting familiar with the concept of OSs

•	 Getting to know the Linux kernel
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•	 Introducing the system call interface and system programming

•	 Navigating through files, processes, and threads

•	 Running services with init and systemd

•	 Portable Operating System Interface (POSIX)

Technical requirements
In order to get familiar with the programming environment, the reader must prepare the following:

•	 A Linux-based system capable of compiling and executing C++20 (for example, Linux Mint 21)

Getting familiar with the concept of OSs
So, what is an OS? You could probably provide at least one answer, but let’s discuss this briefly as it is 
important to understand what our computer system truly is and how we manipulate it. Although you 
might be familiar with most of the information provided here, we are using this chapter to align with 
you on the matter of OSs and their uses. Some might say that the OS was created to make the hardware 
work as a whole. Others will argue that it is an aggregation of programs, dedicated to managing the 
system resources overall. It is crucial to utilize these resources, such as CPU and memory, efficiently. 
There is also the concept of the OS as an abstraction and an extension of the hardware. Ultimately, 
we can safely say that the modern OS is a complex entity. It also has additional functions, such as 
the collection of statistics, multimedia handling, system safety and security, overall stability, reliable 
error handling, and so on.

While the OS is obliged to execute all those tasks, it is still necessary for the programmer to pay 
attention to the system specifics and requirements. Working from a higher level of abstraction, 
through virtual machines, for example, does not mean discarding the need to understand how our 
code impacts the system’s behavior. And programmers, who are closer to the OS layers, are required to 
manage the system’s resources efficiently as well. This is one of the reasons that OSs provide application 
programming interfaces, or APIs. It is valuable expertise to know how to use such APIs and what 
kind of benefits they provide.

We believe that the ability to work closely with the OS is a skill that is not so common. Knowledge of 
how the OS and the computer architecture will behave is at the expert level of software engineering. We 
will discuss some types of OSs just to give you a broad picture, but the focus of the book is specifically 
on POSIX-compliant OSs. That said, let’s get familiar with one of our main toolsets.
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Types of OSs

If we do some quick research online, we will find many types of OSs, and the type definition will strictly 
be based on the criterion searched for. One example is the purpose of the OS: is it a general-purpose 
one, such as macOS and Windows, or more specific, such as Embedded Linux and FreeRTOS? 
Another example is OSs for PCs versus those for mobile devices. Likewise, the licensing could describe 
the OSs as open source, enterprise, or enterprise open source. Based on the number of active users 
at a time, Windows could be considered a single-user OS, as it constructs just one Win32 API for 
the current user session. On the other hand, Unix-like OSs are considered multi-user, as multiple 
users can work simultaneously on the system, where each shell or a Terminal instance is considered 
a separate user session.

So, the system’s applications and their constraints are fundamental. Therefore, a key distinction to be 
aware of is the level of restrictions on the system’s behavior. The general-purpose operating systems 
(GPOSs) started initially as time-sharing OSs. Historically, there is another type of OS, originating from 
the same period as the time-sharing ones – the real-time operating systems (RTOSs). It is expected 
that system programmers understand the specifics of GPOSs and RTOSs. In the following chapters, 
we will discuss how properties such as task priorities, timer values, peripheral speeds, interrupt and 
signal handlers, multithreading, and dynamic memory allocation can lead to changes in system 
behavior. Sometimes these are unpredictable. That’s why we recognize two types of RTOSs: hard and 
soft RTOSs. Hard RTOSs are usually strictly related to a given piece of hardware. The system developer 
is familiar with the end device requirements. The task execution times can be preliminary evaluated 
and programmed, although the device’s input is still treated as asynchronous and unpredictable. 
Therefore, our focus in this book remains on GPOS programming with a bit of soft RTOS functions.

Let’s set the stage like this: the user receives system resources in a cyclic manner so often that it 
creates the impression that the user is the only one relying on those resources. The user’s work must 
not be disrupted, and quick response times are to be expected from an OS; theoretically, the smaller 
the procedures, the shorter the response times. We will discuss this further in Chapter 2 as it is not 
completely true.

Important note
The user is the main driver of the system’s functionality with a GPOS. The main job of the OS 
is maintaining active dialog with the users and the high availability of operations.

Here, each task and each request to the OS must be handled quickly within a strict time interval. 
The RTOS expects user input only during exceptional situations, errors, and unpredicted behavior.
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Important note
Asynchronously working devices and additional peripheral electronics are the main drivers of 
the system’s functionality in an RTOS. The main job of the OS remains process management 
and task scheduling.

As we said, there are two types of RTOS: hard RTOS and soft RTOS. In a hard RTOS, real-time tasks 
are guaranteed to be executed on time. System reaction deadlines are usually preliminarily defined, 
and the mission-critical data is stored in ROM, so it cannot be updated at runtime. Functionalities 
such as virtual memory are often removed. Some modern CPU cores provide the so-called tightly 
coupled memory (TCM), into which the frequently used data and code lines are loaded from the 
non-volatile memory (NVM) on system startup. The system’s behavior is scripted a priori. The role 
of these OSs is related to machine control, where the user’s input is forbidden.

A soft RTOS provides critical tasks with the highest priority until completion and without interruptions. 
Still, real-time tasks are expected to be completed in a timely manner and should not wait endlessly. It 
is obvious that this type of OS cannot be utilized for mission-critical tasks: factory machines robots, 
vehicles, and so on. But it can be used to control the overall system behavior, so this type of OS is found 
in multimedia and research projects, artificial intelligence, computer graphics, virtual reality devices, 
and more. As these RTOSs do not clash with the GPOSs, they can be integrated with them. Their 
functions can be found in some Linux distributions as well. An interesting realization of this is QNX.

Linux in short

There are a few misconceptions here, so let’s settle them briefly. Linux is a Unix-like OS, meaning 
it provides similar (and occasionally the same) interfaces as Unix – its functions, especially APIs, 
are designed to match the ones from Unix. But it is not a Unix-based OS. Their functions are not 
implemented in the same way. A similar misconception exists in understandings of the FreeBSD-
macOS relationship. Although both share a significant portion of code, their approach is completely 
different, including the way their kernels are structured.

It is important to bear these facts in mind as not all functions we are going to use in this book exist 
or are reachable on all Unix-like OSs. We are focusing on Linux, and our examples will work as long 
as the respective technical requirements for each chapter are met.

There are a few reasons for this decision. First, Linux is open-sourced, and you can easily check its 
kernel code: https://github.com/torvalds/linux. You should be able to read it easily as 
it is written in C. Even though C is not an object-oriented language, the Linux kernel follows many 
object-oriented programming (OOP) paradigms. The OS itself consists of many independent design 
blocks, called modules. You could easily configure, integrate, and apply them specifically for your system’s 
needs. Linux gives us the ability to work with real-time systems (described later in the chapter) and 
do parallel code executions (discussed in Chapter 6). In short – Linux is easily adaptable, expandable, 
and configurable; we could easily use this to our advantage. But where, exactly?

https://github.com/torvalds/linux
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Well, we could develop applications that are close to the OS, or we could even produce some modules 
ourselves, which can be loaded or unloaded at runtime. Such an example is a filesystem or device driver. 
We are going to revisit this topic in Chapter 2, when deep diving into the process entity. For now, let’s 
say that the modules pretty much look like an OOP design: they are constructible and destructible; 
sometimes, based on the kernel’s needs, common code could be generalized into one module, and 
these modules have hierarchical dependencies. Nevertheless, the Linux kernel is considered monolithic; 
for example, it has complex functionality, but the entire OS runs in kernel space. In contrast, there are 
micro-kernels (QNX, MINIX, or L4), which constitute the bare minimum of a running OS. Additional 
functionality in this case is provided through modules that work outside the kernel itself. This leads 
to a slightly chaotic but overall clear picture of the possibilities of the Linux kernel.

Getting to know the Linux kernel
Figure 1.1 illustrates an example of a Linux kernel. Based on your needs, the system architecture could 
look different, but you can observe the three main layers we expect to see in any given Linux system.

These are the user space (running processes and their threads), the kernel space (the running kernel 
itself, usually a process of its own), and the computer – this could be any kind of computing device, 
such as a PC, tablet, smartphone, supercomputer, IoT device, and so on. One by one, all the terms 
observed in the diagram will fall into place as we explain them in the following chapters, so don’t 
worry if you are not familiar with all of them right now.

 

Figure 1.1 – Overview of the Linux kernel and the neighboring layers
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Some interdependencies in the preceding diagram have probably made an impression on you already. 
For example, see how the device drivers, the respective devices, and the interrupts are related. The device 
drivers are a generalization of character device drivers, block device drivers, and network device drivers. 
Note how the interrupts are related to the scheduling of the tasks. This is a trivial but fundamental 
mechanism, used heavily in the implementation of drivers. It is an initial communication and control 
mechanism of the OS and the hardware.

Just one example: let’s say you want to restore and read a file from the disk (NVM), and you request 
it through some standard programming function. A read() call will be executed under the hood, 
which is then translated to a filesystem operation. The filesystem calls the device driver to find and 
retrieve the content behind the given file descriptor, which is then related to an address known by the 
filesystem. This will be discussed further in Chapter 3. The required device (NVM) starts to search 
for the piece of data – a file. Until the operation is finished, if the caller process is a single-threaded 
process and has nothing else to do, it will be stopped. Another process will start to work until the 
device finds and returns a pointer to the file’s address. Then an interrupt is triggered, and this helps 
the OS to invoke the scheduler. Our initial process will be started again using the newly loaded data, 
and the second process will now be stopped.

This task example demonstrates how you can impact the system’s behavior with just a small, insignificant 
operation – and this is one you will have learned to code in your first programming classes. In most 
cases, nothing bad will happen, of course. Many processes will be rescheduled all the time during the 
lifespan of your system. It is the OS’s job to make this happen without disruptions.

But the interrupt is a heavy operation that could lead to needless memory accesses and useless 
application state switches. We will discuss this in Chapter 2. For now, just think about what happens 
if the system is overloaded – the CPU is at 99% usage, or the disk has received many requests and 
cannot handle them in a timely manner. And what if that system was part of an airplane’s embedded 
devices? Of course, this is highly unlikely in reality, as airplanes have strict technical requirements and 
high-quality standards to meet. But just for the sake of argument, consider how you might prevent 
a similar situation from happening, or how you would guarantee the code’s successful execution in 
any user scenario.

Introducing the system call interface and system 
programming
Of course, the example that we just saw is simplified but gives us some idea about the work that the 
OS needs to do – in essence, it is responsible for managing and providing resources, but at the same 
time remains available for other processes’ requests. This is a messy job on modern OSs. Rarely can 
we do anything about it. So, to have better control and predictability of system behavior, programmers 
might directly use the OS’s API, called the system call interface.
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Important note
The NVM data request is a procedure that benefits from the system call interface, as the OS 
will be obliged to turn this request into an application binary interface (ABI) call, referring 
to the respective device driver. Such an operation is known as a system call. Using system calls 
to implement or execute functions provided by the OS is known as system programming. The 
system calls are the only entry points to the kernel’s services. They are generally wrapped by 
libraries such as glibc and are not invoked directly.

In other words, the system calls define the programmer’s interface through which all kernel services 
are made available. The OS can be considered as more of a mediator between the kernel service and the 
hardware. Unless you like to play with hardware pins and low-level platform instructions, or you are 
a module architect yourself, you should bravely leave the details to the OS. It is the OS’s responsibility 
to handle the specific computer physical interface operations. It is the application’s responsibility to 
use the correct system calls. And it is the software engineer’s task to be aware of their impact on the 
system’s overall behavior. Bear in mind that using system calls comes with a price.

As observed in the example, the OS will do a lot while retrieving a file. And even more will be done 
when memory is allocated dynamically, or a single memory chunk is accessed by multiple threads. We 
will discuss this further in the following chapters, and will emphasize using systems calls sparingly, 
with awareness, whether voluntarily or involuntarily, wherever possible. Simply said, system calls are 
not trivial function calls as they are not executed in user space. Instead of going to the next procedure 
in your program’s stack, the system call triggers a mode switch, which leads to a jump to a routine in 
the kernel’s memory stack. Reading from a file can be visualized as follows:

     

Figure 1.2 – System call interface representation of reading from a file
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When should we use system calls then? Put simply, when we want to be very precise about some OS 
tasks, often related to device management, file management, process control, or communication 
infrastructure. We are going to present many examples of these roles in the later chapters, but in 
brief, you are welcome to read more and get familiar yourself with the following:

syscall()
fork()
exec()
exit()
wait()
kill()

Important links
The right place to start is the Linux man-pages project, linked here: https://www.kernel.
org/doc/man-pages/.

A brief list of the useful system calls can be found at the following link: https://man7.
org/linux/man-pages/man2/syscalls.2.html.

We strongly encourage you to do more research on system calls used in your own projects. Are there 
any, and what kind of job do they do? Are there any alternatives in your implementations?

You have probably already guessed that using the system call interface involves a security risk for 
the system, too. Being that close to the kernel and the device control provides a great opportunity 
for malicious software to infiltrate your software. While your software is impacting system behavior, 
another program might sniff around and gather valuable data. The least you could do is design your 
code in such a way that the user’s interface is well isolated from the crucial procedures, especially 
system calls. It is impossible to be 100% safe, and while there are many comprehensive books on the 
matter of security, the art of securing a system is a constantly evolving process itself.

Speaking about processes, let’s proceed to the next topic: the fundamental entities of a Linux system.

Navigating through files, processes, and threads
If you made it to here – great job! We are going to cover processes and threads thoroughly in Chapter 2, 
and filesystems in Chapter 3. In the meantime, we will take a short detour here, just to paint a better 
picture for you, through the definition of three important terms: files, processes, and threads. You 
probably already noticed two of these in the kernel overview earlier, so we will explain them briefly 
now in case you are not familiar with them.

https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
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File

In short, we require files to represent multiple kinds of resources on our system. The programs we 
write are files as well. The compiled code, for example, the executable binaries (.bin, .exe), and the 
libraries are all files (.o, .so, .lib, .dll, and so on). Additionally, we need them for communication 
mechanisms and for storage management. Do you know what types of files are recognizable on Linux? 
Let’s brief you on that quickly:

•	 Ordinary or regular files: Almost all files storing data on the system are treated as regular 
files: text, media, code, and so on.

•	 Directories: Used for building the hierarchical structure of the filesystem. Instead of storing 
data, they store the locations of other files.

•	 Special (device) files: You can find them under your /dev directory, representing all your 
hardware devices.

•	 Links: We use these to allow access to another file at a different location. Actually, they are 
substitutions of real files, and through them those files are accessed directly. This is different 
than Windows’ shortcuts. They are specific file types, and an application is required to support 
them – first to handle the shortcut metadata, then to point at the resource, so the file is not 
accessed in one go.

•	 Sockets: This is the communication endpoint for a process to exchange data, including with 
other systems.

•	 Named pipes: We use named pipes to exchange bidirectional data between two processes 
currently running on the system.

In Chapter 3, we will play around with these through some practical examples. You will see the usage 
of every file type there, except sockets, which will be explained in great detail later in the book. What 
we need now is a program to run.

Process and thread

A process is an instance of a program, an executing instance, to be precise. It has its own address space 
and remains isolated from other processes. This means that each process has a range of (usually virtual) 
addresses that the OS assigns to it. Linux treats them as tasks. They are not observable by the general 
user. This is just how the kernel does its job. Each task is described through the task_struct entity, 
defined in include/linux/sched.h. System administrators and system programmers observe 
processes through the process table, hashed through each process’s specific process identifier – pid. This 
method is used for a quick lookup of a process – use the ps command in Terminal to see the process 
status on the system and then type the following command to see the specific info for a single process:

ps -p <required pid>



Getting Started with Linux Systems and the POSIX Standard12

For example, let’s start some program, called test, and let it run:

$ ./test

You can open a separate Terminal and see test in the list of running processes as follows:

$ ps
PID TTY           TIME CMD
...
56693 ttys001    0:00.00 test

And if you know the PID already, then just do the following:

$ ps –p 56693
56693 ttys001    0:00.00 test

A new process is created via a copy of the current process’s attributes and will belong to a process group. 
One or more groups create a session. Each session is related to a terminal. Both groups and sessions 
have process leaders. The cloning of attributes is used mainly for resource sharing. If two processes 
share the same virtual memory space, they are treated and managed as two threads in a single process, 
but they are not as heavyweight as processes. What is a thread, then?

Important note
Overall, there are four entities we care about: first is the executable file as it is the unit-carrier of the 
instructions to be executed. Second is the process – the worker unit executing those instructions. 
Third – we need these instructions as instruments to handle and manage system resources. 
And fourth is the thread – the smallest sequence of instructions, managed independently by 
the OS, and part of a process. Bear in mind that the implementations of processes and threads 
are different for every OS, so do your research before using them.

From the kernel’s point of view, the main thread of the process is the task group leader, identified in the 
code as group_leader. All threads spawned by the group leader are iterable through thread_
node. Actually, they are stored in a singly linked list and thread_node is its head. The spawned 
threads carry a pointer to the group_leader tool. The process creator’s task_struct object is 
pointed by it. You probably already guessed correctly that it is the same as the task_struct of 
the group leader.

Important note
If a process spawns another process, for example, through fork(), the newly created processes 
(known as child processes) know about their creator through the parent pointer. They are also 
aware of their siblings through the sibling pointer, which is a list node to some other child 
process of the parent. Each parent knows about its children through children – a pointer 
to the list head, storing the children and providing access to them.
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As we can see in the following figure, the threads do not define any other data structures:

Figure 1.3 – Structures of processes and threads through task_structs

We’ve mentioned fork()already a couple of times, but what is it? Well, put simply, it is a system 
function that creates a process copy of the process caller. It provides the parent with the new process’s 
ID and initiates the execution of the child. We are going to provide some code examples in the next 
chapter, so you could take a look there for more details. There’s something important we should 
mention now, as we are on the topic of Linux environments.

Behind the scenes, fork() is replaced with clone(). Different options are provided through flags, 
but if all are set to zero, clone() behaves like fork(). We advise you to read more here: https://
man7.org/linux/man-pages/man2/clone.2.html.

You’re probably asking yourself why this implementation is preferable. Think about it this way: when 
the kernel does a switch between the processes, it checks the address of the current process in the 
virtual memory, the page directory to be exact. If it is the same as the newly executed process, then 
they share the same address space. Then, the switch is only a simple pointer jump instruction, usually 
to the entry point of the program. This means a faster rescheduling is to be expected. Be careful – the 
processes might share the same address space, but not the same program stack. clone() takes care 
of creating a different stack for each process.

https://man7.org/linux/man-pages/man2/clone.2.html
https://man7.org/linux/man-pages/man2/clone.2.html
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Now that the process is created, we must take a look at its running mode. Note that this is not the 
same as the process state.

Types of processes based on their running mode

Some processes require user interaction to be initiated or interacted with. They are known as foreground 
processes. But as you’ve probably figured out, there are some processes that run independently of 
our, or any other user’s, activity. Processes of this kind are known as background processes. Unless 
instructed otherwise, the terminal inputs as program execution calls or user commands are treated 
as foreground processes by default. To run a process in the background, simply place & at the end of 
the command line that you use to start the process. For example, let’s call the already known test, 
and after it finishes, we see the following in Terminal:

$ ./test &
[1] 62934
[1]  + done       ./test

You can easily stop it using its pid when calling the kill command:

$ ./test &
[1] 63388
$ kill 63388
[1]  + terminated./test

As you can see, killing a process and letting it terminate by itself are two different things, and killing 
the process could lead to unpredictable system behavior or the inability to access some resource, such 
as a file or a socket left unclosed. This topic will be revisited later in the book.

Other processes run unattended. They are known as daemons and run constantly in the background. 
They are expected to be always available. Daemons are usually started through the system’s startup 
scripts and run until it’s shut down. They usually provide system services and multiple users rely on 
them. Therefore, the daemons on startup are usually initiated by the user with ID 0 (usually root) 
and might run with root privileges.

Important note
The user with the highest privileges on a Linux system is known as the root user, or simply 
root. This privilege level allows the performing of security-related tasks. This role has a direct 
impact on the system’s integrity, therefore all other users must be set with the least-possible 
privilege level until a higher one is required.
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A zombie process is a process that has been terminated, but is still recognized through its pid. It has 
no address space. Zombie processes continue to exist for as long as their parent processes run. This 
means that until we exit the main process, shut down the system, or restart it, the zombie process will 
still appear as <defunct> when listed by ps:

$ ps
  PID TTY           TIME CMD
…
64690 ttys000    0:00.00 <defunct>

You can see zombie processes through top as well:

$ top
t–p - 07:58:26 up 100 days,  2:34, 2 users,  load average: 1.20, 1.12, 
1.68
Tasks: 200 total,   1 running, 197 sleeping,   1 stopped,   1 zombie

Getting back to the discussion on background processes, there is another way to execute specific 
procedures without explicitly starting background processes. Even better – we can manage such 
processes running on system startup or on different system events. Let’s look at this in the next section.

Running services with init and systemd
Let’s use this opportunity to discuss the init and the systemd process daemons. There are others 
as well, but we’ve decided to retain our focus on these two. The first one is the initial process, executed 
on a Linux system by the kernel, and its pid is always 1:

$ ps -p 1
PID TTY          TIME CMD
1 ?        04:53:20 systemd

It is known as the parent of all processes on the system as it is used to initialize, manage, and track 
other services and daemons. The first init daemon for Linux is called Init and it defines six system 
states. All system services are mapped to those states, respectively. Its script is used to start processes 
in a pre-defined order, which is occasionally used by system programmers. One possible reason to 
use this is to reduce the startup duration of the system. To create a service or edit the script, you could 
modify /etc/init.d. As this is a directory, we could list it with the ls command and see all the 
services that could be run through init. 
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This is what we have on our machine:

$ ls /etc/init.d/
acpid
alsa-utils
anacron
...
ufw
unidd
x11-common

Each of these scripts follows the same code template for its execution and maintenance:

Figure 1.4 – init.d script, representing the possible service actions
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You can generate the same template yourself and read more about the init script source code through 
the following command:

$ man init-d-script

You can list the status of the available services through the following command:

$ service --status-all
 [ + ]  acpid
 [ - ]  alsa-utils
 [ - ]  anacron
...
 [ + ]  ufw
 [ - ]  uuidd
 [ - ]  x11-common

We could stop the firewall service – ufw:

$ service ufw stop

Now, let’s check its status:

$ service ufw status
● ufw.service - Uncomplicated firewall
Loaded: loaded (/lib/systemd/system/ufw.service; enabled; vendor 
preset: enabled)
Active: inactive (dead) since Thu 2023-04-06 14:33:31 EEST; 46s ago
Docs: man:ufw(8)
Process: 404 ExecStart=/lib/ufw/ufw-init start quiet (code=exited, 
status=0/SUCCESS)
Process: 3679 ExecStop=/lib/ufw/ufw-init stop (code=exited, status=0/
SUCCESS)
Main PID: 404 (code=exited, status=0/SUCCESS)
Apr 06 14:33:30 oem-virtual-machine systemd[1]: Stopping Uncomplicated 
firewall...
Apr 06 14:33:31 oem-virtual-machine ufw-init[3679]: Skip stopping 
firewall: ufw (not enabled)
Apr 06 14:33:31 oem-virtual-machine systemd[1]: ufw.service: 
Succeeded.
Apr 06 14:33:31 oem-virtual-machine systemd[1]: Stopped Uncomplicated 
firewall.
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Now, let’s start it again and check its status once more:

$ service ufw start
$ service ufw status
● ufw.service - Uncomplicated firewall
Loaded: loaded (/lib/systemd/system/ufw.service; enabled; vendor 
preset: enabled)
Active: active (exited) since Thu 2023-04-06 14:34:56 EEST; 7s ago
Docs: man:ufw(8)
Process: 3736 ExecStart=/lib/ufw/ufw-init start quiet (code=exited, 
status=0/SUCCESS)
Main PID: 3736 (code=exited, status=0/SUCCESS)
Apr 06 14:34:56 oem-virtual-machine systemd[1]: Starting Uncomplicated 
firewall...
Apr 06 14:34:56 oem-virtual-machine systemd[1]: Finished Uncomplicated 
firewall.

In a similar fashion, you could create your own service and use the service command to start it. 
An important remark is that init is considered an outdated approach on modern, full-scale Linux 
systems. Still, it can be found on every Unix-based OS, unlike systemd, so system programmers would 
anticipate its use as a common interface to services. Therefore, we use it more as a simple example 
and an explanation for where services are coming from. If we want to use the latest approach, we 
must turn to systemd.

systemd is an init daemon that represents the modern approach to running services on Linux systems. 
It provides a parallel system services startup feature, which additionally speeds up the initialization 
procedure. Each service is stored in a .service file under the /lib/systemd/system or /
etc/systemd/system directory. The services found in /lib are definitions for system startup 
services and those in /etc are for the services that start during system runtime. Let’s list them:

$ ls /lib/systemd/system
accounts-daemon.service
acpid.path
acpid.service
...
sys-kernel-config.mount
sys-kernel-debug.mount
sys-kernel-tracing.mount
syslog.socket
$ ls /etc/systemd/system
bluetooth.target.wants
display-manager.service
…
timers.target.wants
vmtoolsd.service



Running services with init and systemd 19

Before we continue with an example, let’s put one disclaimer here – systemd has a much more 
complex interface than init. We encourage you to spend time examining it separately as we cannot 
summarize it in short here. But if you list your systemd directories, you will probably observe 
many types of files. In the context of the daemon, they are known as units. Each of them provides a 
different interface as they each relate to a certain entity managed by systemd. The script inside each 
file describes what options are set and what the given service does. The units names are eloquent. 
.timer is for timer management, .service is for how a given service will be initiated and what 
it depends on, .path describes the path-based activation of a given service, and so on.

Let’s make a simple systemd service that will have the purpose of monitoring whether a given 
file is being modified. One example is monitoring some configuration: we wouldn’t want to limit its 
permissions for file update, but we’d still like to know whether someone has changed it.

First, let’s create some dummy file through a simple text editor. Let’s imagine it’s a real configuration. 
Printing it out gives the following:

$ cat /etc/test_config/config
test test

Let’s prepare a script that describes the procedure we require to be executed when the file is changed. 
Again, just for the purposes of this example, let’s create it through a simple text editor – it will look 
like this:

$ cat ~/sniff_printer.sh
echo "File /etc/test_config/config changed!"

When the script is called, there will be a message that the file has changed. Of course, you could put 
any program here. Let’s call it sniff_printer, because we are sniffing for a file change through 
the service, and we will print some data.

How does this happen then? First, we define our new service through the required unit – myservice_
test.service – implementing the following script:

[Unit]
Description=This service is triggered through a file change

[Service]
Type=oneshot
ExecStart=bash /home/oem/sniff_printer.sh

[Install]
WantedBy=multi-user.target
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Second, we describe the file path we’re monitoring through another unit called myservice_test.
path, implemented via the following code:

[Unit]
Description=Path unit for watching for changes in "config"

[Path]
PathModified=/etc/test_config/config
Unit=myservice_test.service

[Install]
WantedBy=multi-user.target

Combining all these pieces together, we get a service that will print out a simple message. It will be 
triggered whenever the provided file is updated. Let’s see how it goes. As we are adding a new file to 
the service directory, we must execute a reload:

$ systemctl daemon-reload

Now, let’s enable and start the service:

$ systemctl enable myservice_test
$ systemctl start myservice_test

We need to update the file through some text editor, such as the following:

$ vim /etc/test_config/config

In order to see the effect we’ve triggered, we have to go through the service status:

$ systemctl status myservice_test
● myservice_test.service - This service is for printing the "config".
Loaded: loaded (/etc/systemd/system/myservice_test.service; enabled; 
vendor preset: enabled)
Active: inactive (dead) since Thu 2023-04-06 15:37:12 EEST; 31s ago
Process: 5340 ExecStart=/bin/bash /home/oem/sniff_printer.sh 
(code=exited, status=0/SUCCESS)
Main PID: 5340 (code=exited, status=0/SUCCESS)
Apr 06 15:37:12 oem-virtual-machine systemd[1]: Starting This service 
is for printing the "config"....
Apr 06 15:37:12 oem-virtual-machine bash[5340]: File /etc/test_config/
config changed!
Apr 06 15:37:12 oem-virtual-machine systemd[1]: myservice_test.
service: Succeeded.
Apr 06 15:37:12 oem-virtual-machine systemd[1]: Finished This service 
is for printing the "config"..
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You can validate that the service has been triggered as our message is present:

Apr 06 15:37:12 oem-virtual-machine bash[5340]: File /etc/test_config/
config changed!

We also see the code that was executed and its successful status:

Process: 5340 ExecStart=/bin/bash /home/oem/sniff_printer.sh 
(code=exited, status=0/SUCCESS)
Main PID: 5340 (code=exited, status=0/SUCCESS)

But the process is no longer active as the service unit is of type oneshot, therefore only another 
file update will retrigger it. We believe this example offers a simple explanation of how a daemon could 
be created and started during system runtime. Feel free to experiment yourself and try different unit 
types or options.

The process daemon and the startup procedures are a large area of expertise in system administration, 
programming, monitoring, and obtaining execution flow information. These topics as well as that of 
the next section deserve books of their own.

Portable Operating System Interface (POSIX)
The POSIX standard has the main task of maintaining compatibility between different OSs. Therefore, 
POSIX is frequently used by both standard application software developers and system programmers. 
Nowadays, it can be found not only on Unix-like OSs, but in Windows environments as well – for 
example, Cygwin, MinGW, and Windows Subsystem for Linux (WSL). POSIX defines both the 
system- and the user-level APIs with one remark: using POSIX, the programmer doesn’t need to 
distinguish between system calls and library functions.

The POSIX API is frequently used in the C programming language. Thus, it is compilable with C++. 
Additional functions are provided to the system call interface in a few important areas of system 
programming: file operations, memory management, process and thread control, networking 
and communications, and regular expressions – as you can see, it pretty much covers everything 
that the already existing system calls do. Just don’t get confused and think that this is always the case.

As with every standard, POSIX has multiple versions, and you must be aware of which one is present 
in your system. It also could be a part of some environment subsystem, such as the Microsoft POSIX 
subsystem for Windows. This is a key remark as it is possible that the environment itself doesn’t expose 
the entire interface to you. One reason could be the security assessment of the system.

With the evolution of POSIX, rules for code quality have been established. Some of them are related to 
multithreaded memory access, synchronization mechanisms and concurrent executions, security 
and access restrictions, and type safety. A famous concept in POSIX’s software requirements is write 
once, adopt everywhere.
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The standard defines and targets four main areas of its application, called volumes:

•	 Base definitions: Main definitions for the specification: syntax, concepts, terms, and 
service operations

•	 System interfaces: Interface descriptions and definitions’ availability

•	 Utilities: Shell, command, and utility descriptions

•	 Rationale: Versioning information and historical data

With all that said, in this book our focus is mainly on POSIX as a different approach to system calls. 
In the following chapters, we will see the benefit of the general pattern for using objects such as 
message queues, semaphores, shared memory, or threads. A significant improvement is the simplicity 
of the function calls and their naming conventions. For example, shm_open(), mq_open(), 
and sem_open() are used to create and open a shared memory object, a message queue, and a 
semaphore, respectively. Their similarity is obvious. Similar ideas in POSIX are welcomed by system 
programmers. The API is public, too, and there are substantial community contributions. Additionally, 
POSIX provides an interface to objects such as the mutex, which is not trivially found and used on 
Unix. However, in later chapters, we will advise readers to focus more on the C++20 features and for 
good reason, so bear with us.

Using POSIX allows software engineers to generalize their OS-related code and declare it as  
not-OS-specific. This allows easier and faster reintegration of the software, thus reducing the time to 
market. System programmers can also easily switch from one system to another while still writing 
the same type of code.

Summary
In this chapter, we have covered the definitions of basic concepts related to OSs. You have learned 
about Linux’s main kernel structure and its expectations of software design. Real-time OSs were briefly 
introduced, and we covered the definitions of system calls, the system call interface, and POSIX as 
well. We’ve also laid the foundations of multiprocessing and multithreading. In the next chapter, we 
will discuss the process as the main resource user and manager. We will start with some C++20 code. 
Through this, you will learn about the Linux’s process memory layout, the OS’s process-scheduling 
mechanism, and how multiprocessing operates plus the challenges it brings. You will also learn some 
interesting facts about atomic operations.



2
Learning More about  
Process Management

You became familiar with the concept of processes in the previous chapter. Now, it’s time to get into 
details. It is important to understand how process management is related to the system’s overall 
behavior. In this chapter, we will emphasize fundamental OS mechanisms that are used specifically 
for process control and resource access management. We will use this opportunity to show you how 
to use some C++ features too.

Once we’ve investigated the program and its corresponding process as system entities, we are going 
to discuss the states that one process goes through during its lifetime. You are going to learn about 
spawning new processes and threads. You are also going to see the underlying problems of such activities. 
Later we are going to check out some examples while slowly introducing the multithreaded code. By 
doing so, you will have the opportunity to learn the basics of some POSIX and C++ techniques that 
are related to asynchronous execution.

Regardless of your C++ experience, this chapter will help you to understand some of the traps that 
you could end up in at the system level. You can use your knowledge of various language features to 
enhance your execution control and process predictability.

In this chapter, we are going to cover the following main topics:

•	 Investigating the nature of the process

•	 Continuing with the process states and some scheduling mechanisms

•	 Learning more about process creation

•	 Introducing the system calls for thread manipulation in C++
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Technical requirements
To run the code examples in this chapter, you must prepare the following:

•	 A Linux-based system capable of compiling and executing C++20 (for example, Linux Mint 21)

•	 The GCC12.2 compiler (https://gcc.gnu.org/git/gcc.gitgcc-source) with 
the -std=c++2a and -lpthread flags

•	 Alternatively, for all the examples, you can use https://godbolt.org/

•	 All code examples in this chapter are available for download from: https://github.
com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/
Chapter%202.

Disassembling process creation
As we mentioned in the previous chapter, a process is a running instance of a program that contains 
its respective metadata, occupied memory, opened files, and so on. It is the main job executor in the 
OS. Recall that the overall goal of programming is to transform one type of data into another type of 
data, or count. What we do via programming languages is provide instructions to the hardware. Often, 
we tell the CPU what to do, including moving pieces of data throughout different portions of memory. 
In other words, the computer must compute, and we must tell it how to do this. This understanding 
is crucial and independent of the programming languages or OSs that are used.

With this, we have come back to the topic of system programming and understanding system behavior. 
Let’s immediately state that process creation and execution is neither simple nor fast. And neither is 
the process switching. It is rarely observable through the naked eye, but if you must design a highly 
scalable system or have a strict timeline for events during the system’s execution, then you will get to 
process interaction analysis sooner or later. Again, this is how the computer works and this knowledge 
is useful when you get into resource optimization.

Speaking of resources, let’s remind ourselves of the fact that our process was initially just a program. 
It is usually stored on non-volatile memory (NVM). Depending on the system, this could be a hard 
drive, SSD, ROM, EEPROM, Flash, and so on. We have mentioned these devices as they have different 
physical characteristics, such as speed, storage space, write access, and fragmentation. Each of these 
is an important factor when it comes to the system’s durability, but for this chapter, we care mostly 
about speed.

Again, as we already mentioned in the previous chapter, a program, just like all other OS resources, 
is a file. The C++ program is an executable object file, which contains the code – for example, the 
instructions – that must be given to the CPU. This file is the result of a compilation. The compiler is 
another program that converts the C++ code into machine instructions. It is crucial to be aware of 
what instructions our system supports. The OS and the compiler are prerequisites for the integrated 
standards, libraries, language features, and so on, and there is a good chance that the compiled object 

https://gcc.gnu.org/git/gcc.gitgcc-source
https://godbolt.org/
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%202
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%202
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%202
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file is not going to run on another system that’s not exactly matching ours. Moreover, the same code, 
compiled on another system or through another compiler, would most probably have a different 
executable object file size. The bigger the size, the longer the time to load the program from NVM to 
the main memory (Random Access Memory (RAM) is used the most). To analyze the speed of our 
code and optimize it as best as possible for a given system, we will look at a generic diagram regarding 
the full path along which our data or an instruction goes along. This is slightly off-topic, so bear with us:

Figure 2.1 – Loading a program and its sequence of instruction execution events

A generalized CPU overview has been provided here as different architectures will have different layouts. 
L1 and L2 caches are Static RAM (SRAM) elements, making them extremely fast, but expensive. 
Therefore, we must keep them small. We also keep them small to achieve small CPU latency. The L2 
cache has a bigger capacity to make a shared space between the Arithmetic Logic Units (ALUs) – a 
frequent example is two hardware threads in a single core, where the L2 cache plays the shared memory 
role. The L3 cache doesn’t always exist, but it’s usually based on Dynamic RAM (DRAM) elements. 
It is slower than the L1 and the L2 caches but allows the CPU to have one more level of cache, just for 
speed-up purposes. One example would be instructing the CPU to guess and prefetch data from the 
RAM, thus sparing time in RAM-to-CPU loads. Modern C++ features can use this mechanism a lot, 
leading to significant speed-ups in process execution.

In addition, depending on their roles, three types of caches are recognized: the instruction cache, 
data cache, and Translation Lookaside Buffer (TLB). The first two are self-explanatory, whereas 
the TLB is not directly related to CPU caches – it is a separate unit. It’s used for addresses of both 
data and instructions, but its role is to speed up virtual-to-physical address translation, which we’ll 
discuss later in this chapter.

RAM is often used, and mostly involves Double Data Rate Synchronous Dynamic RAM (DDR 
SDRAM) memory circuits. This is a very important point because different DDR bus configurations 
have different speeds. And no matter the speed, it is still not as fast as CPU internal transfers. Even 
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with a 100%-loaded CPU, the DDR is rarely fully utilized, thus becoming our first significant bottleneck. 
As mentioned in Chapter 1, NVM is way slower than DDR, which is its second significant bottleneck. 
We encourage you to analyze your system and see the speed differences.

Important note
Your programs’ sizes matter. The process of optimizing the sequence of events for executing 
program instructions or loading data is a permanent and continuous balancing act. You must 
be aware of your system’s hardware and OS before thinking of code optimization!

If you’re still not convinced, then think about the following: if we have a program to visualize some 
data on some screen, it might not be an issue for a desktop PC user if it’s there after 1 second or 10 
seconds. But if this is a pilot on an airplane, then showing data within a strict time window is a safety 
compliance feature. And the size of our program matters. We believe the next few sections will give 
you the tools you’ll need to analyze your environment. So, what happens with our program during 
execution? Let’s find out.

Memory segments

Memory segments are also known as memory layouts or memory sections. These are just areas of memory 
and should not be mistaken for segmented memory architecture. Some experts prefer to use sections 
when the compile-time operations are discussed and layout for the runtime. Choose whatever you like, 
so long as it describes the same thing. The main segments are text (or code), data, BSS, stack, and heap, 
where BSS stands for Block Started by Symbol or Block Starting Symbol. Let’s take a closer look:

•	 Text: This is the code that will be executed on the machine. It is created at compile time. When it 
gets to runtime, it is the read-only portion of the process. The current machine instructions are 
found there, and depending on the compiler, you could find the const variables there as well.

•	 Data: This segment is created at compile time as well and consists of initialized global, static, 
or both global and static data. It is used for preliminary allocated storage, whenever you don’t 
want to depend on runtime allocation.

•	 BSS: In contrast to the data segment, BSS does not allocate space in the object file – it only marks 
the required storage if the program gets to runtime. It consists of uninitialized global, static, 
or both global and static data. This segment is created at compile time. Its data is considered 
initialized to 0, theoretically as per the language standard, but it is practically set to 0 by the 
OS’s program loader during process startup.

•	 Stack: The program stack is a memory segment that represents the running program  
routines – it holds their local variables and tracks where to continue from when a called function 
returns. It is constructed at runtime and follows the Last-in, First-Out (LIFO) policy. We want 
to keep it small and fast.
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•	 Heap: This is another runtime-created segment that is used for dynamic memory allocation. For 
many embedded systems, it is considered forbidden, but we are going to explore it further later 
in this book. There are interesting lessons to be learned and it is not always possible to avoid it.

In Figure 2.1, you can observe two processes that are running the same executable and are being 
loaded to the main memory at runtime. We can see that for Linux, the text segment is copied only 
once since it should be the same for both processes. The heap is missing as we are not focusing on it 
right now. As you can see, the stack is not endless. Of course, its size depends on many factors, but we 
guess that you’ve already seen the stack overflow message a few times in practice. It is an unpleasant 
runtime event as the program flow is ungracefully ruined and there’s the chance of it causing an issue 
at the system level:

Figure 2.2 – The memory segments of two processes

The main memory at the top in Figure 2.2 represents the virtual address space, where the OS uses a data 
structure, called a page table, to map the process’s memory layout to the physical memory addresses. 
It is an important technique to generalize the way the OS manages memory resources. That way, we 
don’t have to think about the device’s specific characteristics or interfaces. At an abstract level, it is 
quite like the way we accessed files in Chapter 1. We will get back to this discussion later in this chapter.

Let’s use the following code sample for analysis:

void test_func(){}
int main(){
     test_func(); return 0;
}
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This is a very simple program, where a function is called right after the entry point. There’s nothing 
special here. Let’s compile it for C++20 without any optimizations:

$ g++ mem_layout_example.cpp -std=c++2a -O0 -o test

The resulting binary object is called test. Let’s analyze it through the size command:

$ size test
 text       data        bss        dec        hex    filename
 2040        640          8       2688        a80    test

The overall size is 2,688 bytes, 2,040 of which are the instructions, 640 are the data, and 8 are for 
BSS. As you can see, we don’t have any global or static data, but still, 648 bytes have gone there. Keep 
in mind that the compiler is still doing its job, so there are some allocated symbols there, which we 
could analyze further when required:

$ readelf -s test

Now, let’s focus on something else and edit the code as such:

void test_func(){
    static uint32_t test_var;
}

A static variable that’s not initialized must cause BSS to grow:

$ size test
text       data        bss        dec        hex    filename
2040        640         16       2696        a88    test

So, BSS is bigger – not by 4 bytes, but with 8. Let’s double-check the size of our new variable:

$ nm -S test | grep test_var
0000000000004018 0000000000000004 b _ZZ9test_funcvE8test_var

Everything is fine – the unsigned 32-bit integer is for 4 bytes, as expected, but the compiler has put 
some extra symbols there. We can also see that it is in the BSS section, which is indicated by the letter 
b in front of the symbol. Now, let’s change the code again:

void test_func(){
    static uint32_t test_var = 10;}
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We have initialized the variable. Now, we expect it to be in the data segment:

$ size test
text       data        bss        dec        hex    filename
2040        644          4       2688        a80    test
$ nm -S test | grep test_var
0000000000004010 0000000000000004 d _ZZ9test_funcvE8test_var

As expected, the data segment has been enlarged by 4 bytes and our variable is there (see the letter d 
in front of the symbol). You can also see that the compiler has shrunk BSS usage to 4 bytes and that 
the overall object file size is smaller – just 2688 bytes.

Let’s make a final change:

void test_func(){
    const static uint32_t test_var = 10;}

Since const cannot be changed during the program’s execution, it has to be marked as read-only. 
For this, it could be put into the text segment. Note that this is system implementation-dependent. 
Let’s check it out:

$ size test
 text       data        bss        dec        hex    filename
 2044        640          8       2692        a84    test
$ nm -S test | grep test_var
0000000000002004 0000000000000004 r _ZZ9test_funcvE8test_var

Correct! We can see the letter r in front of the symbol and that the text size is 2044 and not 2040, 
as it was previously. It seems rather funny that the compiler has generated an 8-byte BSS again, but 
we can live with it. What would happen to the sizes if we removed static from the definition? We 
encourage you to try this out.

At this point, you’ve probably made the connection that the bigger compile-time sections generally 
mean a bigger executable. And a bigger executable means more time for the program to be started 
because copying the data from NVM to the main memory is significantly slower than copying data 
from the main memory to the CPU’s caches. We will get back to this discussion later when we discuss 
context switching. If we want to keep our startup fast, then we should consider smaller compile-time 
sections, but larger runtime ones. This is a balancing act that is usually done by the software architects, 
or someone who has a good system overview and knowledge. Prerequisites such as NVM read/write 
speed, DDR configuration, CPU and RAM loads during system startup, normal work and shutdown, 
the number of active processes, and so on must be considered.

We will revisit this topic later in this book. For now, let’s focus on the meaning of the memory segments 
in the sense of new process creation. Their meaning will be discussed later in this chapter.
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Continuing with process states and some scheduling 
mechanisms
In the previous section, we discussed to how initiate a new process. But what happens with it under 
the hood? As mentioned in Chapter 1, processes and threads are considered tasks in Linux’s scheduler. 
Their states are generic, and their understanding is important for correct procedure planning. A task, 
when expecting a resource, might have to wait or even stopped. We can affect this behavior through 
synchronization mechanisms as well, such as semaphores and mutexes, which we’ll discuss later in 
this chapter. We believe that understanding these fundamentals is crucial for system programmers 
as bad task state management can lead to unpredictability and overall system degradation. This is 
strongly observable in large-scale systems.

For now, let’s step aside for a bit and try to simplify the code’s goals – it needs to instruct the CPU to 
perform an operation and modify the data. Our task is to think about what the correct instructions 
would be so that we can save time in rescheduling or doing nothing by blocking resources. Let’s look 
at the states our process could find itself in:

Figure 2.3 – Linux task states and their dependencies
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The states in the preceding figure are detailed, but Linux presents them to the user in four general 
letter denotations:

•	 Executing (R – Running and Runnable): A processor (core or thread) is provided for the 
instructions of the process – the task is running. The scheduling algorithm might force it to 
give the execution. Then, the task becomes runnable, and it’s added to a queue of runnables, 
waiting their turn. Both states are distinct but are denoted as processes in execution.

•	 Sleeping (D – Uninterruptible and S – Interruptible): Remember the example with file 
read/write from the previous chapter? That was a form of uninterruptable sleeping that was 
caused by waiting for external resources. Sleep cannot be interrupted through signals until 
the resource is available and the process is available for execution again. Interruptible sleep is 
not only dependent on resource availability but allows the process to be controlled by signals.

•	 Stopped (T): Have you ever used Ctrl + Z to stop a process? That’s the signal putting the process 
in a stopped state, but depending on the signal request, it could be ignored, and the process 
will continue. Alternatively, the process could be stopped until it is signaled to continue again. 
We will discuss signals later in this book.

•	 Zombie (Z): We saw this state in Chapter 1 – the process is terminated, but it is still visible in 
the OS’s task vector.

Using the top command, you will see the letter S on the top row of the process information columns:

$ top
. . .
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

It will show you the letter denotation for the state of each process. Another option is the ps command, 
where the STAT column will give you the current states:

$ ps a
PID TTY STAT TIME COMMAND

With that, we know what states the tasks end up in, but not how and why they switch between them. 
We’ll continue this discussion in the next section.

Scheduling mechanisms

Modern Linux distributions provide many scheduling mechanisms. Their sole purpose is to help 
the OS decide which task must be executed next in an optimized fashion. Should it be the one with 
the highest priority or the one that will finish fastest, or just a mix of both? There are other criteria 
as well, so don’t fall under the false apprehension that one will solve all your problems. Scheduling 
algorithms are especially important when there are more processes in the R state than the available 
processors on the system. To manage this task, the OS has a scheduler – a fundamental module 
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that every OS implements in some form. It is usually a separate kernel process that acts like a load 
balancer, which means it keeps the computer resources busy and provides service to multiple users. 
It can be configured to aim at small latency, fair execution, max throughput, or minimal wait time. In 
real-time OSs, it must guarantee that deadlines are met. These factors are obviously in conflict, and 
the scheduler must resolve these through a suitable compromise. System programmers can configure 
the system’s preferences based on the users’ needs. But how does this happen?

Scheduling at a high level

We request the OS to start a program. First, we must load it from NVM. This scheduling level considers 
the execution of the program loader. The destination of the program is provided to it by the OS. The 
text and data segments are loaded into the main memory. Most modern OSs will load the program 
on demand. This enables a faster process startup and means that only the currently required code is 
provided at a given moment. The BSS data is allocated and initialized there as well. Then, the virtual 
address space is mapped. The new process, which carries the instructions, is created and the required 
fields, such as process ID, user ID, group ID, and others, are initialized. The program counter is set to 
the entry point of the program and control is passed to the loaded code. This overhead is considerably 
significant in the process’s lifetime because of the hardware constraints of NVM. Let’s see what happens 
after the program reaches the RAM.

Scheduling at a low level

This is a collection of techniques that try to provide the best order of task execution. Although we 
don’t mention the term scheduling much in this book, be sure that every manipulation we do causes 
tasks to state switch, which means we cause the scheduler to act. Such an action is known as a context 
switch. The switch takes time too as the scheduling algorithm may need to reorder the queue of tasks, 
and newly started task instructions must be copied from the RAM to the CPU cache.

Important note
Multiple running tasks, parallel or not, could lead to time spent in rescheduling instead of procedure 
executions. This is another balancing act that depends on the system programmer’s design.
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Here is a basic overview:

Figure 2.4 – Ready /blocked task queues

The algorithm must pick a task from the queue and place it for execution. At a system level, the basic 
hierarchy is as (from highest priority to lowest) scheduler -> block devices -> file management -> 
character devices -> user processes.

Depending on the queue’s data structure implementation and the scheduler’s configuration, we could 
execute different algorithms. Here are some of them:

•	 First-come-first-serve (FCFS): Nowadays, this is rarely used because longer tasks might stall 
the system’s performance and important processes might never be executed.

•	 Shortest job first (SJF): This provides a shorter time to wait than FCFS, but longer tasks may 
never be called. It lacks predictability.

•	 Highest priority first (HPF): Here, tasks have priority, where the highest one will be executed. 
But who sets the priority value and who decides if an incoming process will cause rescheduling 
or not? The Kleinrock rules are one such discipline where priority is increased linearly, while the 
task stays in the queue. Depending on the run-stay ratio, different orders are executed – FCFS, 
Last-CFS, SJF, and so on. An interesting article on this matter can be found here: https://
dl.acm.org/doi/10.1145/322261.322266.

•	 Round-robin: This is a resource starvation-free and preemptive algorithm, where each task 
gets a time quantum in an equal portion. Tasks are executed in circular order. Each of them 
gets a CPU time slot, equal to the time quantum. When it expires, the task is pushed to the 
back of the queue. As you have probably deduced, the queue’s length and the quantum’s value 
(usually between 10 and 300ms) are of great significance. An additional technique to maintain 
fairness is to enrich this algorithm in modern OS schedulers.

https://dl.acm.org/doi/10.1145/322261.322266
https://dl.acm.org/doi/10.1145/322261.322266
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•	 Completely fair scheduling (CFS): This is the current Linux scheduling mechanism. It applies 
a combination of the aforementioned algorithms, depending on the system’s state:

$ chrt -m
SCHED_OTHER   the standard round-robin time-sharing policy
SCHED_BATCH   for "batch" style execution of processes
SCHED_IDLE    for running very low priority background jobs.
SCHED_FIFO    a first-in, first-out policy
SCHED_RR      a round-robin policy

This approach is complex and deserves a book on its own.

What we care about here is the following:

	� Priority: Its value is the actual task priority, and it’s used for scheduling. Values between 0 
and 99 are dedicated to real-time processes, whereas values between 100 and 139 are for 
user processes.

	� Nice: Its value is meaningful at the user-space level and adjusts the process’s priority at 
runtime. The root user can set it from -20 to +19 and a simple user could set it from 0 to 
+19, where a higher nice value means lower priority. The default is 0.

Their dependency is that priority = nice + 20 for user processes and priority = -1 – real_time_priority 
for real-time processes. The higher the priority value, the lower the scheduling priority. We cannot 
change the base priority of a process, but we can start it with a different nice value. Let’s call ps with 
a new priority:

$ nice -5 ps

Here, -5 means 5. Making it 5 requires sudo permissions:

$ sudo nice -5 ps

Changing the priority of a process runtime can be done with the renice command and pid:

$ sudo renice -n -10 -p 9610

This will set the nice value to -10.

To start a real-time process or set and retrieve the real-time attributes of pid, you must use the chrt 
command. For example, let’s use it to start a real-time process with a priority of 99:

$ sudo chrt --rr 99 ./test

We encourage you to take a look at other algorithms, such as Feedback, Adaptive Partition Scheduling 
(APS), Shortest Remaining Time (SRT), and Highest Response Ratio Next (HRRN).
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The topic of scheduling algorithms is wide and not only concerns the OS task’s execution but other 
areas, such as network data management. We cannot go through its entirety here, but it was important 
to illustrate how to initially handle it and learn about your system’s strengths. That said, let’s continue 
by looking at process management.

Learning more about process creation
A common practice in system programming is to follow a strict timeline for process creation and 
execution. Programmers use either daemons, such as systemd and other in-house developed 
solutions, or startup scripts. We can use the Terminal as well but this is mostly for when we repair 
the system’s state and restore it, or test a given functionality. Another way to initiate processes from 
our code is through system calls. You probably know some of them, such as fork() and vfork().

Introducing fork()

Let’s look at an example; we’ll discuss it afterward:

#include <iostream>
#include <unistd.h>
using namespace std;
void process_creator() {
    if (fork() == 0) // {1}
        cout << "Child with pid: " << getpid() << endl;
    else
        cout << "Parent with pid: " << getpid() << endl;
}
int main() {
    process_creator();
    return 0;
}

Yes, we are aware that you’ve probably seen a similar example before and it’s clear what should be 
given as output – a new process is initiated by fork() [1] and both pid values are printed out:

Parent with pid: 92745
Child with pid: 92746

In Parent, fork() will return the ID of the newly created process; that way, the parent is aware 
of its children. In Child, 0 will be returned. This mechanism is important for process management 
because fork() creates a duplicate of the calling process. Theoretically, the compile-time segments 
(text, data, and BSS) are created anew in the main memory. The new stack starts to unwind from the 
same entry point of the program, but it branches at the fork call. Then, one logical path is followed 
by the parent, and another by the child. Each uses its own data, BSS, and heap.



Learning More about Process Management36

You’re probably thinking that large compile-time segments and stacks will cause unnecessary memory 
usage because of duplication, especially when we don’t change them. And you’re correct! Luckily for 
us, we are using a virtual address space. This allows the OS to have extra management and abstraction 
over the memory. In the previous section, we discussed that processes with the same text segments 
will share a single copy as it is read-only. There is an optimization that Linux adapts, where data and 
BSS will be shared through their single instances. If none of the processes update them, duplication is 
deferred until the first write. Whoever does this initiates copy creation and works with it. This technique 
is called copy-on-write. So, the only penalty for process creation would be the time and memory for 
the child’s metadata and the parent’s page tables. Still, make sure your code doesn’t fork() endlessly 
as this will cause a so-called fork bomb, leading to a denial of system service and resource starvation. 
The next section will cover creating a child process in its own address space through exec.

exec and clone()

The exec function call is not really a system call, but a group of system calls with the execXX(<args>) 
pattern. Each has a specific role, but most importantly, they create a new process through its filesystem 
path, known as pathname. The caller process’s memory segments are completely replaced and 
initialized. Let’s call the binary executable for our fork example from the previous section, leaving 
its command-line arguments set to NULL. This code is similar to the previous example, but a few 
changes have been made:

. . .
void process_creator() {
    if (execv("./test_fork", NULL) == -1) // {1}
        cout << "Process creation failed!" << endl;
    else
        cout << "Process called!" << endl;
}
. . .

The result is as follows:

Parent with pid: 12191
Child with pid: 12192

You can probably see that something’s missing from the printed output. Where’s the "Process 
called!" message? If something went wrong, such as the executable not being found, then we will 
observe "Process creation failed!". But in this case, we know it has been run because 
of the parent and child outputs. The answer to this can be found in the paragraph before this code 
example – the memory segments are replaced with the ones from test_fork.
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Similarly to exec, clone() is a wrapper function to the real clone() system call. It creates a new 
process, such as fork(), but allows you to precisely manage the way the new process is instantiated. 
A few examples are virtual address space sharing, signal handles, file descriptors, and so on. vfork(), 
as mentioned earlier, is a special variant of clone(). We encourage you to spend some time and 
take a look at some examples, although we believe that most of the time, fork() and execXX() 
will be enough.

As you can see, we’ve chosen the execv() function {1} for the given example. We’ve used this for 
simplicity and also because it’s related to Figure 2.5. But before we look at this figure, there are other 
functions we can use as well: execl(), execle(), execip(), execve(), and execvp(). 
Following the execXX() pattern, we need to be compliant with the given requirement:

•	 e requires the function to use an array of pointers to the environmental variables of the system, 
which are passed to the newly created process.

•	 l requires the command-line arguments to be stored in a temporary array and have them passed 
to the function call. This is just for convenience while handling the array’s size.

•	 p requires the path’s environment variable (seen as PATH in Unix) to be passed to the newly 
loaded process.

•	 v was used earlier in this book – it requires the command-line arguments to be provided to 
the function call, but they are passed as an array of pointers. In our example, we are setting it 
to NULL for simplicity.

Let’s see what this looks like now:

int execl(const char* path, const char* arg, …)
int execlp(const char* file, const char* arg, …)
int execle(const char* path, const char* arg, …, char*
  const envp[])
int execv(const char* path, const char* argv[])
int execvp(const char* file, const char* argv[])
int execvpe(const char* file, const char* argv[], char
  *const envp[])

In a nutshell, their implementation is the same when it comes to how we create a new process. The 
choice of whether or not to use them strictly depends on your needs and software design. We will 
revisit the topic of process creation several times in the next few chapters, especially when it goes to 
shared resources, so this will not be the last time we mention it.

Let’s take a look at a trivial example: suppose we have a process-system command that’s initiated through 
the command-line Terminal – shell. It is not run in the background – from the previous chapter, we 
know that in this case, we don’t end the line with &. This can be expressed through the following graph:
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Figure 2.5 – Executing commands from the shell

We have used this figure to emphasize the non-visible system calls for parent-child relationships 
between processes in Linux. In the background, the shell provides the executable’s pathname to 
exec(). The kernel takes control and goes to the entry point of the application, where main() is 
called. The executable does its work and when main() returns, the process is ended. The ending 
routine is implementation-specific, but you can trigger it yourself in a controlled manner through 
the exit() and _exit() system calls. In the meantime, the shell is put to wait. Now, we’ll cover 
how to terminate a process.

Terminating a process

Usually, exit() is seen as a library function that’s implemented on top of _exit(). It does some 
extra work, such as buffer cleanup and closing streams. Using return in main() could be considered 
the equivalent of calling exit(). _exit() will handle the process termination by deallocating 
the data and the stack segments, destructing kernel objects (shared memory, semaphores, and so 
on), closing the files, and informing the parent about its status change (the SIGCHLD signal will be 
triggered). Their interfaces are as follows:

•	 void _exit(int status)

•	 void exit(int status)
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It’s a common notion that the status value, when set to 0, means a normal process termination, 
whereas others indicate a termination caused by an internal process issue. Therefore, the EXIT_
SUCCESS and EXIT_FAILURE symbols are defined in stdlib.h. To demonstrate this, we could 
modify our fork example from earlier like so:

...
#include <stdlib.h>
...
    if (fork() == 0) {
        cout << "Child process id: " << getpid() << endl;
        exit(EXIT_SUCCESS); // {1}
    }
    else {
        cout << "Parent process id: " << getpid() << endl;
    }
...

So, the child will proceed as expected because nothing in particular happens, but we enable it to 
manage its termination policy better. The output will be the same as in the previous example. We will 
enrich this even further with a code snippet in the next section.

But before we do that, let’s note that both functions are usually related to a controlled manner of process 
termination. abort() will lead a process to termination in a similar fashion, but the SIGABRT 
signal will be triggered. As discussed in the next chapter, some signals should be handled and not  
ignored – this one is a good example of gracefully handling the exit routine of a process. In the 
meantime, what does the parent do and could it be affected by the child’s exit code? Let’s see.

Blocking a calling process

As you may have noticed in Figure 2.5, a process might be set to wait. Using the wait(), waitid(), 
or waitpid() system calls will cause the calling process to be blocked until it receives a signal or 
one of its children changes its state: it is terminated, it is stopped by a signal, or it is resumed by a 
signal. We use wait() to instruct the system to release the resources related to the child; otherwise, 
it becomes a zombie, as discussed in the previous chapter. These three methods are almost the same, 
but the latter two are compliant with POSIX and provide more precise control over the monitored 
child process. The three interfaces are as follows:

•	 pid_t wait(int *status);

•	 pid_t waitpid(pid_t pid, int *status, int options);

•	 int waitid(idtype_t idtype, id_t id, siginfo_t * infop , int 
options);
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The status argument has the same role for the first two functions. wait() could be represented 
as waitpid(-1, &status, 0), meaning the process caller must wait for any child process that 
terminates and receive its status. Let’s take a look at one example directly with waitpid():

#include <sys/wait.h>
...
void process_creator() {
    pid_t pids[2] = {0};
    if ((pids[0] = fork()) == 0) {
        cout << "Child process id: " << getpid() << endl;
        exit(EXIT_SUCCESS); // {1}
    }
    if ((pids[1] = fork()) == 0) {
        cout << "Child process id: " << getpid() << endl;
        exit(EXIT_FAILURE); // {2}
    }
    int status = 0;
    waitpid(pids[0], &status, 0); // {3}
    if (WIFEXITED(status)) // {4}
        cout << "Child " << pids[0]
             << " terminated with: "
             << status << endl;

    waitpid(pids[1], &status, 0); // {5}
    if (WIFEXITED(status)) // {6}
        cout << "Child " << pids[1]
             << " terminated with: "
             << status << endl;
...

The result from this execution is as follows:

Child process id: 33987
Child process id: 33988
Child 33987 terminated with: 0
Child 33988 terminated with: 256

As you can see, we are creating two child processes and we set one of them to exit successfully and 
the other with a failure ([1] and [2]). We set the parent to wait for their exit statuses ([1] and [5]). 
When the child exits, the parent is notified through a signal accordingly, as described earlier, and the 
exit statuses are printed out ([4] and [6]).
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In addition, idtype and the waitid() system call allow us to wait not only for a certain process 
but also for a group of processes. Its status argument provides detailed information about the actual 
status update. Let’s modify the example again:

...
void process_creator() {
...
    if ((pids[1] = fork()) == 0) {
        cout << "Child process id: " << getpid() << endl;
        abort(); // {1}
    }
    siginfo_t status = {0}; // {2}
    waitid(P_PID, pids[1], &status, WEXITED); // {3}
    if (WIFSIGNALED(status)) // {4}
        cout << "Child " << pids[1]
             << " aborted: "
             << "\nStatus update with SIGCHLD: "
             << status.si_signo
             << "\nTermination signal - SIGABRT: "
             << status.si_status
             << "\nTermination code - _exit(2): "
             << status.si_code << endl;
}...

The output is as follows:

Child process id: 48368
Child process id: 48369
Child 48369 aborted:
Status update with SIGCHLD: 20
Termination signal - SIGABRT: 6
Termination code - _exit(2): 2

We changed exit() to abort() ([1]), which caused the child process to receive SIGABRT and 
exit with default handling (not exactly what we advised earlier). We used the struct status ([2]) to 
collect more meaningful status change information. The waitid() system call is used to monitor a 
single process and is set to wait for it to exit ([3]). If the child process signals its exit, then we print out 
the meaningful information ([4]), which in our case proves that we get SIGABRT (with a value of 6), 
the update comes with SIGCHLD (with a value of 20) and the exit code is 2, as per the documentation.

The waitid() system call has various options and through it, you can monitor your spawned processes 
in real time. We will not delve deeper here, but you can find more information on the manual pages 
should it suit your needs: https://linux.die.net/man/2/waitid.

https://linux.die.net/man/2/waitid


Learning More about Process Management42

An important remark is that with POSIX and Linux’s thread management policy, which we discussed 
earlier, by default, a thread will wait on children of other threads in the same thread group. That said, 
we’ll get into some thread management in the next section.

Introducing the system calls for thread manipulation  
in C++
As discussed in Chapter 1, we use threads to execute separate procedures in parallel. They exist 
only in the scope of a process and their creation overhead is bigger than the thread’s one, so we 
consider them lightweight, although they have their own stack and task_struct. They are almost  
self-sufficient, except they rely on the parent process to exist. That process is also known as the main 
thread. All others that are created by it need to join it to be initiated. You could create thousands of 
threads simultaneously on the system, but they will not run in parallel. You can run only n parallel 
tasks, where n is the number of the system’s concurrent ALUs (occasionally, these are the hardware’s 
concurrent threads). The others will be scheduled according to the OS’s task-scheduling mechanism. 
Let’s look at the simplest example of a POSIX thread interface:

pthread_t new_thread;
pthread_create(&new_thread, <attributes>,
               <procedure to execute>,
               <procedure arguments>);
pthread_join(new_thread, NULL);

Of course, there are other system calls we could use to manage the POSIX threads further, such as 
exiting a thread, receiving the called procedure’s returned value, detaching from the main thread, and 
so on. Let’s take a look at C++’s thread realization:

std::thread new_thread(<procedure to execute>);
new.join();

This looks simpler, but it provides the same operations as the POSIX thread. To be consistent with 
the language, we advise you to use the C++ thread object. Now, let’s see how these tasks are executed. 
Since we’ll cover the newly added C++20 jthreads feature in Chapter 6, we will provide a system 
programming overview in the next few sections.

Joining and detaching threads

Regardless of whether you join threads through POSIX system calls or C++, you require this action 
to execute a routine through a given thread and wait for its termination. One remark, though – on 
Linux, the thread object of pthread_join() must be joinable, and the C++ thread object is not 
joinable by default. It is a good practice to join threads separately since joining them simultaneously 
leads to undefined behavior. It works the same way as the wait() system call does, except it relates 
to threads instead of processes.
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And the same way processes could be run as daemons, threads can become daemons as well through 
detaching – pthread_detach() for POSIX or thread::detach() in C++. We are going to 
see this in the following example, but we are also going to analyze the joinable setting of the threads:

#include <iostream>
#include <chrono>
#include <thread>
using namespace std;
using namespace std::chrono;
void detached_routine() {
    cout << "Starting detached_routine thread.\n";
    this_thread::sleep_for(seconds(2));
    cout << "Exiting detached_routine thread.\n";
}
void joined_routine() {
    cout << "Starting joined_routine thread.\n";
    this_thread::sleep_for(seconds(2));
    cout << "Exiting joined_routine thread.\n";
}
void thread_creator() {
    cout << "Starting thread_creator.\n";
    thread t1(detached_routine);
    cout << "Before - Is the detached thread joinable: "
         << t1.joinable() << endl;
    t1.detach();
    cout << "After - Is the detached thread joinable: "
         << t1.joinable() << endl;
    thread t2(joined_routine);
    cout << "Before - Is the joined thread joinable: "
         << t2.joinable() << endl;
    t2.join();
    cout << "After - Is the joined thread joinable: "
         << t2.joinable() << endl;
    this_thread::sleep_for(chrono::seconds(1));
    cout << "Exiting thread_creator.\n";
}
int main() {
    thread_creator();
}
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The respective output is as follows:

Starting thread_creator.
Before - Is the detached thread joinable: 1
After - Is the detached thread joinable: 0
Before - Is the joined thread joinable: 1
Starting joined_routine thread.
Starting detached_routine thread.
Exiting joined_routine thread.
Exiting detached_routine thread.
After - Is the joined thread joinable: 0
Exiting thread_creator.

The preceding example is fairly simple – we create two thread objects: one is to be detached from the 
main thread handle (detached_routine()), while the other (joined_thread()) will join 
the main thread after exit. We check their joinable status at creation and after setting them to work. As 
expected, after the threads get to their routines, they are no longer joinable until they are terminated.

Thread termination

Linux (POSIX) provides two ways to end a thread’s routine in a controlled manner from the inside of 
the thread: pthread_cancel() and pthread_exit(). As you have probably guessed from 
their names, the second one terminates the caller thread and is expected to always succeed. In contrast 
with the process exit() system call, during this one’s execution, no process-shared resources, such 
as semaphores, file descriptors, mutexes, and so on, will be released, so make sure you manage them 
before the thread exits. Canceling the thread is a more flexible way to do this, but it ends up with 
pthread_exit(). Since the thread cancelation request is sent to the thread object, it has the 
opportunity to execute a cancelation cleanup and call thread-specific data destructors.

As C++ is an abstraction on top of the system call interface, it uses the thread object’s scope to manage 
its lifetime and does this well. Of course, whatever happens in the background is implementation-
specific and depends on the system and the compiler. We are revisiting this topic later in this book as 
well, so use this opportunity to familiarize yourself with the interfaces.

Summary
In this chapter, we walked through the low-level events that occur during process or thread creation 
and manipulation. We discussed the processes’ memory layout and its significance. You also learned 
some important points about the OS’s way of task scheduling and what happens in the background 
during process and thread state updates. We will use these fundamentals later in this book. The next 
chapter will cover filesystem management and will provide you with some interesting C++ instruments 
in that domain.
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Filesystems

In this chapter, we will revisit the concepts of a file, which were discussed briefly in Chapter 1. You 
will learn in detail about the filesystem (FS) in Linux and its specifics. We will not go to certain 
filesystem implementations, as you will see there’re many, but we will establish the fundamentals of 
working with them. You will learn more about Linux’s FS hierarchy – its partitions, object types, and 
some frequently used operations.

You will get familiar with the filesystem library in C++, allowing you to execute system operations 
independently from the platform. We will use C++ examples to show you simple applications for file 
management. You’re also going to learn about string_views. Some of the operations you learn 
about here will be revisited again in Chapter 5, when we will discuss error handling.

Last but not least, you will learn hands-on about the fundamental inter-process communication 
(IPC) mechanism known as pipes. We will also discuss signals as system entities and their impact 
on communication. If you’re unfamiliar with data transfers between processes, then this is where 
you should start. If you are experienced, then you may notice that the code could be much more 
complicated – implementing server-client applications with pipes, for example. We are aware of that, 
but we believe that the examples are a good basis to start from – additional scalability of this mechanism 
has unwanted knock-on effects. We discuss this more in Chapter 7.

In this chapter, we will cover the following main topics:

•	 Going through Linux’s filesystem fundamentals

•	 Executing filesystem operations with C++

•	 IPC through anonymous pipes and named pipes

•	 Briefly observing the signal handling
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Technical requirements
In order to run the code examples, the reader must prepare the following:

•	 A Linux-based system capable of compiling and executing C and C++20 (for example, Linux 
Mint 21):

	� gcc12.2 compiler: https://gcc.gnu.org/git/gcc.git gcc-source

	� g++ with -std=c++2a flags for the C++ code

	� gcc without flags for the C code

•	 For all the examples, you can alternatively use https://godbolt.org/.

•	 Code examples could be found here: https://github.com/PacktPublishing/C-
Programming-for-Linux-Systems/tree/main/Chapter%203.

Going through Linux’s filesystem fundamentals
We went through some of the Unix (and Linux) filesystem definitions in Chapter 1. Let’s see how they 
really matter in the bigger picture of system programming. You probably remember what types of files 
there are in the Linux system – regular files, directories, special files, links, sockets, and named pipes. 
We are going to deal with most of them in this chapter and learn about what purpose they serve. One 
way to think about files in Unix, including Linux, is the following simple statement:

“On a UNIX system, everything is a file; if something is not a file, it is a process.”

So, everything that’s not a process has an API, which includes file operation system calls. Let’s agree 
that a file is the main instrument for the logical organization of data. Then there must be something 
that is the main instrument for file organization. Well, this is where the file management system, or 
simply the FS, comes into play. It looks after the files’ layout on the physical medium – the non-volatile 
memory (NVM), their organization on that medium, the operation abstraction (open(), write()), 
and so on.

The FS also allows the user to forget the hardware’s specifics for a moment and focus on data operations, 
as well as using the FS like an ordered catalog. It helps with the files’ structure and data visualization 
on the UI or CLI, access permissions, and the effective usage of resources. While the user has the 
chance to focus on file creation, deletion, modifications, and sharing, the FS cares more about data 
accuracy, device driver error handling, multiple user accesses, and so on. This is an important point, 
as we will observe some error states later in the book – for example, in Chapter 5, where the FS is the 
entity that creates the exception cases. And it also affects task scheduling, as we mentioned earlier. 
Let’s look at the FS structure and its specifics in Linux.

https://gcc.gnu.org/git/gcc.gitgcc-source
https://godbolt.org/

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%203
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%203
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%203
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Linux’s FS

We have to mention that there are many kinds of FSs. Each of them suits its own purposes, as the user 
experience implies multiple preferences, and not all of them exist together. Linux has the strength 
to support over 100 FSes. A combination of them can run simultaneously on a single system. This 
provides an opportunity for the user to operate with them optimally and benefit from all of them. 
If the FS is required just to organize the file structure, then an ordinary one could do the trick – for 
example, ext2 or FAT. If we want file consistency and less error-prone operations, then a journaling 
FS is required, such as ext4, ReiserFS, or XFS. For online data stores, network FSes, such as 
NFS and CIFS, might come in handy. Large files and a large number of small files require specific 
management, too, so volume management FSes, such as ZFS and btrfs, are useful. Last, but not 
least, there are FSes that are not backed by physical storage but represent entities in the main memory, 
which are particularly useful to the system programmers – proc, sys, ram, and tmp. However, at 
an abstract level, the file operations seem to be the same. So, we can have a unified interface. It not 
only allows system programmers to use the different FSes in the same way but also allows the OS’s UI 
to visualize the file structure – all of the files and directories – under the same FS tree. Linux realizes 
this through the virtual filesystem (VFS). It is also referred to as virtual FS switch – a layer residing 
in the kernel, providing a generic interface for the programs. Before we go into detail, let’s see how it 
looks from a design standpoint.

Figure 3.1 – A VFS software layer in Linux kernel
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Additionally, the VFS is object-oriented. This will not help us much with C++ code, unfortunately. 
Still, it is a good example of object-oriented programming in C, as the objects are actually of a struct 
type, containing file data and function pointers to the file operations. We will talk about those objects 
a bit later in the chapter. Let’s look at the directory structure and standardized partitioning now.

Directory structure and partitioning

The directory structure in Linux is well presented in the Filesystem Hierarchy Standard (FHS). Still, 
it is important to note that the files, including directories, are arranged in branches of a tree structure. 
Their character names are case-sensitive, and file suffixes (called extensions in Windows) might be 
useless in some cases – remember that regular files are treated as binary files and their extensions are 
mostly to help the user about their roles. This can be confusing for newcomers, especially if they use 
the Terminal and not the OS’s UI. The true file type is determined internally through magic numbers, 
or Magic Bytes. For example, executable scripts start with #!. You can read more about them by 
executing this command:

$ man magic

Getting back to the FS structure – it starts with the root directory, denoted with /. The root FS is 
mounted on that directory in the early stages of the system’s boot sequence. Every other FS is mounted 
during the OS startup or even later during normal operations. You can check your own configuration 
as follows:

$ cat /etc/fstab
# /etc/fstab: static file system information.
...
# <file system> <mount point>   <type>  <options>       <dump>  <pass>
# / was on /dev/sda5 during installation
UUID=618800a5-57e8-43c1-9856-0a0a14ebf344 /               ext4     
errors=remount-ro 0       1
# /boot/efi was on /dev/sda1 during installation
UUID=D388-FA76  /boot/efi       vfat    umask=0077      0       1
/swapfile                                 none            swap     
sw              0       0

It provides information about the mount points and the respective FS types. Outside this file, the 
FSes will be visible in the system as separate directories with their exact paths. Every one of them 
can be accessed through the root directory. An important point is that / and /root are different 
directories, as the first is the root directory and the latter is the home directory of the root user. 
Some other important partitions and directories are the following:

•	 /bin: Includes common user executables.

•	 /boot: Includes the Linux system startup files, the static part of the kernel, and the 
bootloader configuration.
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•	 /dev: Includes references to all peripheral hardware, which is represented through files with a 
special file type, 'c' or 'b', and they provide access to the real devices. We mentioned these 
special file types in Chapter 1.

•	 /etc: Includes the system configuration files.

•	 /home: This is the top-level directory, which is available for user files, and all users have their 
respective common subdirectory there.

•	 /lib: This includes shared library files that are needed to start the system.

•	 /mnt: The temporary mount point for external FSes. It makes a good combination with  
/media, where media devices such as USB flash drives are mounted.

•	 /opt: This consists of optional files and third-party software applications.

•	 /proc: This contains information about the system resources.

•	 /tmp: This is a temporary directory used by the OS and several programs for temporal storage 
– it will be cleaned up after reboot.

•	 /sbin: This includes the system binary files, usually utilized by the system administrator.

•	 /usr: This includes read-only files most of the time, but there are exceptions. It is for programs, 
libraries and binaries, man files, and documentation.

•	 /var: This includes variable data files – usually log files, database files, archived e-mails, and 
so on.

Let’s get back to mount points and FS partitions. As not many people are familiar with those, we 
will take the opportunity to briefly explain them. A good reason for this is that, as already mentioned, 
system programmers work with many FSes at a time, and some of them are related to network drives 
or different devices.

Linux does not assign a letter to a partition as Windows does; therefore, you can easily confuse a 
separate device for a simple directory. Most of the time, this shouldn’t be a big deal, but it might 
become a problem when you care about resource management, resiliency, and security. For example, 
vehicles overall have strict requirements for hardware durability, which extends to 10-15 years of 
serviceability. With this in mind, you must be aware of a device’s characteristics, especially if you write 
on it frequently or fill its entire space meaninglessly. The way an FS manages the data is also crucial 
to a peripheral’s memory exhaustion in time, so this choice is important.

fstab shows where FSes are mounted, but it also describes something else. First of all, let’s remember 
that FS partitions have the purpose of separating a single device – a hard drive, for example – into 
multiple partitions. This is used mostly in embedded systems with safety requirements. However, 
Linux also provides Logical Volume Manager (LVM), which allows flexible setups. In other words, 
FSes can easily get shrunk or enlarged, which is preferable on larger-scale systems.
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The creation of multiple FSs serves not only as a user data grouping tool but also allows other partitions 
to remain intact if one goes out due to failure. Another usage is when a device’s storage is unavailable – 
often, it’s just full of data. The entire system might stop working because it also relies on storage space. 
Therefore, it is better to fill only a single FS entirely and raise an error. The other FS will be left intact, 
and the system will continue working. From that point of view, it is a secure and robust solution. Just 
keep in mind that it doesn’t protect you from overall device failure. For that reason, many network 
storage devices rely on a Redundant Array of Inexpensive Disks (RAID). We will not deal with it 
here, but we encourage you to read more about it.

Now, you probably observed some additional data in the fstab output earlier. Except for the root 
partition, we actually divide the partition types into data and swap partitions:

•	 The data partition: This includes the root partition, together with all necessary information 
for system startup and normal run. It also includes standard data on Linux.

•	 The swap partition: This is indicated with swap in fstab, and it provides the system with 
the option to move data from the main memory to the NVM in cases of memory overflow. It 
is visible only to the system itself. This doesn’t mean you should overflow your RAM, but just 
keep it for extra flexibility in order to not compromise the system’s availability. Just remember, 
the NVM is much slower than the main memory chips!

Important note
The system administrator generally configures the partitions’ layout. Sometimes, one partition 
is spread across multiple NVM devices. This design is strictly related to the system’s purpose. 
Once the partitions are available to you as a user, you can only add more. We strongly discourage 
you from changing their properties unless you’re well aware of what you’re doing and why.

What about the mount points? The partitions are attached to the system through the mount points. This 
is how the FS recognizes a given space for particular data – the best example is the list of directories, as 
we mentioned earlier. You could display the information for the available mount points on the system, 
except the swap partitions, using the df command. In our case, this is the following:

$ df -h
Filesystem      Size  Used Avail Use% Mounted on
udev            5,9G     0  5,9G   0% /dev
tmpfs           1,2G  1,3M  1,2G   1% /run
/dev/sda5        39G   24G   14G  64% /
tmpfs           6,0G     0  6,0G   0% /dev/shm
tmpfs           5,0M  4,0K  5,0M   1% /run/lock
tmpfs           6,0G     0  6,0G   0% /sys/fs/cgroup
/dev/sda1       511M  4,0K  511M   1% /boot/efi
tmpfs           1,2G   16K  1,2G   1% /run/user/29999
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It is easy to see the relationship between the FS type and the mount point, for example, the Filesystem 
and Mounted on columns. We will not go into more detail on this, but we encourage you to read 
more about the parted tool, which is used exactly for the creation and editing of partitions.

Linux FS objects

As we already mentioned in the previous section, the FS is realized through objects, and there are 
four main types we care about:

•	 Superblock: This represents the mounted FS metadata – the respective device, the modification 
flags, the corresponding FS type, the FS access permissions, the modified files, and so on.

•	 Index node (i-node or inode): Each file has its own inode that refers to the file itself through 
a unique number and stores its metadata. This object contains the functions that the VFS can 
call but not the user-level code, such as open(), create(), lookup(), mkdir(). Regular 
files, special files, directories, and named pipes are represented through inodes. In other words, 
all entities in the FS have an inode that contains metadata about them. You can visualize this 
through the stat command:

$ stat test
  File: test
  Size: 53248         Blocks: 104        IO Block: 
4096   regular file
Device: 805h/2053d    Inode: 696116      Links: 1
Access: (0775/-rwxrwxr-x)  Uid: (29999/     oem)   Gid: 
(29999/     oem)
...

Now, look at the permission bits – 0775/-rwxrwxr-x. Both the numbers and the symbol 
flags have the same meaning but are different representations. - means the flag is not set. r 
means the file is readable by the current user, group, or everyone (reading left to right). w means 
writable, and x stands for executable. The leftmost bit has a specific role – if there is an extra p 
in front, it marks this file as a pipe. You can see this later in the chapter. If not, you can proceed 
forward and check the permissions bits of the symbolic link in the respective example later. 
Note that its permission bits start with 1. Other symbols you might see during your operations 
are d for directories, b for block devices, c for character devices, and s for sockets.

•	 Directory entry (dentry): For usability, we will not refer to physical files using numbers as the 
inode does but, instead, using names and locations. So, we need a translation table, mapping 
symbolic names (for users) to inode numbers (for the kernel). The easiest way to represent this 
is through the pathname, such as the following:

$ ls -li test
696116 -rwxrwxr-x 1 oem oem 53248 Jul 30 08:29 test
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As you can see, the inode is the same as the previous example – 696116, and the symbolic 
name is test.

•	 File: This object type is used to represent the content of an opened file to a process. It is created 
through open() and destroyed at close(). Some of the members this object contains are 
the dentry pointer, uid and gid, the file position pointer, and the inode method set, which 
relates to the methods and which the specific FS can execute for this exact file. The kernel 
allocates the new file structure and its unique file descriptor. The dentry pointer is initialized as 
well as the set of methods defined by the inode. The open() method is called for the specific 
FS realization, and the file is placed into the file descriptor table of the calling process. In  
user-space, the file descriptor is used for the application’s file operations.

The following diagram provides an overview of single-file access through multiple processes:

Figure 3.2 – File access organization

We can see a few interesting things here. Although the processes open the same file, they go through 
different execution paths before reaching the real data. First of all, the processes have their own open 
file table; therefore, they have their own descriptors. Whenever a process calls fork(), the child gets 
the same open file table. The independent process points to a separate one. Then, let’s say we have 
two dentries for the same file and our file objects point to it. Such a situation occurs when we reach 
the same physical file through different pathnames. As we work with the same file, the entries will 
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point to a single inode and superblock instances. From then on, the exact FS, where the file resides, 
will take over with its specific functions.

One disclaimer, though – the OS is not an arbiter of simultaneous file updates by multiple processes. It 
will schedule those operations by the rules we discussed in the previous chapter. If you want to make 
a specific policy for such actions, then this must be designed and applied explicitly. Although the FS 
provides file locking as a mutual exclusion technique, which you will learn later in the book, Linux 
usually doesn’t automatically lock open files. If you remove files using sudo rm -rf, you might 
delete ones that are currently in use. This can lead to irreversible system issues. We use file locking 
to ensure safe, concurrent access to the file’s contents. It allows only one process to access the file at 
a given time, thus avoiding possible race conditions, which you will learn about in Chapter 6. Linux 
supports two kinds of file locks – advisory locks and mandatory locks, which you can read more about 
here: https://www.kernel.org/doc/html/next/filesystems/locking.html.

Important note
The unique numbers for physical file identification through the respective inodes are not 
endless. The VFS might contain so many tiny files that it exhausts its abilities to create new 
files, while there’s still free space on the NVM. This error is observed on high-scale systems 
more often than you may think.

You’ve probably also wondered about the ways to reach the same file through different pathnames. 
Well, do you recall our discussion on link files in Chapter 1? We talked about hard links and symbolic 
links. The first ones are always available for a given file – for example, when there’s at least one hard 
link, related to a piece of data, then the corresponding file is considered to exist in the FS. Through it, 
a pathname is directly associated with the point on the NVM where the file resides and can be opened 
from. Multiple pathnames to the same point on the device lead to multiple hard link constructions. 
Let’s check it out. First, we will list the data for some of our files:

$ ls -li some_data
695571 -rw-rw-r-- 1 oem 5 May 28 18:13 some_data

Then, we will create a hard link for the same file through the ln command, and list both files:

$ ln some_data some_data_hl
$ ls -li some_data some_data_hl
695571 -rw-rw-r-- 2 oem oem 5 May 28 18:13 some_data
695571 -rw-rw-r-- 2 oem oem 5 May 28 18:13 some_data_hl

As you can see, they both have the same inode because they have different character names, but 
they are the same file. The only true representation of the file is the inode number – 695571. This 
means they truly point to the same block of the hard drive. Then, we see that the hard link counter 
has increased from 1 to 2 (between the access permissions and the uid columns).

https://www.kernel.org/doc/html/next/filesystems/locking.html
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Symbolic links are files that point to other files or directories through their respective pathnames, 
known as targets. The FS creates a new file, which only contains the pathname to the target, and 
deleting all symbolic links to a file will not cause its deletion from the system. Let’s create a symbolic 
link through the ln command again, but this time we will add the -s option. We will list all of the 
files so far:

$ ln -s some_data some_data_sl
$ ls -li some_data some_data_hl some_data_sl
695571 -rw-rw-r-- 2 oem oem 5 May 28 18:13 some_data
695571 -rw-rw-r-- 2 oem oem 5 May 28 18:13 some_data_hl
694653 lrwxrwxrwx 1 oem oem 9 May 28 18:16 some_data_sl -> some_data

You can easily see that the new file – some_data_sl – has a different inode from the original file and 
its hard link. It points to a new location in the NVM and has its own access permissions. In addition, 
it shows visually which pathname it truly points to. Even if there’s a symbolic link to a symbolic link, 
ls -li will still present the file a symbolic link is set to point to, such as the following:

696063 -rw-rw-r--  1 oem oem  4247 Jul  2 13:25 test.dat
696043 lrwxrwxrwx  1 oem oem     8 Aug  6 10:07 testdat_sl -> test.dat
696024 lrwxrwxrwx  1 oem oem    10 Aug  6 10:07 testdat_sl2 -> 
testdat_sl

And check out the sizes in bytes – the original file is only 4247 bytes in size, while the symbolic link 
is 8 bytes, and the next is 10. Actually, the original file size doesn’t matter for the symbolic link’s 
size, but something else does – you could figure it out by counting the number of characters in the 
referred file’s pathname.

All of the preceding filenames will provide you with the ability to access and modify the file. They 
also provide you with the flexibility to get data from multiple access points without duplication and 
meaningless usage of extra storage space. Many system programmers use symbolic links to reorder 
the FS, just for the purposes of easier data management for some specialized user processes. The Linux 
system itself does that, just to reorder the FS hierarchy for the same reasons. Let’s create an overview 
of this example through the following diagram:

Figure 3.3 – A hard link and symbolic link overview
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Important note
Even if the original file is moved or deleted, the symbolic link will continue to point to its 
pathname as a target, while the hard link must point to an existing file. The symbolic link will 
work across partitions, but the hard link doesn’t link paths on different volumes or FSes.

In the next section, we will continue to manipulate files, but this time through C++ code.

Executing FS operations with C++
With C++17 FS operations that are closer to the system programming are facilitated. The FS library 
allows the C++ developer to distinguish between the Linux fs types and perform certain operations 
with them. Let’s take a look at an exemplary interface:

bool is_directory(const std::filesystem::path& p)

This method checks whether a given pathname is a directory. In a similar fashion, we can do the other 
type checks – is_fifo(), is_regular_file(), is_socket(), and is_symlink(). Can 
you tell why we don’t have the is_hardlink() method? That’s right – if two files with different 
character names point to a single inode, then both of them provide access to the same content. It 
doesn’t matter whether the inode’s hard link counter is higher than one, although we could get it 
through the hard_link_count() method.

As the C++ language is compilable on multiple OSes, the FS functions are also dependent on the 
respective FSes for those exact systems. For example, FAT does not support symbolic links; therefore, 
the methods related to them will fail, and the error handling is left to the system programmer. You 
can use the std::filesystem::filesystem_error exception object to get details about 
the current error’s FS error state. Such discussions are available in Chapter 5.

We mentioned earlier that the concurrent file access has to be managed by the software engineer, or 
the OS will schedule the operations as it sees fit. The same goes for this library, too. Don’t expect it 
to handle race conditions or modification conflicts itself. Now, let’s see how some of the operations 
can be used. One disclaimer though – as mentioned, error conditions will be discussed later, so we 
will not focus on them here.
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We will create a new directory (marker {1} in the following code segment):

#include <iostream>
#include <filesystem>
using namespace std;
using namespace std::filesystem;

int main() {
    auto result = create_directory("test_dir"); // {1}
    if (result)
        cout << "Directory created successfully!\n";
    else
        cout << "Directory creation failed!\n";
    return 0;
}

Now, let’s see what happened on the FS:

$ ./create_dir
Directory created successfully!

If you call the program again, it will fail, as the directory already exists:

.$ /create_dir
Directory creation failed!

We populate the new directory, as described in the example earlier (see Figure 3.3), but this time with 
C++ code (markers {1} and {2} in the following code):

...
int main() {
    if (exists("some_data")) {
       create_hard_link("some_data", "some_data_hl");// {1}
       create_symlink("some_data", "some_data_sl"); // {2}
    }
...

Of course, it is important to call the program from the directory, where some_data is, or provide 
its pathname accordingly – through the absolute or relative path to it. If all is fine, then we proceed. 
This time, we’ve added some more characters to some_data, so it’s 9 bytes in size. Still, the picture 
is almost the same – of course, the inodes are different:

79105062 rw-rw-r-- 2 oem oem 9 May 29 16:33 some_data
79105062 rw-rw-r-- 2 oem oem 9 May 29 16:33 some_data_hl
79112163 lrwxrwxrwx 1 oem oem 9 May 29 17:04 some_data_sl  -> some_
data
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We also create by hand a new inner directory, called inner_test_dir, with a new file, called 
inner_some_data. Let’s iterate through the directory, both non-recursively (marker {1} in the 
following code) and recursively, and print out the directory contents (marker {2} in the following code):

...
int main() {
    const path path_to_iterate{"test_dir"};
    for (auto const& dir_entry :
        directory_iterator{path_to_iterate}) { // {1}
        cout << dir_entry.path() << endl;
    }
    cout << endl;
    for (auto const& dir_entry :
        recursive_directory_iterator{path_to_iterate}) {
        cout << dir_entry.path() << endl; // {2}
    }
    return 0;
}

The output is not surprising:

"test_dir/inner_test_dir"
"test_dir/some_data"
"test_dir/some_data_sl"
"test_dir/some_data_hl"

"test_dir/inner_test_dir"
"test_dir/inner_test_dir/inner_some_data"
"test_dir/some_data"
"test_dir/some_data_sl"
"test_dir/some_data_hl"

Now, we want to check whether some of the files are symbolic links (marker {1} in the following 
code), and if so, let’s print out their targets:

...
int main() {
    const path path_to_iterate{"test_dir"};
    for (auto const& dir_entry :
        recursive_directory_iterator{path_to_iterate}) {
        auto result = is_symlink(dir_entry.path()); // {1}
        if (result) cout << read_symlink(dir_entry.path());
    }
}
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Again, the output is as expected – the target is the initial source file:

$ ./sym_link_check
"some_data"

Let’s try to rename the symbolic link file (marker {1} in the following code segment), before we 
continue with some other modifications:

...
int main() {
    if (exists("some_data_sl")) {
        rename("some_data_sl", "some_data_sl_rndm"); // {1}
    }
...

We see that the renaming is successful:

79112163 lrwxrwxrwx 1 oem oem 9 May 29 17:04 some_data_sl_rndm -> 
some_data

Let’s remove the initial file – some_data (marker {2} in the following code), and observe the free 
space on the system changing (markers {1} and {3} in the following code):

...
int main() {
    if (exists("some_data")) {
        std::filesystem::space_info space_obj =
            space(current_path());// {1}
        cout << "Capacity: "
            << space_obj.capacity << endl;
        cout << "Free: "
            << space_obj.free << endl;
        cout << "Available: "
            << space_obj.available << endl;

        remove("some_data"); // {2}
        space_obj = space(current_path()); // {3}

        cout << "Capacity: "
            << space_obj.capacity << endl;
        cout << "Free: "
            << space_obj.free << endl;
        cout << "Available: "
            << space_obj.available << endl;
    }
...
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And here’s the output:

Capacity: 41678012416
Free: 16555171840
Available: 14689452032
Capacity: 41678012416
Free: 16555175936
Available: 14689456128

As you can see 4096 bytes have been freed, although the file was only 9 bytes in size. This is because 
the minimum value we actually use is the size of one NVM block – the smallest unit of data the OS 
can write in or read from a file. In this case, it is 4 KB. If the details are not interesting to you, but you 
only want to check whether the space values have been updated, then with C++ 20, you also have 
the == operator overload; thus you can directly compare the two space_info objects, which are 
actually behind the returned values of space() (markers {1} and {3}).

We used these code examples to go quickly through the C++ filesystem library. We hope it is a good 
overview for you, although we have jumped a bit from function to function. It should be useful in 
your work. The next section deals with something very important – the fundamentals of multi-process 
communication. As you already know from the beginning of this chapter, Linux treats everything 
that’s not a process as a file. The same goes for communication resources, and we will delve into them 
armed with our C++ knowledge. There will be a bit more theory, so stay with us!

IPC through anonymous pipes and named pipes
Before we even start working on this topic, let us ask you this. Have you ever done the following:

$ cat some_data | grep data
some data

If yes, then you probably call | a pipe. Where does this come from? Well, you actually pipe the output 
from one process as an input to another. You can do it with your own code as well – we are not limited 
to the system’s applications. And we can program this pipe communication in our own code, too. This 
is a fundamental instrument for the data transfer between processes. Do you remember reading earlier 
about FIFO files and named pipes? Yes, that’s right – they are the same thing, but is the |-symbolled 
pipe the same as them? No! That’s an anonymous pipe. System programmers differentiate between the 
so-called anonymous pipes and the named pipes. They have different purposes, so both of them are 
found on Linux systems nowadays. They are created and managed by pipefs, while the user executes 
the standard VFS system calls. We are going to use pipes as examples to visualize some observations 
for the FS as well. Let’s get into it then!
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Anonymous or unnamed pipes

Anonymous pipes cannot be observed in the FS, as they don’t have character names. They are created 
through a special system call, as you will see in the next example. They reside in the kernel, where 
a specific file buffer is created. From the example with the | symbol, you can easily conclude that 
such implementation is related more to short-term communication, and it is not persistent in time. 
Anonymous pipes have two endpoints – a read one and a write one. Both of these are represented 
by a file descriptor. As soon as both endpoints are closed, the pipe will be destroyed, as there are no 
more ways to reference it through an open file descriptor. In addition, this type of communication is 
known as a simplex FIFO communication – for example, it creates a one-way-only data transfer – most 
often from a parent process to a child. Let’s see one example, which uses the system calls to create an 
anonymous pipe and a simple data transfer:

#include <iostream>
#include <unistd.h>
#include <string.h>
using namespace std;
constexpr auto BUFF_LEN = 64;
constexpr auto pipeIn   = 0;
constexpr auto pipeOut  = 1;

We require an integer array to hold the file descriptors, representing the pipe’s in and out endpoints 
– a_pipe. Then, this array is passed to the pipe() system call, which will return -1 if there is an 
error, or 0 on success (see marker {1}):

int main() {
   int a_pipe[2]{};
   char buff[BUFF_LEN + 1]{};
   if (pipe(a_pipe) == -1) {  // {1}
       perror("Pipe creation failed");
       exit(EXIT_FAILURE);
   }
   else {
      if (int pid = fork(); pid == -1) {
         perror("Process creation failed");
         exit(EXIT_FAILURE);
      }
      else if (pid == 0) {
         // Child: will be the reader!
         sleep(1); // Just to give some extra time!
         close(a_pipe[pipeOut]); // {2}
         read(a_pipe[pipeIn], buff, BUFF_LEN); // {3}
         cout << "Child: " << buff << endl;
     }
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We create a new process through fork(), as we did in Chapter 2. Knowing this, can you tell how 
many pipes are created at the end? That’s right – one pipe is created, and the file descriptors are shared 
between the processes.

As the data transfer is one-way, we need to close the unused endpoint for each process – markers {2} 
and {4}. If the process writes and reads its own pipe in and out file descriptors, it will only get the 
information that it has written there beforehand:

      else {
         // Parent: will be the writer!
         close(a_pipe[pipeIn]); // {4}
         const char *msg = {"Sending message to child!"};
         write(a_pipe[pipeOut], msg, strlen(msg) + 1);
         // {5}
      }
   }
   return 0;
}

In other words, we forbid the child from talking back to the parent, and the parent can only send data 
to the child. The data is sent simply by writing it into a file and reading from it (see markers {3} and 
{5}). This is a very simple piece of code, and usually, the communication through anonymous pipes 
is that simple. However, be careful – write() and read() are blocking calls; if there’s nothing to be 
read from the pipe (the pipe buffer is empty), the respective process-reader will be blocked. If the pipe 
capacity is exhausted (the pipe buffer is full), the process-writer will be blocked. If there’s no reader 
to consume the data, SIGPIPE will be triggered. We will provide such an example in the last section 
of this chapter. There’s no risk of race conditions in the way we will present them in Chapter 6, but 
synchronization of data creation and consumption is still in the programmer’s hands. The next diagram 
provides you with some additional information on what happens when we use the anonymous pipe:

Figure 3.4 – An anonymous pipe communication mechanism
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In the background, at the kernel level, there are a few more operations going on:

Figure 3.5 – Anonymous pipe creation

The pipe’s capacity can be checked and set using the fcntl(fd, F_GETPIPE_SZ) and  
F_SETPIPE_SZ operations, respectively. You can see that the pipe has 16 pages by default. The page 
is the smallest unit of data the virtual memory can manage. If a single page is 4,096 KB, then it could 
transfer 65,536 bytes of data before it overflows. We will discuss this later in the chapter. However, keep 
in mind that some systems may vary, and the info from Figure 3.5 might be wrong for you. In a similar 
fashion, we can represent what happens at a lower level during read() and write() operations.

In the following diagram, the question of using an FS as a shared (global) memory arises. Note that 
although the FS has its own protection mechanisms through mutexes, this will not help us at a user 
level to synchronize the data correctly. Simply modifying a regular file through multiple processes 
will cause trouble, as mentioned earlier. Doing so with a pipe will cause less trouble, but we are still 
not on the safe side. As you can see, the scheduler is involved, and we might end up in a deadlock of 
constantly waiting processes. This is easier to avoid with anonymous pipes than with named pipes.
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Figure 3.6 – Pipe read and write operations

Now that we have our communication established, why do we need an additional file type such as the 
named pipe? We will discuss this in the next section.

Named pipes

Named pipes are a bit more complex than anonymous pipes, as there’s more programable context to 
them. For example, they have character names and are observable by a user in an FS. They are not 
destroyed after a process finishes working with them but, instead, when a specific system call for 
the file removal is executed – unlink(). Therefore, we can say that they provide persistency. In a 
similar fashion to anonymous pipes, we can demonstrate named pipes in the following CLI command, 
creating fifo_example as a result:

$ ./test > fifo_example
$ cat fifo_example
$ Child: Sending message to child!
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Also, the communication is duplexed – for example, the data transfer could work both ways. Still, 
your work might push you in the direction of wrapping system calls with C++ code. The next example 
provides a sample overview, with the disclaimer that it is exemplary, and as C++ context is added to 
the code, the program becomes larger in size. Let’s get an example from the pipe from earlier, which 
we can modify with C++ code, but the behavior remains the same:

#include <sys/stat.h>
#include <unistd.h>
#include <array>
#include <iostream>
#include <filesystem>
#include <string_view>
using namespace std;
using namespace std::filesystem;
static string_view fifo_name     = "example_fifo"; // {1}
static constexpr size_t buf_size = 64;
void write(int out_fd,
           string_view message) { // {2}
    write(out_fd,
          message.data(),
          message.size());
}

At marker {1}, we introduce the string_view object. It represents a pair of pointers to a string 
or an array, and its respective size. As it is a view-handle class type, we preferably and cheaply 
pass it by value (see marker {2}), together with the expected substring operation interface. It is 
always const, so you don’t need to declare it as such. So, it’s an object and it’s bigger in size, but 
it has the benefit of being unconditionally safe – taking care of typical C string error cases, such as  
NULL-termination. Any issue will be handled at compile time. In our case, we can simply use it 
as a const char* or const string alternative. Let’s proceed with the reader:

string read(int in_fd) { // {3}
    array <char, buf_size> buffer;
    size_t bytes = read(in_fd,
                        buffer.data(),
                        buffer.size());
    if (bytes > 0) {
        return {buffer.data(), bytes}; // {4}
    }
    return {};
}
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int main() {
    if (!exists(fifo_name))
        mkfifo(fifo_name.data(), 0666); // {5}

    if (pid_t childId = fork(); childId == -1) {
        perror("Process creation failed");
        exit(EXIT_FAILURE);
    }

Markers {2} and {3} show the C++ wrappers of write() and read() respectively. You can 
see that instead of doing strlen() or sizeof() acrobatics, we use the string_view’s and 
the array’s data() and size(), respectively, because they are packed together through the 
respective object. One important point is that we use array<char, buf_size> to be specific 
about the buffer size and type. Similarly, we can use string instead of array, as it is defined as 
basic_string<char>, and we can limit its size with reserve(buf_size). The choice really 
depends on your needs later in the function. In our case, we will use array as a direct representation 
of reading a fixed-sized char buffer from the pipe. We construct the resultant string afterward 
or leave it empty (see marker {4}).

Now, we will use the already known exists() function to discard a second mkfifo() call by 
the process that arrives second. Then, we check whether the file is truly a FIFO (see marker {6}):

    else {
        if(is_fifo(fifo_name)) { // {6}
            if (childId == 0) {
                if (int named_pipe_fd =
                        open(fifo_name.data(), O_RDWR);
                    named_pipe_fd >= 0) { // {7}
                    string message;
                    message.reserve(buf_size);
                    sleep(1);
                    message = read(named_pipe_fd); // {8}
                    string_view response_msg
                        = "Child printed the message!";
                    cout << "Child: " << message << endl;
                    write(named_pipe_fd,
                          response_msg); // {9}
                    close(named_pipe_fd);
                }
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Now, look at markers {7} and {10}. Do you see where we open the pipe, where we keep this 
result, and where we check its value? Correct – we keep these operations packed together in the if 
statement, thus focusing our scope on the same logical place. Then, we read from the pipe through 
the newly added function wrapper (markers {8} and {12}). And then we write to the pipe through 
the write() wrapper (markers {9} and {11}). Note that at marker {9}, we pass string_view 
to the function, while at marker {11}, we pass a string. It works for both cases, thus additionally 
proving our point of using string_views for such interfaces, instead of const string, const 
char *, and so on:

                else {
                    cout << "Child cannot open the pipe!"
                         << endl;
                }
            }
            else if (childId > 0) {
                if (int named_pipe_fd =
                        open(fifo_name.data(), O_RDWR);
                    named_pipe_fd >= 0) { // {10}
                    string message
                    = "Sending some message to the child!";
                    write(named_pipe_fd,
                          message); // {11}
                    sleep(1);
                    message = read(named_pipe_fd); // {12}
                    cout << "Parent: " << message << endl;
                    close(named_pipe_fd);
                }
            }
            else {
                cout << "Fork failed!";
      }

The pipe is removed at marker {13}, but we will keep it for experiments. For example, we can list 
the named pipe:

$ ls -la example_fifo
prw-r--r-- 1 oem oem 0 May 30 13:45 example_fifo



IPC through anonymous pipes and named pipes 67

Please observe that its size is 0. This means that everything written in was consumed. On close(), 
the kernel will flush the file descriptors and will destroy the FIFO object in the main memory, as it 
did for the anonymous pipe. It is possible sometimes that the reader doesn’t consume the data fully. 
As you may remember, it can store data for 16 pages. That’s why we encourage you to use the number 
of bytes, returned by the read() and write() functions, to decide whether the processes have to 
be terminated or not. Now, look at the permission bits – do you see something interesting there? Yes 
– there is an extra p in front of them, which marks this file as a pipe. Did you observe this somewhere 
earlier in the chapter? If not, you can go back and check the permissions bits of the inode. 

Let’s continue with the last code snippet:

            remove(fifo_name); // {13}
        }
    }
    return 0;
}

This is a simple one-time ping-pong application with the following output:

Child: Sending some message to the child!
Parent: Child printed the message!

You can still use an IO operation to send the message, but then string_view wouldn’t do. In the 
next section, we will provide a brief overview of what happens when communication through a pipe 
is disturbed. To keep the focus on system calls, we will put aside C++ for now.

Let’s now return to the C++ filesystem library. We can check whether the current file is truly a FIFO 
file through the library operations. If so, let’s delete it with the remove() function. It will be the 
same as unlink(), although one level of abstraction over the system call itself. Again, this will give 
us some platform independency:

...
int main() {
    if (exists("example_fifo") && is_fifo("example_fifo")){
        remove("example_fifo");
        cout << "FIFO is removed";
    } ...
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As you see, we use the already known methods, which were explained earlier in the chapter. Let’s see 
what happens at the VFS and kernel levels now:

Figure 3.7 – Named pipe creation system operations

This diagram, as well as the next one, gives you an example of why the anonymous pipe is considered 
a bit more lightweight. See how many functions calls there are between the initial system call from the 
process caller until the actual FS inode operation is executed. That said, together with the additional 
effort to close and delete files, it is easy to conclude that even the related code is larger. Still, the named 
pipe is used for persistency and communication between different processes, including ones that don’t 
have a parent-child relationship. Just think about it – you have the communication resource endpoint 
in the FS, you know its character name, and then you only have to open it from two independent 
processes, and start the data transfer. A similar approach is used by other IPC mechanisms, as we will 
discuss later in Chapter 7. Until then, check out the following diagram to see how many operations 
there are between the simple open() function and the creation of the FIFO buffer in the kernel:
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Figure 3.8 – Named pipe opening and transformation to pipe

The filesystem library doesn’t allow you to directly work with the file descriptors. At the same time, 
the system calls expect them. Someday, it might be different in the C++ Standard.

Note
There’s an already known non-standard approach to associating a file descriptor with iostream. 
You can refer to it here: http://www.josuttis.com/cppcode/fdstream.html.

We will use the next section to provide a brief overview of what happens when communication 
through a pipe is disturbed.

Briefly observing signal handling
Signals in Linux are a powerful and simple way to synchronize processes through software interrupts 
sent to them, indicating that an important event has occurred. They have a different nature, depending 
on their roles. Some of them are ignorable, while others are not and cause a process to be blocked, 
unblocked, or terminated. We discussed those behaviors in the previous chapter, but is there something 
we could do to gracefully handle them? We will use the anonymous pipe example to trigger a  
SIGPIPE signal. 

http://www.josuttis.com/cppcode/fdstream.html
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Let’s see the following example:

...
void handle_sigpipe(int sig) { // {1}
   printf("SIGPIPE handled!\n");
}
int main() {
   int an_pipe[2] = {0};
   char buff[BUFF_LEN + 1] = {0};
   if (pipe(an_pipe) == 0) {
      int pid = fork();
      if (pid == 0) {
         close(an_pipe[pipeOut]); // {2}
         close(an_pipe[pipeIn]);
      }

We define a SIGPIPE handler (marker {1}), where we could provide additional functionality if this 
signal is triggered. We intentionally close both the pipe endpoints of the child, so there’s no process 
that would read from it. Then, we declare a signal action, which maps the signal handler to the action 
itself (markers {3} and {4}). We provide some time for the child to close the file descriptors, and 
then we try to write in the pipe:

      else {
         struct sigaction act = {0};
         sigemptyset(&act.sa_mask);
         act.sa_handler = handle_sigpipe; // {3}
         if(sigaction(SIGPIPE, &act, 0) == -1) {// {4}
            perror("sigaction"); return (1);
         }
         close(an_pipe[pipeIn]);
         sleep(1);
         const char *msg = {"Sending message to child!"};
         write(an_pipe[pipeOut], msg, strlen(msg) + 1);
// {5} ...
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The kernel will trigger SIGPIPE, which intends to block the parent until there’s someone to read 
from it. In this case, we print out a message, telling the user that the signal is received and the parent 
process will be terminated. Actually, this is the default behavior to handle such a signal. We use the 
handle to inform the user accordingly:

$ ./sighandler_test
SIGPIPE handled!

However, we can also ignore the signal through the following simple change on marker {3}:

act.sa_handler = SIG_IGN; // {3}

Calling the program once again will not trigger the handler, which means that the signal is ignored 
and the process will continue as per its workflow. You can use both approaches in your code, but be 
careful – some signals cannot be ignored. We will use this knowledge later in the book.

Summary
In this chapter, we didn’t show any examples of file data modifications through C++. Our goals were 
mostly related to explaining the different Linux FS entities. We use the C++ filesystem library to enrich 
the knowledge in this direction – for example, improving system programming awareness. You learned 
about the roles of the different FS objects and their specifics. You also have the C++ instruments to 
manage file resources and level up your abstraction. There were also some hands-on examples of how 
to communicate between processes through anonymous and named pipes. Their implementation at 
the OS level was discussed as well, and we briefly explored signal handling in Linux.

In the next chapter, we will finally dive deeper into the C++ language, laying the foundations for its safe 
and secure usage, according to the latest standard. Later in the book, we will revisit some code segments 
shown in this chapter. We will continuously improve them through the usage of new C++ features.





4
 Diving Deep  

into the C++ Object

In this chapter, we will pay special attention to the object in the C++ language. But what makes the 
object in C++ so special that we should pay so much attention to it? Well, considering the fact that 
C++ supports the object-oriented programming paradigm, it is assumed that the object itself takes 
a central position in the structure of the language. You will see that there are many specifics around 
objects in C++.

In this chapter, we will delve into the fundamental aspects of objects in C++. We will start by examining 
how the C++ standard specifies the definition of an object. Moving on from there, we will take a closer 
look at the different types of object initializations, such as aggregate, direct, and copy initialization, 
and their use cases.

We will also explore the concept of storage duration for objects. Additionally, we will take a look at 
the scope and lifetime of objects in C++. We will also see what references are and how they correlate 
to objects.

As we progress further, we will learn about temporary objects and why it is important to handle them 
with care, and the concept of function objects and lambdas in C++. We will explore an example of 
how to use lambdas with a Standard Template Library (STL) algorithm, which will help us gain a 
comprehensive understanding of how to leverage these powerful features to create more efficient and 
optimized code.

By the end of this chapter, you will have a clear understanding of the fundamental concepts of objects in 
C++, and you will be familiar with some techniques you can use to create more robust and efficient code.

In this chapter, we will cover the following topics:

•	 The C++ object model

•	 Scope, storage duration, and lifetimes

•	 Functors and lambdas in C++

Alright, it’s time to begin!
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Technical requirements
All examples in this chapter have been tested in an environment with the following configuration:

•	 Linux Mint 21 Cinnamon edition

•	 GCC 12.2 with compiler flags – -std=c++20

•	 A stable internet connection

•	 Please make sure your environment uses these versions or later. For all the examples you can 
alternatively use https://godbolt.org/.

•	 All code examples in this chapter are available for download from https://github.
com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/
Chapter%204.

Understanding the C++ object model
C++ programs involve the creation, manipulation, and destruction of various entities known as objects. 
An object in C++ possesses several attributes such as type, size, storage duration, lifetime, alignment 
requirements, and value. The name of the object is optional.

The lifetime of the named object is bounded by its storage duration, and if the object doesn’t have a 
name, it is considered a temporary object. However, not all entities in C++ are considered objects. For 
example, the reference is one such non-object.

First, let’s take a brief look at the terminology because it is important to be aware of it, as it will help 
us in our daily work with the C++ language.

Declaration versus definition

In C++, the terms declaration and definition are often used to refer to different aspects of a variable, 
function, or class. Here’s what each term means:

•	 Declaration: A declaration introduces a name into a program and specifies the type of the 
variable, function, or class, such as the following:

extern int x;
void foo(int arg);
struct Point;

In the preceding example, x, foo, and Point are all declared but not defined. The extern 
keyword in the variable declaration indicates that x is defined elsewhere in the program. In 
declaration, no memory is allocated.

https://godbolt.org/
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%204
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%204
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%204
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•	 Definition: A definition provides the actual implementation for a name that has been declared. 
It reserves memory for variables, allocates code space for functions, and defines the layout of 
classes, such as the following:

int x;
void foo(int arg) {
   // function body
}
struct Point {
   // struct members and methods
};

In the preceding example, x, foo, and Point are all defined.

So, the declaration introduces a name and specifies its type, while the definition provides the actual 
implementation and allocates memory for the object.

Now that we are familiar with the terminology, let’s dive deep into the specifics of the objects in C++.

Scope, storage duration, and lifetimes

Each object or reference in a C++ program has a specific region in the program where it is visible 
and accessible, a specific lifetime, and a specific type of memory it occupies. Let’s take a closer look 
at each of them.

Scope

In C++, the scope of a variable, function, or class refers to the region of the program where the name 
of the entity is visible and can be accessed without qualification. The scope rules determine which 
identifiers are visible and accessible in different parts of the program. The standard defines several 
types of scopes in C++. Some of them are as follows:

•	 Global: Variables, functions, and classes declared outside any function or class have global 
scope. They can be accessed from any part of the program, such as the following:

int x = 1; // global variable
void foo() {
    std::cout << x << std::endl; // access global
      variable
}
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•	 Function: Variables declared inside a function have function scope. They can be accessed only 
within the function where they are declared, such as the following:

void foo() {
    int x = 1; // local variable
    std::cout << x << std::endl; // access local
      variable
}

•	 Block: Variables declared inside a block, which is a sequence of statements enclosed in curly 
braces ({}), have block scope. They can be accessed only within the block where they are 
declared, or in inner blocks if there are any, such as the following:

void foo() {
    int x = 2; // local variable with function scope
    {
        int y = 4; // local variable with block scope
    }
}

These are some of the scopes we use in C++. Now, let’s see what storage duration means in C++.

Storage duration

In C++, storage duration refers to the lifetime of an object, or how long it exists in memory. There are 
four types of storage duration:

•	 Automatic: These objects are created when a program enters the block in which they are 
declared, and they are destroyed when the block is exited. Examples include local variables 
declared without the static keyword and function parameters.

•	 Static: These objects are created either when a program starts or when the program execution 
reaches this stage for the first time. Also, they are destroyed when the program terminates. They 
are stored in a global memory area and persist throughout the program’s lifetime. Examples 
include global variables and variables declared with the static keyword inside a function.

•	 Dynamic: These objects are created with the new operator and destroyed with the delete 
operator. They exist on the heap and can be accessed by multiple parts of a program.

•	 Thread-local: These objects are created when a thread is created and destroyed when the 
thread terminates. They are like objects with static storage duration, but they are specific to a 
particular thread.
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Here is an example that illustrates the different types of storage duration:

#include <iostream>
int global_var = 1; // Static storage duration
void foo() {
    int automatic_var = 2;
    static int static_var = 3;
    int* dynamic_var = new int(4);
    std::cout << "Automatic var: " << automatic_var <<
      '\n';
    std::cout << "Static var: " << static_var << '\n';
    std::cout << "Dynamic var: " << *dynamic_var << '\n';
    delete dynamic_var;
}
int main() {
    foo();
    std::cout << "Global var: " << global_var << '\n';
    return 0;
}

In this example, global_var has static storage duration because it is a global variable. automatic_
var has automatic storage duration because it is declared inside the foo function. static_var 
also has static storage duration, but it retains its value between calls to foo because of the static 
keyword. dynamic_var itself has an automatic storage duration, but the allocated memory that 
it points to has dynamic storage duration because it is allocated with the new operator. When foo 
returns, automatic_var is automatically destroyed, dynamic_var is destroyed with the help of 
the delete operator, while static_var and global_var persist throughout a program’s lifetime.

Lifetime

The term lifetime refers to the duration of the existence of an object or a reference within a program. 
Every object and reference in C++ has a specific lifetime. The lifetime of an object begins when 
memory is allocated for it, and it is initialized. If the object’s type has a constructor, then the lifetime 
begins when the constructor is successfully completed. The lifetime of an object ends either when 
its destructor is called or, if no destructor exists, when it is destroyed. Thus, an object’s lifetime is 
equivalent to or smaller than the duration of its storage. Similarly, the lifetime of a reference begins 
when its initialization is completed and ends up like a scalar object.

The object

Each object is created by a definition statement that introduces, creates, and optionally initializes a 
variable. A variable is an object or a reference that is not a non-static data member, and it is introduced 
by a declaration (Object - cppreference.com).

http://cppreference.com


 Diving Deep into the C++ Object78

Let’s define a simple variable and create an object from it:

void foo() {
    int x;
}

We have defined and, at the same time, instantiated an object from an integer type on the stack 
of the foo() function. Each object in C++ occupies a certain amount of memory at a specific 
memory region. Being on the stack, this object has an automatic storage duration. In our example, 
it means that the object will be created when the function starts and will be automatically destroyed 
when the function ends. When it is instantiated, it uses some amount of memory. This amount is a  
compile-time known value, and it can be acquired with the sizeof operator. Keep in mind that 
the size of some types can vary depending on the underlying hardware where your program runs, 
so if you need to be sure of the size, always use the operator to calculate it. Such an example is the 
fundamental int type. The standard says that the size of the int type can’t be less than 16 bits. For 
Linux Mint 21 with GCC 12.2, in which the examples of this chapter are run, the used underlying 
data model is LP64. This means that int is 4 bytes, and long and pointer are 8 bytes. In the next 
example, we demonstrate the size of the types mentioned earlier. In order to compile and run this 
code, you have to pass it in a function:

int i;
long l;
char* p;
std::cout << "sizeof(int) = " << sizeof(int) << "; sizeof(i) = " << 
sizeof(i) << '\n';
std::cout << "sizeof(long) = " << sizeof(long) << "; sizeof(l) = " << 
sizeof(l) << '\n';
std::cout << "sizeof(char*) = " << sizeof(char*) << "; sizeof(p) = " 
<< sizeof(p) << '\n';

Here is the output of the example:

sizeof(int) = 4; sizeof(i) = 4
sizeof(long) = 8; sizeof(l) = 8
sizeof(char*) = 8; sizeof(p) = 8

Nothing surprising so far. int is 4 bytes, but the pointer, no matter which type it points to, is 8 bytes.

Now, let’s define several structures and check their memory footprint:

struct Empty {};
struct Padding {
    long test;
    char m;
};
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struct Virt {
    virtual char GetChar() const { return ch; }
    char ch;
};
void foo() {
    std::cout << "Empty: " << sizeof(Empty) << '\n';
    std::cout << "Padding: " << sizeof(Padding) << '\n';
    std::cout << "Virt: " << sizeof(Virt) << '\n';
}

We have defined three structures – Empty, Padding, and Virt. The Empty structure, as the name 
suggests, is just an empty structure without any members in it. The Padding structure contains 
two members – long and char. As we saw from the previous example, in my testing environment, 
long is 8 bytes and char is 1 byte. Finally, the Virt structure has only one member of type char 
and one virtual method. Structure and class methods are not part of the object itself. They reside in 
the text segment rather than in the memory occupied by the object. Let’s execute the earlier code and 
see the result:

Empty: 1
Padding: 16
Virt: 16

We can see that all the objects occupy memory. Even the empty one! This is guaranteed by the standard 
because any object in the system has to have an address on which it resides. If it doesn’t occupy any 
memory, then no address can be assigned to it. Therefore, at least 1 byte is reserved for every object 
in the program.

The Padding structure occupies more memory than the sum of its members’ memory. This is because 
the compilers are free to place the objects on an address, which requires less instruction arithmetic in 
order to be accessed faster. Therefore, they add padding bytes to the size of the type if this is required.

Finally, the Virt structure contains only one member, which has type char. However, the structure 
occupies the same amount of memory as the Padding structure. This is a result of how the mechanics 
of the polymorphism are implemented in C++. The structure contains a virtual method that notifies 
the compiler that this user-defined type will be used polymorphically. As a result, the compiler injects 
in every instantiated object from this type a pointer to a table, with the addresses of all the virtual 
methods of the class.

As a result of all these examples, we can conclude that each object occupies memory once it is instantiated, 
and the size of the memory can vary depending on the underlying system and the definition of the type.

Next, we will get familiar with references in C++ and how they differ from objects in the language.
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The reference

In the previous section, we found out that we can declare a variable not only from an object but also 
from a reference. But what is a reference in terms of C++? According to the standard, a reference variable 
is an alias to an already-existing object or function. This means that we can use aliases to work with 
objects without having a difference in the syntax, rather than working with pointers to objects where 
the syntax is quite different. Let’s have a look in the following example. In order to compile and run 
it, you need to invoke it from a function:

char c;
char& r_c{c};
char* p_c;
std::cout << "sizeof(char) = " << sizeof(char) << "; sizeof(c) = " << 
sizeof(c) << '\n';
std::cout << "sizeof(char&) = " << sizeof(char&) << "; sizeof(r_c) = " 
<< sizeof(r_c) << '\n';
std::cout << "sizeof(char*) = " << sizeof(char*) << "; sizeof(p_c) = " 
<< sizeof(p_c) << '\n';

In this example, we declare three variables – a character, a reference to a character, and a pointer 
to a character. An important detail when working with reference variables is that at the point of its 
declaration, we must also initialize it with the object it will refer to. From this moment on, every 
operation invoked on the reference variable is actually invoked on the aliased object. But what indeed 
is an alias? Does it occupy memory just like the pointer does? Well, this is a gray area. The standard 
says that the references, unlike objects, do not always occupy storage. However, the compiler may 
allocate storage if required to implement the intended semantics. As a result of this, you can’t use the 
sizeof operator to get the size of a reference:

sizeof(char) = 1; sizeof(c) = 1
sizeof(char&) = 1; sizeof(r_c) = 1
sizeof(char*) = 8; sizeof(p_c) = 8

You can see that the pointer size matches the expectation rather than the size of the reference type, 
where it matches the size of the type to which it has an alias.

Understanding why initialization matters

Initialization is the process of setting the initial value of an object during its construction. In C++, 
there are several types of initializations depending mostly on the following:

•	 The storage duration which the object belongs to

•	 The definition of the object

Knowing the different types of initializations and exactly when they happen will certainly make you 
more confident in writing predictable code.
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Let’s look at a few examples of various types of initializations that the C++ language supports. This 
will make it clearer when initialization occurs.

Default initialization

In the next example, you can see a default initialization. In order to run and test this code, you have 
to invoke the foo() method:

struct Point {
    double x;
    double y;
};
void foo() {
    long a; // {1}
    Point p1; // {2}
    std::cout << "{1}: " << a << '\n';
    std::cout << "{2}: " << p1.x << ", " << p1.y << '\n';
}

In marker {1}, we have declared a stack variable from type long. The type of initialization that will 
apply on an object depends mainly on the following:

•	 The storage duration it occupies: This means that different initialization policies may apply, 
depending on whether the object lives on the stack, in the global space, and so on

•	 The type of declaration: This means that different initialization policies may apply, depending 
on how syntactically we have declared a variable – whether we have specified an init value, 
how exactly we have passed that init value, and so on

The long a; variable in our example has automatic storage duration, meaning it lives on the function’s 
stack. In its declaration, we haven’t specified any initialization value. For such objects, we will apply 
default initialization. When an object is default-initialized, the C++ compiler will generate code that 
calls the default constructor of the object’s type if one exists. However, since long is a fundamental 
C++ type that lacks a default constructor, the C++ runtime does not perform any initialization on it, 
resulting in an unpredictable value. This means that the value that will be used for initialization is 
not specified and could be literally any. This is also the case with the Point p1; object, which is a  
user-defined type, but we did not specify a default constructor for it. The Point structure is a so-called 
Plain Old Data (POD) type because it is fully compatible with the structures from the C language. 
For such types, the compiler will generate a trivial default constructor for you, which effectively does 
nothing when called.

The output of the earlier example will look like this:

{1}: 1
{2}: 4.19164e-318, 4.3211e-320
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In my environment, the a and p1 objects both have indeterministic values. If you run the example 
of your own, you will possibly get different values.

Direct initialization

In our next example, we will learn about C++ direct initialization. In order to run and test this code, 
you have to invoke the foo() method again. Bear in mind that the int c_warn{2.2}; // 
{4.2} statement from this example should be commented out in order to compile successfully:

void foo() {
    int b(1);         // {3.1}
    int b_trunc(1.2); // {3.2}
    int c{2};         // {4.1}
    int c_warn{2.2};  // {4.2}

    std::cout << "{3.1}: " << b << '\n';
    std::cout << "{3.2}: " << b_trunc << '\n';
    std::cout << "{4.1}: " << c << '\n';
}

In the first statement from the example, int b(1);, we have defined a variable of type int, and 
we have explicitly initialized it with a value of 1. This is the direct initialization that we have known 
since the dawn of the C++ language. In order to invoke it, you have to specify the initialization value 
in parentheses, and that value has to match some of the conversion constructors of the object’s type. 
These conversion constructors can be compiler-generated. In our example, we use int, which is a 
fundamental C++ type and supports direct initialization with integer values. As a result, the b object 
will be initialized with a value of 1, so nothing new so far.

With the next statement, we declare an int b_trunc(1.2); variable, but this time, we initialize it 
with a floating-point value of 1.2. This statement works fine and declares a variable of type int and 
initializes it with a value of… 1! Yes, according to the C++ standard, which tries to be as compatible 
as possible with the C language for features that are present in both languages, the value is truncated 
down to its mantissa. In some cases, it could be useful to initialize an integer object with a floating-point 
value, but in others, this could be an inadvertent error. In such a case, we will expect the compiler to 
warn us that we are potentially doing something wrong. Therefore, C++11 introduced the so-called 
uniform initialization.

In the next statement from the example, int c{2};, we again declare a variable of type int, but 
we initialize it using curly braces rather than parentheses. This notifies the compiler to invoke direct 
list initialization, which is a kind of uniform initialization. It is a named list initialization because it 
can be used as an initialization list of values of different types to initialize complex objects.

One reason to prefer using uniform initialization wherever this is possible is visible in the next 
statement from the example:

int c_warn{2.2};  // {4.2}
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As we just saw, using direct initialization to initialize an object of a specific type with a value of a wider 
type leads to a silently truncated initialized value. In some situations, this can lead to bugs. One way 
to avoid this potential side effect is to use uniform initialization instead. In our example, we defined 
a variable of type int and again initialized it with a floating-point value. However, this time, the 
compiler will not silently initialize c_warn with a value of 2, but it will generate an error similar to this:

error: narrowing conversion of '2.2000000000000002e+0' from 'double' 
to 'int' [-Wnarrowing]

The error is produced because we try to perform a narrowing conversion in the initialization of an 
int variable with a double value. Therefore, it is safer to use uniform initialization over a direct 
one because it protects you from narrowing conversions during initialization.

Zero and aggregate initialization

Let’s see another initialization example. We will initialize an object that holds the personal data for 
Person and a few integer objects:

struct Person {
    std::string name;
    int age;
};
void init() {
    int zero1{}; // {1}
    int zero2 = int(); // {2}
    int zero3 = int{}; // {3}
    Person nick{"Nick L.", 42}; // {4}
    Person john{.name{"John M."}, .age{24}}; // {5}
}

As we already explained, the objects with automatic storage duration and without explicit initialization 
get random initialization values. In this example, from markers {1} to {3}, we have initialized the 
objects using zero initialization, which effectively sets their values to zero. Zero initialization happens 
for non-class, built-in types and for the members of user-defined types that have no constructors. 
Preferably use curly brace notation and uniform initialization, such as marker {1}, when you need 
to zero-initialize your objects, rather than copying zero initialization, such as markers {2} and {3}.

Statement {4} demonstrates another method of initialization called aggregate initialization. It allows 
us to initialize an aggregate object using uniform initialization notation. An aggregate is considered 
any object that is an array or a class type that has no user-declared or inherited constructors; all of 
its non-static members are publicly visible, and it has no virtual base classes and no virtual methods. 
Statement {5} performs another way of aggregate initialization but using designators. The designators 
explicitly specify the members being initialized, and the order of the designators in the initialization 
should follow the order of the declaration of the members in the structure.
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Copy initialization

Copy initialization occurs when an object of a specific type is initialized by another object of the same 
type. Let’s look at the following examples of syntax that triggers copy initialization. In order to run 
and test this code, you have to invoke the foo() method:

void foo() {
    int c{2};

    int d(c);     // {1}
    int e{d};     // {2}
    int f = e;    // {3}
    int f1 = {d}; // {4}
}

Markers {1} and {3} from this example demonstrate the well-known copy initialization present in 
the language even before C++11. An object of type int is initialized by another object of the same 
type. As we already saw, this kind of initialization doesn’t give any protection against types narrowing. 
This means that our int objects can be silently initialized by double objects, which will lead to 
narrowing. Fortunately, this is not the case with markers {2} and {4}. They use uniform copy 
initialization, which forces the compiler to verify that the initialization object is from the same type 
as the object being initialized.

Now, let’s look at several scenarios of copy initialization for user-defined types. We have defined two 
classes – Person and Employee. The Person class has one user-defined constructor that receives a 
reference to the std::string parameter, used to initialize the name of the person. The constructor 
is marked as explicit. This means that it will be used only as a non-converting constructor. The 
converting constructor is a constructor that makes an implicit conversion from its argument types to 
its class types.

The other class, Employee, has two constructors, one of which gets a reference to a Person object, 
while the other is a copy constructor. The copy constructor is also marked as explicit:

class Person {
public:
    explicit Person(const std::string&  the_name) : name{
      the_name} {}
private:
    std::string name;
};
class Employee {
public:
    Employee(const Person& p) : p{p} {}
    explicit Employee(const Employee& e) : p{e.p} {}
private:
    Person p;
};
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Let’s use these two classes in different initialization scenarios. In order to run and test this code, you 
have to rework and invoke the foo() method again:

void foo() {
    Person john{"John M."};

    Employee staff1{john};          // {1}
    // Employee staff2{std::string{"George"}};   // {2}
    Employee staff3{staff1};        // {3}
    // Employee staff4 = staff1;    // {4}
    // Employee staff5 = {staff1};  // {5}
}

We first defined a Person object named john, and in marker {1}, we initialize an Employee object 
using john. This is actually valid because the Employee class has a constructor that accepts the 
Person objects. The next statement, marker {2}, which is commented out, gets as an argument an 
object of type std::string, but the compiler will generate an error. This is because the Employee 
class doesn’t have a constructor that gets a string object. It has a converting constructor from the 
Person object. However, the Person constructor is marked as explicit, and it is not allowed 
to be used in implicit type conversions, so the compilation will fail.

The next statement, marker {3}, will compile successfully because Employee is copy-constructed 
and initialized by another Employee object without any implicit type conversions.

The final two statements from the example – markers {4} and {5} – are also commented out to avoid 
compilation errors. The reason for the compiler error is that the copy constructor of the Employee 
class is also marked as explicit. This means that copy construction and initialization using equal 
"=" sign is not allowed for explicit copy constructors. Only direct copy initialization is permitted.

Now that we are familiar with what the scope, storage duration, and lifetime of the object are, we can 
have a look at some slightly different kinds of objects, which behave more like functions rather than 
objects – functors and lambdas.

Functors and lambdas
This section will delve into functional objects – their definition, usefulness, and proper usage. We’ll 
begin by examining an example of a functional object used with an STL algorithm and discuss potential 
issues, such as the creation of temporary objects and dangling references. After that, we’ll move on to 
exploring lambda expressions – what they are, how to use them, and specific situations where they 
can be especially advantageous.
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Exploring functional objects

In the Scope, storage duration, and lifetimes section, we looked at various types of object initialization 
in C++, but our focus was mostly on objects that represent data, such as integers or coordinates. In 
this section, we’ll shift our attention to another type of object – those designed to be callable, such as 
a function, but with a crucial difference: they can maintain a state between different function calls. 
These objects are known as functional objects or functors. We’ll start by defining a functor and then 
use it to compute the mean value of a vector containing floating-point numbers:

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <source_location>

struct Mean {
    Mean() = default;
    void operator()(const double& val) {
        std::cout <<  std::source_location::current()
          .function_name() << " of " << this << '\n';
        sum += val;
        ++count;
    }
private:
    double sum{};
    int count{};
    friend std::ostream& operator<<(std::ostream& os, const
      Mean& a);
};
std::ostream& operator<<(std::ostream& os, const Mean& a) {
    double mean{std::nan("")};
    if (a.count > 0) {
        mean = a.sum / a.count;
    }
    os << mean;
    return os;
}
int main() {
    Mean calc_mean;
    std::vector v1{1.0, 2.5, 4.0, 5.5};
    std::for_each(v1.begin(), v1.end(), calc_mean);
    std::cout << "The mean value is: " << calc_mean <<
      '\n';
    return 0;
}
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The functor is an object like any other. It has a type, storage duration, and scope. In order to define 
a functor, you have to either define a struct or class of a user-defined type, and this type must have 
implemented a function call operator:

operator()

In our example, we defined struct Mean with two members in it, which are zero-initialized. The 
first one, sum, will be used to accumulate the input data that this object receives during the function 
call operator invocations, preserving it between different invocations. And the other member, count, 
will be used to count the number of invocations of the function call operator.

The definition of the function call operator gets one parameter of a double type, and then the 
method prints its name and adds the input value to the already accumulated value from the previous 
invocations. Finally, it increments the invocation counter.

The function call operator doesn’t return any type and is not defined as a const method because it 
mutates the state of the Mean object. We also overloaded the stream extraction operator, which will 
be used to report the calculated mean value to the standard output. If there is no accumulated value, 
then nan (“not a number”) will be printed:

std::ostream& operator<<(std::ostream& os, const Mean& a)

Please keep in mind that the operator is overloaded outside of the Mean structure, and it is declared as 
a friend method to it. This is because it needs to get std::ostream as a left-hand argument and the 
Mean parameter as the right argument, and therefore, it can’t be implemented as a member method. 
It’s defined as friend because it has to have access to the private members of the Mean structure.

In order to calculate the mean value, our algorithm iterates over all values in the vector using the 
std::for_each STL algorithm. std::for_each expects to receive a container on which to 
operate and function, which will be invoked with each of the elements from the container; therefore, 
this function must accept one parameter as an input argument.

In the main method, we define an object of type Mean calc_mean;, which will be used to 
calculate the mean value of std::vector v1{1.0, 2.5, 4.0, 5.5};. As you can see, we 
don’t need to explicitly specify the template argument type of the std::vector class because it is 
automatically deduced by the type of the initializer list values it is initialized with. In our case, these 
are double values.

Important note
Please note that since C++17, the automatic class template argument deduction is already 
supported, based on the type of its initializer.
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We expect that the program will invoke the function operator of the Mean object for each element 
in the vector. The function operator will accumulate all values, and when the result is printed out, it 
will be 3.25. Let’s see the output of the program:

void Mean::operator()(const double&) of 0x7ffc571a64e0
void Mean::operator()(const double&) of 0x7ffc571a64e0
void Mean::operator()(const double&) of 0x7ffc571a64e0
void Mean::operator()(const double&) of 0x7ffc571a64e0
The mean value is: nan

As we expected, the operator function call is invoked for each of the elements from the vector, but 
surprisingly, there is no calculated mean value. In order to get a better understanding of what went 
wrong with the calculation, we need to see what has happened with the calc_mean object, which 
has been used by the std::for_each algorithm.

Beware of temporaries

For the sake of investigation, in the Mean structure, we need to define the copy and move constructors, 
the move operator, and a destructor, whose only goal will be to print whether they are invoked and 
the address of the object that they belong to. We also need to add markers for when the calculation 
starts and when it finishes. Let’s see the reworked example:

struct Mean {
    Mean() noexcept {
        std::cout <<  std::source_location::current()
         .function_name() << " of " << this << '\n';
    }
    Mean(Mean&& a) noexcept : sum{a.sum}, count{a.count} {
        std::cout <<  std::source_location::current()
          .function_name() << " from: " << &a << " to: " <<
             this << '\n';
        a.sum = 0;
        a.count = -1;
    }
    Mean& operator=(Mean&& a) noexcept {
        std::cout <<  std::source_location::current()
          .function_name() << " from: " << &a << " to: " <<
            this << '\n';
        sum = a.sum;
        count = a.count;
        return *this;
    }
    Mean(const Mean& a) noexcept : sum{a.sum},
      count{a.count} {
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        std::cout <<  std::source_location::current()
          .function_name() << " from: " << &a << " to: " <<
            this << '\n';
    }
    ~Mean() noexcept {
        std::cout <<  std::source_location::current()
          .function_name() << " of " << this << '\n';
    }
    void operator()(const double& val) {
        std::cout <<  std::source_location::current()
          .function_name() << " of " << this << '\n';
        sum += val;
        ++count;
    }
private:
    double sum{};
    int count{};
    friend std::ostream& operator<<(std::ostream& os, const
      Mean& a);
};

We also need to slightly change the main() method implementation:

int main() {
    Mean calc_mean;
    std::vector v1{1.0, 2.5, 4.0, 5.5};
    std::cout << "Start calculation\n";
    std::for_each(v1.begin(), v1.end(), calc_mean);
    std::cout << "Finish calculation\n";
    std::cout << "The mean value is: " << calc_mean <<
      '\n';
    return 0;
}

When we re-execute the already reworked program, we get the following output:

Mean::Mean() of 0x7ffef7956c50
Start calculation
Mean::Mean(const Mean&) from: 0x7ffef7956c50 to: 0x7ffef7956ca0
void Mean::operator()(const double&) of 0x7ffef7956ca0
void Mean::operator()(const double&) of 0x7ffef7956ca0
void Mean::operator()(const double&) of 0x7ffef7956ca0
void Mean::operator()(const double&) of 0x7ffef7956ca0
Mean::Mean(Mean&&) from: 0x7ffef7956ca0 to: 0x7ffef7956c90
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Mean::~Mean() of 0x7ffef7956c90
Mean::~Mean() of 0x7ffef7956ca0
Finish calculation
The mean value is: nan
Mean::~Mean() of 0x7ffef7956c50

As we expected, the program starts with the construction of the object with the address 
0x7ffef7956c50, then the calculation is started, and we can see that a copy constructor is invoked. 
This is because std::for_each, like many other algorithms in the standard library, is a template 
method that gets its functor by value. Here is what the standard says about its prototype:

template< class InputIt, class UnaryFunction >
constexpr UnaryFunction for_each( InputIt first, InputIt
  last, UnaryFunction f );

This means that no matter what calculation it does, all the accumulated values will be stored in the 
copied object rather than the original. Actually, the object created by this copy constructor is just a 
temporary object. Temporary objects are unnamed objects that are automatically created and destroyed 
by the compiler. They often lead to side effects that are not trivially recognizable by the developers. 
Temporary objects are most frequently created as a result of implicit conversions of arguments and 
functions’ returned values. They frequently have a limited lifetime, till the end of the statement they 
are created by, if they are not bound to some named reference. So, be careful with them because they 
can impact the performance of your program, but more importantly, they can lead to unexpected 
behavior, as in our example.

From the preceding code, we can see that all the accumulations are done in the newly created temporary 
object. Once the std::for_each method finishes its execution, a move constructor of a new 
temporary object is invoked. This happens because, according to the definition of std::for_each, 
the passed-by value input functor is returned back as a result of the operation. So, if we need to get the 
accumulated value back to the original object, we need to assign the return value of std::for_each 
back to the original object – calc_mean:

calc_mean = std::for_each(v1.begin(), v1.end(), calc_mean);

Finally, the result is what we expected but at the price of creating several temporary objects:

Finish calculation
The mean value is: 3.25

In our example, this is not a problem, but for really complex objects where temporary object creation 
involves expensive and potentially slow operations, such as resource acquisition, this could be problematic.

Next, let’s have a look at how we can improve our example by avoiding unnecessary copy operations.
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Passing by reference

One way to improve the earlier example is to pass the functor not by value but by reference. This will 
avoid the creation of unnecessary temporary objects:

using VecCIter = std::vector<double>::const_iterator;
std::for_each<VecCIter, Mean&>(v1.begin(), v1.end(),
  calc_mean);

In order to pass by reference the Mean object, you have to explicitly state your intention to the compiler 
by explicitly specifying that the Mean template parameter is a reference. Otherwise, the automatic 
template argument deduction will deduce that you are passing by value. As a result, this forces you 
to avoid using automatic class template argument deduction and makes your code harder to read. 
Fortunately, the standard provides a solution for this:

std::for_each(v1.begin(), v1.end(), std::ref(calc_mean));

We need to use the factory method, std::ref, for the creation of the std::reference_wrapper 
objects. std::reference_wrapper is a class template that wraps a reference inside an assignable, 
copyable object. It’s commonly used to store references within standard containers that can’t typically 
hold them. The usage of std::ref, in our example, eliminates the need to explicitly specify that 
the functor template parameter of std::for_each is a reference type rather than a value. Here is 
the result of our refactoring:

Mean::Mean() of 0x7ffe7415a180
Start calculation
void Mean::operator()(const double&) of 0x7ffe7415a180
void Mean::operator()(const double&) of 0x7ffe7415a180
void Mean::operator()(const double&) of 0x7ffe7415a180
void Mean::operator()(const double&) of 0x7ffe7415a180
Finish calculation
The mean value is: 3.25
Mean::~Mean() of 0x7ffe7415a180

As you can see, there is no additional creation and destruction of temporary objects because the 
algorithm works directly with the reference of the calc_mean object.

Beware of dangling references
Always make sure that the references you pass across the program will refer to live objects 
until they are in use!

Functors are just one option that we can use in our example. There is also another approach here that 
can make our code even more expressive. These are lambda expressions. Let’s have a look at them.
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Lambda expressions

The lambda expression, or just lambda in C++, is a concise way to define an anonymous function 
or functor inline, which can be used immediately or assigned to a variable for later use. It allows 
programmers to write small, throwaway functions on the fly without having to define a named function 
or a functor class. Lambdas are commonly used with algorithms and containers from the standard 
library, allowing for more concise and expressive code.

Let’s define a simple lambda that just prints to the standard output:

auto min_lambda = [](const auto& name) -> void {
    std::cout << name << " lambda.\n";
};
min_lambda("Simple");

Each lambda expression is an object, which means that it has a lifetime and occupies memory. Every 
defined lambda is a de facto functor class definition, and as such, it has a unique type. There can’t be two 
or more lambdas with the same type in a program. This type name is platform-specific, and therefore, 
if you need to assign a lambda to a variable, you have to define this variable with the auto specifier.

The syntax of a lambda consists of the [ ] symbol, which is followed by an optional capture list, an 
optional parameter list, an optional return type, an optional mutable specifier, and a function body. 
Lambdas can capture variables from the outer scope by value or by reference, and they can also have 
a return type deduction or an explicit return type, which we will see next.

Capturing the outer scope

Lambdas can gain access to other objects in the scope where they’re defined by utilizing a capture list. 
If the capture list is empty, then no objects are captured. Global objects are always visible in lambdas 
without needing to be explicitly captured. When defining the capture list, you can choose to capture 
objects by value or by reference, or even a mixture of both.

When capturing variables by value in a lambda expression, the variables are copied into the lambda 
object at the moment of its definition. Any modifications made to the original variables after the lambda 
is defined won’t affect the copies stored inside it. All captured objects are, by default, read-only, and 
to modify them, you must explicitly specify the lambda as mutable.

Another option to capture variables is by reference, which creates a reference to every captured object 
inside the lambda. This allows the lambda to communicate with the outer scope, but it’s crucial to 
ensure that the lifetime of all captured objects by reference exceeds the lifetime of the lambda to 
prevent dangling references.
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Now, let’s refactor the example from the previous section to calculate the mean value of a vector with 
floating-point numbers, using a lambda instead of a functor. In order to run the following code, you 
have to invoke the foo() method from your program:

void foo() {
    double mean{};
    std::vector v1{1.0, 2.5, 4.0, 5.5};
    std::string_view text{"calculating ..."};
    std::for_each(v1.begin(), v1.end(),
                  [&mean, sum{0.0}, count{0}, text](const
                     double& val) mutable {
        std::cout << text << '\n';
        sum += val;
        ++count;
        mean = sum / count;
    });
    std::cout << mean << '\n';
}

One of the key advantages of lambdas compared to named functions and functors is that they can be 
inlined in the place of their invocation. In our example, we have defined the lambda directly inside 
the std::for_each invocation statement. This approach explicitly highlights that this lambda has 
no other reason to exist except to serve the preceding case.

Let’s get a closer look at the lambda prototype:

[&mean, sum{0.0}, count{0}, text](const double& val)
  mutable { … }

In the capture list, we have captured four objects. The first one, mean, is captured by reference. 
Putting & before the variable name specifies that it is captured by reference. We will use mean to 
report outside of the lambda the calculated mean value. The next two variables in the capture list, 
sum and count, are captured by value. If & doesn’t precede the name of the variable, it means that 
it is captured by value. The only exception to this rule is when capturing the this pointer of a class, 
which will be captured by value, but the access to the class members will be by reference. As you can 
see, the captures, sum and count, are not defined in the outer scope; they are defined only in the 
scope of the lambda for the purpose of our example. Just like the functor example, they are used to 
store the accumulated sum and the count of the iterations. This is a convenient way to explicitly add 
state into your lambda for use in further calculations. Of course, you need to initialize them by passing 
initializers to the captures for two reasons – in order to allow the compiler to deduce their type and 
to get the expected result in the calculations. The implementation logic will update the values of sum 
and count during its execution, but as stated previously, these captures are read-only in the context 
of the lambda. Therefore, we cannot just mutate them without explicitly stating our intention during 
the lambda definition. This is done by appending the mutable keyword after the argument list and 
before the body of the lambda.
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The last captured object is text. It is also captured by value, but this time, it is captured from the 
outer scope in the foo() method.

Once the program is executed, we have the following output:

calculating ...
calculating ...
calculating ...
calculating ...
3.25

As we expected, our lambda has been called four times, and the calculated mean value is exactly the 
same as the value calculated by the functor in the previous section.

There are many ways to capture objects in the capture list. The following list shows some rules that apply:

Figure 4.1 – Ways to capture objects in a capture list

Now that we know how to properly capture the outer scope, let’s get familiar with a lambda’s parameter list.

Parameter list

The parameter list of a lambda is just like any other function parameter list. This is because the lambda’s 
parameter list is effectively the parameter list of the function call operator in a functor class. You can 
define your lambda to accept an arbitrary list of parameters, depending on the use case you have.

Using the auto specifier as a parameter type of one or more of the parameters in the lambda parameter 
lists makes it a generic lambda. A generic lambda acts as a template function call operator:

auto sum = [](auto a, auto b) {
    return a*b;
}
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This effectively acts as follows:

class platform_specific_name {
public:
    template<typename T1, typename T2>
    auto operator()(T1 a, T2 b) const {
        return a*b;
    }
};

With the C++20 release, if you wish you can explicitly specify the template parameters that your 
lambda can get. The preceding example could be rewritten as follows:

auto sum = []<typename T1, typename T2>(T1 a, T2 b) {
    return a*b;
}

Another important characteristic of lambdas is the return type. Let’s see its specifics.

The return type

Specifying the return type of the lambda is optional. If you don’t explicitly specify it, the compiler 
will try to deduce it for you. If it doesn’t succeed, then a compiler error in type deduction will be 
generated. Then, you have to either change your code to allow automatic return type deduction or 
explicitly specify the return type of the lambda.

Here is a compiler error in return type deduction:

auto div = [](double x, double y) {
    if (y < 0) { return 0; }
    return x / y;
};

This code will not compile because the compiler will fail to automatically deduce the return type of 
the lambda. It’s implementation logic has two execution branches. The first one returns an integer 
literal, 0, but the other one returns the result of a division, the quotient, which is a double number.

In order to fix this, we need to explicitly specify that the return type of the lambda is double.

Here is an explicitly specified return type:

auto div = [](double x, double y) -> double {
    if (y < 0) { return 0; }
    return x / y;
};
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Now, for the compiler, it is clear that the return result is always converted to double.

Summary
In this chapter, we explored various aspects of objects in C++, including storage duration, scope, and 
lifetimes. We distinguished between objects and references and discussed different ways of initializing 
objects and when these initializations occur. Additionally, we delved into the world of functors, gaining 
an understanding of what they are and how to use them effectively. Building on that knowledge, we 
also learned about lambda expressions and their advantages over functors. We covered how to properly 
use both lambdas and functors with STL algorithms. Armed with this knowledge of object specifics, 
we can now move on to discussing error handling in C++ in the next chapter.



5
Handling Errors with C++

This chapter will focus on error handling in C++. As a programmer, you will inevitably encounter 
situations where you need to determine the best approach to propagate program errors. Whether 
you use error codes or exceptions, we will delve into them to gain a better understanding of how to 
use them effectively.

In this chapter, we will examine how to handle errors reported by POSIX APIs using C++. We will 
begin by covering the errno thread-local variable and the strerror function. After that, we will 
introduce std::error_code and std::error_condition and demonstrate how they help 
to wrap POSIX errors that come from POSIX APIs. We will also investigate custom error categories, 
which allow us to compare errors produced by various sources and develop platform-independent 
error-handling code.

As we progress, we will learn about exceptions in C++ and how to convert std::error_code 
into a std::system_error exception. We will also explore some best practices for working with 
exceptions, such as throwing exceptions by value and catching them by reference. Additionally, we 
will become acquainted with object slicing, a side effect that can occur when we catch exceptions by 
value rather than by reference. Finally, we will delve into the RAII technique in C++, which eliminates 
the need for a finally construct in the language.

By the end of this chapter, you will have a thorough understanding of the various ways to handle errors 
in C++, and you will be familiar with several techniques for creating error-resistant code.

Summing up, we will cover the following topics:

•	 Handling errors from POSIX APIs with C++

•	 From error codes to exceptions

Alright, it’s time to begin!
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Technical requirements
All examples in this chapter have been tested in an environment with the following configuration:

•	 Linux Mint 21 Cinnamon edition

•	 GCC 12.2 with compiler flags:

	� -std=c++20

•	 A stable internet connection

•	 Please make sure your environment is at least that recent. For all the examples, you can 
alternatively use https://godbolt.org/.

•	 All code examples in this chapter are available for download from https://github.
com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/
Chapter%205.

Handling errors from POSIX APIs with C++
In POSIX-compliant systems, such as Unix and Linux, error handling is based on the use of error 
codes and error messages to communicate errors between functions and applications.

In general, when a function encounters an error, it returns a non-zero error code and sets the errno 
global variable to a specific error value that indicates the nature of the error. The application can then 
use the errno variable to determine the cause of the error and take appropriate action.

In addition to error codes, POSIX-compliant functions often provide error messages that describe the 
nature of the error in more detail. These error messages are typically accessed using the strerror 
function, which takes an error code as input and returns a pointer to a sequence of characters terminated 
with a null character containing the corresponding error message.

The POSIX error-handling style requires developers to check for errors after each system call or function 
call that may fail and to handle errors in a consistent and meaningful way. This can include logging 
error messages, retrying failed operations, or terminating the program in the event of a critical error.

Let’s look at the following example where we demonstrate how to use the errno variable and the 
strerror() function to handle errors from POSIX functions in C++. 

https://godbolt.org/
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%205
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%205
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%205
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The example uses the open() and close() POSIX functions, which try to open and close a file 
from the filesystem of our Linux test environment:

#include <iostream>
#include <fcntl.h>
#include <unistd.h>
#include <cstring>

int main() {
    const int fd{open("no-such-file.txt", O_RDONLY)}; //
      {1}
    if (fd == -1) {
        std::cerr << "Error opening file: " <<
          strerror(errno) << '\n';
        std::cerr << "Error code: " << errno << '\n';
        return  EXIT_FAILURE;
    }
    // Do something with the file...
    if (close(fd) == -1) {
        std::cerr << "Error closing file: " <<
          strerror(errno) << '\n';
        std::cerr << "Error code: " << errno << '\n';
        return  EXIT_FAILURE;
    }
    return 0;
}

In this example, we attempt to open a file for reading called no-such-file.txt using the 
open() function; see marker {1}. In case of success, open() returns a non-negative integer, which 
corresponds to the file descriptor ID of the successfully opened file. If open() returns -1, we know 
an error occurred, so we print the error message using strerror(errno) and return the value 
of errno where the corresponding error code is written.

If open() succeeds, we do something with the file and then close it using the close() function. 
If close() returns -1, we print the error message again using strerror(errno) and return 
the value of errno.

This is a common error-handling technique for POSIX functions. In case of an error, they return -1 
and set the errno variable with the corresponding error code. The errno variable is a thread-local 
modifiable variable of the int type. This means that it is safe for you to use it in a multithreaded 
environment. Each thread will have its own copy, and POSIX methods invoked by this thread will 
use this instance to report errors.
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In order to print a meaningful message in the case of an error, we use the strerror() function, 
which accepts an integer and tries to match its value to a well-known list of descriptions of  
system-specific error codes. The open() function can report several errors and set different values 
to errno depending on the type of the occurred error. Let’s see the output of the example:

Error opening file: No such file or directory
Error code: 2

As we can see, the open() method has failed to open the file because it doesn’t exist. In this case, it 
sets errno to a value of 2, which corresponds to the ENOENT value specified in the documentation 
of the function. It is a good practice to explicitly set errno to 0 before you do a system call to ensure 
that after the call, you can read its real response.

Using std::error_code and std::error_condition

The C++ Standard Library provides several classes for handling errors from low-level APIs such as 
the POSIX interface. These classes are std::error_code for handling system-specific errors and 
std::error_condition, which deals with portable error codes. Let us explore both styles in 
more detail.

std::error_code

Let’s rework our previous example in such a way that we provide a function for the creation of a 
directory with a specific directory path:

#include <iostream>
#include <sys/stat.h>

std::error_code CreateDirectory(const std::string& dirPath) {
    std::error_code ecode{};
    if (mkdir(dirPath.c_str(), 0777) != 0) {
        ecode = std::error_code{errno,
          std::generic_category()}; // {1}
    }
    return ecode;
}
int main() {
    auto ecode{CreateDirectory("/tmp/test")};
    if (ecode){ // {2}
        std::cerr << "Error 1: " << ecode.message() <<
          '\n';
    }
    ecode = CreateDirectory("/tmp/test"); // {3}
    if (ecode){
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        std::cerr << "Error 2: " << ecode.message() <<
          '\n';
    }

    if (ecode.value() == EEXIST) {
        std::cout << "This is platform specific and not
          portable.\n";
    }
    return 0;
}

Rather than the client of our new function, CreateDirectory, using the errno variable directly 
to determine whether the operation was successful, we will make use of a utility class provided by the 
Standard Library – std::error_code. std::error_code is used to store and transmit error 
codes as they were generated by libraries or system calls. It is a kind of wrapper class for which there 
are predefined categories of errors to work with. The errors returned by the POSIX functions are mostly 
standard and, as such, are predefined in the Standard Library. Therefore, it is straightforward to create 
a std::error_code instance from the errno value and specify that this value corresponds to 
std::generic_category(), as done in marker {1} in the preceding example. The errno 
value is de facto casted to a constant of the std::errc enumerator.

The created std::error_code object has two methods that can give you details about the 
underlying error. The std::error_code::message() method returns a meaningful string that 
can be used for logging purposes. The std::error_code::value()method, in our example, 
returns the value initially stored in the errno variable. But probably the most notable operation that 
the user can use from the std::error_code object is the predefined operator bool() of 
the class. In the case of an error stored in the object, it returns true; otherwise, it returns false.

As you can see from the preceding example, the caller of the CreateCategory() method checks 
whether an error occurred, and if so, it gets the message stored for this error; see marker {2}. Here, 
you can find the output of the program run on our test environment:

Error 2: File exists
This is platform specific and not portable.

As is visible from the program’s output, the first CreateDirectory() invocation succeeds but the 
second one fails; see marker {3}. This is because the implementation of CreateDirectory() 
first checks whether such a directory already exists and if not, it creates it for us. But if the directory 
exists, the mkdir() system call returns –1 and sets errno to EEXIST.

Something important about the std::error_code class is that it is platform specific. This means 
that the error values stored in it strongly depend on the underlying OS. In the case of a POSIX-like 
system, which Linux is, the error value we have is EEXIST. But this is not necessarily true for other OSs.
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Therefore, if we design our code to be as platform agnostic as possible, we need to avoid comparations 
such as the following:

if (ecode.value() == EEXIST)

But we also need a way to ensure that a directory that already exists doesn’t break our program logic. 
Yes, from a POSIX standpoint this is an error, but in our specific business logic, this is not a problem 
for the program execution to continue.

std::error_condition

The right approach to address this problem is with the help of another Standard Library  
class – std::error_condition. As the name suggests, its main purpose is to provide conditional 
program logic. Let’s slightly rework the CreateDirectory() method from the earlier example:

std::error_code CreateDirectory(const std::string& dirPath) {
    std::error_code ecode{};
    if (mkdir(dirPath.c_str(), 0777) != 0) {
        std::errc cond{errno}; // {1}
        ecode = std::make_error_code(cond); // {2}
    }
    return ecode;
}

As you can see, the difference from the previous example is how we construct the error_code 
object. In the reworked code, we first create an object of the std::errc type and initialize it with 
the value of POSIX errno; see marker {1}. The std::errc class is a scoped enumerator class. 
It defines portable error conditions that correspond to the specific POSIX error codes. This implies 
that instead of relying on a platform-specific macro that corresponds to a particular POSIX error 
code, such as EEXIST, we switch to an error that will have the same error condition regardless of 
the platform it comes from.

Important note
You can find the predefined portable error conditions of the std::errc scoped enumerator, 
which correspond to their equivalent POSIX error codes, here: https://en.cppreference.
com/w/cpp/error/errc.

Once we create an instance of std::errc, we pass it to the factory method for the creation of error 
codes – std::make_error_code() (see marker {2}) – which generates for us a std::error_
code of a generic category.

https://en.cppreference.com/w/cpp/error/errc
https://en.cppreference.com/w/cpp/error/errc
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Now, let’s see how the main() method is changed in order to be platform independent:

int main() {
    auto ecode{CreateDirectory("/tmp/test")};
    if (ecode){
        std::cerr << "Error 1: " << ecode.message() <<
          '\n';
    }
    ecode = CreateDirectory("/tmp/test");
    if (ecode){
        std::cerr << "Error 2: " << ecode.message() <<
          '\n';
    }
    if (ecode == std::errc::file_exists) { // {3}
        std::cout << "This is platform agnostic and is
          portable.\n";
    }
    return 0;
}

We still have two invocations of the CreateDirectory() method, and the second one still 
returns an error_code. But the main difference comes from how we compare the ecode object; 
see marker {3}. Instead of comparing it with an integer value of the error POSIX code, we compare 
it against an object that holds a portable error condition – std::errc::file_exists. It has the 
same semantics, saying that the file already exists, but it is platform independent. In the next section, 
we will see how useful this could be.

Using custom error categories

Every software developer should strive as much as possible to write portable code. Writing portable 
code provides reusability, which can significantly reduce development costs. Of course, this is not 
always possible. There are use cases where the code you write is dedicated to a specific system. But for 
all the rest, abstracting your code from the underlying system allows you to easily migrate it to other 
systems without carrying out huge refactoring to make it work. This is safer and cheaper.

Let’s get back to our previous example, where we tried to abstract the error code received from a POSIX 
system call. It should be comparable against a portable error condition such as std::errc::file_
exists. We will extend this with the following use case. Imagine that we have a custom library that 
also works with files. Let’s call it MyFileLibrary. But this library doesn’t support the POSIX error 
codes. It provides a different category of custom error codes that semantically correspond to some of 
the POSIX codes but with different error values.
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The library supports the following errors with their corresponding error codes:

enum class MyFileLibraryError {
    FileNotFound = 1000,
    FileAlreadyExists = 2000,
    FileBusy = 3000,
    FileTooBig = 4000
};

As you can see, our library can return the FileAlreadyExists enumerated constant, just like the 
mkdir() system call does, but with a different error value – 1000. So, the main logic that consumes 
both MyFileLibrary and mkdir() should be able to handle these errors in the same way, because 
they are semantically equal. Let’s see how this can be done.

In our previous example, we created the error code returned by the POSIX API:

ecode = std::error_code{errno, std::generic_category()};

We used std::generic_category, which is a derived class from the base category  
class – std::error_category. It is predefined for us in the Standard Library in such a way that 
it knows POSIX error codes. This is effectively the place where the translation between the real error 
code returned by the API and std::error_condition is done. So, in order to expose the same 
capability for MyFileLibrary, we need to define a new std::error_category derived class. 
We will name it MyFileLibraryCategory:

class MyFileLibraryCategory : public std::error_category {
public:
    const char* name() const noexcept override { // {1}
        return "MyFileLibrary";
    }
    std::string message(int ev) const override { // {2}
        switch (static_cast<MyFileLibraryError>(ev)) {
        case MyFileLibraryError::FileAlreadyExists:
            return "The file already exists";
        default:
            return "Unsupported error";
        }
    }
    bool equivalent(int code,
                    const std::error_condition& condition)
                      const noexcept override { // {3}
        switch (static_cast<MyFileLibraryError>(code)) {
        case MyFileLibraryError::FileAlreadyExists:
            return condition == std::errc::file_exists; //
                {4}
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        default:
            return false;
        }
    }
};

The std::error_category base class has several virtual methods that, if overridden in the 
derived class, allow custom behavior. In our example, we have overridden the following:

•	 The name() method, which is used to report which category this error belongs to; see marker {1}

•	 The message() method, which is used to report a message string that corresponds to a 
specific error value; see marker {2}

•	 The equivalent() method, which is used to make a comparison between the custom error 
code generated by our library and the predefined std::error_condition values

The equivalent() method gets the custom error code, casts it to a value of MyFileLibraryError, 
and, for each specific case, decides what condition it matches; see marker {3}.

Now, since we have our new, shiny custom error category – MyFileLibraryCategory – let’s 
see how to use it:

const MyFileLibraryCategory my_file_lib_category{}; // {1}
int main() {
    std::error_code file_exists{static_cast<int>
      (MyFileLibraryError::FileAlreadyExists),
       my_file_lib_category}; // {2}
    if (file_exists == std::errc::file_exists) { // {3}
        std::cout << "Msg: " << file_exists.message() <<
          '\n'; // {4}
        std::cout << "Category: " << file_exists
          .default_error_condition().category().name() <<
             '\n'; // {5}
    }
    return 0;
}

The first step we need to take is to instantiate an object of our custom category; see marker {1}. Then, 
we create an error_code instance, which we initialize with the FileAlreadyExists error 
value and specify that it is from the MyFileLibraryCategory category; see marker {2}. Since 
we have a valid instance of an error code – file_exists – we are ready to compare it against the 
platform-independent std::errc::file_exists error condition.
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The following is the output of the program:

Msg: The file already exists
Category: MyFileLibrary

As you can see, the comparation between an error generated from MyFileLibrary and the generic 
std::errc::file_exists is now possible with the help of the custom error category we defined 
– MyFileLibraryCategory. The corresponding error message is displayed (see marker {3}) 
and the category as well (see marker {4}).

Important note
Here, you can find the full description with all virtual methods that the std::error_
category base class exposes: https://en.cppreference.com/w/cpp/error/
error_category.

Now that we are familiar with the usage of error codes and error conditions, let’s see how we can use 
the powerful mechanism of C++ exceptions and propagate errors.

From error codes to exceptions
Exception handling is an important aspect of programming, especially when dealing with errors that 
can disrupt the normal flow of a program. While there are several ways to handle errors in a code 
base, exceptions provide a powerful mechanism for handling errors in a way that separates error flow 
from normal program flow.

When working with error codes, it can be challenging to ensure that all error cases are properly handled 
and that the code remains maintainable. By wrapping error codes in exceptions, we can create a more 
pragmatic approach to error handling that makes it easier to reason about code and catch errors in 
a more centralized manner.

It’s hard to say which approach is better when dealing with error handling in a code base, and the 
decision to use exceptions should be based on pragmatic considerations. While exceptions can 
provide significant benefits in terms of code organization and maintainability, they may come with a 
performance penalty that may not be acceptable in certain systems.

At their core, exceptions are a way to segregate the normal program flow from the error flow. Unlike 
error codes, which can be ignored, exceptions cannot be easily overlooked, making them a more 
reliable way to ensure that errors are handled in a consistent and centralized manner.

While exceptions may not be the right choice for every code base, they offer a powerful way to handle 
errors that can make code easier to maintain and reason about. By understanding how to correctly 
use exceptions, programmers can make informed decisions about how to handle errors in their code. 
Let’s get deeper into this.

https://en.cppreference.com/w/cpp/error/error_category
https://en.cppreference.com/w/cpp/error/error_category
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std::system_error

In the previous section, we created a program that properly handles errors reported by the POSIX 
system call – mkdir(). Now, let’s see how we can improve the error handling in this program using 
exceptions instead of error codes. Here is the revisited CreateDirectory() method:

void CreateDirectory(const std::string& dirPath) { // {1}
    using namespace std;
    if (mkdir(dirPath.c_str(), 0777) != 0) {
        const auto ecode{make_error_code(errc{errno})}; //
           {2}
        cout << "CreateDirectory reports error: " <<
          ecode.message() << '\n';
        system_error exception{ecode}; // {3}
        throw exception; // {4}
    }
}

In the CreateDirectory() method, we make a system call using the mkdir() API, which, in 
the case of failure, returns a non-zero result and stores a POSIX error code in the errno variable. 
Nothing new so far. Just as in our previous example, we create an std::error_code from the 
value of errno (see marker {2}) to report it to the caller of our CreateDirectory() method. 
But instead of returning the error directly as a result of the function, we prefer to use an exception 
for this and make our function void; see marker {1}.

Since we already have an error code object created, we will use it to create an exception from it. In 
order to do so, we will use a predefined exception class from the Standard Library that is explicitly 
defined to wrap std::error_code objects – std::system_error.

std::system_error is a derived type from the std::exception interface class from the C++ 
Standard Library. It is used by various library functions, which typically interface with OS facilities 
and can report errors either by generating std::error_code or std::error_condition.

Figure 5.1 – Inheritance diagram of std::system_error exception
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In our example, in order to create an std::system_error object, we have to pass to its constructor 
the instance of std::error_code ecode, which we already created; see marker {3}.

As with any other exception derived from the base exception class from the Standard Library – 
std::exception – std::system_error has the what() method. It aims to report a meaningful 
string explaining details about the error behind the exception. More specifically, it calls under the 
hood the message() method of the std::error_code object it wraps and returns its result.

Since we already have a new, shiny exception object created, we now need to throw it back to the caller 
of our API. This is done with the throw keyword; see marker {4}. An important note is that we 
throw the exception object by value; we don’t throw a reference or a pointer to it.

Important note
As a rule of thumb, wherever possible, throw your exceptions by value.

One of the key advantages of exceptions over error codes is that they can’t be omitted by the caller. 
When a function returns an error code, it is up to the function’s caller to decide whether to check the 
return value or not. There are some cases where the return value is not checked by mistake, and this 
leads to bugs in the program. When using exceptions as an error-handling mechanism, there is no 
such possibility. Once an exception is thrown, it propagates up the call stack until it is either caught 
by the appropriate program exception-handling logic or reaches the top of the function stack. If the 
exception is not caught anywhere during its propagation path, known also as stack unwinding, then 
it terminates the program by invoking the std::terminate function.

Important note
Check out the following std::system_error  reference page: https://
en.cppreference.com/w/cpp/error/system_error.

Now, let’s get back to our example and see how the main() method should be reworked in order to 
handle the exception thrown from the CreateDirectory() method:

int main() {
    try {
        CreateDirectory("/tmp/test"); // First try succeeds
        CreateDirectory("/tmp/test"); // Second try throws
    } catch (const std::system_error& se) { // {5}
        const auto econd{se.code()
          .default_error_condition()}; // {6}
        if (econd != std::errc::file_exists) { // {7}
            std::cerr << "Unexpected system error: " <<
              se.what() << '\n';
            throw; // {8}

https://en.cppreference.com/w/cpp/error/system_error
https://en.cppreference.com/w/cpp/error/system_error
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        }
        std::cout << "Nothing unexpected, safe to
          continue.\n";
    }
    return 0;
}

Unlike error codes, which, once returned by a function, need to be assigned and checked, the exceptions 
need to be caught and appropriate actions should be taken. Catching exceptions in C++ is done with 
the help of the try-catch construction in the language. In the preceding example, you can see that 
we invoke the CreateDirectory() method twice because the second invocation will generate 
an error, which will be propagated up the stack as an exception. This exception will be caught by the 
catch clause in marker {5}. As you can see, the catch clause expects a parameter that specifies 
what should be caught; see marker {5}. Its syntax is similar to the function’s parameter list, where 
you can pass objects either by value or by reference.

In our example, we catch the exception thrown by the CreateDirectory() method by constant 
reference. The reason why we don’t catch by value is to avoid unnecessary object copying and – more 
importantly – to avoid object slicing. We will get deeper into the specifics of the exception-catching 
techniques in C++ soon, but for now, let’s focus on our current example. Once we catch the exception, 
we can extract the error_condition object from it; see marker {6}. This is possible because 
the system_error class supports error codes and error conditions and enables us to fetch them. 
When we have error_condition, we can successfully check against the well-known errc codes 
whether this exception is a real problem for our program or it can be omitted; see marker {7}.

Important note
Wherever possible, catch exceptions by reference (prefer constant) rather than by value to avoid 
potential object slicing and additional overhead due to object copying.

Our business program logic expects that errors reporting that a file already exists are normal and 
should not break program execution. Ultimately, it says that we try to create a directory that already 
exists, and that’s fine and we can continue. But if the error is something else that we don’t know what 
to do with, then we have to report that error and rethrow it to the upper methods in the call stack, 
which could better know what to do with such a kind of error. This is done with the throw clause in 
the language; see marker {8}. An important detail here is that in order to rethrow an existing exception 
rather than throwing a new one, you have to just use throw; with no arguments.

Important note
Use the throw; clause with no arguments to rethrow an existing exception.
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Of course, if the error is what we expect, such as std::errc::file_exists, then we can safely 
continue the program execution without the need to rethrow this exception. You can find the output 
of the program as follows:

CreateDirectory reports error: File exists
Nothing unexpected, safe to continue.

We can see that the exception is thrown by the CreateDirectory() method and it is caught by 
the catch clause in the main() method. In this example, we saw that using exceptions instead of 
error codes clearly segregates the normal program execution path from the error path and makes it 
easier to rethrow errors that we can’t properly deal with.

Throw by value, catch by reference

In C++, we can literally throw every object. You could successfully do this as follows:

throw 42;

The preceding statement throws an integer object with a value of 42. But just because you can do 
something, it doesn’t mean it’s a good idea to do so. The goal of the exception is to bring context to 
the error that occurred. Throwing the value of 42 doesn’t provide much context, right? What does 
42 mean for the recipient of your exception? Not much!

This statement is fully confirmed by the C++ Core Guidelines project developed by some of the key 
members of the C++ Standards Committee. The C++ Core Guidelines are a really useful guide for 
every C++ developer no matter what level of expertise you have. It gathers recommendations and 
best practices about different features in C++.

Important note
Make sure to get familiar with the C++ Core Guidelines, which you can find at https://
isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c-core-
guidelines.

The C++ Core Guidelines say that we have to make sure that we throw meaningful exceptions. If you 
don’t have a standard defined exception that works for your case, you can throw a user-defined type 
that derives from some of the standard exceptions:

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#e14-use-
purpose-designed-user-defined-types-as-exceptions-not-built-in-types

The C++ Core Guidelines also suggest throwing our exceptions by value and catching them by reference. 
Of course, even better if we catch by constant reference. Throwing by value ensures that the lifetime of 
the thrown object will be managed by the runtime of your system. Otherwise, if you throw a pointer 

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c-core-guidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c-core-guidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c-core-guidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#e14-use-purpose-designed-user-defined-types-as-exceptions-not-built-in-types
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#e14-use-purpose-designed-user-defined-types-as-exceptions-not-built-in-types
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to an object that you have allocated on the heap whose responsibility will be to delete this object when 
it is no longer needed, it is quite possible you will end up with leaked memory:

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#e15-
throw-by-value-catch-exceptions-from-a-hierarchy-by-reference

Let’s go through an example. We will define a method – Throw() – which throws by value a 
std::system_error exception with an error code – bad_file_descriptor:

void Throw() {
    using namespace std;
    throw system_error{make_error_code
      (errc::bad_file_descriptor)};
}

This method will be invoked by the main() method in which we will catch the thrown exception:

int main() {
    using namespace std;
    try {
        try {
            Throw(); // {1}
        } catch (runtime_error e) { // {2}
            throw e; // {3}
        }
    } catch (const exception& e) { // {4}
        const system_error& se{dynamic_cast<const
          system_error&>(e)}; // {5}
        const auto econd{se.code()
          .default_error_condition()};
        std::cerr << econd.message() << '\n';
    }
    return 0;
}

As you can see in the preceding example, we have defined two try-catch blocks – one inner and 
one outer. The reason behind this is that exceptions thrown in the catch branch can’t be caught by 
another catch branch in the same try-catch block. They are propagated out and, therefore, in order 
to catch them, we need an outer try-catch block.

In marker {1}, we invoke the Throw() method, which throws an exception. But in marker {2}, we 
catch the thrown exception. Actually, we don’t catch std::system_error directly but we catch 
its parent class – std::runtime_error. Also, you can see that we catch this exception by value 
with runtime_error e.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#e15-throw-by-value-catch-exceptions-from-a-hierarchy-by-reference
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#e15-throw-by-value-catch-exceptions-from-a-hierarchy-by-reference
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The only action we take once we catch the runtime_error exception is to throw it away from the 
inner try-catch block with the following statement:

throw e;

Always be careful when you rethrow an existing exception. The upper statement doesn’t rethrow the 
exception caught in the catch clause but it throws a new instance of the runtime_error exception, 
which is a copy of the caught exception, instead.

Once the new exception is thrown, it is caught by the outer catch clause in marker {4}. As you 
can see, following the recommendation from the C++ Core Guidelines, we catch a constant reference 
instead of a value to the Standard Library’s base exception class – std::exception – which is also 
a base class for std::runtime_error.

In the catch clause, we try to downcast it back to its original type – std::system_error – and 
print the message from its std::error_condition. Let’s see the output from the program:

terminate called after throwing an instance of 'std::bad_cast'
  what():  std::bad_cast

But surprisingly, we don’t get the expected result. The downcast has failed, and when it fails, it generates 
a standard exception – std::bad_cast – which is thrown away from the outer catch clause. 
But this exception is not guarded by another try-catch block, and therefore, it propagates out of the 
main() method, which is de facto the top of the function stack of the program. As we explained 
earlier, if an exception is not caught during its propagation upwind in the function stack, then the 
std::terminate function will be called.

But why did the cast fail when we tried to downcast to std::system_error? The reason is that 
the Throw() method throws std::system_error and everything should work fine. Well, it 
should, but it doesn’t really. Let’s get deeper into this.

The Throw() method really throws an instance of std::system_error by value. But the inner 
catch clause catches a base class exception also by value and throws a copy of it:

catch (runtime_error e) {
    throw e;
}

This leads to a problem because the object we rethrow is no longer an instance of std::system_
error. It has been sliced to its base class – std::runtime_error. All the information that has 
been part of the original std::system_error object is no longer part of the newly created copy 
of the std::runtime_error – e type.

Therefore, the downcast to std::system_error doesn’t succeed and our program terminates.
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To conclude, we can say that these kinds of errors can be successfully prevented by following the rules 
of throwing exceptions by value, catching them by reference, and rethrowing the existing exceptions 
rather than their copy wherever this is possible.

try/catch … finally

You probably noticed that in the C++ language, we have the try-catch block, but we don’t have 
the finally construct. If you have experience in languages such as C# or Java, you will be used 
to releasing the resource that you have acquired using the finally clause. But this works only for 
exceptional cases where the try clause is preceding the usage of finally.

But how do we do it in C++ without finally? Let’s revisit our initial example for opening and 
closing a file using the open() and close() POSIX functions:

int main() {
    try {
        const int fd{open("/tmp/cpp-test-file", O_RDONLY)};
          // {1}
        if (fd == -1) { return errno; }
        // Do something with the file and suddenly
          something throws {2}
        if (close(fd) == -1) { return errno; } // {3}
    } catch (...) {
        std::cerr << "Something somewhere went terribly
          wrong!\n";
        return -1;
    }
    return 0;
}

As we already discussed earlier in the chapter, opening a file using the open() POSIX method returns 
the ID of the file descriptor if the function successfully opens the file; otherwise, as with many of the 
POSIX functions, it returns -1; see marker {1}.

Once you have your file opened, it is your responsibility to ensure that finally, when you finish with 
it, it will be closed. Therefore, we invoke the close() method at the end of the main() method to 
ensure that the file will be closed (see marker {3}) just before we leave main(). But how can you 
be sure that some abnormal situation won’t occur, and an exception won’t be thrown before you close 
your file? Actually, the only case in which you can be sure that this won’t happen is if exceptions are 
not supported in your system. But in our test Linux environment, this is not the case. Even worse, 
when working in real code bases, it’s hard to be sure that some of the methods you invoke during your 
normal business logic execution won’t throw.
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Imagine what happens if your program throws before you close your file; see marker {2}. Effectively, 
you will leak a resource. As a rule of thumb, we should never leak resources, no matter whether this 
will lead to a problem or not.

But how can we protect ourselves from leaking resources without having the finally clause in the 
language? Let’s have a look into one of the most typical C++ programming techniques:

void Throw() {
    cout << "Ops, I need to throw ...\n";
    throw system_error{make_error_code
      (errc::bad_file_descriptor)};
}
int main() {
    const string_view myFileName{"/tmp/cpp-test-file"}; //
      {1}
    ofstream theFile(myFileName.data()); // {2}
    try {
        file_guard guard(myFileName, O_RDONLY); // {3}
        const auto fd = guard.getFileDescriptor();
        Throw(); // {4}
    } catch (const exception& e) {
        cout << e.what();
        return -1;
    }
    return 0;
}

We have reworked our main() method in such a way that we just create a file (see marker {2}) 
and pass its filename (see marker {1}) to a new object of the file_guard type (see marker {3}), 
which we will look at it just in a moment. The file_guard object is responsible for opening and 
closing a file with a specific name:

using namespace std;
class file_guard final {
public:
    file_guard(string_view file, mode_t mode) : // {5}
        fd{open(file.data(), mode)}
    {
        if (fd == -1) {
            throw system_error
              {make_error_code(errc{errno})};
        }
        cout << "File '" << file <<
        "' with file descriptor '" <<
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        fd << "' is opened.\n";
    }
    explicit file_guard(const file_guard&) = delete; // {6}
    file_guard& operator=(const file_guard&) = delete;
    explicit file_guard(file_guard&& other) noexcept : //
      {7}
        fd{move(other.fd)} { other.fd = -1; }
    file_guard& operator=(file_guard&& other) noexcept
    {
        fd = move(other.fd);
        other.fd = -1;
        return *this;
    }
    int getFileDescriptor() const noexcept { // {8}
        return fd;
    }
    ~file_guard() noexcept { // {9}
        if (fd != -1) {
            close(fd);
            cout << "File with file descriptor '" << fd <<
              "' is closed.\n";
        }
    }
private:
    int fd;
};

The class gets in its constructor the file path and the mode in which the file should be opened; see 
marker {5}. In the initializer list of the constructor, the POSIX open() method is invoked. The 
result, which is the file descriptor ID, is assigned to the _fd member of the class. If open() fails, an 
exception is thrown away from the file_guard constructor. We should not care about closing the 
file in this case because we didn’t open it successfully.

In the destructor of the class, we have the reversed operation; see marker {9}. If the file descriptor 
is different from -1, which means that the file has been successfully opened before that, we close it.

This C++ programming technique is called Resource Acquisition Is Initialization, or just RAII. It 
is a resource management technique that acquires the resource during the construction of the RAII 
object and releases it during the destruction of that object. Unlike in languages such as Java and C# 
that use automatic garbage collection and whose resource release timing is not entirely clear to the 
user, C++ objects have a precisely defined storage duration and lifetime. Thus, we can rely on this 
characteristic and utilize RAII objects to manage our resources.
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Going back to our main() method, if the file is opened (see marker {3}) and something goes wrong 
before it has been explicitly closed (see marker {4}), we will be sure that it will be automatically closed 
once the file_guard object goes out of scope.

This technique is widely used no matter whether exceptions are available in the system or not. You 
can wrap your resources using RAII and be assured that they will be automatically released whenever 
you leave the scope where the RAII object lives.

In our file_guard example, we have removed the copy constructor and the copy assignment operator 
and left the move constructor and move operator only, claiming that this RAII object is not copyable.

C++ is often questioned about not having the finally construct. However, the inventor of C++, 
Bjarne Stroustrup, has explained that RAII is a better substitute: https://www.stroustrup.
com/bs_faq2.html#finally.

Stroustrup argues that in practical code bases, there are many more resource acquisitions and releases, 
and using RAII instead of finally results in less code. Additionally, it is less susceptible to errors 
since the RAII wrapper only needs to be coded once, and there is no need to remember to release 
the resource manually.

The Standard Library has many examples of RAII objects, such as std::unique_ptr, std::lock_
guard, and std::fstreams.

Summary
This chapter has covered various techniques for error handling when working with POSIX APIs in 
C++. We discussed the use of errno, a thread-local variable, and the strerror function. We also 
explored how std::error_code and std::error_condition can wrap POSIX errors and 
how custom error categories enable us to compare errors generated by different sources and develop 
platform-independent error-handling code. Furthermore, we delved into exceptions in C++ and how 
to convert std::error_code into an exception of the std::system_error type.

We also examined best practices for working with exceptions, such as throwing them by value and 
catching them by reference, to avoid issues such as object slicing. Finally, we learned about the RAII 
technique in C++, which eliminates the need for a finally construct in the language.

In the next chapter, we will explore the topic of concurrency with C++.

https://www.stroustrup.com/bs_faq2.html#finally
https://www.stroustrup.com/bs_faq2.html#finally


Part 2: 
Advanced Techniques for 

System Programming

In this part, you will learn about expert-level C++20 features, which will further improve both your 
OS and C++ development expertise. The examples, though still practical, become more complex and 
require some preliminary understanding of the subject of system programming.

This part has the following chapters:

•	 Chapter 6, Concurrent System Programming with C++

•	 Chapter 7, Proceeding with Inter-Process Communication

•	 Chapter 8, Using Clocks, Timers, and Signals in Linux

•	 Chapter 9, Understanding the C++ Memory Model

•	 Chapter 10, Using Coroutines in C++ for System Programming





6
 Concurrent System 

Programming with C++

In this chapter, we will look at what concurrency means and how it is different from parallelism. We 
will go through the fundamentals and the theory behind processes and threads. We will look at the 
changes in the C++ memory model, which enforce native concurrency support in the language. We 
will also familiarize ourselves with what a race condition is, how it can lead to a data race, and how to 
prevent data races. Next, we will get acquainted with the C++20 std::jthread primitive, which 
enables multithreading support. We will learn about the specifics of the std::jthread class and 
how we can stop already running std::jthread instances by using the std::stop_source 
primitive. Finally, we will learn how to synchronize the execution of concurrent code and how to report 
calculation results from executed tasks. We will learn how to use C++ synchronization primitives such 
as barriers and latches to synchronize the execution of concurrent tasks, and how to properly report 
the result of these tasks using promises and futures.

To sum up, we will be covering the following topics in this chapter:

•	 What is concurrency?

•	 Thread versus process

•	 Concurrency with C++

•	 Demystifying race conditions and data races

•	 Practical multithreading

•	 Sharing data during parallel execution

So, let’s get started!



 Concurrent System Programming with C++120

Technical requirements
 All examples in this chapter have been tested in an environment with the following configuration:

•	 Linux Mint 21 Cinnamon Edition

•	 GCC 12.2 with compiler flags – -std=c++20 -pthread

•	 A stable internet connection

•	 Please make sure your environment is at least this recent. For all the examples, you can 
alternatively use https://godbolt.org/.

•	 All code examples in this chapter are available to download from https://github.
com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/
Chapter%206.

What is concurrency?
Modern cars have become highly intricate machines that provide not only transportation but also 
various other functionalities. These functionalities include infotainment systems, which allow users 
to play music and videos, and heating and air conditioning systems, which regulate the temperature 
for passengers. Consider a scenario in which these features did not work simultaneously. In such 
a case, the driver would have to choose between driving the car, listening to music, or staying in a 
comfortable climate. This is not what we expect from a car, right? We expect all of these features to 
be available at the same time, enhancing our driving experience and providing a comfortable trip. To 
achieve this, these features must operate in parallel.

But do they really run in parallel, or do they just run concurrently? Is there any difference?

In computer systems, concurrency and parallelism are similar in certain ways, but they are not the 
same. Imagine you have some work to do, but this work can be done in separate smaller chunks. 
Concurrency refers to the situation where multiple chunks of the work begin, execute, and finish 
during overlapping time intervals, without a guaranteed specific order of execution. On the other 
hand, parallelism is an execution policy where these chunks execute simultaneously on hardware 
with multiple computing resources, such as a multi-core processor.

Concurrency happens when multiple chunks of work, which we call tasks, are executed in an unspecified 
order for a certain period of time. The operating system could run some of the tasks and force the 
rest to wait. In concurrent execution, the task continuously strives for an execution slot because the 
operating system does not guarantee that it will execute all of them at once. Furthermore, it is highly 

https://godbolt.org/
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%206
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%206
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%206
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possible that while a task is being executed, it is suddenly suspended, and another task starts executing. 
This is called preemption. It is clear that in concurrent task execution, the order of how the tasks will 
be executed is not guaranteed.

Let’s get back to our car example. In modern cars, the infotainment system is responsible for performing 
many activities simultaneously. For example, it can run the navigation part while allowing you to listen 
to music. This is possible because the system runs these tasks concurrently. It runs the tasks related to 
route calculation while processing the music content. If the hardware system has a single core, then 
these tasks should run concurrently:

Figure 6.1 – Concurrent task execution

From the preceding figure, you can see that each task gets a non-deterministic execution time in 
an unpredictable order. In addition, there is no guarantee that your task will be finished before the 
next one is started. This is where the preemption happens. While your task is running, it is suddenly 
suspended, and another task is scheduled for execution. Keep in mind that task switching is not a 
cheap process. The system consumes the processor’s computation resource to perform this action – to 
make the context switch. The conclusion should be the following: we have to design our systems to 
respect these limitations.

On the other hand, parallelism is a form of concurrency that involves executing multiple operations 
simultaneously on separate processing units. For example, a computer with multiple CPUs can execute 
multiple tasks in parallel, which can lead to significant performance improvements. You don’t have 
to worry about the context switching and the preemption. It has its drawbacks, though, and we will 
discuss them thoroughly.
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Figure 6.2 – Parallel task execution

Going back to our car example, if the CPU of the infotainment system is multi-core, then the tasks 
related to the navigation system could be executed on one core, and the tasks for the music processing 
on some of the other cores. Therefore, you don’t have to take any action to design your code to 
support preemption. Of course, this is only true if you are sure that your code will be executed in 
such an environment.

The fundamental connection between concurrency and parallelism lies in the fact that parallelism 
can be applied to concurrent computations without affecting the accuracy of the outcome, but the 
presence of concurrency alone does not guarantee parallelism.

In summary, concurrency is an important concept in computing that allows multiple tasks to be 
executed simultaneously, even though that is not guaranteed. This could lead to improved performance 
and efficient resource utilization but at the cost of more complicated code respecting the pitfalls that 
concurrency brings. On the other hand, truly parallel execution of code is easier to handle from a 
software perspective but must be supported by the underlying system.

In the next section, we will get familiar with the difference between execution threads and processes 
in Linux.
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Threads versus processes
In Linux, a process is an instance of a program in execution. A process can have one or more threads 
of execution. A thread is a sequence of instructions that can proceed independently of other threads 
within the same process.

Each process has its own memory space, system resources, and execution context. Processes are 
isolated from each other and do not share memory by default. They can only communicate through 
files and inter-process communication (IPC) mechanisms, such as pipes, queues, sockets, shared 
memory, and so on.

A thread, on the other hand, is a lightweight unit of execution within a process. The overhead of loading 
the instructions from non-volatile memory to RAM or even the cache is already paid for by the process 
creating the thread – the parent process. Each thread has its own stack and register values but shares 
the memory space and system resources of the parent process. Because threads share memory within 
the process, they can easily communicate with each other and synchronize their own execution. In 
general, this makes them more efficient than processes for concurrent execution.

Figure 6.3 – IPC

The main differences between processes and threads are as follows:

•	 Resource allocation: Processes are independent entities that have their own memory space, 
system resources, and scheduling priority. On the other hand, threads share the same memory 
space and system resources as the process they belong to.

•	 Creation and destruction: Processes are created and destroyed by the operating system, while 
threads are created and managed by the process that they belong to.

•	 Context switching: When a context switch occurs, the operating system switches the entire 
process context, including all its threads. In contrast, a thread context switch only requires 
switching the state of the current thread, which, in general, is faster and less resource-intensive.
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•	 Communication and synchronization: IPC mechanisms such as pipes, queues, sockets, and 
shared memory are used to enable communication between processes. Threads, on the other 
hand, can communicate directly by sharing memory within the same process. This also enables 
efficient synchronization between threads, as they can use locks and other synchronization 
primitives to coordinate their access to shared resources.

Important note
Linux schedules tasks in the kernel, which are either threads or single-threaded processes. 
Each task is represented through a kernel thread; thus, the scheduler does not differentiate 
between a thread and a process.

Processes and threads have their analogy in real life. Let’s say you are working on a project with a group 
of people, and the project is divided into different tasks. Each task represents a unit of work that needs 
to be completed. You can think of the project as a process, and each task as a thread.

In this analogy, the process (project) is a collection of related tasks that need to be completed to 
achieve a common goal. Each task (thread) is a separate unit of work that can be assigned to a specific 
person to complete.

When you assign a task to someone, you are creating a new thread within the project (process). The 
person who is assigned the task (thread) can work on it independently, without interfering with the 
work of others. They may also communicate with other team members (threads) to coordinate their 
work, just as threads within a process can communicate with each other. They also need to use the 
common project resource to finish their tasks.

In contrast, if you divide the project into different projects, you create multiple processes. Each process 
has its own resources, team members, and goals. It is harder to ensure that both processes share a 
resource needed for the project to finish.

So, processes and threads in computing are like real-life projects and tasks, respectively. A process 
represents a collection of related tasks that need to be completed to achieve a common goal, while a 
thread is a separate unit of work that can be assigned to a specific person to complete.

In Linux, processes are separate instances of a program with their own memory and resources, while 
threads are lightweight execution units within a process that share the same memory and resources. 
Threads can communicate more efficiently and are more suitable for tasks that require parallel execution, 
while processes provide better isolation and fault tolerance.

Having all this in mind, let’s see how to write concurrent code in C++.

Concurrency with C++
The C++ language has had built-in support for managing and executing concurrent threads since 
C++11. But it doesn’t have any native support for managing concurrent processes. The C++ Standard 
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Library provides various classes for thread management, synchronization and communication between 
threads, protection of shared data, atomic operations, and parallel algorithms. The C++ memory 
model is also designed with thread awareness in mind. This makes it a great choice for developing 
concurrent applications.

Multithreading with C++ is the ability to have multiple threads of execution running concurrently 
within a single program. This allows a program to take advantage of multiple CPU cores and perform 
tasks in parallel, leading to faster completion of tasks and improved overall performance.

The C++ Standard Library introduced the std::thread thread management class. Once it is 
instantiated, it is the responsibility of the user to take care of the thread’s objective. The users have 
to choose to either join the thread or detach it from its parent thread. If they don’t take care of it, the 
program terminates.

With the release of C++20, a brand-new thread management class, std::jthread, was introduced. 
It makes it relatively easy to create and manage threads. To create a new thread, you can create an 
instance of the std::jthread class, passing the function or callable object that you want to run as 
a separate thread. A key advantage of std::jthread compared to std::thread is that you don’t 
have to explicitly worry about joining it. It will be done automatically during the std::jthread 
destruction. Later in the chapter, we will have a deeper look into std::jthread and how to use it.

Bear in mind that multithreading will also make a program more complex, as it requires careful 
management of shared resources and synchronization of threads. If not properly managed, multithreading 
can lead to issues such as deadlocks and race conditions, which can cause a program to hang or 
produce unexpected results.

Additionally, multithreading requires the developers to ensure that the code is thread-safe, which 
can be a challenging task. Not all tasks are suitable for multithreading; some tasks may actually run 
slower if attempted to be parallelized.

Overall, multithreading with C++ can provide significant benefits in terms of performance and 
resource utilization, but it also requires careful consideration of the potential challenges and pitfalls.

Now, let’s get familiar with the most common pitfalls of writing concurrent code.

Demystifying race conditions and data races
In C++, multithreading support was first introduced with the C++11 version of the language. One of 
the key elements provided by the C++11 standard to facilitate multithreading is the memory model. 
The memory model tackles two problems: the layout of objects in memory and the concurrent access to 
these objects. In C++, all data is represented by objects, which are blocks of memory that have various 
properties such as type, size, alignment, lifetime, value, and an optional name. Each object remains 
in memory for a specific period of time and is stored in one or more memory locations, depending 
on whether it is a simple scalar object or a more complex type.
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In the context of multithreaded programming in C++, it is crucial to consider how to tackle concurrent 
access by multiple threads to shared objects. If two or more threads try to access different memory 
locations, there is usually no problem. However, when threads attempt to write in the same memory 
location simultaneously, it can lead to data races, which can cause unexpected behaviors and errors 
in the program.

Important note
Data races occur when multiple threads try to access data and at least one of them attempts 
to modify it, and no precautions are taken to synchronize the memory access. Data races can 
cause undefined behavior in your program and are a source of trouble.

But how does your program come to a data race? This happens when there is a race condition that hasn’t 
been properly handled. Let’s have a look into the difference between data races and race conditions:

•	 Race condition: A situation where the correctness of a code depends on specific timing or a 
strict sequence of operation

•	 Data race: When two or more threads access one object and at least one of these threads 
modifies it

Based on these definitions, we can deduce that every data race that occurs in your program comes as 
a result of not correctly handling race conditions. But the opposite is not always true: not every race 
condition leads to a data race.

There is no better way to understand race conditions and data races than by looking at an example. 
Let’s imagine a primitive banking system, really primitive, which we hope doesn’t exist anywhere.

Bill and John have accounts in a bank. Bill has $100 in his account and John has $50. Bill owes John a 
total of $30. To pay off his debt, Bill decides to make two transfers to John’s account. The first is worth 
$10 and the second is $20. So de facto, Bill will repay John. After both transfers are complete, Bill will 
have $70 left in his account, while John will have accumulated a total of $80.

Let’s define an Account structure that contains the name of the owner of the account together with 
their account balance at a certain moment:

struct Account {
    Account(std::string_view the_owner, unsigned
      the_amount) noexcept :
        balance{the_amount}, owner{the_owner} {}
    std::string GetBalance() const {
        return "Current account balance of " + owner +
                " is " + std::to_string(balance) + '\n';
    }
private:
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    unsigned balance;
    std::string owner;
};

In the Account structure, we will also add the overloaded operator methods for += and -=. These are 
responsible for depositing or withdrawing a specific amount of money to the corresponding account, 
respectively. Before and after each of the operations, the current balance of the account is printed. 
Here is the definition of these operators, which are part of the Account structure:

Account& operator+=(unsigned amount) noexcept {
        Print(" balance before depositing: ", balance,
          owner);
        auto temp{balance}; // {1}
        std::this_thread::sleep_for(1ms);
        balance = temp + amount; // {2}
        Print(" balance after depositing: ", balance,
          owner);
        return *this;
    }
    Account& operator-=(unsigned amount) noexcept {
        Print(" balance before withdrawing: ", balance,
          owner);
        auto temp{balance}; // {1}
        balance = temp - amount; // {2}
        Print(" balance after withdrawing: ", balance,
          owner);
        return *this;
    }

Looking into the implementation of the operator functions shows that they first read the current 
balance of the account, then store it in a local object (marker {1}), and finally, using the value of the 
local object, they increment or decrement with the specified amount.

As simple as it gets!

The resulting value of the new balance of the account is written back into the balance member of 
the Account structure (marker {2}).

We also need to define a method that will be responsible for the actual money transfer:

void TransferMoney(unsigned amount, Account& from, Account& to) {
    from -= amount; // {1}
    to += amount; // {2}
}
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The only thing it does is withdraw the desired amount from one account (marker {1}) and deposit 
it to the other account (marker {2}), which is exactly what we need to successfully transfer money 
between accounts.

Now, let’s have a look at our main program method, which will execute our example:

int main() {
    Account bill_account{"Bill", 100}; // {1}
    Account john_account{"John", 50}; // {2}

    std::jthread first_transfer{[&](){ TransferMoney(10,
      bill_account, john_account); }}; // {3}
    std::jthread second_transfer{[&](){ TransferMoney(20,
      bill_account, john_account); }}; // {4}

    std::this_thread::sleep_for(100ms); // {5}
    std::cout << bill_account.GetBalance(); // {6}
    std::cout << john_account.GetBalance(); // {7}
    return 0;
}

First, we need to create accounts for Bill and John and deposit $100 and $70 into them, respectively 
(markers {1} and {2}). Then, we have to do the actual money transfers: one transfer for $10 and one 
for $20 (markers {3} and {4}). I know that this code may look unfamiliar to you but don’t worry, 
we will deep-dive into std::jthread shortly in this chapter.

The only important detail you have to know so far is that we try to make both transfers concurrently 
with the help of the C++ multithreading library. At the end of the process, we set some time for both 
execution threads to finish the money transfers (marker {5}) and print the result (markers {6} and 
{7}). As we already discussed, after the transfers are finished, Bill should have $70 in his account 
while John should have $80.

Let’s see the program output:

140278035490560 Bill balance before withdrawing: 100
140278027097856 Bill balance before withdrawing: 100
140278027097856 Bill balance after withdrawing: 80
140278035490560 Bill balance after withdrawing: 90
140278027097856 John balance before depositing: 50
140278035490560 John balance before depositing: 50
140278027097856 John balance after depositing: 70
140278035490560 John balance after depositing: 60
Current account balance of Bill is 80
Current account balance of John is 60
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Wait, what? Bill has $80 while John has $60! How is that possible?

It’s possible because we created a race condition that led to a data race! Let’s explain. Having a deeper 
look into the implementation of the operator+= method reveals the problem. By the way, the 
situation is absolutely the same with the other operator method as well:

Account& operator+=(unsigned amount) noexcept {
    Print(" balance before withdrawing: ", balance, owner);
    auto temp{balance}; // {1}
    std::this_thread::sleep_for(1ms); // {2}
    balance = temp + amount; // {3}
    Print(" balance after withdrawing: ", balance, owner);
    return *this;
}

At marker {1}, we cache the current balance of the account into a local object living on the stack.

Important note
The C++ memory model guarantees that each thread has its own copy of all objects with 
automatic storage duration – the stack objects.

Next, we give the current execution thread some rest time of at least 1ms (marker {2}). With this 
statement, we put our thread to sleep, allowing other threads (if any) to take processor time and 
start executing. Nothing to worry about so far, right? Once the thread is back on executing, it uses 
its cached value of the account’s balance and increments it with the new amount. Finally, it stores the 
newly calculated value back to the balance member of the Account structure.

Having a closer look into the output of the program, we observe the following:

140278035490560 Bill balance before withdrawing: 100
140278027097856 Bill balance before withdrawing: 100
140278027097856 Bill balance after withdrawing: 80
140278035490560 Bill balance after withdrawing: 90

The first transfer starts executing. It is running as part of a thread with the 140278035490560 
identifier. We see that before the withdrawal is finished, the second transfer is started too. Its identifier 
is 140278027097856. The second transfer finishes the withdrawal first, leaving Bill’s bank account 
with a balance of $80. Then, the first withdrawal is back in action. But what happens then? Instead 
of taking $10 more from Bill’s account, it actually returns $10! This happens because the first thread 
was suspended when it had already cached the initial account balance of $100. A race condition was 
created. Meanwhile, the second transfer has changed the account balance, and now, when the first 
transfer is back to execution, it already works with outdated cached values. This results in blindly 
overriding the newer account balance with the outdated value. A data race happened.
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How do we avoid them?

Luckily, the C++ programming language provides various concurrency control mechanisms to address 
these challenges, such as atomic operations, locks, semaphores, condition variables, barriers, and 
others. These mechanisms help ensure that shared resources are accessed in a predictable and safe 
manner and that threads are coordinated effectively to avoid a data race. In the next sections, we will 
get deeper into some of these synchronization primitives.

Practical multithreading
In computer science, a thread of execution is a sequence of code instructions that can be managed 
independently by a scheduler of the operating system. On a Linux system, the thread is always part 
of a process. The C++ threads could be executed concurrently with each other via the multithreading 
capabilities provided by the standard. During execution, threads share common memory space, unlike 
processes, where each has its own. Specifically, the threads of a process share its executable code, the 
dynamically and globally allocated objects, which are not defined as thread_local.

Hello C++ jthread

Every C++ program contains at least one thread, and this is the thread that runs the int main() 
method. Multithreaded programs have additional threads started at some point in the execution of 
the main thread. Let’s have a look at a simple C++ program that uses multiple threads to print to the 
standard output:

#include <iostream>
#include <thread>
#include <syncstream>
#include <array>
int main() {
    std::array<std::jthread, 5> my_threads; // Just an
      array of 5 jthread objects which do nothing.
    const auto worker{[]{
        const auto thread_id = std::
           this_thread::get_id();  // 3
        std::osyncstream sync_cout{std::cout};
        sync_cout << "Hello from new jthread with id:"
                  << thread_id << '\n';
    }};
    for (auto& thread : my_threads) {
        thread = std::jthread{worker}; // This moves the
          new jthread on the place of the placeholder
    }
    std::osyncstream{std::cout} << "Hello Main program
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      thread with id:" << std::this_thread::get_id() <<
        '\n';
    return 0; // jthread dtors join them here.
}

When the program starts, the int main() method is entered. Nothing surprising so far. At the 
beginning of the execution, we create a variable on the method stack, called my_threads. It is a type 
of std::array, which contains five elements in it. The std::array type represents a container 
from the Standard Library, encapsulating C-style, fixed-sized arrays. It has the advantages of a standard 
container, such as being aware of its own size, supporting assignment, random access iterators, and 
so on. As with any other array type in C++, we need to specify what kind of elements it contains. In 
our example, my_threads contains five std::jthread objects. The std::jthread class 
was introduced in the C++ Standard Library with the C++20 standard release. It represents a single 
thread of execution, just like std::thread, which was introduced with the release of C++11. Some 
advantages of std::jthread compared to std::thread are that it automatically rejoins on 
destruction and it can be canceled or stopped in some specific cases. It is defined in the <thread> 
header; therefore, we must include it in order to compile successfully.

Yes, you are asking the right question! If we already defined an array of jthread objects, what job 
do they really perform? The expectation is that every thread is associated with some job that needs 
to be done. But here, the simple answer is nothing. Our array contains five jthread objects, which 
don’t actually represent an execution thread. They are used more like placeholders because, when 
std::array is instantiated, it also creates the objects it contains using their default constructors 
if no other arguments are passed.

Let’s now define some workers that our threads can be associated with. The std::jthread class 
accepts, as a worker, any callable type. Such types provide a single operation that can be invoked. 
Widely known examples of such types are function objects and lambda expressions, which we already 
covered in detail in Chapter 4. In our example, we will use lambda expressions because they provide 
a way of creating anonymous function objects (functors) that can be utilized in-line or passed as 
an argument. The introduction of lambda expressions in C++11 simplifies the process of creating 
anonymous functors, making it more efficient and straightforward. The following code shows our 
worker method defined as a lambda expression:

const auto worker{[]{
    const auto thread_id = std::this_thread::get_id();
    std::osyncstream sync_cout{std::cout};
    sync_cout << "Hello from new jthread with id:" <<
      thread_id << '\n';
}};

The defined lambda expression, const auto worker{…};, is pretty simple. It is instantiated 
on the function stack. It has no input parameters, and it doesn’t capture any state from outside. The 
only work it does is to print to the standard output the jthread object’s ID. Every thread in C++ 
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provided by the standard concurrency support library has a unique identifier associated with it. The 
std::this_thread::get_id() method returns the ID of the specific thread in which it has 
been invoked. This means that if this lambda expression is passed to several different threads, it should 
print a different thread ID.

Printing to std::cout by many concurrent threads could bring surprising results. The std::cout 
object is defined as a global, thread-safe object, which ensures that each character written to it is done 
so atomically. However, no guarantees are made about a sequence of characters such as strings, and it 
is likely that the output when multiple threads are concurrently writing strings to std::cout will be 
a mixture of these strings. Well, this is not what we really want here. We expect that each thread will 
be able to fully print its messages. Therefore, we need a synchronization mechanism, which ensures 
that writing a string to std::cout is fully atomic. Luckily, C++20 introduces a whole new family of 
class templates defined in the <syncstream> standard library header, which provides mechanisms 
to synchronize threads writing to one and the same stream. One of them is std::osyncstream. 
You can use it as a regular stream. Just create an instance of it by passing std::cout as a parameter. 
Then, with the help of its std::basic_ostream& operator<<(...) class method, you 
can insert data, just like a regular stream. It is guaranteed that all of the inserted data will be flushed 
atomically to the output once the std::osyncstream object goes out of scope and is destroyed. 
In our example, the sync_cout object will be destroyed when the lambda is about to finish its 
execution and leave its scope. This is exactly the behavior we want.

Finally, we are ready to give some work to our threads to do. This means that we need to associate 
worker lambdas with the five threads we have in the my_threads array. But the std::jthread 
type supports adding a worker method only as part of its construction. That’s why we need to create 
other jthread objects and replace them with the placeholders in the my_threads array:

for (auto& thread : my_threads) {
    thread = jthread{worker}; // This moves the new jthread
      on the place of the placeholder
}

Being a standard container, std::array natively supports range-based for loops. Therefore, we can 
easily iterate through all elements in my_threads and replace them with new jthread objects that 
already have associated workers with them. Firstly, we create new jthread objects with automatic 
storage duration and assign them a worker object. In our case, for every newly created thread, we 
assign one and the same worker object. This is possible because, in the current case, the jthread 
class makes a copy of the worker instance in the jthread objects and, therefore, each jthread 
object gets its own copy of the worker lambda. When constructing these objects, the process is carried 
out within the context of the caller. This means that any exceptions that occur during the evaluation 
and copying or movement of the arguments are thrown in the current main thread.
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An important detail is that the newly created jthread objects are not copied to the existing elements 
of the array, but they are moved. Therefore, the std::jthread class has implicitly deleted its copy 
constructor and assignment operator because it doesn’t make much sense to copy a thread to an 
already existing thread. In our case, the newly created jthread objects will be created in the storage 
of the existing array elements.

When a jthread object is constructed, the associated thread starts immediately, although there 
may be some delays due to Linux scheduling specifics. The thread begins executing at the function 
specified as an argument to the constructor. In our example, this is the worker lambda associated with 
each thread. If the worker returns a result, it will be ignored, and if it ends by throwing an exception, 
the std::terminate function is executed. Therefore, we need to make sure that either our worker 
code doesn’t throw or we catch everything throwable.

When a thread is started, it begins executing its dedicated worker. Each thread has its own function 
stack space, which guarantees that any local variable defined in the worker will have a separate instance 
per thread. Therefore, const auto thread_id in the worker is initialized with a different ID 
depending on the thread it is run by. We do not need to take any precautions to ensure that the data 
stored in thread_id is consistent. It is guaranteed by the Standard that data with automatic storage 
duration is not shared between the threads.

Once all the jthread objects have been created, the main thread concurrently prints its ID along 
with the rest of the threads. There is no guaranteed order of execution for each thread, and it is possible 
for one thread to be interrupted by another. As a result, it is important to ensure that the code is written 
in a manner that can handle potential preemption and remains robust in all scenarios:

std::osyncstream{std::cout} << "Hello Main program thread
  with id:" << std::this_thread::get_id() << '\n';

All threads are now running concurrently with the main thread. We need to make sure that the 
main thread is also printing to the standard output in a thread-safe manner. We again use an instance 
of std::osyncstream, but this time, we don’t create a named variable – instead, we create a 
temporary one. This approach is favored due to its ease of use, similar to using the std::cout 
object. The standard guarantees that the output will be flushed at the end of each statement, as the 
temporary ones persist until the end of the statement and their destructor is invoked, resulting in the 
flushing of the output.

Here is a sample output from the program:

Hello from new jthread with id:1567180544
Hello from new jthread with id:1476392704
Hello from new jthread with id:1468000000
Hello Main program thread with id:1567184704
Hello from new jthread with id:1558787840
Hello from new jthread with id:1459607296
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The std::jthread name refers to a joining thread. Unlike std::thread, std::jthread 
also has the ability to automatically join the thread that it has been started by. The behavior of 
std::thread can be confusing at times. If std::thread has not been joined or detached, and 
it is still considered joinable, the std::terminate function will be called upon its destruction. A 
thread is considered joinable if neither the join() nor the detach() method has been called. In 
our example, all the jthread objects automatically join during their destruction and do not result 
in the termination of the program.

Canceling threads – is this really possible?

Before C++ 20 was released, this wasn’t quite possible. It was not guaranteed that std::thread 
was stoppable in the sense that there wasn’t a standard utility to halt the thread’s execution. Different 
mechanisms were used instead. Stopping std::thread required cooperation between the main 
and worker threads, typically using a flag or atomic variable or some kind of messaging system.

With the release of C++20, there is now a standardized utility for requesting std::jthread 
objects to stop their execution. The stop tokens come to help. Looking at the C++ standard reference 
page about the definition of std::jthread (https://en.cppreference.com/w/cpp/
thread/jthread), we find the following:

“The class jthread represents a single thread of execution. It has the same general 
behavior as std::thread, except that jthread automatically rejoins on destruction, 

and can be canceled/stopped in certain situations.”

We already saw that jthread objects automatically join on destruction, but what about canceling/
stopping and what does “certain situations” mean? Let’s dig deeper into this.

First of all, don’t expect that std::jthread exposes some magical mechanism, some red button 
that stops the running thread when it is pressed. It is always a matter of implementation, how exactly 
your worker function is implemented. If you want your thread to be cancelable, you have to make 
sure that you have implemented it in the right way in order to allow cancellation:

#include <iostream>
#include <syncstream>
#include <thread>
#include <array>
using namespace std::literals::chrono_literals;
int main() {
    const auto worker{[](std::stop_token token, int num){
      // {1}
        while (!token.stop_requested()) { // {2}
            std::osyncstream{std::cout} << "Thread with id
              " << num << " is currently working.\n";
            std::this_thread::sleep_for(200ms);
        }

https://en.cppreference.com/w/cpp/thread/jthread
https://en.cppreference.com/w/cpp/thread/jthread
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        std::osyncstream{std::cout} << "Thread with id " <<
          num << " is now stopped!\n";
    }};
    std::array<std::jthread, 3> my_threads{
        std::jthread{worker, 0},
        std::jthread{worker, 1},
        std::jthread{worker, 2}
    };
    // Give some time to the other threads to start
      executing …
    std::this_thread::sleep_for(1s);
    // 'Let's stop them
    for (auto& thread : my_threads) {
        thread.request_stop(); // {3} - this is not a
          blocking call, it is just a request.
    }
    std::osyncstream{std::cout} < "Main thread just
      requested stop!\n";
    return 0; // jthread dtors join them here.
}

Looking at the definition of our worker lambda function, we observe that it is now slightly reworked 
(marker {1}). It accepts two new parameters – std::stop_token token and int num. The 
stop token reflects the shared stop state that a jthread object has. If the worker method accepts 
many parameters, then the stop token must always be the first parameter passed.

It is imperative to ensure that the worker method is designed to be able to handle cancellation. This 
is what the stop token is used for. Our logic should be implemented in such a way that it regularly 
checks whether a stop request has been received. This is done with a call to the stop_requested() 
method of the std::stop_token object. Every specific implementation decides where and when 
these checks are to be done. If the code doesn’t respect the stop token state, then the thread can’t be 
canceled gracefully. So, it’s up to you to correctly design your code.

Luckily, our worker lambda respects the state of the thread’s stop token. It continuously checks whether 
a stop is requested (marker {2}). If not, it prints the thread’s ID and goes to sleep for 200ms. This 
loop continues until the parent thread decides to send stop requests to its worker threads (marker 
{3}). This is done by invoking the request_stop() method of the std::jthread object.
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Here is the output of the program:

Thread with id 0 is currently working.
Thread with id 1 is currently working.
Thread with id 2 is currently working.
Thread with id 1 is currently working.
Thread with id 2 is currently working.
Thread with id 0 is currently working.
Thread with id 1 is currently working.
Thread with id 2 is currently working.
Thread with id 0 is currently working.
Thread with id 2 is currently working.
Thread with id 1 is currently working.
Thread with id 0 is currently working.
Thread with id 1 is currently working.
Thread with id 0 is currently working.
Thread with id 2 is currently working.
Main thread just requested stop!
Thread with id 1 is now stopped!
Thread with id 0 is now stopped!
Thread with id 2 is now stopped!

Now that we know how we can stop the execution of a specific std::jthread using std::stop_
token, let’s see how we can stop the execution of multiple std::jthread objects using a single 
stop source.

std::stop_source

The std::stop_source class enables you to signal a cancellation request for std::jthread. 
When a stop request is issued through a stop_source object, it becomes visible to all other 
stop_source and std::stop_token objects associated with the same stop state. You just need 
to signal it, and any thread worker that consumes it will be notified.

By utilizing std::stop_token and std::stop_source, threads can signal or check for a request 
to stop their execution asynchronously. The request to stop is made through std::stop_source, 
which affects all related std::stop_token objects. These tokens can be passed to the worker functions 
and used to monitor stop requests. Both std::stop_source and std::stop_token share 
ownership of the stop state. The method of the std::stop_source class – request_stop() 
– and the methods in std::stop_token – stop_requested() and stop_possible() 
– are all atomic operations to ensure that no data race will occur.



Practical multithreading 137

Let’s have a look at how our previous example could be reworked with the help of the stop tokens:

#include <iostream>
#include <syncstream>
#include <thread>
#include <array>
using namespace std::literals::chrono_literals;
int main() {
    std::stop_source source;
    const auto worker{[](std::stop_source sr, int num){
        std::stop_token token = sr.get_token();
        while (!token.stop_requested()) {
            std::osyncstream{std::cout} << "Thread with id
              " << num << " is currently working.\n";
            std::this_thread::sleep_for(200ms);
        }
        std::osyncstream{std::cout} << "Thread with id " <<
          num << " is now stopped!\n";
    }};
    std::array<std::jthread, 3> my_threads{
        std::jthread{worker, source, 0},
        std::jthread{worker, source, 1},
        std::jthread{worker, source, 2}
    };
    std::this_thread::sleep_for(1s);
    source.request_stop(); // this is not a blocking call,
      it is just a request. {1}
    Std::osyncstream{std::cout} << "Main thread just
      requested stop!\n";
    return 0; // jthread dtors join them here.
}

The main method starts with the declaration of the std::stop_source source, which will be used 
by the main thread to signal all child worker threads and request them to stop. The worker lambda 
is slightly reworked in order to accept std::stop_source sr as an input. This is in fact the 
communication channel through which the worker is notified for a stop request. The std::stop_
source object is copied in all workers associated with the started threads.

Rather than iterating through all the threads and invoking on each of them a stop request, the only 
operation that we need to invoke is to directly call request_stop() on the source instance in the 
main thread (marker {1}). This will broadcast stop requests to all workers that consume it.
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As the name suggests, the call to the request_stop() method on the stop source object is just 
a request rather than a blocking call. So, don’t expect your threads to stop immediately once the call 
is finished.

Here is the sample output from the program:

Thread with id 0 is currently working.
Thread with id 1 is currently working.
Thread with id 2 is currently working.
Thread with id 1 is currently working.
Thread with id 2 is currently working.
Thread with id 0 is currently working.
Thread with id 1 is currently working.
Thread with id 2 is currently working.
Thread with id 0 is currently working.
Thread with id 1 is currently working.
Thread with id 0 is currently working.
Thread with id 2 is currently working.
Thread with id 1 is currently working.
Thread with id 0 is currently working.
Thread with id 2 is currently working.
Main thread just requested stop!
Thread with id 1 is now stopped!
Thread with id 0 is now stopped!
Thread with id 2 is now stopped!

We are now familiar with two mechanisms for halting thread execution in C++. Now, it’s time to see 
how we can share data between multiple threads.

Sharing data during parallel execution
Think in terms of tasks rather than threads (https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#cp4-think-in-terms-of-tasks-rather-than-threads).

Referring back to the C++ Core Guidelines, they advise us that it is better to stick to tasks rather than 
threads. A thread is a technical implementation idea, a perspective on how the machine works. On 
the other hand, a task is a practical concept for work that you want to do, ideally alongside other 
tasks. In general, practical concepts are simpler to understand and provide better abstraction, and 
we prefer them.

But what is a task in C++? Is it another standard library primitive or what? Let’s have a look!

In C++, besides threads, tasks are also available to perform work asynchronously. A task consists of 
a worker and two associated components: a promise and a future. These components are connected 
through a shared state, which is a kind of data channel. The promise does the work and places the 

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cp4-think-in-terms-of-tasks-rather-than-threads
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#cp4-think-in-terms-of-tasks-rather-than-threads
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result in the shared state, while the future retrieves the result. Both the promise and the future can 
run in separate threads. One unique aspect of the future is that it can retrieve the result at a later time, 
making the calculation of the result by the promise independent from the retrieval of the result by 
the associated future.

Figure 6.4 – Inter-thread communication

The <future> header, defined in the Standard Library, is necessary for utilizing tasks. It provides 
the capability to obtain the results of functions executed in separate threads, also referred to as 
asynchronous tasks, and to manage any exceptions they may throw. Using the std::promise 
class, these results are communicated through a shared state, where the asynchronous task can store 
its return value or an exception. This shared state can then be accessed using std::future to 
retrieve the return value or the stored exception.

Let’s have a look at a simple example where a thread reports a string as a result to its parent thread:

#include <future>
#include <thread>
#include <iostream>
using namespace std::literals::chrono_literals;
int main() {
    std::promise<std::string> promise; // {1}
    std::future<std::string> future{promise.get_future()};
      // {2} – Get the future from the promise.
    std::jthread th1{[p{std::move(promise)}]() mutable { //
      {3} – Move the promise inside the worker thread.
        std::this_thread::sleep_for(20ms);
        p.set_value_at_thread_exit("I promised to call you
          back once I am ready!\n"); // {4}
    }};
    std::cout << "Main thread is ready.\n";
    std::cout << future.get(); // {5} – This is a blocking
      call!
    return 0;
}
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As we already discussed, threads communicate with each other using a shared state. In the int 
main() method, we declare std::promise<std::string> promise, which is our de facto 
data source (marker {1}). The std::promise class is a template class that needs to be parameterized 
once it is instantiated. In our example, we want our worker thread, std::thread th1, to return 
a string as a result. Therefore, we instantiate std::promise with the std::string type. We 
also need a way for the main thread to be able to get the result that will be set by the worker thread. 
In order to do so, we need to get a std::future object from the promise we already instantiated. 
This is possible because the std::promise type has a method that returns its associated future – 
std::future<...> get_future(). In our example, we instantiate a future object, future, 
which is initialized by the get_future() method of the promise (marker {2}).

Since we already have a promise and its associated future, we are now ready to move the promise 
as part of the worker thread. We are moving it in order to be sure that it won’t be used by the main 
thread anymore (marker {3}). Our worker thread is quite simple, and it just sleeps for 20ms and 
sets the result in the promise (marker {4}). The std::promise type provides several ways to 
set a result. The result could be either a value of type by which the promise is parameterized or it 
could be an exception thrown during worker execution. The value is set by the set_value() and 
set_value_at_thread_exit()methods. The main difference between both methods is that 
set_value() immediately notifies the shared state that the value is ready, whereas set_value_
at_thread_exit() does it when the thread execution is finished.

Meanwhile, the main thread execution has been blocked waiting for the result of the worker thread. 
This is done on the call to the future.get() method. This is a blocking call on which the waiting 
thread is blocked until the shared state is notified that the result of the future is set. In our example, 
this happens after the completion of the worker thread because the shared state is only notified when 
the worker is finished (marker {5}).

The expected output from the program is as follows:

Main thread is ready.
I promised to call you back once I am ready!

Barriers and latches

New thread synchronization primitives were introduced with the C++20 standard. Barriers and 
latches are straightforward thread synchronization primitives that block threads to wait until a counter 
reaches zero. These primitives are offered by the standard library in the form of the std::latch 
and std::barrier classes.

What distinguishes these two synchronization mechanisms? The key difference is that std::latch 
can only be used once, while std::barrier can be used multiple times by multiple threads.
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What advantages do barriers and latches offer over other synchronization primitives that the C++ 
standard provides, such as condition variables and locks? Barriers and latches are easier to use, more 
intuitive, and, in some circumstances, may provide better performance.

Let’s have a look at the following example:

#include <thread>
#include <iostream>
#include <array>
#include <latch>
#include <syncstream>
using namespace std::literals::chrono_literals;
int main() {
    std::latch progress{2}; // {1}
    std::array<std::jthread, 2> threads {
        std::jthread{[&](int num){
            std::osyncstream{std::cout} << "Starting thread
              " << num << " and go to sleep.\n";
            std::this_thread::sleep_for(100ms);
            std::osyncstream{std::cout} << "Decrementing
              the latch for thread " << num << '\n';
            progress.count_down(); // {2}
            std::osyncstream{std::cout} << "Thread " << num
              << " finished!\n";
        }, 0},
        std::jthread{[&](int num){
            std::osyncstream{std::cout} << "Starting thread
              " << num << ". Arrive on latch and wait to
                 become zero.\n";
            progress.arrive_and_wait(); // {3}
            std::osyncstream{std::cout} << "Thread " << num
              << " finished!\n";
        }, 1}
    };
    std::osyncstream{std::cout} << "Main thread waiting
      workers to finish.\n";
    progress.wait(); // {4} wait for all threads to finish.
    std::cout << "Main thread finished!\n";
    return 0;
}

We have an array of two threads that are synchronized on a latch. This means that each thread starts 
its execution and does its work until it reaches the latch.
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The std::latch class is a synchronization mechanism that utilizes a downward-counting counter 
to coordinate threads. The counter is set at initialization and passed as an argument to the constructor. 
The threads can then wait until the counter reaches zero. It is not possible to increase or reset the 
counter once it is initialized. Access to the member functions of std::latch from multiple threads 
concurrently is guaranteed to be thread-safe and free from data races.

In our example (marker {1}), we have initialized the latch with a value of 2 because we have two 
worker threads that need to be synchronized with the main one. Once the worker reaches the latch, 
it has three options:

•	 Decrement it and continue (marker {2}). This is done using the member of the std::latch 
class – void count_down(n = 1). This call is non-blocking and automatically decrements 
the latch’s internal counter value by n. It is undefined behavior if you try to decrement with a 
negative value or with a value greater than the value that the internal counter currently has. In 
our example, this is a worker thread with an ID of 0, which, once it is ready, decrements the 
latch counter and finishes.

•	 Decrement it and wait until the latch becomes zero (marker {3}). In order to do so, you have 
to use another method of the std::latch class – void arrive_and_wait(n = 1). 
This method, once it is invoked, decrements the latch by n and blocks it until the latch’s internal 
counter hits 0. In our example, this is a worker thread with an ID of 1, which, once it is ready, 
starts waiting until the other worker is finished.

•	 Just block and wait until the internal counter of the latch becomes zero (marker {4}). This 
is possible because std::latch provides a method – void wait() const. This is a 
blocking call on which the invoking thread is blocked until the internal counter of the latch 
hits zero. In our example, the main thread blocks and starts waiting for the worker threads 
to finish their execution.

The result of our program is that the main thread execution is suspended until the worker threads 
finish their jobs. The std::latch class provides a convenient way to synchronize the execution 
of several threads:

Main thread waiting workers to finish.
Starting thread 1. Arrive on latch and wait to become zero.
Starting thread 0 and go to sleep.
Decrementing the latch for thread 0
Thread 0 finished!
Main thread finished!
Thread 1 finished!

Another very similar synchronization primitive to std::latch is std::barrier. Barriers are 
thread synchronization primitives that permit a group of threads to wait until all of them reach a 
specific synchronization point. Unlike a latch, a barrier can be used multiple times. Once the threads 
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have been released from the synchronization point, they can reuse the barrier. A synchronization 
point is a specific moment where a thread can pause its execution until a specific condition has been 
met. This makes barriers ideal for synchronizing repeated tasks or executing different phases from 
the same bigger task by many threads.

In order to get a better understanding of what barriers are, let’s use an example. Imagine that you have 
a network of temperature sensors installed in your home. In each room, there is a sensor installed. 
Each sensor takes a temperature measurement at a specific time period and the result is buffered in its 
memory. When the sensor does 10 measurements, it sends them as a chunk to a server. This server is 
responsible for collecting all measurements from all sensors in your home and calculating temperature 
mean values – the mean temperature for each room and the mean temperature for your entire home.

Let’s discuss the algorithm now. In order to calculate the mean temperature of your entire home, we 
first need to process the temperature measurements done by the sensors that are sent to the server at 
some specific time period. This means that we need to process all the temperature samples received 
for a specific room to calculate the mean temperature for that room, and we need to do this for all the 
rooms in your home. Finally, with the calculated mean temperatures for each room, we can calculate 
the mean temperature for the entire home.

It sounds like we need to process a lot of data. It makes sense to try to parallelize the data processing 
wherever possible. Yes, you are right: not all of the data processing can be parallelized! There is a 
strict sequence of actions we need to respect. Firstly, we need to calculate the mean temperature in 
each room. There are no dependencies between the rooms, so we can execute these calculations in 
parallel. Once we have all the room temperatures calculated, we can continue to the calculation of the 
mean temperature of the entire home. This is exactly where std::barrier will come to the rescue.

The std::barrier synchronization primitive blocks the threads at a specific synchronization 
point (the barrier) until all of them arrive. Then, it allows a callback to be invoked and a specific 
action to be performed. In our example, we need to wait for all room calculations to be finished – to 
wait on the barrier. Then, a callback will be executed where we will calculate the mean temperature 
for the entire home:

using Temperature =
    std::tuple<std::string, // The name of the room
               std::vector<double>, // Temperature
                 measurements
               double>; // Calculated mean temperature
                        // value for a specific room
std::vector<Temperature> room_temperatures {
    {"living_room",{}, 0.0},
    {"bedroom", {}, 0.0},
    {"kitchen", {}, 0.0},
    {"closet", {}, 0.0}
};



 Concurrent System Programming with C++144

Let’s start with the definition of our data container where we will store the temperature measurements 
done for each room, together with their calculated mean values by our worker threads. We will 
use a vector of rooms, room_temperature, in which we will store the room name, a vector of 
measurements, and the mean value.

Now, we need to define the workers that will, in parallel, calculate the mean values for each room:

std::stop_source message;
std::barrier measurementBarrier{ // {1}
    static_cast<int>(room_temperatures.size()), // {2}
    [&message]() noexcept { // {3}
        // 1. Compute the mean temperature of the entire
          home.
        // 2. Push new temperature data
        // 3. After 5 measurement cycles request stop.
    }
};

std::vector<std::jthread> measurementSensors;
for (auto& temp : room_temperatures) {
    measurementSensors.emplace_back([&measurementBarrier,
      &message, &temp](){
        const auto& token = message.get_token();
        while(!token.stop_requested()) {
            ProcessMeasurement(temp);
            measurementBarrier.arrive_and_wait(); // {4}
        }
    });
}

We create the same count of jthread instances as the count of the rooms. Each jthread instance 
is created and a worker lambda is assigned to it. As you can see, the worker lambda captures a 
std::stop_source object, which will be used to notify it that no other work is pending and the thread 
execution should be finished. The lambda also captures std::barrier measurementBarrier, 
which will be used to block each thread that is ready with its computation until all other threads are 
also ready (marker {1}).

The std::barrier instance needs to be initialized with the count of the synchronization points 
(marker {2}). This means that the barrier will be raised when the count of threads reaching the 
barrier is equal to the initialized value. In our example, we initialize the barrier with the count of the 
worker threads that will concurrently compute the mean temperatures for each room. An optional 
initialization parameter that the barrier accepts is a callback function (marker {3}). This function 
must not throw and, therefore, we mark it as noexcept. It will be invoked when all threads in a 



Sharing data during parallel execution 145

certain cycle arrive at the barrier and before the barrier is raised. Keep in mind that the standard doesn’t 
specify which thread this callback will be executed on. We will use this callback to do the following:

•	 Iterate through all already computed mean temperatures for the rooms and compute the mean 
temperature of the entire home. This is the result we expect our program to deliver.

•	 Feed the worker threads with new temperature data for the next computation cycle. In contrast 
to std::latch, std::barrier allows us to use the same barrier as many times as we need.

•	 Check whether we have already calculated five times the mean temperature of the entire home 
and, if so, notify the workers that they need to gracefully stop and exit the program.

When a thread starts working and it is ready with its computation, it hits the barrier (marker {4}). 
This is possible because std::barrier exposes a method: void arrive_and_wait(). This 
call effectively decrements the internal counter of the barrier, which notifies it that the thread has 
arrived and blocks the thread until the counter hits zero and the barrier’s callback is triggered.

In the following code, you can find the methods responsible for generating example temperature 
values and calculating the mean temperature value:

void GetTemperatures(Temperature& temp) {
    std::mt19937 gen{std::random_device{}()};
    // Add normal distribution with mean = 20
    // and standard deviation of 8
    std::normal_distribution<> d{20, 8};
    auto& input_data{std::get<1>(temp)};
    input_data.clear();
    for (auto n{0}; n < 10; ++n) {
        // Add input data
        input_data.emplace_back(d(gen));
    }
}
void ProcessMeasurement(Temperature& temp){
    const auto& values{std::get<1>(temp)};
    auto& mean{std::get<2>(temp)};
    mean = std::reduce(values.begin(), values.end()) /
      values.size();
}
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Once we have all the code pieces available, let’s see the main method implementation of our program:

int main() {
    // Init data
    std::ranges::for_each(room_temperatures,
      GetTemperatures);
    std::stop_source message;
    std::barrier measurementBarrier{
        static_cast<int>(room_temperatures.size()),
        [&message]() noexcept {
            // Get all results
            double mean{0.0};
            for (const auto& room_t : room_temperatures) {
                std::cout << "Mean temperature in "
                          << std::get<0>(room_t)
                          << " is " << std::get<2>(room_t)
                            << ".\n";
                mean += std::get<2>(room_t);
            }
            mean /= room_temperatures.size();
            std::cout << "Mean temperature in your home is
              " << mean << " degrees Celsius.\n";
            std::cout << "=======================
              ======================\n";
            // Add new input data
            std::ranges::for_each(room_temperatures,
              GetTemperatures);
            // Make 4 measurements and request stop.
            static unsigned timer{0};
            if (timer >= 3) {
                message.request_stop();
            }
            ++timer;
        }
    };
    std::vector<std::jthread> measurementSensors;
    for (auto& temp : room_temperatures) {
        measurementSensors.emplace_back
          ([&measurementBarrier, &message, &temp](){
            const auto& token = message.get_token();
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            while(!token.stop_requested()) {
                ProcessMeasurement(temp);
                measurementBarrier.arrive_and_wait();
            }
        });
    }
    return 0;
}

For the input temperature data of our example, we use a random number generator, which produces 
data with normal distribution. As a result, we get the following output:

Mean temperature in living_room is 18.7834.
Mean temperature in bedroom is 16.9559.
Mean temperature in kitchen is 22.6351.
Mean temperature in closet is 20.0296.
Mean temperature in your home is 19.601 degrees Celsius.
=============================================
Mean temperature in living_room is 19.8014.
Mean temperature in bedroom is 20.4068.
Mean temperature in kitchen is 19.3223.
Mean temperature in closet is 21.2223.
Mean temperature in your home is 20.1882 degrees Celsius.
=============================================
Mean temperature in living_room is 17.9305.
Mean temperature in bedroom is 22.6204.
Mean temperature in kitchen is 17.439.
Mean temperature in closet is 20.3107.
Mean temperature in your home is 19.5752 degrees Celsius.
=============================================
Mean temperature in living_room is 19.4584.
Mean temperature in bedroom is 19.0377.
Mean temperature in kitchen is 16.3529.
Mean temperature in closet is 20.1057.
Mean temperature in your home is 18.7387 degrees Celsius.
=============================================

With the preceding example, we have demonstrated how you can use synchronization primitives with 
std::jthread to provide inter-thread synchronization for your program.
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Summary
In this chapter, we explored several topics related to concurrency and parallelism in C++. We began by 
discussing the terminology and differences between concurrency and parallelism, including preemption. 
We then delved into how programs execute on single and multiple processing units, distinguishing 
between processes and execution threads and briefly exploring communication mechanisms such as 
pipes, sockets, and shared memory.

In the context of C++, we examined how the language supports concurrency, specifically through 
the std::thread class and the new std::jthread primitive introduced in C++20. We also 
discussed the risks associated with race conditions and data races, including an example of a money 
transfer operation. To avoid these issues, we examined mechanisms such as locks, atomic operations, 
and memory barriers.

Moving on, we looked closely at the std::jthread class, exploring its functionality and proper usage. 
Additionally, we learned about a new synchronized stream wrapper delivered in C++20 for printing in 
concurrent environments. We also covered how to cancel running threads using std::stop_token 
and how to request a stop to several threads using std::stop_source.

We then shifted our focus to returning results from threads using std::future and std::promise. 
Additionally, we discussed the use of std::latch and std::barrier, using an example of a 
temperature station to demonstrate how the latter can be used to synchronize threads.

Overall, we explored a range of topics related to concurrency and parallelism in C++, from basic 
terminology and concepts to more advanced techniques and mechanisms for avoiding data races and 
synchronizing threads. But please stay tuned because, in the next chapter, you will get familiar with 
some mechanisms for IPC that are widely used in software programming.



7
Proceeding with Inter-Process 

Communication

The previous chapter presented many features of C++20 that allow you to execute tasks in parallel. 
Outside of the global variables, it didn’t cover ways to communicate between processes or threads. On 
a system level, most of the asynchronous calls are born in the continuous communication between 
processes and different computer systems.

In this chapter, you will learn about the inter-process communication (IPC) interfaces that Linux 
provides. Through them, you will get a full picture of possibilities to cover your system and software 
requirements. You’ll start by learning about message queues (MQs) as a continuation of the discussion 
about pipes in Chapter 3. In addition, we will analyze in detail the work of the semaphore and mutex 
synchronization techniques. We will introduce you to some new C++20 features in this area that are 
easy to use, and you will no longer have to implement such yourself.

This allows us to proceed with the shared memory technique, which will give you the option to transfer 
large amounts of data fast. Finally, if you’re interested in communication between computer systems 
on the network, you’ll learn about sockets and network communication protocols. With this, we give 
you some practical and commands to administer your own system on the network.

We will build on the discussions started in this chapter in Chapter 9.

In this chapter, we are going to cover the following main topics:

•	 Introducing MQs and the pub/sub mechanism

•	 Guaranteeing atomic operations through semaphores and mutual exclusions

•	 Using shared memory

•	 Communicating through the network with sockets
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Technical requirements
To run the code examples, you must prepare the following:

•	 A Linux-based system capable of compiling and executing C++20 (for example, Linux Mint 21)

•	 A GCC 12.2 compiler (https://gcc.gnu.org/git/gcc.git gcc-source) with 
the -std=c++2a, -lpthread, and -lrt flags

•	 For all the examples, you can alternatively use https://godbolt.org/

•	 All code examples in this chapter are available for download from https://github.
com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/
Chapter%207

Introducing MQs and the pub/sub mechanism
We’re glad to be back on the IPC topic. The last time we discussed it was in Chapter 3, where we 
explained pipes and used some code examples. You learned about the basic mechanism of exchanging 
data between processes, but as you remember, there are some blocking points. As with any programming 
instrument, pipes have particular usage – they are fast, and they can help you send and receive data 
from both related (forked) processes (through anonymous pipes) and unrelated processes (through 
named pipes).

In a similar fashion, we could use MQs to transfer data, which are available to related and unrelated 
processes, too. They provide the ability to send a single message to multiple receiving processes. But 
as you saw, pipes are primitive in the sense of sending and receiving binary data as is, while MQs 
bring the notion of a message to the table. The policy of the transfer is still configured in the calling 
process – queue name, size, signal handling, priority, and so on – but its policy and ability to serialize 
data are now in the hands of the MQ’s implementation. This gives the programmer a relatively simple 
and flexible way to prepare and handle messages of data. Based on our software design, we could easily 
implement an asynchronous send-receive data transfer or a publish/subscribe (pub/sub) mechanism. 
Linux provides two different interfaces for MQs – one designed for local server applications (coming 
from System V) and one designed for real-time applications (coming from POSIX). For the purposes 
of the book, we prefer to use the POSIX interface as it is richer and cleaner in configuration. It is 
also a file-based mechanism, as discussed in Chapter 1, and you can find a mounted queue through 
the following:

$ ls /dev/mqueue

This interface is available through the OS real-time functions library, librt, so you need to link it 
during compilation. The MQ itself can be visualized as follows:

https://gcc.gnu.org/git/gcc.gitgcc-source
https://godbolt.org/
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
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Figure 7.1 – Representation of IPC through the MQ

Let’s look at an example where we send data from one process to another. The exemplary data is already 
stored in a file and loaded to be sent through the MQ. The full example can be found at https://
github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/
main/Chapter%207:

constexpr auto MAX_SIZE = 1024;
string_view QUEUE_NAME  = "/test_queue";

We set our initial configuration together with the queue name as the pathname:

void readFromQueue() {
...
    mqd_t          mq   = { 0 };
    struct mq_attr attr = { 0 };
    array<char, MAX_SIZE> buffer{};
    attr.mq_flags = 0;
    attr.mq_maxmsg = 10;
    attr.mq_msgsize = MAX_SIZE;
    attr.mq_curmsgs = 0;
    if (mq = mq_open(QUEUE_NAME.data(), O_CREAT | O_RDONLY,
                     0700, &attr); mq > -1) { // {1}
        for (;;) {
            if (auto bytes_read = mq_receive(mq,
                                             buffer.data(),
                                             buffer.size(),
                                             NULL);
                                  bytes_read > 0) { // {2}

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
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                buffer[bytes_read] = '\0';
                cout << "Received: "
                     << buffer.data()
                     << endl; // {3}
            }
            else if (bytes_read == -1) {
                cerr << "Receive message failed!";
            }

Additional configuration is applied to the MQ and the receiving end is prepared. The mq_open()
function is called in order to create the MQ on the filesystem and open its reading end. Through an 
endless loop, the data is received as it is read from a binary file and printed out (markers {2} and {3} 
in the preceding code) until the file is fully consumed. Then, the receiving ends and the reading end 
are closed (marker {4} in the following code). If there’s nothing else to be done, the MQ is deleted 
from the filesystem through mq_unlink():

            else {
                cout << "\n\n\n***Receiving ends***"
                     << endl;
                mq_close(mq); // {4}
                break;
            }
        }
    }
    else {
        cerr << "Receiver: Failed to load queue: "
             << strerror(errno);
    }
    mq_unlink(QUEUE_NAME.data());
}

This example is implemented with two threads but could be done in the same fashion with two 
processes. The MQ functionality will remain the same. We call mq_open() again and open the 
MQ for writing (marker {5} in the following code). The created queue can fit up to 10 messages 
and each message can be 1,024 bytes in size – this is defined through the MQ attributes in the earlier 
code snippet. If you don’t want the MQ operations to be blocking, you could use the O_NONBLOCK 
flag in the attributes, or use mq_notify() prior to the mq_receive() call. That way, if the MQ 
is empty, the reader will be blocked, but mq_notify() will trigger a signal on message arrival and 
the process will be resumed.

Then, the locally stored file is opened with the test data and we read from it (markers {6} and {7} in 
the following code). While we read (you could use std::ofstream as well), we send its contents 
through the MQ (marker {8} in the following code). The message has the lowest priority possible, 
which means 0. In a system with more messages in a queue, we could set a higher priority and they 
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will be handled in a decreasing order. The maximum value is visible from sysconf(_SC_MQ_
PRIO_MAX), where, for Linux, this is 32768, but POSIX enforces a range from 0 to 31 in order to 
be compliant with other OSs as well. Let’s check the following code snippet:

void writeToQueue() {
...
   if (mq = mq_open(QUEUE_NAME.data(), O_WRONLY,
                     0700, NULL); mq > -1) { // {5}
        int fd = open("test.dat", O_RDONLY); // {6}
        if (fd > 0) {
            for (;;) {
                // This could be taken from cin.
                array<char, MAX_SIZE> buffer{};
                if (auto bytes_to_send =
                        read(fd,
                             buffer.data(),
                        buffer.size());
                             bytes_to_send > 0) { // {7}
                    if (auto b_sent =
                            mq_send(mq,
                                    buffer.data(),
                                    buffer.size(),
                                    0);
                                    b_sent == -1) {// {8}
                        cerr << "Sent failed!"
                             << strerror(errno);
                    }

Then, we send a zero-sized message to indicate the end of the communication (marker {9}):

...
                else if (bytes_to_send == 0) {
                    cout << "Sending ends...." << endl;
                    if (auto b_sent =
                            mq_send(mq,
                                    buffer.data(),
                                    0,
                                    0); b_sent == -1) {
                                    // {9}
                        cerr << "Sent failed!"
                             << strerror(errno);
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The result is the following (the printed data from the file is reduced for readability):

Thread READER starting...
Thread WRITER starting...
Sending ends....
Received: This is a testing file...
Received: ing fileThis is a testing file...
***Receiving ends***
Main: program completed. Exiting.

This is a very simple example considering we have only two workers – readFromQueue() and 
writeToQueue(). The MQs allow us to scale up and execute a many-to-many communication. 
This approach could be found on many embedded systems, as it’s also real-time compliant and doesn’t 
expect any synchronization primitives to be used. Many microservice architectures and serverless 
applications rely on it. In the next section, we are going to discuss one of the most popular patterns, 
based on MQs.

The pub/sub mechanism

You’ve probably figured out that one MQ could become a bottleneck while scaling up. As you observed 
in the previous example, there’s the message count and size limitation. Another issue is the fact that 
after a message is consumed, it is removed from the queue – there can be only one consumer of a 
given message at a time. The data provider (the producer) has to manage the correct message address 
as well, meaning adding extra data to help the consumers identify to whom the message is sent, and 
each consumer has to follow that policy.

A preferred approach is to create a separate MQ for each consumer. The producer will be aware of 
those MQs a priori, either at compile time (all MQs are listed in the data segment by the system 
programmer) or runtime (each consumer will send its MQ pathname at startup and the producer 
will handle this information). That way, the consumers are subscribing to receive data from a given 
producer, and the producer publishes its data to all MQs it’s aware of. Therefore, we call this a 
publish-subscribe mechanism.

Of course, the exact implementations might vary, depending on the software design, but the idea will 
remain the same. In addition, there could be multiple producers sending data to multiple consumers, 
and we say this is a many-to-many realization. Take a look at the following diagram:
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Figure 7.2 – Representation of the MQ realization of the pub/sub mechanism

As we proceed toward the decoupling of processes, we make our system more flexible. It becomes 
easier to scale as the subscribers don’t lose computational time identifying whether the messages are 
directed to them or not. It is also easy to add a new producer or consumer without disturbing others. 
The MQ is implemented on an OS level, thus we could take it as a robust IPC mechanism. One possible 
disadvantage, though, is the fact that producers usually don’t receive any health information from the 
subscribers. This leads to MQs being full of unconsumed data and the producers being blocked. Thus, 
additional implementation frameworks are implemented on a more abstract level, which takes care of 
such use cases. We encourage you to additionally research the Observer and Message Broker design 
patterns. In-house-developed pub/sub mechanisms are usually built on top of them and not always 
through MQs. Nonetheless, as you have probably guessed, sending large amounts of data is going to 
be a slow operation through such mechanisms. So, we need an instrument to get a big portion of data 
fast. Unfortunately, this requires additional synchronization management to avoid data races, similar 
to Chapter 6. The next section is about the synchronization primitives.

Guaranteeing atomic operations through semaphores and 
mutual exclusions
Let’s try to zoom in on a shared resource and see what happens in the CPU. We will provide a simple 
and effective way to explain where exactly the data races start from. They were already thoroughly 
discussed in Chapter 6. Everything we learn here should be considered as an addition, in a sense, but 
the analysis methodology of concurrent and parallel processing remains the same as earlier. But now, 
we focus on concrete low-level problems. 
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Let’s look closely at the following snippet:

int shrd_res = 0; //Some shared resource.
void thread_func(){
    shrd_res ++;
    std::cout << shrd_res;
}

It is a very simple piece of code in which a variable is incremented and printed out. According 
to C++ standards, such a modification is an undefined behavior in multithreaded environments. 
Let’s see how – instead of going through the process’s memory layout here, we will analyze its  
pseudo-assembly code side by side:

...
int shrd_res = 0;      store 0
shrd_res++;            load value
                       add 1
                       store value
std::cout << shrd_res; load value
...

Suppose this increment procedure is in a thread function and there’s more than one thread executing 
it. The add 1 instruction is done on the loaded value, and not on the actual memory location of 
shrd_res. The preceding code snippet will be executed multiple times, and most probably in 
parallel. If we note that the thread is a set of instructions, the intuition would be that the instructions 
are executed in a monolithic manner. In other words, each thread routine should be run without 
interruption, which is usually the case. However, there is a small particularity that we should keep in 
mind – the CPU is engineered to keep a small latency. It is not built for data parallelism. Therefore, 
figuratively speaking, its main goal is to load itself with a large number of small tasks. Each of our 
threads is executed in a separate processor; this could be a separate CPU, a CPU thread, or a CPU core 
– it really depends on the system. If the number of processors (CPUs, cores, or threads) is smaller than 
N, then the remaining threads are expected to queue themselves and wait until a processor is freed up.

Now, the initial threads’ instructions are already loaded there and executed as they are. Even when 
the CPU cores are architecturally the same, their goal is to be executed as fast as possible. This means 
that it is not expected for them to be equal in speed because of multiple hardware fluctuations. But 
shared_resource is a variable that is, well... a shared resource. This means that whoever gets to 
increment it first will do it and others will follow. Even if we don’t care about the std::cout result 
(for example, the printing order stops being sequential), we still have something to worry about. 
And you’ve probably guessed it! We don’t know which value we are actually going to increment – is it 
going to be the last stored value of shared_resource or the newly incremented one? How could 
this happen? 
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Let’s see:

Thread 1: shrd_res++; T1: load value
                      T1: add 1
Thread 2: shrd_res++; T2: load value
                      T2: add 1
                      T2: store value
                      T1: store value

Did you follow what just happened? Thread 1’s sequence of instructions was disrupted, because 
of the execution of Thread 2. Now, can we predict what’s going to be printed? This is known as 
an undefined behavior. In some cases, it will be because Thread 2 was never executed, as the last 
value to be stored in shared_resource will be the one incremented in:

T1: add 1

In other words, we lost one increment. There was nothing instructing the CPU that both procedures have 
to be called separately and continuously executed. It should be clear that a finite number of instruction 
combinations are possible, all of them leading to unexpected behavior, because it depends on the 
hardware’s state. Such an operation is called non-atomic. In order to handle parallelism correctly, we 
need to rely on atomic operations! It is the job of the software developer to consider this and inform 
the CPU about such sets of instructions. Mechanisms such as mutexes and semaphores are used to 
manage atomic scopes. We are going to analyze their roles thoroughly in the next sections.

Semaphore

If you make a questionnaire asking people in multiple professions what a semaphore is, you will get 
different answers. A person from the airport will tell you that this is a system for signaling someone 
through the use of flags. A police officer might tell you that this is just a traffic light. Asking a train 
driver will probably give you a similar response. Interestingly, this is where our semaphores come 
from. Overall, these answers should hint to you that this is a signaling mechanism.

Important note
Programming semaphores were invented by Edsger Dijkstra and are mainly used to prevent 
race conditions. They help us signal when a resource is available or not and count how many 
shared resource units of a given kind are available.

Like the previously mentioned signaling mechanisms, semaphores don’t guarantee error-free code, 
as they do not prevent processes or threads from acquiring a resource unit – they just inform. In the 
same way that a train might ignore the signal and proceed to an occupied train track or a car could 
proceed at a busy crossroad, this might be catastrophic! Again, it is the software engineer’s task to 
figure out how to use semaphores for the system’s good health. Therefore, let’s get to using them.
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Dijkstra provided us with two main functions surrounding a critical section: P(S) and V(S). As 
you probably know, he was Dutch, so these functions’ names come from the Dutch words for try and 
increase (probeer and vrhoog, respectively), where S is the semaphore variable. Just by their names, 
you already get an idea about what they are going to do. Let’s look at them in pseudocode:

unsigned int S = 0;
V(S):
    S=S+1;
P(S):
    while(S==0):
        // Do nothing.
    S = S – 1;

So, P(S) will endlessly check whether the semaphore has signaled that the resource is available – the 
semaphore is incremented. As soon as S is incremented, the loop is stopped, and the semaphore value 
is decreased for some other code to be executed. Based on the increment’s value, we recognize two 
types of semaphores: binary and counting. The binary semaphore is often mistaken for a mutual 
exclusion (mutex) mechanism. The logic is the same – for example, whether the resource is free to 
be accessed and modified or not – but the nature of the technique is different, and as we explained 
earlier, nothing is stopping some bad concurrent design from ignoring a semaphore. We will get to 
that in a minute, but for now, let’s pay attention to what the semaphore does. Before we begin with 
the code, let’s put a disclaimer that there are a few semaphore interfaces on Unix-like OSs. The choice 
of usage depends on the level of abstraction and the standards. For example, not every system has 
POSIX, or it is not exposed fully. As we are going to focus on the C++20 usage, we will use the next 
examples just for reference. The full source code of the next examples can be found at https://
github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/
main/Chapter%207.

Let’s take a look at two common semaphore interfaces on Linux. The first one is the unnamed 
semaphore – we can present it through the following interface:

sem_t sem;
sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_destroy(sem_t *sem);
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);

The sem variable is the semaphore, which is initialized and de-initialized by sem_init() and 
sem_destroy(), respectively. The P(S) function is represented by sem_wait() and the V(S) 
function by sem_post(). There are also sem_trywait(), if you want to report an error when the 
decrement doesn’t happen immediately, and sem_timedwait(), which is a blocking call for a time 
window in which the decrement could happen. This seems pretty clear, except for the initialization part. 
You’ve probably noticed the value and pshared arguments. The first one shows the initial value 
of the semaphore. For example, a binary semaphore could be 0 or 1. The second is more interesting.

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
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As you might recall, in Chapter 2 we discussed memory segments. Imagine that we create the semaphore 
on the data, the BSS, or the heap. Then, it would be globally visible only for the threads in a single 
process but would not be able to be shared between processes. The question is how to use it for process 
synchronization; pshared is used exactly for this purpose. If it’s set to 0, then the semaphore is local 
for the process, but if it is set to a non-zero value, then it is shared between processes. The catch is to 
create the semaphore on a globally visible region of memory, such as shmem, including the filesystem 
as a shared resource pool. Here is an overview of named semaphores:

•	 The named semaphore is visible outside the process creator, as it resides in the filesystem, 
usually under /dev/shm. We treat it as a file. For example, the following code will create a 
semaphore with the name /sem and 0644 permissions – it will be readable and writable only 
by its owner, but only readable by others, and it will be visible on the filesystem until it is later 
removed through code:

sem_t *global_sem = sem_open("/sem", O_CREAT, 0644,
  0);

•	 The P(S) and V(S) calls remain the same. After we finish, we must close the file, and remove 
it, if we don’t need it anymore:

sem_close(global_sem);
sem_unlink("/sem");

As mentioned in Chapter 1, you see that the POSIX calls follow the same pattern through the 
<object>_open, <object>_close, <object>_unlink, and <object>_<specific 
function> suffixes. This makes their usage common for every POSIX object, as you probably 
already observed earlier in the chapter.

A quick remark is that there are lower-level semaphores where the system calls are strongly related 
to the OS types or are based on direct OS signal manipulations. Such approaches are complex to 
implement and maintain because they are specific and considered fine-tuning. Feel free to research 
more about your own system.

A C++ semaphores primer

With this in mind, we’d like to continue leveling up the abstraction, and so we’ll discuss the C++ 
semaphore objects. This is a new feature in C++20 and it’s useful when you want to make the code more 
system-generic. Let’s check it out through the producer-consumer problem. We will need a variable 
that will be visible in the process scope and modified by multiple threads: atomic<uint16_t> 
shared_resource. As mentioned at the beginning of this section, the semaphores help in task 
synchronization, but we need a data race guard. The atomic type is making sure we follow the C++ 
memory model and the compiler will keep the sequence of CPU instructions as per std::memory_
oder. You can revisit Chapter 6 for a data race explanation.
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We will continue by creating two global binary_semaphore objects in order to synchronize 
the access appropriately (like a ping-pong). The binary_semaphore object is an alias of the 
counting_semaphore object with a maximum value of 1. We will need a program-ending rule so 
we will define a limit of iterations. We will ask the compiler to make it a constant, if possible, through 
the constexpr keyword. Last, but not least, we will create two threads that will act as a producer 
(incrementing the shared resource) and a consumer (decrementing it). Let’s look at the code example:

...
uint32_t shared_resource = 0;
binary_semaphore sem_to_produce(0);
binary_semaphore sem_to_consume(0);
constexpr uint32_t limit = 65536;

The semaphores are constructed and initialized. We proceed with the threads. The release() 
function increments an internal counter, which signals the others (marker {2} in the following code, 
similar to sem_post()). We use osyncstream(cout) to build a non-interleaved output. Here’s 
the producer thread:

void producer() {
    for (auto i = 0; i <= limit; i++) {
        sem_to_produce.acquire(); // {1}
        ++shared_resource;
        osyncstream(cout) << "Before: "
                          << shared_resource << endl;
        sem_to_consume.release(); // {2}
        osyncstream(cout) << "Producer finished!" << endl;
    }
}

And here’s the consumer thread:

void consumer() {
    for (auto i = 0; i <= limit; i++) {
        osyncstream(cout)  << "Waiting for data..."
                           << endl;
        sem_to_consume.acquire();
        --shared_resource;
        osyncstream(cout)  << "After: "
                           << shared_resource << endl;
        sem_to_produce.release();
        osyncstream(cout)  << "Consumer finished!" << endl;
    } }
int main() {
    sem_to_produce.release();
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    jthread t1(producer); jthread t2(consumer);
    t1.join(); t2.join();}

As we do this iteratively, we see this output multiple times, depending on limit:

Waiting for data...
Before: 1
Producer finished!
After: 0
Consumer finished!
...

Going back to the code’s logic, we must emphasize that the C++ semaphores are considered lightweight 
and allow multiple concurrent accesses to the shared resource. But be careful: the provided code uses 
acquire() (marker {1}, similar to sem_wait()), which is a blocking call – for example, your task 
will be blocked until the semaphore is released. You could use try_acquire() for non-blocking 
purposes. We rely on both semaphores to create a predictable sequence of operations. We start the 
process (for example, the main thread) by releasing the producer semaphore, so the producer would 
be signaled to start first.

The code could be changed to use POSIX semaphores, just by removing the C++ primitives and 
adding the aforementioned system calls to the same places in the code. In addition, we encourage you 
to achieve the same effect with one semaphore. Think about using a helper variable or a condition 
variable. Keep in mind that such an action makes the synchronization heterogenous and on a large 
scale, which is hard to manage.

The current code is obviously not able to synchronize multiple processes, unlike the named semaphore, 
so it’s not really an alternative there. We also could want to be stricter on the shared resource access 
– for example, to have a single moment of access in a concurrent environment. Then, we’d need the 
help of the mutex, as described in the next section.

Mutual exclusion (mutex)

The mutex is a mechanism that comes from the operations of the OS. A shared resource is also known 
as a critical section and it needs to be accessed without the risk of race conditions. A mechanism that 
allows only a single task to modify the critical section at a given moment, excluding every other task’s 
request to do the same, is called a mutual exclusion or a mutex. The mutexes are implemented internally 
by the OS and remain hidden from the user space. They provide a lock-unlock access functionality 
and are considered stricter than the semaphores, although they are controlled as binary semaphores.
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Important note
The calling thread locks the resource and is obliged to unlock it. There’s no guarantee that 
a higher entity in the system’s hierarchy would be able to override the lock and unblock the 
parallel functionality. It is advisable for each lock to be released as fast as possible to allow the 
system threads to scale up and save idle time.

A POSIX mutex is created and used in much the same way as the unnamed semaphore:

pthread_mutex_t global_lock;
pthread_mutex_init(&global_lock, NULL);
pthread_mutex_destroy(&global_lock);
pthread_mutex_lock(&global_lock);
pthread_mutex_unlock(&global_lock);

The pattern of the function names is followed again, so let’s focus on pthread_mutex_lock() and 
pthread_mutex_unlock(). We use them to lock and unlock a critical section for manipulation, 
but they cannot help us in the sequence of events. Locking the resource only guarantees there are no 
race conditions. The correct sequencing of events, if required, is designed by the system programmer. 
Bad sequencing might lead to deadlocks and livelocks:

•	 Deadlock: One or more threads are blocked and cannot change their state because they are 
waiting for an event that never occurs. A common bug is two (or more) threads being looped 
together – for example, one is waiting for a shared resource A while holding a lock on shared 
resource B, and a second thread holds a lock on A but will unlock it when B is unlocked. Both 
will remain blocked because neither will be the first to give up on the resource. Such a behavior 
could be caused even without mutexes. Another bug is to lock a mutex twice, which, in the 
case of Linux, is detectable by the OS. There are deadlock resolution algorithms, where locking 
a number of mutexes will not succeed at first because of the deadlock, but will be successful 
with a guarantee after a finite number of attempts.

In the preceding code snippet, we set the mutex attributes to NULL, but we could use them to 
decide on the mutex kind. The default one, known as a fast mutex, is not deadlock-safe. The 
recursive mutex type will not cause a deadlock; it will count the number of lock requests by 
the same thread. The error-checking mutex will detect and mark a double lock. We encourage 
you to give them a try.

•	 Livelock: The threads are not blocked, but then again, they cannot change their state because 
they require the shared resource to continue forward. A good real-world example is two 
people meeting face to face at an entrance. Both will move aside out of politeness, but they 
will most probably move in the same direction as their counterpart. If that happens and they 
continue to do that all the time, then nobody will be blocked, but at the same time, they cannot 
proceed forward.
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Both classes of bugs are common and could be reproduced with semaphores, as they are blocking 
too, and rarely happen on small-scale systems, where they are easy to debug. It is trivial to follow 
the code’s logic with just a few threads, and the processes are manageable. Large-scale systems with 
thousands of threads execute an enormous number of locks at the same time. The bug reproductions 
are usually a matter of bad timing and ambiguous task sequences. Therefore, they are hard to catch 
and debug, and we advise you to be careful when you lock a critical section.

C++ provides a flexible lock interface. It is constantly upgraded and we now have several behaviors to 
choose from. Let’s do a parallel increment of a variable. We use the increment() thread procedure 
for the sake of clarity, similar to the previous code, but we replace the semaphores with one mutex. 
And you’ve probably guessed that the code will be guarded against race conditions, but the sequence 
of the thread executions is undefined. We could arrange this sequence through an additional flag, 
condition variable, or just a simple sleep, but let’s keep it this way for the experiment. The updated 
code snippet is the following:

...
uint32_t shared_resource = 0;
mutex shres_guard;
constexpr uint32_t limit = INT_MAX;

We defined our shared resource and the mutex. Let’s see how the increment happens:

void increment() {
    for (auto i = 0; i < limit; i++) {
        lock_guard<mutex> lock(shres_guard); // {1}
        ++shared_resource;
    }
    cout << "\nIncrement finished!" << endl;
}
...

The observed output is as follows:

$ time ./test
Increment finished!
Increment finished!
real    3m34,169s
user    4m21,676s
sys     2m43,331s

It’s obvious that incrementing the variable without multithreading will be much faster than this result. 
You could even try running it until UINT_MAX.
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So, the preceding code creates a globally visible mutex and uses a unique_lock object (marker {1}) 
to wrap it. It is similar to pthread_mutex_init() – it allows us to defer locking, do a recursive 
lock, transfer lock ownership, and carry out attempts to unlock it within certain time constraints. The 
lock is in effect for the scope block it is in – in the current example, it is the thread procedures’ scope. 
The lock takes ownership of the mutex. When it reaches the end of the scope, the lock is destroyed and 
the mutex is released. You should already know this approach as Resource Acquisition Is Initialization 
(RAII). You learned about it in detail in Chapter 4, and its role is crucial here – we will not be able to 
leave a resource locked by accident. You could use a scoped_lock object to lock multiple mutexes 
while avoiding a deadlock by its design.

There is something else you should consider when using a mutex. The mutex reaches the kernel level. 
The task states are affected by it directly and multiple locks will cause multiple context switches. As 
you recall from earlier, we will probably lose time in rescheduling. This means that the OS needs to 
jump from one memory region in RAM to another just to load another task’s instructions. You must 
consider what’s beneficial for you: many locks with small scopes leading to many switches, or a few 
locks with bigger scope blocks holding resources for longer timespans.

At the end of the day, our goal was just to instruct the CPU about an atomic region. If you remember, 
we used an atomic template in the semaphore example. We could update our code with an atomic 
variable and remove the mutex with the lock:

atomic<uint32_t> shared_resource = 0;

The result is as follows:

$ time ./test
Increment finished!
Increment finished!
real    0m0,003s
user    0m0,002s
sys     0m0,000s

As you can see, there is a significant time improvement just by the removal of the mutex. For the sake 
of argument, you could add the semaphores back and you will still observe a faster execution than the 
mutex. We advise you to look at the code’s disassembly for the three cases – just with the atomic 
variable, with the mutex, and with the semaphore. You will observe that an atomic object is very 
simple instruction-wise and is executed at a user level. As it is truly atomic, the CPU (or its core) 
will be kept busy during the increment. Bear in mind that any technique for resolving data races will 
inherently carry a performance cost. The best performance can be achieved by minimizing the places 
and their scope where synchronization primitives are needed.



Using shared memory 165

Important note
C++20 provides exciting features for concurrent execution, such as jthread, coroutines, updated 
atomic types, and cooperative cancelation. Except for the first one, we will look at the others 
later in the book. In addition to these, Linux has system calls for using the IPC entities, which are 
built for the purposes of multiprocessing data exchange. That said, we advise you to think about 
using an already existing mechanism for asynchronous work before you attempt combinations 
of mutexes, semaphores, flags, and conditional variables. All those C++ and Linux features are 
designed to scale up in a stable manner and save you time for solution design.

Everything we did until now is just to make sure we have atomic access to a critical section. Atomics, 
mutexes, and semaphores will give you this – a way to instruct the CPU about the scope of instructions. 
But two questions remain: Could we do it faster and lighter? Does being atomic mean we keep the 
order of the instructions? The answer to the first question is Probably. To the second one, the answer 
is No! Now we have the incentive to move and dive into the C++ memory model and memory order. 
If this interests you, we invite you to jump to Chapter 9, where we discuss more interesting concurrent 
tasks. Now, we will continue the topic of shared resources through the shmem IPC mechanism.

Using shared memory
As with pipes, the MQ data is lost once consumed. Duplex message data copying increases user space-
kernel space calls, therefore an overhead is to be expected. The shmem mechanism is fast. As you 
learned in the previous chapter and the previous section, the synchronization of the data access is an 
issue that must be resolved by the system programmer, especially when it comes to race conditions.

An important remark is that the term shared memory is vague in itself. Is it a global variable that two 
threads could access simultaneously? Or is it a shared region of RAM, which multiple CPU cores 
use as a common ground to transfer data between each other? Is it a file in the filesystem that many 
processes modify? Great questions – thanks for asking! In general, all of those are kinds of shared 
resources, but when we speak about the term memory, we should really think about a region in the 
main memory that is visible to many processes and where multiple tasks could use it to exchange and 
modify data. Not only tasks but also different processor cores and core complexes (such as ARM) if they 
have access to the same predefined memory region. Such techniques require a specific configuration  
file – a memory map, which strictly depends on the processor and is implementation-specific. It 
provides the opportunity to use, for example, tightly coupled memory (TCM) to speed up, even 
more, the frequently used portions of code and data, or to use a portion of the RAM as shmem for data 
exchange between the cores. As this is too dependent on the processor, we are not going to continue 
discussing it. Instead, we will move on to discuss Linux’s shmem IPC mechanism.
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Important note
The processes allocate a portion of their virtual memory as a shared segment. Traditionally, 
the OS forbids processes to access each other’s memory regions, but the shmem is a mechanism 
for the processes to ask for the removal of this restriction in the boundaries of the shmem. 
We use it to ingest and modify large portions of data quickly through simple read and write 
operations, or the already provided functions in POSIX. Such functionality is not possible 
through MQs or pipes.

In contrast to MQs, there’s no serialization or synchronization here. The system programmer is 
responsible for managing the IPC’s data transfer policy (again). But with the shared region being in 
the RAM, we have fewer context switches, thus we reduce the overhead. We can visualize it through 
the following figure:

Figure 7.3 – Shmem presentation through the process’s memory segments

The shmem region is usually depicted between the two processes’ address spaces. The idea is to 
emphasize how that space is truly shared between the processes. In reality, this is implementation-
specific and we leave it to the kernel – what we care about is the map to the shmem segments itself. It 
allows both processes to observe the same contents simultaneously. Let’s get to it then.

Learning about mmap() and shm_open()

The initial system call for the creation of a shmem mapping is shmget(). This is applicable to any 
Unix-based OS, but for POSIX-compliant systems, there are more comfortable approaches. If we 
imagine that we do a mapping between a process’s address space and a file, then the mmap() function 
will pretty much get the job done. It is POSIX-compliant and executes the read operation on demand. 
You can simply use mmap() to point to a regular file, but the data will remain there after the processes 
have finished their work. Do you remember the pipes from Chapter 3? It’s a similar case here. There 
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are anonymous pipes, which require two processes to have a family relation, or you can have named 
pipes, which allow two unrelated processes to share and transfer data. The shmem resolves a similar 
issue, just not through the same technique. Using shmem for IPC will mean that data persistence 
would probably not be required – all other mechanisms destroy the data after its consumption. But 
if persistence is what you want, then it’s all good – you could freely use the mmap() system call 
with fork().

If you have independent processes, then the only way for them to know how to address the shared 
region is through its pathname. The shm_open() function will provide you a file with a name, in 
the same way that mq_open() did – you could observe it in /dev/shm. It would require librt 
as well. Knowing this, you intuitively get that we limit the I/O overhead and the context switches 
because of the filesystem operations, as this file is in the RAM. Last but not least, this kind of shared 
memory is flexible in size and could be enlarged to gigabytes in size when needed. Its limitations 
are dependent on the system. The full version of the following example can be found at https://
github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/
main/Chapter%207:

...
string_view SHM_ID      = "/test_shm";
string_view SEM_PROD_ID = "/test_sem_prod";
string_view SEM_CONS_ID = "/test_sem_cons";
constexpr auto SHM_SIZE = 1024;
sem_t *sem_prod; sem_t *sem_cons;
void process_creator() {
...
    if (int pid = fork(); pid == 0) {
        // Child - used for consuming data.
        if (fd = shm_open(SHM_ID.data(),
                          O_RDONLY,
                          0700); // {1}
            fd == -1) {
....

This example is very specific as we intentionally used processes instead of threads. This allows us to 
demonstrate the usage of shm_open() (marker {1}) as the different processes use the shmem’s 
pathname (which is known at compile time) to access it. Let’s continue with reading the data:

        shm_addr = mmap(NULL, SHM_SIZE,
                        PROT_READ, MAP_SHARED,
                        fd, 0); // {2}
        if (shm_addr == MAP_FAILED) {
...
        }
        array<char, SHM_SIZE> buffer{};
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We could use mutexes, but currently, we only need one process to signal to the other that its work is 
done, so we apply semaphores (markers {3} and {7} in the previous code block) as follows:

        sem_wait(sem_cons);
        memcpy(buffer.data(),
               shm_addr,
               buffer.size()); // {3}
        if(strlen(buffer.data()) != 0) {
            cout << "PID : " << getpid()
                 << "consumed: " << buffer.data();
        }
        sem_post(sem_prod); exit(EXIT_SUCCESS);

To make the memory region shared, we use the mmap() function with the MAP_SHARED option, 
and we mark the reader and the writer credentials accordingly through the following page settings: 
PROT_READ and PROT_WRITE (markers {2} and {6}). We also use the ftruncate() function 
to set the region’s size (marker {5}). In the given example, the information is written in the shmem, 
and someone has to read it. It’s a kind of a single-shot producer-consumer because after the writing 
is done, the writer gives the reader time (marker {8}), and then the shmem is set to zero (marker 
{9}) and deleted (marker {10}). Now, let’s proceed with the parent’s code - the producer of the data:

    else if (pid > 0) {
        // Parent - used for producing data.
        fd = shm_open(SHM_ID.data(),
                      O_CREAT | O_RDWR,
                      0700); // {4}
        if (fd == -1) {
...
        res = ftruncate(fd, SHM_SIZE); // {5}

Again, the shmem region is mapped:

        if (res == -1) {
...
        shm_addr = mmap(NULL, SHM_SIZE,
                        PROT_WRITE, MAP_SHARED,
                        fd, 0); // {6}
        if (shm_addr == MAP_FAILED) {
...
        sem_wait(sem_prod);
        string_view produced_data
            {"Some test data, coming!"};
        memcpy(shm_addr,
               produced_data.data(),
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               produced_data.size());
        sem_post(sem_cons);    // {7}
        waitpid(pid, NULL, 0); // {8}
        res = munmap(shm_addr, SHM_SIZE); // {9}
        if (res == -1) {
...
        fd = shm_unlink(SHM_ID.data()); //{10}
        if (fd == -1) {

As done previously, we use the sem_open() named semaphore (marker {11}) to allow both 
processes to synchronize. We wouldn’t be able to do so through the semaphores we discussed earlier 
in the chapter, as they don’t have a name and are known only in the context of a single process. At the 
end, we remove the semaphore from the filesystem as well (marker {12}), as follows:

...
}
int main() {
    sem_prod = sem_open(SEM_PROD_ID.data(),
                        O_CREAT, 0644, 0); // {11}
...
    sem_post(sem_prod);
    process_creator();
    sem_close(sem_prod); // {12}
    sem_close(sem_cons);
    sem_unlink(SEM_PROD_ID.data());
    sem_unlink(SEM_CONS_ID.data());
    return 0;
}

The program’s result is as follows:

PID 3530: consumed: "Some test data, coming!"

Shmem is an interesting topic, which we will return to in Chapter 9. One reason for being so is that 
C++ allows us to wrap the POSIX code appropriately and make the code safer. Similar to Chapter 3, 
mixing system calls with C++ code should be well thought out. But it’s worthwhile to visit the condition 
variables mechanism and discuss the read/write locks. We will dive into some memory_order use 
cases as well. If jthreads or coroutines are not applicable to your use cases, then the currently discussed 
synchronization mechanisms, together with the smart pointers, give you the flexibility to design the 
best possible solution for your system. But before we get there, we need to talk about something else 
first. Let’s proceed to the communication between computer systems.
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Communicating through the network with sockets
If the pipes, MQs, and the shmem could together overcome their problems, then why do we need 
sockets? This is a great question with a simple answer – we need them to communicate between different 
systems on the network. With this, we have our full set of instruments to exchange data. Before we 
understand sockets, we need to get a quick overview of network communication. No matter the network 
type or its medium, we must follow the design established by the Open Systems Interconnection 
(OSI) basic reference model. Nowadays, almost all OSs support the Internet Protocol (IP) family. The 
easiest way to set up communications with other computer systems is by using these protocols. They 
follow layering, as described in the ISO-OSI model, and now we are going to take a quick look at that.

Overview of the OSI model

The OSI model is typically represented as shown in the next table. System programmers usually require 
it to analyze where their communication is disturbed. Although sockets are intended to execute the 
network data transfer, they are also applicable for a local IPC. One reason is that the communication 
layers, especially on large systems, are separate utilities or abstraction layers over the applications. As 
we want to make them environmentally agnostic, meaning we don’t care whether the data is transferred 
locally or over the internet, then the sockets fit perfectly. That said, we must be aware of the channel 
we use and where our data is transported. Let’s take a look:

Figure 7.4 – The OSI model represented as a table
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Global network communication, especially the internet, is a broad and complex topic, which we cannot 
grasp in a single section of the book. But it’s worthwhile to think about your system – what kind of 
hardware for network communication it has; maybe you should consider checking out the Physical 
and Data Link layers. A simple exercise is to configure your home network – connected devices, 
routers, and so on – yourself. Could the system be safely and securely addressed by the outside (if 
needed)? Then check the Network, Presentation, and Application layers. Try out some port forwarding 
and create an application with data exchange encryption. Could the software scale fast enough, with 
the current bandwidth and speed? Let’s see what the Session and Transport layers have to offer – we 
will look into them in the next paragraph. Is it robust and does it remain available if attacked? Then 
revisit all the layers. Of course, these are simple and one-sided observations, but they allow you to 
double-check your requirements.

So, if we ignore the role of the hardware and just focus on establishing a connection, we could get back 
to the sockets and the respective Session layer. You’ve probably noticed that some websites log you out 
automatically after some time. Ever wondered why? Well, the session is an established two-way link 
for information exchange between devices or ends. It’s highly recommended to apply time limits and 
requirements for a session to be destroyed. The opened connection means not only an opened channel 
for sniffing by attackers but also a used resource on the server side. This requires computational power, 
which could be redirected elsewhere. The server usually holds the current state and the session history, 
so we note this kind of communication as stateful – at least one of the devices keeps the state. But if we 
manage to handle requests without the need to know and keep previous data, we could proceed with 
stateless communication. Still, we require the session to build a connection-oriented data exchange. 
A known protocol for the job is found in the Transport layer – the Transmission Control Protocol 
(TCP). If we don’t want to establish a two-way information transfer channel but just want to implement 
a broadcast application, then we could proceed with the connectionless communication, provided 
through the User Datagram Protocol (UDP). Let’s check them out in the following sections.

Getting familiar with networking through UDP

As we said, this protocol could realize connectionless communication, although this doesn’t mean 
there’s no connection between the endpoints. It means that they don’t need to be constantly in 
connection to maintain the data transfer and interpret it on their ends. In other words, losing some 
packets (leading to not hearing someone well on the call while in an online meeting, for example) is 
probably not going to be crucial for the system’s behavior itself. It might be crucial to you, but let’s be 
honest, we bet you require the high speed more, and it comes with a cost. Network applications such 
as the Domain Name System (DNS), the Dynamic Host Configuration Protocol (DHCP), audio-
video streaming platforms, and others use UDP. Discrepancies and loss of packets are usually handled 
by data retransmission, but this is realized on the Application layer and depends on the programmer’s 
implementation. Schematically, the system calls for establishing such a connection are as follows:
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Figure 7.5 – UDP system call realization

As you can see, it is truly simple – applications on both (or more) sides of the communication must 
only follow that sequence. The protocol doesn’t oblige you with the message order or the transfer 
quality, it’s just fast. Let’s see the following example, requesting a die roll from a socket N number of 
times. The full version of the code is found at https://github.com/PacktPublishing/C-
Programming-for-Linux-Systems/tree/main/Chapter%207:

...
constexpr auto PORT     = 8080;
constexpr auto BUF_SIZE = 16;
auto die_roll() {
...
void process_creator() {
    auto sockfd = 0;
    array<char, BUF_SIZE> buffer{};
    string_view stop{ "No more requests!" };
    string_view request{ "Throw dice!" };
    struct sockaddr_in servaddr {};
    struct sockaddr_in cliaddr {};

As you can see, the communication configuration is fairly easy – one side has to bind to an address 
in order to be aware of where to receive data from (marker {3}), whereas the other only writes data 
directly to the socket. The socket configuration is described at marker {1}:

    servaddr.sin_family = AF_INET; // {1}
    servaddr.sin_addr.s_addr = INADDR_ANY;
    servaddr.sin_port = htons(PORT);
    if (int pid = fork(); pid == 0) {
        // Child
        if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0))
                < 0) {

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%207
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            const auto ecode
                { make_error_code(errc{errno}) };
            cerr << "Error opening socket!";
            system_error exception{ ecode };
            throw exception;
        } // {2}
        if (bind(sockfd,
            (const struct sockaddr*)&servaddr,
            sizeof(servaddr)) < 0) {
            const auto ecode
                { make_error_code(errc{errno}) };
            cerr << "Bind failed!";
            system_error exception{ ecode };
            throw exception;
        } // {3}

The address family is defined as AF_INET, meaning we will rely on IPv4-compliant addresses. We 
could use AF_INET6 for IPv6, or AF_BLUETOOTH for Bluetooth. We are using the UDP through 
the SOCK_DGRAM setting of the socket (markers {2} and {10}). Through this, we are transferring 
a number from one process to another. You could imagine them as a server and a client:

        socklen_t len = sizeof(cliaddr);
        for (;;) {
            if (auto bytes_received =
                recvfrom(sockfd, buffer.data(),
                    buffer.size(),
                    MSG_WAITALL,
                    (struct sockaddr*)&cliaddr,
                    &len);
                bytes_received >= 0) { // {4}
                buffer.data()[bytes_received] = '\0';
                cout << "Request received: "
                     << buffer.data() << endl;
                if (request.compare(0,
                                    bytes_received,
                                    buffer.data()) == 0) {
                                                    // {5}
                    string_view res_data
                        { to_string(die_roll()) };

A request for a new die roll is received (marker {4}) and the request data is printed out. Then, the 
request string is compared to an immutable one, so we know that this request is just for a die roll 
(marker {5}). As you can see, we use the MSG_WAITALL setting, which means that the socket 
operation will block the calling process – usually when there is no incoming data. In addition, this 
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is a UDP communication, therefore the packet order might not be followed, and receiving 0 bytes 
through recvfrom() is a valid use case. That said, we use additional messages to mark the ending 
of the communication (markers {6} and {14}). For simplicity, if the request.compare() 
result is not 0, the communication is ended. Additional checks for multiple options could be added, 
though. We could use a similar handshake to start the communication in the first place – this is 
depending on the system programmer’s decision and the application requirements. Proceeding with 
the client’s functionality:

                    sendto(sockfd, res_data.data(),
                           res_data.size(),
                           MSG_WAITALL,
                           (struct sockaddr*)&cliaddr,
                           len);
                }
                else break; // {6}
...
        }
        if (auto res = close(sockfd); res == -1) { // {8}
            const auto ecode
                { make_error_code(errc{errno}) };
            cerr << "Error closing socket!";
            system_error exception{ ecode };
            throw exception;
        }
        exit(EXIT_SUCCESS);

The die_roll() function is called for dice_rolls a number of times (markers {10} and {11}) 
and the result is sent through the socket (marker {12}). After the results are received back (marker 
{13}), an ending message is sent (marker {14}). We have mostly used MSG_CONFIRM for this 
example, but you must be careful with this flag. It should be used when you expect a response from 
the same peer you send to. It is telling the Data Link layer of the OSI model that there’s a successful 
reply. We could change the recvfrom() setting to MSG_DONTWAIT, as in marker {12}, but it 
would be a good idea to implement our own retry mechanism, or switch to TCP:

       for (auto i = 1; i <= dice_rolls; i++) { // {11}
            if (auto b_sent = sendto(sockfd,
                                     request.data(),
                                     request.size(),
                                     MSG_DONTWAIT,
                                     (const struct
                                      sockaddr*)&servaddr,
                                     sizeof(servaddr));
                                     b_sent >= 0) { // {12}
...
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            if (auto b_recv =
                    recvfrom(sockfd,
                             buffer.data(),
                             buffer.size(),
                             MSG_WAITALL,
...                             { // {13}
                buffer.data()[b_recv] = '\0';
                cout << "Dice roll result for throw number"
                     << i << " is "
                     << buffer.data() << endl;
            }

We close the communication after the closing statement (markers {8} and {15}):

       sendto(sockfd,
              stop.data(),
              stop.size(),
              MSG_CONFIRM,
              (const struct sockaddr*)&servaddr,
              sizeof(servaddr)); // {14}
       if (auto res = close(sockfd); res == -1) {
            const auto ecode
                { make_error_code(errc{errno}) };
            cerr << "Error closing socket!";
            system_error exception{ ecode };
            throw exception; // {15}
        }
...

The shortened version of the output is as follows:

Choose a number of dice throws between 1 and 256.
5
Request received: Throw dice!
Dice roll result for throw number 1 is 2
....
Dice roll result for throw number 5 is 6
Request received: No more requests

We have to set the address and port where our server could be accessed from. Usually, server computers 
have many applications constantly running, some of which execute services for customers. These 
services bind with the ports of the server and users can call them to do some work – get an online store’s 
contents, check the weather, get some banking details, visualize a graphical website, and so on. Only 
one application (service) can work with a given port at a time. If you try to use it with another while 
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the first one is active, you will get an Address already in use error (or similar). Currently, 
we’re using port 8080, which is commonly opened for TCP/UDP (and HTTP). You could also try 
80, but on Linux, non-root users don’t have this capability – you will need higher user permissions 
to use ports less than 1000. Last but not least, the IP address is set as INADDR_ANY. This is often 
used when we do the communication on a single system and we don’t care about its address. Still, we 
could use it, if we want, after we take it from the result of the following command:

$ ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN 
group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel 
state UP group default qlen 1000
    link/ether 00:0c:29:94:a5:25 brd ff:ff:ff:ff:ff:ff
    inet 192.168.136.128/24 brd 192.168.136.255 scope global dynamic 
noprefixroute ens32
       valid_lft 1345sec preferred_lft 1345sec
    inet6 fe80::b11f:c011:ba44:35e5/64 scope link noprefixroute
       valid_lft forever preferred_lft forever...

In our case, this is 192.168.136.128. We could update the code at marker {1} as follows:

servaddr.sin_addr.s_addr = inet_addr("192.168.136.128");

Another option is that the localhost address – 127.0.0.1 – could be used with the loopback device 
address: INADDR_LOOPBACK. We use it to run local servers, usually for testing purposes. But if we 
use an exact IP address, then this is done when we need to be very specific about the application’s 
endpoint, and if the IP address is a static one, we expect others on the local network to be able to call 
it. If we want to expose it to the outside world so we make our service available to others (let’s say we 
own an online shop and we want to provide our shopping service to the world), then we must think 
about port forwarding.

Important note
Nowadays, just exposing the port is considered unsafe because the device can be accessed by 
anybody. Instead, services are not only guarded by firewalls, encryption mechanisms, and so on 
but are also deployed on virtual machines. This creates an extra layer of security as the attacker 
will never have access to the real device, just to a very limited version of it. Such a decision 
also provides higher availability as the attacked surface could be immediately removed and the 
system administrator could bring up a new virtual machine from a healthy snapshot, making 
the service available again. Depending on the implementation, this could be automated as well.
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One last thing – the file’s contents might be misplaced if we are transferring larger amounts of data. 
This is again expected from UDP, as expressed earlier, because of the packets’ ordering. If it does not 
suit your purpose and you require a more robust implementation, then you should check the TCP 
description in the next section.

Thinking about robustness through TCP

The alternative to UDP is TCP. It is considered reliable – the messages are ordered, it is connection-
oriented, and it has a lengthened latency. Applications such as the World Wide Web (WWW), email, 
remote administration applications, and so on are based on this protocol. What you’ve probably noticed 
already (and you’re going to observe in Figure 7.6) is that the respective system calls are in the same 
sequence and have similar names as in other programming languages. This helps people with different 
areas of expertise to have a common ground for designing network applications and easily understand 
the sequence of events. This is a very simple way to help them follow the protocols in the OSI model, 
using those names as hints for where the communication is currently at. As we already mentioned in 
the previous section, sockets are used for environment-agnostic solutions, where systems have different 
OSs and the communicating applications are in different programming languages. For example, they 
are implemented in C, C++, Java, or Python, and their clients could be in PHP, JavaScript, and so on.

The system calls for TCP communication are represented in the following diagram:

Figure 7.6 – TCP system call realization
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As you can see, it is more complicated than UDP, as was expected. How so? Well, we need to keep an 
established connection and the kernel acknowledges the packet transfer. If you remember, in Chapter 1 
and Chapter 2, we discussed that sockets are files as well, and we could treat them as such. Instead 
of doing the send() and recv() calls, you could simply do write() and read() calls. The 
first ones are specialized in the role of network communication, while the latter are generally for all 
files. Using the read() and write() calls will be like communicating through a pipe but between 
computer systems, therefore it again depends on your needs.

Let’s look at the following example – a simple request-response exchange, which we will execute on 
different machines on the local network, as the IP address from earlier is valid only for our internal 
network. First, let’s see whether we can ping the server:

$ ping 192.168.136.128
Pinging 192.168.136.128 with 32 bytes of data:
Reply from 192.168.136.128: bytes=32 time<1ms TTL=64
Reply from 192.168.136.128: bytes=32 time<1ms TTL=64
Reply from 192.168.136.128: bytes=32 time<1ms TTL=64

So, we have access to the machine. Now, let’s run the server as a separate application (the full code can 
be found at https://github.com/PacktPublishing/C-Programming-for-Linux-
Systems/tree/main/Chapter%207). The configuration is almost the same, so we skip those 
parts from the snippet:

...
constexpr auto PORT     = 8080;
constexpr auto BUF_SIZE = 256;
constexpr auto BACKLOG  = 5;
constexpr auto SIG_MAX  = 128;
void exitHandler(int sig) {
    cerr << "Exit command called - terminating server!"
         << endl;
    exit(SIG_MAX + sig);
}
int main() {
    signal(SIGINT, exitHandler);
    constexpr auto ip = "192.168.136.128";
...
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We open the socket:

    if (auto server_sock =
            socket(AF_INET, SOCK_STREAM, 0);
            server_sock < 0) {

We use SOCK_STREAM to indicate this ias a TCP connection. We also use the hardcoded IP. After 
we bind to the address, we need to listen for a BACKLOG number of active connections. Each new 
connection could be accepted in general if the number of connections is smaller than the BACKLOG value:

...
        server_addr.sin_addr.s_addr = inet_addr(ip);
        result = bind(server_sock,
            (struct sockaddr*)&server_addr,
            sizeof(server_addr));
...
        result = listen(server_sock, BACKLOG);
        if (result != 0) {
            cerr << "Cannot accept connection";
        }
        cout << "Listening..." << endl;
        for (;;) {
            addr_size = sizeof(client_addr);
            client_sock =
                accept(server_sock,
                       (struct sockaddr*)&client_addr,
                       &addr_size);

Until this point, we just have the following:

$ ./server
Listening...
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Now, let’s prepare to accept a client and handle its requests. We use the MSG_PEEK flag to check for 
incoming messages, and we send messages with MSG_DONTWAIT. We leave sendto() without a 
result check for simplicity and readability:

            if (client_sock > 0) {
                cout << "Client connected." << endl;
                array<char, BUF_SIZE> buffer{};
                if (auto b_recv = recv(client_sock,
                                       buffer.data(),
                                       buffer.size(),
                                       MSG_PEEK);
                                  b_recv > 0) {
                    buffer.data()[b_recv] = '\0';
                    cout << "Client request: "
                         << buffer.data() << endl;
                    string_view response =
                        { to_string(getpid()) };
                    cout << "Server response: "
                         << response << endl;
                    send(client_sock,
                         response.data(),
                         response.size(),
                         MSG_DONTWAIT);
                }

And the socket is closed at the end:

...
           if (auto res =
                        close(client_sock); res == -1) {
...

Now, let’s connect a client from another system. Its implementation is similar to the UDP one, except 
connect() must be called and must be successful:

...
       if (auto res =
                connect(serv_sock,
                        (struct sockaddr*)&addr,
                        sizeof(addr)); res == -1) {
            const auto ecode
                { make_error_code(errc{errno}) };
            cerr << "Error connecting to socket!";
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            system_error exception{ ecode };
            throw exception;
        }
        string_view req = { to_string(getpid()) };
        cout << "Client request: " << req << endl;

The server’s output changes as follows:

$ ./server
Listening...
Client connected.
Client request: 12502
Server response: 12501

Let’s continue the communication, sending information back:

        if (auto res =
                send(serv_sock,
                     req.data(),
                     req.size(),
                     MSG_DONTWAIT);
                res >= 0) {
            array<char, BUF_SIZE> buffer{};
            if (auto b_recv =
                    recv(serv_sock,
                         buffer.data(),
                         buffer.size(),
                         MSG_PEEK);
                    res > 0) {
                buffer.data()[b_recv] = '\0';
                cout << "Server response: "
                     << buffer.data();
...
       if (auto res = close(serv_sock); res == -1) {
...
      cout << "\nJob done! Disconnecting." << endl;

We are closing the communication on the client side, including the socket. The client’s output is as follows:

$ ./client
Client request: 12502
Server response: 12501
Job done! Disconnecting.
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As the client’s job is done, the process terminates and its socket is closed, but the server remains active 
for other clients, so if we call the client multiple times from different shells, we will have the following 
output for the server:

Listening...
Client connected.
Client request: 12502
Server response: 12501
Client connected.
Client request: 12503
Server response: 12501

The server will handle up to five client sessions in its backlog. If the clients don’t close their sockets 
or the server doesn’t forcefully terminate their connections after some timeout, it will not be able to 
accept new clients, and the Client connection failed message will be observed. In the next 
chapter, we will discuss different time-based techniques, so think about combining them with your 
implementation to provide a meaningful session timeout.

If we want to gracefully handle the server termination, we could simply implement a signal handler, 
as we did in Chapter 3. This time, we will handle the Ctrl + C key combination, leading to the 
following output:

...
Client request: 12503
Server response: 12501
^CExit command called - terminating server!

As mentioned earlier, ungraceful termination of servers and clients could lead to hanging sockets and 
opened ports. This will become problematic for a system, as simple application restarts will fail with 
Address already in use. If this happens, double-check for remaining processes through the 
ps command. You can terminate the running process through the kill command, as you learned in 
Chapter 1 and Chapter 2. Sometimes, this is not enough either, and servers should not be terminated 
that easily. Therefore, you could just change a port after checking which ports are opened. You could 
do that through the following command:

$ ss -tnlp
State Recv-Q Send-Q Local Address:Port Peer Address:Port  Process
LISTEN 0           5            192.168.136.128:8080 
0.0.0.0:*      users:(("server",pid=9965,fd=3))
LISTEN   0         4096         127.0.0.53%lo:53         0.0.0.0:*
LISTEN   0         5            127.0.0.1:631            0.0.0.0:*
LISTEN   0         5            [::1]:631                [::]:*
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You can see the server is up and running on the respective address and port: 192.168.136.128:8080. 
We can also check the connections to a certain port by using the following:

$ lsof -P -i:8080
COMMAND   PID USER   FD   TYPE DEVICE SIZE/OFF NODE NAME
server  10116  oem    3u  IPv4  94617      0t0  TCP oem-virtual-
machine:8080 (LISTEN)

With multiple online services nowadays, we cannot escape network programming. We encourage 
you to use these examples as simple applications to start from. It’s also important to spend some time 
learning more about the multiple socket settings as they will help you cover your specific requirements.

Summary
In this chapter, you’ve learned about various ways to execute IPC. You got familiar with MQs as simple, 
real-time, and reliable instruments for sending small chunks of data. We also got into the details of 
fundamental synchronization mechanisms such as semaphores and mutexes, along with their C++20 
interfaces. In combination with shmem, you observed how we could exchange large amounts of data 
fast. At the end, the network communication through sockets was introduced to you through the 
main protocols, UDP and TCP.

Complex applications usually rely on multiple IPC techniques to achieve their goals. It’s important 
to be aware of them – both their strengths and their disadvantages. This will help you decide on your 
particular implementation. Most of the time, we build layers on top of IPC solutions in order to 
guarantee the robustness of an application – for example, through retry mechanisms, polling, event-
driven designs, and so on. We will revisit these topics in Chapter 9. The next chapter will give you the 
instruments to self-monitor your availability and performance through different timers.





8
Using Clocks, Timers, and 

Signals in Linux

In this chapter, we will commence by exploring the various timers available in the Linux environment. 
Subsequently, we will delve into the significance of the clock epoch and delve into the concept 
of UNIX time. Following this, we will unveil the methodology for employing POSIX in Linux to 
precisely measure time intervals. Transitioning further, we will uncover the realm of std::chrono 
and examine the capabilities that C++ offers for effective time-related operations. Our journey then 
progresses to a comprehensive examination of duration, timepoints, and clocks as delineated within 
the std::chrono framework. Venturing onward, we will acquaint ourselves with the diverse array 
of clocks at our disposal within std::chrono. As we navigate our path, we will take our initial 
steps into harnessing the calendar functionalities provided by std::chrono. In the final leg of our 
exploration, we will become familiar with time zones and refine our expertise in executing seamless 
time conversions using the powerful tools of std::chrono.

In this chapter, we are going to cover the following main topics:

•	 Exploring timers in Linux

•	 Handling time in C++

•	 Using clocks, timers, and ratios

•	 Using calendar and time zone capabilities

So, let’s get started!
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Technical requirements
All examples in this chapter have been tested in an environment with the following configuration:

•	 Linux Mint 21 Cinnamon edition.

•	 GCC 13.2 with compiler flags: -std=c++20.

•	 A stable internet connection.

•	 Please make sure your environment is at least this recent. For all the examples, you can 
alternatively use https://godbolt.org/.

•	 All code examples in this chapter are available for download from https://github.
com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/
Chapter%208.

Handling time in Linux
Timing is an essential aspect of any computer system, and Linux is no exception. In Linux, there are 
different types of timers available, each designed to handle specific tasks and requirements.

These timers can be used to measure the execution time of programs, schedule tasks, trigger events, 
and more. In this section, we’ll explore the different types of timers available in Linux and how to 
use them effectively.

Here are the different kinds of timers used in the Linux system:

•	 System timers: The Linux kernel uses system timers to keep track of the time and schedule 
various tasks. System timers are used to measure the system uptime, delay, and timeouts. The 
most important system timer in Linux is the Jiffies timer, which increments by 1 with every tick 
of the system clock. The Jiffies timer is used to track the time elapsed since the system booted 
up, and it is frequently used by various kernel modules and drivers.

•	 Real-Time Clock (RTC): The RTC is a hardware clock that keeps track of the date and time, 
even when the system is powered off. The Linux kernel can read and set the RTC through the 
/dev/rtc device file or the hwclock command-line tool. The RTC is used to synchronize 
the system time during startup and to maintain an accurate timestamp for system events.

https://godbolt.org/
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%208
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%208
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%208
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•	 High-Resolution Timers (HRTs): HRTs provide nanosecond-level resolution, which makes 
them suitable for real-time applications that require precise timing. HRTs can be used to 
measure the execution time of a code segment, schedule events with high accuracy, or drive 
high-speed hardware.

•	 POSIX timers: POSIX timers are a set of timers defined by the POSIX standard that provide a 
uniform interface for timer management in Linux. POSIX timers can be used to set up one-shot 
or periodic timers, which can be triggered by a signal or a thread. POSIX timers are implemented 
using the timer_create(), timer_settime(), and timer_delete() system calls.

•	 Timer queues: Timer queues are a mechanism provided by the Linux kernel to schedule events 
and timeouts. Timer queues are implemented as a priority queue of events, where each event 
is associated with a timer. Timer queues can be used to schedule periodic tasks, implement 
timeouts, or trigger events at specific intervals. Timer queues are used extensively in various 
kernel modules and device drivers.

But speaking about timers, we first need to understand what time means in computer systems. Let’s 
have a look.

Linux epoch

In computing, an epoch refers to a specific point in time used as a reference for measuring time in a 
particular system or context. It serves as a starting point from which other time values are calculated 
or represented. In other words, this is the time from when the computer measures the system time.

The epoch is often defined as a specific point in time, typically represented as the number of seconds 
or milliseconds, or other time intervals even smaller than a millisecond elapsed since a particular 
epoch time. The choice of epoch varies depending on the system and context. For example, in  
UNIX-like systems, which Linux is, the epoch is defined as January 1, 1970, at 00:00:00 UTC 
(Coordinated Universal Time). This epoch time is often referred to as the UNIX epoch or UNIX time. 
The time values in UNIX-based systems are typically represented as the number of seconds elapsed 
since the UNIX epoch.

Now, having a better understanding of the UNIX epoch, let’s have a look at some examples of how to 
use these timers in practice.
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Using timers in Linux

Since we already know about the different types of timers available in Linux, let’s explore how to use them 
in our applications. We will look at an example that starts a POSIX timer and waits until it is signaled:

#include <iostream>
#include <csignal>
#include <unistd.h>
#include <sys/time.h>
#include <atomic>
static std::atomic_bool continue_execution{true};
int main() {
    struct sigaction sa{};
    sa.sa_handler = [](int signum) {
        // Timer triggered, stop the loop.
        std::cout << "Timer expired. Stopping the
          task...\n";
        continue_execution = false;
    };
    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sigaction(SIGALRM, &sa, nullptr);

    // Configure the timer to trigger every 1 seconds
    struct itimerval timer{
        .it_interval{.tv_sec{1}, .tv_usec{0}},
        .it_value{.tv_sec{1}, .tv_usec{0}}
    };
    // Start the timer
    setitimer(ITIMER_REAL, &timer, nullptr);
    std::cout << "Timer started. Waiting for timer
      expiration...\n";
    // Keep the program running to allow the timer to
      trigger
    while (continue_execution) {
        sleep(1);
    }
    return 0;
}

In this example, we define a lambda handler that will be called whenever the timer expires. Inside 
the handler, we print a message indicating that the timer has expired and set the exit condition of 
the busy loop.



Handling time in Linux 189

We set up the signal handler using the sigaction function. Then, we configure the timer using the 
it_interval and it_value members of the itimerval structure. After configuring the timer, 
we start it by calling the setitimer POSIX function with the ITIMER_REAL option, which sets 
a real-time timer that sends SIGALRM signals when it expires. We enter a loop to keep the program 
running indefinitely. The sleep(1) call inside the loop ensures that the program does not exit 
immediately and allows the timer to trigger.

The output of the program is as follows:

Program returned: 0
Timer started. Waiting for timer expiration...
Timer expired. Stopping the task...

Another common task in software development is measuring the execution time of a code segment. 
It can also be achieved by using the POSIX time capabilities. To measure the execution time of a code 
segment, we can use an HRT in POSIX.

To use an HRT in POSIX, we will use the clock_gettime() function along with the  
CLOCK_MONOTONIC clock ID. Here’s an example demonstrating the usage of HRTs in POSIX:

#include <iostream>
#include <ctime>
static const auto LIMIT{10000};
void just_busy_wait_f() {
    for (auto i{0}; i < LIMIT; ++i) {
        for (auto j{0}; j < LIMIT; ++j);
    }
}
int main() {
    timespec start, end;
    // Start the timer
    clock_gettime(CLOCK_MONOTONIC, &start);
    // Measured code segment
    just_busy_wait_f();
    // Stop the timer
    clock_gettime(CLOCK_MONOTONIC, &end);
    // Calculate the elapsed time
    const auto elapsed{(end.tv_sec - start.tv_sec) +
      (end.tv_nsec - start.tv_nsec) / 1e9};
    std::cout << "Elapsed time: " << elapsed << "
      seconds\n";
    return 0;
}
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In this example, we declare two timespec structures, start and end, to hold the start and end 
timestamps of the timer. We use the clock_gettime() function to obtain the current time with 
a high-resolution clock.

We call clock_gettime() twice: once at the beginning of the task (to record the start time) and 
once at the end (to record the end time). The CLOCK_MONOTONIC clock ID is used, which represents 
a monotonic clock unaffected by system time adjustments.

After capturing the start and end timestamps, we calculate the elapsed time by subtracting the 
respective second and nanosecond components of the timestamps. The result is then printed as the 
elapsed time in seconds.

The example output in our test lab is as follows:

Program returned: 0
Elapsed time: 0.169825 seconds

Keep in mind that in your environment, the result could be different.

Note that this example demonstrates one way to measure execution time using a timer. Depending 
on your requirements, you can choose different timer mechanisms.

POSIX timer characteristics

Let’s look at some of the characteristics that POSIX timers have:

•	 Powerful and flexible: POSIX timers provide a rich set of features, including different timer 
types (for example, interval timers and one-shot timers), various clock sources, and precise 
control over timer behavior

•	 Low-level control: POSIX timers offer fine-grained control over timer settings, such as signal 
handling and timer expiration behavior

•	 Legacy support: POSIX timers are part of the POSIX API and have been available on  
UNIX-like systems for a long time, making them suitable if you need to maintain compatibility 
with legacy code or specific POSIX requirements

•	 Platform-specific: POSIX timers are not available on all platforms, so if portability is a concern, 
it is better to switch to a more suitable choice

But what better alternative do we have in C++? We will see in the next section.
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Handling time in C++
While POSIX timers have their own merits, in C++ there are libraries that provide higher-level and 
more portable solutions for timing and time-related operations.

One good example of such a library is std::chrono. This is a C++ library that provides a set 
of utilities for working with time-related operations and measurements. It is part of the Standard 
Library and is included in the <chrono> header. The std::chrono library provides a flexible 
and type-safe mechanism for representing and manipulating time durations, time points, clocks, and 
time-related operations. By using std::chrono, you will benefit from the standardization, type 
safety, flexibility, and integration that comes with the C++ Standard Library. Some of the advantages 
of std::chrono compared to the traditional POSIX approach are as follows:

•	 Standardization: std::chrono is part of the C++ Standard Library, making it a cross-
platform solution that works consistently across different operating systems and compilers. 
POSIX, on the other hand, is specific to UNIX-like systems and may not be available or behave 
consistently on all platforms.

•	 Type safety: std::chrono provides type-safe representations of time durations and points 
in time. It offers a rich set of duration and clock types that can be used together seamlessly, 
enabling safer and more expressive code. POSIX timers, while powerful, often rely on low-level 
types, such as the timespec struct, which can be error-prone and require manual conversions.

•	 Flexibility and expressiveness: std::chrono offers a flexible and expressive interface for 
time-related operations. It provides convenient ways to perform arithmetic operations on 
durations, convert between different time units, and format time values. POSIX timers, while 
suitable for specific timing requirements, lack the high-level abstractions and utilities provided 
by std::chrono.

•	 Integration with the Standard Library: std::chrono seamlessly integrates with other 
parts of the C++ Standard Library. It can be used in conjunction with algorithms, containers, 
and concurrency facilities, allowing for more cohesive and efficient code. POSIX timers, being 
a lower-level interface, may require additional work to integrate with other C++ Standard 
Library components.

•	 Compatibility with modern C++ features: std::chrono benefits from the advancements 
and features introduced in modern C++. It supports features such as user-defined literals, lambda 
functions, and type deduction, making it easier to write concise and expressive code. POSIX 
timers, being part of the POSIX API, may not fully leverage the modern C++ language features.
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The <chrono> library provides a comprehensive set of features for working with time-related 
operations, such as measuring time durations, representing points in time, and performing various 
time calculations and conversions. Here are some key components and features of std::chrono:

•	 Clocks: <chrono> defines several clock types that represent different sources of time and 
different epochs. std::chrono::system_clock represents the system-wide RTC, 
which is adjustable. std::chrono::steady_clock represents a steady monotonic clock 
unaffected by system time adjustments, and std::chrono::high_resolution_clock 
represents a clock with the highest available resolution (if supported by the system).

•	 Duration: The std::chrono::duration template class represents a time interval, that 
is, a specified period of time The duration is the tick count using a specific unit of time; for 
example, a duration of five hours is five ticks of the unit hour. Different types of durations can be 
defined, from years to nanoseconds. Example durations include std::chrono::seconds, 
std::chrono::milliseconds, and std::chrono::months.

•	 Time point: A time point represents a specific point in time compared to the epoch of a specific 
clock. The std::chrono::time_point template class is parameterized by a clock and 
duration type.

•	 Time conversions: std::chrono allows for conversions between durations and time 
points, as well as arithmetic operations involving durations. It provides functions such 
as std::chrono::duration_cast to convert between different durations and 
std::chrono::time_point_cast to convert between different time points.

•	 Clock utilities: std::chrono provides utilities for querying the current time, such as 
std::chrono::system_clock::now(), which returns the current system time point.

•	 Chrono literals: std::chrono  provides user-defined, time-related literals in 
the std::literals::chrono_literals namespace. They allow you to create 
std::chrono::duration objects using literals with time units. This makes the code 
more readable and convenient when dealing with time-related computations.

•	 Calendar: std::chrono provides calendar capabilities, such as working with days, months, 
and years. It also provides notation for leap years and leap seconds.

•	 Time zones: std::chrono provides information about different time zones across the globe 
depending on the geographical location.

By using std::chrono, you can perform accurate and portable time measurements, handle timeouts, 
calculate time differences, and work with time-related operations in a type-safe manner.

Important note
The following is a link to the <chrono> header in the C++ reference documentation: https://
en.cppreference.com/w/cpp/header/chrono.

https://en.cppreference.com/w/cpp/header/chrono
https://en.cppreference.com/w/cpp/header/chrono
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Here’s an example of how to use std::chrono to measure the execution time of a code snippet:

#include <iostream>
#include <chrono>
using namespace std::chrono;
int main() {
    const auto start{steady_clock::now()}; // {1}
    just_busy_wait_f(); // {2}
    const auto end{steady_clock::now()}; // {3}
    const auto dur{duration_cast<milliseconds>(end -
      start)}; // {4}
    std::cout << "Execution time: " << dur.count() << "
      milliseconds\n"; // {5}
    return 0;
}

In the preceding example, std::chrono::steady_clock is used to measure the execution 
time of the same function as from the previous example (see marker {2}). The start and end 
variables represent the timepoints taken before and after the code execution using the now() static 
function of steady_clock (see markers {1} and {3}). std::chrono::duration_cast 
is used to convert the calculated duration between the time points in milliseconds (see marker {4}).

The output of the program should be similar to this:

Program returned: 0
Execution time: 179 milliseconds

As you can see, the std::chrono::duration class has a count() method, which returns the 
number of units in a specific duration; see marker {5}.

But let’s get deeper into how this really works.

Using clocks, timers, and ratios
Before getting into more examples with clocks and timers, we first have to get a better understanding 
of how the chrono library defines a duration.

As we saw in the previous example, a duration is the distance between two points of time, called 
timepoints. In our previous example, these were the start and end timepoints.
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Figure 8.1 – Timepoint and duration

The duration itself is a combination of the count of ticks and a fraction that represents the time in 
seconds from one tick to the next. The fraction is represented by the std::ratio class. Here are 
some examples:

using namespace std::chrono;
constexpr std::chrono::duration<int, std::ratio<1>>
  six_minutes_1{360};
constexpr std::chrono::duration<double, std::ratio<3600>>
  six_minutes_2{0.1};
constexpr std::chrono::minutes six_minutes_3{6};
constexpr auto six_minutes_4{6min};
std::cout << six_minutes_1 << '\n';
std::cout << six_minutes_2 << '\n';
std::cout << six_minutes_3 << '\n';
std::cout << six_minutes_4 << '\n';
static_assert(six_minutes_1 == six_minutes_2);
static_assert(six_minutes_2 == six_minutes_3);
static_assert(six_minutes_3 == six_minutes_4);

In the preceding example, we have defined the duration of six minutes in several ways. In the  
six_minutes_1 variable, we have specified this duration as a value of 360 seconds. The same 
duration can also be represented as 1/10 of an hour – the six_minutes_2 variable. The last 
two durations – six_minutes_3 and six_minutes_4 – represent the same duration of six 
minutes but using the std::chrono predefined duration types and literals. Here is the output of 
the preceding code block:

360s
0.1h
6min
6min



Using clocks, timers, and ratios 195

As you can see, std::duration also provides pretty formatting capabilities so that once the 
duration is passed to a string or stream operator, it will add the corresponding suffix so we can see 
the duration type.

In order to ensure that the preceding durations really correspond to six minutes, we have tested them 
against static_assert, which would fail the program if they don’t match.

Important note
The following is a link to the std::duration  class in the C++ reference 
documentation: https://en.cppreference.com/w/cpp/chrono/duration.

Let’s go back to our previous example, slightly change it, and have a closer look at a timepoint object:

using namespace std::chrono;
const time_point start{steady_clock::now()}; // {1}
const duration epoch_to_start{start.time_since_epoch()}; //
  {2}
std::cout << "Time since clock epoch: " << epoch_to_start
  << '\n'; // {3}

As you can see, we again construct a timepoint object, start, in which we get the time at the 
moment of its instantiation from the steady_clock instance of the Linux system; see marker 
{1}. The std::chrono::time_point class stores a std::chrono::duration value, 
which actually indicates the time interval from the start of the clock’s epoch. In order to allow getting 
that value, the std::chrono::duration class exposes a method that returns the duration, 
time_since_epoch(), in nanoseconds; see marker {2}.

Here is the result of the preceding code executed in our test environment. Please keep in mind that 
if you execute this code, the result could be different:

Time since clock epoch: 2080809926594ns

Having a time duration in nanoseconds could be inconvenient in some use cases, such as our example 
of calculating the time it takes for a code block to execute. However converting a duration from a 
higher-precision type into a lower-precision type results in a loss of precision. Therefore, if we need 
to see the duration in minutes then in nanoseconds, we can’t just do this:

using namespace std::chrono;
const minutes
  dur_minutes{steady_clock::now().time_since_epoch()};

https://en.cppreference.com/w/cpp/chrono/duration
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This is because the preceding code won’t compile. The reason behind this is that the time_since_
epoch() method returns the duration with a precision of nanoseconds. If we store that data in 
minutes, we will certainly lose precision. In order to be sure that this won’t be done by mistake, the 
compiler stops us.

But how can we intentionally convert duration values from one precision into another? As we saw 
in the first example, we can use the std::chrono::duration_cast function provided by the 
library. It enables us to make conversions from a duration type with higher precision to a duration 
type with lower precision. Let’s rework the preceding example and see how this works:

using namespace std::chrono;
auto dur_from_epoch{steady_clock::now()
  .time_since_epoch()}; // {1}
minutes dur_minutes{duration_cast<minutes>
  (dur_from_epoch)}; // {2}
std::cout << "Duration in nanoseconds: " << dur_from_epoch
  << '\n'; //{3}
std::cout << "Duration in minutes: " << dur_minutes <<
  '\n'; //{4}

As you can see in marker {1}, we again get the duration in nanoseconds from the clock’s epoch. In 
marker {2}, we initialize another duration variable but this time in minutes. In order to do so, we 
use std::chrono::duration_cast<minutes>, which converts the value from the source 
resolution into the destination one and truncates it down to the closest integer value. In our test 
environment, the result of the preceding code block is as follows:

Duration in nanoseconds: 35206835643934ns
Duration in minutes: 586min

We can see that the measured duration in nanoseconds is equivalent to about 586.78 minutes but it 
is truncated down to 586 minutes.

Of course, we could also need to round up rather than just truncate down values. Fortunately, the 
chrono library gives us this capability with the std::chrono::round method, which does 
exactly this. Here is an example:

using namespace std::chrono;
seconds dur_sec_1{55s}; //{1}
seconds dur_sec_2{65s}; //{2}
minutes dur_min_1{round<minutes>(dur_sec_1)}; //{3}
minutes dur_min_2{round<minutes>(dur_sec_2)}; //{4}
std::cout << "Rounding up to " << dur_min_1 << '\n';
std::cout << "Rounding down to " << dur_min_2 << '\n';
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In this example, we define two duration variables, dur_sec_1 and dur_sec_2. dur_sec_1 is 
initialized to 55 seconds (see marker {1}) and dur_sec_2 is initialized to 65 seconds (see marker 
{2}). Then, using the std::chrono::round function, we initialize another two duration variables 
but this time with a resolution of minutes (see markers {3} and {4}). Both duration variables are 
rounded to one minute:

Rounding up to 1min
Rounding down to 1min

The chrono library also supplies methods for ceil and floor durations. All of them can be found 
in the official documentation.

Important note
The documentation for round, floor, and ceil methods for duration values can be found 
at these links: https://en.cppreference.com/w/cpp/chrono/duration/
round, https://en.cppreference.com/w/cpp/chrono/duration/floor, 
and https://en.cppreference.com/w/cpp/chrono/duration/ceil.

Since we have a better understanding of time operations, let’s have a closer look at the different types 
of clocks that std::chrono provides for us.

More about clocks in C++20

We already used std::chrono::steady_clock in our previous examples. This is just one of the 
predefined clocks in the C++ chrono library that you can use. std::chrono::steady_clock, 
as its name suggests, is a clock that is steady. This means that it is a monotonic clock in which time 
only moves forward, and its timepoint values are always increasing. It is suitable for use when we want 
to measure intervals of time. Its epoch can vary.

Another frequently used clock is std::chrono::system_clock. In Linux, it represents the time 
measured by the system. This means that it is not guaranteed to be monotonic, and it can be adjusted 
at any moment. In Linux, its epoch matches the UNIX epoch. Let’s see an example:

using namespace std::chrono;
time_point<system_clock> systemClockEpoch;
std::cout << std::format("system_clock epoch:
  {0:%F}T{0:%R%z}.", systemClockEpoch) << '\n';

The preceding example prints the Linux system clock epoch, which corresponds to the UNIX epoch 
– 00:00:00: UTC on 1 January 1970:

system_clock epoch: 1970-01-01T00:00+0000.

https://en.cppreference.com/w/cpp/chrono/duration/round
https://en.cppreference.com/w/cpp/chrono/duration/round
https://en.cppreference.com/w/cpp/chrono/duration/ceil


Using Clocks, Timers, and Signals in Linux198

Keep in mind that std::chrono::system_clock doesn’t take into account leap seconds, which 
can be added or subtracted from the measured time. In general, a leap second is a one-second adjustment 
of UTC, which can occur twice per year to reflect the accuracy of the Earth’s rotation around the Sun.

Important note
More information about leap seconds can be found at https://en.wikipedia.org/
wiki/Leap_second.

C++20 introduces several more predefined clocks. Some of them are std::chrono::utc_clock, 
which measures UTC, and std::chrono::tai_clock, which measures International Atomic 
Time (TAI).

Important note
More information about UTC and TAI can be found here: https://en.wikipedia.
org/wiki/Coordinated_Universal_Time and https://en.wikipedia.org/
wiki/International_Atomic_Time.

A key difference between the TAI and UTC clocks is that the UTC clock is guaranteed to take into 
account the leap-second corrections made since the clock epoch, but the TAI clock doesn’t take them 
into account. Let’s see an example:

using namespace std::chrono;
tai_time tai{tai_clock::now()};
utc_time utc{utc_clock::now()};
std::cout << "International atomic time (TAI): " << tai <<
  '\n';
std::cout << "Coordinated universal time (UTC): " << utc <<
  '\n';

In the preceding example, we get the current time from both clocks – utc and tai. Here is the result:

International atomic time (TAI): 2023-08-04 14:02:57.95506
Coordinated universal time (UTC): 2023-08-04 14:02:20.95506

As you can see, regardless of whether both clocks are invoked at the same time, they show different 
times. And their difference is exactly 37 seconds. This difference comes from the leap-second adjustments 
made since they were introduced back in 1972.

https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/International_Atomic_Time
https://en.wikipedia.org/wiki/International_Atomic_Time
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std::chrono::utc_clock applies leap-second adjustments. By using chrono’s UTC clock, 
these leap-second adjustments will be done automatically for you, and you don’t need to take 
any special action. Therefore, the chrono library provides a method to convert between clock  
types – std::chrono::clock_cast, which converts std::chrono::time_point values 
from one clock into another. Let’s see another example:

using namespace std::chrono;
tai_time tai{tai_clock::now()};
std::cout << "International atomic time (TAI): " << tai <<
  '\n';
utc_time utc{clock_cast<utc_clock>(tai)};
std::cout << "Coordinated universal time (UTC): " << utc <<
  '\n';

As you can see, the time_point tai object generated by chrono’s TAI clock is converted into a 
time point from the UTC clock. The result is as follows:

International atomic time (TAI): 2023-08-04 14:16:22.72521
Coordinated universal time (UTC): 2023-08-04 14:15:45.72521

As we expected, the TAI clock is 37 seconds ahead of the UTC one. Therefore, UTC cannot be used 
to properly measure time differences as a leap second might be added or removed.

Important note
You can find all the predefined clocks in the C++ chrono library here: https://
en.cppreference.com/w/cpp/chrono#Clocks.

Now, since we have a good understanding of timing and clocks, let’s see what capabilities the C++ 
chrono library provides for calendars and time zones.

Using calendar and time zone capabilities
C++20 introduces brand-new support for calendar and time zone operations to the standard. When 
we talk about calendar operations, this means operations in days, months, and years. They, together 
with the time zone notion, allow conversions of time between different time zones taking into account 
time zone adjustments such as daylight saving time.

https://en.cppreference.com/w/cpp/chrono#Clocks
https://en.cppreference.com/w/cpp/chrono#Clocks
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Let’s define a date and print it with the help of the chrono library:

using namespace std::chrono;
year theYear{2023};
month theMonth{8};
day theDay{4};
std::cout << "Year: " << theYear;
std::cout << ", Month: " << theMonth;
std::cout << ", Day: " << theDay << '\n';

As you can see, the std::chrono namespace provides year, month, and day classes, which make 
it easy to work with dates. The benefit of these classes is that they provide strict type and boundary 
checks, some operators for summation and subtraction, and formatting capabilities. The result of the 
preceding code is as follows:

Year: 2023, Month: Aug, Day: 04

As you can see, passing the Month variable to operator<< applies formatting so that the value 
of the month is printed as Aug. Also, these classes provide validation and boundary checks on the 
applied values:

using namespace std::chrono;
std::cout << "Year: " << year{2023} ;
std::cout << ", Month: " << month{13};
std::cout << ", Day: " << day{32} << '\n';

In the preceding example, we have applied an invalid month and day of the month. The result is 
as follows:

Year: 2023, Month: 13 is not a valid month, Day: 32 is not a valid day

As you can see, month and day values are validated, and when they are passed to operator<<, it 
prints that these values are not valid.

The year class represents a year in the proleptic Gregorian calendar, which enables us to ask whether 
the year is a leap year or not:

using namespace std::chrono;
sys_time now{system_clock::now()};
year_month_day today{floor<days>(now)};
std::cout << "Today is: " << today << '\n';
year thisYear{today.year()};
std::cout << "Year " << thisYear;
if (thisYear.is_leap()) {
    std::cout << " is a leap year\n";
} else {
    std::cout << " is not a leap year\n";
}
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In this example, we first get the current system time – now – and then we convert it into an object 
of the year_month_day type. This object represents a convenient field-based timepoint. It holds 
year, month, and day objects and allows direct access to them. It also supports instantiation from 
std::chrono::sys_days, which effectively is a timepoint of the system clock in days. Therefore, 
we pass the now timepoint and create the today object. Then, we get the year object – thisYear 
– and it checks whether this is a leap year or not using the is_leap() method of the year class:

Today is: 2023-08-05
Year 2023 is not a leap year

As expected, 2023 is not a leap year.

The chrono library heavily utilizes operator/ for date creation. C++20 provides about 40 overloads 
of the parameters of this operator. Let’s see an example:

using namespace std::chrono;
year_month_day date1{July/5d/2023y};
year_month_day date2{1d/October/2023y};
year_month_day date3{2023y/January/27d};
std::cout << date1 << '\n';
std::cout << date2 << '\n';
std::cout << date3 << '\n';

As you can see, we create a year_month_day object by passing the newly introduced chrono literals 
for months, days, and years together with operator/. chrono provides convenient literals for the 
creation of days; you just have to append d to the day value. The same is the case for years, you have to 
append y and you construct a year object. For months, the chrono library defines named constants 
for all months of the year.

Important note
The following is a link to a list of the month constants in the chrono library: https://
en.cppreference.com/w/cpp/chrono/month.

During the instantiation of the year_month_day object, we pass date values using operator/. 
As is visible from the preceding example, chrono supports many combinations of day, month, and 
year values. All of them can be found in the standard documentation.

Important note
The following is a link to the documentation on all overloads of operator/ for date 
management: https://en.cppreference.com/w/cpp/chrono/operator_slash.

https://en.cppreference.com/w/cpp/chrono/month
https://en.cppreference.com/w/cpp/chrono/month
https://en.cppreference.com/w/cpp/chrono/operator_slash
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All the used overloads in our example are supposed to create valid year_month_date objects. 
Let’s see the output:

2023-07-05
2023-10-01
2023-01-27

As we can see, we have successfully created three separate valid dates with the help of chrono literals 
and operator/.

Working with time zones in C++

The C++20 chrono library provides capabilities for working with time zones. It integrates the IANA 
time zone database, which contains information about the local time in many geographical locations 
around the globe.

Important note
Find more information about the IANA time zone database here: https://www.iana.
org/time-zones.

Using chrono, you can get a copy of the IANA database and browse it for a specific geographical location:

using namespace std::chrono;
const tzdb& tzdb{get_tzdb()};
const std::vector<time_zone>& tzs{tzdb.zones};
for (const time_zone& tz : tzs) {
    std::cout << tz.name() << '\n';
}

As we can see from the example, in the std::chrono namespace, there is a method – get_tzdb() 
– that returns a reference to the IANA database. In the database, you can find information about its 
version and also get a sorted list of all available std::chrono::time_zone objects.

The std::chrono::time_zone class stores information about transitions between time zones 
for its specific geographic area and name. The output from the preceding example is as follows:

Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
...

https://www.iana.org/time-zones
https://www.iana.org/time-zones
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Now, once we have all available time zones, let’s try to find a specific one based on a geographical 
location and see what the time is there:

using namespace std::chrono;
const tzdb& tzdb{get_tzdb()};
const std::vector<time_zone>& tzs{tzdb.zones};
const auto& res{std::find_if(tzs.begin(), tzs.end(), []
  (const time_zone& tz){
    std::string name{tz.name()};
    return name.ends_with("Sofia");
})};
if (res != tzs.end()) {
    try {
        const std::string_view myLocation{res->name()};
        const std::string_view london{"Europe/London"};
        const time_point now{system_clock::now()};
        const zoned_time zt_1{myLocation, now};
        const zoned_time zt_2{london, now};
        std::cout << myLocation << ": " << zt_1 << '\n';
        std::cout << london << ": " << zt_2 << '\n';
    } catch (const std::runtime_error& e) {
        std::cout << e.what() << '\n';
    }
}

In this example, we again get the list of the available time zones and try to find the time zone for the 
city of Sofia. Then, we use the full name of the found time zone to create another object that uses a 
specific geographical location and the value of the system time – std::chrono::zoned_time. 
This class represents a logical pair between a time zone and a point in time. We also create another 
zoned_time zt_2 object but for the city of London, which represents the same time point as 
zt_1 but in another geographical location. The result of the preceding code is as follows:

Europe/Sofia: 2023-08-05 13:43:53.503184619 EEST
Europe/London: 2023-08-05 11:43:53.503184619 BST

As you can see, both objects display a valid time but with respect to their geographical locations. This 
is how we can safely get the current time in a specific geographical location where daylight saving 
time is also considered.
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Summary
In this chapter, we explored the different timers available within the Linux environment. Subsequently, 
we gained an understanding of the significance behind the clock epoch and the concept of UNIX 
time. Following this, we delved into the practical implementation of POSIX in Linux for accurate 
time measurement. Additionally, we investigated the realm of std::chrono and examined the 
array of capabilities that C++ affords for effective time-related operations. Our exploration then took 
us on a detailed journey through duration, timepoints, and clocks as they are defined within the 
std::chrono framework. Moving forward, we acquainted ourselves with the various clock types 
at our disposal within std::chrono. As our journey continued, we initiated our exploration into 
the calendar capabilities presented by std::chrono. Finally, we developed familiarity with time 
zones and honed our proficiency in executing seamless time conversions utilizing the tools offered by 
std::chrono. Now, we are ready for the next chapter, where we will go deeper into the specifics 
of the C++ memory model.



9
Understanding  

the C++ Memory Model

This chapter is a continuation of the discussion from Chapter 7, where we discussed a few multiprocess 
and multi-threaded techniques; this chapter will enhance their usage. We will guide you through various 
techniques while narrowing down to the main focus of the chapter – the C++ memory model. But in 
order to discuss this, you will start first with a brief examination of memory robustness through the 
smart pointer and the optional objects. We will use them later to implement lazy initialization and 
handle shared memory regions safely. An improved memory access analysis of cache-friendly code 
follows. You will learn when and why using multi-threaded execution could be a trap, even though 
you did everything right in the software design.

This chapter gives you the opportunity to broaden your understanding of the synchronization primitives. 
While learning about the condition variables, you will also understand the benefits of the read-write 
locks. We will use the ranges from C++20 to visualize the same shared data differently. Combining these 
mechanisms one by one, we will finalize our analysis with the biggest topic – instruction ordering. 
Through the C++ memory order, you will learn more about the significance of the correct atomic 
routine setup. The spinlock implementation will be used to summarize all techniques at the end.
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In this chapter, we are going to cover the following main topics:

•	 Getting to know smart pointers and optionals in C++

•	 Learning about condition variables, read-write locks, and ranges in C++

•	 Discussing multiprocessor systems – cache locality and cache friendliness in C++

•	 Revisiting shared resources through the C++ memory model via the spinlock implementation

Technical requirements
In order to run the code examples, the reader must prepare the following:

•	 A Linux-based system capable of compiling and executing C++20 (for example, Linux Mint 21)

•	 The GCC12.2 compiler: https://gcc.gnu.org/git/gcc.git gcc-source

	� With the -std=c++2a, -lpthread, and -lrt flags

•	 For all the examples, you can alternatively use https://godbolt.org/.

•	 All code examples in this chapter are available for download from https://github.
com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/
Chapter%209.

Getting to know smart pointers and optionals in C++
In Chapter 4, we revisited the C++ fundamentals in order to be on the same page when it comes to 
the language. One instrument that is also considered a must is smart pointers. Through these, we are 
able to improve the safety of the program and also manage our resources more effectively. And as 
discussed in the earlier chapters, this is one of our main goals as system programmers. Remember 
the RAII principle? Smart pointers are based on this, helping the C++ developer reduce and even 
eliminate memory leaks. They could also help with shared memory management as you will see later 
in the chapter.

Memory leaks appear when we allocate memory but fail to free it. This could happen not only because 
we forgot to call the object’s destructor, but also when we lose the pointer to that memory address. In 
addition to these, there are also the wild and dangling pointers to consider as well. The first one happens 
when the pointer is there on the stack, but it’s never associated with the real object (or address). The 
second one happens when we free the memory, used by the object, but the value of the pointer remains 
dangling around, and we reference an already-deleted object. Altogether, these errors can lead not 
only to memory fragmentation, but also to buffer overflow vulnerabilities.

https://gcc.gnu.org/git/gcc.gitgcc-source
https://godbolt.org/
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
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These issues are hard to catch and reproduce, especially on large systems. System programmers and 
software integration engineers use tools such as address sanitizers, static and dynamic code analyzers, 
and profilers, among others, relying on them to predict future defects. But such tools are expensive 
and consume a lot of computational power, so we cannot rely on them constantly for higher code 
quality. That said, what can we do, then? The answer is simple – use smart pointers.

Note
You can read more on the subject of smart pointers in the standard, or refer to https://
en.cppreference.com/w/cpp/memory.

Retracing RAII via smart pointers

Even experienced C++ developers make mistakes when it comes to the right time for memory 
deallocation. Other languages use garbage collection techniques to handle memory management, 
but it’s important to mention that memory leaks happen there as well. Multiple algorithms are 
implemented for detecting such cases in the code but are not always successful. For example, the 
cycle dependency between objects is sometimes difficult to resolve – should two objects pointing to 
each other be deleted, or should they remain allocated? If they remain allocated, does this constitute 
a leak or not? So, it’s our job to be cautious about memory usage. In addition, garbage collectors work 
to free up memory, but do not manage opened files, network connections, locks, and so on. To this 
end, C++ implements its own instrument for control – wrapper classes over the pointers, helping us 
free the memory at the right time, usually when the object goes out of scope (the object life cycle was 
discussed already in Chapter 4). Smart pointers are efficient in terms of memory and performance, 
meaning they don’t cost (much) more than raw pointers. At the same time, they give us robustness in 
memory management. There are three types of smart pointers in the C++ standard:

•	 unique_ptr: This is a pointer that is allowed one owner only. It cannot be copied or shared, 
but the ownership can be transferred. It has the size of a single raw pointer. It is destroyed and 
the object deallocated when it goes out of the scope.

•	 shared_ptr: This can have multiple owners and is destroyed when all owners have given up 
ownership on it or all go out of scope. It uses a reference counter to the pointer of an object. 
Its size is two raw pointers – one for the allocated object, and one for the shared control block 
containing the reference count.

•	 weak_ptr: This provides access to an object owned by one or more shared pointers, but doesn’t 
count references. It is used for observing an object, but not for managing its life cycle. It consists 
of two pointers – one for the control block, and one for pointing to the shared pointer it was 
constructed from. Through weak_ptr you can learn whether the underlying shared_ptr 
is still valid – just call the expired() method.

https://en.cppreference.com/w/cpp/memory
https://en.cppreference.com/w/cpp/memory
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Let’s demonstrate their initial roles through the following example:

struct Book {
   string_view title;
   Book(string_view p_title) : title(p_title) {
        cout << "Constructor for: " << title << endl; }
   ~Book() {cout << "Destructor for: " << title << endl;}};
int main() {
    unique_ptr<Book> book1 =
        make_unique<Book>("Jaws");
    unique_ptr<Book> book1_new;
    book1_new = move(book1); // {1}
    cout << book1_new->title << endl;
    shared_ptr<Book> book2 =
        make_unique<Book>("Dune");
    shared_ptr<Book> book2_new;
    book2_new = book2; // {2}
    cout << book2->title <<" "<< book2_new->title << endl;
    cout << book2.use_count() << endl;

As you can see, we use the heap as we call new for the creation of the Book objects. But as the smart 
pointer handles memory management, we don’t need to call the destructor explicitly:

Constructor for: Jaws
Jaws
Constructor for: Dune
Dune Dune
2
Destructor for: Dune
Destructor for: Jaws

First, we move the ownership of book1’s object to another unique_ptr – book1_new  
(marker {1}). We print out its title through the second unique_ptr as the first one is already 
invalid. We do the same operation for another Book object, but through a shared_ptr object 
(marker {2}). This time the title variable can be accessed from both pointers. We also print the 
reference count, and we see there are two references to that object.

weak_ptr has useful strengths in system programming, too. You can use weak_ptr to check for 
pointer validity. weak_ptr could also resolve the issue of cyclic dependency between objects. Let’s 
consider an example of a list node of a doubly linked list. The next example illustrates the benefits 
of weak_ptr. This is a good time to advise you not to implement such data structures yourself, 
especially when they are already a part of the C++ standard. 
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Now, let’s use the Book object as content of the ListNode struct:

struct ListNode {
    Book data;
    ListNode(string_view p_title) {
        data.title = p_title;
        cout << "Node created: " << data.title << endl;
    }

We also add two member variables for the previous and following nodes, but one of them will be 
weak_ptr. One remark is that the weak_ptr reference is not counted as such in the shared_ptr 
control block. Now, we have both access to the objects and the opportunity to count the references 
to zero with each deallocation:

    ~ListNode() {
        cout << "Node destroyed: " << data.title
             << endl;
    }
    shared_ptr<ListNode> next;
    weak_ptr<ListNode> prev;
};

int main() {
    shared_ptr<ListNode> head =
        make_shared<ListNode>("Dune");
    head->next = make_shared<ListNode>("Jaws");
    if (!head->next->prev.expired())
        head->next->prev = head;

From the output, it’s clear that all objects were removed successfully:

Node created: Dune
Node created: Jaws
Node destroyed: Dune
Node destroyed: Jaws

weak_ptr is also useful for cache implementation. Think about it – if you lose all references to an 
object, you will lose the object itsel; but with smart pointers, it will certainly be destroyed. So, imagine 
that recently accessed objects or objects with higher importance are kept through shared_ptr in 
the current code scope. But weak_ptr allows us to keep a reference to an object in the same scope 
if we need to reference the object later in that same scope. We would create a weak_ptr object to 
it in this case. But imagine that meanwhile, some other code scope holds a reference to the object 
through shared_ptr, thus keeping it allocated. In other words, we know about the object, but we 
don’t need to be concerned about its management. Thus, that object is accessible if it’s still required 
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later, but removed when nothing else needs it. The following diagram shows how shared_ptr 
could be incorrectly used on the left-hand side, along with the implementation just described on the 
right-hand side:

Figure 9.1 – Cyclic dependency through shared_ptr and resolving through weak_ptr

We are not going to dive further into other design solutions where smart pointers could come in handy 
in this section, but we will return to them in the realm of system programming later in the chapter. 
In the next section, we discuss a technique that’s the opposite to weak_ptr, where we retain the 
awareness of an object that hasn’t been created in memory yet.

Doing a lazy initialization in C++

Do you play video games? Have you ever seen a missing texture somewhere in the graphics while 
playing? Has a graphical resource appeared suddenly when you moved close to it with your character? 
Have you observed such behavior in other UIs as well? If your answers are mostly in the positive, then 
you have probably encountered lazy initialization already. It’s easy to figure out that its purpose is 
to postpone the construction of an object until it’s really needed. By doing so, we allow the system to 
allocate the required resources only. We also use it to speed up our code, especially if it’s run during 
high CPU loads, such as at system startup. Instead of wasting CPU cycles to create large objects that 
won’t be needed until (much) later, we free up the CPU to handle other requests. On the negative side, 
we might end up failing to load the object on time, as you have likely observed in video games. As we 
discussed in Chapter 2, this is also used when a program is loaded, and the kernel allocates virtual 
memory in a lazy fashion – a page of executable code is not loaded until referenced.



Getting to know smart pointers and optionals in C++ 211

As with every other pattern, lazy initialization cannot solve all of the problems. So, the system 
programmer has to choose whether it should be applied for the given application’s functions or not. 
Usually, it is preferred that parts of the graphical and network storage resources remain lazily initialized 
as they are loaded on demand either way. In other words, the user doesn’t see the UI in its entirety all 
the time. Therefore, it’s not required to store it in memory a priori. C++ has features that allow us to 
easily implement this approach. We present lazy initialization in the following example:

#include <iostream>
#include <chrono>
#include <optional>
#include <string_view>
#include <thread>
using namespace std;
using namespace std::literals::chrono_literals;
struct Settings {
    Settings(string_view fileName) {
        cout << "Loading settings: " << fileName << endl;
    }
    ~Settings() {
        cout << "Removing settings" << endl;
    }

We propose a Settings class that will help us simulate the loading and updating of a list of settings 
from the disk. Note that we pass it by value and not by reference:

    void setSetting(string_view setting,
                    string_view value) {
        cout << "Set setting: " << setting
             << " to: " << value << endl;
    }
};

This technique saves time due to reduced loading from memory. In C++, pass-by-value (or pass-
by-copy) is the default argument passing technique, except for in the case of arrays. It is cheap and 
optimal for small types, such as int. Pass-by-reference is an alternative to pass-by-value and the 
string_view object is handled in the same manner as int, using a cheaper copy constructor than 
other standard objects such as string. Getting back to our example, we’re creating a configuration 
object, Config, which will consist of the settings file (which could be more than one file in  
real-world scenarios) and will allow settings to be changed in that configuration. Our main() method 



Understanding the C++ Memory Model212

simulates an application’s startup. The Config object will be constructed, but the settings file will be 
loaded only when the startup is finished, and the process resources are available:

struct Config {
    optional<Settings> settings{};
    Config() {
        cout << "Config loaded..." << endl;
    }
    void changeSetting(string_view setting,
                       string_view value) {
        if (!settings)
            settings.emplace("settings.cfg");
        settings->setSetting(setting, value);
    }
};
int main() {
    Config cfg;
    cout << "Application startup..." << endl;
    this_thread::sleep_for(10s);
    cfg.changeSetting("Drive mode", "Sport");
    cfg.changeSetting("Gear label", "PRNDL");

We observe that the file is loaded after the startup has finished, as we expected:

Config loaded...
Application startup...
Loading settings: settings.cfg
Set setting: Drive mode to: Sport
Set setting: Gear label to: PRNDL
Removing settings

The optional class template is designed so that functions can return nothing when they fail, or a 
valid result when they succeed. We could also use it to handle objects whose construction is expensive. 
It also manages a value that may or may not be present at a given time. It is also readable, and its 
intent is clear. If an optional object contains a value, the value is guaranteed to be allocated as part 
of the optional object, and no dynamic memory allocation happens. Thus, an optional object 
models a reservation to an object, not a pointer. This is a key difference between optional and the 
smart pointer. Although using a smart pointer to handle large and complex objects might be a better 
idea, optional gives you the opportunity to construct an object at a later point in time when all 
parameters are known, if they weren’t known earlier in the execution. Both of them will work well in 
implementing lazy initialization – it’s a matter of your preference.

Later in the chapter, we will return to smart pointers and their usability for managing shared memory. 
First, though, we will use the next section to present some useful mechanisms for synchronization.



Learning about condition variables, read-write locks, and ranges in C++ 213

Learning about condition variables, read-write locks, and 
ranges in C++
Let’s now start our discussion of synchronization primitives, a fundamental one of which is the 
condition variable. Its purpose is to allow multiple threads to remain blocked until an event occurs 
(i.e., a condition is satisfied). The implementation of condition variables requires an additional 
Boolean variable to indicate whether the condition is met or not, a mutex to serialize the access to 
the Boolean variable, and the condition variable itself.

POSIX provides an interface for multiple use cases. Do you remember the producer-consumer example 
in Chapter 7, Using Shared Memory? So, pthread_cond_timedwait() is used to block a thread 
for a given period of time. Or simply wait for a condition through pthread_cond_wait () and 
signal with pthread_cond_signal() to one thread, or pthread_cond_broadcast() to 
all threads. Typically, the condition is checked periodically in the scope of a mutex lock:

...
pthread_cond_t  condition_variable;
pthread_mutex_t condition_lock;
...
pthread_cond_init(&condition_variable, NULL);
...
void consume() {
    pthread_mutex_lock(&condition_lock);
    while (shared_res == 0)
        pthread_cond_wait(&condition_variable,
                          &condition_lock);
    // Consume from shared_res;
    pthread_mutex_unlock(&condition_lock);
}
void produce() {
    pthread_mutex_lock(&condition_lock);
    if (shared_res == 0)
        pthread_cond_signal(&condition_variable);
    // Produce for shared_res;
    pthread_mutex_unlock(&condition_lock);
}
pthread_mutex_unlock(&condition_lock);
...
pthread_cond_destroy(&condition_variable);
...
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If we level up the abstraction, as we did in Chapter 7, C++ gives us access to the same technique, 
but a bit simpler and safer to use – we are guarded by the RAII principle. Let’s check the following 
snippet in C++:

...
#include <condition_variable>
mutex cv_mutex;
condition_variable cond_var;
...
void waiting() {
    cout << "Waiting for work..." << endl;
    unique_lock<mutex> lock(cv_mutex);
    cond_var.wait(lock);
    processing();
    cout << "Work done." << endl;
}
void done() {
    cout << "Shared resource ready."  << endl;
    cond_var.notify_one();
}
int main () {
    jthread t1(waiting); jthread t2(done);
    t1.join(); t2.join();
    return 0;
}

The output is as follows:

Waiting for work...
Shared resource ready.
Processing shared resource.
Work done.

In this form, the code is not correct. There is no condition to be checked, and the shared resource 
itself is missing. We are simply setting the stage for the following examples, which are a continuation 
of what we covered in Chapter 7. But observe the use of a conditional variable by one thread to notify 
another that a resource is ready to be consumed (marker {4}), while the first one was waiting (marker 
{2}). As you see, we rely on a mutex to lock the shared resource in the scope (marker {1}) and 
the condition variable is triggered through it in order to continue to work (markers {2} and {3}). 
Thus, the CPU is not busy waiting, as there’s no endless loop to wait for a condition, freeing up access 
to the CPU for other processes and threads. But the thread remains blocked, because the wait() 
method of the condition variable unlocks the mutex and the thread is put to sleep atomically. When 
the thread is signaled, it will be resumed and will re-acquire the mutex. This is not always useful as 
you will see in the next section.
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Cooperative cancellation through condition variables

An important remark is that the condition variable should wait only with a condition and through a 
predicate. If not, the thread waiting on it will remain blocked. Do you remember the thread cancellation 
example from Chapter 6? We used jthread and sent stop notifications between threads through the 
stop_token class and the stop_requested method. This mechanism is known as cooperative 
cancellation. The jthread technique is considered safe and easy to apply, but it might not be an 
option for your software design, or it might not be enough. Canceling threads could be directly related 
to waiting for an event. In that case, condition variables could come in handy as no endless loops or 
polling will be required. Revisiting the thread cancellation example from Chapter 6, Canceling Threads, 
Is This Really Possible?, we have the following:

while (!token.stop_requested())

We are doing polling as the thread worker checks periodically whether the cancellation has been sent 
while doing something else in the meantime. But if the cancellation is the only thing we care about, then 
instead of polling, we could simply subscribe to the cancellation event using the stop_requested 
function. C++20 allows us to define a stop_callback function, so together with the condition 
variable and get_stop_token(), we can do the cooperative cancellation without endless loops:

#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>
#include <syncstream>
using namespace std;
int main() {
    osyncstream{cout} << "Main thread id: "
                      << this_thread::get_id()
                      << endl;

So, let’s finish the work from the example in the previous section and add a predicate to the condition 
variable in a worker thread:

    jthread worker{[](stop_token token) {
        mutex mutex;
        unique_lock lock(mutex);
        condition_variable_any().wait(lock, token,
            [&token] { return token.stop_requested(); });
        osyncstream{cout} << "Thread with id "
                          << this_thread::get_id()
                          << " is currently working."
                          << endl;
    }};
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    stop_callback callback(worker.get_stop_token(), [] {
    osyncstream{cout} <<"Stop callback executed by thread:"
                      << this_thread::get_id()
                      << endl;
    });
    auto stopper_func = [&worker] {
        if (worker.request_stop())
            osyncstream{cout} << "Stop request executed by
              thread: "
                              << this_thread::get_id()
                              << endl;
    };
    jthread stopper(stopper_func);
    stopper.join(); }

The output is as follows:

Main thread id: 140323902175040
Stop callback executed by thread: 140323893778176
Stop request executed by thread: 140323893778176
Thread with id 140323902170880 is currently working.

So, the worker thread remains in execution, but the stopper thread gets the stop token in the 
stop_callback function. When the stop is requested through the stopper function, the condition 
variable is signaled through the token.

Now that we have another mechanism besides the semaphore to signal between threads, we can 
get the shared memory back in the game. Let’s see how this can work together with the condition 
variables and smart pointers.

Combining smart pointers, condition variables, and shared 
memory

We already explored the concept of shared memory in Chapter 7, Using Shared Memory. Let’s use 
the knowledge from the earlier sections in this chapter to enhance the code safety through some C++ 
techniques. We’re simplifying the scenario a little bit. The full example can be found at https://
github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/
main/Chapter%209. 

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209


Learning about condition variables, read-write locks, and ranges in C++ 217

We use the unique_ptr argument to provide a specific deallocator:

template<typename T>
struct mmap_deallocator {
    size_t m_size;
    mmap_deallocator(size_t size) : m_size{size} {}
    void operator()(T *ptr) const {
       munmap(ptr, m_size);
    }
};

We rely on the following:

unique_ptr<T, mmap_deallocator<T>>(obj, del);

As you see, we are also using templates in order to provide the possibility of storing any type of objects 
in the shared memory. It is easy to keep complex objects with large hierarchies and members in the 
heap, but storing and accessing their data is not trivial. Multiple processes will have access to those 
objects in the shared memory, but are the processes able to reference the memory behind the pointers? 
If the referenced memory is not in there or the shared virtual address space, then a memory access 
violation exception will be thrown. So, approach this with caution.

We proceed with the next example. The already-known condition variable technique is used, but this 
time we add a real predicate to wait for:

mutex cv_mutex;
condition_variable cond_var;
bool work_done = false;

Our producer() method creates and maps the shared memory in the familiar fashion. But this 
time, instead of doing system calls to write, the shared resource is created directly in the shared memory 
(marker {1}). This technique is known as placement new. The memory is allocated a priori, and we 
construct an object into that memory. The standard new operator does these two operations together. 
Additionally, the object itself is wrapped by a unique_ptr object with the respective deallocator. As 
soon as the scope is left, that portion of the memory will be reset through the munmap() method. A 
condition variable is used to signal to the consumer that the data has been prepared:

template<typename T, typename N>
auto producer(T buffer, N size) {
    unique_lock<mutex> lock(cv_mutex);
    cond_var.wait(lock, [] { return work_done == false; });
    if (int fd =
            shm_open(SHM_ID, O_CREAT | O_RDWR, 0644);
                     fd != -1) {
        ftruncate(fd, size);
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The shm region is created and sized. Now, let us use it to store the data:

        if (auto ptr =
                mmap(0, size,
                     PROT_RW, MAP_SHARED,
                     fd, 0); ptr != MAP_FAILED) {
            auto obj = new (ptr) T(buffer);
            auto del = mmap_deallocator<T>(size);
            work_done = true;
            lock.unlock();
            cond_var.notify_one();
            return unique_ptr<T,
                mmap_deallocator<T>>(obj, del);
        }
        else {
          const auto ecode{ make_error_code(errc{errno}) };
…
        }
    }
    else {
        const auto ecode{ make_error_code(errc{errno}) };
...
        throw exception;
    }
    // Some shm function failed.
    throw bad_alloc();
}

The consumer is implemented similarly, just waiting for the following:

cond_var.wait(lock, []{ return work_done == true; });

Finally, two threads are started and joined as a producer and consumer to provide the following output:

Sending: This is a testing message!
Receiving: This is a testing message!

Of course, the example could be much more complex, adding periodic production and consumption. 
We encourage you to try it out, just using another type of buffer – as you may remember, the  
string_view object is a constant. Be sure that the deallocator is correctly implemented and called. 
It is used to make the code safer and discard the possibility of memory leaks.
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As you may have observed, throughout our work in this book, we often want to access an object just 
to read it, without modifying its data. In that case, we don’t need full-scale locking, but something 
to make a difference between just reading data or modifying it. This technique is the read-write lock 
and we present it in the following section.

Implementing read-write locks and ranges with C++

POSIX provides the read-write locks mechanism directly, while C++ hides it under different names 
– shared_mutex and shared_timed_mutex. Let’s see how it works traditionally in POSIX. 
We have the read-write lock object (rwlock) with the expected POSIX interface, where a thread 
could hold multiple concurrent read locks on it. The goal is to allow multiple readers to access the 
data until a thread decides to modify it. That thread locks the resource through a write lock. Most 
implementations favor the write lock over the read lock in order to avoid write starvation. Such 
behavior is not necessary when it comes to data races, but it definitely causes a minimal application 
execution bottleneck.

This is especially true when dealing with large-scale systems’ data readers – for example, multiple 
read-only UIs. The C++ features again give us a simple and robust instrument for this task. Therefore, 
we will not devote time to studying examples of POSIX. We advise you to take a look yourself if 
interested, starting with https://linux.die.net/man/3/pthread_rwlock_rdlock.

Proceeding with the C++ example, let’s consider the following scenario – a small number of threads 
want to modify a shared resource – a vector of numbers – and a larger number of threads wants to 
visualize the data. What we want to use here is shared_timed_mutex. It allows two levels of 
access: exclusive, where only one thread can own the mutex; and shared, where multiple threads share 
ownership of the mutex.

Important note
Keep in mind that both the shared_timed_mutex and shared_mutex types are heavier 
than a simple mutex, although shared_mutex is considered more efficient on some platforms 
than shared_timed_mutex. You’re expected to use them when your read operations are 
really resource-hungry, slow, and frequent. For short operation bursts it would be preferable 
to stick with just the mutex. You’ll need to measure your resource usage specifically for your 
system in order to work out which to choose.

The following example illustrates the usage of shared_mutex. We’ll also use the opportunity to 
present the ranges library in C++. This feature comes with C++20 and together with string_views 
provides an agile way to visualize, filter, transform, and slice C++ containers, among other things. 
Through this example, you’ll learn about some useful techniques with the ranges library, which 
will be explained along with the code. The full example can be found at https://github.com/
PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209.
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Let’s have a Book struct with a shared resource – vector of books. We are going to use shared_
mutex to handle read-write locking:

struct Book {
    string_view title;
    string_view author;
    uint32_t    year;
};
shared_mutex shresMutex;
vector<Book> shared_data =  {{"Harry Potter", ...

We implement the method for adding a book to the shared resource with the wr_ prefix in order to 
distinguish its role from the other methods. We also execute a write lock on the resource (marker {1}):

void wr_addNewBook(string_view title,
                   string_view author,
                   uint32_t year) {
    lock_guard<shared_mutex> writerLock(shresMutex); // {1}
    osyncstream{cout} << "Add new book: " << title << endl;
    shared_data.emplace_back(Book {title, author, year});
    this_thread::sleep_for(500ms);
}

Now, we start with the implementation of multiple reader routines. They are marked with the  
rd_ prefix, and each of them executes a read lock, meaning that the resource will be available for 
multiple readers at a time:

void rd_applyYearFilter(uint32_t yearKey) {
    auto year_filter =
        [yearKey](const auto& book)
       { return book.year < yearKey; };
    shared_lock<shared_mutex> readerLock(shresMutex);
    osyncstream{cout}
   << "Apply year filter: " << endl; // {2}
    for (const auto &book : shared_data |
                            views::filter(year_filter))
        osyncstream{cout} << book.title << endl;
}

Observe the for loop after marker {2}. It not only iterates through the shared resource, but with 
the pipe (|) character we filter out portions of it, which is similar to piping and grep as covered in 
Chapter 3, except here, it’s not a pipe. We are creating a range view through the pipe operator, thus 
providing additional logic to the iteration. In other words, we manipulate the view to the container. 
This approach can be used not only for vectors, but for the other C++ iterable objects as well. 
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Why? Ranges are used to extend and generalize the algorithms with iterators so the code becomes 
tighter and less error prone.

It’s easy to see the intention of the range here, too. Additionally, the range view is a lightweight object, 
similar to string_view. It represents an iterable sequence – the range itself, created on top of 
the containers’ iterators. It is based on the Curiously Recurring Template Pattern. Through the range 
interface, we can change the presentation of a container, present its values as transformed in a given 
manner, filter out values, split and combine sequences, present unique elements, shuffle elements, slide a 
window through the values, and so on. All of this is done via the simple syntax of already-implemented 
range adapters. In our example, rd_applyYearFilter has a for loop wherein books older than 
yearKey are filtered out. We could also print out the shared resource’s elements in reverse order:

void rd_Reversed() {
    for (const auto &book : views::reverse(shared_data))
        osyncstream{cout} << book.title << endl; ...

We could even combine views, as follows:

for (const auto &book :
         views::reverse(shared_data) |
         views::filter([nameSizeKey](Book book)
              {return book.author.size() < nameSizeKey;}))}

The previous snippet iterates through the elements in reverse order, but it also filters out those 
books where the length of the author’s name is longer than a given value. With the next snippet, we 
demonstrate how to simply drop a portion of the container during iteration:

for (const auto &book :
   ranges::drop_view(shared_data, dropKey))
        osyncstream{cout} << book.title << endl;

If this is too generic, you could instead use a specific subrange, which will create a range object. The 
range object can be used like any other, as follows:

auto const sub_res =
    ranges::subrange(shared_data.begin(),
                     shared_data.begin()+5);
    for (const auto& book: sub_res){
        osyncstream{cout}
        << book.title << " " << book.author
             <<  " " << book.year << endl;
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With all of this complete, we create threads to execute all of these actions in a concurrent manner 
and see how the read-write lock manages them. Running the example will produce different output 
orders depending on the thread’s scheduling:

    thread yearFilter1(
        []{ rd_applyYearFilter(1990); });
    thread reversed(
        []{ rd_Reversed(); });
    thread reversed_and_filtered(
        []{ rd_ReversedFilteredByAuthorNameSize(8); });
    thread addBook1(
        []{ wr_addNewBook("Dune", "Herbert", 1965); });
    thread dropFirstElements(
        []{ rd_dropFirstN(1); });
    thread addBook2(
        []{ wr_addNewBook("Jaws", "Benchley", 1974); });
    thread yearFilter2(
        []{ rd_applyYearFilter(1970); });

The output is per the described range views (the following has been rearranged slightly for easier reading):

Apply reversed order:
It
East of Eden
Harry Potter
Drop first N elements:
East of Eden
It
Apply reversed order and filter by author name size:
It
Harry Potter
Apply year filter:
East of Eden
It
Add new book: Dune
Apply year filter:
East of Eden
Dune
Add new book: Jaws
Print subranged books in main thread:
East of Eden Steinbeck 1952
It King 1986



Discussing multiprocessor systems – cache locality and cache friendliness in C++ 223

You have now learned about another combination of techniques with which you can scale up a system 
with multiple threads that handle presentation tasks. Let’s now take a step back and discuss the possible 
traps arising from concurrent execution that are not directly related to data races. We continue with 
cache-friendly code.

Discussing multiprocessor systems – cache locality and 
cache friendliness in C++
You probably recall Chapter 2 at this point, where we discussed multi-thread and multi-core processors. 
The respective computational units were presented as processors. We also visualized the transport of 
instructions from the NVM (the disk) to the processors, through which we explained the creation of 
processes and software threads.

We want our code to be as performant as required. The most important aspect of getting the code 
to perform well is the choice of appropriate algorithms and data structures. With a bit of thought, 
you can try to squeeze the most out of every last CPU cycle. One of the most common examples of 
misusing algorithms is sorting a large, unordered array with bubble sort. So, make sure to learn your 
algorithms and data structures – together with the knowledge from this section and beyond, it will 
make you a really powerful developer.

As you already know, the further we get from the RAM and the closer we get to the processor registers, 
the faster the operations and the smaller the memory capacity becomes. Each time the processor loads 
data from the RAM to the cache, it will either just sit and wait for that data to show up, or execute 
other non-related tasks. Thus, from the perspective of the current task, the CPU cycles are wasted. 
Of course, reaching 100% CPU utilization might be impossible, but we should at least be aware when 
it’s doing needless work. All of this might sound meaningless to you at this point, but concurrent 
systems will suffer if we act carelessly.

The C++ language provides access to multiple tools for even better performance improvements, including 
prefetching mechanisms through hardware instructions and branch prediction optimization. Even 
without doing anything in particular, modern compilers and CPUs do a great job with these techniques. 
Still, we could improve this performance further by providing the right hints, options, and instructions. 
It’s also a good idea to be aware of the data in the cache to help reduce the time taken when accessing 
it. Remember that the cache is just a type of fast, temporary storage for data and instructions. So, we 
can use the features of C++ to our advantage when we treat the cache in a good manner, known as 
cache-friendly code. An important remark to note is the inverse of this statement – misusing C++ 
features will lead to poor cache performance, or at least not the best performance possible. You’ve 
probably already guessed that this is related to the system’s scale and the requirement for fast data 
access. Let’s discuss this further in the next section.
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Considering cache locality through cache-friendly code

We mentioned the concept of cache-friendly code already, but what does it truly mean? First of all, 
you need to be aware of the cache locality. This means that our first goal is to make frequently used 
data easily accessible, thus the process will run faster. The second goal is to store in memory only 
what we need to store. Let’s keep the allocations small. For example, if you need to store a number 
of dice values (1-6), you don’t need unsigned long longs. Those values will fit in an unsigned int or 
even an unsigned char.

As a result, caching has become a major aspect of almost every system. Earlier in the book we mentioned 
that slower hardware, such as disks, sometimes has its own cache memory to reduce the time taken 
to access frequently opened files. OSs can cache frequently used data, for example, files, as chunks of 
virtual address space, thus improving performance even more. This is also known as temporal locality.

Consider the following scenario: a piece of data is not found in the cache on the first try – this is 
known as a cache miss. Then it is looked up in the RAM, is found, and is loaded into the cache as one 
or multiple cache blocks or cache lines. Afterwards, if this data is requested a number of subsequent 
times and is still found in the cache, known as a cache hit, it will remain in the cache and guarantee 
faster access, or at least faster than the first cache miss. You can observe this in the following diagram:

Figure 9.2 – Representation of temporal locality on the hardware level

As we mentioned with the prefetching mechanisms earlier, it’s a known fact that having an object 
with multiple cache hits means that the data around it might also be referenced soon. This causes the 
processor to request or prefetch that additional nearby data from the RAM and load it a priori, so it 
will be there in the cache when it is eventually needed. This causes spatial locality, meaning accessing  
nearby memory and benefiting from the fact that caching is done in chunks, known as cache lines, 
thus paying for a single transfer and using several bytes of memory. The prefetching technique assumes 
that the code already has spatial locality in order to improve performance.
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Both locality principles are based on assumptions. But code branching requires good design. The 
simpler the branch tree, the simpler to predict. Again, you need to consider carefully the data structures 
and algorithms to be used. You also need to aim at contiguous memory access and reduce the code to 
simple loops and small functions; for example, switching from using linked lists to arrays or matrices. 
For small-sized objects, the std::vector container is still the optimal choice. Additionally, we 
ideally seek a data structure object that can fit into one cache line – but sometimes this is just not 
possible because of the application’s requirements.

Our process should access the data in contiguous blocks, where each one has the size of a cache line 
(typically 64 bytes but depends on the system). But if we want to do parallel evaluations, then it would 
be preferable for each CPU core (processor) to handle data in different cache lines from other cores’ 
data. If not, the cache hardware will have to move data back and forth between cores and the CPU will 
waste time on meaningless work again and the performance will worsen, instead of being improved. 
This term is known as false sharing, which we’ll now have a look at in the following section.

A glance at false sharing

As a rule, small pieces of data will be put together in a single cache line unless the programmer instructs 
otherwise, as we will see in the following examples. This is the way processors work in order to keep 
latency low – they handle one cache line for each core at a time. Even if it’s not full, the cache line’s 
size will be allocated as the smallest possible block for the CPU to handle. As mentioned earlier, if the 
data in that cache line is requested by two or more threads independently, then this will slow down 
the multi-threaded execution.

Dealing with the effects of false sharing means getting predictability. Just as code branching can be 
predicted, so can the system programmer predict if an object is of the size of a cache line, and thus 
each separate object can reside in its own memory block. In addition, all computations can happen 
in the local scope and the shared data modifications take place at the end of a given procedure. Of 
course, such activities will lead to the wasting of resources at some point, but it’s a matter of design 
and preferences. Nowadays, we can use compiler optimizations to improve this predictability and 
performance, too, but we shouldn’t always rely on this. Let’s first check the size of our cache line:

#include <iostream>
#include <new>
using std::hardware_destructive_interference_size;
int main() {
    std::cout << "L1 Cache Line size: "
        << hardware_destructive_interference_size
        << " bytes";
    return 0;
}
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The expected output is as follows:

L1 Cache Line size: 64 bytes

Now that we know how to get the cache line’s size, we are able to align our objects in such a way that 
no false sharing occurs. In Chapter 7, we used std::atomic to guarantee a single modifier to a 
shared resource, but we also emphasized that this is not the full picture. Let’s enrich the previous 
example with three atomic variables:

    cout << "L1 Cache Line size: "
         << hardware_constructive_interference_size
         << " bytes" << endl;
    atomic<uint32_t> a_var1;
    atomic<uint32_t> a_var2;
    atomic<uint32_t> a_var3;

Printing the addresses out gives the following:

       cout << "The atomic var size is: " << sizeof(a_var1)
            << " and its address are: \n"
            << &a_var1 << endl
            << &a_var2 << endl
            << &a_var3 << endl;
        ...

The output is as follows:

L1 Cache Line size: 64 bytes
The atomic var size is: 4 and the addresses are:
0x7ffeb0a11c7c
0x7ffeb0a11c78
0x7ffeb0a11c74

This means that even when we have atomic variables, they can be fitted into a single cache line 
with high, albeit system-specific, probability. So, even if they are responsible for handling different 
shared resources, the hardware threads (or cores) will not be able to write in parallel due to the  
back-and-forth activity in the cache hardware. To keep the cache in line, the CPU implements different 
cache coherency protocols, including MESI, MESIF, and MOESI. None of them allow multiple cores 
to modify one cache line in parallel, though. The cache line can only be occupied by one core. Luckily, 
C++20 provides atomic_ref<T>::required_alignment, which allows the programmer 
to align atomics as per the current cache line size, thus keeping them well apart. Let’s apply it for all 
atomics as follows:

    alignas(hardware_destructive_interference_size)
        atomic<uint32_t> a_var1;
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The output is as follows:

L1 Cache Line size: 64 bytes
The atomic var size is: 4 and the addresses are:
0x7ffc3ac0af40
0x7ffc3ac0af00
0x7ffc3ac0aec0

In the preceding snippet, you can see that the differences in the addresses are as expected and the 
variables are well aligned, which was always the system programmer’s responsibility. Now, let’s apply 
the increment() method that you might remember from Chapter 7:

void increment(std::atomic<uint32_t>& shared_res) {
    for(int I = 0; i < 100000; ++i) {shared_res++;}
}

We increment an atomic resource, and as covered in Chapter 8, we know how to measure the duration 
of a procedure. So, we can analyze the performance for the next four scenarios. One remark – if you 
feel so inclined, you could play with the compiler optimization levels to spot the difference in the 
following values, as we are not using any of the optimization flags. The full code example could be 
found at https://github.com/PacktPublishing/C-Programming-for-Linux-
Systems/tree/main/Chapter%209. Our scenarios are as follows:

•	 A single-threaded application, calling increment() 3 times, doing 300,000 increments of 
an atomic variable, which takes 2,744 microseconds

•	 Direct sharing with one atomic variable, incremented 100,000 times by each of 3 threads in 
parallel, taking 5,796 microseconds

•	 False sharing with three unaligned atomic variables, incremented 100,000 times by each of the 
3 threads in parallel, taking 3,545 microseconds

•	 No sharing with three aligned atomic variables, incremented 100,000 times by each of 3 threads 
in parallel, taking 1,044 microseconds

As we are not using a benchmarking tool, we cannot measure the number of cache misses or hits. We 
simply do the following:

    ...
    auto start = chrono::steady_clock::now();
    alignas(hardware_destructive_interference_size)
        atomic<uint32_t> a_var1 = 0;
    alignas(hardware_destructive_interference_size)
        atomic<uint32_t> a_var2 = 0;
    alignas(hardware_destructive_interference_size)
        atomic<uint32_t> a_var3 = 0;

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
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    jthread t1([&]() {increment(a_var1);});
    jthread t2([&]() {increment(a_var2);});
    jthread t3([&]() {increment(a_var3);});
    t1.join();
    t2.join();
    t3.join();
    auto end = chrono::steady_clock::now();
    ...

The no-sharing work is presented in the following diagram:

Figure 9.3 – Representation of no-sharing (correct sharing) of data on multiple cores/threads

Important note
It’s obvious that we either have to align our atomic resources before we modify them in parallel, 
or use single-threaded applications for small procedures. The time metric could differ, depending 
on the system and the compiler optimization flags. Keep in mind that these speed-ups are great 
when you get the best out of your hardware, but going into so much detail might also lead to 
complex code, harder debugging, and time wasted on maintenance. It’s a balancing act.

False sharing happens during multi-threading and can be fixed if the shared object is fitted into one 
cache line. But what happens if the object is larger than one cache line in size?
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Sharing resources larger than a cache line in C++

The analysis here is relatively simple, as it is not so dependent on the language. Large objects, representing 
large data structures, are just... large. They don’t fit into single cache lines and therefore they are not 
cache friendly by nature. Data-oriented design deals with this issue. For example, you could think 
about using smaller objects or share only small parts of them for parallel work. Additionally, it is good 
to think about optimizations in algorithms. Making them linear leads to better branch predictions. This 
means making conditional statements depend on predictable, not random, data. Complex conditional 
statements can be replaced with arithmetic solutions and templates, or chained differently, so it is 
easier for the CPU to predict which branch has a higher probability of occurring. Such operations, 
again, could lead to unreadable code and complex debugging, so proceed with them only when the 
code is not fast enough for your requirements.

As branch misprediction could be expensive and remain well hidden, another proposal is the so-called 
conditional move. It is not based on predictions, but on data. The data dependencies include both 
condition true and condition false cases. After an instruction that conditionally moves data from 
one register to another, the contents of the second depend on both their previous values and the 
values from the first register. As mentioned, well-designed branching allows better performance. But 
data dependencies require one or two CPU cycles to arrive, sometimes making them a safer bet. A 
probable trap is when the condition is such that the value taken from the memory is not assigned to 
the register – then it’s just meaningless waiting. Luckily for the system programmer, the conditional 
move instructions in the instruction sets are typically close register-wise.

Cache unfriendliness is something you must consider when using excessively complex object designs 
or design patterns that spread the data around the memory. That doesn’t mean you shouldn’t think 
about improvements. If you rely on C++, the simplest and the most useful thing to apply quickly 
is to use contiguous containers in the code, such as std::array and std::vector. Yes, the 
vector could be resized, but it’s still cache friendly, as the elements are next to each other in the 
memory. Of course, if you have to reallocate the vector due to constant resizing, then probably it’s 
not the data structure you need. You could consider the std::deque container, which is efficient 
for modifications in the middle of the collection, or std::list as an alternative, which is a linked 
list and is not cache friendly at all.

Important note
Depending on the system, many reallocations (construction and destruction) of contiguous 
memory blocks could cause memory fragmentation. This can happen due to software algorithms 
for memory management, language standards, OSs, drivers, devices, and so on. It is hard to 
predict it until it happens. It might take a good portion of non-stop execution time for the 
memory allocations to start failing. There could be enough free space in the sum of the free 
memory blocks in the RAM, but not a single block big enough to hold the currently reallocated 
or created contiguous block. Excessive fragmentation could lead to poor performance and 
even denial of service.
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A final remark on the topic is that there are many articles discussing optimal ways of using C++’s 
algorithms and containers efficiently. It deserves a book on its own and most of the time is very CPU 
specific – or at least when you get to the absolute performance. For example, the conditional moves 
lead directly to assembly code, which we don’t have the opportunity to explore here. That said, the 
variety of solutions for different practical problems is enormous when it comes to algorithms and 
data structures.

Revisiting shared resources through the C++ memory 
model via spinlock implementation
We learned about atomic operations back in Chapter 7. In this chapter, you learned that the placement 
of atomic variables in the cache is crucial as well. Originally, atomics and locks were introduced because 
of correctness when multiple threads want to enter the same critical section. Now, our investigation 
will continue a bit deeper. There’s one last piece of the puzzle of atomic operations. Examine the 
following snippet:

Thread 1: shrd_res++; T1: load value
                      T1: add 1
Thread 2: shrd_res++; T2: load value
                      T2: add 1
                      T2: store value
                      T1: store value

This was an example of a non-atomic operation. Even when we make it atomic, we still don’t have 
a word about the order of the instructions. Until now, we used the synchronization primitives to 
instruct the CPU about which section of instructions has to be taken as a unitary context. What we 
need now is to instruct the processor about the order of those instructions. We do this through C++’s 
memory_order, which is a part of the C++ standard memory model.

Introducing the memory_order type in C++

With the memory_order type, we specify how atomic and non-atomic memory accesses are ordered 
around an atomic operation. The atomic realization of the snippet from the preceding section and the 
example using read-write locks earlier in the chapter could both suffer from the same issue: two atomic 
operations are not atomic as a whole. The order of instructions inside the atomic scope will be kept, 
but not around it. This is usually done after optimization techniques in the CPU and the compiler. So, 
if there are many reader threads, the order in which we (and the threads) expect to observe changes 
could vary. Such an effect could appear even during single-threaded execution as the compiler might 
re-arrange instructions as allowed by the memory model.
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Note
We encourage you to check out the full information on memory_order here: https://
en.cppreference.com/w/cpp/atomic/memory_order.

An important remark is that the default behavior of all atomic operations in C++ applies sequentially 
consistent ordering. The defined memory orders in C++20 are as follows:

•	 Relaxed ordering, tagged like so:

memory_order_relaxed = memory_order::relaxed;

This ordering is the bare minimum. It is the cheapest option and provides no guarantees, except 
of the current operation’s atomicity. One example of this in action is the incrementation of the 
shared_ptr reference counter, as it needs to be atomic, but no ordering is required.

•	 Release-acquire ordering, tagged as follows:

memory_order_acquire = memory_order::acquire;
memory_order_release = memory_order::release;
memory_order_acq_rel = memory_order::acq_rel;

Reads and writes are prevented from reordering right after an atomic region when the release 
operation is in effect. The acquire operation is similar, but reordering is prohibited before the 
atomic region. The third model, acq_rel, is a combination of both. This model could really 
help in the creation of read-write locks, except there’s no locking going on. The decrementing of 
the shared_ptr reference count is done through this technique as it needs to be synchronized 
with the destructor.

•	 Release-consume ordering, tagged as follows:

memory_order_consume = memory_order::consume;

The consume operation’s requirements are still being revised to this day. It is designed to work 
as the acquire operation does, but only for specific data. That way, the compiler is more flexible 
in optimizing the code than the acquire operation. Obviously, getting the data dependencies 
right makes the code more complex, therefore this model is not widely used. You can see it 
when accessing rarely written concurrent data structures – configurations and settings, security 
policies, firewall rules, or publish-subscribe applications with pointer-mediated publication; 
the producer publishes a pointer through which the consumer can access information.
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•	 Sequentially consistent ordering, tagged as follows:

memory_order_seq_cst = memory_order::seq_cst;

This is the exact opposite of the relaxed order. All operations in and around the atomic region 
follow a strict order. Neither instruction can cross the barrier imposed by the atomic operation. 
It is considered the most expensive model as all optimization opportunities are lost. Sequentially 
consistent ordering is helpful for multiple producer-multiple consumer applications, where all 
consumers must observe the actions of all producers occurring in an exact order.

One famous example directly benefiting from the memory order is the spinlock mechanism. We will 
proceed to examine this in the next section.

Designing spinlocks for multiprocessor systems in C++

Operating systems often use this technique as it’s very efficient for short-period operations, including 
the ability to escape rescheduling and context switching. But locks held for longer periods will be at risk 
of being interrupted by the OS scheduler. The spinlock means that a given thread will either acquire a 
lock or will wait spinning (in a loop) – checking the lock’s availability. We discussed a similar example 
of busy waiting earlier in the chapter when we presented cooperative cancellation. The risk here is that 
keeping the lock acquired for longer periods will put the system into a livelock state, as described in 
Chapter 2. The thread holding the lock will not progress further by releasing it, and the other threads 
will remain spinning while trying to acquire the lock. C++ is well suited for the implementation of the 
spinlock as atomic operations can be configured in detail. In low-level programming, this approach 
is also known as test-and-set. Here’s an example:

struct SpinLock {
    atomic_bool state = false;
    void lock() {
        while (state.exchange(true,
                              std::memory_order_acquire){
            while (state.load(std::memory_order_relaxed))
           // Consider this_thread::yield()
                // for excessive iterations, which
                // go over a given threshold.
}
    void unlock() noexcept {
        state.store(false, std::memory_order_release); };

You’re probably wondering why we aren’t using the already-known synchronization techniques. Well, 
keep in mind that all memory order settings here cost only one CPU instruction. They are fast and 
simple, both software- and hardware-wise. You should limit your use of them to very short periods 
of time, though, since the CPU is prevented from doing a useful job for another process.
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An atomic Boolean is used to mark whether the state of SpinLock is locked or unlocked. The 
unlock() method is easy – when the critical section is released, the false value is set (store() 
is atomic) to the state member through the release order. All following read/write operations have 
to be ordered in an atomic manner. The lock() method firstly runs a loop, trying to access the 
critical section. The exchange() method will set state to true and will return the previous 
value, false, thus interrupting the loop. Logically, this is very similar to the semaphore P(S) and 
V(S) functions. The inner loop will execute the busy wait scenario without order limitations and 
without producing cache misses.

Important note
The store(), load(), and exchange() operations have memory_order requirements 
and a list of supported orders. Using additional and unexpected orders leads to undefined 
behavior and keeps the CPU busy without doing useful work.

An advanced version of the spinlock is the ticket lock algorithm. In the same fashion as with queues, 
tickets are provided to the threads in a FIFO manner. That way, the order in which they enter a 
critical section is managed fairly. In contrast with spinlocks, starvation is avoided here. However, 
this mechanism does not scale well. First of all, there’s a greater number of instructions to read, test, 
and acquire the lock, as there are more instructions for managing the order. Secondly, as soon as the 
critical section is free for access, all threads must have their context loaded into the cache to determine 
whether they are allowed to acquire the lock and enter the critical section.

C++ has an advantage here thanks to its low latency. The full example is available at https://
github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/
main/Chapter%209.

First, we implement the TicketLock mechanism, providing the necessary lock() and unlock() 
methods. We use two helper member variables, serving and next. As you see, they are aligned 
to be in separate cache lines to avoid false sharing. Both the lock() and unlock() methods 
are implemented as in the SpinLock example. Additionally, an atomic increment is done through 
fetch_add(), allowing the lock to generate tickets. No read/write operations happen around it, 
so it is executed in a relaxed order. Instead of just setting the variable to false as with SpinLock, 
the unlock() method loads a ticket number value, again in a relaxed manner, and stores it as the 
currently served thread:

struct TicketLock {
    alignas(hardware_destructive_interference_size)
        atomic_size_t serving;
    alignas(hardware_destructive_interference_size)
        atomic_size_t next;

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%209
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The methods for locking and unlocking of the TicketLock algorithm follow:

    void lock() {
        const auto ticket = next.fetch_add(1,
                                memory_order_relaxed);
        while (serving.load(memory_order_acquire) !=
               ticket);
    }
    void unlock() {
        serving.fetch_add(1, memory_order_release);
    }
};

Now, a global spinlock object of type TicketLock is created. We also create a vector that plays 
the role of a shared resource. The producer() and consumer() routines are as expected – the 
first will create data and the latter will consume it, including clearing the shared resource. As both 
operations will be carried out in parallel, the order of their execution is random. If you want instead 
to create a ping-pong-like behavior for this, conditional variables or semaphores could be used as 
signaling mechanisms. The current implementation is limited just to the purposes of the ticket lock:

TicketLock spinlock = {0};
vector<string> shared_res {};
void producer() {
    for(int i = 0; i < 100; i ++) {
        osyncstream{cout} << "Producing: " << endl;
        spinlock.lock();
        shared_res.emplace_back("test1");
        shared_res.emplace_back("test2");
        for (const auto& el : shared_res)
            osyncstream{cout} << "p:" << el << endl;
        spinlock.unlock();
        this_thread::sleep_for(100ms);
    }
}

And the consumer is similar to what you’ve already learned:

void consumer() {
    for (int i = 0; i < 100; i ++) {
         this_thread::sleep_for(100ms);
         osyncstream{cout} << "Consuming: " << endl;
         spinlock.lock();
         for (const auto& el : shared_res)
             osyncstream{cout} << "c:" << el << endl;
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Remove the contents of the vector:

         shared_res.clear();
         spinlock.unlock();
         if (shared_res.empty())
             osyncstream{cout} << "Consumed" << endl;
     }
}

The output is as follows:

Producing:
p:test1
p:test2
Consuming:
c:test1
c:test2
...

The output shows that the production and the consumption routines are treated as a whole, although 
they are not called an equal number of times, which is expected. As mentioned previously, instead 
of pausing the threads for 100ms, you could also modify the code by adding a condition variable:

void producer() {
    for(int i = 0; i < 100; i ++) {
        cout <<"Producing:" << endl;
        unique_lock<mutex> mtx(cv_mutex);
        cond_var.wait(mtx, []{ return work_done ==
                                      !work_done; });

Proceed with the expected critical section:

        spinlock.lock();
        shared_res.emplace_back"test1");
        shared_res.emplace_back"test2");
        for (const auto& el : shared_res)
            cout <<"p" << el << endl;
        spinlock.unlock();
        work_done = !work_done;
    }
}
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With all of these techniques combined – memory robustness, synchronization primitives, cache 
friendliness, and instruction ordering awareness – you have the instruments to really sharpen your 
code’s performance and tweak it to get the best performance on your specific system. We want to take 
this opportunity to remind you that such detailed optimizations could lead to unreadable code and 
hard debugging, so use them only when required.

Summary
In this chapter, we’ve gathered together the entire set of instruments required for optimal code 
performance with C++. You learned techniques on many different system and software levels, so it’s 
understandable if you want to take a breather now. It is true that it would be good to spend more 
time on some of what we covered, for example, branch predictions and cache friendliness, or to 
implement more algorithms through condition variables and memory order. We strongly encourage 
you to use this chapter as a step in the direction of system improvements and more efficient work.

The next chapter is dedicated to one more significant improvement in C++’s features – coroutines. 
You will see that they are much lighter and, for some of the mechanisms discussed here, such as event 
waiting, they are much more preferable.
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We are almost at the end of our book. The final chapter is dedicated to a feature that is very useful for 
the purposes of system programming but is fairly new to the C++ standard. Coroutine objects found 
their application fast, becoming first-class state machine objects. Their power is in hiding logic behind 
the coroutine frame. Be advised that this is an advanced topic, and the coroutine interface of C++ is 
neither simple nor comfortable to use. It is well thought out but definitely not the most user-friendly 
in comparison to other programming languages.

In this chapter, you will learn the basics of using this facility. If you are new to it, then you’ll spend 
some time understanding its requirements. You’ll have an easier time with coroutines if you have 
previous experience with them in other programming languages. Still, we will use this chapter to 
propose their application in system programming.

We will present two practical solutions of previous examples related to networking and shared 
memory. You will immediately see the predictability and the clear execution path of the routines. We 
hope that you are impressed by the concurrent manner of execution without the use of synchronization 
primitives. Direct reuse in a real-world environment is possible; just make sure you have the required 
compilers, as the feature is still new. Without further ado, let’s get to our final topic.

In this chapter, we are going to cover the following main topics:

•	 Introducing coroutines

•	 Network programming and coroutines in C++

•	 Revisiting the shared memory problem through coroutines in C++

•	 Final thoughts on coroutines and their implementations in C++
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Technical requirements
In order to run the code examples, you must prepare the following:

•	 A Linux-based system capable of compiling and executing C++20 (for example, Linux Mint 21)

•	 The GCC12.2 compiler – https://gcc.gnu.org/git/gcc.git gcc-source:

	� With the -fcoroutines, -std=c++2a, -lpthread, and -lrt flags

•	 For some of the examples, you can alternatively use https://godbolt.org/.

•	 All code examples in this chapter are available for download from https://github.
com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/
Chapter%2010

Introducing coroutines
At the end of your journey, we’d like to remind you about the knowledge you received in Chapter 1 and 
Chapter 2 about processes and threads. If you remember well, a process is simply a running instance of 
a program. It has its respective address space, which is not shared with others, except through shared 
memory. Threads reside in a process, and they cannot exist outside of them, although both processes 
and threads are treated as tasks in Linux. They are scheduled in the same manner and have the same 
controlling structures on the kernel level. Still, threads are considered lightweight because the bigger 
overhead for the initial load of a program is taken by the parent process.

But this is not the full picture. There are fibers and coroutines as well. If the processes and threads 
are truly concurrent and working in parallel over shared resources, fibers are just like threads but 
are not concurrency-compliant. While threads often depend on preemptive time-slicing because of 
the task scheduler, fibers use cooperative multitasking. That is, they yield themselves to run another 
fiber while executing. They are also known as stackful coroutines. Meanwhile, coroutines in C++ are 
known as stackless coroutines and are not OS-managed. In other words, stackful coroutines could be 
suspended in a nested stack frame, while stackless coroutines can only be nested by the top-level routine.

Both facilities are considered implicitly synchronized, so all of the synchronization primitives and the 
atomic constructs from the previous chapters are needless. But you could picture the early example 
with reading from the file system – where the OS waits for the file to be opened, and the process-
caller is signaled to continue its work. Imagine that the fibers and the coroutines are useful exactly for 
that reactive access, which does not need additional CPU processing. Actually, the networking and 
the file systems are the areas where the fibers and coroutines are considered most valuable. When a 
request is made, a fiber gives control to the main thread, and when the I/O operation is finished, the 
fiber continues where it yielded.

The coroutines technique is rather old. C++ introduced it recently, and it is very useful for network 
programming, I/O operations, event management, and so on. Coroutines are also considered 



https://gcc.gnu.org/git/gcc.gitgcc-source
https://godbolt.org/
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%2010
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%2010
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%2010
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executions with the ability to pause. Still, they provide multitasking in a cooperative fashion and do 
not work in parallel. This means that tasks cannot be executed simultaneously. At the same time, they 
are real-timw-friendly, allowing switching context between coroutines to be fast, and not requiring 
system calls. In fact, they are hard-RTOS-friendly because the order of execution and scheduling is 
controlled by the system programmer, as you will see later in the chapter. The coroutines in C++ are 
very useful for implementing task graphs and state machines, too.

Some of you are probably wondering what the difference between coroutines and standard single-
threaded functional programming is. Well, the latter is considered a synchronous approach, while the 
former is an asynchronous approach with synchronous readability. But coroutines are really about 
reducing the needless (busy) waiting and doing something useful while a required resource or a call is 
being prepared. The following diagram is simple but reminds us of the respective differences between 
sync and async executions.

Figure 10.1 – Synchronous versus asynchronous application execution

A regular single-threaded execution is also limited in some ways. First of all, calling, suspending, or 
resuming a function is not traceable inside a program, or at least not through a reference. In other 
words, the control flow happens in the background and is implicit. In addition, the control flow has a 
strict direction – a function could either return to its caller or proceed inward toward calling another 
function. Each function call creates a new record on the stack and happens immediately, and once 
invoked, a method cannot be delayed. As soon as that function returns, its portion of the stack is 
cleared and cannot be restored. In other words, the activation is not traceable.
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On the other hand, coroutines have their own lifetime. A coroutine is an object and can be referenced 
explicitly. If the coroutine should outlive its caller or should be transferred to another, then it could 
be stored in the heap. At the same time, control could be transferred to other coroutines in both 
directions – up or down. Coroutines add to the meanings of function call and function type. The int 
func(int arg) prototype would mean a function with the name func, receiving an argument, 
arg, of an integer type, returning an integer. A similar coroutine may never return to its caller and the 
value that the caller expects may be produced by another coroutine. Let see how this happens in C++.

The coroutine facility in C++

Initially, you can think about them like smart pointers. You already know they are wrappers to pointers 
and provide additional control for memory management. Coroutines work in a similar manner, but 
the code around them is more complex. This time, we need a wrapper of a function prototype. This 
wrapper is going to handle the data flow and the scheduling control. The wrapper itself is the coroutine. 
We define a Task exCoroutine() task (a task is different from the Linux definition of task) – it 
is interpreted as a coroutine if it uses one of the following three operators: co_await, co_yield, 
or co_return. Here’s an example:

#include <coroutine>
...
Task exCoroutine() {
    co_return;
}
int main() { Task async_task = exCoroutine(); }

The wrapper type is currently Task. It is known on the caller level. The coroutine object is identified 
as the exCoroutine() function through the co_return operator. It’s the job of the system 
programmer to create the Task class. It is not a part of the Standard library. What’s the Task class then?

struct Task {
    struct promise_type {
        Task get_return_object()
            { return {}; }
        std::suspend_never initial_suspend()
            { return {}; }
        std::suspend_never final_suspend() noexcept
            { return {}; }
        void return_void() {}
        void unhandled_exception() {}
    };
};
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Important note
This is a very generic pattern that is used in almost every coroutine example. You should initially 
refer to it at https://en.cppreference.com/w/cpp/language/coroutines.

We call a task a coroutine that executes a given routine but doesn’t return a value. In addition, the 
coroutine is associated with a promise object – we spoke about that in Chapter 6. The promise 
object is manipulated on a coroutine level. The coroutine returns the operation result or raises an 
exception through this object. This facility also requires the coroutine frame (or coroutine state), which 
is an internal object on the heap, containing the promise. It also consists of the passed parameters 
– copied by value, a representation of the current invocation reference; the suspension point, so that 
the coroutine is resumed accordingly; and the local variables outside the scope of that point. So, what 
does our code do? Well, from a user standpoint, it does nothing, but there’s a lot happening in the 
background. Let’s observe the following diagram:

Figure 10.2 – Simple demonstration of a coroutine startup

Remember, by-value parameters are copied or moved in the scope of the coroutine, and the by-reference 
parameters remain as references. This means that the programmer should consider their lifetime 
in the task-caller, so no dangling pointers appear. Afterward, the promise is constructed and  
get_return_object() is called. The result will be returned to the task-caller when the coroutine 
first suspends.

Figure 10.2 demonstrates a case where the promise returns suspend_always and we have lazily 
started a coroutine. The initial_suspend() operation resumes and, without the knowledge 
or the context of how to continue, the coroutine will never be resumed and will leak. In order to 
handle this, we need... a handle object. You can think of the handle object as a view. Similar to 
the relationships between the string_view object and a string object, or a vector object and 
a range object with a range view object, the handle object is used to provide indirect access 
to *this. Through the handle object, we can call resume() to continue the coroutine’s work. It 
must be suspended first, or the behavior will be undefined:

https://en.cppreference.com/w/cpp/language/coroutines
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Figure 10.3 – Graph demonstrating a coroutine’s creation and resumption

The initial_suspend() operation is called and the result is handled through co_await. This 
is done through the compiler generating additional code in the background around the suspend_
never awaitable – the coroutine is not created in a lazy manner as with suspend_always, but is 
immediately started. Both are defined in the C++ Standard Library.

The current coroutine does a co_return keyword (in exCoroutine()). But that way, the 
coroutine body is exited. If we want to use it to produce constantly new or the next generated values, 
then we require the co_yield operator. We call such a coroutine a generator. We could express 
the co_yield operator as co_await promise.yield_value(<some expression>). 
Otherwise, if it simply calls co_await, it is a task, as mentioned earlier. Now, if we look at Figure 10.3 
again, using the co_yield operator will redirect the arrow from thread-caller in control to coroutine 
execution, thus providing the opportunity to coroutine to continue work. In other words, the  
co_return keyword will lead to execution completion, while the co_yield keyword will just 
suspend the coroutine temporarily.
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Let’s go a step back and take a look at awaitables and the co_await call. Their work is presented 
in the following diagram:

Figure 10.4 – Graph representing generated invocations after a co_await call

Now, a private variable of the Handle type is used to call the true resume() function. Let’s check 
the code:

using namespace std;
struct Task {
    struct promise_type {
        using Handle = coroutine_handle<promise_type>;
        Task get_return_object() {
            return Task { Handle::from_promise(*this) };
        }
...
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We will use the explicit specifier. In C++ 20, it allows you to be more restrictive on constructor 
calls. That is, it cannot be used for copy tnitialization or implicit conversions. Additionally, we keep 
our handle object private. Now, let’s see how this might come in handy (markers {1} and {2}, while 
a wrapper is provided to the caller – markers {1} and {3}):

    explicit Task (promise_type::Handle crtHdnl) :
                                 crtHandle(crtHdnl) {}
    void resume() { crtHandle.resume(); } // {1}

private:
        promise_type::Handle crtHandle;   // {2}
...
    auto async_task = exCoroutine();
    async_task.resume();  // {3}

Let’s use this code structure to build a fully functional example. We will rename the Task struct  
Generator, and implement a coroutine with a generator functionality. The full code can be found 
here: https://github.com/PacktPublishing/C-Programming-for-Linux-
Systems/tree/main/Chapter%2010.

We will increment a variable N number of times through the coroutine. That’s why it needs to be able 
to yield, and we add the following to Generator:

...
   suspend_always yield_value(auto value) {
            currValue = value;
            return {};
        }
...
        uint32_t currValue;
    };

Then, getting the next element happens as follows:

    int next() {
        crtHndl.resume();
        return crtHndl.promise().currValue; } ...

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%2010
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%2010
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Proceeding with the coroutine body and its creation in the main thread. The increment will happen 
100,000 times. This example allows the programmer to generate data lazily and not use a big portion 
of the RAM. At the same time, no separate thread is used, so the execution remains in the user space 
without extensive context switching:

Generator exCoroutine() {
    auto idx = 0;
    for (;;) {
        co_yield idx++;
    }
}
int main() {
    auto crt = exCoroutine();
    for (auto idx = 1; (idx = crt.next()) <= 100000; )
        cout << idx << " ";
    cout << endl;
    return 0;
}

The shortened version of the output is as follows:

1 2 3 4 ... 100000

Unfortunately, you probably already understand why it is not that trivial to create a simple coroutine 
application in C++. As a new feature, this facility continues to improve and there are new interfaces 
expected in upcoming C++ versions, which should simplify coroutine usage. But this shouldn’t discourage 
you from continuing to use them. This example could be easily extended to other functionalities, and 
you could build up your knowledge step by step. In the next sections, we will do exactly this and get 
the discussion back in the area of system programming.

Network programming and coroutines in C++
In Chapter 7, you learned about the TCP and UDP communication protocols. We discussed their 
usefulness in network data transfer, but coroutines make them even more powerful. As mentioned, 
the code will behave in an asynchronous way, but we have control over the scheduling. Coroutines 
will be more efficient in context switching as they are executed on the user level. We’ll continue with 
the Generator definition to match the type of the coroutine, as discussed earlier. Traditionally, 
that object is made move-only – this allows us to restrict the usage of the coroutine wrapper, but in 
general cases, coroutine objects are non-copyable and non-moveable, because the coroutine frame 
is a part of them, and some local variables can be references or pointers to other local variables. Thus, 
let’s extend the structure accordingly:
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Important note
This, again, is a very generic pattern that is used in almost every coroutine example. You 
should initially refer to it at https://en.cppreference.com/w/cpp/language/
coroutines.

template<typename T> struct Generator {
    Generator(const Generator&)              = delete;
    Generator& operator = (const Generator&) = delete;
    Generator(Generator&& other) noexcept :
        c_routine(other.c_routine) {
        other.c_routine = {};
    }

You’ll notice that the struct object is defined as a template in order to be generic. We overload 
the () operator in order to be able to appropriately give the control back to the caller:

    Generator& operator = (Generator&& other) noexcept {
        if (this == &other)
            return *this;
        if (c_routine)
            c_routine.destroy();
        c_routine = other.c_routine;
        other.c_routine = {};
        return *this;
    }
    optional<T> operator()() {
        c_routine.resume();
        if (c_routine.done()) {
            return nullopt;
        }
        return c_routine.promise().currValue;
    }

We also add a behavior during an exception – the application will be terminated:

        void unhandled_exception() {
            exit(EXIT_FAILURE);
   }

In the main thread, we create and join two threads – a server and a client. Each of them will execute 
the coroutines for the respective domains. We provide a UDP example for shorter code, but TCP is 
similar as an approach, and you could take the pattern from Chapter 7. Initially, we create the socket 
and set it up. Afterward, we proceed with its binding and actual coroutine construction of the sender. 

https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/language/coroutines
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Time after time, the result will be printed out. Currently, it will be the number of bytes sent through 
the UDP socket (marker {9} in the following code):

   auto sockfd = 0;
    if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
        const auto ecode{ make_error_code(errc{errno}) };
        cerr << "Error opening shm region";
        system_error exception{ ecode };
        throw exception;
    }
    auto server = jthread([&sockfd] {
        struct sockaddr_in servaddr = { 0 };
        servaddr.sin_family = AF_INET;
        servaddr.sin_addr.s_addr = INADDR_ANY;
        servaddr.sin_port = htons(PORT);
        if (bind(sockfd,
            (const struct sockaddr*)&servaddr,
            sizeof(struct sockaddr_in)) < 0) {
            perror("Bind failed");
            exit(EXIT_FAILURE);
        }
        cout << "\nsend_to():\n";
        string_view message{ "This is a test!" };
        auto sender = send_to(sockfd, message,
           servaddr);
                                                   // {9}

Inside the coroutine function, we invoke the sendto() method. We use a string_view object, the 
same way we did in Chapter 3 – the reasoning is primarily the safety of the code and the compactness 
of the data and its size. At the end of the loop, we use co_yield value, thus providing the number 
of bytes sent to the main thread. The endless loop allows the coroutine to run until truly canceled by 
outer logic – in this, it’s called 10 times, because of the for loop in the main thread (marker {10} in 
the following code):

    for (int i = 1; i <= 10; i++) {
            auto sentData = sender();
            cout << i << " Bytes sent: "
                 << *sentData << endl;     // {10}
        }
    });
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The client thread is implemented in a similar fashion:

    auto client = jthread([&sockfd] {
        cout << "\nrecv_from():\n" << endl;
        struct sockaddr_in clntaddr = { 0 };
        auto receiver = recv_from(sockfd, clntaddr);
        for (auto i = 1; i <= 10; i++) {
            auto recvData = receiver();
            cout << i << " Message received: "
                 << *recvData << endl;   // {11}
        }
    });
    server.join(); client.join();
    close(sockfd); return 0;
}

The server-side coroutine has the following body:

Generator<size_t> send_to(int sockfd,
                          string_view buffer,
                          auto servaddr) noexcept {
    for (;;) {
        auto value = sendto(sockfd,
                            buffer.data(),
                            buffer.size(),
                            MSG_DONTWAIT,
                            (const struct sockaddr*)
                                &servaddr,
                            sizeof(servaddr));
        co_yield value;
    }
}

The client-side coroutines are implemented in a similar fashion:

Generator<string> recv_from(int sockfd,
                                 auto clntaddr,
                                 size_t buf_size =
                                       BUF_SIZE) noexcept {
    socklen_t len = sizeof(struct sockaddr_in);
    array<char, BUF_SIZE> tmp_buf = {};
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The coroutine function calls the recvfrom() system call. At the end, instead of the bytes received, 
the message coming from the socket is stored in the currValue member variable. It’s then printed 
out in the main thread. We also use the MSG_DONTWAIT flag. The respective output will be printed 
out in different ways every time as the code is asynchronous. The last part is as expected:

    for (;;) {
         recvfrom(sockfd,
                  tmp_buf.data(),
                  tmp_buf.size(),
                  MSG_DONTWAIT,
                  (struct sockaddr*)&clntaddr,
                  &len);
         co_yield tmp_buf.data();
    }

The merging or misplacing of text is to be expected, but it proves the useability of coroutines. The 
shortened version of the output is the following:

send_to():
1 Bytes sent: 15
...
10 Bytes sent: 15
recv_from():
1 Message received: This is a test!
...
10 Message received: This is a test!

The full example can be found at https://github.com/PacktPublishing/C-Programming-
for-Linux-Systems/tree/main/Chapter%2010.

In the previous chapter, we also had the issue of synchronizing parallel threads, but the code was not 
truly parallel every time. For example, waiting for an event such as “the resource is accessible” is a 
matter of concurrency, not parallel execution. That said, coroutines are a powerful tool in the shared 
memory problem, too – let’s check it out in the next section.

Revisiting the shared memory problem through 
coroutines in C++
One of the issues we had with condition variables was synchronization during process startup. In 
other words, for the producer-consumer example, we didn’t know which threads were going to be 
first. We synchronized the code through a condition variable – its mutex, together with a predicate in 
order to handle the correct sequence of events. Otherwise, we would’ve risked losing information or 
ending in a deadlock. For a good portion of this book’s example preparations, we got to this situation, 
which made the writing experience even better. But coroutines provide another way of doing it, which 
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could be more efficient at times and simpler to use (after you get used to the interface of coroutines 
as it is not the easiest to grasp).

The next example is motivated by the awaitable-awaiter pattern. It is similar to the condition variable, 
but it doesn’t use such synchronization primitives. Still, the notification signaling is dependent on an 
atomic variable. We’ll get back to the Task coroutine. It will used for handling the receiver end. The full 
example can be found here: https://github.com/PacktPublishing/C-Programming-
for-Linux-Systems/tree/main/Chapter%2010.

Important note
The example is inspired by https://www.modernescpp.com/index.php/c-20-
thread-synchronization-with-coroutines/.

We reuse the code from the shared memory example from Chapter 9:

template<typename T, typename N>
Task receiver(Event& event, int fd, N size) {
    co_await event;
    ftruncate(fd, size);

We align the shared memory and set its size first, then we continue mapping the pointer to it:

    if (const auto ptr = mmap(0, size,
                           PROT_RW, MAP_SHARED,
                           fd, 0); ptr != MAP_FAILED) {
        auto* obj = static_cast<T*>(ptr);
        auto del = mmap_deallocator<T>(size);
        auto res =
            unique_ptr<T, mmap_deallocator<T>>(obj, del);
        if (res != nullptr)
            cout << "Receiver: " << *res << endl;
    }
    else {
        cerr << "Error mapping shm region";
    } }

It is really important that the address of res is accessible for dereferencing inside the coroutine. 
Otherwise, the code will crash with Segmentation fault, which is preferable to a dangling 
pointer. Another remark is that different compilers (or environments) will give you different behavior 

https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%2010
https://github.com/PacktPublishing/C-Programming-for-Linux-Systems/tree/main/Chapter%2010
https://www.modernescpp.com/index.php/c-20-thread-synchronization-with-coroutines/
https://www.modernescpp.com/index.php/c-20-thread-synchronization-with-coroutines/
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for this code. Before we get to the Event struct, let’s see what the sender does – again, we step on 
our previous code:

template<typename T, typename N>
void Event::notify(T buffer, int fd, N size) noexcept {
    notified = false;
    auto* waiter =
        static_cast<Awaiter*>(suspended.load());
    if (waiter != nullptr) {
        ftruncate(fd, size);

Again, we make sure the shared memory is of the correct size and we map the pointer to it:

        if (const auto ptr = mmap(0, size,
                                  PROT_RW, MAP_SHARED,
                                  fd, 0);
                              ptr != MAP_FAILED) {
            auto* obj = new (ptr) T(buffer);
            auto del = mmap_deallocator<T>(size);
            auto res =
                unique_ptr<T, mmap_deallocator<T>>
                                                (obj, del);
        }
        else {
            cerr << "Error mapping shm region";
        }
        waiter->coroutineHandle.resume();
    }
}

Initially, the notification flag is set to false, meaning that the coroutine will not behave as a regular 
function but is going to be suspended. Then, the waiter object is loaded, which is nullptr, because 
it’s not previously set. Its respective resume() operation is not called. The subsequentially performed 
await_suspend() function gets the coroutine handle and stores it, so it will be called later, when 
the coroutine is resumed. Most importantly, the waiter state is stored in the suspended member 
variable. Later, notify() is triggered and it’s executed fully:

bool
Event::Awaiter::await_suspend(coroutine_handle<> handle)
  noexcept {
    coroutineHandle = handle;
    if (event.notified) return false;
    event.suspended.store(this);
    return true;
}
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In the main thread, an Event object is required to synchronize the workflow. A shared memory 
region is defined as well. If shm_open() is called inside each coroutine, it will not really be shared 
virtual memory, as the file descriptor will access private regions for each of the coroutines. Thus, we 
will end up with Segmentation fault. There are two threads, representing the sender and the 
receiver ends. The aforementioned coroutines are called respectively after the threads are joined:

    Event event{};
    int fd = shm_open(SHM_ID, O_CREAT | O_RDWR, 0644);
    auto senderT = jthread([&event, &fd]{
         event.notify<const char*, size_t>(message.data(),
                                           fd,
                                           message.size());
    });

The receiver’s code is similar, but the event object is passed as an argument:

    auto receiverT = jthread([&event, &fd]{
         receiver<char*, size_t>(ref(event),
                                 fd, (message.size())); });

The output is as follows:

This is a testing message!

This example gives you the flexibility to manage your shared resources in a concurrent manner. The 
notification mechanism of awaiter-awaitable will do the job without the need for synchronization 
primitives. We encourage you to try it out yourself. In the meantime, we’ll proceed with some final 
notes on coroutines usage in system programming.

Final thoughts on coroutines and their implementations 
in C++
The examples earlier were practical, although not so simple. They were useful in understanding the 
sequence that a coroutine’s execution might take. It is good to visualize the state graph of coroutines, 
although we still believe it would be confusing for inexperienced developers.

As presented earlier, Figure 10.2, Figure 10.3, and Figure 10.4 pretty much cover what we’ve already 
explained through the code examples. It is useful to understand how much additional logic is 
generated around the coroutine and its members. Most of it happens in the background, and the 
system programmer only arranges the scheduling. In this chapter’s examples, we did this through 
the promise object and awaitables. The fact that the aforementioned figures partially represent a 
coroutine’s execution as a finite state machine should hint to you that this is another application where 
coroutines are useful. They transform state machines into first-class objects. Once the coroutine frame 



Summary 253

is defined, much of the logic remains there and it’s hidden from callers. This provides the opportunity 
for system programmers to put aside the concurrent logic for a moment and just focus on calling the 
coroutines through short code snippets, as we did. The system behavior code and task scheduling will 
be simpler and more obvious. Thus, much of the power of managing algorithms, parsers, data structure 
traversals, polling, and so on could be interpreted by this technique. Unfortunately, we cannot cover 
everything here, but we believe it’s worthwhile checking these things out.

Last but not least, we’d like to emphasize that coroutines are fairly new to the language. As the coroutine 
interface in C++ is still lacking comfort and simplicity, you can find many custom-made coroutine 
libraries on the internet. We advise you to rely only on the trustworthy ones or wait for the next 
Standard features of this facility. It makes more sense to apply those than to implement them anew 
yourself. As you can see, it’s quite a complex concept, and there’s a lot of research being done on the 
matter. For curious readers, we encourage you to spend some time learning about the evolution of 
coroutines in C++, especially in recent years. There are three techniques discussed in the C++ Standard 
– Coroutines TS, Core Coroutines, and Resumable expressions. Although just one is currently used 
in the Standard, the three of them deserve attention. A great summary and analysis has been done by 
Geoffrey Romer, Gor Nishanov, Lewis Baker, and Mihail Mihailov here: https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2019/p1493r0.pdf.

Feel free to check it out. Many of the clarifications we gave in this chapter are presented in the document 
as a great visual comparison of the regular functions and coroutines. Meanwhile, we continue to 
the finish.

Summary
With this, we’ve covered all the topics of this book. With the upcoming improvements of C++23, 
coroutines and their evolution will be analyzed more and more, especially in the system programming 
domain – and applied there, of course. Although complex to understand at first, coroutines allow 
you to continue sharpening the usage of C++ and give you one more instrument to enhance code.

In this chapter, you learned how to apply them in your concurrent applications, but their usefulness is 
far greater. We are excited about what comes next. We expect the modules language feature, which 
we didn’t cover in this book – intentionally – to be fully covered by the compilers and be broadly 
applied. Another interesting feature is std::generator – a view for the synchronous creation of 
coroutines in C++23. Stackful coroutines in C++26 are going to be a splendid system programming 
technique. In that version, you will also be able to obtain and visualize std::stacktrace from 
a thrown exception, which will help you in code debugging. And for easier printing, you’ll be able to 
use std::print as well. The monadic interface of std::expected will allow you to store either 
of two values. In addition to all this, files will be loaded at compile time as arrays through #embed.

We’d like to use this opportunity to express our gratitude to you – the reader! We hope you found this 
book useful and will apply parts of it in your daily job. We also hope you enjoyed the experience the 
way we enjoyed writing the book. It was a tremendous journey for us, and we’d be glad to share future 
journeys with you. With this, we wish you good fortune in all your projects!

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1493r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1493r0.pdf
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