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“The best way to plan for downtown is to see
how people use it today; to look for its
strengths and to exploit and reinforce them.
There is no logic that can be superimposed on
the city; people make it, and it is to them, not
buildings, that we must fit our plans.”

— Jane Jacobs, The Death and Life of
Great American Cities, 1961



Preface

The contemporary view of the Smart City is very much static and infrastructure-
centric, focusing on installation and subsequent management of Edge devices and
analytics of data provided by these devices. While this still allows a more efficient
management of the city’s infrastructure, optimizations and savings in different do-
mains, the existing architectures are currently designed as single-purpose, vertically
siloed solutions. This hinders active involvement of a variety of stakeholders (e.g.,
citizens and businesses) who naturally form part of the city’s ecosystem and have an
inherent interest in jointly coordinating and influencing city-level activities.

The book presents a coherent, novel vision of Smart Cities, built around a value-
driven architecture. It describes the limitations of the contemporary notion of Smart
City and argues that the next development step must actively include not only
physical infrastructure, but ICT and human infrastructure as well. In the authors’
opinion, this requires emphasizing and tightly integrating research and technological
solutions from the areas of Internet of Things (IoT) and Social Computing. The book
portrays the novel Smart City as an especially suitable environment for the proposed
integration, and describes how the city’s stakeholders would benefit from it, mostly
by being able to run and participate collectively in complex, coordinated activities
involving the city’s infrastructure and services, but especially other stakeholders
and their devices. The described activities require provisioning and scaling of the
ICT infrastructure, collective communication and coordination mechanisms, as well
as direct and indirect controllability mechanisms, especially with respect to human
participants.

The format and the content of the book is meant to give an overview of contempo-
rary developments in the areas of IoT and Social Computing research, and to set a
research road map for a future tighter integration of the two areas in the context of
the Smart City.

Vienna,
November 2016 The authors
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Part I

Present and Future of Smart Cities



Preface

In absence of a single operational definition, the concept of Smart City is for many a
vague notion and often subject to personal interpretation. While all existing defini-
tions seem to agree that the ultimate goal of a Smart City is to improve the quality and
the sustainability of life of its citizens through application of innovative and inclusive
technology, most approaches describe the technological solutions limited to a narrow
application area, falling short of presenting a comprehensive multi-dimensional
perspective. This chapter, as indeed the entire book, is an attempt to present a wider
perspective. It layers the high-level goal of life quality into a multi-layered archi-
tecture of values and describes the various technology interplays expected to help
accomplish them.



Chapter 1

Introduction to Smart Cities and a Vision of

Cyber-Human Cities

While there is no single accepted definition, the common contemporary understanding
of a Smart City [75, 20] assumes a coherent urban development strategy developed
and managed by city governments seeking to plan and align in the long term the
management of the various city’s infrastructural assets and municipal services with
the sole objective of improving the quality of life for the citizens [59, 159]. The
ICT role in the current Smart City vision is passive – related to collecting and
analyzing data, predicting and optimizing infrastructure utilization, as well as facili-
tating communication between different city services and automated management of
infrastructure.

Although extremely complex, the Smart City of today can perhaps best be de-
scribed as a city planning/urban development methodology heavily relying on ICT to
gather necessary input and make optimal engineering and planning decisions. This
means that the city’s strategies are planned well in advance, with big investment
budgets through big infrastructural budgets. More importantly, the citizen is also put
into a passive role. While the citizens are undeniably winners in this process as the
beneficiaries of a more optimized and cheaper infrastructure they are not taking an
active role in the development and daily management of the city.

We denominate the current stage in Smart City development as ‘representative-
smart’, as opposed to ‘collective-smart’ – one of the terms we propose for describing
the future vision of cyber-human smart cities involving a rich and active interplay
of different stakeholders (primarily citizens, local businesses and authorities), effec-
tively transforming the currently passive stakeholders into active ecosystem actors.
Realizing such complex interplay requires a paradigm shift in how the physical
infrastructure and people will be integrated and how they will interact.

At the heart of this paradigm shift lies the merging of two technology/research
domains – Cyber-physical Systems and Socio-technical Systems – into the value-
driven context of a Smart City. The presented Smart City vision diverges from
the traditional, hierarchical relationship between the society and ICT, in which the
stakeholders are seen as passive users who exclusively capitalize on the technological
advancements. Rather, the architecture we propose puts value generation at the top
of the pyramid and relies on “city capital” to fuel the generation of novel values and

3
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4 1 Introduction to Smart Cities and a Vision of Cyber-Human Cities

enhancement of traditional ones. This effectively transforms the role and broadens
the involvement and opportunities of citizen-stakeholders, but also promotes the ICT
from passive infrastructure to an active participant shaping the ecosystem.

1.1 Architecture of Values

The fundamental idea behind a collective-smart city is the inclusion of all its stake-
holders (authorities, businesses, citizens and organizations) in the active management
of the city. This includes not only the management of the city’s infrastructure, but
additionally the management of different societal and business aspects of everyday
life. The scale and complexity of managing diverging individual stakeholder interests
in the past was the principal reason for adopting a centralized city management model
where elected representatives manage all aspects of the city’s life and development.
However, we believe that recent technological advances will enable us to share the
so-far centralized decision-making and planning responsibilities directly with various
stakeholders, allowing faster and better-tailored responses of the city to various
stakeholder needs.

The key technological enabler for this process is the active and wide-scale use
and interleaving of technologies and principles from the IoT and Social Computing
domains in the urban city domain. These technologies form the basis level of the pro-
posed architecture of values (Fig. 1.1). They allow the city to interact bidirectionally
with the citizens in their everyday living, working and transport environments using
various IoT edge devices and sensors, but also to actively engage citizens and other
stakeholders to perform concrete tasks in the physical world, express opinions and
preferences, and take decisions. The “city” does not need to be an active party in this
interaction. It can serve as a trustworthy mediator providing the physical and digital
infrastructure and accepted coordination mechanisms facilitating self-organization
of citizens into transient, ad hoc teams with common goals. This synergy in turn
enables creation of novel societal and business values.

Infrastructural values – This category includes and extends the benefits conven-
tionally associated with the existing notion of Smart City – those related to the
optimized management of shared (city-wide) infrastructure and resources. Tradition-
ally, the management of such resources (e.g., transportation network and signalization,
internet infrastructure, electricity grid) has been static and highly centralized. The
new vision of a Smart City relies on the interplay of humans and the IoT-enabled
infrastructure, enabling additional, dynamic, locally scoped infrastructural optimiza-
tions and interventions, e.g., optimization of physical and IT/digital infrastructure
in domains such as computational resources, traffic or building management. Apart
from existing static/planned optimizations (e.g., static synchronization of traffic
lights), the dynamic optimizations of the infrastructure might include temporary
traffic light regime changes when a car accident is detected.

Societal values – This novel value category arises through the direct inclusion and
empowerment of citizens as key stakeholders of the city. The fact that through the use
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of technology the citizens can be informed, educated, consulted and ultimately incen-
tivized/paid to perform specific tasks in both the digital and physical environments is
a powerful concept bringing along a plethora of socially significant changes.

For example, while most cities function as representative democracies, significant
local changes are often decided upon through direct democracy (referendums, ini-
tiatives). While undeniably fair in principle, one of the biggest obstacles to a more
frequent use of direct democracy is the underinformedness of voters [105]. It has
been shown [133, 73] that informing the citizens enables them to make more judicial
and responsible decisions. The pervasiveness of IoT devices enables interaction with
citizens directly and opens up the possibility of informing the citizens better, or even
simulating in practice the outcomes of different election choices.

Take for example the 2014 Viennese referendum where two city districts were
asked to decide whether to turn one of the most frequently used shopping streets
of the city into a pedestrian zone1. The referendum has caused much controversy,
as people were skeptical that closing an important traffic artery would not cause
major traffic jams. In order to give the citizens a preview of how things would work

1 http://kurier.at/chronik/wien/mariahilfer-strasse-ja-fuer-umstrittene-fussgaengerzone/54.913.277
(in German)
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after the transformation, the city invested in a temporary physical closing of the
street and traffic re-organization the year before, as well as informational material.
The total costs of the street transformation amounted to 25 million euros, out of
which at least2 2 millions needed to be spent just to reach a common decision. In
such cases, the citizens of the new Smart City can be included in the evaluation
of the proposal and the decision process directly. The city can incentivize citizens
to get informed about the pro et contra before making a decision; simple games
and tests can raise awareness of specific problems. Interested parties can locate
and engage same-minded neighbors and set up citizen collectives standing for their
views. Finally, citizens can sign up to participate in cyber-physical simulations of
the effects of different outcomes. For example: For turning a traffic street into a
pedestrian zone, the IoT-enabled cars can be prevented from entering the street; For
raising awareness of global warming, the citizens can be incentivized to have their
apartments warmer/colder by a couple of degrees; To help people realize the low
share of green energy, the citizens can be incentivized to use for a couple of days
only the “green” percentage of the electricity they normally use. While simple, these
simulations affect the citizens in their private environment through everyday (IoT)
objects they interact with, and thus represent a strong motivational factor raising
interest and informedness of an issue.

Business values – Apart from citizen empowerment and better inclusion in political
processes, the existing research on decision making [110, 90], social orchestration
and negotiation [147], and incentivization [158] provide a number of solutions
for facilitating formation of collectives (groups, teams, task forces) of citizens,
provisioning of necessary software support tools and digital infrastructure, algorithms
for reaching agreement and compiling execution plans for different classes of tasks,
as well as incentive models for both monetary and non-monetary compensation.

Combined together in the context of a Smart City, this allows the establishment
of novel labor models where humans can engage in one-off or repeated activities
within stationary or ad hoc created collectives, motivated by a personal interest or
the offered compensation. These collaborative activities can range from the simplest
on-demand crowdsourcing tasks such as deciding the color of the new subway line3

to complex activities involving experts, such as IT incident management[163] or use
of humans as sensing agents for predictive maintenance of non-IoT infrastructure,
allowing for the effective and cheap inspection of local infrastructure.

Apart from offering their physical and cognitive abilities, citizens can be actively
involved in enriching the Smart City infrastructure with their smart devices. The aug-
mented infrastructure, access to the huge amounts of data and active user involvement
in its maintenance can be exploited in a variety of ways, e.g., to optimize existing
business models, reduce operational costs and create novel business opportunities.
To be able to fully benefit from this inclusion we need novel ways to incentivize
the citizens to “open source” their infrastructure, but also enable them to reap the
benefits of doing so. The solution we propose lies in a combination of novel incen-

2 http://kurier.at/chronik/wien/mahue-neu-es-bleibt-bei-den-25-millionen-euro-kosten/96.901.003
3 http://qz.com/242360/stockholm-is-crowdsourcing-the-color-of-its-new-subway-line/
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tive mechanisms and micro-payment technologies, which can enable fine-grained
leasing and use of equipment, services and resources, as well as novel infrastructure
provisioning and governance models and frameworks, which can support city-scale
infrastructure management.

1.2 Smart City Platform

Contemporary Smart City development and investment strategies focus on improving
the efficiency of traditional services and utilities. The focus on the “historical verticals”
[80] is limiting the innovation and business potential of the city. Opening up this
siloed view of the Smart City will allow more horizontal integration and creation of
added values. Figure 1.2 illustrates the high-level architecture of the future Smart
City Platform. The platform is a rich ecosystem that facilitates both production and
consumption of added values for all the involved participants, ranging from humans
to smart devices. It enables horizontal integration across different architecture layers
and among different stakeholders. The main components comprising the platform
include: i) Smart City Infrastructure, ii) Core Platform Facilities, and iii) Value-added
services. Below, we describe these components in more detail.

Fig. 1.2: Cyber-human Smart City platform
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Starting from the Smart City Infrastructure, contrary to the traditionally mono-
lithic view of a city’s infrastructure, in our vision of the cyber-human Smart City, we
identify different infrastructure constituents, that are inherently complementary and
interdependent. The Physical Infrastructure consists of the union of all stakeholders’
physical assets of direct interest to other stakeholders. This can include the city’s
transport infrastructure, electricity system, but also devices (e.g., vehicles or PV
panels) owned by an individual, when they are willingly being offered to enrich the
Smart City physical infrastructure and to be used by other stakeholders. The Admin-
istrative Infrastructure consists of the political and legal organizations governing the
city’s ecosystem. Collectively they act as the trusted entity determining and enforcing
governance policies, guaranteeing legal and privacy protection. These organizations
are not considered stakeholders of a Smart City. The Social Infrastructure consists of
all the individual citizen and business stakeholders, i.e., of their intellectual, social
and physical capabilities, as well as personal assets and resources, offered indirectly
as services, individually or collectively. Examples include providing labor on a given
task, or offering a ride service in a personal vehicle (as opposed to sharing the vehi-
cle). The ICT Infrastructure is the cornerstone for efficient horizontal integration of
different infrastructural layers and interoperability among stakeholders. It consists
of all the physical and software (virtual) components for data gathering, processing,
enactment of business logic, communication, and actuation of physical devices, such
as sensors, IoT gateways, actuators, cloud processing and storage infrastructure and
analytics software services.

Whereas the Infrastructure components resemble the vital organs of the Smart
City, the Core Platform resembles its bloodstream, linking all the Smart City function-
alities and enabling their seamless functioning. The most important functionalities of
the Core Platform include: Orchestration functionalities for Complex Coordinated
Activities (Section 1.4), Incentive Management (Section 1.5), Provisioning & Gover-
nance (Section 1.7), Monitoring & Data Analytics, as well as Control & Actuation
mechanisms. Since the last two components are also present in the Smart City of
today, we will not discuss them here.

The Value-Added Services act as the brain of the Smart City. They rely on the
core platform to enable management of the Infrastructure and facilitate the value-
generation process. Generally, the value-added services are largely task- and use-
case-specific and we do not impose any rules or requirements on their design or
functionality. They are envisioned as a playground of disruptive innovation and value
generation. For example, they can be optimizations of existing business models or
incubators for novel business opportunities. The value-added services are meant to
follow the natural life cycle of the city’s evolution and can appear and disappear in
accordance with stakeholders needs.

Once in place, the value-added services can become a valuable digital asset in
the ownership of the city and its citizens that can, however, extend beyond the
geographical region of the city and beyond the citizens that physically reside in the
city. The Republic of Estonia has recently introduced the concept of e-residency4.

4 https://e-estonia.com/e-residents/about/
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It allows any person (non-Estonian citizen) residing outside of Estonia who fulfills
specific criteria to become a legal subject (e-resident) of Estonia for a small fee. This
status allows practically anyone in the world to remotely establish and manage a
company based in Estonia enjoying all the benefits of modern e-Government services
that the country offers, a reliable and transparent legal and e-banking system, as
well as access to the entire EU market under the same conditions as any other EU
company. This landmark concept, which allows Estonia to further profit from the
services it offers and taxes it collects from the businesses established by the remote
citizens, can equally be adopted by cities. The gain for a city from such residents is
twofold – they pay fees/taxes for the use of services and at the same time they do
not strain the physical infrastructure (e.g., roads, sewers). Many of the value-added
services that do not rely on the physical presence of the service consumers can be
offered in this fashion to external residents. The additional gains obtained in this way
can help finance the transformation of a city into a Smart City and development of
further services. At the same time, this concept fosters competitiveness among cities.
Without the physical location/residence as the principal constraint, a citizen is free to
choose any city as the provider of digital services. This means that cities will have to
compete to offer better services to their citizens in an effort to keep them as residents
or attract new, digital ones.

1.3 Stakeholders

We define the Smart City stakeholder as any physical or legal entity entitled by the
city’s authorities to use, manage and contribute to the Smart City’s physical and
social infrastructure. In practice this means that any citizen or business of the city,
as well as city authorities or visitors who are given the right to access the Smart
City platform are considered as stakeholders. Contributing to the infrastructure is
equally important as using it. Stakeholders putting at the disposal their own devices,
providing services and participating in collective coordinated activities (Sec. 1.4)
bring in the human capital into the play, activate the infrastructure and generate novel
values.

1.4 Complex Coordinated Activities

One of the principal defining characteristics of the envisioned Smart City is the
existence of and support for a rich set of interactions embodied in the concept of
complex, collaborative coordinated activities. These activities are fundamental to the
generation of societal and business values described in the previous section. Whether
initialized by the municipality, local businesses or the citizens themselves, a Smart
City platform acts as the legal, trust and coordination enabler of such activities. On
the ‘physical layer’, the activities comprise the following interaction types:
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1. M2M – interactions between IoT devices and software services (e.g., sensing,
actuation, data analytics, service compositions, micro-transactions).

2. H2H – interactions between humans/citizens (negotiation, joint planning, collab-
orative task execution, learning, direct democracy).

3. M2H – interactions between humans and (their) devices (notifications, personal-
ized use, context sensing, augmented reality).

Since the machines (devices, services) are used on behalf of humans, on the
more abstract level the activities represent the interactions among the various city
stakeholders. In fact, the main objective of such coordinated activities is to actively
facilitate the various stakeholders to (self-)organize and reach a common goal, both
on a personal (micro), as well as on a city (macro) scale. The facilitation is per-
formed through various coordination and communication mechanisms delivered
by the Smart City platform. These mechanisms serve both as direct and indirect
controllability methods – either enforcing specific constraints and policies (e.g., ne-
gotiation protocols, SLAs), or indirectly influencing behavioral responses of humans
through incentives and peer influence. Examples of complex coordinated activities
can range from collectively organized transportation [3], private infrastructure shar-
ing5, collective learning [60] and game-based learning6 to gainful activities, such
as collaborative software development [116]. While the size of the heterogeneous
collectives participating in these activities need not be large, the potential and reach
are global, allowing most citizens to participate, thus actively shaping the society,
city and business environment they share.

1.5 Incentives as a Soft Controllability Principle

Managing humans in various socio-technical systems has often been criticized as
neglectful of true human nature [81]. Humans are often used as role enactors in human
workflows [15, 112, 6] or executors of instructions [57]. While such approaches
allow the difficulties related to human-understandable context interpretation to be
overcome, the human intelligence is harnessed in a passive way, since the execution is
machine-driven and deterministic. This means that the collaborative and social capital
of humans is not fully exploited, despite the prospective of delivering a profound
positive impact on the society we live in [176]. Crowdsourcing [44] and various other
platforms for collaborative consumption have partially tapped into this potential,
allowing for human-driven, albeit tightly structured, collaborations.

A distinguishing characteristic of human participation in socio-technical processes
is the need for motivation. Unlike software services or devices whose usage can be
requested for compensation and whose outputs are deterministic, human participation
is driven by personal motives, which vary individually in time and also depend on

5 https://switcher.ie/broadband/news/upc-ireland-rolls-out-horizon-wi-free-service/
6 http://www.nobelprize.org/educational/medicine/ecg/
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the (social) environment. Furthermore, diverging individual motives and interests
make team assembly and coordination of collective activities inherently complex.

Incentives are a means for inducing motivation and aligning disjoint individ-
ual interests in a group [155]. They include not only monetary/material rewards,
but more often rely on intrinsic motivational factors, such as altruism, curiosity,
competitiveness, social status. Compared to the listed role-based workflow systems
where humans are issued concrete actions to perform, incentives serve as a powerful
mechanism for “soft controllability” inducing wanted behavioral responses, setting
psychological engagement constraints but leaving the liberty of action to the humans.

A cyber-human Smart City wishing to engage citizens into collaborative actions
should offer incentive management services, such as [158], through its platform
(Fig. 1.2), giving to different stakeholders the tools to motivate and engage other
stakeholders into collaborative activities. The incentive management service allows
the provider of the incentives to compose and tweak incentive schemes optimally
for a particular purpose and a given target population. It also allows the monitoring
of the incentive application and effectiveness, and subsequent adaptations. The city
can incentivize the citizens to engage in decision making or to get better informed,
or to change their habits (share infrastructure, promote a healthier lifestyle). Busi-
nesses aligned with such goals can provide for the costs of incentivization. Finally,
where mutual resources and devices can be shared, individual citizens can set up
incentive schemes to encourage bartering and partially substitute the use of money
with alternative/local currencies (see Ithaca HOURS7) in micro-transactions having
positive effects on local businesses [168] (Sec. 1.7). The incentives can be delivered
through different channels, using personalized messages, to different hand-held or
IoT devices. Serious games are also an attractive environment for engaging people
and delivering incentives, especially for learning purposes [99]. Their captivating
power is best evidenced by the recent global success of the augmented-reality game
Pokemon Go8. As the timing and the perception of the incentive, as well as trust
in the incentive provider, are the key factors of its effectiveness, we argue that the
described Smart City context is a well-suited environment for the implementation of
such incentive management systems. The Smart City platform provides the trusted
third party technically managing the application of the incentives, while not taking
an active provider role. Thanks to their pervasive distribution IoT/Edge devices are
used to deliver incentive messages and provide raw data for automated monitoring of
incentivized activities.

1.6 Citizen Informedness

When talking about societal values a community can most benefit from, the impor-
tance of informing, educating and actively including citizens in different life aspects

7 http://ithacahours.com/
8 http://www.bbc.com/news/technology-36763504
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of the community cannot be overstated. Conventional education teaches ground truths
and well-established rules, and as such will remain the fundamental growth generator
for any local economy. While these ground values retain their full importance in a
Cyber-Human Smart City, the new environment, being much more dynamic both
in time and space, requires additional continuous learning and adaptation by the
citizens living within it. Often the new knowledge is short lived and useful for a
limited period or geographical space. This can prove to be especially challenging to
vulnerable social groups (seniors, low-income families), which are disadvantaged
when it comes to learning about the new technologies and adopting them. While
this problem is already present today it is to be expected that it further escalates in a
Smart City environment, where people are de-facto forced to interact increasingly
with different and unknown devices built into surrounding everyday objects and
varying in user interfaces and functionalities. In such cases it is important for the
Smart City platform and the particular devices to offer technological support for
running test trials and practical demonstrations whenever possible. Novel approaches
to tackling this problem in a similar way have already started to appear (e.g., Living
Labs [159]) but the research in this area has yet to get into full swing.

Apart from the need to constantly learn to adapt to an ever-changing IoT envi-
ronment, citizens of our Smart City are also confronted with a sea of information
which needs to be filtered to each citizen’s needs and visualized in a simple format at
a proper time. Some of the current technologies such as Google Now already try to
implement the basic principles, by delivering highly personalized information via
smart phones. In the future Cyber-Human Smart City, the spectrum of processed
information will need to drastically expand to cover the usage of different IoT devices
as well as past and potential interactions with other citizens and/or their devices. This
also means that the information services will have to move from the purely passive
aggregation and filtering functionality to interactive services which are able to dy-
namically gather additional information (e.g., from different users) in order to deliver
only meaningful and useful information. Let us consider for example a ridesharing
scenario (cf. Chapter 7). The scenario starts with a number of users submitting ride
requests with offered/wanted origin-destination pairs that are then matched by the
ride-sharing platform. Unless a large number of ride requests are constantly being
submitted, the chances of producing enough matches are slim. This means that the
matching will work satisfactorily most likely only in large and densely populated
areas, and only if the ride-sharing platform is a popular application used by large
numbers of users. On the other hand, if the software takes over the responsibility of
monitoring various ride-sharing platforms for suitable matches and informs the user
on time, the chances of producing a match rise, even outside large cities. If the initial
step of submitting the ride request is instead performed autonomously by a software
assistant on a user’s behalf based on learned travel patterns or booking confirmations,
the chances of producing a match rise further. The user, naturally, ultimately decides
whether the match is useful to him, and whether to proceed with negotiations and
ultimately accept the ride. In order to do this, the information service needs a runtime
feedback response from the user. In the described case, the autonomous agent gathers
and processes information relevant to the user at a speed that would be impossible
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for a human. Therefore, the informedness of the user in this case is indirect, but
the actual empowerment obtained by transmitting only the relevant information is
practical and concrete.

1.7 Provisioning and Governing Infrastructure as a Utility

At its core the Smart City assumes an interplay between cities and technology. At the
moment this relationship is most obvious at the infrastructure level. In this regard,
we mainly focus on ICT infrastructure, but due to its nature, realizing Smart City
infrastructure requires a multidisciplinary effort, ranging from electrical and civil
engineering and urban planing to ICT. From the ICT point of view, Smart Cities are
ever stronger developing and evolving Cyber-Physical/IoT Cloud Systems that blend
in Internet of Things (IoT), network elements, Cloud services and humans. This
results in complex IoT Cloud infrastructures that need to be provisioned dynamically
on demand and governed throughout their entire lifecycle.

The majority of traditional city infrastructure resources such as electricity or water
are delivered and consumed as a public utility. Such utilities are traditionally subject
to forms of public control and regulation ranging from local community-based groups
to statewide government monopolies. Moreover, Smart City stakeholders engage in
utility generation and consumption, as well as its distribution (e.g., sale), generally
in a regulated market.

However, to date Smart City ICT infrastructure is hardly delivered and consumed
as a utility. To enable this paradigm in the Smart City of the future, we identify a
set of design principles that serve as a road map towards realizing the utility-based
delivery and consumption of Smart City ICT infrastructure. These include: Every-
thing as code – all the concerns, i.e., application business logic, but also Smart City
infrastructure resources provisioning and runtime governance, should be expressed
programmatically in a unified manner, as a part of the application’s logic (code). API
Encapsulation – Smart City infrastructure resources and capabilities are encapsulated
in well-defined APIs, to provide a uniform view on accessing functionality and
configurations of IoT cloud infrastructure. Central point of operation – conceptually
centralized (API) interaction with Edge devices allows for a unified view of the
infrastructure’s provisioning and governance capabilities, without worrying about
low-level infrastructure details. Automation – main provisioning and governance
processes need to be automated in order to enable dynamic, on demand configuration
and operation of the Smart City infrastructure without manual interaction with Edge
devices.

Realizing the utility-based consumption of Smart City ICT infrastructure, among
other things, requires rethinking traditional approaches to provisioning and governing
both applications and the infrastructure. In our previous work, we have addressed
some of the aforementioned challenges by introducing models and frameworks
that implement and enforce some of these principles in order to facilitate utility-
based provisioning and cfity-scale governance. In [120, 122], we have introduced a
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unified provisioning model and a framework for logically centralized provisioning
large-scale, geo-distributed Smart City ICT infrastructure. This work was mainly
intended to address a stringent need: To enable the Smart City ICT infrastructure
to be refactored into finer-grained resource components whose behavior can be
defined in software; To provide conceptually unified representation of both Edge
and Cloud resources; As well as to enable automated and scalable management
of IoT Cloud resources, application components and their configuration models in
a logically centralized fashion. Furthermore, in [119, 125] we introduced a novel
governance methodology and runtime framework for governing the Smart City
infrastructure and services. The main aims here were: To bridge the current wide
gap between stakeholders involved in governing Smart City systems; To enable
governance strategies to be enforced in a large-scale, geographically distributed
setup; and to enable dynamic, on-demand deployment and invocation of governance
capabilities via cloud-based APIs.

However, although this work lays a cornerstone for realizing our vision of the
Smart City, additional work needs to be done in order develop a full-fledged tool
suite that is capable of facilitating the value generation chain (cf. Section 1.1). One of
the key enablers is to provide novel support for realizing the delivery-consumption-
compensation model for the previously introduced Smart City capital. Traditional
public utilities exclusively rely on existing markets, business models and monetary
institutions to realize this model. However, to realize broader participation in the
previously presented architecture of values Smart Cities largely lack suitable busi-
ness models for exchanging resources and services among stakeholders. Moreover,
infrastructure owners and infrastructure brokers require an ecosystem to support
trading Smart City services and assets.

1.8 Summary & Organization of the Book

In this chapter we have introduced a novel vision of the Cyber-Human Smart City that
is based on the architecture of values. This value-driven architecture is characterized
by complex coordinated activities involving the City’s services, stakeholders and
their smart devices. It puts the citizens in first place and promotes them to active
stakeholders as opposed to passive users. We presented a set of key enablers to realize
the vision of the cyber-human Smart City, which include: i) Complex Coordinated
Activities, ii) Incentives as soft controllability mechanisms, iii) Citizen Informedness,
and iv) Utility-based provisioning and governance of Smart City infrastructure.
Finally, we presented a concrete set of design principles and requirements that serve
as a manifesto of Cyber-Human Cities of the future and lay down a road map toward
realizing a comprehensive Smart City platform.

This chapter both serves as a general introduction to the book and also presents a
coherent vision that ties together all the components that are required to realize our
vision for Smart Cities of the future. In the remainder of the book we discuss these
components in depth. Part II of the book discusses our previous work related to the
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provisioning and governance of Smart City systems and infrastructure. In Part III, we
introduce our previous work on the core technologies and technological enablers for
managing the social component of the Smart City platform. Both parts (see Chapter 2
and Chapter 6), also present the state-of-the-art research and industrial efforts in
the respective fields. Finally, Part III provides a road map towards Cyber-Human
Smart Cities and concludes the book. We discuss the requirements and concrete
technological advancements needed to move beyond contemporary Smart Cities,
towards the Smart Cities of the future.



Part II

Provisioning and Governing Smart City
Systems



Preface

At its core the Smart City assumes a strong interplay between cities and technol-
ogy. Over recent years, cloud computing and the Internet of Things (IoT) have
been converging more strongly, sparking creation of very large-scale, geographi-
cally distributed systems. These IoT Cloud systems9 form the foundation of the ICT
infrastructure of Smart Cities. In a narrow sense, Smart Cities can be viewed as com-
plex IoT Cloud infrastructures that need to be provisioned dynamically, on demand
and governed throughout their entire lifecycle. Moreover, as discussed in Chapter 1,
Smart City stakeholders ever more strongly engage in utility generation and consump-
tion, as well as its distribution (e.g., sale), generally in a regulated market. However,
to date Smart City ICT infrastructure is still siloed, thus can hardly be delivered and
consumed as a utility. This requires rethinking existing support for representing in-
frastructure resources, managing their configuration and deployment models as well
as composing low-level resource components into usable infrastructures, capable
of supporting novel complex coordinated activities in the context of future Smart
Cities (cf. Chapter 1). In this part of the book we present our work that is mainly
driven by a stringent need: To enable refactoring of the underlying infrastructure
into finer-grained resource components whose behavior can be defined in software;
To provide conceptually unified representation of both IoT and Cloud resources; As
well as to enable automated and scalable management of Smart City infrastructures
in a logically centralized fashion. In Chapter 3 we introduce a conceptual model and
lay out a road map towards utility-based provisioning of Smart City infrastructures.
The main building blocks of our provisioning model are software-defined IoT units.
Our model conceptualizes the software-defined IoT units and elicits their main design
principles together with a road map to develop corresponding technical enablers.
Chapter 4 continues the line of work towards utility-based provisioning of Smart City
infrastructure, by introducing middleware that provides comprehensive support for
multi-level provisioning of IoT Cloud systems.

Moreover, the wide and ever more strongly growing application area of IoT Cloud
in the context of Smart Cities has led to a stronger interplay and entanglement among
a variety of diverse stakeholders, with different objectives, interests and backgrounds.
From an application point of view IoT Cloud systems are becoming an integral
enabler in optimizing urban processes, infrastructure and facilities, such as urban
transportation and energy management, in order to make the cities of the future
smarter and more livable. This calls for a systematic and structured approach to
IoT Cloud governance. Unfortunately, contemporary Smart City governance ap-
proaches draw a hard line between high-level governance objectives (which mainly
concern city representatives and business stakeholders) and operations processes.
The latter concern technical stakeholders such as operations managers who need
to implement concrete operations processes, conforming to or enforcing the high-
level governance objectives. Therefore, at the moment there is a wide gap between
the main stakeholders involved in governing Smart City applications, increasing

9 Also referred to as Cyber-Physical Systems (CPS).



the risk of lost requirements or causing over-regulated systems, potentially incur-
ring higher operation costs or limiting innovation opportunities. To address these
challenges, Chapter 5 looks at Smart City governance and introduces GovOps –
a novel methodology and framework for governing IoT Cloud systems. The main
incentive for introducing GovOps is to bring business stakeholders and operations
managers closer together and make a step forward in bridging the gap between
governance objectives (e.g., standards and regulations) and operations processes.
GovOps introduces a novel methodology, governance model and roles, in order to
enable seamless integration and alignment of high-level governance objectives and
strategies with executable operations processes from early design stages. Chapter 5
also introduces a runtime framework, which is a reference GovOps implementation,
and its main purpose is to support operations managers in implementing and exe-
cuting GovOps processes in large-scale Smart City systems, without worrying about
scale, geographical distribution and dynamicity of such systems.



Chapter 2

State Of The Art & Related Work

2.1 Overview of Development Support for IoT Cloud

Applications

Developing and managing IoT Cloud systems and applications has been receiving a
lot of attention lately. In [189, 42, 69] the authors mostly deal with device virtualiza-
tion and its management on cloud platforms. A number of different approaches (e.g.,
[167, 7]) employ semantics aspects to enable discovering, linking and orchestrating
heterogeneous IoT devices. In [30, 94] the authors propose utilizing the cloud for
additional computation resources – and approaches presented in [169, 190] focus
on utilizing the cloud’s storage resources for sensory data. Approaches presented
in [38, 92] deal with integrating IoT devices and services with enterprise applications
based on the SOA paradigm. These approaches mostly adopt a cloud-centric view
of IoT Cloud applications development. For example, in [42] the authors focus on
developing a virtualized infrastructure to enable sensing and actuating as a service
in the cloud. They propose a software stack that includes support for management
of device identification and device services aggregation. In [189] the authors intro-
duce sensor-cloud infrastructure that virtualizes physical sensors on the cloud and
provides management and monitoring mechanisms for the virtual sensors. Although
such approaches facilitate development of IoT Cloud applications to a certain extent,
they usually do not define a structured development model for such applications. This
leaves many of the challenges to be resolved ad hoc when developing Smart City
Applications. Another example of the cloud-centric approach is SenaaS [7]. SenaaS
mostly focuses on providing a cloud semantic overlay atop physical infrastructure. It
defines an IoT ontology to mediate interaction with heterogeneous devices and data
formats, exposing them as event streams to the upper layer cloud services. Similarly,
the OpenIoT framework [167] focuses on supporting IoT service composition by
following the cloud/utility based paradigm. It mainly relies on semantic web tech-
nologies and CoAP to enable web of things and linked sensory data. To realize our
vision of the Cyber-Human City (cf. Chapter 1, contemporary support for application
development needs to be extended with novel programming abstractions that enable
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the everything-as-code paradigm, facilitating development of IoT Cloud applications
and making the entire development process traceable and auditable (e.g., with source
control systems), in order to improve maintainability and reduce development costs
of Smart City applications.

Putting more focus on the edge devices, i.e., IoT gateways, network devices,
cloudlets and small clouds, different approaches have emerged recently. For example,
in [17] the authors present a concept of fog computing and define its main character-
istics, such as location awareness, reduced latency and general QoS improvements.
They focus on defining a virtualized platform that includes the edge devices and
enables custom application logic to be run atop different resources throughout the
network. Further, in [65] the authors focus on abstracting devices as services and
enabling two-way communication between enterprise applications and devices via
Web Services (WS) and provide mechanisms for service discovery and provisioning.
A similar approach is DPWS [127], i.e., SOA4D or WS4D. Also, approaches utiliz-
ing RESTful protocols, CoAP [56] and sMAP [37] exist. For example, [92] focuses
on defining a CoAP-based runtime to enable composition of IoT services. Most
of these approaches focus on abstracting the underlying hardware and providing
service-based access to a device. Although they provide some key elements, e.g.,
service discovery and resource management, they implicitly assume developers have
a good understanding of the underlying domain, as raw sensory data streams and
low-level device services are directly exposed to them and application development
is envisioned by composing the atomic services into admissible control sequences
or processing schemes. To enable scalable development and provisioning of Smart
City applications high-level abstractions and models need to be developed in order to
facilitate development of cloud-scale IoT Cloud applications for Smart Cities of the
future.

Another edge-centric approach is usage of component-based frameworks [87, 13],
to abstract devices or more precisely to create proxies, which are represented as
components and enable remote communication with the devices. These frameworks
use OSGi for component management and execution environment. However, they
abstract devices as components and define a local component model and their applica-
tions operate on a residential gateway scale. The main limitation of such approaches
in the context of Smart Cities is that they only provide rudimentary support for
development of Smart City applications and services, which are able to seamlessly
utilize both the Edge and the Cloud. In general, compared to the aforementioned
edge-centric approaches our approaches presented in this part of the book also aim at
better utilization of the edge infrastructure. Additionally, we also focus on providing
a systematic approach, supporting application developers in addressing most of the
application/infrastructure provisioning and governance issues programmatically, in a
logically centralized fashion.

Another related field is macroprogramming of sensor networks [104, 31, 114, 27].
For example, in [104] the authors provide an SQL-like interface where the entire
network is abstracted as a relational database (table). Similarly, in [114], the authors
deal with enabling dynamic scopes in WSN, mainly addressing the important issues
of task placement and data exchange (among the WSN nodes), in order to account
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for the heterogeneity of the nodes and enable logically localized interactions. In [31],
the authors propose the notion of logical neighborhood. Their approach is based on
logical nodes (templates), which enable the nodes to be instantiated and grouped,
based on their exported attributes. To facilitate communication within the neighbor-
hoods, which is of great importance in WSN, they also provide an efficient routing
mechanism. In [27] the authors introduce an extensible programming framework
that unifies the WSN programming abstractions in order to facilitate business pro-
cess orchestration with WSN. Despite the relevant efforts to integrate provisioning
and business logic (e.g., template-based customizations [31]), the main focus of
the aforementioned approaches is application business logic. Compared to these
approaches, in Part II of this book we address the more general problem of enabling
the everything-as-code paradigm, in order to also allow for capturing provisioning
and governance logic for Smart City resources and services programmatically, in a
structured manner.

2.2 Provisioning Approaches in the IoT Cloud

In recent years, advancing the convergence of Edge (IoT) and Cloud computing
has been receiving a lot of attention. This has resulted in a number of approaches
which lay a cornerstone for realizing utility-based provisioning in the IoT Cloud. For
example, different approaches deal with leveraging more powerful resources such
as remote, fully fledged Clouds or smaller Cloudlets and micro data centers, which
are located in the proximity (single hop away) of the Edge, to enhance resource-
constrained (mobile) devices. Such approaches, also referred to as cyber-foraging
systems [100], mainly focus on specific tasks such as computation offloading [35, 30,
94] or data offloading (data staging) [10, 53, 190, 169]. Although they offer valuable
insights about moving cloud computing closer to the Edge, as well as about smart
resource utilization, management and allocation, they mainly emphasize algorithms
(e.g., solvers), energy efficiency, performance (e.g., of processing or networking) and
supporting architectures for the aforementioned tasks.

Other approaches which mainly adopt a cloud-centric view mostly aim at virtual-
izing Edge devices, predominantly sensors and actuators, on cloud platforms. In [42]
the authors focus on developing a virtualized infrastructure to enable sensing and ac-
tuating as a service in the cloud. They propose a software stack that includes support
for management of device identification and device services aggregation. In [43],
the same authors discuss a utility-oriented paradigm for IoT, explicitly claiming re-
source virtualization and abstraction as their main goal. In [189] the authors introduce
sensor-cloud infrastructure that virtualizes physical sensors on the cloud and provides
management and monitoring mechanisms for the virtual sensors. In [69] the authors
develop an infrastructure virtualization framework for wireless sensor networks. It
is based on a content-based pub/sub model for asynchronous event exchange and
utilizes a custom event-matching algorithm to enable delivery of sensory events to
subscribed cloud users. Also the previously described approaches SenaaS [7] and the
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OpenIoT framework [167] provide some support regarding IoT Cloud provisioning.
However, their support is mainly focused on high-level application-provisioning
aspects such as discovering, linking and orchestrating internet-connected objects
and IoT services. Finally, there are various commercial solutions such as Xively
[186], Carriots [26] and ThingWorx [171], which allow users to connect their sensors
to the Cloud and enable remote access to and management of such sensors. The
aforementioned approaches mainly focus on providing different virtualization, device
interoperability and semantic-based data integration techniques for the IoT Cloud.
Therefore, such approaches conceptually underpin our provisioning middleware
(discussed in Chapter 4), since virtualizing Edge devices is a main precondition
towards realizing the utility-based provisioning paradigm in future Smart Cities. Al-
though some of the above-described solutions (e.g., [189, 167, 42]) provide support
for provisioning and management of virtual sensors and actuators, their support is
often based on tightly coupled provisioning models, e.g., static templates. Moreover,
such approaches are usually meant to support specific data-centric tasks, mostly
focusing on integrating various data formats, providing data-linking solutions and
supporting communication protocols. Unfortunately, this support is not sufficient to
realize utility-based consumption/delivery of Smart City infrastructure because it
does not address some of the crucial challenges, such as providing support for multi-
level provisioning and consuming both IoT and Cloud resources as general-purpose
utilities.

Putting more focus on the network virtualization, programming and management,
two prominent approaches have recently appeared, namely software-defined and
fog computing. Different approaches have exploited and extended software-defined
concepts to facilitate utilization and management of pooled sets of shared IoT Cloud
resources, e.g., software-defined storage [170] and software-defined data centers [36].
Advances in more traditional software-defined networking (SDN) [91, 88, 86] have
enabled easier management and programming of intermediate network resources,
e.g., routers, mostly focusing on defining the networking logic, e.g., injecting routing
rules into network elements. In [17] the authors present a concept of fog computing
and define its main characteristics. Although the general idea of fog computing
shares similarities with our approach, there is still a number of challenges to realize
its full vision [187]. Further, current advances in fog computing mainly revolve
around virtualization, management and programmatic control of network elements.
Network resources are an integral part of IoT Cloud infrastructures and enabling
their management is of vital importance for Cyber-Human Cities. However, this is
out of the scope of this book and these approaches can be seen as complementary to
our own approaches presented in this part of the book.

Finally, since the utility-based provisioning paradigm originated from cloud
computing, it is natural that cloud computing has provided numerous tools and frame-
works to support utility-based provisioning. The relevant approaches are centered
around infrastructure automation and configuration management solutions such as
OpsCode Chef [132], BOSH [19] and Puppet [139] as well as deployment topology
orchestration approaches such as OpenStack Heat [129], AWS CloudFormation [11]
and OpenTOSCA [131]. The main reasons why these solutions cannot simply be
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reused in the context of IoT Cloud systems are that they mostly assume an unlim-
ited amount of available resources; they do not account for intrinsic dependence
of application business logic on underlying devices; they are usually not suited for
constrained environments and they often rely on features provided only by fully
fledged OSs, e.g., configuration management approaches often hand off dependency
resolution to OS package managers.

2.3 IoT Cloud Governance Approaches

Recently, IoT governance has been significantly gaining in importance in the con-
text of Smart Cities. For example, in [183] the author evaluates various aspects of
IoT governance, such as privacy, security and safety, ethics etc., and defines main
principles of IoT governance, e.g., legitimacy and representation, transparency and
openness, and accountability. In [182], the authors deal with issues of data quality
management and governance. They define a responsibility assignment matrix that
comprises roles, decision areas and responsibilities and can be used to define custom
governance models and strategies. Traditional IT governance approaches, such as
SOA governance [12, 28, 126] and governance frameworks such as CMMI [5], the
3P model [151], and COBIT [67] provide valuable insights and models which can
be applied in Smart City governance processes and are crucial to realize our vision
of Cyber-Human Cities. It is important to mention that our governance solutions
presented in this part of the book do not attempt to define a holistic governance
approach for Smart Cities, but they lay down a necessary foundation to realizing
Smart City governance. Therefore, the aforementioned approaches do not conflict
conceptually with our approach and they can rather be seen as methodologies and
techniques complementing our own. In Chapter 9, we discuss the relationship of our
governance methodology and these approaches in more detail.

Furthermore, numerous government organizations and standardization bodies deal
with IoT Cloud governance. The governance concepts have been already applied to
different aspects of the Internet and there is a range of organizations such as IETF,
ICANN, RIRs, ISOC, IEEE, IGF, W3C that deal with specific areas of Internet gover-
nance. The EU Commission has also created task forces, research clusters and reports
that deal with governance issues in IoT [48, 49, 50]. They have identified several
challenges in contemporary IoT Cloud governance, for example, the difficulty of find-
ing a common definition of IoT governance together with the different positions of
many stakeholders. Also, due to the high number and heterogeneity of technologies
and devices in IoT systems, IoT governance requires even more specific solutions
compared to the traditional governance solutions. Moreover, current approaches
in IoT governance usually address the Internet part of the IoT, e.g., in the context
of Future Internet services, while operations processes mostly deal with Things as
additional resources that need to be operated. Although there are approaches that
facilitate operating Edge devices (e.g., [189, 43] as we discussed in the previous sec-
tion), mapping governance objectives (law, compliance, etc.) to operations processes
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largely remains elusive to the contemporary governance approaches. Our GovOps
model (presented in Chapter 5) builds on these approaches and addresses the issue
of bridging the gap between governance objectives and operations processes, by
introducing the GovOps manager as a dedicated stakeholder, as well as defining
the suitable GovOps reference model to support early integration of governance
objectives and operations processes. For high-level business stakeholders, GovOps
enables continuous analysis, verification, and improvement of governance objectives
and implemented strategies using a systematic approach. Furthermore, implementing
the GovOps approach enables technological advantages such as greater flexibility,
reduction of time-to-delivery, improved ease of operation, and shielding operations
from regulatory issues.



Chapter 3

Provisioning Smart City Infrastructure

In Chapter 1, we have introduced a novel Architecture of Values that serves as a
conceptual framework for value generation in Smart Cities. The proposed archi-
tecture puts value generation at the top of the pyramid and relies on “city capital”
to fuel the generation of novel values and enhancement of traditional ones. This
effectively transforms the role and broadens the involvement and opportunities of
citizen-stakeholders, but also promotes ICT from passive infrastructure to an active
participant shaping the Smart City ecosystem. Contemporary Smart City develop-
ment and investment strategies utilize this infrastructure in order to improve the
efficiency of traditional services and utilities. However, the current focus on the
“historical verticals” [80] is hindering a widespread usage of the city capital, thus
limiting the innovation and business potential of the city. Opening up this siloed view
of the Smart City allows for more horizontal integration and creation of added values.

At its core the Smart City represents a strong entanglement and interplay between
cities and technology. The ICT Infrastructure is the cornerstone for efficient horizontal
integration of different Smart City infrastructural layers and interoperability among
stakeholders. It consists of all the physical and software (virtual) components for data
gathering, processing, enactment of business logic, communication and actuation
of physical devices, such as sensors, IoT gateways, actuators, cloud processing and
storage infrastructure and analytics software services. Recently, cloud computing
and the Internet of Things (IoT) have been converging ever more strongly, sparking
creation of very large-scale, geographically distributed systems. We refer to these
novel systems as IoT Cloud systems. Such systems form the foundation of ICT
infrastructure of Smart Cities.

Cloud computing concepts and technologies have been intensively exploited in
development and management of large-scale IoT systems, e.g., in [167, 69, 189],
because theoretically, the cloud offers unlimited storage, compute and network ca-
pabilities to integrate diverse types of IoT devices and provide an elastic runtime
infrastructure for IoT systems. A self-service, utility-oriented model of cloud com-
puting can potentially offer fine-grained IoT resources in a pay-as-you-go manner,
reducing upfront costs and possibly creating cross-domain application opportunities
and enabling new business and usage models in Smart Cities. However, most of the
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contemporary approaches dealing with IoT Cloud systems largely focus on data and
device integration by utilizing cloud computing techniques to virtualize physical
sensors and actuators. Although there are approaches providing support for provi-
sioning and management of the virtual IoT infrastructure (e.g., [189, 167, 42]), the
convergence of IoT and cloud computing is still at an early stage. System designers
and operations managers face numerous challenges to realize large-scale IoT cloud
systems in practice, mainly because these systems impose diverse requirements in
terms of granularity and flexibility of IoT resource consumption, custom provisioning
of IoT capabilities such as communication protocols, elasticity concerns and runtime
governance. For example, modern large-scale IoT cloud systems heavily rely on
the cloud and virtualized IoT resources and capabilities (e.g., to support complex,
computationally expensive analytics), thus these resources need to be accessed, con-
figured and operated in a unified manner, with a central point of management. Further,
IoT systems are envisioned to run continuously, but they can be elastically scaled
in/down in off-peak times, e.g., when a demand for certain data sources is reduced.
Due to the multiplicity of the involved stakeholders with diverse requirements and
business models, modern IoT cloud systems increasingly need to support different
and customizable usage experiences. Therefore IoT cloud systems need to support
virtualization of IoT resources and IoT capabilities (e.g., gateways, sensors, data
streams and communication protocols), but also enable: i) their encapsulation in a
well-defined API, at different levels of abstraction, ii) A central management of con-
figuration models and their automatic propagation to the edge of the infrastructure,
iii) automated provisioning of IoT resources and IoT capabilities.

In this chapter1, we introduce the concept of software-defined IoT units – a novel
approach to IoT Cloud computing that encapsulates fine-grained IoT resources and
IoT capabilities in a well-defined API in order to provide a unified view of accessing,
configuring and operating IoT cloud systems. Our software-defined IoT units are the
fundamental building blocks of software-defined IoT cloud systems. They enable
consumption of IoT resources at a fine granularity and allow for policy-based con-
figuration of IoT capabilities and runtime operation of software-defined IoT cloud
systems. We present a preliminary implementation of a framework for dynamic, on-
demand provisioning of software-defined IoT cloud systems. By automating the main
aspects of provisioning processes and supporting centrally managed configuration
models, our framework simplifies provisioning of such systems and enables flexible
runtime customizations.

The rest of this chapter is structured as follows: Section 3.1 presents a motivating
scenario and research challenges; Section 3.2 describes the main principles and our
conceptual model of software-defined IoT systems; Section 3.3 outlines the main
provisioning techniques for software-defined IoT systems; Section 3.4 introduces
design and implementation of our prototype, followed by its experimental evaluation;
finally, Section 3.5 concludes the chapter.

1 The work presented in this chapter was originally introduced by Nastic et al. in [120].
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3.1 Research Context

Urban transportation and smart buildings management are two of the most important
domains of Smart Cities. In this chapter, we analyze two use cases: Fleet Management
System (FMS) and Building Management System (BMS), which are derived from a
real-life case study, which was conducted in collaboration with our industry partners.
This section approaches the FMS and BMS systems from the perspective of Smart
City operations management. It illustrates tasks that need to be performed to provi-
sion such systems and derives concrete research challenges, which the operations
managers currently face when provisioning city-scale, geographically distributed IoT
Cloud systems.

3.1.1 Scenarios

3.1.1.1 Provisioning FMS

FMS is a real-life IoT Cloud system responsible for managing fleets of zero-emission
electric vehicles deployed worldwide in different cities. For our discussion the most
important functionality of the FMS is management of the electric vehicles in different
environments such as university campuses, airports and golf courses. In general, the
FMS supports the involved stakeholders in remotely managing the fleet vehicles
dispersed among different cities in order to optimize tasks, crucial for their respective
business processes.

The FMS is an IoT cloud system comprising vehicles’ on-board gateways, the
network and the cloud infrastructure. The main features provided by the on-board de-
vice include: a) vehicle maintenance (fault history, battery health, crash history, and
engine diagnostics), b) vehicle tracking (position, driving history, and geo-fencing),
c) vehicle info (charging status, odometer, serial number, and service notification),
d) set up (club-specific information, maps, and fleet information). Vehicles com-
municate with the cloud via 3G, GPRS or a Wi-Fi network to exchange telematic
and diagnostic data. On the cloud we host different FM subsystems and services to
manage the data. For example: a) Real-time vehicle status: location, driving direction,
speed, vehicle fault alarms; b) Remote diagnostics: equipment status, battery health
and timely maintenance reminders; c) Remote control: overriding on-board vehicle
control system in case of emergency; d) Fleet management: service history and fleet
usage patterns. In the following we highlight some of the FMS features, that need to
be considered during system provisioning:

• The FMS subsystems and services are hosted in the cloud and heavily rely on
virtualized IoT resources, e.g., vehicle gateways and their capabilities. Therefore,
we need to enable encapsulation and access to IoT resources and IoT capabilities
via uniform APIs.
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• The FMS has different requirements regarding communication protocols. The
fault alarms and events need to be pushed to the services (e.g., via MQ Telemetry
Transport (MQTT) [128]), when needed a vehicle’s diagnostics should be syn-
chronously accessed via RESTfull protocols such as CoAP [56] or sMAP [37].
The remote control system requires a dedicated, secure point-to-point connection.
Configuring these capabilities should be decoupled from the underlying physical
infrastructure, in order to allow dynamic, fine-grained customization.

• The FMS spans multiple, geographically distributed cloud instances and IoT de-
vices that comprise FM’s virtual runtime topologies. These topologies abstract a
portion of the IoT cloud infrastructure, e.g., needed by a specific subsystem, thus
they should support flexible configuring to allow for on-demand provisioning.

• The FMS involves a growing number of stakeholders. Therefore, we need to
accommodate the scale and geographical distribution of the current FMS offering
as well as support projected growth and future customization requirements.

3.1.2 Provisioning BMS

Building Management System (BMS) is an IoT Cloud control system for buildings
that enables remote monitoring and control of buildings’ mechanical and electrical
assets and equipment such as HVAC, lighting, elevators, plumbing and fire alarm
systems. In general, it connects the Smart City buildings’ assets to a cloud-based
platform, which provides applications for centralized management of such assets.
Some of the core features of the BMS include managing the environment temperature,
CO2 emission and humidity within a building, as well as optimizing the building’s
energy consumption and handling predictive maintenance. For example, the climate
control services are responsible for controlling the production of heating and cooling,
managing air distribution systems throughout the building, and locally controlling
the air mixture to achieve the desired environment temperature. Contrary to the FMS,
the BMS is less dynamic and has a smaller degree of geographical distribution. In
spite of this, it is a large-scale system that supports operating several thousands of
buildings throughout a city.

In general, to provision BMS operations managers perform two distinct tasks:
the initial deployment and staging of devices on the one hand, and updates with
varying frequency and priorities on the other hand. In our scenario the BMS provider
is responsible for managing several hundreds of buildings with a variety of tenants.
The managed buildings are equipped with a variety of Edge devices ranging from
sensors to detect smoke and heat, to elevator and door controls, to complex cooling
and heating systems. They rely on gateways, which provide constrained execution
environments with limited processing, storage and memory resources to execute
the device firmware and simple routines. Gateways enable the basic bundling and
management of a wide variety of connected entities. Due to the current market
situation and the existing lack of standards in this novel field, there exists a huge
heterogeneity in terms of software environments when it comes to these gateways.
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Initially all these devices need to be equiped with the necessary capabilities to
enable their basic functionality. The connected sensors need to be supported, the
latest firmware needs to be installed and they need to be integrated into a specific
deployment structure. This is followed by long-term evolution in terms of general
maintenance, changing deployments, shifting capabilities as well as updating the
software environment or firmware. The second kind of updates revolve around
security patches and hot fixes that need to be deployed very fast in order to ensure
that the whole infrastructure stays operational. These updates are time critical since
delays can cause severe security problems in the whole infrastructure. Similarly to
FMS we outline the following distinct requirements in the context of BMS:

• Gateways participating in an IoT infrastructure are resource constrained in terms
of their processing, memory and storage capabilities.

• Our scenario deals with large-scale deployments comprising thousands of gate-
ways with a wide variety of different supported execution environments.

• Requirements of these gateways change over time, which makes updates nec-
essary. These updates can either be non-time-critical or time-critical, such as
security updates.

• In order to sustain operations all updates need to be efficient and fast, and,
therefore, have to be performed during system runtime, without interrupting its
operation, i.e., down time.

3.1.3 Research Challenges

The limited support for fine-grained provisioning at higher levels leads to tightly
coupled, problem-specific IoT infrastructure components, which require difficult and
tedious provisioning and configuration management tasks on multiple levels. This
inherently makes provisioning and runtime operation of IoT cloud systems a com-
plex task. Consequently, system designers and operations managers face numerous
challenges to provision and operate large-scale IoT cloud systems such as the FMS
or BMS.
RC1 – The IoT cloud services and subsystems provide different functionality or
analytics, but they mostly rely on common physical IoT infrastructure. However, to
date the IoT infrastructure resources have been mostly provided as coarse-grained,
rigid packages, in the sense that the IoT systems, e.g., the infrastructure components
and software libraries, are specifically tailored for the problem at hand and do
not allow for flexible customization and provisioning of the individual resource
components or the runtime topologies.
RC2 – Elasticity, although one of the fundamental traits of traditional cloud com-
puting, has not yet received enough attention in IoT cloud systems. Elasticity is a
principle of provisioning the required resources dynamically and on demand, en-
abling applications to respond to varying load patterns by adjusting the amount of
provisioned resources to exactly match their current needs, thus minimizing resource
over-provisioning and allowing for better utilization of the available resources [47].
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However, IoT cloud systems are usually not tailored to incorporate elasticity aspects.
For example, new types of resources, e.g., data streams, delivered by IoT infrastruc-
ture are still not provided elastically in IoT cloud systems. Opportunistic exploitation
of constrained resources, inherent to many IoT cloud systems, further intensifies the
need to provision the required resources on demand or as they become available.
These challenges prevent current IoT systems from fully utilizing the benefits the
cloud’s elastic nature has to offer and call for new approaches to incorporate the
elasticity capabilities in IoT cloud systems.
RC3 – Dependability is a general measure of dynamic system properties, such as
availability, reliability, fault resilience and maintainability. Cloud computing sup-
ports development and operation of dependable large-scale systems atop commodity
infrastructure, by offering an abundance of virtualized resources, providing repli-
cated storage, enabling distributed computation with different availability zones
and diverse, redundant network links among the system components. However, the
challenges to build and operate dependable large-scale IoT cloud systems are signifi-
cantly aggravated because in such systems the cloud, network and embedded devices
converge, thus creating very large-scale hyper-distributed systems, which impose
new concerns that are inherently elusive with traditional operations approaches.
RC4 – Due to dynamicity, heterogeneity, geographical distribution and the sheer
scale of the IoT cloud, traditional management and provisioning approaches are
hardly feasible in practice. This is mostly because they implicitly make assumptions
such as physical on-site presence, manually logging into devices, understanding a
device’s specifics etc., which are difficult, if not impossible, to achieve in IoT cloud
systems. Thus, novel techniques, to provide unified and conceptually centralized
view of a system’s configuration management are needed.

Therefore, we need novel models and techniques to provision and operate IoT
cloud systems, at runtime. Some of the obvious requirements to make this feasible
in the very large-scale, geographically distributed setup are: (i) We need tools
which will automate development, provisioning and operations (DevOps) processes;
(ii) Supporting mechanisms need to be late-bound and dynamically configurable,
e.g., via policies; (iii) Configuration models need to be centrally managed and
automatically propagated to the edge of the infrastructure; (iv) Processes such as
configuration models enforcement and deployment need to be flexibly repeatable
with as little effort as possible.

3.2 Main Building Blocks of Software-Defined IoT Systems

3.2.1 Design Principles of Software-Defined IoT Cloud Systems

Generally, software-defined denotes the principle of abstracting the low-level com-
ponents, e.g., hardware, and enabling their provisioning and management through
a well-defined API [96]. This enables refactoring the underlying infrastructure into
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Fig. 3.1: Summary of main principles and enablers of software-defined IoT Cloud
systems

finer-grained resource components whose functionality can be defined in software
after they have been deployed.

Software-defined IoT Cloud systems comprise a set of resource components,
hosted in IoT Cloud, which can be provisioned and controlled at runtime. The IoT
resources (e.g., sensory data streams), their runtime environments (e.g., gateways)
and capabilities (e.g., communication protocols, analytics and data point controllers)
are described as software-defined IoT units. Software-defined IoT units are software-
defined entities that are hosted in an IoT cloud platform and abstract accessing
and operating underlying IoT resources and lower-level functionality. Generally,
software-defined IoT units are used to encapsulate IoT Cloud resources and lower-
level functionality and abstract their provisioning and governance, at runtime. To
this end, our software-defined IoT units expose well-defined APIs and they can be
composed at different levels, creating virtual runtime topologies on which we can
deploy and execute IoT cloud systems such as our FM system. The main design
principles of software-defined IoT Cloud systems that we discuss in this chapter are
marked with “*” in Figure 3.1 and are described in more detail subsequently. Other
design principles, shown in the same figure, are discussed later in Chapter 4.

• API Encapsulation – IoT resources and IoT capabilities are encapsulated in
well-defined APIs, to provide a unified view of accessing functionality and
configurations of IoT cloud systems.

• Fine-grained consumption – The IoT resources and capabilities need to be
accessible at different granularity levels to support agile utilization and self-
service consumption.
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Fig. 3.2: Main enablers of software-defined IoT cloud systems

• Enable dynamic feature composition – The units are specified declaratively and
their functionality is defined (composed) programmatically in software, using
the well-defined API and available, familiar software libraries.

• Automated provisioning – Main provisioning processes need to be automated in
order to enable dynamic, on-demand configuring and operating software-defined
IoT systems, on a large scale (e.g., hundreds gateways).

• Managed configuration models – The configuration models need to be managed
automatically, as well as dynamically propagated and (re)enforced in the edge
resources, by a provisioning framework.

Figure 3.1 summarizes how we translate the aforementioned high-level design
principles into concrete technical enablers. It serves as a general road map towards
achieving our goal of enabling the utility-based provisioning paradigm in IoT Cloud
systems. For example, to allow for flexible system customization, we need to enable
fine-grained resource consumption and well-defined API encapsulation and provide
support for policy-based specification and configuration. Among other things, these
principles are enabled by our software-defined IoT units and support for centrally
managed configuration models. Figure 3.2 gives a high-level graphical overview of
the main building blocks and enabling techniques, which are the prime focus of this
chapter. Subsequently, we describe them in more detail. In Chapter 4, we will focus
on enabling the remaining design principles shown in Figure 3.1.

3.2.2 Conceptual Model of Software-Defined IoT Units

Figure 3.3 illustrates the conceptual model of our software-defined IoT units. The
units encapsulate functional aspects (e.g., communication capabilities or sensor poll
frequencies) and non-functional aspects (e.g., quality attributes, elasticity capabilities,
costs and ownership information) of the IoT resources and expose them in the IoT
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Fig. 3.3: Conceptual model of software-defined IoT units

cloud. The functional, provisioning and governance capabilities of the units are
exposed via well-defined APIs, which enable provisioning and control of the units
at runtime, e.g., start/stop. Our conceptual model also allows for composition and
interconnection of software-defined IoT units, in order to dynamically deliver IoT
resources and capabilities to the applications. The runtime provisioning and config-
uration is performed by specifying late-bound policies and configuration models.
Naturally, the software-defined IoT units support mechanisms to map the virtual
resources to the underlying physical infrastructure.

To technically realize our unit model we introduce a concept of unit prototypes.
They can be seen as resource containers, which are used to bootstrap more com-
plex, higher-level units. Generally, they are hosted in the cloud and enriched with
functional, provisioning and governance capabilities, which are exposed via software-
defined APIs. The unit prototypes can be based on OS-level virtualization, e.g., VMs,
or finer-grained kernel-supported virtualization, e.g., Linux containers. Conceptu-
ally, virtualization choices do not impose any limitations, because by utilizing the
well-defined API, our unit prototypes can be dynamically configured, provisioned,
interconnected, deployed and controlled at runtime.

Given our conceptual model (Figure 3.3), by utilizing the provisioning API, the
unit prototypes can be dynamically coupled with late-bound runtime mechanisms.
These can be any software components (custom or stock), libraries or clients that
can be configured and whose binding with the unit prototypes is differed to the run-
time. For example, the mechanisms can be used to dynamically add communication
capabilities, new functionality or storage to our software-defined IoT units. There-
fore, by specifying policies that are bound later during runtime, system designers or
operations managers can flexibly manage unit configurations and customize their ca-
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pabilities, at fine granularity levels. Our conceptual model also allows for composing
the software-defined IoT units at higher levels. By selecting dependency units, e.g.,
based on their costs, analytics or elasticity capabilities, and linking them together,
we can dynamically build more complex units. This enables flexible policy-based
specification and configuration of complex relationships between the units. There-
fore, by carefully choosing the granularity of our units and providing configuration
policies we can automate the unit composition process at different levels and in some
cases completely defer it to runtime. This makes the provisioning process flexible,
traceable and repeatable across different cloud instances and IoT infrastructures, thus
reducing time, errors and costs.

The runtime governance API, exposed by the units, enables us to perform runtime
control operations such as starting or stopping the unit or to change the topological
structure of the dependency units, e.g., dynamically adding or removing dependencies
at runtime. Therefore, one of the most important consequences of having software-
defined IoT units is that the functionality of the virtual IoT infrastructure can be
(re)defined and customized after it has been deployed. New features can be added to
the units and the topological structure of the dependency units can be customized at
runtime. This enables automation of provisioning and governance processes, e.g., by
utilizing the governance API and providing monitoring at unit level, we can enable
elastic horizontal scaling of our units. Therefore, the most important features of
software-defined IoT units which enable the general principles of software-defined
IoT (see Section 3.2.1) are: i) They provide software-defined API, which can be used
to access, configure and control the units, in a unified manner. ii) They support fine-
grained internal configurations, e.g., adding functional capabilities such as different
communication protocols, at runtime. iii) They can be composed at a higher-level, via
dependency units, creating virtual topologies that can be (re)configured at runtime.
iv) They enable decoupled and managed configuration (via late-bound policies) to
provision the units dynamically and on demand. v) They have utility cost functions
that enable IoT resources to be priced as utilities.

3.2.3 Unit Classification

Depending on their purpose and capabilities, our software-defined IoT units have
different granularity and internal topological structure. Therefore, conceptually we
classify them into: (i) atomic, (ii) composed and (iii) complex software-defined
IoT units. Depending on their type, the units require specific runtime mechanisms
and expose specific provisioning API. Figure 3.4 depicts a simplified model of the
software-defined IoT unit structure and the most important dependencies among the
described unit types.

The atomic software-defined IoT units are the finest-grained software-defined IoT
units, which are used to abstract the core capabilities of an IoT resource. They provide
software-defined API and need to be packaged portably to include components and
libraries, that are needed to provide desired capabilities. Figure 3.5 depicts some
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examples of the atomic software-defined units. We broadly classify them into func-
tional and non-functional atomic software-defined IoT units, based on the capabilities
they provide. Functional units encapsulate capabilities such as communication or IoT
compute and storage. Non-functional units encapsulate configuration models and
capabilities such as elasticity controllers or data-quality enforcement mechanisms.
Therefore, the atomic units are used to identify fine-grained capabilities needed by
an application. For example, the application might require communication to be
performed via a specific transport protocol, e.g., MQTT, or it might need a specific
monitoring component, e.g., Ganglia2. Classifications similar to the one presented in
Figure 3.5 can be used to guide the atomic units selection process, in order to easily
identify the exact capabilities needed by the application.
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Fig. 3.5: Example classification of atomic software-defined IoT units

The composed software-defined IoT units have multiple functional and non-functional
capabilities, i.e., they are composed of multiple atomic units. Similarly to the atomic
units they provide well-defined API, but require additional functionality such as

2 http://ganglia.info/
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mechanisms to support declaratively composing and binding the atomic units, at
runtime (Section 3.3.2). An example of a composed unit is a software-defined IoT
gateway.

The complex software-defined IoT units enable capturing complex relationships
among the finer-grained units. Internally, they are represented as a topological net-
work, which can be configured and deployed, e.g., in the cloud. They define an
API and can integrate (standalone) runtime controllers to dynamically (re)configure
the internal topology, e.g., to enable elastic horizontal scaling of the units. Finally,
they rely on runtime mechanisms to manage references, e.g., IP addresses and ports,
among the dependency units.

We notice that the software-defined API and our units offer different advantages to
the stakeholders involved in designing, provisioning and governing software-defined
IoT systems. For example, IoT infrastructure providers can offer their resources at
fine granularity, on demand. This enables specifying flexible pricing and cost models
and allows for offering the IoT resources as elastic utilities in a pay-as-you-go
manner. Because our units support dynamic and automated composition on multiple
levels, consumers of IoT cloud resources can provision the units to exactly match
their functional and non-functional requirements, while still taking advantage of the
existing systems and libraries. Further, system designers and operations managers,
use late-bound policies to specify and configure the unit’s capabilities. Because we
treat the functional and configuration units in a similar manner (see Section 3.3.2),
configuration models can be stored, reused, modified at runtime and even shared
among different stakeholders. This means that we can support managed configuration
models, which can be centrally maintained via configuration management solutions
for the IoT cloud, e.g., based on OpsCode Chef3, Bosh4 or Puppet5.

3.3 Main Techniques for Provisioning Software-Defined IoT

Cloud Systems

3.3.1 Automated Composition of Software-Defined IoT Units

Generally, building and deploying software-defined IoT cloud systems includes creat-
ing and/or selecting suitable software-defined IoT units, configuring and composing
more complex units and building custom business logic components. The deployment
phase includes deploying the software-defined IoT units together with their depen-
dency units and required (possibly standalone) runtime mechanisms (e.g., a message
broker). In this chapter we mostly focus on provisioning reusable stock components
such as gateway runtime environments or available communication protocols.

3 http://opscode.com/chef
4 http://docs.cloudfoundry.org/bosh/
5 http://puppet.com



3.3 Main Techniques for Provisioning Software-Defined IoT Cloud Systems 39

ACTIONS
* Pull external 
repo
* Build 
* Select
unit prototype
* Configure
* Exceptions 
and errors

Atomic 
unit

Compo-
sed
unit

Complex 
unit

ACTIONS
* Conf olicies
* Select
unit prototype
* Resolve 
dependencies
* Exceptions 
and errors

ACTIONS

* Select
unit prototype
* Link unit 
dependencies
* Exceptions 
and errorsSelect 

third-
party unit

Deploy

Select 
third-

party unit

Fig. 3.6: Automated composition of software-defined IoT units

Figure 3.6 illustrates the most important steps in composing and deploying our IoT
units. There are three levels of configuration that can be performed: (i) Building/s-
electing atomic units; (ii) Configuring composed units; (iii) Linking into complex
units. Each of the phases includes selecting and provisioning suitable unit prototypes.
For example, the unit prototypes can be based on different resource containers such
as VMs, Linux Containers (e.g., Docker) or OSGi runtime.

The atomic units are usually provided as stock components, e.g., by a third party,
possibly in a market-like fashion. Therefore, this phase usually involves selecting and
configuring stock components (e.g., Sedona6 or Niagara AX7 execution environments).
Classifications similar to the one presented in Figure 3.5 can be used to guide the
atomic unit selection process. In case we want to perform custom builds of the
existing libraries and frameworks, there are many established build tools that can be
used, e.g., for Java-based components, Apache Ant or Maven.

On the second level, we configure the composed units, e.g., a software-defined IoT
gateway. This is done by adding the atomic units (e.g., runtime mechanisms and/or
software libraries) to the composed unit. For example, we might want to enable the
gateway to communicate over a specific transport protocol, e.g., MQTT, and add
a monitoring component to it, e.g., a Ganglia agent. To perform this composition
seamlessly at runtime, additional mechanisms are required. We describe them in
Section 3.3.2.

The third level includes defining the dependency references between the composed
units, which ”glue together” the complex units. These links specify the topological
structure of the desired complex units. For example, to this end we can set up a virtual
private network and provide each unit with a list of IP addresses of the dependency
units. In this phase, we can use frameworks (e.g., TOSCA-based, OpenStack Heat,
Amazon CloudFormation etc.) to specify the runtime topological structure of our
units and utilize mechanisms (e.g., Ubuntu CloudInit8) to bootstrap the composition.

6 http://www.sedonadev.org/
7 http://www.niagaraax.com/
8 http://help.ubuntu.com/community/CloudInit/
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3.3.2 Centrally Managed Configuration Models

An important concept behind software-defined IoT cloud systems is that of late-bound
runtime policies. Our units are configured declaratively via policies by utilizing the
exposed software-defined API, without worrying about the internals of the runtime
mechanisms, i.e., the atomic units. To enable seamless binding of the atomic units
we provide a special unit prototype, called the bootstrap container. The bootstrap
container provides mechanisms to define (bind) the units based on supplied configu-
rations or to redefine them when configuration policies are changed. Therefore, the
units can be simply ”dropped in” and our bootstrap container (re)binds them together
at runtime without rebooting system. Therefore, in order to support centrally man-
aged configuration models and dynamic feature composition, besides managing the
units our provisioning framework is responsible for maintaining application-specific
configurations. Application configuration models are treated as special components
of artifact packages. By decoupling the configuration models from the functional
artifacts, we can treat them like any software-defined IoT unit that adheres to the
general principles of software-defined IoT (Section 3.2.1). Our framework provides
mechanisms to specify and propagate the configuration models to the edge of the
IoT cloud infrastructure (e.g., gateways) and our bootstrap container enforces the
provided directives.

To support fully fledged dynamic feature composition, the configuration container
can act as a plug-in system, based on the inversion of control principles. It provides
mechanisms to bind the application artifacts (e.g., atomic units) based on supplied
configurations or to redefine them when configurations are changed. The container
initially binds such functional artifacts based on the configuration models and contin-
uously listens for configuration changes, applying them on the affected functional
artifacts accordingly. Runtime changes are achieved by invalidating affected parts
of the existing dependency tree and dynamically rebuilding them, based on the new
configuration directives. This feature is especially useful for managing the communi-
cation protocols, which are provided by cloud and device connectivity components
(cf. Chapter 4). However, to support dynamic feature composition, our framework
requires the artifacts to be wrapped in well-defined APIs, which are known to the
provisioning container. Since this imposes some limitations, this feature is optionally
provided by the framework. The main advantage of this approach is that it enables
updating configuration models without updating the entire artifact package, thus
allowing for flexible customizations and dynamic configuration changes without
runtime interrupts as well as reducing communication overhead.
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3.4 Prototype Implementation & Evaluation

3.4.1 Preliminary Implementation of Provisioning Controller

The main aim of our prototype is to enable developers and operations managers to
dynamically, on-demand provision and deploy software-defined IoT systems. This
includes providing software-defined IoT unit prototypes, enabling automated unit
composition at multiple levels and supporting centralized runtime management of
the configuration models.

In Section 3.2 we introduced the conceptual model of our software-defined IoT
units. To technically realize our units, we utilize the concept of virtual resource con-
tainers. More precisely, we provide different unit prototypes that can be customized
and/or modified at runtime by adding required runtime mechanisms encapsulated in
our atomic units. The unit prototypes provide resources with different granularity,
e.g., VM flavors, group quotas, priorities etc., and boilerplate functionality to enable
automated provisioning of custom software-defined IoT units. Figure 3.7 provides a
high-level overview of the framework (cloud-based provisioning controller) archi-
tecture. Our framework is completely hosted in the cloud and follows a modular
design that guarantees flexible and evolvable architecture. The current prototype
is implemented atop OpenStack [130], which is an open source Infrastructure-as-
a-Service (IaaS) cloud computing platform. The Presentation layer provides user
interface via a Web-based UI and RESTful API. They allow a user to specify various
configuration models and policies, which are used by the framework to compose
and deploy our units in the cloud. Cloud core services layer contains the main
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functionality of the framework. It includes the PolicyProcessor used to read the
input configurations= and transform it into the internal model defined in our frame-
work. Units management services utilize this model for composing and managing
the units. The InitializationManager is responsible for configuring and composing
more complex units. It translates the directives specified in configuration models into
concrete initialization actions on the unit level. In our current implementation, the
core of the InitalizationManager is an OpsCode Chef client, which is passed to the
VMs during initialization via Ubuntu cloud-init. InitalizationManager also provides
mechanisms for configuration management. The DeploymentManager is used to
deploy the software-defined IoT units in the cloud. Our prototype relies on SALSA9,
a deployment automation framework developed in our department. It utilizes the API
exposed by the CloudSystemWrapper to enable deployment across various cloud
providers, currently implemented for OpenStack cloud. The DeploymentManager is
responsible for managing and distributing the dependency references for the complex
units (Section 3.2.3). The Unit persistence layer provides functionality to store and
manage our software-defined units and policies.

3.4.2 Experiments

3.4.2.1 Revisiting the Motivating Scenario

We now show how our prototype is used to provision a complex software-defined
IoT unit, which provides functionality for the real-life FMS location-tracking service
(Section 3.1.1). The service reports vehicle location in near real-time in the cloud.
To enable remote access, the monitored vehicles have an on-board device, acting
as a gateway to its data and control points. To improve performance and reliability,
the golf course provides on-site gateways, which communicate with the vehicles,
provide additional processing and storage capabilities and feed the data into the cloud.
Therefore, the physical IoT infrastructure comprises network-connected vehicles,
on-board devices and local gateways.

Typically, to provision the FMS service system designers and operations manager
would need to directly interact with the rigid physical IoT infrastructure. Therefore,
they at least need to be aware of its topological structure and devices’ capabilities.
This means that the FMS service also needs to have understanding of the IoT infras-
tructure, instead of being able to customize the infrastructure to its needs. Due to
the inherent inflexibility of IoT infrastructure, its provisioning usually involves long
and tedious tasks such as manually logging into individual gateways, understanding
gateway internals or even on-site presence. Therefore, provisioning even a simple
FMS location-tracking service involves performing many complex tasks. Due to a
large number of geographically distributed vehicles and involved stakeholders IoT
infrastructure provisioning requires a substantial effort prolonging service delivery

9 https://github.com/tuwiendsg/SALSA/
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and increasing costs. Subsequently, we show the advantages our units (Section 3.2.2)
and provisioning techniques (Section 3.3) have to offer to operations managers and
application designers in terms of: a) Simplified provisioning to reduce time, costs
and possible errors; b) Flexibility to customize and modify the IoT units and their
runtime topologies.

To enable the FMS system we developed a number of atomic software-defined
IoT units10 such as a software-defined sensor that reports vehicle location in real-
time, messaging infrastructure based on Apache ActiveMQ11, a software-defined
protocol based on MQTT and JSON, the bootstrap container based on the Spring
framework12, and corresponding configuration units. The experiments are simulated
on our OpenStack (Folsom) cloud and we use Ubuntu 12.10 cloud image (Memory:
2 GB, VCPUs: 1, Storage: 20 GB). To display location changes we develop a Web
application that displays changes of vehicles’ location on Google Maps.

3.4.2.2 Simplified Provisioning

To demonstrate how our approach simplifies provisioning of the virtual IoT infras-
tructure, we show how a user composes the FMS complex software-defined IoT unit,
using our framework. Figure 3.8 shows the custom deployment of the topological
structure of the FMS vehicle-tracking unit, deployed in the cloud. The unit contains
two gateways for the vehicles it tracks, a web server for the Web application and a
message broker that connects them.
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Fig. 3.8: Topological structure of FMS vehicle-tracking unit (a screen shot)

10 https://github.com/tuwiendsg/SDM
11 http://activemq.apache.org/
12 http://projects.spring.io/spring-framework/
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In order to start provisioning the complex unit, the system designer only needs to
provide a policy describing the high-level resources and capabilities required by the
FMS service. For example, Listing 3.1 shows a snippet from the configuration policy
for the FMS location-tracking unit, which illustrates how we specify a software-
defined gateway, for the on-board device.

1 ...

2 <tosca:NodeTemplate id="SD-Gateway"

3 name="car_1278" type="vm">

4 <tosca:Properties >

5 <MappingProperties >

6 <MappingProperty type="vm">

7 <property name="instanceType">m1.small</property >

8 <property name="provider">openstack@dsg </property >

9 <property name="baseImage">ami-00000163</property >

10 </MappingProperty >

11 </MappingProperties >

12 </tosca:Properties >

13 <tosca:Requirements >

14 <tosca:Requirement name="MQTT-broker-IP" type="String"

15 id="brokerIp_Requirement"/>

16 </tosca:Requirements >

17 <tosca:DeploymentArtifacts >

18 <tosca:DeploymentArtifact artifactType="chef"

19 artifactRef="deployClient"/>

20 </tosca:DeploymentArtifacts >

21 </tosca:NodeTemplate >

22 ...

Listing 3.1: Partial TOSCA-like complex unit description

The policy describes the gateway’s initial configuration and the cloud instance
where it should be deployed. Additionally, it defines a dependency unit, i.e., the
MQTT broker, and specifies the vehicle’s Id, which can be used to map it on the
underlying device. Our framework takes the provided policy, spawns the required
unit prototypes and provides them with references to the dependency units. At this
stage the virtual infrastructure comprises solely of unit prototypes (VM-based).
After performing the high-level unit composition and establishing the dependencies
between the units, the user continues composing on the finer-granularity level. By
applying the top-down approach we enable differing design decisions and enable
early automation of known functionality, to avoid over-engineering and provisioning
redundant resources.

In the next phase, the user provisions individual unit prototypes. To this end, he
provides policies specifying desired finer-grained capabilities. Listing 3.2 shows
example capabilities that can be added to the gateway. To enable asynchronous
pushing of the location changes it should communicate over the MQTT protocol.
Listing 3.3 shows part of the Chef recipe used to add the MQTT client to the gateway.
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Our framework fetches the atomic units that encapsulate the required capabilities
from the repository and composes them automatically, relying on the software-defined
API and our bootstrap container.

1 {"run_list":

2 ["recipe[bootstrap_container]",

3 "recipe[mqtt-client]",

4 "recipe[protocol-config-unit]",

5 "recipe[sd-sensor]"]

6 }

Listing 3.2: Run list for software-defined gateway

1 include_recipe ’bootstrap_container::default’

2 remote_file "mqtt-client -0.0.1-SNAPSHOT.jar" do
3 source "http://128.130.172.215/salsa/upload/files/..."

4 group "root"

5 mode 00644

6 action :create_if_missing

7 end

Listing 3.3: Chef recipe for adding MQTT protocol

Therefore, compared to the traditional approaches, which require gateway-specific
knowledge, using proprietary API, manually logging into the gateways to set data
points, our automated unit composition (Section 3.3.1) based on declarative unit
configuration policies simplifies the provisioning process and makes it traceable and
repeatable. Our units can easily be shared among the stakeholders and composed to
provide custom functionality. This enables system designers and operations managers
to rely on existing, established systems, thus reducing provisioning time, potential
errors and costs.

3.4.2.3 Flexible Customization

To exemplify the flexibility of our approach let us assume that we need to change
the configuration of the FMS unit to use CoAP instead of MQTT. This can be
due to requirements change (Section 3.1.1) or reduced network connectivity or
simply to reuse the unit for a golf course with different networking capabilities.
To customize the existing unit, an operations manager only needs to change the
recipe[protocol-config-unit] unit (Listing 3.2) and provide an atomic unit for
the CoAP client. This is a nice consequence of our late-bound runtime mechanisms
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and support for managed configuration models provided by our framework. We
treat both functional and configuration units in the same manner and our bootstrap
container manages their runtime binding (Section 3.3.2). Compared to traditional
approaches that require each gateway to be addressed individually, firmware updates
or even modifications on the hardware level, our framework enables flexible runtime
customization of our units and supports operation managers in seamlessly enforcing
the configuration baseline and its modifications on a large-scale.

3.5 Summary

In this chapter, we introduced the conceptual model of software-defined IoT units.
To the best of our knowledge this is the first attempt to apply software-defined prin-
ciples to IoT systems. We showed how they are used to abstract IoT resources and
capabilities in the cloud, by encapsulating them in software-defined APIs. We pre-
sented automated unit composition and managed configuration, the main techniques
for provisioning software-defined IoT systems. The initial results are promising
in the sense that software-defined IoT systems enable sharing of the common IoT
infrastructure among multiple stakeholders and offer advantages to IoT cloud system
designers and operations managers in terms of simplified, on-demand provisioning
and flexible customization. Therefore, we believe that software-defined IoT systems
can significantly contribute to the evolution of IoT cloud systems.



Chapter 4

Middleware for Utility-based Provisioning of

Smart City Infrastructure

Today, a large number of a city’s facilities are organized as public utilities. Electricity,
water, public transportation and various energy resources are some examples of
public utilities that are delivered and managed by one party (e.g., the municipality)
and that can be bought, metered and consumed by different Smart City stakeholders
such as citizens. These utilities form the core infrastructure of contemporary cities
and represent a significant portion of the “city capital” used to fuel a variety of city
activities and processes. One of the main advantages of the utility-based consumption
model is reflected in its support for self-service, on-demand resource consumption,
where users can dynamically consume (allocate) the appropriate amount of infras-
tructure resources. For example, in case of ICT infrastructure this can be compute
or storage resources required by an application or value-added service [24, 8]. As
we have seen in Chapter 3, one of the main traits of future Smart Cities is that ICT
infrastructure and data are ever more strongly becoming a crucial part of the city
capital, enabling generation of novel values in the Smart City.

Unfortunately, realizing the utility-based provisioning paradigm of Smart City
ICT infrastructures is still in its infancy, mainly because current approaches dealing
with IoT Cloud1 provisioning focus on providing virtualization solutions for the IoT
devices, such as IoT gateways [43, 189, 167]. Although device virtualization is one
of the preconditions for utility-based provisioning, such approaches usually focus
on vertical solutions (cf. Chapter 1). They are intended to support a specific task,
e.g., data integration or data linking, and largely rely on rigid provisioning models.
This inherently prevents the consumption of Smart City infrastructure resources as
generic utilities and requires rethinking existing support for: i) representing the Smart
City infrastructure resources, ii) managing their delivery, configuration, consumption
and pricing models, as well as iii) composing low-level resource components into
usable infrastructures, capable to support novel Complex Coordinated Activities in
the context of future Smart Cities (cf. Chapter 1).

1 The IoT Cloud is the core of Smart City ICT infrastructure, as we have thoroughly discussed in
Chapter 3.
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In this chapter2, we continue our line of research towards utility-based provision-
ing of Smart City infrastructures and introduce a novel provisioning middleware for
the IoT Cloud. Our middleware builds on the previously introduced concepts and
frameworks of Chapter 3, extending them with comprehensive support for scalable
multi-level provisioning of IoT Cloud systems. This is one of the crucial precon-
ditions for realizing the utility-based provisioning paradigm in Smart Cities and
IoT Cloud systems. The main features of our middleware include: i) Support for
automated provisioning of infrastructure resources, application components and
configuration models in a uniform, logically centralized manner through dynami-
cally managed APIs; ii) Extensible and flexible provisioning models, which support
self-service, on-demand consumption of Edge-device resources; iii) A generic, light
weight resource abstraction mechanism, which allows for application-specific cus-
tomizations of and virtually exclusive access to low-level devices, e.g., sensors and
actuators, with well-defined APIs.

The remainder of the chapter is organized as follows: Section 4.1 presents the
main research challenges and the research context; In Section 4.2 we introduce our
middleware and discuss its architecture in detail; Section 4.3 outlines the major
runtime mechanisms for multi-level provisioning; Section 4.4 describes experimen-
tal results and outlines the current prototype implementation; Finally, Section 4.5
concludes the chapter and gives an outlook of our future research towards realizing
fully fledged utility-based provisioning of Smart City infrastructure.

4.1 Research Context

In Chapter 3, we have introduced a Smart City infrastructure-provisioning model
based on software-defined IoT Cloud systems. The core concept of the provisioning
model is software-defined IoT units. They describe IoT Cloud resources (e.g., virtual
sensors), their runtime environments (e.g., gateways) and capabilities (e.g., commu-
nication protocols or data point controllers). Such units are used to encapsulate the
IoT Cloud resources and abstract their provisioning in software. To this end, they
expose well-defined APIs and can be composed at different levels, creating virtual
runtime infrastructures for IoT Cloud applications.

The main purpose of such software-defined IoT Cloud infrastructures is to enable
utility-based provisioning of IoT Cloud resources by providing a uniform and logi-
cally centralized view of the entire underlying resource pool, as well as by allowing
IoT Cloud applications to customize and consume those resources dynamically and
on demand. However, due to the dynamicity, heterogeneity, geographical distribution
and sheer scale of such infrastructures, achieving these features poses a number of
challenges. To better motivate our work, in the following we discuss the properties of
IoT Cloud infrastructures and derive a set of key research challenges that currently
prevent utility-based provisioning of IoT Cloud resources.

2 The work presented in this chapter was originally introduced by Nastic et al. in [123].
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Fig. 4.1: Overview of software-defined IoT Cloud infrastructure

Figure 4.1 depicts a high-level architecture overview of the software-defined
infrastructure, and shows how the main stakeholders interact with such infrastructure.
The bottom layer represents the Physical infrastructure, which comprises a variety of
geographically dispersed edge devices (e.g., sensors and gateways), network elements
(routers and switches) and large data centers. In reality, the physical infrastructure is
usually not flat and follows a hierarchical structure, where sensors and actuators are
connected to data centers via gateways, which are intermediary nodes that mediate the
communication, but also provide constrained computational and storage resources,
which are currently largely underutilized. Additionally, it is common to strategically
place more powerful processing nodes near the Edge (but within the hierarchy), such
as Cloudlets and micro data centers. The communication between the Edge and the
data centers is realized over heterogeneous networks which include wired, wireless
and cellular communication channels. Moreover, IoT Cloud infrastructure is highly
decentralized and distributed among multiple geographical regions and organizations.

A distinguishing feature of the software-defined IoT Cloud infrastructure is the
Infrastructure virtualization layer. A number of existing approaches deal with the
Edge device virtualization, exposing them to the upper layers on different levels
of abstraction. Most relevant approaches for our discussion are centered around
Unikernels and kernel-supported virtualization, which is discussed in Section 4.2.
Other related approaches, such as software-defined networking (SDN) and semantics-
based data integration are discussed in Chapter 2.

The Middleware is a crucial part of software-defined IoT Cloud infrastructure
and, in general, its main responsibility is to provide a uniform representation of
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the underlying (virtual) infrastructure resources as well as to enable delivery and
consumption of such resources. This layer needs to provide mechanisms and tools
for infrastructure provisioning, managing configuration models and deployment of
applications. The middleware relies on and utilizes a number of different components.
In the following, we only briefly discuss those components since they are out of
the scope of this book, although they are the main focus of numerous research and
industry approaches, e.g., [54], which can be used to complement our approach.

The Device management and orchestration component is generally responsible
for supporting discovery and management of physical Edge devices (e.g., detecting
newly connected devices), monitoring their status, but also mapping and allocation
of virtual resources to the underlying devices. The Repositories are used to provide
persistent storage facilities for configuration models, infrastructure automation scripts
and software-defined units, which are delivered and deployed on the devices by the
middleware. The Identity management and access control generally deals with
assigning and managing dedicated, unique names (IDs) to individual devices, but
also provides security techniques to determine which devices are permitted to be
provisioned as IoT Cloud resources.

4.1.1 Research Challenges

Utility-based provisioning is a well-established and proven concept in cloud com-
puting [24, 101]. Among other things it requires: on-demand, self-service usage
models; ubiquitous access to a shared pool of configurable resources, which can be
customized to exactly meet application requirements; as well as autonomous and
automated allocation of the consumed resources. However, given the previously
described properties of the IoT Cloud, realizing these features in the context of IoT
Cloud systems is a non-trivial task which creates a number of challenges that need to
be addressed.

One of the main challenges is to support the on-demand, self-service usage model,
because it requires support for uniform interactions with the large-scale, heteroge-
neous IoT Cloud resource pool. This could potentially be achieved by virtualizing
and encapsulating the IoT Cloud resources into well-defined APIs and allowing the
users to access such resources on multiple levels of abstraction. However, in this
case the middleware (Figure 4.1) needs to provide support for the non-trivial task of
managing such virtual resources and their APIs and mediating all communication
with the heterogeneous devices.

Assuming that IoT Cloud resources are accessible in a uniform manner, another
challenge is to enable the users to automatically provision IoT Cloud resources.
However, the strong dependence of IoT Cloud applications on specific properties of
the underlying devices and novel resource features intrinsically prevent consump-
tion of IoT Cloud infrastructure as traditionally generic compute or storage utilities.
This requires comprehensive provisioning support on multiple levels such as the
infrastructure-, platform- and application-levels. One way to achieve this is by uti-
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lizing provisioning workflows [84] (Figure 4.1 (top)). The main advantage of the
workflow approach is that it allows for nested provisioning workflows (shown as dot-
ted nodes in the figure), which are well suited for multi-level provisioning. However,
to support their execution on a large resource pool the middleware needs to enable
elastically scalable execution of the provisioning tasks.

Enabling ubiquitous access to the large, geographically distributed resource pool
is yet another challenge since it demands logically centralized interaction with un-
derlying devices. However, since the underlying devices are inherently dispersed,
the middleware needs to be distributed across the resource-constrained devices, thus
and optimized for such constrained execution environments. Moreover, to support
customization of such resources, the middleware needs to support management of
application components and configuration models, but also provide suitable mech-
anisms to dynamically deliver and (re)enforce the configuration models inside the
Edge devices.

4.2 IoT Cloud Provisioning Middleware

With respect to the components presented in Figure 4.1, the main focus of this
chapter is the Middleware layer. The main purpose of our middleware is to facilitate
implementing and executing provisioning workflows in IoT Cloud systems, by
addressing the previously described challenges and enabling the remainder of the
design principles introduced in Chapter 3. Support for multi-level provisioning is
thoroughly discussed in Section 4.3. At the moment it is important to note that IoT
Cloud provisioning involves two main tasks: i) allocating and deploying Software-
Defined Gateways (SDGs), which are a special type of the aforementioned software-
defined IoT units, and ii) customizing Software-Defined Gateways with application-
specific artifacts.

Figure 4.2 gives a high-level architecture overview of our middleware. Gener-
ally, the provisioning middleware is designed based on the microservices archi-
tecture [108] and it is distributed across the Cloud and Edge devices. The main
components of the provisioning middleware include: i) the Software-Defined Gate-
ways, ii) the Provisioning and Virtual Buffers Daemons that run in Edge devices and
iii) the Provisioning Controller which runs in the Cloud. In the remainder of this
section, we discuss these components in more detail.

4.2.1 Software-Defined Gateways

Software-defined gateways are one particular type of software-defined IoT units and
their main purpose is to support virtualizing the IoT Cloud compute resources, most
notably Edge devices, in order to provide isolated and managed application execu-
tion environments. Our middleware does not support building custom SDGs from
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Fig. 4.2: Architecture overview of the provisioning middleware

scratch, instead it provides so-called SDG prototypes and the required mechanisms to
customize them, based on application-specific requirements. At their core SDG pro-
totypes define an isolated runtime environment for the SDGs and application-specific
components. To this end, the main purpose of SDG prototypes is to provide isolated
namespaces as well as to limit and isolate resource usage such as CPU and memory.
Therefore, the SDG prototypes are used to bootstrap higher-level SDG functionality.
In Figure 4.3 the double line shows the virtual boundaries of the SDG prototypes.
It is important to mention that SDG prototypes do not propose a novel virtualiza-
ton solution, but rely on proven techniques, namely kernel-supported virtualization
approaches, which offer a number of lightweight execution environments/drivers
such as LXCs, libvirt-sandbox or even chroot, generally referred to as containers that
can be used to “wrap” SDGs. Conceptually, virtualization choices do not pose any
limitations, because by utilizing the well-defined APIs, our SDGs can be dynami-
cally configured, provisioned, interconnected and deployed, at runtime. The SDG
prototypes are hosted in the IoT Cloud and enriched with functional and provisioning
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capabilities, which are exposed via well-defined APIs. A number of middleware
components (Figure 4.3) are pre-installed (except for Artifact Packages) in each SDG
prototype in order to support such APIs. Next, we discuss these components in more
detail.
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Fig. 4.3: Software-defined gateway architecture

4.2.1.1 Artifact Packages

Generally, IoT Cloud applications consist of different application components and
supporting files (e.g., libraries and binaries), which we refer to as application-specific
artifacts. Such artifacts are deployed, configured and executed inside software-defined
gateways. Generally, our provisioning middleware does not make any assumptions
about the application model or concrete artifact implementations. However, in order
to enable automated artifact provisioning, it requires them to be packaged as shown
in Figure 4.4. There are two important things to mention here. First, the Artifact
Package needs to contain a set of provisioning directives with all the necessary
instructions such as installing and uninstalling the package. When a provisioning
workflow submits a provisioning request, the middleware maps the request to a
concrete implementation of provisioning the directive. To support implementing such
directives, previously we have introduced a lightweight provisioning DSL [122]. Sec-
ond, the packages contain meta-information such as artifacts’ hardware requirements
and exposed APIs. The specification of the APIs is optional, but they are needed by
the middleware if an application wants to completely delegate management of its
configuration models to the middleware, as we discussed in Chapter 3.
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4.2.1.2 Provisioning Agent

All packages that are not pre-installed on the Edge devices have to be provisioned
by the framework during runtime. For this purpose, our middleware provides a
lightweight Provisioning Agent, which is pre-installed inside SDGs. The agent con-
tinuously runs in each SDG and manages local artifact packages. The main responsi-
bility of the provisioning agent is to periodically inspect the Provisioning Controller
(Figure 4.2) update queue, download the artifact packages and execute directives ref-
erenced in provisioning workflows. Additionally, the agent acts as a local interpreter
of provisioning directives specified via our aforementioned provisioning DSL. The
agent is also responsible for handling various requests initiated by the Provisioning
Controller, by triggering the required actions in SDGs such as creating a snapshot
of the current device state via the SDGMonitor and uploading the snapshot to the
Controller. The SDGMonitor is discussed together with the Monitoring Agent later
in this section.

4.2.1.3 Device Connectivity

The SDGs are deployed on Edge devices with limited privileges in the sense that
they are not permitted to directly access the hardware. An obvious reason for such a
limitation is security, but also resource contentions and customization requirements,
since we can have multiple SDGs executing in the same Edge device simultaneously.
To enable applications to access the underlying devices, e.g., sensors, SDG offers a
Device Connectivity component. The main part of Device Connectivity is an SDG
endpoint, which exposes the devices to the SDG and enables service-based interac-
tion with them. The SDG endpoint is a single point of interaction with the underlying
Virtual Buffers Daemon (Figure 4.3) and at the moment, it is defined up to the trans-
port layer. For this reason the device connectivity component provides a pluggable
connectivity layer, which is by default preconfigured with our custom, REST-like
application-level protocol. In the current prototype we have also implemented CoAP
and MQTT communication protocols, but the device connectivity can be easily
extended by plugging in other application-level protocols such as sMAP [37].
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4.2.2 Edge Device Middleware Support

In order to support management of SDGs in Edge devices, our middleware pro-
vides lightweight components that are pre-installed and continuously run inside the
Edge devices. The most important components are the Virtual Buffers Daemon and
Provisioning Daemon, shown in Figure 4.2 on the left-hand side.

4.2.2.1 Virtual Buffers Daemon

We have discussed how our software-defined gateways can be used for virtualizing
compute resources of the Edge devices. However, since the SDGs run with reduced
privileges, the middleware also needs to virtualize access to the low-level devices
such as sensors and actuators. To this end it provides the Virtual Buffers Daemon
(VBD). The main purpose of the VBD is to mediate communication with devices
connected to a field bus (e.g., via Modbus, CAN, SOX/DASP, I2C or IP-based)
and to provide virtually exclusive access to such device. In general, the daemon
acts as multiplexer of the data and control channels, thus enabling the SDGs to
have their own view of and define custom configurations for such channels. For
example, a software-defined gateway can configure sensor poll rates, activate a low-
pass filter for an analog sensory input or configure unit and type of data instances
in the stream. Figure 4.5 depicts a simplified UML diagram of the VBD’s most
important components. The main concept behind the VBD is the VirtualBuffers.
Generally, the main goal of the virtual buffers is to provide a virtual representation of
sensors and actuators. They wrap the DeviceDrivers and share a common behavior
with them, inherited through the Component Interface. For example, they can be
initialized, shutdown and released. Both buffers’ and drivers’ lifecycles are managed
by the VirtualBuffersManager. The DeviceDrivers Package contains a set of driver
implementations. For readability purposes, in the figure we only show the component
for the I2C protocol, but each implementation follows similar principles. It contains
a set of Ports, which is a VBD internal representation of devices attached to the
bus. Such Ports are dynamically instantiated by the VirtualBuffersManager at device
bootup during driver initialization phase, based on the provided PortConfig. At the
moment, PortConfig is specified as a JSON file that contains the metadata such as
port class (e.g., analog in), name and hardware-related data, e.g., multiplexer address
or value correction constants. One of the limitations of the current implementation
is that it does not support dynamic device reconfiguration, meaning that if low-
level configurations change the VBD must be restarted. Moreover, a virtual buffer
references a set of Gatherers and can contain an optional AdapterChain. Generally,
a gatherer is a higher-level representation of a port. For example, in case of a
sensing device the gatherer represents the most recent value of the hardware interface.
To support SDG-specific configurations such as sensor poll rate, filters or scalers,
each virtual buffer can have an AdapterChain. Adapter chains reference different
Adapters, which are specified and parametrized via BufferConfig. For example, a
raw sensing value is passed through such an adapter chain before being delivered to
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Fig. 4.5: Simplified UML diagram of the Virtual Buffers Daemon

an SDG. Finally, the VBD is responsible for instantiating and maintaining an open
communication channel with software-defined gateways (via SDGConnection) and
keeping track of the mappings among the SGDs and their VirtualBuffers.

4.2.2.2 Provisioning Daemon

So far, we have tacitly assumed that SDGs are readily available and deployed in Edge
devices. However, this is naturally not the case, thus the SDGs need to be dynamically
allocated, instantiated and deployed on Edge devices. These tasks are the shared
responsibility of the Provisioning Daemon and the Provisioning Controller.

Generally, the Provisioning Daemon serves two main purposes: i) It continuously
runs in each Edge device and provides functionality to remotely manage the SDGs.
The remote endpoint is the middleware’s Provisioning Controller. ii) It acts as a
local proxy to the provisioning agents running inside each SDG, mediating all the
previously described provisioning communication with SDGs (Provisioning Agents).
At its core the provisioning daemon has a lightweight httpd server to allow for
bidirectional communication between the Provisioning Controller and the Edge
devices (i.e., SDGs). It is designed as a pluggable component, which relies on the
existing support for managing shared hosting domains (i.e., containers) such as
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Docker, LXD or virsh. In this context, the main components of the Provisioning
Daemon are an InvocationMapper and a set of plug-in components called Connectors.
Among other things, the InvocationMapper is responsible for handlin the provisioning
requests from the controller and mapping them to the corresponding Connector as
well as to obtain the required SDG prototypes form the Repositories and locally
manage their images. The connectors act as wrappers of the underlying mechanisms
for managing SDGs, exposing them to the InvocationMapper via uniform APIs.
Therefore, to use a different virtualization solution for SDGs, one only needs to
develop the needed connector and register it with the InvocationMapper. Second, the
provisioning daemon mediates communication with the SDG provisioning agents.
To support this, it manages local network interfaces of SDGs and behaves like a
transparent proxy for inbound communication. Regarding outbound communication
the Provisioning Daemon treats the monitoring responses in a particular manner. It
intercepts the monitoring information delivered by SDGMonitors and enriches it with
the current device state information, delivered by the MonitoringAgent (Figure 4.2).
The MonitoringAgent is used to collect meta-information about the SDGs such as ID,
but also to continuously monitor the underlying system via the available interfaces
in order to provide dynamic device information. To this end, it executes a sequence
of runtime monitoring actions to complete the dynamic device-state snapshot. For
example, such actions include: currently available disk space, available RAM, firewall
settings, environment information, list of processes and daemons, as well as a list of
currently installed and running SGDs. The created snapshots are transmitted to the
Provisioning Controller periodically or on request. The device snapshot is also used
by the InvocationMapper to determine whether a new SDG can be instantiated and
deployed on the Edge device, since current virtualization management solutions only
provide rudimentary support in this regard.

4.2.3 Cloud-Based Provisioning Controller

The Provisioning Controller (Figure 4.2) is the cloud counterpart part of our mid-
dleware. It provides a mediation layer that enables the users to interact with the
IoT Cloud in a conceptually centralized fashion, without worrying about geograph-
ical distribution and heterogeneity of the underlying Edge devices. Internally, the
Provisioning Controller comprises several microservices: APIManager, Monitoring-
Coordinator, SDG- and ArtifactsManager, DeploymentHandler, ImageBuilder and
DependencyManagement.

The main responsibility of the APIManager is to manage the Multi-level Provision-
ing API, i.e., it encapsulates the middleware provisioning capabilities in well-defined
APIs and handles all API calls from user-defined provisioning workflows. Although
our middleware provides multi-level provisioning support, this distinction is only
relevant to the middleware internal components, since APIManager hides all such de-
tails from the users, who effectively observe only simple API calls and corresponding
responses. Therefore, the APIManager is responsible for resolving incoming requests,
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mapping them to the respective handlers, i.e., SDGManager or ArtifactsManager (de-
pending on the request type), and delivering results to the calling workflow. Among
other things, the actions performed by these managers involve selecting requested
SDGs or artifacts by querying the corresponding SDG- and Artifacts-Repository,
building the package images and deliver them to the Edge devices. In Section 4.3,
we describe this process in more detail.

Since the majority of application artifacts and SDG images are not readily avail-
able in Edge devices, the DeploymentHandler is responsible for delivering them to
the Edge devices (i.e., Provisioning Daemons) or SDGs (i.e., Provisioning Agents) at
runtime. The DeploymentHandler relies on the DependencyManagement service to
resolve the required artifact dependencies and ImageBuilder to prepare (package and
compress) them into deployable images. Resolving the dependencies in the cloud
is particularly useful, because it saves a lot of processing and networking, from the
perspective of the whole IoT Cloud infrastructure, since otherwise each Edge device
would have to perform the same set of actions, e.g., downloads. Furthermore, as
opposed to fully fledged OS distros, Edge devices usually provide limited support in
terms of packaging or updating tools, since they often run stripped-down userland
such as BusyBox.

To create the aforementioned deployable images, our middleware uses the Im-
ageBuilder. In order to build an image, the builder performs the following steps:
(i) retrieve gateway-specific information from the IoT gateway management, (ii) use
the dependency management service to gather a list of suitable plans, (iii) based
on the plan, build an image, (iv) if the build was successful, hand over to the de-
ployment handler, (v) if the build failed try the next plan in the list. Finally, all
device state-snapshots are maintained by the MonitoringCoordinator, which manages
static device meta-information and periodically sends monitoring requests to the
MonitoringAgent in order to obtain runtime snapshots of current device state. The
role of the MonitoringCoordinator and the MonitoringAgents is described in more
detail in Section 4.3.

4.3 Runtime Mechanisms for Multi-level Provisioning in the IoT

Cloud

4.3.1 Runtime Execution of Provisioning Workflows

In general, to provision (a part of) an IoT Cloud application a user might design a
workflow resembling our example provisioning workflow shown in Figure 4.6 at the
top. Individual actions of such a workflow usually reference specific provisioning
capabilities, exposed via the middleware APIs, and rely on the middleware to sup-
port their execution. Usually, the main execution thread of provisioning workflows
(denoted by the solid lines in our example provisioning workflow), represents provi-
sioning directives for the infrastructure level, such as to deploy an SDG of a specific
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type on Edge devices (in this case based on BusyBox) or spinnup a cloud-based
Message Queue Broker, e.g., MQTT Broker. The sub-workflows (denoted by dashed
lines in the same example), are mainly used to specify application-level provisioning
directives. As previously mentioned, this involves customizing the SDGs with the
application-specific artifacts and configuration models. For example, this can involve
deploying, configuring and starting an application service.

Figure 4.6 also depicts a simplified sequence of steps performed by the middleware
when executing a provisioning workflow. For the sake of clarity, we omit several
steps and mainly focus on showing the most common interaction, e.g., we assume no
errors or exceptions occur and we do not show interaction with the Repositories.

A provisioning workflow requests an application artifact or an SDG by specifying
their respective IDs (currently consisting of a name and a version number) and a
specific Edge device ID. Next, the workflow invokes a specific API, e.g., to install or
uninstall the artifact. At this point the middleware attempts to execute the specified

API call
e.g., installSDG

API call Response
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provisioning directive. The Steps 1 to 7 in Figure 4.6 depict the most important actions
performed by our middleware in order to support an infrastructure-level provisioning
request, e.g., to deploy, instantiate and start an SDG in an Edge device. Therefore, the
middleware performs the following actions: i) The APIManager initially evaluates
the composite predicates (described later in this section) in order to determine a
set of devices on which the SGD will be deployed; ii) The SDGManager selects
a device-compatible SDG prototype and registers it with the DeploymentHandler;
iii) The MonitoringCoordinator together with the MonitoringAgent checks the SDG
against the current device-state snapshot; iv) The DeploymentHandler transfers the
SDG prototype image to the Provisioning Daemon; v) The ProvisioningDaemon
configures the SDG’s local network interface (based on the supplied mapping model),
starts the SDG and registers the new SDG instance with the Virtual Buffers Daemon;
vi) Finally the Virtual Buffers Daemon allocates a set of dedicated virtual buffers
and creates a dedicated SDGConnection handler. At this point the SDG instance is
running in the Edge device and it is performing internal initialization actions such
as starting the Configuration Container, the Provisioning Agent and its local SDG
Monitor. After the final initializations the SDG transmits its initial device state to the
controller and it is ready to handle application-level provisioning requests.

To support an application-level provisioning request the provisioning middleware
performs the following actions (steps 8 to 13 in Figure 4.6): i) Similarly to Step 3
each application artifact is checked against the current SDG-state snapshot, delivered
by the SDG Monitor; ii) The Dependency Management Service resolves runtime
dependencies of the artifact; iii) The PackageManager builds a deployable image
and registers it with the DeploymentHandler; iv) Similarly to step 5 the Deploymen-
tHandler delivers the image to the Provisioning Daemon; v) Finally, the Provisioning
Daemon transparently forwards the image to the SDG’s Provisioning Agent, which
installs the package locally in the SDG. In the remainder of the section we describe
the most important runtime mechanisms in more detail.

4.3.2 Evaluating Composite Predicates

While describing the main steps of the provisioning process, we have mostly focused
on the steps performed for a single device and a single SDG. However, usually the
provisioning workflows are meant to provision multiple devices, e.g., that share
some common properties or belong to the same organization. Therefore, the same
provisioning logic should be applicable regardless of specific devices. In this context,
it is particularly important to support designing generic provisioning workflows, in
the sense that such workflows should be defined independently of the Edge devices,
e.g., without referencing device IDs. One of the main preconditions for this is to
support the users in dynamically delimiting the range of provisioning actions. In
our middleware this is achieved by allowing the users to specify the required device
properties, as a set of composite predicates. Such predicates reference device or SDG
meta-information and are used to filter out only the matching devices that meet the
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specified criteria. These predicates are specified by the users and delivered to the
middleware in a provisioning request as POST parameters.

To bootstrap delimiting the range of a provisioning action, our middleware main-
tains a set of available devices for a particular user. The current prototype always
considers all the connected devices, since at the moment there is only a limited
support for managing the device identities and the access control. However, this is
not a conceptual drawback and there are many available solutions that can be used to
provide this functionality (as discussed in Section 4.1). The predicates are applied
on this set, filtering out all resources that do not match the provided attribute condi-
tions. The middleware uses the resulting set of resources to initiate the provisioning
actions with the SDGManager and the AtrifactsManager. These managers are also
responsible for providing support for gathering results delivered by the Provisioning-
Daemons and the ProvisioningAgents, once the provisioning action is completed (cf.
Figure 4.6 step 13). This is needed since after the resources are selected, provisioning
actions are performed in parallel and the results are asynchronously delivered to
provisioning workflows.

4.3.3 Artifacts and SDGs Prototypes Runtime Validation

Since we are dealing with resource-constrained devices, before deploying an SDG or
application artifact the middleware needs to verify that the component can be installed
on a specific device, e.g., that there is enough disk space available. This happens
during step 3 (Check SDG requirements) and step 8 (Check artifact requirements). To
this end, the MonitoringCoordinator first queries the Repositories. Besides the artifact
binaries and SDG prototypes, the repositories store corresponding meta-information,
such as the required CPU instruction set (e.g., ARMv5 or x86), disk space and
memory requirements. After obtaining the meta-information our middleware starts
building the current device-state snapshot. This is done in two stages. First, the
device features catalog is queried to obtain relevant static information, such as
CPU architecture, kernel version and installed userland (e.g., BusyBox [23]) or
OS. Second, the MonitoringCoordinator in coordination with the MonitoringAgent
and SDGMonitor executes a sequence of runtime profiling actions to complete the
dynamic device-state snapshot. For example, the profiling actions include currently
available disk space, available RAM, firewall settings, environment information, list
of processes and daemons, and list of currently installed capabilities. Finally, when
the dynamic device snapshot is completed, it is compared with the SDG’s/artifact’s
meta-information in order to determine whether it is compatible with the device. In
this context, the middleware performs in a similar fashion to a fail-safe iterator, in
the sense that it works with snapshots of device states. For example, if something
changes on the device side, during step 3 or step 8, it cannot be detected by the
middleware and in this case its behavior is not defined. Since we assume that all the
changes to the underlying devices are performed exclusively by our middleware, this
is a reasonable design decision. Other errors, such as failure to install an artifact,
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in a specific SDG, are caught by the middleware and delivered as notifications to
the provisioning workflow, so that they do not interrupt its execution. With this
approach the middleware is capable of making autonomous decisions about the
provisioned resource. This is one of the main preconditions for supporting automated
execution of provisioning workflows, but also for enabling an on-demand, self-service
provisioning model, since our middleware does not make any implicit assumptions
such as user awareness of device properties nor does it require them to manually
interact with the underlying devices.

4.3.4 Provisioning Models

One of the main goals of our middleware is to support on-demand resource con-
sumption. Previously, we have discussed some of the key preconditions such as the
ability to execute multiple SDGs inside an Edge device as well as to dynamically and
automatically determine whether an SDG or an application package is suitable for a
particular device, based on the monitoring device-state snapshot. In the following we
discuss the provisioning models currently supported by the middleware prototype and
discuss some possible optimizations. After the MonitoringCoordinator determines
an SDG/package is compatible with Edge devices, the middleware needs to create an
SDG or Artifact image and deliver it to these devices (steps 5 and 11 in Figure 4.6).
This process requires the middleware to make the following decisions: what to deliver
to the devices, how to deliver it and where to host the image. Therefore the image
delivery process is structured along these three main phases.

4.3.4.1 Delivery Models

In the first phase, the middleware needs to choose whether to deliver a complete
image or only a download script. In the first case the ImageBuilder creates an SDG
or an Artifact image, which is essentially a compressed SDG Prototype Artifact
Package. This image is then registered with the DeploymentHandler by a correspond-
ing manager, which transfers the whole image to the ProvisioningDaemon. In the
second case the process is done in a similar fashion, but in addition to the image the
ImageBuilder also generates a download script. The main part of this script is a URL
of the location where the actual image resides. Instead of the whole image only this
script is sent to the ProvisioningDaemon, so it can download and install the image.
Since both of these approaches have their advantages [138], the middleware leaves it
to the user to make a decision, i.e., to select the most suitable approach and pass it as
a configuration parameter in the provisioning request.
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4.3.4.2 Deployment Models

In the second phase the DeploymentHandler deploys the image (or the download
script) to the device. We support two different deployment strategies. The first strategy
is pull-based, in the sense that the image is placed in a queue and remains there for a
specified period of time (TTL). Both ProvisioningDaemons and ProvisioningAgents
periodically inspect the queue for new provisioning requests. When a request is
available, the device can pull the new image when it is ready, e.g., when the load
on it is not too high. Although a provisioning workflow can specify the image
priority in the queue, if a device is busy over a long period of time, e.g., there is not
enough disk space to install an SDG, this can lead to request starvation, blocking the
execution of the provisioning workflow. For this reason our middleware also supports
push-based deployment. In this case, instead of waiting in the queue, an image
is immediately pushed onto device. This gives greater control to the provisioning
framework, but since the previously described image runtime validation performs in
a fail-safe manner, push-based deployment can lead to undesired behavior. Therefore,
when using this strategy a provisioning workflow should also provide compensation
actions, to return the device to the previous state. Naturally, these two strategies can
be used to create hybrid deployment strategies, such as using the pull-based approach
for SDG prototypes and the push-based approach for application artifacts, because
pushing artifacts is particularly useful for security updates of hot fixes in SDGs.

4.3.4.3 Placement Models

Finally, the middleware decides where to host the image. This largely depends on
a specific deployment strategy, but also on the delivery model. For example, for
push-based deployment the DeploymentHandler stores the images in-memory, also
the download scripts are always kept in-memory, but in case of a pull-based strategy,
images are usually hosted in middleware local Repositories. However, it is not
difficult to imagine more complex provisioning models, which can be put in place
in order to optimize the provisioning process, e.g., to save bandwidth. For example,
to achieve this, our middleware could easily utilize proven technologies such as
Content Delivery Networks (CDNs), Cloudlets or micro data centers. One way of
accomplishing this is to deliver a download script to a set of Edge devices and push
an image onto a Cloudlet, residing in the proximity (single-hop) of these devices. The
ProvisioningDaemon could then use the pull-based approach to obtain the image.

4.4 Prototype Implementation & Evaluation

In the following experiments we show two main performance aspects of our provi-
sioning middleware, support for: i) scalable execution of the provisioning workflows
(hundreds of Edge devices) and at the same time ii) middleware suitability for
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Fig. 4.7: An example of our gateways for Building Management Systems

constrained devices in terms of resource consumption, i.e., its memory and CPU
usage.

4.4.0.1 Applications

In the experiments we used two real-life applications from our Building Management
System, described in Chapter 3. For our experiments, it is important to note that the
first application (SAPP) is written in Sedona [175] and its size is approximately 120
KB, including the SVM and the application (.sab, .sax, .scode and Kits files). The
second application (JAPP) is JVM-based (compact profile2) and its size including all
binaries, libraries and the JVM is around 14 MB.

Additionally, for the experiments we have developed a SDG prototype, based on
BusyBox, which is a very lightweight Linux userland. The SDG prototype is specifi-
cally built for Docker’s libcontainer virtualization environment and is approximately
1.4 MB in disk size (without applications).

4.4.0.2 Experiment Setup

In order to evaluate middleware performance regarding resource usage, we built 15
physical gateways (Figure 4.7) and installed them throughout our department. The
gateways are based on Raspberry Pi 2, with ARMv7 CUP and 1 GB of RAM. They
run Raspbian Linux 8 (based on Debian “Jessie”) on Linux Kernel 4.1.
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In order to evaluate how our middleware behaves in a large-scale setup, we created
a virtualized IoT cloud testbed based on CoreOS [34]. In our testbed we used Docker
containers to mimic physical gateways in the cloud. These containers are based on
a snapshot of a real-world gateway, developed by our industry partners. For the
experiments, we deployed a CoreOS cluster on our local OpenStack cloud. The
cluster consists of 16 CoreOS 444.4.0 VMs (with 4 VCPUs and 7 GB of RAM),
each running approximately 250 Docker containers. The Provisioning Controller and
the Repositories were also deployed in our Cloud on 3 Ubuntu 14.04 VMs (with 2
VCPUs and 3 GB of RAM).

Finally, since the physical gateways are attached to our department network, in
order to connect them to the cloud network (but avoid potential security risks), we
created a network overlay based on Wave routers [181].

4.4.0.3 Experiments

Middleware resource consumption at the Edge. Initially, we show the perfor-
mance of the most important middleware components that continuously run in edge
devices, namely the ProvisioningDaemon and the VirtualBuffersDaemon. The Moni-
toringAgent is not considered in our experiments, since it only periodically executes
to create device-state snapshots, thus it does not have statistically significant impact
on the performance. We also do not discuss SDG resource consumption, since it
is largely application dependent, but also depends on the underlying virtualization
choices. However, it is important to mention that the runtime overhead of middleware
components running in the SDGs is almost negligible, since it is less than 1 MB. The
main goal of the following experiments is to demonstrate the validity of our approach

0

2

4

6

8

10

12

14

CP
U

 C
on

su
m

pt
io

n 
[%

]

Time

VirtualBuffersDa mon - CPU

Fig. 4.8: CPU consumption of the VirtualBuffersDaemon



66 4 Middleware for Utility-based Provisioning of Smart City Infrastructure

14.7

14.8

14.9

15

15.1

15.2

15.3

15.4

15.5

RA
M

 C
on

su
m

pt
io

n 
[M

]

Time

VirtualBuffersDa mon - Memory

Fig. 4.9: Memory consumption of the VirtualBuffersDaemon

w.r.t. resource-constrained devices, since we do not claim that it outperforms related
approaches that provide functionality that partially overlaps with our middleware.

Figure 4.8 and Figure 4.9 respectively show the CPU and memory usage of the
VirtualBuffersDaemon, over a period of time. There are several important things
to notice here. When there are no SDGs (applications) running in the gateway the
daemon is mainly idle, i.e., it only periodically pulls the underlying drivers for device
status and on average its CPU consumption is less than 2%. This can be observed
in Figure 4.8, before the first peak. The two peaks represent SDG deployments for
the two applications. The first peak happens when the Sedona-based application is
deployed and the second peak signals the deployment of the Java-based application.
Since SAPP requires fewer number of sensors than JAPP, the daemon needs to
allocate and configure fewer virtual buffers, hence the difference in the two peaks.
However, in both cases the maximum CPU usage of the daemon is below 14% and
it lasts only a few seconds. For the same scenario we have measured the daemon’s
memory usage. Figure 4.9, shows the total memory of daemon’s JVM process (with
heap memory, Perm Size and stack). Initially, we notice that in the idle state the
daemon consumes a little bit under 15 MB of RAM (the initial heap size is configured
to a minimum of 1 MB), that can be considered a low memory footprint. We also
observe that memory consumption behaves in a similar manner to CPU consumption.
This is represented by the two distinct jumps in memory usage (Figure 4.9). The
increase in memory usage is due to newly allocated virtual buffers, adapters (heap)
and SDGConnections (stack). The reason for the difference is the same as above.
Finally, we notice a monotonic growth of memory usage. The reason for this is that
the Daemon does not trigger garbage collection, since both SDGs are running and
using the buffers, however after an application is stopped the daemon releases its
buffers. Therefore, the performance of the VirtualBuffersDaemon can be seen as
suitable for resource-constrained devices.



4.4 Prototype Implementation & Evaluation 67

Figure 4.10 and Figure 4.11 show the CPU and memory usage of the Provision-
ingDaemon (and the used Connector for the underlying virtualization solution). In
this case we only consider infrastructure-level provisioning requests, i.e., configuring
and starting SDGs, since only this type of requests is explicitly handled by the Provi-
sioningDaemon. In Figure 4.10, we notice that in general our provisioning daemon
utilizes the CPU resources sparingly, namely its CPU usage is mostly around 1%.
This is due to the fact that most of the time the daemon idle, it only periodically
checks for new requests from the Provisioning Controller and sends a hartbeat. The
dramatic spikes in CPU usage happen only during the SDG deployment (we launched
4 SDGs on the gateway during the experiment), since this includes expensive network
and computation operations, i.e., downloading SDG prototype, configuring it and
starting it. However, the later two operations are performed by the Connectors which
execute the commands and quickly terminate. Figure 4.11 shows the memory usage
of the provisioning daemon for the same experiment. One can notice that during the
experiment the memory usage of the provisioning daemon was always below 30 MB
and more importantly shortly after an SDG is started the daemon releases the unused
(Connector’s) memory. Therefore, middleware Edge components in total require
under 45 MB of memory and consume around 2% of CPU on average. We believe
that this is reasonable resource utilization suitable for resource-constrained devices.

Scalable execution of provisioning workflows. The reason we put an emphasis
on the scalability of our middleware is that it is one of the key preconditions for
consistent realization of provisioning workflows across a large resource pool. For
example, if the execution of provisioning workflows were to scale exponentially
with the size of the resource pool, theoretically it would take infinitely long to have
a consistent infrastructure baseline for the whole system, given a sufficiently large
resource pool.
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The experiment presented in Figure 4.12 and Figure 4.13 shows execution times
(averaged results of 30 repetitions) of the JAPP and SAPP provisioning workflows.
In the experiments we have used up to 1,000 virtual gateways for the JAPP and
up to 4,000 gateways for SAPP. This corresponds to a large building management
system containing dozens of big buildings (each with more than 10 floors). As a
reference, the diagram also shows a plot of a trend line, which turns out to be a
nlog(n)+ c function, extrapolated from individual experiment runs. Figure 4.12a
depicts the provisioning time, i.e., execution time, of the provisioning workflow
for the JAPP application. At 300 gateways we see that the initial overhead of the
pushing approach is compensated and therefore the execution time decreases a little
bit. From 400 to 500 gateways, the middleware reaches its maximal load. After the
deployment size reaches 500, the middleware or more precisely the cloud-based
controller scales out and the load balancer starts distributing the workload to the
newly deployed microservices, i.e. the SDGManager, the ArtifactsManager and
the DeploymentHandler. The corresponding scatter plot, depicted in Figure 4.12b,
reveals that the deviations of data points are relatively small, thus on average the
provisioning execution time scales almost linearly (nlog(n)) up to 1,000 Edge devices
in this experiment.

Figure 4.13 shows the overall execution time of the SAPP provisioning work-
flow for different deployments (number of gateways) using the simple push-based
approach. In Figure 4.13a we notice that due to the deployment scale the overall
execution time got slower compared to the first experiment. This increase in the
number of virtualized Edge devices, generates a lot of traffic for the underlying
network infrastructure that causes slower response times and therefore the execution
time of the provisioning workflow takes noticeably more time. For this scenario we
changed the load-balancing strategy to allow up to 2,500 gateways before scaling out.
We clearly see that up to 2,500 gateways, the execution time increases almost linearly.
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Fig. 4.12: Average execution time of provisioning workflow for JAPP application

When we reach 3,000 deployments, the execution time rises again, but once more
starts to flatten at 4,000. When looking at the scatter plot depicted in Figure 4.13b we
see that at the beginning of the experiments the deviation among data points is very
small and it gets larger with an increasing number of IoT gateways. Nevertheless, we
clearly see that our framework deals well with this rather large scenario and once
again provides almost linear scalability.

Generally, we notice that the middleware mechanisms for workflow execution
(Section 4.3.1) scale within O(nlog(n)) for a relatively large number of Edge devices,
which can be considered a satisfactory result. We also notice that the computational
overheads of the provisioning agents and daemons have no statistically significant
impact on the results, since they are distributed among the underlying devices. Finally,
the provisioning mechanism behaves in a similar fashion for both applications. The
reason for this is that all gateways are in the same network, what can be seen as
equivalent to provisioning a complex of collocated buildings.
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Fig. 4.13: Average execution time of provisioning workflow for SAPP application
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4.5 Summary

In this chapter, we introduced a Smart City infrastructure provisioning middleware
that enables development of generic, multi-level provisioning workflows and sup-
ports automated and scalable execution of such workflows in IoT Cloud systems. We
showed how our middleware supports on-demand, self-service resource consumption
by providing flexible provisioning models and support for uniform, logically cen-
tralized provisioning of Edge devices, application artifacts and their configuration
models. We introduced provisioning support for software-defined gateways to enable
application-specific customization of Edge devices through well-defined APIs, while
preserving the benefits of proven virtualization mechanisms. The initial results of our
experiments are promising, since they show that our middleware enables scalable
execution of provisioning workflows across a relatively large IoT cloud resource pool
and at the same time its overhead in terms of resource consumption is suitable for
resource-constrained devices. Additionally, we discussed possible optimizations of
the provisioning model as a direct consequence of the the middleware’s architecture.
In this regard, the main advantage of middleware’s architecture is reflected in its
support for flexible and customizable delivery, deployment and placement models
for SDGs and application artifacts. For example, it was discussed how our middle-
ware can be configured to optimize the provisioning process by utilizing proven
technologies such as CDNs.

Our middleware lays a cornerstone towards realizing our vision of utility-based
provisioning of IoT Cloud systems. However, some challenges still remain to realize
the utility-based provisioning paradigm. As part of our future work, we plan to ad-
dress the current limitations of our middleware and the remaining challenges listed in
Figure 3.1, by extending our middleware in several directions to: i) Address the mo-
bility aspects of the Edge devices, especially focusing on dependability issues related
to device mobility and mobility of software components, i.e., runtime migration of
SDGs; ii) Support smarter resource allocation, i.e., optimize placement of SDGs and
applications on Edge devices to include support for dynamic infrastructure properties;
iii) Provide more dynamic and finer-grained resource monitoring in order to support
the pay-as-you-go model; iv) Finally, we plan to extend the current prototype to
address elasticity aspects for IoT Cloud systems, most notably to support elastic,
on-demand scaling of the SDGs.



Chapter 5

Governing Smart City Systems

The wide and ever-growing application area of the IoT Cloud in the context of
Smart Cities has led to a stronger interplay and entanglement among a variety of
diverse stakeholders, with different objectives, interests and backgrounds. Various
Smart City domains (sectors), such as smart building and transportation management,
increasingly rely on IoT Cloud resources and capabilities to optimize their key
business tasks and improve efficiency of processes and quality of life. From the
application point of view IoT Cloud systems are becoming an integral enabler in
optimizing urban processes, infrastructure and facilities, such as urban transportation
and energy management, in order to make the cities of the future smarter and more
livable. Consequently, governance issues such as security, safety, legal boundaries,
compliance and data privacy concerns are being ever more strongly addressed [45,
49, 183], mainly due to their potential impact on the variety of involved Smart
City stakeholders. However, such approaches are mostly intended for high-level
business stakeholders, neglecting support, in terms of tools and frameworks, to
realize governance strategies in large-scale, geographically distributed IoT Cloud
systems. Considering the IoT Cloud from the operations management perspective,
different approaches have been introduced, e.g., [189, 167, 30, 169]. For example,
such approaches deal with IoT Cloud infrastructure virtualization and its management,
enabling utilization of IoT Cloud computation resources and operating their storage
resources. However, most of these approaches do not explicitly consider high-level
governance objectives such as legal issues and compliance. This increases the risk
of lost requirements or causes over-regulated systems, potentially increasing costs
and limiting opportunities in future Smart Cities. Therefore, current approaches to
IoT governance usually addresses the Internet part of the IoT, e.g., in the context of
Future Internet services1, while operations processes mostly deal with Things (e.g.,
in [33]) as additional resources that need to be operated. The governance objectives
(law, compliance etc.) are not easily mapped to operations processes (e.g., querying
sensory data streams or adding/removing devices), so that contemporary models,
which assume that business stakeholders define governance objectives and operations

1 http://ec.europa.eu/digital-agenda/en/internet-things
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managers implement and enforce them, are hardly feasible in IoT Cloud systems. In
practice, bridging this gap between governance and operations management of IoT
cloud systems poses a significant challenge for the involved stakeholders. What is
more, even with perfectly aligned governance objectives, designing and realizing
operational governance processes [166, 79], poses a significant challenge. Traditional
operational governance approaches are hardly applicable for IoT Cloud systems,
mainly due to the large number of involved stakeholders, novel requirements for
shared resources and capabilities, dynamicity, geographical distribution and the sheer
scale of such systems. Supporting tools and mechanisms for runtime operational
governance of IoT Cloud systems remain largely undeveloped, thus placing much of
the burden on operations managers to perform operational governance processes.

This calls for a systematic approach to govern IoT Cloud resources and appli-
cations throughout their entire lifecycle. In this chapter2 we introduce our GovOps
methodology, conceptual model and framework to effectively manage runtime gover-
nance in Smart City systems. The main aim of GovOps is to bridge the gap between
high-level governance objectives (e.g., costs, legal issues or compliance) and under-
lying operations processes that enforce such objectives. Therefore, GovOps mostly
focuses on providing conceptual and framework support for designing and execut-
ing operational governance processes, which represent a subset of the overall IoT
Cloud governance and incorporate relevant aspects of both high-level governance
strategies and underlying operations management. We present a GovOps reference
model that defines required roles, concepts, and techniques, to support seamless
mapping between governance and operations, and to facilitate realizing IoT Cloud
governance processes in Smart Cities. We introduce rtGovOps, which is a runtime
framework for dynamic operational governance of large-scale IoT Cloud systems.
Its main objective is to support GovOps managers in implementing and executing
operational governance processes in IoT Cloud systems, without worrying about
scale, geographical distribution, dynamicity and other characteristics inherent to
such systems that currently hinder operational governance in practice. The rtGovOps
framework provides runtime mechanisms and enabling techniques to reduce the com-
plexity of IoT Cloud operational governance, thus enabling the GovOps managers to
perform custom operational governance processes more efficiently in large-scale IoT
Cloud systems.

The remainder of this chapter is structured as follows: Section 5.1 presents our
motivating scenarios. In Section 5.2, we present the GovOps methodological ap-
proach to governance and operations management in IoT Cloud systems; Section 5.3
outlines the GovOps reference model and design process for GovOps strategies;
Section 5.4 outlines the main concepts and the design of the rtGovOps framework;
in Section 5.5, we explain the main runtime mechanisms of rtGovOps; Section 5.6
describes the experimental results and outlines the prototype implementation; finally,
Section 5.7 provides final remarks and concludes the chapter.

2 The work presented in this chapter was originally introduced by Nastic et al. in [119, 125, 118].
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5.1 Research Context

Let us again consider our FMS scenario, introduced in Chapter 3, from the perspective
of the involved stakeholders and governance requirements. Next, we briefly discuss
some of the involved stakeholders, mainly focusing on their requirements and issues
related to governing FMS applications and underlying Smart City resources.

As we have previously mentioned, FMS is responsible for managing electric
vehicles deployed in different Smart City environments such as golf courses. These
vehicles communicate with the Cloud via 3G or Wi-Fi networks to exchange telematic
and diagnostic data. In the Cloud, FMS provides different applications and services
to manage this data. Examples of such services include real time vehicle status,
remote diagnostics and remote control. The FMS is currently used by the following
three types of stakeholders: vehicle manufacturers, distributors and golf course
managers. These stakeholders have different business models. For example, when
a manufacturer only leases vehicles to customers, they are interested in the status
and upkeep of the complete fleet and will perform regular maintenance, as well as
monitor crashes and battery health. Golf course managers are mostly interested in
vehicle security to prevent misuse and ensure safety on the golf course (e.g., using
geofencing features). In general, the stakeholders rely on the FMS and its services to
optimize their respective business tasks. Figure 5.1 gives a high-level overview of
the FMS deployment and infrastructure. We notice that FMS runs atop a non-trivial
IoT Cloud infrastructure that includes a variety of IoT Cloud resources. For our
discussion, the two most relevant types of IoT Cloud resources are on-board physical
gateways (G) and cloud virtual gateways (VG). Most of the vehicles are equipped
with on-board gateways that are capable of hosting lightweight services such as
geofencing or local diagnostics services. For legacy cars that are not equipped with
such gateways, a device acting as a CAN-IP bridge is used (e.g., Teltonika FM53003).
In this case FMS hosts virtual gateways in the cloud that execute the aforementioned
services on behalf of the vehicles.

We notice that the FMS is a large-scale system that manages thousands of vehicles
and relies on diverse cloud communication protocols. Further, the FMS depends on
IoT Cloud resources that are geographically distributed on different golf courses
around the globe. Jurisdiction over these resources can change over time, e.g., when
a vehicle is handed over from the distributor to a golf course manager. In addition,
these resources are usually constrained. This is why the FMS heavily relies on
cloud services, e.g., for computationally intensive data processing, fault tolerance
or to reliably store historical readings of vehicle data. While the cloud offers the
illusion of unlimited resources, systems on such a scale as FMS can incur very
high costs in practice (e.g., of computation or networking). Finally, due to the large
number of involved stakeholders, the FMS needs to enable runtime customizations
of infrastructure resources in order to exactly meet stakeholder requirements and
allow for operation within specified compliance and legal boundaries. Therefore, the
IoT Cloud resources and applications need to be managed and governed throughout

3 http://gpsgate.com/devices/fm5300
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their entire lifecycle. In our approach, this is captured and modeled as operational
governance processes.

5.1.0.1 Example Operational Governance Processes

Subsequently, we highlight some basic operational governance processes in FMS
that are facilitated through our framework:

• Typically, the FMS polls diagnostic data from vehicles (e.g., with CoAP). How-
ever, a golf course manager could design an operational governance process that
is triggered in specific situations such as in case of emergency. Such a process
could, for example, increase the update rate of the vehicle sensors and change
the communication protocol to MQTT in order to satisfy a high-level governance
objective, e.g., the company’s compliance policy to handle emergency updates
in (near) real time.

• To increase fault tolerance and guarantee history preservation of vehicle data
(e.g., due to governance objectives related to legal requirements), a distributor
could decide to spin up additional virtual gateways in a different availability
zone.

• After multiple complaints about problems with vehicles of type X, a manufacturer
would need to add additional monitoring features to all vehicles of type X to
perform more detailed inspections.

This is by no means a comprehensive list of operational governance processes
in the FMS. However, due to dynamicity, heterogeneity, geographical distribution
and the large scale of IoT Cloud systems, traditional approaches to realize even
basic operational governance processes are hardly feasible in practice. This is mostly
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because such approaches implicitly make assumptions such as physical on-site
presence, manually logging into gateways, understanding device specifics etc., which
are difficult, if not impossible, to meet in IoT Cloud systems. Therefore, due to a
lack of systematic approaches for operational governance in IoT Cloud systems,
operations managers currently have to rely on ad hoc solutions to deal with the
characteristics and complexity of IoT Cloud systems when performing operational
governance processes.

5.2 GovOps – A Novel Methodology for Governance and

Operations in IoT Cloud Systems

The main objective of our GovOps approach Governance and Operations) is twofold.
On the one side it aims to enable seamless integration of high-level governance
objectives and strategies with concrete operations processes. On the other side, it
enables performing operational governance processes for IoT Cloud systems in such
manner that they are feasible in practice. In general, governance objectives and
operations processes define and enforce system invariants that are ideally satisfied
at any point in time. The objectives and states are usually associated with rules,
conditions and properties that should hold during the system’s runtime. In reality, due
to the dynamicity and the scale of IoT Cloud systems, this is difficult if not impossible
to achieve without constantly reinforcing the objectives and desired system states, as
well as adapting the processes to the ever-changing requirements of the multitude of
involved stakeholders.

Figure 5.2 illustrates how GovOps relates to IoT Cloud governance and operations.
It depicts the main idea of GovOps to bring governance and operations closer together
and bridge the gap between governance objectives and operations processes by incor-
porating the main aspects of both IoT Cloud governance and operations management.
To this end, we define the GovOps principles and design process of GovOps strategies
(Section 5.3) that support determining what can and needs to be governed, based on
the current functionality and features of an IoT Cloud system, and that allow for such
system capabilities to be aligned with the regulations and standards. Additionally,
we introduce a novel role, GovOps manager (Section 5.2.3) responsible for guiding
and managing the design of GovOps strategies, because in practice it is very diffi-
cult, risky and ultimately very costly to adhere to the traditional organizational silos

IoT cloud 
Governance
(privacy, sustainability, 
legal, compliance etc.)

IoT cloud 
Operations
(deployment topologies, 
config. models etc.)

GovOps

Fig. 5.2: GovOps in relation to IoT Cloud governance and operations
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separating business stakeholders from operational managers. Therefore, GovOps
integrates business rules and compliance constraints with operations capacities and
best practices, from the early stages of designing governance strategies in order to
counteract system over-regulation and lost governance requirements [49].

It is worth noting that GovOps does not attempt to define a general methodology
for IoT Cloud governance. There are many approaches (Chapter 2) that define gover-
nance models and accountability frameworks for managing governance objectives
and coordinating decision making processes, and these can usually be applied within
GovOps without substantial modifications.

5.2.1 Governance Aspects

From our case studies, we have identified various business stakeholders such as
building residents, building managers, governments, vehicle manufacturers and golf
course managers. Typically, these stakeholders are interested in energy efficient and
greener buildings, sustainability of building assets, legal and privacy issues regarding
sensory data, compliance (e.g., regulatory or social), health of the fleet, security and
safety issues related to the environments under their jurisdiction.

Depending on the concrete (sub)system and the involved stakeholders, gover-
nance objectives are realized via different governance strategies. Generally, we
identify the following governance aspects: i) environment-centric, ii) data-centric
and iii) infrastructure-centric governance.

Environment-centric governance deals with issues of overlapping jurisdictions
in IoT Cloud-managed environments. For example, in our BMS, we have residents,
building managers and the government that can provide governance objectives,
which directly or indirectly affect an environment, e.g., a residential apartment. In
this context, we need to articulate multiple governance objectives related to comfort
of living, energy efficiency, safety, health and sustainability.

Data-centric governance mostly deals with implementing the governance stra-
tegies related to the privacy, quality and provenance of sensory data. Examples
include addressing legal issues, compliance and user preferences w.r.t. such data.

Infrastructure-centric governance addresses issues about designing, installing
and deploying IoT Cloud infrastructure. This mostly affects the early stages of
introducing an IoT Cloud system and involves feasibility studies, cost analysis, and
risk management. For example, it supports the decisions between introducing new
hardware or virtualizing the IoT Cloud infrastructure.
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5.2.2 Operations Management Aspects

Operations managers implement various processes to manage BMS and FMS at
runtime. Generally, we distinguish the following operational governance aspects:
i) configuration-centric, ii) topology-centric and iii) stream-centric governance.

Configuration-centric governance includes dynamic changes to the configuration
models of the software-defined IoT Cloud systems at runtime. Example processes
include: a) enabling/disabling an IoT resource or capability (e.g., start/stop a unit),
b) changing an IoT capability at runtime (e.g., communication protocol), and c) con-
figuring an IoT resource (e.g., setting sensor poll rate).

Topology-centric governance addresses structural changes that can be performed
on software-defined IoT systems at runtime. For example, a) pushing processing
logic from the application space towards the edge of the infrastructure; b) introducing
a second gateway and an elastic load balancer to optimize resource utilization, e.g.,
provide more bandwidth; c) replicating a gateway, e.g., for fault-tolerance or data
source history preservation.

Stream-centric governance addresses runtime operation of sensory data streams
and continuous queries, e.g., to perform custom filtering, aggregation and querying
of the available data streams. For example, to perform local filtering the processing
logic is executed on physical gateways, while complex queries, spanning multiple
data streams are usually executed on VGWs. Therefore, operations managers perform
processes such as: a) placing custom filters (e.g., near the data source to reduce
network traffic); b) allocating queries to virtual gateways; and c) splitting streams,
i.e., sending events to multiple virtual gateways.

5.2.3 Integrating Governance Objectives with Operations Processes

The examples presented in Section 5.2.1 and Section 5.2.2 are by no means a com-
prehensive list of IoT Cloud governance processes. However, due to dynamicity,
heterogeneity, geographical distribution and the sheer scale of the IoT Cloud, tra-
ditional approaches to realize these processes are hardly feasible in practice. This
is mostly because such approaches implicitly make assumptions such as physical
on-site presence, manually logging into gateways, understanding device specifics etc.,
which are difficult, if not impossible, to meet in IoT Cloud systems. Therefore, due to
a lack of a systematic approach for operational governance in IoT systems, currently
operations managers have to rely on ad hoc solutions to deal with the characteristics
and complexity of IoT Cloud systems when performing governance processes.

Table 1 lists examples of governance objectives and corresponding operations
management processes to enforce these objectives. The first example comes from
the FMS, since many of the golf courses are situated in countries with specific data
regulations, e.g., the USA or Australia. In order to enable monitoring of the whole
fleet (as required by the manufacturer) the operations manager needs to understand
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Governance objectives Operations processes

1. Fulfill legal requirements w.r.t. sensory data in
country X. Guarantee history preservation

Spin-up an aggregator gateway. Replicate
VGW, e.g., across different availability zones

2.
Reduce GHG emission. User preferences
regarding living comfort. Consider health
regulations

Provide a configuration directives for an IoT
Cloud resource (e.g., HVAC)

3. Data quality compliance regarding location-
tracking services

Choose among available services, e.g., GPS vs.
GNSS (Global Navigation Satellite System)
platform

Table 1: Example governance objectives and operations processes

the legal boundaries regarding data privacy. For example, in Australia, the OAIC4

has issued a 32-page guidance as to what “reasonable steps to protect personal
information” might include, which in practice need to be interpreted by operations
managers. The second example contains potentially conflicting objectives supplied
by stakeholders, e.g., building manager, end user and the government, leaving it
to the operations team to solve the conflicts, at runtime. The third example hints
that GNSS is usually better-suited for simultaneously working in both northern and
southern high latitudes. Even for these basic processes, an operations team faces
numerous difficulties, since in practice there is no one-size-fits-all solution to map
governance objectives to operations processes.

Therefore, GovOps proposes a novel role, GovOps manager, as a dedicated stake-
holder responsible for bridging the gap between governance strategies and operations
processes in IoT Cloud systems. The main rationale behind introducing a GovOps
manager is that in practice designing governance strategies needs to involve opera-
tions knowledge about the technical features of the system, e.g., physical location of
devices, configuration and placement of queries, and component replication strategies.
Reciprocally, defining systems configurations and deployment topologies should
incorporate standards, compliance and legal boundaries at early stages of designing
operations processes. To achieve this, the GovOps manager is positioned in the
middle, in the sense that they continuously interact with both business stakeholders
(to identify high-level governance issues) and the operations team (to determine
operations capacities).

The main task of a GovOps manager is to determine suitable tradeoffs between
satisfying the governance objectives and the system’s capabilities, as well as to
continuously analyze and refine how high-level objectives are articulated through
operations processes. In this context, a key success factor is to ensure effective
and continuous communication among the involved parties during the decision-
making process, facilitating i) openness, ii) collaboration, iii) establishment of a
dedicated GovOps communication channel, along with iv) early adoption of standards
and regulations. This ensures that no critical governance requirements are lost and
counteracts over-regulation of IoT Cloud systems.

4 Office of the Australian Information Commissioner(OAIC), Australian privacy regulator.
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5.2.4 Main Principles of GovOps in IoT Cloud Systems

Generally, GovOps strategies manipulate the state of IoT Cloud resources at runtime
while considering governance objectives and regulations. Therefore, they can be
seen as a sequence of runtime state transitions from the current state to some desired
target state (e.g., that satisfies some non-functional properties, enforces compliance
or exactly meets custom functional requirements). The core idea of GovOps is to
provide abstractions that shield stakeholders from the complexities of the underlying
system and the diversities of various legal and compliance issues, allowing them
to focus on integrating governance objectives with practically feasible operations
processes. To support performing such processes in IoT Cloud systems, (e.g., listed in
Section 5.1), while considering system characteristics (e.g., large-scale, geographical
distribution and dynamicity), GovOps relies on concepts that include:

Central point of operation (R1) – Enable conceptually centralized interaction with
the software-defined IoT Cloud system to enable a unified view of the system’s
operations and governance capabilities (available at runtime), without worrying
about low-level infrastructure details.

Automation (R2) – Allow for dynamic, on-demand governance of software-
defined IoT cloud systems on a large scale and enable governance processes
to be easily repeatable, i.e., enforced across the IoT Cloud, without manually
logging into individual gateways.

Fine-grained control (R3) – Expose the control functionality of IoT Cloud re-
sources at fine granularity to allow for precise definition of governance processes
(to exactly meet requirements) and flexible customization of IoT Cloud system
governance capabilities.

Late-bound directives (R4) – Support declarative directives that are bound later
during runtime in order to allow for designing generic and flexible operational
governance processes.

IoT Cloud resources autonomy (R5) – Provide a higher degree of autonomy to
IoT Cloud resources to reduce communication overhead, increase availability
(e.g., in case of network partitions), enable local exception and fault handling,
support protocol-independent interaction, and increase system scalability.

5.3 A Reference Model for GovOps Methodology

5.3.1 Overview of the GovOps Model for IoT Cloud Systems

To realize the GovOps approach we need suitable abstractions to describe IoT Cloud
resources that allow IoT Cloud infrastructure to be (re)defined after it has been
deployed. We show in Chapter 3 how this can be done with software-defined IoT
units. The GovOps model (Figure 5.3) builds on this premise and extends our previous
work with fundamental aspects of operational governance processes: i) describing
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Fig. 5.3: Simplified UML diagram of GovOps model for IoT Cloud governance

states of deployed IoT resources, ii) providing capabilities to manipulate these states
at runtime, and iii) defining governance scopes.

Within our model, the main building blocks of GovOpsStrategies are Governance-
Capabilities. They represent operations which can be applied on IoT Cloud resources,
e.g., query current version of software, change communication protocol and spin
up a virtual gateway. These operations manipulate IoT Cloud resources in order
to put an IoT Cloud system into a specific (target) state. Governance capabilities
are described via well-defined software-defined APIs and they can be dynamically
added to the system, e.g., to a VGW. From the technical perspective, they behave
like add-ons, in the sense that they extend resources with additional operational
functionality. Generally, by adopting the notion of governance capabilities, we allow
for processes to be automated to a great extent, but also give a degree of autonomy to
IoT Cloud resources.

Since the meaning of a resource state is highly task-specific, we do not impose
many constraints to define it. Generally, any useful information about an IoT Cloud
resource is considered to describe the ResourceState, e.g., a configuration model or
monitoring data such as CPU load. Technically, there are many frameworks (e.g.,
Ganglia or Nagios) that can be used to (partly) describe resource states. Also con-
figuration management solutions, such as OpsCode Chef5, can be used to maintain
and inspect configuration states. Finally, design best practices and reference architec-
tures (e.g., AWS Reference Architectures6) provide a higher-level description of the
desired target states of an IoT Cloud system.

The GovernanceScope is an abstract resource, which represents a group of IoT
Cloud resources (e.g., gateways) that share some common properties. Therefore, our
governance scopes are used to dynamically delimit IoT Cloud resources on which a
GovernanceCapability will have an effect. This enables the governance strategies to
be written in a scalable manner, since the IoT Cloud resources are not individually
addressed. It also allows for backwards compatible GovOps strategies, which do not
directly depend on the current resource capabilities. This means that we can move a

5 http://opscode.com/chef
6 http://aws.amazon.com/architecture/
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part of the problem, e.g., faults and exceptions handling, inside the governance scope.
For example, if a gateway loses a capability the scope simply will not invoke it, i.e.,
the strategy will not fail.

5.3.2 Design Process of GovOps Strategies

As described in Section 5.2, the GovOps manager is responsible for overseeing and
for guiding the GovOps design process and to design concrete GovOps strategies.
The design process is structured along three main phases: i) identifying governance
objectives and capabilities, ii) formalizing strategy, and iii) executing strategy.

Generally, the initial phase of the design process involves eliciting and formalizing
governance objectives and constraints, as well as identifying required fine-grained
governance capabilities to realize the governance strategy in the underlying IoT
Cloud system. GovOps does not make any assumptions or impose constraints on
formalizing governance objectives. To support specifying governance objectives
the GovOps manager can utilize various governance models and frameworks, such
as 3P [151] or COBIT [67]. However, it requires tight integration of the GovOps
manager into the design process and encourages collaboration among the involved
stakeholders to clearly determine risks and tradeoffs, in terms of what should and can
be governed in the IoT Cloud system, e.g., which capabilities are required to balance
building emission regulations and residents’ temperature preferences. To this end, the
GovOps manager gathers available governance capabilities in collaboration with the
operations team, identifies missing capabilities, and determines whether further action
is necessary. Generally, governance capabilities are exposed via well-defined APIs.
They can be built-in capabilities exposed by IoT units (e.g., start/stop), obtained from
third-parties (e.g., from public repositories or in a market-like fashion) or developed
in-house to exactly reflect custom governance objectives. By promoting collaboration
and early integration of governance objectives with operations capabilities, GovOps
reduces the risks of lost requirements and over-regulated systems.

After the required governance capabilities and relevant governance aspects have
been identified, the GovOps manager relies on the aforementioned concepts and
abstractions (Section 5.3.1) to formally define the GovOps strategy and articulate
the artifacts defined in the first phase of the design process. Governance capabilities
are the main building blocks of GovOps strategies. They are directly referenced in
GovOps strategies to specify the concrete steps which need to be enforced on the
underlying IoT Cloud resources, e.g., defining a desired communication protocol
or disabling a data stream for a specific region. Also in this context, the GovOps
reference model does not make assumptions about the implementation of governance
strategies, e.g., they can be realized as business processes, policies, applications, or
domain-specific language. Individual steps, defined in the generic strategy, invoke
governance capabilities that put the IoT Cloud resources into the desired target state,
e.g., which satisfies a set of properties. Subsequently, the generic GovOps strategy
needs to be parametrized, based on the concrete constraints and rules defined by
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the governance objectives. Depending on the strategy implementation these can
be realized as process parameters, language constraints (e.g., Object Constraint
Language), or application configuration directives. By formalizing the governance
strategy, GovOps enables reusability of strategies, promotes consistent implemen-
tation of established standards and best practices, and ensures operation within the
system’s regulatory framework.

The last phase involves identifying the system resources, i.e., the governance
scopes that will be affected by the GovOps strategy and executing the strategy in the
IoT Cloud system. It is worth mentioning that the scopes are not directly referenced
in the GovOps strategies, as the GovOps manager applies the strategies on the
resource scopes instead of the actual resources. Introducing scopes at the strategy
level shields the operations team from directly referencing IoT Cloud resources,
hence enabling designing declarative, late-bound strategies in a scalable manner.
Furthermore, additional capabilities identified in the previous phase will be acquired
and/or provisioned at this point in the underlying IoT Cloud system, whereas unused
capabilities will be decommissioned in order to optimize resource consumption.

5.4 rtGovOps – A Runtime Framework for GovOps in

Large-Scale IoT Cloud Systems

The main aim of our rtGovOps (runtime GovOps) framework is to facilitate opera-
tional governance processes for software-defined IoT Cloud systems. To this end,
rtGovOps provides a set of runtime mechanisms and does most of the “heavy lifting”
to support operations managers in implementing and executing operational gover-
nance processes in large-scale software-defined IoT Cloud systems, without worrying
about scale, geographical distribution, dynamicity, and other characteristics inherent
to such systems that currently hinder operational governance in practice. In order to
facilitate the operational governance processes, while considering the characteristics
of software-defined IoT Cloud systems, the rtGovOps framework follows the set of
design principles, introduced in Section 5.2.4. They represent the main requirements,
that need to be supported and enforced by our rtGovOps framework.

Figure 5.4 gives a high-level architecture and deployment overview of the rt-
GovOps framework. Generally, the rtGovOps framework is distributed across the
cloud and IoT devices. It is designed based on the microservices architecture7, which
among other things enables flexible, evolvable and fault-tolerant system design, while
allowing for flexible management and scaling of individual components. The main
components of rtGovOps include: i) the governance capabilities, ii) the governance
controller that runs in the cloud, and iii) the rtGovOps agents that run in IoT devices.
In the remainder of this section, we will discuss these components in more detail.

7 http://martinfowler.com/articles/microservices.html
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Fig. 5.4: Overview of rtGovOps architecture and deployment

5.4.1 Operational Governance Capabilities

As we described in Section 5.1, operational governance processes govern software-
defined IoT units throughout their entire lifecycle. Generally, Governance capabilities
represent the main building blocks of operational governance processes and they are
usually executed in IoT devices. The governance capabilities encapsulate governance
operations which can be applied on deployed IoT units, e.g., to query the current
version of a service, change a communication protocol, or spin up a virtual gateway.
Such capabilities are described via well-defined APIs and are usually provided by
domain experts who develop the IoT units. The rtGovOps framework enables such
capabilities to be dynamically added to the system (e.g., to gateways), and supports
managing their APIs. From a technical perspective, they behave like add-ons, in
the sense that they extend the resources with additional operational functionality.
Internally, IoT devices host rtGovOps agents that behave like an add-on manager,
responsible for installing/enabling, starting/stopping a capability, and managing
the APIs they expose. Generally, rtGovOps does not make any assumptions about
concrete capability implementations. However, it requires them to be packaged as
shown in Figure 5.5. Subsequently, we highlight relevant examples of governance
capabilities related to our FMS application.

• Configuration-specific capabilities include changes to the configuration models
of software-defined IoT Cloud systems at runtime. For example: setting sensor
poll rate, changing communication protocol for cloud connectivity, configuring
data point unit and type (e.g., temperature in Kelvin as unsigned 10-bit integer),
mapping a sensor or CAN bus unit to a device’s virtual pin, or activating a
low-pass filter for an analog sensory input.
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• Topology-specific capabilities address structural changes that can be performed
on the deployment topologies of software-defined IoT systems. Examples in-
clude replicating a virtual gateway to increase fault tolerance or data source
history preservation and pushing data-processing logic from the application
space towards the edge of the infrastructure.

• Stream-specific capabilities deal with managing the runtime operation of sen-
sory data streams and continuous Complex Event Processing (CEP) queries.
Therefore, to enable features such as scaling out or stream replaying, operations
managers need capabilities such as: filter placement near the data source to
reduce network traffic, allocation of queries to gateways, and stream splitting,
i.e., sending events to multiple virtual gateways.

• Monitoring-specific capabilities deal with adding a general monitoring metric,
e.g., CPU load, or providing an implementation of a custom metric to IoT Cloud
resources.

For the sake of simplicity, we assume that the capabilities are readily available8. In
reality, they can be obtained from a central repository, provided by a third party in a
market-like fashion, or custom developed in-house.

As mentioned above, governance capabilities are dynamically added to the IoT
Cloud resources. There are several reasons why such behavior is advantageous for
operations managers and software-defined IoT Cloud systems. For example, as we
usually deal with constrained resources, static provisioning of such resources with
all available functionality is rarely possible (e.g., factory defaults rarely contain
the desired configuration for FMS vehicle gateways). Further, as we have seen in
Section 5.1, jurisdiction over resources (in this case FMS vehicles) can change during
runtime, e.g., when a vehicle is handed over to a golf course manager. In such cases,
because the governing stakeholder changes, it is natural to assume that the require-
ments regarding operational governance will also change, thus requiring additional
or different governance capabilities. Instead of updating the whole device image at
once, we reduce the communication overhead, but also enable device functionality
to be changed without interrupting the system, e.g., to reboot. This provides greater
flexibility and enables on-demand governance tasks (e.g., by temporarily adding a
capability), which are often useful in systems with a high degree of dynamicity. Fi-

8 We provide example governance capabilities under https://github.com/tuwiendsg/GovOps/
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nally, executing capabilities in the IoT devices improves scalability of the operational
governance processes and enables better resource utilization.

5.4.2 Operational Governance Processes and Governance Scopes

Operational governance processes represent a subset of the general IoT Cloud gover-
nance and deal with operating and governing IoT Cloud resources at runtime. Such
processes are usually designed by operations managers in coordination with business
stakeholders [119]. The main purpose of such processes is to support high-level
governance objectives such as compliance and legal concerns, which influence the
system’s runtime behavior. To be able to dynamically govern IoT Cloud resources,
the operational governance processes rely on the governance capabilities. This means
that individual steps of such processes usually invoke governance capabilities in
order to enforce the behavior of IoT Cloud resources in such a manner that they
comply with the governance objectives. In this context, our rtGovOps framework
provides runtime mechanisms to enable execution of these operational governance
processes.

As described in Chapter 3, we use software-defined IoT units to describe IoT
Cloud resources. However, these units are not specifically tailored for describing
non-functional properties and available meta-information about IoT Cloud resources,
e.g., location of a vehicle (gateway) or its specific type and model. For this purpose,
rtGovOps provides governance scopes. The governance scope is an abstract resource
that represents a group of IoT Cloud resources that share some common properties.
For example, an operations manager can specify a governance scope to include all
the vehicles of type X. The ScopeCoordinator (Figure 5.4) provides mechanisms
to define and manage the governance scopes. The rtGovOps framework relies on
the ScopeCoordinator to determine which IoT Cloud resources need to be affected
by an operational governance process. Generally, the governance scopes enable
implementing the operational governance processes in a scalable and generic manner,
since the IoT Cloud resources do not have to be individually referenced within such
a process.

5.4.3 Governance Controller and rtGovOps Agents

The Governance controller (Figure 5.4) represents a central point of interaction
with all available governance capabilities. It provides a mediation layer that enables
operations managers to interact with IoT Cloud systems in a conceptually centralized
fashion, without worrying about the geographical distribution of the underlying
system. Internally, the governance controller comprises several microservices, among
which the most important include: DeploymentManager and ProfileManager, which
are used to support dynamical provisioning of the governance capabilities, as well
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as APIManager and the previously mentioned ScopeCoordinator that support opera-
tional governance processes to communicate with the underlying capabilities. The
APIManager exposes governance capabilities to operational governance processes
via well-defined APIs and handles all API calls from such processes. It is responsible
for resolving incoming requests, mapping them to respective governance capabilities
in the IoT devices and delivering results to the calling process. Among other things,
this involves discovering capabilities by querying the capabilities repository, and
parameterizing capabilities via input arguments or configuration directives.

Since governance capabilities are usually not “pre-installed” in IoT devices, the
DeploymentManager is responsible for injecting capabilities into such devices (e.g.,
gateways) at runtime. To this end it exposes REST APIs, which are used by the
devices to periodically check for updates, as well as by the operational governance
processes to push capabilities into the devices. Finally, the ProfileManager is respon-
sible for dynamically building and managing device profiles. This involves managing
static device meta-information and periodically performing profiling actions in order
to obtain runtime snapshots of current device states.

Another essential part of the rtGovOps framework is the rtGovOps agents. They
include: ProvisioningAgent, GovernanceAgent and DeviceProfiler. These agents are
very lightweight components that run in all IoT Cloud resources that are managed by
rtGovOps, such as the FMS vehicles. Figure 5.6 shows a high-level overview of the
GovernanceAgent architecture. It is responsible for managing local governance capa-
bilities, wrapping them in well-defined APIs and exposing them to the Governance
controller. The rtGovOps agents offer advantages in terms of general scalability of
the system and provide a degree of autonomy to the IoT Cloud resources.
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5.5 Main Runtime Mechanism of the rtGovOps Framework

Generally, the rtGovOps framework supports operations managers’ handling two
main tasks. First, the rtGovOps framework enables dynamic, on-demand provisioning
of governance capabilities. For example, it allows for dynamic injection of capa-
bilities into IoT Cloud resources, and coordination of the dynamic profiles of these
resources at runtime. Second, our framework allows for runtime management of
governance capabilities throughout their entire lifecycle, which among other things,
includes remote capability invocation and managing dynamic APIs exposed to users.

As we have mentioned earlier, in order to achieve a high-level governance ob-
jective such as to enforce (part of) compliance policies for handling emergency
situations, an operations manager could design an operational governance process
similar to the one shown in Figure 5.7 (top). Individual actions of such processes
usually reference specific governance capabilities and rely on rtGovOps to support
their execution. Figure 5.7 depicts a simplified sequence of steps executed by the

Get response
(e.g., JSON object)

Invoke gov. capability
(/scopeID/capability/args)
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rtGovOps framework when a governance capability gets invoked by an operational
governance process. For the sake of clarity, we omit several steps performed by
the framework and mainly focus on showing the most common interaction, i.e., we
assume no errors or exceptions occur. We will discuss the most important steps per-
formed by rtGovOps below. Note that all of these steps are performed transparently
to operations managers and operational governance processes. The only thing that
such processes observe is a simple API call (similar to REST service invocation) and
a response (e.g., a JSON array in this case). Naturally, the process is responsible for
providing arguments and/or configuration directives that are used by rtGovOps to
parametrize the underlying capabilities.

5.5.1 Automated Provisioning of Governance Capabilities

In order to enable dynamic, on-demand provisioning of governance capabilities,
whenever a new capability is requested (i.e., referenced in an operational governance
process) the rtGovOps framework needs to perform the following steps: i) the
ScopeCoordinator resolves the governance scope to get a set of devices to which
the capability will be added; ii) the ProfileManager checks whether the governance
capability is available and compatible with the device; iii) the Dependency Manager
resolves runtime dependencies of the capability; iv) the ImageBuilder creates a
capability image; v) finally, the DeploymentManager injects the capability into
devices. An overview of this process is also shown in steps 1−5 in Figure 5.7.

Algorithm 5.1 shows the capability-provisioning process in more detail. An
operational governance process requests a capability by supplying a capability ID
(currently consisting of capability name and version) and an operational governance
scope (more detail in Section 5.5.2). After that rtGovOps tries to add the capability
(together with its runtime dependencies) to a device. If successful, it continues along
the steps shown in Figure 5.7. The algorithm performs in a similar fashion to a fail-
safe iterator, in the sense that it works with snapshots of device states. For example, if
something changes on the device side inside checkComponent (Algorithm 5.1, lines
2−5) it cannot be detected by rtGovOps and in this case the behavior of rtGovOps
is not defined. Since we assume that all the changes to the underlying devices are
performed exclusively by our framework, this is a reasonable design decision. Other
errors, such as failure to install a capability on a specific device, are caught by
rtGovOps and delivered as notifications to the operational governance process, so
that they do not interrupt its execution.

5.5.1.1 Capability Checking

From the steps presented in Algorithm 5.1 checkComponent (lines 1 − 6) and
in jectCapability (lines 15− 17) are the most interesting. The framework invokes
checkComponent for each governance capability and all of its dependencies for the



5.5 Main Runtime Mechanism of the rtGovOps Framework 89

currently considered device. At this point rtGovOps verifies that the component can
be installed on this specific device. To this end, the ProfileManager first queries the
central capabilities repository. Besides the capability binaries, the repository stores
capability meta-information, such as required CPU instruction set (e.g., ARMv5 or
x86), disk space and memory requirements, as well as installation and decommission-
ing directives. After obtaining the capability meta-information the framework starts
building the current device profile. This is done in two stages. First, the gateway
features catalog is queried to obtain relevant static information, such as CPU archi-
tecture, kernel version and installed userland (e.g., BusyBox9) or OS. Second, the
ProfileManager in coordination with DeviceProfiler executes a sequence of runtime
profiling actions to complete the dynamic device profile. For example, the profiling
actions include currently available disk space, available RAM, firewall settings, envi-
ronment information, list of processes and daemons, and list of currently installed
capabilities. Finally, when the dynamic device profile is completed, it is compared
with the capability’s meta-information in order to determine whetherthe capability is
compatible with the device.

Algorithm 5.1: Governance capability provisioning
input :capaID : A capability ID.

gscope : Operational governance scope.
result :Capability added to device or error occurred.

1 func checkComponent(component, device)
2 capaMeta ← queryCapaRepo(component)
3 devPro f ile ← getDevicePro f ile(device)
4 status ← isCompatible(capaMeta,devPro f ile)
5 return status
6 end

/* Begin main loop. */

7 components ← resolveDependencies(capaID)
8 components ← add(capaID)
9 for device in resolveGovScope(gscope) do

10 for component in components do

11 if not checkComponent(component, device) then

12 error
13 end

14 end

/* Inject capability. */

15 capaImg ← createImg(components)
16 deployCapa(capaImg,device)
17 installCapa(capaImg) // On device-side
18 end

9 http://busybox.net
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5.5.1.2 Capability Injection

The rtGovOps capability injection mechanism deals with uploading and installing
capabilities on devices, as well as managing custom configuration models. This
process is structured along three main phases: creating a capability image, deploying
the capability image on a device and installing the capability locally on the device.

1. After the ProfileManager determines a capability is compatible with the gateway,
the ImageBuilder creates a capability image. The capability image is rtGovOps’
internal representation of the capability package (see Figure 5.5). In essence
it is a compressed capability package containing component binaries and a
dynamically created runlist. The runlist is an ordered list of components that
need to be installed. It is created by the DependencyManager and its individual
steps reference component installation or decommissioning directives that are
obtained from the capabilities repository.

2. In the second phase, DeploymentManager deploys the image to the device. We
support two different deployment strategies. The first strategy is pull-based, in
the sense that the image is placed in the update queue and remains there for
a specified period of time (TTL). The ProvisioningAgent periodically inspects
the queue for new updates. When an update is available, the device can poll
the new image when it is ready, e.g., when the load on it is not too high. A
governance process can have more control over the pull-based deployment by
specifying a capability’s priority in the update queue. Finally, on successful
update the DeploymentManager removes the update from the queue. The second
deployment strategy allows governance capabilities to be asynchronously pushed
to gateways. Since the capability is forced onto the gateway, it should be used
cautiously and for urgent updates only, such as increasing a sensor poll-rate
in emergency situations. Finally, independent of the deployment strategy, the
framework performs a sequence of checks to ensure that an update was performed
correctly (e.g., compares checksums) and moves to the next phase.

3. In the final phase, the ProvisioningAgent performs a local installation of the
capability binaries and its runtime dependencies, and performs any custom con-
figurations. Initially, the ProvisioningAgent unpacks the previously obtained
capability image and verifies that the capability can be installed based on the
current device profile. In case the conditions are not satisfied, e.g., due to disk
space limitations, the process is aborted and an error is sent to the Deployment-
Manager. Otherwise, the ProvisioningAgent reads the runlist and performs all
required installation or decommissioning steps.

A limitation of the current rtGovOps prototype is that it only provides rudimen-
tary support for specifying installation and decommissioning directives. Therefore,
capability providers need to specify checks, e.g., whether a configuration file al-
ready exists, as part of the installation directives. In the future we plan to provide a
dedicated provisioning DSL to support common directives and interactions.
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5.5.2 rtGovOps APIs and Invocation of Governance Capabilities

When a new governance capability is injected into a gateway, the rtGovOps frame-
work performs the following steps: i) register the capability with the APIManager;
ii) the ScopeCoordinator resolves the governance scope; iii) the APIMediator pro-
vides a mapping model to the GovernanceAgent; iv) the GovernanceAgent wraps
the capability into a well-defined API, dynamically exposing it to the outside world;
v) the CapabilityInvoker invokes the capability and delivers the result to the invok-
ing operational governance process when the capability execution completes. A
simplified version of this process is also shown in steps 6−10 in Figure 5.7.

Before we dive into the technical details of this process, it is worth mentioning that
currently in the capabilities repository, besides the aforementioned capability meta-
information and binaries, we also maintain well-defined capability API descriptions,
e.g., functional, meta and lifecycle APIs. These APIs are available to operations
managers as soon as a capability is added to the repository and independent of whether
the capability is installed on any device. Additionally, we provide a general rtGovOps
API that is used to allow for more control over the system and its capabilities. It
includes the CapabilityManager API (e.g., list capabilities, check whether capability
installed/active), capability lifecycle API (e.g., start, stop or remove capability), and
the ProvisioningAgent API (e.g., install new capability). Listing 5.1 shows some
examples of such APIs as REST-like services (version numbers are omitted for
clarity).

1 /* General case of capability invocation. */

2 /govScope/{capabilityId}/{methodName}/{arguments}?

3 arg1={first-argument}&arg2={second-argument}&...

4 /* Data points capability invocation example. */

5 /deviceId/DPcapa/setPollRate/arguments?rate=5s

6 /deviceId/DPcapa/list

7 /* Capabilities manager examples. */

8 /deviceId/cManager/capabilities/list

9 /deviceId/cManager/{capabilityId}/stop

Listing 5.1: Examples of capabilities and rtGovOps APIs

5.5.2.1 Single Invocation of Governance Capabilities

In the following we mainly focus on explaining the steps that are performed by the
rtGovOps framework when a capability is invoked on a single device. The more
general case involving multiple devices and using operational governance scopes is
discussed in the next section.

When a capability gets invoked by an operational governance process for the first
time, the APIManager does not know anything about it. Therefore, it first needs to
check, based on the API call (e.g., see Listing 5.1), whether the capability exists
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in the central capabilities repository. After the capability is found and provisioned
(Section 5.5.1), the rtGovOps framework tries to invoke the capability. This involves
the following steps: registering the capability, mapping the API call, executing the
capability, and returning the result.

1. First, the APIManager registers the API call with the corresponding capability.
This involves querying the capability repository to obtain its meta-information
(such as expected arguments), as well as building a dynamic mapping model.
Among other things, the mapping model contains the capability ID, a reference
to a runtime environment (e.g., Linux shell), a sequence of input parameters,
the result type and further configuration directives. The APIMediator forwards
the model to the device (i.e., GovernanceAgent) and caches this information for
subsequent invocations. During future interactions, the rtGovOps framework
acts as a transparent proxy, since subsequent steps are handled by the underlying
devices.

2. In the next step, rtGovOps needs to perform a mapping between the API call
and the underlying capability. Currently, there are two different ways to do
this. By default, rtGovOps assumes that capabilities follow the traditional Unix
interaction model, i.e., that all arguments and configurations (e.g., flags) are
provided via the standard input stream (stdin) and output is produced to standard
output (stdout) or standard error (stderr) streams. This means, if not specified
otherwise in the mapping model, the framework will try to invoke the capability
by its ID and will forward the provided arguments to its stdin. For capabilities that
require custom invocation, e.g., property files, policies or specific environment
settings, the framework requires a custom mapping model. This model is used in
the subsequent steps to correctly perform the API call.

3. Finally, the CapabilityInvoker in coordination with the GovernanceAgent in-
vokes the governance capability. As soon as the capability completes, the Gov-
ernanceAgent collects and wraps the result. Currently, the framework provides
means to wrap results as JSON objects for standard data types and it relies on the
mapping model to determine the appropriate return type. However, this can be
easily extended to support more generic behavior, e.g., by using Google Protocol
Buffers10.

5.5.2.2 Operational Governance Scopes

When an operational governance process gets invoked on a governance scope, the
aforementioned invocation process remains the same, with the only difference that
rtGovOps performs all steps on a complete governance scope in parallel instead of on
an individual device. To this end, the ScopeCoordinator enables dynamic resolution
of the governance scopes.

There are several ways in which a governance scope can be defined. For example,
an operations manager can manually assign a set of resources to a scope, such as all

10 http://code.google.com/p/protobuf/
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vehicles belonging to a golf course, or they can be dynamically determined depending
on runtime features by querying governance capabilities to obtain dynamic properties
such as the current configuration model. To bootstrap defining the governance scopes,
the ScopeCoordinator defines a global governance scope that is usually associated
with all the IoT Cloud resources administered by a stakeholder at the given time.
Governance scope specifications are implemented as composite predicates referenc-
ing device meta-information and profile attributes, The predicates are applied to the
global scope, filtering out all resources that do not match the provided attribute condi-
tions. The ScopeCoordinator uses the resulting set of resources to initiate capability
invocation with the CapabilityInvoker. The ScopeCoordinator is also responsible for
providing support for gathering results delivered by the invoked capabilities. This is
needed since the scopes are resolved in parallel and the results are asynchronously
delivered by the IoT devices.

5.6 Prototype Implementation & Evaluation

5.6.1 Prototype Implementation

In the current prototype, the rtGovOps Governance controller microservices are
implemented in the Java and the Scala programming languages. The rtGovOps
agents are based on a lightweight httpd server and are implemented as Linux shell
scripts. The complete source code and supplementary materials providing more
details about the current rtGovOps implementation are publicly available in Git
Hub11.

5.6.2 Setup of the Experiments

In order to evaluate how our rtGovOps framework behaves in a large-scale setup (hun-
dreds of gateways), we created a virtualized IoT Cloud testbed based on CoreOS12.
In our testbed we use Docker containers to virtualize and mimic physical gateways
in the cloud. These containers are based on a snapshot of a real-world gateway,
developed by our industry partners. The Docker base image is publicly available in
Docker Hub under dsgtuwien/govops-box13.

For the subsequent experiments we deployed a CoreOS cluster on our local
OpenStack cloud. The cluster consists of 4 CoreOS 444.4.0 VMs (with 4 VCPUs and
7 GB of RAM), each running approximately 200 Docker containers. Our rtGovOps
agents are preinstalled in the containers. The rtGovOps Governance controller and

11 http://github.com/tuwiendsg/GovOps
12 http://coreos.com/
13 https://registry.hub.docker.com/u/dsgtuwien/govops-box/
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capabilities repository are deployed on 3 Ubuntu 14.04 VMs (with 2VCPUs and 3
GB of RAM). The operational governance processes are executing on a local machine
(with Intel Core i7 and 8 GB of RAM).

5.6.3 Governing FMS at Runtime

We first show how our rtGovOps framework is used to support operational governance
processes on a real-world FMS application for monitoring vehicles (e.g., location
and engine status) on a golf course (see Section 5.1). The application consists of
several services. On the one side, there is a lightweight service running in the
vehicle gateways that interfaces with vehicle sensors via the CAN protocol, and
feeds sensory data to the cloud. On the cloud-side of the FMS application, there
are several services that, among other things, perform analytics on the sensory data
and offer data visualization support. In our example implementation of this FMS
application, the gateway service is implemented as a software-defined IoT unit that
among other things provides an API and mechanisms to dynamically change the
cloud communication protocol without stopping the service.

The FMS application polls diagnostic data from vehicles with CoAP. However,
in case of an emergency, a golf course manager needs to increase the update rate
and switch to MQTT in order to handle emergency updates in (near) real time. This
can be easily specified with an operational governance process that contains the
following steps: change communication protocol to MQTT, list vehicle engine and
location data points, and set data points update rate, e.g., to 5 seconds. These steps
are also depicted in Figure 5.7 (top). The golf course manager relies on rtGovOps
governance capabilities to realize individual process steps and rtGovOps mechanisms
(Section 5.5) to execute the operational governance process.

Figure 5.8 shows the bandwidth consumption of the FMS application, which
monitors 50 vehicles over a period of time. We notice two distinct operation modes:
normal operation and operation in case of an emergency (emergency operation).
Most notable are the two transitions: first, from normal to emergency operation
and second, returning from emergency to normal operation. These transitions are
described with the aforementioned operational governance process that is executed
by the rtGovOps framework. The significant increase in bandwidth consumption
happens during the execution of the operational governance process, because it
changes the communication protocol from polling the vehicles approximately every
minute with CoAP, to pushing the updates every 5 seconds with MQTT.

Typically, when performing processes such as the transition from normal to emer-
gency operation without the rtGovOps framework, golf course managers (or generally
operations managers) need to directly interact with vehicle gateways. This usually
involves long and tedious tasks such as manually logging into gateways, dealing with
device-specific configurations or even an on-site presence. Therefore, realizing even
basic governance processes, such as the one we presented above, involves performing
many manual and error-prone tasks, usually resulting in a significant increase in
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Fig. 5.8: Example execution of operational governance process in the FMS

operations costs. Additionally, in order to be able to have a timely realization of
governance processes and consistent implementation of governance strategies across
the system, very large operations and support teams are required. This is mainly due
to the large scale of the FMS system, but also due to geographical distribution of the
governed IoT resources, i.e., vehicles.

Besides increased efficiency, the main advantage that rtGovOps offers to opera-
tions managers is reflected in the flexibility of performing operational governance
processes at runtime. For example, in Figure 5.8 the execution of the operational
governance process took around 2 minutes. In our framework this is, however, purely
a matter of operational governance process configuration (naturally with upper limits
as we show in the next section). This means that the operational governance process
can be easily customized to execute the protocol transition “eagerly”, to force the
change as soon as possible, even within seconds, or “lazy”, to roll out the change
step-wise, e.g., 10 vehicles at a time. The most important consequence is the oppor-
tunity to effectively manage tradeoffs. For example, executing the process eagerly
incurs higher costs, due to additional networking and computation consumption, but
it is needed in most emergency situations. Conversely, executing the process in a lazy
manner can be desirable for non-emergency situations, since operations managers
can prevent possible errors from affecting the whole system.

Figure 5.8 also shows that rtGovOps introduces a slight communication overhead.
This is observed in the two peaks at the end of the first process execution, when the
framework performs the final checks that the process completed successfully and
also when the second process gets triggered, i.e., when the capabilities get invoked
on the vehicles. However, in our experiments this overhead was small enough not
to be statistically significant. An additional performance-related concern of using
rtGovOps is that network latency can slow down the execution of the operational
governance process. However, since rtGovOps follows the microservices architecture
style, it is possible to deploy relevant services (API- and DeploymentManager) on
Cloudlets [153] near the vehicles, e.g., on golf courses, where they can utilize local
wireless networks.
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Fig. 5.9: Initial and average time for capability invocation

5.6.4 Results of the Experiments

To demonstrate the feasibility of using rtGovOps to facilitate operational governance
processes in large-scale software-defined IoT Cloud systems, we evaluate its per-
formance in governing approximately 800 vehicle gateways that are simulated in
the previously described test-bed. In our experiments, we mainly focus on showing
the scalability of the two main mechanisms of the rtGovOps framework: (i) capa-
bility invocation and (ii) automated capability provisioning. We also consider the
performance of capability checking and governance scope resolution. The reason
why we put an emphasis on the scalability of our framework is that it is one of the
key factors to enable consistent implementation of governance objectives across
large-scale systems. For example, if the execution of an operational governance
process were to scale exponentially with the size of the resource pool, theoretically
it would take infinitely long to have a consistent enforcement of the governance
objectives in the whole system, with a sufficiently large resource pool. The results of
the experiments are the averaged results of 30 repetitions and we have experimented
with five different capabilities that have different properties related to their size and
computational overhead.

Figure 5.9 shows the execution time of the first invocation of a capability (stacked
bar) and the average invocation time of capability execution (plain bar). We notice that
the first invocation took between approximately 10 and 15 seconds and the average
invocation varied between 4 and 6 seconds depending on the scope size (measured
in the number of gateways). The main reason for such a noticeable difference is
the invocation caching performed by rtGovOps. This means that most of the steps,
e.g., building capability image and building the mapping model are only performed
when a capability is invoked for the first time, since in the subsequent invocations
the capability is already in the gateways and the mapping can be done in cache. In
Figure 5.10, we present the average execution time of a capability (as it is observed
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Fig. 5.11: Average capability provisioning duration (push-based strategy)

by an invoking operational governance process on the local machine), average
execution of capability checking mechanism and governance scope resolution. As a
reference, the diagram also shows a plot of a nlog(n)+ c function. We can see that
the mechanisms scale within O(nlog(n)) for relatively large governance scopes (up
to 800 gateways), which can be considered a satisfactory result. We also notice that
computational overheads of the capabilities have no statistically significant impact
on the results, since they are distributed among the underlying gateways. Finally, it is
interesting to notice that the scope resolution time actually decreases with increasing
scope size. The reason for this is that in the current implementation of rtGovOps,
scope resolution always starts with the global governance scope and applies filters
(lambda expressions) to it. After some time Java JIT “kicks in” and optimizes filter
execution, thus reducing the overall scope resolution time.
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In Figure 5.11, we show the general execution times of the rtGovOps capability-
provisioning mechanism (push-based deployment strategy) for two different capabili-
ties. The first one has a size order of magnitude in MBs and the second capability size
is measured in KBs. There are several important things to notice here. First, the capa-
bility provisioning also scales similarly to O(nlog(n)). Second, after the governance
scope size reaches 400 gateways there is a drop in the capability provisioning time.
The reason for this is that the rtGovOps load balancer spins up additional instances
of the DeploymentManager and ImageBuilder, naturally reducing provisioning time
for subsequent requests. Finally, the provisioning mechanism behaves in a similar
fashion for both capabilities. The reason for this is that all gateways are in the same
network, which can be seen as an equivalent to vehicles deployed on one golf course.

5.6.5 Discussion and Lessons Learned

The observations and results of our experiments show that rtGovOps offers advan-
tages in terms of realizing operational governance processes with greater flexibility,
and also makes such processes easily repeatable, traceable and auditable, which is
crucial for successful implementation of governance strategies. Generally, by adopt-
ing the notion of governance capabilities and by utilizing resource agents, rtGovOps
allows operational governance processes to be specified with finer granularity (R3),
but also gives a degree of autonomy (R5) to the managed IoT Cloud resources. There-
fore, by selecting suitable governance capabilities, operations managers can precisely
define desired states and runtime behavior of software-defined IoT Cloud systems.
Further, since the capabilities are executed locally in IoT Cloud resources (e.g., in
the gateways), our framework enables better utilization of the “edge of infrastructure”
and allows for local error handling, thus increasing system availability and scala-
bility. Further, the main advantage of approaching provisioning and management
of governance capabilities in the described manner is that operations managers do
not have to worry about geographically distributed IoT Cloud infrastructure nor
deal with individual devices, e.g., key management or logging in. They only need
to declare (R4) which capabilities are required in the operational governance pro-
cess and specify a governance scope. The rtGovOps framework takes care of the
rest, effectively giving a logically centralized view (R1) of the management of all
governance capabilities. Further, by automating (R2) the capability provisioning,
rtGovOps enables installing, configuring, deploying, and invoking the governance
capabilities in a scalable and easily repeatable manner, thus reducing errors, time and
ultimately costs of operational governance.

It should also be noted that there is a number of technical limitations of and possi-
ble optimizations that can be introduced in the current prototype of the rtGovOps
framework. As we have already mentioned, rtGovOps currently offers limited support
for specifying provisioning directives. Additionally, while experimenting with dif-
ferent types of capabilities, we noticed that in many cases better support for dealing
with streaming capabilities would be useful. Regarding possible optimizations, in
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the future we plan to introduce support for automatic composition of capabilities on
the device level, e.g., similar to Unix piping. This should reduce the communication
overhead of rtGovOps and improve resource utilization in general. In spite of the cur-
rent limitations, the initial results are promising, in the sense that rtGovOps increases
flexibility and enables scalable execution of operational governance processes in
software-defined IoT Cloud systems.

5.7 Summary

In this chapter, we introduced the GovOps approach to runtime governance of IoT
Cloud systems in Smart Cities. We presented the GovOps reference model, which
defines suitable concepts; and a flexible process to design Smart City and IoT Cloud
governance strategies. We introduced the GovOps manager, a dedicated stakeholder
responsible for determining suitable tradeoffs between satisfying governance ob-
jectives and IoT Cloud system capabilities, and ensure early integration of these
objectives with operations processes by continuously refining how the high-level
objectives are articulated through operations processes.

Moreover, this chapter introduced the rtGovOps framework that serves as a
GovOps reference implementation, providing support for designing and executing
operational governance processes. We presented rtGovOps’ main runtime mecha-
nisms and enabling techniques that support operations managers in handling two
main tasks: (i) perform dynamic, on-demand provisioning of governance capabilities
and (ii) remotely invoke such capabilities in the IoT Cloud , via dynamic APIs. We
demonstrated, on a real-world case study, the feasibility of the GovOps methodol-
ogy and framework to facilitate execution of operational governance processes in
large-scale IoT Cloud systems.

The initial results are promising in several ways. We showed that the rtGovOps
framework enables operational governance processes to be executed in a scalable
manner across relatively large IoT Cloud resource pools. Additionally, we discussed
how rtGovOps enables flexible execution of operational governance processes by
automating the execution of such processes to a large extent, offering finer-grained
control over IoT Cloud resources and providing logically centralized interaction
with IoT Cloud resource pools. Finally, we discussed how GovOps allows IoT
Cloud governance processes to be realized in practice without worrying about the
complexity and scale of the underlying IoT Cloud and the diversity of various legal
and compliance issues.
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Preface

The idea of including humans in computational processes has been investigated for
decades. Recently, with the onset of portable devices, smart environments and the
service-oriented economy, it has once again gained in popularity, promising for
the first time to overcome the adoption hurdle. However, most existing approaches
model humans as computing elements fitting into existing computational models, as
opposed to modeling (computational) processes to fit human elements. In this respect,
we are still awaiting a Kuhnian paradigm shift in this area. We are advocates of that
shift, and argue that an effective inclusion of humans in socio-technical systems can
only succeed if a combination of hard and soft controllability approaches is used. In
practice this means redesigning the way we manage the human element in executable
processes by relaxing strict constraints to fit the inherent unreliability of humans and
embracing the uncertainty that comes with it. The creativity, versatility and sociability
of humans should be leveraged to perform runtime adaptations, fix incorrect results
and even produce unexpected ones. This is achieved through soft controllability
approaches such as incentives, social influence and self-achievement. The concept of
the Smart City platform introduced in Section 1.2 represents a prime example of a
complex socio-technical system that would benefit from such an approach.

In this part we introduce the core technologies and technological enablers (see
Fig. 1.1) for managing the social component of the Smart City platform. We look
into the various existing solutions for programmatic management of human partici-
pation in socio-technical systems, covering both direct and indirect controllability
aspects, and present our own solutions in both domains. These technologies pro-
vide technological support for H2H and M2H interactions among stakeholders
and are technological enablers for the development of technologies for citizen in-
clusion and empowerment. In Chapter 7 we introduce the concepts of collectives
and collective-based tasks, as an alternative to individually-oriented, role-based
task assignment, allowing for self-organization and creation of social fabric be-
tween citizens – participants of the collectives. In Chapter 8 we introduce incentives,
as a powerful mechanism of soft controllability at scale, and a solution stack for
automated incentive management in socio-technical systems.



Chapter 6

State of the Art & Related Work

6.1 Overview of Existing Social-Computing Platforms

Here we present an overview of relevant classes of socio-technical systems and
their typical representatives, and compare their principal features with the platform
presented in Chapter 7. Based on the way the workflow is abstracted and encoded the
existing approaches can be categorized [174] into three groups: a) programming-level
approaches; b) parallel-computing approaches; and c) process-modeling approaches.

Programming-level approaches focus on developing a set of libraries and language
constructs allowing general-purpose application developers to instantiate and manage
tasks to be performed on socio-technical platforms. Unlike our approach, the existing
systems do not include the design of the crowd management platform itself, and
therefore have to rely on external (commercial) platforms. The functionality of such
systems is effectively limited by the design of the underlying platform. Typical
examples of such systems are TurKit [102], CrowdDB [57] and AutoMan [15].

TurKit is a Java library layered on top of Amazon’s Mechanical Turk offering
an execution model (“crash-and-rerun”) which re-offers the same microtasks to
the crowd until they are performed satisfactorily. The input to TurKit are custom
JavaScript files executable on mTurk written by external developers. TurKit manages
these files according to the described execution model on behalf of the developer,
relieving him of this time-consuming task. While the deployment of tasks onto
the Mechanical Turk platform is automated, the synchronization, task splitting and
aggregation are left entirely to the programmer. In our solution, the inter-worker
synchronization is out of the programmer’s reach. The only constraint that a pro-
grammer can specify is to explicitly prohibit certain workers from participating in
the computations. No other high-level language constructs are provided.

CrowdDB similarly outsources parts of SQL queries as mTurk microtasks. Con-
cretely, the authors extend traditional SQL with a set of “crowd operators,” allowing
subjective ordering or comparisons of datasets by crowdsourcing these tasks through
conventional microtask platforms. As this implies “pay-as-you-go” billing, another
construct allows the total price of a query to be limited. From the programming
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model’s perspective, this approach is limited to a predefined set of functionalities
which are performed in a highly parallelizable and well-known manner.

AutoMan integrates the functionality of crowdsourced multiple-choice question
answering into the Scala programming language. The authors focus on automated
management of answering quality. The answering follows a hard-coded workflow.
Synchronization and aggregation are centrally handled by the AutoMan library. The
solution is of limited scope, targeting only the designated labor type. None of the
three described systems allows explicit collective formation, or hybrid collective
composition.

Parallel-computing approaches rely on the divide-and-conquer strategy that di-
vides complex tasks into a set of subtasks solvable either by machines or humans.
Typical examples include Turkomatic [93] and Jabberwocky. For example, Jabber-
wocky’s [6] ManReduce collaboration model requires users to break down the task
into appropriate map and reduce steps which can then be performed by a machine
or by a set of human workers. Hybridity is supported at the overall workflow level,
but individual activities are still performed by homogeneous teams. In addition, the
efficacy of these systems is restricted to a suitable (e.g., MapReduce-like) class
of parallelizable problems. Also, in practice they rely on existing crowdsourcing
platforms and do not manage the workforce independently, thereby inheriting all
underlying platform limitations.

The process-modeling approaches focus on integrating human-provided services
into workflow systems, allowing modeling and enactment of workflows comprising
both machine- and human-based activities. They are usually designed as exten-
sions to existing workflow systems, and therefore can perform some form of peer
management. The three currently most advanced systems are CrowdLang [112],
CrowdSearcher[21] and CrowdComputer [174].

CrowdLang brings in a number of novelties in comparison with the previously
described systems, primarily with respect to the collaboration synthesis and synchro-
nization. It enables users to (visually) specify a hybrid machine-human workflow, by
combining a number of generic (simple) collaborative patterns (e.g., iterative, contest,
collection, divide-and-conquer), and to generate a number of similar workflows by
differently recombining the constituent patterns, in order to generate a more efficient
workflow at runtime. The use of human workflows also enables indirect encoding
of inter-task dependencies. The user can influence which workers will be chosen to
perform a task by specifying a predicate for each subtask that needs to be fulfilled.
The predicates are also used for specifying a limited number of constraints based
on social relationships, e.g., to consider only Facebook friends. Even if CrowdLang
allows a certain level of runtime workflow adaptability, it is limited to patterns that
need to be foreseen at design-time. Our platform differs from both of these sys-
tems mostly by extending the support for collaborations from processes known at
design-time to fully human-driven, ad hoc runtime workflows.

CrowdSearcher presents a novel task model, composed of a number of elementary
crowdsourceable operations (e.g., label, like, sort, classify, group), associated with
individual human workers. Such tasks are composable into arbitrary workflows
through application of a set of common collaborative patterns which are provided. The
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workflow is constructed and executed by a custom-designed Node.js framework that
first transforms the declarative, task-centric, pattern-based specification into a series
of rules and output events, which drive the workflow execution according to the ‘event-
condition-action’ (ECA) paradigm. The actual execution is performed on a third-party
crowdsourcing platform (e.g., AMT). The focus of CrowdSearcher’s programming
model lies in task specification, splitting and subsequent aggregation. This allows a
very expressive model but on a very narrow set of crowdsourcing-specific scenarios.
This is in full contrast with the more general task-agnostic approach taken by our
programming model presented in Chapter 7. The provisioning is limited to the simple
mapping “one microtask ↔ one peer”. No notion of collective or team is explicitly
supported, nor is human-driven orchestration/negotiation. Furthermore, the system
supports only human-based task performers, leaving out the notion of hybridity.

CrowdComputer is a platform allowing the users to submit general tasks to be
performed by a hybrid crowd of both web services and human peers. The tasks are ex-
ecuted following a workflow encoded in a BPMN-like notation called BPMN4Crowd,
and enacted by the platform. CrowdComputer can be seen as the platform resembling
most closely the functionality offered by our platform. However, while CrowdCom-
puter assumes splitting of tasks and assignment of single tasks to individual workers
through different “tactics” (e.g., marketplace, auction, mailing list) our platform
natively supports actively assembling hybrid collectives to match a task. In addition,
by providing a programming abstraction, it offers a more versatile way of encoding
workflows.

6.2 Theories of Motivation and Incentives

Intrinsic and Extrinsic Motivation

The fundamental concept related to incentives and rewards is the concept of motiva-
tion. Motivation has been a topic of interest in psychology for decades, with different
theories emerging in different epochs. The resulting corpus of research led to the
commonly accepted view of today [150], where motivation is classified into two
major types – intrinsic and extrinsic.

Intrinsic motivation is described as the driving force attracting individuals to
perform an activity for the inherent satisfaction associated purely with the act of
performing that activity. Extrinsic motivation, on the other hand, is the driving force
pushing individuals to perform an activity in which they find no inherent interest or
satisfaction, but which is associated with external rewards substituting the missing
inherent satisfaction.

Intrinsic motivation is powerful and stable, often associated with curiosity, cre-
ativity, competitiveness, playfulness and volunteering. However, it can also be highly
dependent on different social and environmental factors. On the other hand, extrinsic
motivation is exerted directly by an intervention strategy (e.g., incentive), making it
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more controllable, but also more volatile, as its effects are gone when the intervention
is absent. Extrinsic motivation is important for performing activities which individ-
uals consider important and necessary but not inherently enjoyable (e.g., learning,
working). The different motivation types, and how they influence human behavior,
are introduced and researched as part of Self-Determination Theory (SDT) [39].

From the operational aspect (which is of particular interest to us), the two motiva-
tion types can be treated through the notion of reward. While the concept of reward
is inherent to the definition of extrinsic motivation, in case of intrinsic motivation
the reward can be considered as providing the opportunity to perform an activity
or get better at it. The same rationale is also adopted by Operant Theory [1]. This
operationalization allows us further to define incentivization as the process through
which motivation is fostered by application or provisioning of rewards.

As a practical example, this means that by incentivization we consider both a
promise of payment of a monetary reward (extrinsic motivation), as well as pro-
viding an opportunity for an amateur astronomer to voluntarily participate in a
citizen-science galaxy identification program (intrinsic motivation). In both cases
incentivization influences the individual’s locus of control – in the former case the
locus is external; in the latter the locus is internal.

Principal-Agent Theory

Historically, there has been much more commercial interest in investigation of
extrinsic intervention strategies. The practical concept of incentives appeared together
with the division of labor. Delegating productive tasks to others (workers) meant
it was necessary to make sure that workers, pursuing own interests, did not work
against the owner’s interests. Incentives served primarily this purpose – to align
the interests of the owner and the workers. This meant that the most important
extrinsic operational models and theories were originally developed by economists.
An overview of the historical development of the notion of incentives and rewarding
in economic thought can be found in [95].

The predominant model of incentives used in economics was set out in the
Principal-Agent Theory (also known as Agency Theory) [16, 95]. The theory intro-
duces the role of principal, corresponding to a manager in a traditional firm, who
delegates tasks to a number of agents, corresponding to employees under his super-
vision. It is assumed that the agents seek to minimize their effort and risks while
maximizing their compensation. The principal wants to minimize the costs of the
agents’ labor and maximize profits. Therefore, their interests diverge.

Every agent is unique, possessing unique qualities and properties. For the same
task different agents will put in different levels of effort, and will value that effort at
a different cost1. Additionally, every agent can, unobserved by the principal, perform
certain actions that go against the principal’s interests. The theory implies that the

1 All the costs and prices, as well as amounts of incentives are expressed as numerical quantities.
It is assumed that these numerical values include and represent also any other properties that the
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agents know their personal values for these properties (adverse selection) and know
their intentions to commit hidden actions (moral hazard). The fact that they remain
secret to the principal is called information asymmetry or the information gap.

We assume that the principal knows just the statistical distribution of these values.
If the principal knew entirely the private information (signals) for every agent, then
each agent could be offered the ideal contract from the principal’s point of view,
i.e., paying him just as little as it takes for him to perform the work with the given
effort. However, this not being the case, some agents get overpaid while others get
underpaid, effectively inducing them not to accept working on the task. The principal
wants to know and measure as many agent signals as possible, because the more
insight he gets into agent’s capabilities and behavior, the more chances he has of
setting up a better contract and maximizing his profit (Informativeness Principle).
So, the principal offers the agent an incentive to disclose part of this information in
order to compile a better-suited contract.

Incentives are an additional expense for the principal. However, if, based on the
new information, the principal can offer better contracts and consequently make
more profit by filtering out and motivating quality agents, then the investment in the
incentives will pay off. Therefore, the incentive designer is faced with an optimization
problem that involves human agents, whose individual behaviors cannot be foreseen.
A way to solve this problem lies in assembling an incentive strategy comprising a
number of simple incentives whose effects on the majority of agents can be predicted
closely enough, and then adapting the strategy based on concrete, context-specific
feedback. In a traditional company, this would mean that a manager would offer a
combination of wage increases, free days, promotions, bonuses and other benefits to
the workers that achieve higher levels of some wanted property (e.g., productivity,
quality, knowledge, leadership). Increased expenses for the principal are compensated
not only by increased productivity, but in fact much more by the selective effects of
the incentives [98]; by investing in incentives the management gains the knowledge
of which workers can produce more value to the company and therefore should be
stimulated to stay in the company.

The fundamental difficulty when applying the theory in practice lies in precisely
defining and subsequently measuring the different qualities of agents and their
performance (signals). As we previously mentioned, the Informativeness Principle
states that each contract should be designed with as many signal measurements taken
into consideration as possible. As it is in the interest of the agents to keep some
signals private to them, measuring those signals becomes the major obstacle. In
practice, working involves performing a lot of complex and interrelated tasks, and
often collaborating and depending upon different people, so the principal problem
translates into the inability to effectively assess the quality of a particular worker’s
performance in a dynamic and complex environment due to the impossibility of
quantifying and measuring all of the signals. This is even more accentuated in social-
computing environments, where contracts (in the sense of Agency Theory) are more
persistent than the signal sets that need to be considered, calling for frequent contract

agents and principal value, such as risk, free time, gratification due to pleasant working environment,
personal satisfaction, prospect of promotion, fear of dismissal, etc.
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and incentive adjustments. Additionally, this also causes a number of behavioral
responses (dysfunctional behavior) in agents meant exclusively to increase rewards
while damaging overall performance levels.

The agency theory implies a fully rational, self-interested agent, who always acts
in his/her best interest (so called homo oeconomicus). The incentive is always mone-
tary and acting on extrinsic motivation. In practice, this is not always a sufficiently
accurate model. For this reason, additional decision-making theories and multidisci-
plinary frameworks were developed, taking into consideration various determinants
of behavior, including additional factors of intrinsic motivation, environmental and
social factors, and assuming agents with bounded rationality. In [51, 178] a compre-
hensive overview of different incentive theories and decision-making frameworks
is presented. However, while providing more realistic and nuanced behavioral mod-
els, these frameworks are less suited for technical abstraction and exploitation. The
agency theory remains, therefore, an important theory that is practically applicable
in appropriate working environments.

Both the agency theory, as well as the more complex decision-making frameworks
state that the effect of incentives on an agent’s behavior is exhibited dually, through
selective (sorting) effects and performance effects. Selective effects are defined as
the act of revealing more precise details of an agent’s qualities, shortcomings and
performance parameters through monitoring the application of incentives or through
agent self-selection. Performance effects are changes in an agent’s performance
caused by behavior modified through application of incentives.

Depending on the incentive and the application context one effect type may be
more expressed than the other. Also, one type may be valued more than the other by
the principal. For example, in piecework productive activities performance effects are
usually valued more, while in engineering disciplines discovery of creative workers
may in the long run be more profitable than the rewarding of the currently more
productive ones.

Efficacy of Incentives

Although it sounds a commonplace that offering monetary rewards to someone
should gratify that person and induce him/her to perform better, different research
efforts demonstrated through empirical studies that it may not always be the case. For
example, in [58] the authors empirically conclude that in some cases the monetary
rewards actually decrease intrinsic motivation. On the other hand, in [97] for example,
we encounter strong empirical evidence that in specific cases monetary rewards do
significantly increase performance.

However, all the studies conclude that, depending on the environment, there
always exist types of incentives that can provide the necessary motivation. With some
simple, repetitive tasks, paying for performance increases productivity [97, 109, 106].
Professionals that value the humanistic impact of their work (volunteers, community
workers, firemen, doctors, scientists, etc.) may be intrinsically motivated by having
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the positive contribution of their work to society shown [70, 74]. In companies
with lengthy and complex tasks promotions and/or team-based rewards are effective
[177, 85]. Finally, as mentioned before, sometimes the sorting effects of incentives
are much more useful to the principal than possibly moderate performance effects.

The expertise on the expected effects of particular incentives is based on empirical
data usually formulated as very general claims about behavior of agents under certain
conditions and then proven by different empirical methods (see [51, Ch. 6] for
an overview). However, as in many areas dealing with human behavior, absolute
and quantifiable incentives cannot be given in advance, but rather must be adapted
for a given collaborative environment after a careful study of the context and the
habitual/cultural background of the participants.

While choosing appropriate incentive strategies and adapting them to fit specific
types of labor may prove a challenging task, it is a conclusive fact that incentives can
exhibit considerable selective or performance effects on workers, corroborated in
practice by the fact that most traditional businesses employ incentive schemes [51,
Ch. 1].

6.3 Incentive Management in Computer Science

Most related work in the area of rewarding and incentives originates from economics,
organizational science, psychology, and applied research, mostly for military pur-
poses. It can be used to classify and substantiate the basic rewarding approaches, and
expected outcomes, and to simulate the responses to our incentive strategies. There
is only a small number of computer science papers that treat the topics of incen-
tives and rewarding, usually within particular application contexts (e.g., peer-to-peer
networks, agent-based systems). However, to the best of our knowledge, no other
computer science work treats the topic in a comprehensive manner. In fact, most
papers completely disregard the existing theoretical foundations of incentives, and
are concerned with solving only the particular problem, as we will show in the rest
of this section. The work [178] is a notable exception, discussing incentives designed
to motivate participation in different social computing platforms and relating them to
the leading behavioral theories, and presenting a vision for future developments in
this research area.

In [152] the aim is to maximize P2P content sharing. Therefore, they define roles
of (content) forwarders and receivers. The forwarder gets a reward when the receiver
reacts in some way to the content being forwarded. They then define the prices of
forwarding and receiving actions, and assign incentives based on that. Many other
papers similarly identify certain behavioral patterns and develop particular solutions
to prevent unwanted behavior or enhance existing algorithms to optimize certain
metrics ([83]).

The paper [55] discusses ways of modeling and implementing adaptable agent-
based systems. Each agent can be modified by adding or removing modules that
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make up the agent. The cause of agent adaptability is usually a role change within an
organization.

In [102] the authors try to determine the quality of work achieved when a task
is done iteratively compared to when it is done in parallel. The difference is that in
iterative processes (when applicable), workers are shown previous attempts by other
workers, which can influence their work in positive or negative ways. They conduct
experiments with real workers on Amazon Mechanical Turk, and prove statistically
that, when applicable, the iterative approach yields better (more accurate) results.
The quality of the work in their experiments is quantifiable, or voted by the crowd.
This is an important finding, since it justifies the choice of iterative execution model
that we adopt.

In [109] two basic findings seem robust, and can be used as general conclusions
when modeling behavior of contributors: “First, that paying subjects elicited higher
output than not paying them (where increasing their pay rate also yielded higher
output); and second, that in contrast to the quantity of work done, paying subjects
did not affect their accuracy. Although surprising, this latter result may be related
to an “anchoring effect” in that subjects’ perception of the value of their work was
strongly correlated with their actual pay rate.”

In [106] the authors compare the performance between paid and volunteering
workers by running experiments on well-known commercial platforms (Amazon
Mechanical Turk, Zooniverse and Planet Hunters) and analyze different reasons
for improved or worsened performance. Interestingly, although the experiments
bear much resemblance to psychological experiments intended to measure intrinsic
motivation in the context of SDT, no reference to those experiments is made.

In [180] the authors investigate whether self-governing and self-coordinated
human teams (without a centralized authority) can be stable if individual members of
such teams follow appropriate rules. In [188] the authors seek to maximize the extent
of a social network by motivating people to invite others to visit more content (i.e.,
give a contribution measured in number of pages), and evaluate a number of concrete
rewarding schemes (e.g., Dynamic Differentiated Rewarding Scheme). In [72] the
authors analyze two commonly used approaches to detect cheating and properly
validate crowdsourced tasks. In [15] the focus is on pricing policies that should elicit
timely and correct answers from crowd workers. The paper [78] examines which
psychological and monetary incentives are used to lure social network users to click
on malicious links. In [140] the authors analyze how incentive schemes relying on
peer voting can influence the decisions of workers on a crowdsourcing platform.

The major limitation of these research approaches (see [4]) is that the findings
are applicable only for a limited range of activities, considered as conventional
crowdsourcing tasks, such as image tagging, multiple-choice question answering,
text translation or design contests. Furthermore, differences in cultural background
[66] can also skew the findings. However, the results of the listed papers, taken
together, can provide some generalizable findings that need to be taken into account
when designing an incentive management system. For example, the finding that the
transparency of actors and processes in a socio-technical system will likely improve
the overall performance [77] for us translates to the requirement of portability and
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transparency of incentives. The findings of [64] indicate that for performing more
intellectually challenging tasks smaller groups of expert workers may be more
effective than web-scale crowd collectives. Again, this is in line with our motivation
of supporting novel socio-technical systems employing smaller teams of experts
rather than large anonymous crowds only. Similarly, the aforementioned difference of
effectiveness in different cultural backgrounds maps to the requirements of usability
and expressiveness to offer to incentive designers a tool for quick adaptation of
general incentive mechanisms into locally effective versions.



Chapter 7

Programmatic Management of Human

Coordination and Collaboration Activities

Complex coordinated activities involving citizens, their devices and various services
(Section 1.4) represent one of the key defining properties of the described Smart City
vision and an enabler of novel societal and business values. These activities can be
orchestrated and coordinated: centrally (by platform), distributively (by citizens), and
hybridly (by platform and citizens). How effectively such activities can be managed
depends on both the complexity of the performed tasks and the number and kind of
participating actors.

Centrally coordinated activities are suitable both for large-scale collaborations
if the performed tasks are simple (e.g., crowdsourcing microtask platforms) and
for highly complex tasks, albeit with well-defined execution steps and a relatively
low number of participating actors with precisely determined roles (e.g., workflow
systems). The latter approach is particularly suitable in conventional business envi-
ronments, but less so in a general Smart City environment where processes involving
citizens cannot always be precisely defined.

Distributively coordinated systems supporting execution of complex joint activ-
ities are extremely difficult to design and develop. The current state of the art is
nature-inspired swarm/organ systems, where individual self-sufficient units form
around collective goals1. However, in the context of the envisioned Smart City goals,
such systems are unable to support the necessary complexity of processes.

Hybridly orchestrated systems combine the advantages offered by the central
point of control (the platform) to impose the overall choreography and manage trust,
scale and execution constraints, while delegating the complexity of determining the
low-level execution steps and actual actors to the participants (citizens). Since the
workflow can be determined at runtime by the participants this drastically reduces
the complexity of the platform, and since the human participants are expected to
self-organize and agree on execution steps, such an approach allows complex and
creative ad hoc problems to be solved. However, this comes at a price: finding the
participants to perform a task, communicating the task goals to the participants,
and having participants reach an agreement on the execution steps are all phases

1 See http://www.focas.eu/
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of the task execution with a high risk of failure. Nonetheless, these phases mimic
a human-centric approach to solving problems, where a team of people is formed
to solve a problem and given a free hand to find the solution under a best-effort
assumption. We believe that this approach is suitable for a Smart City environment,
and describe in this chapter a prototype of such a system – the SmartSociety platform.

7.1 Research Context

The Smart City platform described in Section 1.2 presents a unified view of the
necessary core functionalities for the management of the overall Smart City infras-
tructure, including the social component. In this chapter, we present the SmartSociety
platform, which was the result of four years of research2 in the area of Collective
Adaptive Systems (CAS) within the EU FP7 SmartSociety3 project. The platform fits
well into the overall Smart City vision presented here, as it allows the programmatic
management of collectives – ad hoc self-assembled teams of humans supported by
software services, performing tasks of arbitrary complexity both in digital and in
physical domains (such as a city). As such, it can be considered an integral part of
the overall Smart City platform.

7.1.1 The SmartSociety Platform

Efficient management of Smart City infrastructure implies blurring the line between
human and machine infrastructural elements whenever possible and considering them
under the generic term peer. A peer is an entity providing different functionalities
under different contexts, provisioned under a service model [193], participating in
collectives – persistent or short-lived teams of peers, representing the principal entity
performing an arbitrary task. Peers and collectives embody the two fundamental
properties of the CAS vision: hybridity and collectiveness, offered as inherent features
of CAS systems, such as the SmartSociety platform.

The SmartSociety platform is an open source software toolkit4 intended for use
by:

1. Users – external human/software clients who need a complex collaborative
human-machine task performed;

2 DISCLAIMER: Although the majority of the material presented in this chapter relies on the
authors’ own work within the SmartSociety project, in order to present a complete picture, the
overall description of the platform design contains descriptions of the components developed by
SmartSociety partner institutions.
3 www.smart-society-project.eu
4 https://gitlab.com/smartsociety/
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2. Peers – human or machine entities providing Human/Web Services (possibly for
compensation).

The platform acts as intermediary between the two user types, trying to align their
interests and provide them the following functionalities:

• For users: a) a task execution environment; and b) workforce management
functionality.

• For peers: c) a collaboration environment; and d) fair working conditions.

The intended platform usage context foresees human peers registering their pro-
files with the platform and enlisting to perform different professional activities and
provide services. These activities can take place both in the digital as well as in the
physical world (e.g., sharing a car ride after agreeing through a digital service). The
platform uses the profile data to locate and engage peers in different collaborative
efforts. Peer engagement is transparent with respect to the working conditions –
peers know in advance the conditions under which they are required to provide
their services, how the effort will be monitored/assessed, as well as what kind of
compensation (or penalty) awaits them. In case of human peers, the platform asks
for explicit approval, enabling the peer engagement under a short-term contractual
relationship. In case of a software peer, the services are contracted under conventional
service-level agreements (SLAs).

Once the platform has located appropriate peers to perform a task (computation),
a collective is formed. A collective is composed of a collaborative environment and a
team of peers assembled for to perform a specific task.

The collaborative environment consists of a set of software communication and
coordination tools. For example, the platform is able to set up a predefined virtual
communication infrastructure for the collective members, provide access to a shared
data repository (e.g., Dropbox folder) [193], and provide tools for coordination of
the necessary activities to be performed by the collective’s members (e.g., Doodle).

The collective assembly and dissolution may be executed either by the peers
or by the platform. In either case, the platform enforces specific negotiation and
composition protocols. In this way the platform is able to fully manage the collective
lifecycle, and use collectives to perform collective tasks in the context of SmartSoci-
ety platform applications. During the task execution various incentives and rewards
[161] may be applied to stimulate the collective’s effort and retain the peers. After
finishing the task, collectives may be dissolved, and the reputation and other metrics
of the member peers are updated as a testimony for future participations.

The platform applications are the means by which the Smart City stakeholders
tap into the social infrastructure resource pool. They are an embodiment of the
added-value services that can be built on top of the Smart City platform (Figure 1.2).
This is possible because platform applications contain arbitrary business logic per-
mitting their use in various business/societal domains, but rely on the platform’s
API to leverage the citizens’ cognitive and physical capabilities in a uniform way.
The platform handles the citizens’ privacy and reputation, guarantees fairness in
negotiations, agreements and rewarding, and stipulates universal legal conditions.
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Fig. 7.1: Positioning programming model components within the overall SmartSoci-
ety platform architecture

A user application communicates with the corresponding platform application.
For example, as shown in Fig. 7.1, a mobile user application SmartShare contacts the
corresponding SmartSociety platform application. Note that the same person can at
the same time play the role both of a user and of a peer of a platform application –
for example, in a ride-sharing application, a person requests a ride from the platform
(as a user), but then takes part in the ride (e.g., as a driver) and thus plays the
role of the peer by providing a service for the platform. Similarly, the same person
can participate as a peer in different collectives, in the same or different platform
applications concurrently, represented by different peer profiles.

7.1.1.1 Platform Architecture & Functionality

A simplified, high-level view of the SmartSociety platform architecture is presented
in Fig. 7.1. The architecture is designed to be fully distributed and scalable. The
rectangular boxes represent the key platform components that may be deployed dis-
tributively, as all components expose (private or public) RESTful APIs. The principal
component-interoperability channels are denoted by double-headed arrows in the
figure. Communication with peers is additionally supported via popular commercial
protocols to allow broader integration with existing communication software and
allow easier inclusion of peers into the platform.

User applications contact the platform through the REST API component. All
incoming user requests are served by this module, which verifies their correctness
and dispatches them to the appropriate platform application that will be processing
and responding to them. The platform applications run sandboxed in appropriate con-
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tainers, allowing the applications to be deployed on different (virtual) machines. The
first time a platform application is run the container will take care of informing the
Peer Manager (PM) component to set up (register) the appropriate application, peer
and collective profiles required by the application. The container will also request
from the Peer Manager a set of permissions for accessing and manipulating sensitive
private data of peers. The Peer Manager can be described in short as the central data
store of the platform, managing all peer and application information and allowing
privacy-aware access and sharing of the data among platform components. In prac-
tice, the platform application is a Java application making use of the SmartSociety
platform’s programming libraries, allowing the developer to execute collective-based
tasks on the platform. Each platform application features a dedicated Orchestration
Manager (OM) component. The OM is the component in charge of preparing and
orchestrating collaborative activities among peers. Performing these functionalities
requires the OM to use the Peer Manager and SMARTCOM Middleware components.

Principal Components

Peer Manager

The Peer Manager provides the central data store that maintains and manages infor-
mation about human- or machine-based peers in a privacy-preserving framework.
Concretely, the Peer Manager provides the following functionalities: a) A mechanism
to manage peers’ information (using profiles) that accounts for heterogeneous peers;
b) A semantic peer search functionality; and c) A model for enforcing advanced
privacy mechanisms.

To effectively manage peer profiles across different applications, the Peer Man-
ager builds upon the notion of an entity-centric semantic enhanced model [62] that
defines an extensible set of entity schemas providing the templates for an attribute-
based representation of peers’ characteristics. The concrete meaning of schemas is
specified by mapping single elements (i.e., types of entities, names of attributes and
their values) to concepts from an underlying ontology that is also part of the same
model, thus allowing reasoning over peer’s properties as well as the implementation
of semantic-enhanced services. The basic set of schemas/templates can be easily
extended to support new application-specific attributes, allowing efficient definition
of new peer types. The adaptability is provided by enabling search and information-
sharing services to work over the new types in a way that is transparent to the rest of
the platform.

By leveraging the semantic search approaches described in [63] the PM’s search
functionality allows relevant peers and collectives to be located based on a set of
attribute constraints even when they are described using different terminology in their
profiles. Queries can specify arbitrarily complex semantic operations and constraints
on attributes. The semantical search is one of the enabling factors for the overall
hybridity property of the platform, because it allows queries originating from human
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Peer’s Information Peer’s Profiles 

Fig. 7.2: Simplified example of a peer with multiple profiles. Each profile is revealed
to a different application

peers to be interpreted into a tractable set of constraints, thereby alleviating the
semantical differences that are inherently present when dealing with humans.

Additionally, the Peer Manager defines a privacy protection model that pays
special attention to different privacy principles enacted by EU Data Protection
Directive 95/46/EC5 affecting storage and processing of personal data. Specifically,
the model defines privacy regulations and considerations described in [68], such
as purpose specification and binding, that are enforced upon search queries. This
means that in different usage contexts the peer profiles will reveal only partial or
(semantically) obfuscated information, used for replying to specific information
requests, thus enforcing data minimization. Fig. 7.2 shows a simplified example of
a human peer subscribed to participate in two platform applications: a ride-sharing
application and a Q&A application, revealing different information (by using different
profiles) in each case. This allows, e.g., a human peer to reveal his age range (as
a way to obfuscate the exact date of birth) when participating in a ride-sharing
collective, while the same information is completely hidden when participating in a
question-answering collective.

Communication Middleware

SMARTCOM is communication and virtualization middleware used as the primary
means of communication between the platform and the peers. Although tightly in-
tegrated into the platform, SMARTCOM is designed as an independent component
that can be used with similar CAS platforms. Apart from performing functionalities
typical of conventional service buses (e.g., message transformation, routing, encryp-
tion, authentication) the distinguishing novelty of SMARTCOM is its native support
for virtualizing collectives [193]:

• Hiding the complexity of communication with a dynamic collective as a whole
and passing instructions from the CAS platform to it, making the collective a
first-class, programmable entity (DR3);

5 http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31995L0046
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• Making the human vs. machine distinction transparent during the communication,
by interpreting/translating the messages for different peer types and delivering
them to peers through different communication channels/protocols, in accordance
with the peer’s preferences (DR2);

• Allowing concurrent participation of peers in different collectives, acting as
different service units with different SLAs, delivery and privacy policies.

SMARTCOM’s design and functionalities are described separately in Section 7.2
as it is one of the key components contributing to the hybridity of the future Smart
City platform.

Orchestration Manager

The Orchestration Manager (OM) is responsible for the following functionalities:

• Composition – Generating possible execution plans to meet user-set constraints
and optimize wanted parameters.

• Negotiation – Coordinating the negotiation process among human peers leading
to the overall agreement and acceptance of the suggested execution plan by the
participating peers.

• Execution – Monitoring the execution and enforcing the selected execution plan
during runtime.

The OM works in an asynchronous loop reacting to events of new (users’) task
requests and (peers’) participation requests. Upon each event the OM computes
the set of feasible execution plans associated with one or more requests. Plans are
constructed by solving a high-level combinatorial or constraint satisfaction problem
(see [41]).

For example, in a ride-sharing scenario, drivers post the rides (task requests) and
passengers express participation requests (also a type of task requests). Although
passengers may be flexible to take a ride in different time intervals during the day, an
execution plan can contain only a time interval fitting every participant in the riding
collective associated with that plan. Other constraints may need to be considered,
such as the capacity of the vehicle; or trade-offs, such as choosing between the
optimal route vs. the route that accommodates more participants. In such a setting,
each new/altered request can lead to creation/invalidation of multiple plans – e.g.,
a number of passengers who submitted a participation request could not have been
part of any execution plan until a driver submitted the matching ride offer. When the
ride is finally offered, multiple possible plans are generated with different passenger
collectives, and only one plan can (in this case) be ultimately realized. Furthermore,
if at any time the driver cancels the ride, all plans need to be invalidated. Conversely,
a matching ride offer by another driver creates a different set of execution plans,
opening up the possibility for passengers to concurrently consider and negotiate about
participating in different rides, but ultimately choosing only one. Once new plans
are generated, the participants in the tentative collectives associated with each plan
can negotiate among them, thereby deciding whether the candidate solution provided
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by the OM is acceptable and the actual execution can take place. The OM mediates
the negotiation process based on the selected negotiation protocol (pattern). The
OM uses SMARTCOM to enact the negotiation protocol, i.e., to dispatch appropriate
offers, accepts, rejects and agreed plans.

The described OM functionalities are fundamental to enable the human-driven
collectiveness, i.e., workflows where the order of activities is not prescribed, but
is instead determined at runtime, based on the preferences and capabilities of the
human peers interested in performing the task.

Programming and Execution Model

Collective management and task execution are enabled by the platform’s Program-
ming and Execution Model (for short, Programming model). The Programming
Model is the umbrella term for a set of concepts and the associated communication,
interaction, coordination and execution models that abstract the fundamental CAS
notion of hybrid collectives for the developer, and provide the means, in terms of ap-
propriate high-level language constructs, to manipulate them, and ultimately execute
them on top of the SmartSociety platform.

The fundamental novelty of the programming model is achieved by replacing
the individual peer with the notion of hybrid collective as the central processing
unit. This allows the responsibility for associating tasks with peers and orchestrating
the collaboration to be shifted from the developer of the application running on the
platform to the participating peers themselves. The platform then merely coordinates
the participating humans in a human-driven collaborative process. At the same time,
the coordination management also shifts – from a design-time, platform-administered
one (requiring a predefined workflow) into a runtime, human-driven coordination
management with unpredictable workflow. All coordination and execution happens
encapsulated within the introduced notion of collective transparently to the developer,
allowing him to focus on what needs to be performed, and leaving the how part to
the platform (a declarative approach).

This opens up the possibility of supporting a whole spectrum of collaborative
patterns (labor models), ranging from on-demand to open-call. In open-call col-
laborations tasks are published on the platform, and peers are motivated to apply
and negotiate to take part in execution of the task. The negotiation and execution
are completely human driven. In on-demand collaborations, for each input task the
platform tries to locate or provision peers/collectives that are capable of performing
the task with respect to the given input constraints (e.g., [163]).

The Programming model libraries represent the heart of the platform. Section 7.3
explains the design and operating principles of the Programming model, showing
how it puts to use the principal platform components.
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7.2 Communication and Virtualization Middleware

The SMARTCOM middleware was designed6 to perform the bulk of the general
collective communication and virtualization tasks for socio-technical platforms. Here
we present only the functionality and design traits relevant to the context of the Smart
City platform:

1. Message queuing, routing, transformation and delivery of messages between
citizens (peers) and the platform.

2. Support for different messaging formats to support coupling with different
platforms but also allowing direct communication with human participants
through popular protocols (e.g., email, Android notifications, Twitter).

3. Privacy and anonymity isolation layer.

The full description of the middleware’s architecture and functionality is provided
as a separate technical report7.

7.2.1 Architecture

Figure 7.3 shows the internal architecture of the SMARTCOM middleware. The
primary function of the middleware is exchange of messages between peers and
the executing platform (e.g., Smart City or Smart Society platform), as well as
among peers themselves. The term peer is used to denote both human entities (i.e.,
citizens/workers) and software entities (e.g., external Web Services) that act as
communication endpoints (senders/receivers of messages). The executing platform is
the software entity performing computational processes involving peers, for which
SMARTCOM provides communicational support. The term collective is used to
denote a set of peers requiring multicast routing and delivery at a given time. For
example, in an incentive context, a collective can represent a team of workers who
need be contacted concurrently via different communication channels and protocols
to deliver informational or motivational messages.

The executing platform passes the messages intended for collectives to SMART-
COM (i.e., to the Communication Engine component) through a public API. The
task of the Communication Engine is to virtualize the notions of peers and collectives
to the executing platform, determine the recipients and delivery routes and instanti-
ate an ‘adapter’ to perform the delivery. The term adapter denotes the middleware
component in charge of handling the communication.

6 DISCLAIMER: Parts of the SMARTCOM design and implementation were co-authored by Dipl.-
Ing. Philipp Zeppezauer under the authors’ co-supervision. The results were published in the joint
publications [193, 192]. Some material from the cited joint publications is used here.
7 https://github.com/tuwiendsg/SmartCom/blob/master/doc/technical-report.pdf
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Fig. 7.3: Internal architecture of SMARTCOM middleware

7.2.2 Messaging and Routing

All communication between the peers and the platform is handled asynchronously
using normalized messages. A queue-based Message Broker is used to decouple
the execution of SMARTCOM’s components and the communication with peers.
SMARTCOM supports unicast as well as multicast messages. Therefore, multiple
peers can also be addressed as collectives and the SMARTCOM will take care of
sending the message to every single member of the collective.

The Messaging and Routing Manager (MRM) is SMARTCOM’s principal entry
point for communication with the platform. It consists of the following components:
1) The Message Handler takes incoming messages from the platform and transforms
them into an internal representation, sending it to the receiver via a determined
peer output adapter. If the receiver of the message is a collective, it resolves the
current member peers and their preferred communication channels, determining
a set of output adapters to use; 2) The Routing Rule Engine then determines the
proper route to the peers, invoking the Adapter Manager to instantiate appropriate
adapters in order to complete the route, if needed; 3) The Feedback Handler waits for
feedback messages received through feedback (input) adapters and passes them to
the Message Handler. Afterwards they will be handled like normal messages again,
and re-routed where needed, e.g., back to the platform. A route may include different
communication channels as delivery start/endpoints. Figure 7.4 shows the conceptual
overview of SMARTCOM’s routing. For each message the route will be determined
by the Routing Rule Engine using the pipes-and-filters pattern, determining the route
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based on the message properties: receiver ID, message type and message subtype,
with decreasing priority. Note that there may be multiple routes per message (e.g., a
single peer can be contacted using a mobile app and email concurrently).

Pa P1

Pa

P2

Fa

HDA-CAS

P3

Fa

Routing Engine

Dropbox

Sensor

FaP4

P5

Fig. 7.4: Messages are routed to Output Adapters (Pa) which forward the messages to
the corresponding Peers (P1 to P5). Feedback is sent back by human peers, software
peers (e.g., Dropbox) and sensors using Input Adapters (Fa). The platform (HDA-
CAS) can also send and receive messages

Message Structure and Types

The message structure is similar to the FIPA ACL Message Structure [52], but
some properties have been removed and others added to fit the requirements of
SMARTCOM.

Each message consists of several mandatory and optional fields. The most impor-
tant fields of a message are the Id of the message, the sender, the type and subtype.
These and further fields are discussed and described in Table 1. Listing 7.1 outlines a
simple message containing instructions for a task in the JSON format.

1 {
2 "id": "2837",
3 "type": "TASK",
4 "subtype": "REQUEST",
5 "sender": "peer291",
6 "receiver": "peer2734",
7 "conversation -id": "18475",
8 "content": "Check the status of system 32"
9 }

Listing 7.1: Example message with instructions for a task
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Field Description

Type This field defines the high-level purpose of the message (e.g., control message,
input message, metrics message). This field is especially important for the routing
of messages within the system

Subtype This field is defined by the component that is in charge of the message (i.e., it is
component-specific). The subtype combined with the type of the message defines
the purpose of the message. The subtype can also be used by programmers of
applications to define custom message types for their application

Message-ID A global unique identifier is assigned to every message within the system by the
Messaging and Routing Manager

Sender-ID The sender-ID specifies the sender of the message (can be a component, peer, etc.).
Sender-IDs are unique within the system. Sender-IDs are either predefined in case
of an internal component or are assigned by the platform component

Receiver-ID
(o)

The receiver-ID specifies the receiver of the message (can be a component, peer,
collective). Can also be empty if the receiver is not clear

Conversation-
ID (o)

Denotes the system identifier for the conversation. This identifier can be used
by platform components to map the message to the actual execution instance of
an application. For example: application A is executed twice at the same time:
A1 and A2. The conversation-ID is used to associate the messages with the right
execution A1 or A2. If there is no conversation (e.g., for internal messages), the
conversation-ID can also be empty

Content (o) Defines the content of the message including instructions and data that are needed
to execute the message. This can be empty in case of simple messages (e.g.,
acknowledge messages)

TTL (o) Time to live. Defines a time interval in which a message is valid. For example:
a peer has one hour to post pictures in a folder of an FTP server, after this time
SMARTCOM stops looking for pictures in the folder and creates an error message
if there are no pictures

Language (o) Denotes the language of the message. This can be a natural language, such as
English or German, or a binary format. The initial intention of this field is logging
and debugging purposes. In future versions a translation service could be introduced
that makes use of this field

Security-
Token (o)

The security token can be used to guarantee the authenticity of messages or to
encrypt the content of messages

Delivery-
Policy (o)

Specifies the delivery policy of the message. This field can be used to specify
whether the sender wants an acknowledgment in case of a successful delivery of
the message

RefersTo (o) This field can be used to specify that this message refers to another message

Table 1: Structure of messages. Optional fields are marked with (o)

Predefined Messages

These messages are needed for special purposes, such as authentication, or to indicate
specific behavior (i.e., an acknowledged message) or exceptional cases and errors.
The following sections describe these predefined messages and define their intended
usage in the system. The subtypes of the messages are defined in the corresponding
rows within brackets and in capital letters.
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Control messages are exchanged within SMARTCOM and are exposed to the
application. Control messages are always indicated by the message type CONTROL.
Their intention is to indicate specific control behavior (e.g., acknowledgement of
a message) or exceptions during the communication. Table 2 presents the various
subtypes.

Message Description

Acknowledge (ACK) This message is sent by the output adapter if the message has been
successfully sent to the peer. Note that this does not imply the peer’s
acceptance of the contents of the message, but is used to implement
functionalities such as read receipts. This message is not sent if the
programmer requires a fire-and-forget sending behavior (i.e., she
doesn’t care if it actually has been delivered)

Error (ERROR) An error message that indicates a generic error. This message is
handled based on the routing rules

Communication Error
(COMERROR)

This error message indicates an error during the communication. This
is reported to the sender of the initial message

Timeout
(TIMEOUT)

This message indicates that a timeout has appeared in the system
and that the message couldn’t be delivered in time or there was no
response within a certain time

Table 2: Predefined subtypes of Control Messages

Authentication messages are used to perform authentication of a peer in the system
and provide him with a security token that is valid for a specific time period. Such
messages are handled by the Authentication Manager which interacts with platform
components to verify the identify of a peer. Authentication messages always have
the type AUTH. AuthenticationRequest messages are sent by peers to the system
whereas the other three messages (AuthenticationResponse, AuthenticationFailed,
AuthenticationError) are sent back from SMARTCOM to the peer. Table 3 describes
the used subtypes.
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Message Description

Authentication Re-
quest (REQUEST)

Authentication request message of a peer that contains its credentials. The
Authentication Manager queries platform components to verify the peer’s
credentials. After successful verification, a security token is created and
sent to the peer

Authentication Re-
sponse (REPLY)

Response message to an authentication request message from SMARTCOM
to the peer. It contains a security token that can be used in further requests
to verify the identity of peer

Authentication
Failed (FAILED)

Special response to an authentication request message from SMARTCOM
to the peer that indicates that the authentication failed. The purpose of this
message is to distinguish between the cases of a failed authentication and
an authentication error on the basis of the message’s subtype

Authentication Er-
ror (ERROR)

Special response message to an authentication message from SMARTCOM
to the peer that indicates that there was an error during the authentication
of the peer. Such an error might be that, for example, no external platform
component is available that can verify the credentials

Table 3: Authentication Messages

7.2.3 Message Adapters

In order to use a specific communication channel, an associated adapter needs
to be instantiated. Communication between peers and adapters is unidirectional
— output adapters are used to send messages to peers; input adapters are used
to receive messages from peers. SMARTCOM natively provides some common
input/output adapters (e.g., SMTP/POP, Dropbox, Twitter). The role of adapters
should be considered from functional and technical perspectives.

Functionally, the adapters allow for:

1. Hybridity – by enabling different communication channels to and from peers;
2. Scalability – by enabling SMARTCOM to cater to a dynamically changing

number of peers;
3. Extensibility – new types of communication and collaboration channels can

easily be added at a later stage transparently to the middleware’s users.
4. Usability – human peers are not forced to use dedicated applications for col-

laboration, but rather freely communicate by relying on familiar third-party
tools.

5. Load Reduction and Resilience – by requiring that all the feedback goes exclu-
sively and unidirectionally through external tools first, only to be channelled/fil-
tered later through a dedicated input adapter, SMARTCOM is effectively shielded
from unwanted traffic load, delegating the initial traffic impact to the infrastruc-
ture of the external tools. At the same time, failure of a single adapter will not
affect the overall functioning of the middleware.

Technically, the primary role of adapters is to perform the message format transfor-
mation. Optional functionalities include: message filtering, aggregation, encryption,
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acknowledging and delayed delivery. Similarly, the adapters are used to interface
SMARTCOM with external software services, allowing virtualization of third-party
tools as common software peers. The Adapter Manager is the component responsible
for managing the adapter lifecycle (i.e., creation, execution and deletion of instances),
elastically adjusting the number of active instances from a pool of available adapters.
This allows the number of active adapter instances to be scaled as needed. This is
especially important when dealing with human peers, due to their inherent periodicity,
frequent instability and unavailability, as well as for managing a large number of
connected devices, such as sensors. The Adapter Manager consists of the following
subcomponents:

• Adapter Handler: managing adapter instance lifecycle. It handles the following
adapter types:

1. Stateful output adapters – output adapters that maintain conversation state
(e.g., login information). For each peer a new instance of the adapter will be
created;

2. Stateless output adapters – output adapters that maintain no state. An instance
of an adapter can send messages to multiple peers;

3. Input pull adapters – adapters that actively poll software peers for feedback.
They are created on demand by applications running on the platform and
will check regularly for feedback on a given communication channel (e.g.,
check whether a file is present on an FTP server);

4. Input push adapters – adapters that wait for feedback from peers.

• Adapter Execution Engine: executing the active adapters.
• Address Resolver: mapping adapter instances to peers’ external identifiers (e.g.,

Skype/Twitter username) in order to initiate communication.

Input messages from peers (e.g., subtask results) or external tools (e.g., Dropbox file
added, email received on a mailing list) are consumed by the adapters either by a
push notification or by pulling at regular intervals (more details in Section 7.2.5).
The principal adapter-handling algorithms are described in [191, 192].

7.2.4 Privacy Functionalities

SMARTCOM supports specification and observation of delivery and privacy policies
on message, peer and collective levels:

• Delivery policies stipulate how to interpret and react to possible communication
exceptions, such as: failed, timed out, unacknowledged or repeated delivery.

• Privacy policies restrict sending or receiving messages or private data to/from
other peers, collectives or external applications under different circumstances.

Apart from offering predefined policies, SMARTCOM also allows users to import
custom application- or peer-specific policies. As noted, both types of policies can be
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specified at different levels. For example, a peer may specify that he can be reached
only by peer “manager” via communication channel “email”, from 9a.m. to 5p.m.
in collective “Work”. The same person can set to be reachable via “SMS” any time
by all collective members except “manager” in collective “Bowling”. Similarly, a
collective delivery policy may state that when sending instructions to a collective
it suffices that the delivery to a single member succeeds to consider the overall
delivery successful on the collective level. SMARTCOM takes care of combining and
enforcing these policies transparently in different collective contexts.

7.2.5 Implementation & Evaluation

The SMARTCOM prototype was implemented in the Java programming language.
One can interact with it through a set of provided APIs. The prototype comes with
some implemented standard adapters (e.g., Email, Twitter, Dropbox), which can be
used to test, evaluate and operate the system. Additional third-party adapters can
be loaded as plug-ins and instantiated when needed. SMARTCOM uses MongoDB8

as a database system for its various subsystems. Depending on the usage of the
middleware, either an in-memory or dedicated database instances of MongoDB can
be used. To decouple execution and communication we use Apache ActiveMQ9 as the
message broker. The source code is provided in SMARTCOM’s GitHub repository10.

As the envisioned positioning of SMARTCOM in the overall architecture of the
incentive management platform requires that all information exchange takes place
through it, the prototype was put through a performance evaluation to demonstrate
that it is capable of withstanding high message loads (peaks) that might occur at
specific times when an incentive may need be applied to a large group of workers
simultaneously (e.g., a deadline).

The following performance evaluation was made on a 64-bit Intel Core2 Duo
machine with 2x 2.53 GHz, 4.00 GB DDR2-RAM. The simulation configuration is
as follows:

• One implementation of a Stateless Output Adapter (one instance shared by all
peers).

• 10 Input Push Adapters to receive input from peers.
• Output and Input Adapters communicate directly using an in-memory queue to

simulate a peer with a response time of zero.
• Worker threads (“Workers”) simulate the concurrently executing incentive mech-

anisms sending incentive messages (rewarding actions) to “peers” (simulated
human workers).

• One million messages are sent for each evaluation test run to get a meaningful
average number of messages sent/received.

8 http://www.mongodb.org
9 http://activemq.apache.org
10 https://github.com/tuwiendsg/SmartCom

http://www.mongodb.org
http://activemq.apache.org
https://github.com/tuwiendsg/SmartCom


7.2 Communication and Virtualization Middleware 129

• Only sent and received messages are considered as handled, not internal mes-
sages.

Figure 7.5 depicts the setup for the performance evaluation as described above.
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Fig. 7.5: Setup for the performance evaluations
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Fig. 7.6: Simulated message throughput. “Workers” are concurrent threads simulating
concurrent applications of rewarding actions to human “peers”

The performance was evaluated for every combination of 1, 5, 10, 20, 50 and
100 worker threads sending 1 ·106 messages concurrently, uniformly distributed to 1,
10, 100, and 1,000 peers waiting for messages and replying to them. Each test run
was executed 10 times to obtain average throughput results. Figure 7.6 presents the
results of the test runs. The test runs can be reproduced using the stated setup data
to configure the Java application located at GitHub11. As can be seen, the average
throughput remains between 5,000 and 3,000 messages per second. The performance
decrease with higher numbers of peers is the result of increased memory requirements
rather than computational complexity. The limiting factor here is the used ActiveMQ
message broker which only allows a maximum of approximately 20,000 messages
per second. The system has an upper bound of 5,000 messages per second since
each message is handled multiple times by the message broker and SMARTCOM.
This limitation applies to a single SMARTCOM instance, but multiple SMARTCOM

11 https://github.com/tuwiendsg/SmartCom/blob/master/smartcom-demo/src/

main/java/at/ac/tuwien/dsg/smartcom/demo/PerformanceDemo.java

https://github.com/tuwiendsg/SmartCom/blob/master/smartcom-demo/src/main/java/at/ac/tuwien/dsg/smartcom/demo/PerformanceDemo.java
https://github.com/tuwiendsg/SmartCom/blob/master/smartcom-demo/src/main/java/at/ac/tuwien/dsg/smartcom/demo/PerformanceDemo.java
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instances can be deployed to balance the load if needed, sharing the database and peer
store access. The chosen numbers of worker threads and peers cover the reasonably
expected maximum numbers of concurrently executing incentive mechanisms and
concurrently targeted humans, respectively. Performance (scalability) is, thus, not
expected to become a primary concern of SMARTCOM, especially considering the
inherent latency of human peers and variance of response times, which are both much
higher in real-world than in simulated conditions.

7.3 Programming Model
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Fig. 7.7: Using the SmartSociety programming model

Figure 7.7 illustrates the intended usage of the programming model. The developer
writes a SmartSociety program performing arbitrary business logic and handling
the interaction with user applications. When a task requiring collaborative hybrid
processing is needed, the developer uses the programming model library constructs
to create and concurrently execute a Collective-based Task (CBT) – an object encap-
sulating all the necessary logic for managing complex collective-related operations:
team provisioning and assembly, execution plan composition, human participation
negotiations and finally the execution itself. These operations are provided by various
SmartSociety platform components, which expose a set of APIs used by the pro-
gramming model libraries. During the lifetime of a CBT, various Collectives related
to the CBT are created and exposed to the developer for further (arbitrary) use in
the remainder of the code, even outside of the context of the originating CBT or its
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lifespan. This allows the developer to communicate directly with the collective mem-
bers, monitor and incentivize them, but also to use existing collectives to produce
new ones, persist them, and pass them as inputs to other CBTs at a later point. In the
remainder of the section, we will look in more detail into the design and functionality
offered by CBT and Collective constructs.

7.3.1 Collective-Based Tasks (CBT)

A collective-based task (CBT) is the element of the programming model keeping
the state and managing the lifecycle of a collective task. A CBT can be processed in
one of the two collaboration models (on demand and open call) or a combination of
the two, as specified by the developer. Table 4 lists the allowed combinations and
describes them in more detail.

on demand open call allowed description

true true yes

A collective of possible peers is first provisioned, then a set of possible execution
plans is generated. The peers are then asked to negotiate on them, ultimately
accepting one or failing (and possibly re-trying). The set of peers to execute the
plan is a subset of the provisioned collective but established only at runtime. No
known systems support it

true false yes

The expectedly optimal collective is provisioned, and given the task to execute.
The task execution plan is implicitly assumed, or known before runtime. Therefore
no composition is performed. Negotiation is trivial: accepting or rejecting the task.
Example: Social Compute Unit (SCU) [25]

false true yes

“Continuous orchestration”. No platform-driven provisioning takes place. The
entire orchestration is fully peer driven (by arbitrarily distributed arrival of
peer/user requests). The platform only manages and coordinates this process.
Therefore, neither the composition of the collective nor the execution plan can be
known in advance or vary over time, until either the final (binding) agreement is
made, or the orchestration permanently fails due to non-fulfillment of some critical
constraint (e.g., timeout). Note that in this case repetition of the process makes no
sense, as the process lasts until either success or ultimate cancellation/failure (e.g.,
the ride request for traveling home for Christmas makes no sense after Christmas,
or the user withdraws the request). Examples: pure ride-sharing, conventional
crowdsourcing when negotiation is trivial

false false no n/a

Table 4: CBT collaboration models and associated flags

At a CBT’s core is a state machine (Fig. 7.8) managing transitions between
states representing the eponymous phases of the task lifecycle: provisioning,
composition, negotiation and execution. An additional state, named conti-
nuous orchestration, is used to represent a state combining composition and
negotiation under specific conditions, as explained in Table 4.

The purpose of the states is twofold: a) As in every state machine, to trigger certain
actions upon transition into the state; b) to define allowed developer actions (i.e., to
restrict certain function invocations to certain states). The choice of collaboration
model is made through corresponding boolean flags, which are used in state transition
guards to skip certain states and activities associated with them.
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Fig. 7.8: CBT state diagram. States are associated with the task’s lifecycle phases

7.3.1.1 provisioning State

On entering the provisioning state the provisioning process is started. The input
collective equals a collective specified at CBT instantiation (most commonly a
predefined collective representing all the peers from the Peer Manager eligible for that
particular platform application). The provisioning process consists of running queries
on the Peer Manager and provisioning algorithms (e.g., [25]) in search of appropriate
human and software peers to participate in the subsequent execution, and setting up an
infrastructural capability for their subsequent collaboration. Provisioning algorithms
establish a set of human or machine peers that can support the computation, while
being optimized on, e.g., highest aggregate set of skills, lowest aggregate price. The
bootstrapping aspect refers to: finding and starting a software service, or inviting
a human expert to sign up for the participation in the upcoming computation, and
setting up the communication patterns among them (e.g., a shared Dropbox folder).
The provisioning phase is crucial in supporting hybridity in the programming model,
because it shifts the responsibility for explicitly specifying peer types or individual
peers at design time from the developer onto the provisioning algorithms executed
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at runtime, thus making both human and machine-based peers eligible depending
on the current availability of the peers and the developer-specified constraints. In
practice, we assume that software peers are permanently available, and take into
consideration only those human peers that are already registered to participate in
a specific platform application. In this case, the provisioning process requires the
following steps:
1. run queries in Peer Manager to find specific peers;
2. run a provisioning algorithm [25];
3. set up a communication topology [193] (e.g., set up a common communication

medium, allow/prevent inter-/intra-collective communication).

7.3.1.2 composition State

The input to the state is the ‘provisioned’ collective. The composition is performed
by the composition handler. The handler can be provided:

1. as a programming model library handler;
2. by the OM (ultimately by the dedicated OrchestrationManager (OM) instance).

In the composition process additional collectives are created and potentially
exposed to the developer as a list of collectives named “negotiable”, associated with
composed execution plans. Upon success, the programming model waits for the
flag do negotiate to become true, and passes the composed execution plans and
the associated “negotiable” collectives to the negotiation step. In case of failure,
a dedicated failure state is entered. In case b), the composition state enacts the
composition process.

7.3.1.3 negotiation State

The input to this state is the list of collectives named “negotiables” along with
associated plans. The negotiation is performed by the negotiation handler. The
handler can be provided:

1. as a programming model library handler;
2. by the OM (ultimately by the dedicated OrchestrationManager (OM) instance).

In case b), the negotiation state enacts the negotiation process. The outcome of
the negotiation process is the single “agreed” collective and the associated execution
plan.

Upon success, the programming model waits for the flag do execute to become
true, and passes the agreed execution plan and the associated “agreed” collective to
the execution step. In case of failure, a dedicated failure state is entered.
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7.3.1.4 continuous orchestration State

In order to support continuous orchestration (as explained in Table 4) we need a
state that does not separate composition and negotiation explicitly, but rather allows
continuous switching between (re-)composing and negotiating, which allows users
to submit new requests, which re-triggers composition, i.e., peers temporarily accept
plans and later withdraw, until the plan is ultimately considered accepted and thus
becomes ready for execution, or ultimately fails/gets canceled. Note that repetition of
this state is not applicable, because repetition is generally done in case of remediable
failures, but in this case the orchestration lasts until non-revocable success/failure.

7.3.1.5 execution State

The execution state handles the actual processing of the agreed execution plan by
the “agreed” collective. In line with the general CAS principles, this process is inten-
tionally made highly independent of the developer and the programming model and
allowed be driven autonomously by the collective’s member peers. Since peers can
be either human or software agents, the execution may be either loosely orchestrated
by human peer member(s), or executed as a traditional workflow, depending on what
the state’s handlers stipulate. For example, in the simplified collaborative software
development scenario shown in Listing 7.4 both CBTs are executed by purely human-
composed collectives. However, the testTask CBT could have been initialized with
a different type, implying an execution handler using a software peer to execute a test
suite on the software artifact previously produced by the progTask CBT. Whether
the developer will choose software- or human-driven execution CBTs depends pri-
marily on the nature of the task, but also on the expected execution duration, quality
and reliability. In either case, the developer is limited to declaratively specifying the
CBT’s type, and the required termination criterion and the Quality of Results (QoR)
expectations through associated handlers. The state is exited when the termination
criterion evaluates to true. The outcome is “success” or “failure” based on the return
value of the QoR handler. In either case, the developer can fetch the TaskResult
object, containing the outcome, and the evaluation of the acceptability of the task’s
quality.

7.3.1.6 * fail States

Each of the principal states has a dedicated failure state. Different failure states are
introduced so that certain states can be re-entered, depending on what the selected
adaptation policy specifies. Some failure states react only to specific adaptation
policies; some to none. Adaptation policies are described in the following section.
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7.3.2 Execution Model

A CBT instance is always associated with a TaskRequest containing input data and
possibly a TaskResult containing the outcome of the task. Both are very generic
interfaces meant to hide the application-specific format of the input and output
data from the programming model, respectively. In fact, the programming model
is designed to be task-agnostic. This is in line with the general CAS principle that
unconstrained collaboration should be supported and preferred when possible. This
design choice was made to allow subsequent support of different task description
formats which will be interpretable by the application-specific orchestration manager
(which is in charge of composing execution plans), or even by human peers only. This
implies that the respective handlers (see below) registered for a specific application
shall know how to interpret and produce correct formats of input and output data,
and wrap them into TaskRequest and TaskResult objects.

The CBT has an independent execution thread that processes the initial task re-
quest by driving the associated state machine from initial until final state through
required states by responding to events that allow state transitions and performing
the associated workflows, and finally delivering the result. Each state has a prede-
fined workflow that needs to be executed. The workflow consists of activities with
predefined APIs. The activities act as placeholders for which different handlers can
be registered. By registering different handlers for an activity, we can obtain different
flavors, and ultimately a different overall execution of the state. For example, one of
the activities in the Execution state is the “QoR” (quality of result). By being able
to specify a different handler, we can produce different outcomes of the Execution
phase. Similarly, by registering a different handler, an OM instance with different
parameters can be used. This property is used to implement adaptation policies.

Figure 7.9 shows the workflows corresponding to the different states on the left,
and the signatures of the delegates that can act as handlers for the corresponding
activities. The programming model libraries provide a library of predetermined
handlers, although external services from within the platform can also be used (e.g.,
[25]).

7.3.2.1 Adaptation Policies

An adaptation policy is used to enable re-doing of a particular subset of a CBT’s gen-
eral workflow with different functionality and parameters, by changing/re-attaching
different/new handlers to the corresponding activities in the states’ workflows, and
enabling transitions from the failure states back to active states. The policies are
triggered upon entering failure states, as shown in Figure 7.8. The possible transitions
are marked with dotted lines in the state diagram, as certain policies make sense only
in certain fail states.

Adaptation policies allow for completely changing the way a state is executed.
For example, by registering a new handler for the provisioning state a different
provisioning algorithm can be used. Similarly, a new handler installed by the adapta-
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Fig. 7.9: CBT activity handlers, input and output types, and exceptions thrown

tion policy can in a repeated negotiation attempt use the “majority vote” pattern
for reaching a decision, instead of the previous “consensus” pattern.

Since concrete adaptation policies are meant to extend the functionality of the
programming model they are usually context-specific. Therefore, the programming
model limits itself to offering the mechanism of extending the overall functionality
through external policies and itself offers for each failure state only a limited set of
simple, generally applicable predefined policies. In order to be general, predefined
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policies assume re-use of the existing handlers by default. The supported policies
are informally described in Table 5. Only a single adaptation policy is applicable in
a single failure state at a given time. If no policy is specified by the developer, the
ABORT policy is assumed (shown as full-line transition).

adaptation policy description
ABORT Default. Do nothing, and let the fail state lead to total failure

REPEAT

Repeats the corresponding active state, with (optionally) new handler(s). If the developer
specifies the new handler we describe the property as “adaptivity”; if the system automatically
determines the new handler, we describe the property as “elasticity”

REPROVISION Transition into provisioning state, with (optionally) a new provisioning handler
RECOMPOSE Repeat the composition, with (optionally) a new provisioning handler

Table 5: CBT adaptation policies

7.3.3 Collectives

The notion of collective is very general. Sometimes it used to denote a stable group
or category of peers based on their common properties, but not necessarily with
any personal/professional relationships (e.g., “Java developers”, “students”, “Vienna
residents”, peers registered with a specific application); in other cases, the term
collective was used to refer to a team – a group of people gathered around a concrete
task. The former type of collectives is more durable, whereas the latter one is short-
lived. Therefore, we make the following distinction in the programming model:

A Resident Collective (RC) is an entity defined by a persistent Peer Manager
identifier, existing across multiple application executions, and possibly different
applications. Resident collectives can also be created, altered and destroyed fully
out of scope of the code managed by the programming model. The control of who
can access and read a resident collective is enforced by the Peer Manager. For
those resident collectives accessible from the given application, a developer can
read/access individual collective members as well as all accessible attributes defined
in the collective’s profile. When accessing or creating an RC, the programming
model either passes to the Peer Manager a query and constructs it from returned
peers, or passes an ID to get an existing Peer Manager collective. In either case, in the
background, the programming model will pass to the Peer Manager its credentials.
So, it is up to the Peer Manager to decide based on the privacy rules which peers will
get exposed (returned). For example, for “TrentoResidents” we may get all Trento
residents who have nothing against participating in a new (our) application, but not
necessarily all Trento residents from the Peer Manager’s database. By default, the
newly created RC remains visible to future runs of the application that created it,
but not to other applications. The Peer Manager can make them visible to other
applications as well. At least one RC must exist in the application, namely the
collective representing all peers visible to the application.
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Application-Based Collective (ABC). Differently from a resident collective, an
ABC’s lifecycle is managed exclusively by the SmartSociety application. Therefore,
an ABC cannot be accessed outside of an application, and ceases to exist when
the application’s execution stops. ABCs are initially created by applying certain
operations on resident collectives. Differently than resident collectives, an ABC is an
atomic entity for the developer, meaning that individual peers cannot be explicitly
known or accessed from an ABC instance. This means that an ABC instance is
immutable. The ABC is the embodiment of the principle of collectiveness, making
the collective an atomic, first-class citizen in our programming model. Concretely,
the following rules regulate the ABCs’ lifecycle:

• An ABC can be created:

– implicitly, as an intermediate product of different states of CBT execution
(e.g., “provisioned”, “agreed”).

– explicitly, by using dedicated collective manipulation operators:
· to clone a resident collective.
· as a result of a set operation on two other Collectives (either RC or

ABC).

• An ABC has a lifetime equal to that of the application where it was created:

– the lifecycle of an ABC is managed by the SmartSocietyApplication
Context (CTX) (Sect. 7.3.4)

– the Developer cannot explicitly delete them; they are cleaned up by the
runtime when the object representing the application is finalized.

• An ABC is:

– immutable for the developer.
– atomic for the developer (i.e., individual peers cannot be accessed from it).

The context object (Sect. 7.3.4) registers and keeps the collective’s kind. The kind
of a collective is a CTX record describing the allowed Peer Manager peer profiles
for the given collective type, as well as the overall collective entity profile [29].
Furthermore, once full privacy policies are implemented, this will allow fine-grained
control of which peer profiles and attributes are exposed to the application developer
for a given collective kind, implemented between CTX and Peer Manager. The
Peer Manager retains the ultimate right to grant/restrict access to specific peers or
their attributes based on the privacy policies. So, in a way, the kind can be though
of as a CTX-specific type of the collective. Therefore, ABCs are meaningful only
within a context that describes their kind and the types of profiles they contain. By
pre-registering the kind in the CTX, the runtime announces to the Peer Manager the
wish to access and store specific attributes of the collective and its peers.

Figure 7.10 depicts a partial UML class diagram showing the relevant collective
classes and part of the API. Concrete methods are explained in detail in Section 7.4.
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Fig. 7.10: Partial UML class diagram showing supported collective manipulation
methods

7.3.4 Application Context & Initialization

The application context (CTX) represents a particular instance of the SmartSociety
application (class SmartSocietyApplicationContext). It can be described in
more detail with the following claims:

• There must be exactly one CTX instance per application run. Therefore, CTX is
a singleton.

• The CTX instance keeps all values, overall application state and metadata ini-
tialized for the application run. Therefore, all initialization methods are over
CTX.

• The CTX represents the application, therefore it possesses the internal business
logic to track lifecycles of all created ABC instances, and other entities created
for the purposes of the application.
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Fig. 7.11: Partial UML class diagram showing important relationships between CTX
and other programming model elements

For the CTX initialization the developer is required to provide some information
that will then be used during task request handling:

• internal profile: contains metadata associated with the application in the Peer
Manager that can be required by clients or other applications;

• internal profile schema: the Peer Manager requires that a schema be associated
with a profile;

• user profile schemas: peers registered to the application will be seen through a
profile that is application-specific; the CTX will register such a schema with the
Peer Manager;

• collective kind descriptors: collectives will be created according to some speci-
fication depending on their type and must abide by it; the CTX is in charge of
providing the registry for the different kinds in order to be able to enforce such
rules when required;

• CBT builders for CBT types: CBTs may behave differently according to their
goal. For this reason for each CBT type the developer must provide a builder
(CBTBuilder) that will take care to create the proper CBT when required.

Section 7.4.1 illustrates the language construct to provide all the required infor-
mation.

Composition

The OM posts the TaskRequest that is received from the CBT, together with the
provisioned collective, to the OM. Composition may or may not be trivial and outputs
a list of pairs, where each pair is an execution plan and a negotiable collective for



7.3 Programming Model 141

that plan. The OM performs the necessary functionality in order to determine the
completion of the execution of composition by using the API that is defined for the
OM. Once composition ends, the OM forms the list of pairs of negotiable collectives
and the respective plans in which negotiation can occur for these collectives. This
list of pairs is returned to the CBT and composition is now over at the level of the
CBT that invoked the call on the OM for composition.

Negotiation

At the beginning of the negotiation phase, the OM uses SMARTCOM so that all the
members of the negotiable collectives can be contacted and thus be notified that a new
plan is waiting for them in which they can potentially agree or disagree to participate.
The OM translates accept/reject messages that conform into the specification of the
SMARTCOM middleware to the appropriate operations in the negotiation protocol.
The response of the OM is translated into the appropriate SMARTCOM message and
transmitted back to the user that attempted the current negotiation (accept/reject).

Execution

At the beginning of the execution phase, each member of the collective that has agreed
to participate in the execution gets contacted via SMARTCOM is sent the agreed
execution Plan. The subsequent execution is independent of the programming model,
and is potentially monitored by other SmartSociety/Smart City platform components.

Continuous Orchestration

Composition runs for every new TaskRequest that arrives in the system. The out-
come of composition is a set of plans where in each plan we have a separate collective
where negotiation can be performed at a later stage. Composition is similar to the
case where a provisioned collective is supplied. Composition is performed and a set
of Plans associated with the TaskRequest that has just arrived are generated. However,
as these plans are shared among different TaskRequests, it is usually the case that
additional TaskRequests are affected that belong to other users (and for which
composition has already run earlier). In any case, the negotiable collectives - one
such collective per plan generated - are passed as parameters to the negotiation phase
together with their plans (they are in 1-1 correspondence in the list of pairs that is the
argument). During the composition phase, continued orchestration may also throw
a CompositionFailedException, where depending on the adaptation policy this
may or may not result in an overall failure for some associated CBTs.

Similarly to the case described earlier, at the beginning of the negotiation phase,
and after potentially contacting the OM to initialize the negotiation, the SMARTCOM
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middleware contacts each collective and delivers the plan that was just generated
through composition for the collective and on which negotiation may start.

7.4 Language Constructs

construct operating on declarative/imperative
collaboration pattern CBT D
CBT activity handler CBT D
adaptation policy CBT D
CBT lifecycle command CBT I
CBT collective-fetching CBT I
collective manipulation Collective I
communication Collective I
initialization constructs CTX D

Table 6: Supported language constructs and associated programming model elements

Table 6 summarizes language constructs supported by the programming model
and lists the elements of the model on which they operate, and whether they are
declarative or imperative. The imperative constructs for CBT are used to control
entry into different states and other CBT lifecycle operations (Sect. 7.4.3). The
imperative constructs for collectives are those meant for fetching, creating, merging
and copying collectives, reading attributes, and exchanging messages with collectives
(Sect. 7.4.5) The remaining constructs are declarative. They need to be specified
before the element of the model that they describe gets instantiated.

7.4.1 Context Initialization Constructs

During the CTX initialization the developer provides the required information that
will be used during the application execution (Section 7.3.4). The programming
model allows the developer to submit such information through the following meth-
ods:

• void updateInternaProfile(ProfileSchema profileSchema,
Profile profile):
the internal profile is created and updated, in case of creation the profileSchema
is also provided to the Peer Manager;

• void registerUserProfileSchema(ProfileSchema profileSchema):
the schema of the profile that will be used to store user data;

• void collectiveForKind(String kind,
CollectiveDescriptor descriptor):
for each collective kind a corresponding descriptor is registered;
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• void registerBuilderForCBTType(String cbtType,
CBTBuilder builder):
this method specifies how CBT of a certain type can be built. Several CBTBuilder
implementations can be provided as part of the programming model library; in
particular there is one that makes use of the external Orchestration Manager.

In this section some examples of application context initialization are given.

7.4.2 CBT Instantiation

The CBT is instantiated through a CBTBuilder. In order to offer a human-friendly
and comprehensible syntax in conditions where many parameters need to be passed
at once, we make use of the nested builder pattern to create a “fluent interface”12 for
CBT instantiation, as exemplified in Listing 7.2.

Builders are registered at CTX initialization time and associated with a CBT type
(Section 7.4.1). Once the right type builder is retrieved all the expected parameters
must be passed to the builder (according to its actual type), and then the build must
be called (as shown in Listing 7.2).

1 /* ... */

2 CBT cbt = ctx.getCBTBuilder("RideSharingType")

3 .of(CollaborationType.OC) //Enum: OC, OD, OC_OD

4 .forInputCollective(c)

5 .forTaskRequest(t)

6 .withNegotiationArgs(myNegotiationArgs)

7 .build();

8 /* ... */

Listing 7.2: Instantiatiation of a CBT

7.4.3 CBT Lifecycle Operations

The basic method for checking the lifecycle state is the following. It returns an
enumeration CBTState with the active state of the CBT.

• CBTState getCurrentState() – Returns the current state.

We additionally provide the following utility (pretty-print) methods for comparing
the state of execution:

12 http://www.martinfowler.com/bliki/FluentInterface.html

http://www.martinfowler.com/bliki/FluentInterface.html
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• boolean isAfter(CBTState compareWith) – returns true if the CBT has
finished executing the compareWith state; this also includes waiting on the
subsequent state. Throws exception if the comparison is illogical.

• boolean isBefore(CBTState compareWith) – returns true if the CBT has
not yet started executing the compareWith state; this also includes waiting
for the compareWith state. Throws exception if the comparison is illogical.

• boolean isIn(CBTState compareWith) – checks whether compareWith
is equal to the return value of getCurrentState().

The do statename flags (Fig. 7.8) are used in guard conditions that control
CBT’s state transitions. Apart from the main CBT states shown in Fig. 7.8, between
each two states there is an intermediate state, named waiting for nextstate, in
order to allow blocking until the corresponding guard condition is met. If a flag for
transitioning further is not enabled, the CBT will remain (blocked) in the current
intermediate state until the flag is set, or transition to the fail state of the originating
main state after a timeout is exceeded. Upon instantiating a CBT, the developer
defines whether the state transition should happen automatically, or be explicitly
controlled. In order to check for these states, we expose the following set of methods:

• boolean isWaitingForProvisioning()
• boolean isWaitingForComposition()
• boolean isWaitingForNegotiation()
• boolean isWaitingForContinuousOrchestration()
• boolean isWaitingForStart() – waiting in the initial state to enter any

main state.

Furthermore, we have the following related methods:

• boolean isRunning() – – true in every state except initial or final.
• boolean isDone() – true only in the final state (either success or fail), not

matter whether we arrived in it through success or one of the fail states.

To allow the developer to control CBT transitions explicitly the developer is
offered the following constructs to get/set the flags used in guard conditions and
wake up the CBT’s thread if it was waiting on this flag:

• get/setDoCompose(boolean tf)
• get/setDoNegotiate(boolean tf)
• get/setDoExecute(boolean tf)

By default, the CBT gets instantiated with all flags set to true. We also provide a
convenient method that will simultaneously set all flags to true/false:

• setAllTransitionsTo(boolean tf)

Since from the initial state we can transition into more than one state, for that we
use the method:
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• void start() – Non-blocking call. Allows entry into the provisioning or
continuous orchestration states, depending on which of them is the first
state.

Additionally, CBT exposes a number of additional methods to match the methods
offered by the Java 7 Future API:

• TaskResult get() – waits if necessary for the computation to complete (until
isDone() == true), and then retrieves its result. Blocking call.

• TaskResult get(long timeout, TimeUnit unit) – same as above, but
throwing appropriate exception if timeout expired before the result was obtained.

• boolean cancel(boolean mayInterruptIfRunning) – attempts to abort
the overall execution in any state and transition directly to the final fail state. The
original Java 7 semantics of the method is preserved.

• boolean isCancelled() – Returns true if CBT was canceled before it com-
pleted. The original Java 7 semantics of the method is preserved.

7.4.4 CBT Collective-Fetching Operations

A CBT object exposes the following methods for fetching the ABCs created during
the CBT’s lifecycle:

• Collective getCollectiveInput() – returns the collective that was used
as the input for the CBT.

• ABC getCollectiveProvisioned() – returns the “provisioned” collective
• ABC getCollectiveAgreed() – returns the “agreed” collective.
• List<ABC> getNegotiables() – returns the list of negotiable collectives.

At the beginning of a CBT’s lifecycle, the return values of these methods are
null/empty list. During the execution of the CBT, the executing thread updates them
with current values. Note that we never return Plans, as the programming model is
task-agnostic.

7.4.5 Collective Manipulation Constructs

As noted in Section 7.3.3 resident collectives (RCs) are created by querying the Peer
Manager via the following static methods of the ResidentCollective class:

• ResidentCollective createFromQuery(PeerMgrQuery q,
string to kind) – Creates and registers a collective with the Peer Manager.
It is assumed that the kind entity describing the new collective has been properly
registered and initialized with CTX. When contacting the Peer Manager we pass
also the ID of the application, and we assume that the Peer Manager checks (with



146 7 Programmatic Management of Human Coordination and Collaboration Activities

the help of the programming model runtime) whether we are allowed to create
a collective of the requested kind, and returns only those peers whose privacy
settings allow them to be visible to our application’s queries. The registered kind
descriptor in the CTX allows this method to know how to properly transform the
attributes from the entities obtained from the Peer Manager to those expected by
the target kind.

• ResidentCollective createFromID(string ID, string to kind) –
Creates a local representation of an already existing collective on the Peer
Manager, with a pre-existing ID. Invocation of this method will not create a
collective on the Peer Manager, so in case of passing a non-existing collective
ID an exception is thrown. This method allows us to use and access externally
defined RCs. When contacting the Peer Manager we pass also the ID of the
application, and we assume that the Peer Manager checks whether we are allowed
to access the requested collective, and returns only those peers whose privacy
settings allow them to be visible to our application’s queries. The registered kind
descriptor in the CTX allows this method to know how to properly transform the
attributes from the entities obtained from the Peer Manager into those expected
by the target kind.

On the other hand, ABCs are created from existing collectives (both RCs and
ABCs) through the following static methods of the Collective class:

• ABC copy(Collective from, [string to kind]) – Creates an ABC in-
stance of kind to kind. Peers from collective from are copied to the returned
ABC instance. If to kind is omitted, the kind of collective from is assumed.

• ABC join(Collective master, Collective slave,
[string to kind]) – Creates an ABC instance containing the union of peers
from collectives master and slave. The resulting collective must be trans-
formable into to kind. The last argument can be omitted if both master and
slave have the same kind.

• ABC complement(Collective master, Collective slave,
[string to kind]) – Creates an ABC instance containing the peers from
collective master after removing the peers present both in master and in slave.
The resulting collective must be transformable into to kind. The last argument
can be omitted if both master and slave have the same kind.

• void persist() – Persist the collective on Peer Manager. RCs are already
persisted, so in this case the operation defaults to renaming. In case of an ABC,
the Peer Manager persists the collective as an RC. However, this does not mean
that the developer is able to subsequently fetch that RC and access the collective
members. This is decided by the CTX and Peer Manager based on the ABC’s
kind.

To read the ABC’s attributes, the following ABC class method is used:

• Attribute getAttribute() – searches attribute fields then returns a clone
of the found Attribute, if any present.
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7.4.6 Collective-Level Communication

Programming model libraries fully rely on SMARTCOM to support the communica-
tion with collectives. At the moment, the programming model only allows a basic
set of communication constructs, namely those for sending a message to a hybrid
collective and receiving responses from it:

• void send(Message m) throws CommunicationException – Send a mes-
sage to the collective. Non-blocking. Does not wait for the sending to succeed or
fail. Errors and exceptions thereafter will be sent to the Notification Callback.

• Identifier registerNotificationCallback(NotificationCallback
onReceive) – Register a notification callback method that will be called when
new messages from the collective are received. The returned Identifier is
used for unsubscribing.

• void unregisterNotificationCallback(Identifier callback) –
unregister a previously registered callback.

These methods are invokable on any Collective object. The delivery is in
line with individual privacy preferences. The types Message, Identifier and
NotificationCallback are described in [192]. In the background, the program-
ming model hides from the developer the complexity of invoking SMARTCOM’s
Communication API directly, and the need to register output adapters. Furthermore,
if the provisioning state is used, additional virtual communication infrastructure
(i.e., output adapters) may be set up transparently to the developer.
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7.4.7 Examples

Initializing a CBT

1 void ctx_initialization() {
2 /* Registering OM based builder for CBT of type "RideSharing" */
3 MyOM OM = new MyOM();
4 CBTBuilder builderWithOM = new OMBasedCBTBuilder(OM);
5 ctx.registerBuilderForCBTType("RideSharing", builderWithOM);

7 /* Registering another CBT type for which library provided handlers
8 are used. */
9 CBTBuilder patternBasedCBTBuilder = new PatternBasedCBTBuilder();

10 ctx.registerBuilderForCBTType("SimpleTask", patternBasedCBTBuilder);
11 }

13 /* this method is called for requests requiring a "RideSharing" CBT */
14 CBT get_CBT_for_rideSharing(TaskRequest request) {
15 CBT cbt =
16 ctx.getCBTBuilder("RideSharing")
17 .of(CollaborationType.OC)
18 .forInputCollective(c) //c is some input collective
19 .forTaskRequest(request)
20 .withNegotiationArguments(5, TimeUnit.Days)
21 .build();
22 }

24 /* this method is called for requests involving a "SimpleTask" request */
25 CBT get_CBT_for_rideSharing(TaskRequest request) {
26 CBT cbt =
27 ctx.getCBTBuilder("SimpleTask")
28 .of(CollaborationType.OC)
29 .forTaskRequest(request)
30 .withCompositionArguments(CompositionPattern.PROVIDED_COLLECTIVE)
31 .withNegotiationArguments(
32 NegotiationPattern.AGREEMENT_RELATIVE_THRESHOLD ,0.6)
33 .build();
34 }

Listing 7.3: CBT initialization

Listing 7.3 shows an example of how a CBT can be initialized. The pieces of code
are grouped in dummy methods for presentation purposes.

The CTX initialization phase (lines 1-11) is executed after the CTX has been
created. The developer must provide a CBTBuilder for each type of CBT that is
going to be used during the application lifetime. Two different types are registered,
RideSharing and SimpleTask; for each of them a different builder is provided.
For the sake of usability, a support library provided along with the programming
model will provide several CBTBuilder implementations.

For the type RideSharing the developer decides to use an OM, the OM is
instantiated in advance (the CTX is not involved), and then it is used to create a
generic builder based on OM (a library-provided one). Also for the SimpleTask
type the developer makes use of a given builder. Comparing the CBT creation
code for the two types (lines 14-22 for the RideSharing type, lines 25-34 for
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SimpleTask), one can appreciate the consistency of the CBTBuilder interface.
However the different builder implementations will require different arguments
for the creation of handlers. For instance in the example the OM-based builder
requires a timeout for the negotiation and the user can create it. Note how for some
handlers no parameter is passed; this might means that the builder does not allow
any parametrization in the handler creation, or it might provide a default behavior. In
the second example the developer does not provide an input collection, it specifies
instead the behavior both for composition and negotiation.

Manipulating and reusing collectives

Consider an application that uses the SmartSociety platform to assemble ad hoc,
on-demand programming teams to build software artifacts. For this purpose, two
CBT types are registered with CTX: “MyJavaProgrammingTask” and “MyJavaT-
estingTask”. First, the developer creates an RC javaDevs containing all accessible
Java developers from the Peer Manager. This collective is used as the input collective
of the progTask CBT. progTask is instantiated as an on-demand collective task,
meaning that the composition state will be skipped, since the execution plan is
implied from the task request myImplementationTReq.

The collective is first processed in the provisioning phase, where a subset of
programmers with particular skills are selected and a joint code repository is set for
them to use. The output of the provisioning state is the “provisioned” collective,
a CBT-built ABC collective, containing the selected programmers. Since it is atomic
and immutable, the exact programmers which are members of the team are not
known to the application developer. The rationale here is similar to cloud computing
– the user specifies the infrastructural requirements and constraints and the platform
takes care to provision this infrastructure, without letting the user care about which
particular VM instances are used.

The negotiation pattern will select the first 50% of the provisioned developers into
the ‘agreed’ collective that will ultimately execute the programming task. After the
progTask’s this ABC becomes exposed to the developer, which uses it to construct
another collective, containing Java developers from the ‘provisioned’ collective that
were not selected for the “agreed” one. This collective is then used to perform the
second CBT testTask, which takes as input the output of the first CBT.
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2 Collective javaDevs = ResidentCollective.createFromQuery(myQry,"JAVA_DEVS");

4 CBT progTask = ctx.getCBTBuilder("MyJavaProgrammingTask")
5 .of(CollaborationType.OD)
6 .forInputCollective(javaDevs)
7 .forTaskRequest(myImplementationTReq)
8 .withNegotiationArguments(
9 NegotiationPattern.AGREEMENT_RELATIVE_THRESHOLD , 0.5)

10 .build();

12 progTask.start();

14 // ...
15 // assume negotiation on progTask done
16 // ...

18 Collective testTeam; //will be ABC
19 if (progTask.isAfter(CBTState.NEGOTIATION)) {
20 // out of provisioned developers , use the other half for testing
21 testTeam = Collective.complement(
22 progTask.getCollectiveProvisioned(), progTask.getCollectiveAgreed());
23 }

25 while (!progTask.isDone()) { /* do stuff or block on condition */}

27 TaskResult progTRes = progTask.get();

29 if (! progTRes.isQoRGoodEnough()) return;

31 CBT testTask = ctx.getCBTBuilder("MyJavaTestingTask")
32 .of(CollaborationType.OD)
33 .forInputCollective(javaDevs)
34 .forTaskRequest(new TaskRequest(progTRes))
35 .withNegotiationArguments(
36 NegotiationPattern.AGREEMENT_RELATIVE_THRESHOLD , 1.0)
37 .build();
38 /*...*/

Listing 7.4: Using the “agreed” and “provisioned” ABCs to obtain a third col-
lective that will be used in another task. Also, using the outcome of one CBT in
another one

Controlling CBT execution

The following code snippet shows some examples of interaction with a CBT lifecycle.
An on-demand CBT named cbt is initially instantiated. For illustration purposes we
make sure that all the transition flags are enabled (true by default), then manually
set do negotiate to false, to force cbt to block before entering the negotiation
state, and start the CBT. While the CBT is executing, arbitrary business logic can be
performed in parallel. At some point, the CBT is ready to start negotiations. At that
moment, for the sake of the demonstration, we dispatch the motivating messages (or
possibly other incentive mechanisms) to the human members of the collective, and
let the negotiation process begin. Finally, we block the main thread of the application
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waiting on the cbt to finish or the specified timeout to elapse, in which case we
explicitly cancel the execution.

2 CBT cbt = /*... assume on_demand = true ... */

4 cbt.setAllTransitionsTo(true); //optional
5 cbt.setDoNegotiate(false);
6 cbt.start();

8 while (cbt.isRunning() && !cbt.isWaitingForNegotiation()) {
9 //do stuff...

10 }

12 for (ABC negotiatingCol : cbt.getNegotiables() {
13 negotiatingCol.send(new SmartCom.Message("Please�accept�this�task"));
14 // negotiatingCol.applyIncentive("SOME_INCENTIVE_ID");
15 }
16 cbt.setDoNegotiate(true);

18 TaskResult result = null;

20 try {
21 result = cbt.get(5, TimeUnit.HOURS); //Blocks until done, but max 5 h
22 // do something with result
23 }catch(TimeoutException ex) {
24 if (cbt.getCollectiveAgreed() != null){
25 cbt.getCollectiveAgreed().send(
26 new SmartCom.Message("Thanks�anyway,�but�too�late."));
27 }
28 cbt.cancel(true);
29 }

31 //...

Listing 7.5: Top: Incentivizing a collective about to start negotiating. Bottom:
Canceling a task taking too long



Chapter 8

Incentive Management

Most state-of-the-art socio-technical platforms model humans as computing elements
or services with predefined functionalities (see Section 6.1). While this is an abstrac-
tion suitable for efficient algorithmic querying, composition and execution planning,
it treats the human participant as a computing node with statistical probabilities with
respect to properties such as availability, response time, effort level and performance
quality. However, due to the high unpredictability of human nature and a multitude
of unforeseeable external factors, as well as difficulties and costs associated with
measuring these metrics, this abstraction is often inaccurate for practical purposes.
Even more importantly, existing platforms limit themselves to trying to model and
measure these properties without attempting to actively influence them. As we will
show in this chapter, actively motivating and engaging humans (citizens) can bring
many benefits compared to existing approaches, in terms of participation willingness,
increased quality, performance and collectiveness, but most importantly in eliciting
the creative and cognitive potential of the human participants.

Incentives are a well-established method for influencing and motivating humans
and for aligning otherwise diverging individual interests towards a common target.
They are researched and used in all scientific disciplines concerned with organization
of work and collective activities, extending far beyond the usually implied monetary
rewards. Incentives gain importance particularly in Smart City environments, where
attracting and organizing the citizens to participate in joint collaborative activities
is difficult due to the number and diversity of potential participants and the scale
and complexity of collaborations. Furthermore, they can be useful to the citizens
for comparing similar Smart City services and for transferring their own reputation
among those services by showcasing the obtained rewards.

In this chapter we introduce the field of automated incentive management and
present our research in the area. We build upon the theoretical basis to design and
present a complete methodology and a software framework prototype for automated
incentive management in socio-technical systems applicable to Smart City environ-
ments.
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8.1 Research Context

Many look upon social computing and crowdsourcing with criticism. The main
argument of such criticisms is that it is not ethical to treat humans as computing nodes,
and simply exploit them on a pay-as-you-go basis, which in practice often means
engaging them for microtasks that earn sub-dollar amounts. We can observe striking
similarities between the evolution of worker rights in conventional industry and in the
digital domain. Workers in early industry were exploited by working in unregulated
working environments, working on repetitive activities for long hours. Yet, at the
time, for many workers this was the best choice. Today’s crowdsourcing landscape is
still very much unregulated, and can be perceived as exploitative. However, studies
such as [107] show that for a number of people such work represents a secure and
important source of income. Recognizing the importance of digital labor, there has
been a push from unions and crowd workers themselves to regulate digital markets.
Platforms such as Turkopticon [81] allow workers to identify unfair employers, raise
awareness of appropriate compensation and offer a social environment to discuss
related problems and seek advice. The largest German worker union IG Metall has
started an initiative1 involving industry and academia to monitor and regulate the
digital labor markets. Such efforts represent important initial steps in improving the
working conditions in the digital market, and raising awareness of the importance of
it. A further step in this direction is to make such markets attractive to highly skilled
labor, and making them easily accessible to the general public. This will increase the
diversity in types and complexity of performed jobs but also allow the markets to get
better regulated, both through self-regulation due to the highly dynamic relationship
between supply and demand of jobs, as well as through the increased interest of
unions and governmental agencies.

A 2016 global report2 by the World Economic Forum on the future of jobs shows
that the changing nature of work is expected to cause the biggest impact on global
labor markets, fueled by technological drivers such as cloud computing, IoT, big data,
crowdsourcing and the sharing economy. Companies are expected to employ a smaller
permanent (core) workforce, and to scale out when additional expertise or processing
power is needed. The same report shows that the global ease of recruitment is already
low in all economic sectors, and the trend is forecast to significantly worsen in the
near future. Such prospects put the integrative socio-technical vision of the Cyber-
Human Smart City at the center of attention, as it represents a natural market for
offering and performing complex, cognitive and physical collaborative tasks drawing
on to workers from the general population. Innovative companies can leverage this
great potential in human resources and make parts of their businesses much more
dynamic and scalable (Figure 8.1).

1 http://www.faircrowdwork.org/en
2 Survey of 371 companies representing more than 13 million employees across nine broad in-
dustry sectors in 15 major developed and emerging economies and regional economic areas:
https://www.weforum.org/reports/the-future-of-jobs
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However, such dynamic working environments are especially attractive to exploita-
tive activities due to the existing diversity of working roles, the scale of workforce,
the transient nature of the employment relationship and complexity of tasks per-
formed collectively. In such environments, incentives are being increasingly used to
prevent the various types of dysfunctional behavior occurring.

Fig. 8.1: Evolution of digital labor: As working patterns become more complex,
social computing platforms need advanced organizational structure and “crowd”
management capabilities, including automated incentive management

Even without the added complexity characteristic of socio-technical environments,
incentives play a major role in managing large-scale workforces. This is evidenced by
the fact that most big or medium-sized companies employ some incentive measures;
e.g., over 80% in the USA [51, Chap. 1]. Furthermore, numerous studies have shown
the effectiveness [136] of different incentive mechanisms and their selective and
motivating effects [98]. In crowdsourcing environments, and consequently in Cyber-
Human Smart Cities, incentives are expected to play an even more important role. In
the visionary paper [89], a number of leading authors in the area discuss prospectives
of crowdsourcing and identify incentive management as one of the key research di-
rections. However, contemporary approaches to incentive management usually imply
hard-coded, system-specific solutions. Such approaches are not portable, and prevent
reuse of common incentive logic. That hinders cross-platform application of incen-
tives and reputation transfer. Additionally, in future Smart City environments there
will be a need to combine, personalize and frequently adapt incentive mechanisms
[178], something that is not straightforward with current approaches. An additional
challenge is that modeling of incentives is performed by multidisciplinary domain
experts (incentive designers) often lacking knowledge of the technical internals of
the socio-technical platform. On the other hand, the platform developers lack the
domain knowledge necessary to understand the provided incentives, leading to a
discrepancy between modeling and implementation processes.

Figure 8.2 visualizes the application context of an incentive management frame-
work: A complex collaborative process is being executed by employing crowdsourced
team(s) of human experts to execute various collective activities. The teams are provi-
sioned by the Smart City platform component that assembles teams based on required
functionality, collaboration patterns and elasticity parameters such as: price, speed
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Fig. 8.2: Application context of incentive management systems

or reputation. In order to monitor and influence the behavior of the team’s members
during and across activity executions an incentive scheme needs to be enacted.

This is the task of the envisioned incentive management framework. It enacts
the incentive scheme by applying rewards or penalties in a timely manner to induce
wanted worker behavior, thus effectively performing runtime team adaptations (see
Fig. 8.2: A′ → A′′). Most real-world incentive strategies can be composed of
modelable and reusable bits of incentive logic ([155, 172]). However, the efficacy
of incentives can depend on multiple other factors, such as team size, cultural
background or knowledge of other participants ([51]). The scheme is usually a result
of a prior assessment or case study of the particular application scenario, but needs
subsequent adaptations and adjustments [178]. Therefore, the challenge is to design
an incentive management framework capable of combining and reusing existing
and proven incentive mechanisms, but also allowing for easy tweaking to particular
application contexts. We make a strong case for this in Section 8.2.4.3

Prior to enactment, an incentive scheme must be modeled and encoded by an
incentive designer. The incentive model used in the process needs to be based on
widely adopted incentive practices in both traditional companies and in contemporary
social computing environments to allow for expression of realistic incentives covering
a wide array of incentivizing use cases.

A Word About Terminology

Research on incentives originates from economics, where the incentives were first
used as a means of aligning the interests of blue-collar workers with those of the
business owners/employers. Even though our understanding and perception of in-
centives has evolved to appreciate the mutual benefits of incentives to both parties
and has expanded across all possible types of cognitive and physical work, the orig-
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inating theories are still very much reminiscent of the traditional production-line
manufacturing environments with respect to the terminology used. This is why we
commonly encounter terms such as principal/owner/employer labeling the providers
of the incentives, and the term worker denoting the receiver/consumer of the incentive
without any further assumptions about the nature of their relationship. As these have
become commonly used terms in the literature, we also use them throughout this
chapter.

However, with the advent of social computing, researchers from other areas started
investigating incentives borrowing the terms typical of those areas and introducing
them into incentives research. This is why we can often find the term agent/peer
denoting the consumer of the incentive in a socio-technical environment. The appear-
ance of digital labor also changed the perception of the working process itself and
the working environment. We now talk of tasks/jobs/workflows offered by a platform
acting as an intermediary between the actual task (and incentive) provider and the
humans performing the work and consuming the incentive. A Smart City research
environment is inevitably a multidisciplinary one. In the given situation we use all
the outlined terms interchangeably where they feel more natural.

8.2 Existing Incentive and Rewarding Practices

8.2.1 Classification of Incentive Mechanisms

The incentive mechanisms classification presented in this section covers most known
classes of incentives in general use in different types of human organizations –
companies, non-profit (voluntary) organizations, engineering/design teams and cro-
wdsourcing systems. Different organizations employ different (combinations of)
incentive mechanisms to stimulate specific responses from agents. The classification
is derived by the authors from: a) a multidisciplinary review of relevant domain
literature cited throughout this section; and b) a survey of existing practices in
social-computing platforms presented in Section 8.2.4.

• Pay-per-performance (PPP) – PPP is one of the most commonly used incentive
mechanisms. The guiding principle states that every agent should be compensated
proportionally to his contribution. Labor types where quantitative evaluation can
be applied are particularly suited to this mechanism.
A typical representative of the PPP incentive is the wage. As shown in Equation
(8.1), the wage (w) usually consists of a fixed compensation amount (salary,
w0) and a variable amount (winc). The variable amount depends on measurable
signals (si). Every signal is scaled by its weight coefficient (λi). Coefficient
values depend not only on the actual importance that the principal attaches to a
particular signal, but also on the accuracy of measurement that can be achieved.

w = w0 +winc
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winc = β ·
[

λ1s1 +λ2s2 + · · ·+
(

1−
n−1

∑
i=1

λi

)
sn

]
(8.1)

As the Informativeness Principle suggests, the more signals we include, the
more accurate the evaluation we obtain. However, each signal value contains an
intrinsic, normally-distributed measurement error. The incentive designer needs
to take this into account. A lower value of the coefficient reflects the inaccuracy
of measurement. In addition, each signal measurement has costs associated with
it. In theory, the additional money needed for paying the rewards is provided
from the additional profits obtained from the increased productivity. Therefore,
designing an effective PPP incentive requires a proper trade-off to be found
between the costs of measurement and the accuracy obtained. A signal value
can also represent a mark based on a subjective performance evaluation by a
supervisor.
In practice, this type of incentive strategy shows significant, verifiable produc-
tivity improvements of 25-40% when used for simple, repetitive production
tasks, both in traditional companies ([97]), as well as with Human Intelligence
Tasks (HITs) on Amazon’s Mechanical Turk platform ([109]). Other studies,
cited in [136], conclude that about 30-50% of the productivity gain is due to the
filtering and attraction of better workers, thanks to the selection effect of this
kind of incentive. This is an important finding, because it explains why even with
relatively small amounts of incentives it is possible to achieve higher profits. In
fact, increasing the amount of incentives for the same effort over time can lead
to the anchoring effect, causing the agents to overestimate personal qualities.
Keeping them reasonably low enables the selection effect, while not producing
the anchoring effect.
Problems that characterize the application of PPP include typically: measure-
ment inaccuracy, choice of signals and multitasking (see Section 8.2.3). This
is in accordance with the newly observed results from [109], which confirm
that the quality of work does not increase if the productivity is the only sig-
nal evaluated. Additionally applying some aggregate measures of performance
can help alleviate these problems. Another problem that may arise due to an
implemented PPP scheme is decreased solidarity among workers, potentially
hampering the transfer of know-how and experience among workers. Again, the
countermeasures are similar to the ones for multitasking, especially team-based
strategies including apprentice relations, where the team gains are related to the
professional progress of novices.
As already explained, the context in which a particular incentive strategy is
implemented can determine its effectiveness. As demonstrated in [70, 74] PPP
may not be an appropriate strategy to choose in cases where the agents are highly
interested in the quality of the output. That includes domain experts from almost
any area, who due to their expertise can usually earn enough money, so their
primary motivation is not the monetary reward but the quality of the product or
the reputational gain. PPP is also not suited for large, distributed, team-dependent
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tasks, where measuring individual contributions is inherently difficult. However,
it is frequently used to complement other incentive schemes.

• Quota systems & Discretionary bonuses – These mechanisms are tightly re-
lated to the PPP mechanism. The conditions for applying them are the same as in
the case of PPP. We observe and measure the same signals. What is different is
that instead of rewarding agents proportionally to their productivity, the principal
sets a number of performance-metrics thresholds. When an agent reaches a
threshold he is given a one-off, predefined bonus. Quota systems evaluate at
predefined moments whether a performance signal surpasses a threshold (e.g.,
yearly bonuses). On the other hand, discretionary bonuses are paid whenever
an agent reaches a performance level for the first time (e.g., upon reaching a
landmark number of customers).
Being exposed to the issues of inaccurate measurements, these incentive strate-
gies also suffer from the appearance of multitasking. Additionally, two other
phenomena have been observed [136]:

– The amount of effort always drops after an evaluation if the agent perceives
the time until the next evaluation as long enough;

– When the performance level is close to an award-winning quota motivation is
significantly higher than the motivation of agents who have already exceeded
the quota or feel they have no realistic chances of achieving it (on time).

Therefore, the evaluation intervals and the quotas should be set in such a way that
they can be reachable with a reasonable amount of additional effort, albeit not
too easily. It is clear that these two parameters are highly context-dependent, and
therefore can be determined only after observing historical records of employee
behavior in a particular setup. Ideally, these parameters should be dynamically
adjustable.

• Deferred compensation – This mechanism is similar to a quota system, in that
an evaluation is made at predefined points in time. The subtle but important
difference is that deferred compensation takes into account three points in time
(t0, t1, t2). At t0 an agent is promised a reward after successfully passing a de-
ferred evaluation at t2. The evaluation takes into account the period of time [t1, t2]
and not just the current state at t2. In case t1 = t0 the evaluation covers the entire
interval.
Deferred compensation is typically used for incentivizing agents working on
complex, long-lasting tasks. The advantage is that it allows a more objective
assessment of an agent’s performance from a time distance. At the same time,
the agent is given enough time [t0, t1] to adapt to the new conditions, and then to
prove the quality of his work over a period of time [t1, t2]. The disadvantage of
this mechanism is that it is not always applicable, since agents are not always in
a situation to wait long periods for a significant part of their compensation. A
common example of this mechanism is the referral bonus. A referral bonus is a
reward for employees for recommending or attracting new, suitable employees
or partners to the organization.
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• Relative evaluation – Although this mechanism can have many variations, the
common underlying principle is that an entity is evaluated with respect to other
entities within a specified group. The entity can be an agent (human), or an
artifact (movie, document, product). Relative evaluation is used mainly for two
reasons:

– By restricting the evaluation to a closed group of entities (individuals), it
removes the need to set explicit, absolute performance targets in conditions
where such targets cannot easily be set, due to the dynamic and unpredictable
nature of the environment.

– It has been empirically proven that people respond positively to competition
and comparison to others. (e.g., in [173]).

Much of the initial success of Amazon and eBay can be attributed to the usage
of good reputation systems [142], which in turn rely on relative evaluations of
products by the customers.

• Promotion – Empirical studies [177] confirm that the prospect of a promotion
increases motivation. A promotion is the result of competition for a limited
number of predefined prizes. The prize is usually a higher position in the orga-
nization’s hierarchy, bringing along higher pay, more decision-making power
and more respect and esteem, although other prizes are also possible. Often, the
benefits enjoyed by the agent after a promotion are disproportionately higher
after a promotion compared to the benefits in the previous position. The reason
for this is not to reward fairly the person currently holding the position, but rather
to make future contenders for that position more competitive. In fact, the more
an agent moves up the hierarchy, the more the rewards become disproportionate
to personal abilities and productivity, moving away from PPP principles and
focusing on competitiveness.
Promotion is usually treated under the tournament theory ([98]), although other
models also exist. The advantage of promotions is that they also eliminate central-
ity bias and force positive selection, as management cannot select inappropriate
persons to advance, as that would mean transferring a great responsibility to
unreliable persons, and ultimately produce greater costs to the principal. The
drawback is that by valuing individual success, the method’s application can
de-motivate agents from helping each other and engaging in collaborations.
Promotion often incorporates subjective evaluation methods, although other
evaluation methods are possible.
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• Team-based compensation – This mechanism is used when the contribution of
individual agents in a team environment cannot easily be identified. With this
mechanism, the entire team is evaluated and rewarded. The reward is then split
among the team members. Team-based compensation is susceptible to different
dysfunctional behavioral responses. Worse-performing agents are effectively hid-
ing within the group. At the same time, the performance of the better-performing
agents is “diluted”. Furthermore, teams often exhibit the free-rider phenomenon
[136] – a situation in which individuals waste more resources (time, money, mate-
rials, equipment) than they would if individual expenses could be measured. The
consequence is that the total expenses of a team surpass the summed expenses
of independent individuals. Minimizing these negative effects is the primary
challenge when applying this mechanism [85]. The most common variants are
team-level compensation and profit sharing.
When team-level compensation is used, the entire team is treated as an individual.
After evaluation, the team is compensated by a (usually) monetary reward, which
is then equally split among all team members. However, the scenario in which a
reward is equally divided among members can lead to the dysfunctional behav-
iors we described above. In some cases, the better-performing team members
will themselves naturally exert pressure on the free-riders, and thus weaken their
negative effects. However, in cases where this does not happen, an attempt to
differentiate individual efforts can be made. Peer voting is the most effective
group evaluation mechanism in such cases, and it may be employed to differ-
entiate agents and split the reward accordingly. This is clearly an example of a
hybrid approach combining the idea of a team-based incentive, together with
an incentive strategy targeted at individuals to eliminate dysfunctional behavior.
Some studies (e.g., [134]) have shown that hybrid incentive strategies are indeed
more effective than pure team-based compensation.
The decision on the reward amount can be a matter of subjective or quantitative
evaluation. Even with a constant high level of effort, the performance of the team
can vary throughout its lifetime, depending on the compactness and intercon-
nectedness of the group and the task that the team is working on. So, finding
appropriate reward amounts becomes a difficult task [71]. One way to avoid
having to decide on the amount of compensation in cases of unknown outcome
of the collaborative effort is to tie it to the profit the company (or a company
section) makes. This strategy is called profit sharing.
Quantitative or subjective evaluation is usually used, often in combination with
peer voting. The incentive action is usually a monetary reward, divided among
team members equally or according to individual ratings.

• Psychological incentive mechanisms – Psychological incentives are the most
elusive, making them hard to define and classify, since they often complement
other mechanisms or even occur within them. They are mostly meant to target
the intrinsic motivation of individuals. They can be operatively described as
mechanisms that must: a) relate to human emotions; b) be advertised by the
principal; c) be perceived by the agent.
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The already mentioned incentive strategy of Stack Overflow, apart from being an
example of a relative evaluation strategy at the same time employs a number of
psychological incentive mechanisms, such as: status, points or badges. They serve
not only to attest to the quality of contributors and answers, but also to motivate
further contributions. If the points and statuses were not shown to the others
and advertised, but rather used for evaluation only, we would still have indirect
evaluation, but would miss out on the possibility to motivate users. Similarly,
psychological incentive mechanisms can be coupled with a quota system. We
already mentioned how an agent’s productivity/motivation rises upon nearing
a bonus quota. Even though an agent is well aware of the quota he is trying to
achieve, the principal nonetheless advertises how “little” it is still left to achieve
the goal to further boost the agent’s motivation. Acting upon human fear is also
a tactic commonly (mis)used (e.g., threat of dismissal or downgrading). The
threat of being dismissed or downgraded is a powerful motivator, although very
stressful for agents and causing different types of unforeseeable dysfunctional
behavior.
Perception of the incentive by the agent affects its effectiveness. As the perception
is context-dependent, choosing an adequate way of presenting the incentive is
not a trivial decision. For example, choosing and advertising the employee of
the month in societies where the sense of common good is highly valued can
be very effective. In more individually oriented environments it is competition
that drives performance. A principal may choose to exploit this fact by showing
performance comparisons to (targeted) agents.
Psychological incentives have long been used in video games to elicit player
dedication and motivation. Today, the same techniques (gamification) are used to
make boring tasks (product reviews, customer feedback) appear more interesting
and appealing. As a large number of business models of Internet-based compa-
nies depend on the revenues obtained through placing targeted advertisements,
incentivizing customers to provide accurate product reviews and leave feedback
becomes fundamentally important.

8.2.2 Composition of Incentive Mechanisms

In practice, employing a single incentive mechanism is usually not enough. Most
organizations need to combine different incentive strategies to target different work
roles and employees with different statuses. If we look at an engineering company, it
is quite common for it to be organized in teams at the lowest level. Such a company
would typically have teams of engineers developing the products, testing teams, mar-
keting teams, sales teams, IT teams, customer support teams, etc. In addition, there
are employees responsible for providing other services necessary for the running of
the company (finance, HR, security, transport, supplies). A number of teams forms
a unit responsible for a family of related products, or a number of related projects.
Different teams are led by managers, who in turn respond to higher-positioned man-
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agers (e.g., project managers, product managers, division managers). Within each
team engineers can have ranks, such as: junior engineer, senior engineer or distin-
guished engineer. More experienced engineers usually act as team leads, i.e., highly
experienced professionals who drive the technical aspect of product development.

Such a company may decide to use a profit-sharing scheme at the division level,
i.e., reward with all the teams in the division by a profit share if the financial results
of the division are positive. In addition to that, individual efforts within a team can be
stimulated by individual incentive strategies. In some teams where the contribution
can be easily established (e.g., number of customer cases solved in case of customer
support) PPP may be used to filter and keep the best employees. In other teams,
we can use a combination of the subjective evaluation and peer voting to assess
the contributions and adjust the variable part of the salary. Team members are
given an opportunity to advance in rank and into managerial positions and keep
advancing further if they accomplish certain goals. Every promotion brings along
an increase in pay but also in responsibility. Top managers are evaluated exclusively
with respect to the success of the company, and the payment of bonuses may be
deferred. Additionally, the company may decide to give out referral bonuses, and
award “employee of the year” awards.

Composing incentive mechanisms is often not simply wanted by an organization
to improve performance, but also required to prevent dysfunctional behavior (pos-
sibly arising from the application of previous incentive mechanisms). At the end
of Section 8.2.4.2 we describe the former incentive strategy of the company Loca-
tionary, which nicely showcases this: the originally introduced PPP was causing too
many non-profitable contributions by crowd workers; subsequently a profit-sharing
team-based mechanism was composed into the scheme to influence the quality of the
contributions.

Table 1 presents a condensed view of different usage environments and application
considerations of the incentive mechanisms we described.

8.2.3 Identifying Constituent Parts of Incentive Mechanisms

The related work we analyzed (Chapter 6.3) has not gone past the level of granularity
of incentive mechanisms. We believe that this in great measure prevents development
of generic handling of incentives in information systems. The goal of this section is
to identify finer-grained building elements that can be individually modeled and used
in information systems to compose and encode incentive mechanisms.

By analyzing the previously described incentive mechanism categories in Sec-
tion 8.2.1 we can identify the following incentive elements, i.e., the atomic subcom-
ponents in terms of which all mentioned incentive mechanisms can be expressed
(Figure 8.3):

1. Evaluation method – provides inputs (signals) on agent performance to the
incentive mechanism. Those inputs are evaluated in the logical context defined
in the incentive condition.
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Fig. 8.3: An entire incentive strategy of an organization can be composed using
smaller, modelable components – incentive elements

2. Incentive condition – contains the business logic of the incentive mechanism,
i.e., the logical rules for application of certain rewarding actions.

3. Rewarding action – a concrete activity exerted upon targeted agents meant to
influence their future behavior. Represents the outcome of the incentive mecha-
nism.

8.2.3.1 Evaluation Methods

Individual Evaluation Methods

As the name suggests, these methods are used to evaluate agents individually, i.e.,
not explicitly conditioning their scores with the scores or opinions of other agents.

Quantitative evaluation represents the rating of individuals based on measurable
properties of their contribution. Quantitative evaluation is attractive because it does
not require human participation and can be entirely implemented in software. It is
considered to be a precise and fair method. However, as it is not suitable for all
purposes, it is often combined with other methods.

Some labor types are suited to precisely measuring the individual contributions of
an agent (e.g., OCR correction, image labeling). In this case the agent can simply
be evaluated on the number of units processed. But apart from the most primitive
labor types, evaluation of an agent’s performance requires evaluating different per-
formance aspects (i.e., measurable signals), the most common being productivity,
effort and quality of product. Different metrics are usually taken into consideration
with different weights, depending on their importance and measurement accuracy.
For example, in case of a product assembly line, the metric can be the number of
units assembled, but also (with lower importance) the quality of assembled products,
since the quality of work of a particular worker cannot always be precisely estab-
lished. In other cases, e.g., in case of telemarketing where different phone agents are
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covering different neighborhoods, towns or ethnic groups, effort of agents may be
highly valued compared to the number of units sold, because the success of sales of
a particular product may depend on the geographical location of the area, wealth,
climate or local habits. Effort is always a highly valued metric in cases where agents
are not working under equal conditions.

Problems that arise here are measurement inaccuracy and the difficulty of choice
of proper signals and weights. An additional problem is the phenomenon called
multitasking. In spite of its counterintuitive name, it refers to agents putting most
of the effort into tasks that are subject to incentives, while neglecting other tasks,
subsequently damaging overall performance [76]. The principal can fight this kind of
misbehavior by additionally employing subjective evaluation.

Subjective Evaluation Many aspects of human work are not quantifiable. The
reasons can be:

• there are no clear outputs to evaluate;
• contribution has properties understandable and valuable to humans only;
• tasks are too complex to be clearly defined.

For example, whether a logo design is good or not is ultimately a matter of the
aesthetic preference of the customer. In such cases we need to substitute an objective
measurement with a human, subjective assessment of the quality of the work. In this
case a human acts as a mapping function that quantifies human-oriented work aspects
by wrapping together all the undefinable signals into one subjective assessment
signal. Subjective evaluation is a widely used evaluation mechanism. Its advantages
are simplicity and low cost, but its implementation as a human-based task makes it
inherently imprecise and prone to dysfunctional behavioral responses.

Some of the phenomena that characterize this evaluation method that have been
observed in practice [136] include:

• Centrality bias – ratings concentrated around some average value. Not enough
differentiating of “good” and “bad” workers.

• Leniency bias – discomfort at rating “bad” workers with low marks.
• Rent-seeking activities – actions taken by employees with the particular goal

of increasing the chances of getting a better rating from the manager, often
including personal favors or unethical behavior.

• Embellishment – tendency of managers to rate subordinates better than deserved
if the manager’s own reputation or team-bonus depend on it.

• Theft – tendency of managers to consistently give lower scores to subordinates
to save budgeted money if the compensation of the employees depends on the
scores.

Centrality bias and leniency bias can be prevented by checking whether the ratings
follow a distribution with specified parameters. However, this is not always preferable
in practice, because it could motivate managers to perform data fitting. The usual
solution for these, and also for other listed problems, is to make the ratings of
managers subject of incentives as well. In practice, it means punishing a manager if
his ratings of individual subordinate employees significantly or consistently differ
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from the ratings of other managers who worked with them, or from the ratings of
their co-workers.

Group Evaluation Methods

Group evaluation methods evaluate an agent by aggregating assessments of commu-
nity members.

Peer Evaluation (Peer Voting) is an expression of collective intelligence where
members of a group evaluate the quality of other members. In the ideal case, the
aggregated, subjective scores represent a fair, objective assessment.

The better the voters know the object of the vote, the better they can judge it. If
the voting group is large enough, this method eliminates or alleviates the problems
that subjective and quantitative evaluation suffer from. Centrality and leniency biases
are alleviated by the fact that the votes will be better distributed, as the aggregated
scores cannot be subjectively influenced. Since there is no longer a single voter who
decides, activities that target a single voter’s interests, such as embellishment, theft
and rent-seeking are eliminated. Since a large number of different and professional
peers evaluates different performance aspects, that leaves less space for multitasking
activities.

This method also suffers from different weaknesses. In small, interconnected
groups the voters can be unjust or lenient because of personal reasons. They can also
feel uncomfortable and exhibit dysfunctional behavior if the person being judged
knows their identity. Therefore, anonymity is often a favorable property in such cases.
Another way of fighting these dysfunctional behaviors is to make voters subject to
incentives: votes get compared, and those that stand out are discarded. At the same
time one keeps track of agents’ voting history to prevent consistent unfair voting.

When the community consists of a relatively small group of evaluated persons
and a considerably larger group of voters, and both groups remain stable throughout
the time, use of this method is particularly favorable. In that case, the voters have a
good overview of much of the evaluated group. Since the relation voter-evaluated is
unidirectional and will probably not change over time, voters do not have interest to
exhibit dysfunctional behavior. This pattern is very common on the Internet today.

The method works as long as the size of the evaluated group remains small
enough. As the evaluated group grows, voters become unable to keep up and acquire
all the new facts necessary to pass fair judgments. Then they opt to rate better those
persons or artifacts they know or feel traditionally have a good reputation ([137]).
This phenomenon is known as preferential attachment, or colloquially “the rich get
richer.” It can be noticed on news sites that attract high numbers of user comments.
Newly arriving readers usually tend to read and vote the most popular comments only,
leaving many interesting comments practically unevaluated. Therefore, determining
the group of voters and evaluated agents is crucial when designing instances of this
incentive mechanism.

In traditional businesses, the major obstacle to applying this method was the
cost, both in time and in money. Additionally, it was technically challenging, if not
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impossible, to apply this method often enough, and with appropriate voting groups.
However, use of information systems, the Internet and social networks permitted a
drastic decrease in application costs. A number of implementations already exist on
the Internet (e.g., Like-button, binary voting, star voting, polls) but we lack a unified
model able to express their different flavors and specify the voters and evaluated
groups. Again, the act of voting is modeled as a human task, requiring active human
participation.

Indirect Evaluation Since human performance is often difficult to define and
measure, it is common to evaluate humans based on properties of and relations among
the artifacts they produce. As the artifacts are always produced to be consumed by
others, the decision on their quality is left to the community.

The artifacts are connected by various relations among themselves (contains,
refers-to, subclass-of etc.), as well as with users (e.g., author, owner, consumer). The
method of mapping properties and relations of artifacts to scores is non-trivial in the
general case. An algorithm tracks relations and past interactions of the agent or his
artifacts with the artifact that is being evaluated and calculates the score. For example,
in [83, 152] the authors evaluate users of peer-to-peer networks by monitoring the
content contributions of the users. Similarly, scientists can be evaluated by the number
of their publications in journals, which in turn are ranked by their impact factor,
which depends on the number of citations scientists make. The well-known e-labor
(freelance) platform UpWork3 uses a proprietary algorithm for worker evaluation and
ranking [40]. Usually, a tailor-made algorithm needs to be developed, or an existing
one adapted to a particular environment. The major difference from peer evaluation
is that here the agent does not actively evaluate the artifact, and hence the algorithm
is not dependent on interacting with the agent.

Another efficient method is by employing peer voting to evaluate artifacts. If we
have favorable conditions for applying low-cost peer evaluation on artifacts then we
eliminate the problem of dummy artifacts. It is also an added value for the accuracy
of the algorithm. As the conditions for applying peer evaluations within Internet
communities are usually favorable, this is a very commonly employed technique
today.

Advantages and drawbacks of this method fully depend on the properties of the
particular algorithm. If the algorithm is suitable it will exhibit fairness and prevent
false results. The cost of this method also depends on the costs of developing,
implementing and running the algorithm. A common problem is that users who know
how the algorithm works may try to deceive it by outputting dummy artifacts with
the sole purpose of increasing their scores. Detecting and preventing such attempts
requires the algorithm to be amended, further increasing the costs.

Table 2 lists some common application and composability considerations for
evaluation methods presented here. It also indicates how drawbacks of a particular
evaluation method can be alleviated by combining it with other methods.

3 https://www.upwork.com/ Result of merger between oDesk and Elance.

https://www.upwork.com/
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8.2.3.2 Rewarding Actions

In order to induce a future specific behavioral response from agents the principal
must perform one or more rewarding actions towards them.4 The application of the
actions is often colloquially called rewarding or incentivizing. A rewarding action
can be one of the following types:

• Reward
• Structural change
• Psychological action

Rewards (but also: penalties, fines) can be modeled as quantitative changes in
parameters associated with an agent or a group of agents. For example, a parameter
can be the wage amount, which can be incremented by a bonus, or decreased by a
penalty. Similarly, a parameter can be an agent’s status, or a collection of objects in
the agent’s possession (e.g., FourSquare motivates users by assigning them different
badges for different check-in patterns)

Structural changes are an empirically proven [98] motivator. A structural change
does not imply strictly positional advancement/downgrading in traditional tree-like
management structure. It also includes belonging to different teams at different
times or collaborating with different people. For example, working in a team with
a distinguished individual can diversify an agent’s experience and boost his career.
One way of modeling structural changes is by graph rewriting [14].

Psychological actions. Although all incentive actions work by exerting a psycho-
logical effect, what we denominate as psychological actions are only those in which
an agent is influenced purely by being presented with some information. For example,
we may decide to show an agent only the results of a couple of better-ranking agents
rather than the full rankings. That way, the agent will not know his position in the
rankings, which can be beneficial in two ways – by preventing the “anchoring effect”
[109] for agents in the top part of the rankings and by preventing discouragement of
agents in the lower part. Psychological actions do not include any explicit parameter
or position change, but the diversity of presentation options means that defining a
unified model for describing different psychological actions is still an open challenge.
Effects of these actions are hard to measure precisely, but apart from empirical
evidence [58], their broad adoption on the Internet today is another clear indication
of their effectiveness.

Apart from the type of the rewarding action, another crucial aspect of the action’s
efficacy is the timing of the action (Figure 8.4). We can distinguish the moments:
1) when the action is announced/advertised to the agent; and 2) when the action is
applied. The period between the two moments can be used to evaluate agent signals.
The period spanning from the moment of the announcement and lasting possibly for
an unspecified amount of time, but at least until the moment of the application of the
action is called the effectiveness range.

4 A punishment is simply a term used to describe a rewarding action meant to prevent a specific
behavior instead of inducing one.
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Fig. 8.4: Application and effectiveness of rewarding actions

8.2.3.3 Incentive Conditions

Incentive conditions state precisely how, when and where to apply rewarding actions.
Each consists of at most three components (subconditions):

• Parameter component expresses a subcondition in the form of a logical formula
over a specified number of parameters that describe an agent. For example, such
a condition could filter out all the agents whose productivity is less than the
team’s average.

• Time component is used to formulate a condition over past behavior of an agent.
For example, select all the agents who within the last three months had an
unsatisfactory productivity level.

• Structure component filters out agents based on the relations they take part in.
This component can be used to select members of a team, or all the collaborators
of a specific agent.

By using all three components at the same time we can specify a complex condi-
tion, e.g., “incentivize the subordinates of a specific manager, who over the last year
achieved a score higher than 60% in at least 10 months.”

Incentive conditions are part of the business logic, and as such are stipulated by
the domain experts empowered by the principal to manage the workforce. However,
a small organization can take advantage of some good practices and employ pre-
made incentive models (patterns) adapted to fit the particular organization’s needs.
Feedback information obtained through monitoring execution of rewarding actions
can be used to adapt condition parameters.
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8.2.4 Incentive Mechanisms in Real-World Social Computing
Platforms

8.2.4.1 Survey Criteria

In 20125 we surveyed over 1600 Internet-based companies and organizations that
describe themselves using keywords such as “social computing” or “crowdsourcing”.
We investigated their business models and contracts offered to users/participants/-
workers, as described on organizations’ websites. The main goals of the survey
were:

• To demonstrate that the classification we had established mostly based on our
multidisciplinary literature survey is valid and applicable also for internet-based
social-computing business models.

• To gain a better insight into the usage patterns of different incentive mechanisms,
evaluation methods, rewarding actions and combinations thereof.

We filtered the companies in such a way to exclude those that fulfill any of the
following criteria:

• Crowd-funding websites, humanitarian & community-benefit sites or voluntary-
contribution sites.

• Sites that only act as intermediaries to establish links between human service
providers and consumers (often charging commission for providing secure trans-
action environment), except when they employed incentive mechanisms to in-
crease the number and quality of participants.

• Sites that just provide a technical solution or environment to do the business.
• Sites that directly sell products created/owned by the crowd – e.g., stock photog-

raphy.
• Sites that do not disclose or clearly/publicly state the incentive scheme.
• Sites that were not in one of the following languages: English, German, Spanish,

Portuguese, Italian.

We also decided not to include companies employing gamification approaches in
the classification part of our survey. There are several reasons for this decision:

• Every gamification approach can be considered a psychological strategy, with
quantitative evaluation.

• A company rarely bases its principal incentive strategy on gamification only.
• Many companies employing gamification are not primarily social-computing

companies, but traditional companies relying on gamification elements to attract
users to perform uninteresting tasks.

5 Please note that some information in this section may be outdated due to the highly dynamic
nature of the social-computing market.
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However, we acknowledge the growing importance of gamification approaches.
For example, SAP (within their SAP Community Network6) enables their employees
to build up reputation by writing articles, guides and samples, answering questions
etc. That not only helps other team members get useful information more easily,
but also raises the reputation of the employee that transfers the knowledge. The
contributors are scored, and score boards are publicly available. Even though the
score does not bring any concrete rewards, the reputation gained can implicitly bring
better career advancement opportunities and higher respect from colleagues.

Another example of how gamification can incentivize employees is the use of
games in teaching employees to better understand, use and represent the products
of their own company (e.g., IBM Innov87). While employees get distracted from
dull tasks for some time and learn something in the process, the company gets better-
skilled and more competitive workers. Finally, yet another gamification example can
be seen in a project run by the National Library of Finland8, where contributors are
engaged in a game with the true purpose of correctly recognizing scanned material
from the library archives.

8.2.4.2 Survey Results

After applying the filtering rules stated above, out of over 1,600 examined compa-
nies we identified 140 companies (8.75%) that employed and clearly described the
rewarding/incentive practices (types of awards, evaluation methods, rules, condi-
tions). We then classified them according to the previously described classification
(Section 8.2.1).

The most surprising finding was that 59 of the 140 companies (42%) employed
a very simple “contest” business model employing a relative evaluation incentive
mechanism, meaning that a creative task is deployed to the crowd. Each crowd
member (or entity) then submits a design. In the vast majority of cases the best design
is chosen by subjective evaluation (85%). That was expected, since the company
buying the design reserves the right to ultimately decide on the best design. In fact,
in many cases, it is the only possible choice. The remaining “contest” companies
employ peer evaluation (10%) or quantitative evaluation (5%). When using peer
evaluation, the company delegates the decision on the best design to the crowd of
peers, while taking the risk of producing and selling the design. In some cases, e.g.,
programming contests, the artifacts are evaluated quantitatively, by automated testing
procedures. It is worth noticing that using peer or quantitative evaluation produces
quantifiable ratings of the users. In such cases, individuals are better motivated to
take part in future contests even if they feel they cannot win, because they can use
their ranking as a personal quality proof when applying for other jobs or just as a
matter of prestige. We expect to see an increase in the latter two evaluation categories,

6 http://scn.sap.com/
7 https://www.ibm.com/software/solutions/soa/innov8/
8 http://www.digitalkoot.fi

http://scn.sap.com/
https://www.ibm.com/software/solutions/soa/innov8/
http://www.digitalkoot.fi
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as they help improve the quality of designs if the crowd is large, contains quality
individuals, and is properly motivated. However, building up and managing such a
crowd also implies the use of other incentive mechanisms. The contest model alone
dissuades good (but not the best) agents, who rarely win the contests.

Apart from the 59 organizations running contests, relative evaluation is used by
another 16 organizations, usually combined with various other mechanisms. This
makes relative evaluation by far the most widely used incentive mechanism on the
social-computing market today (54%) (Table 3). This is in contrast with its use in
traditional businesses, where it is used considerably less [9], as the implementation
costs are much higher.

Incentive Mech. Type No. of Companies Percentage

Relative Evaluation 75 54%
Pay-per-Performance 46 33%
Psychological 23 16%
Quota Sys. / Disc. Bonus 12 9%
Deferred Compensation 10 7%
Promotion 9 6%
Team-based Compensation 3 2%

Table 3: Use of incentive mechanism categories by social-computing companies

The other significant group are the companies that pay agents for completing
human microtasks. We found 46 such companies (33%). Some of them are general
platforms for submitting and managing any kind of human-doable tasks (such as the
emblematic Amazon Mechanical Turk9). Others offer specialized human services,
most commonly: writing reviews, locating software bugs, translating or performing
some simple, location-based tasks, etc. What all those companies have in common
is the use of a pay-per-performance mechanism (PPP). The tasks range from very
simple (in majority of cases) to more imaginative and complex, such as locating bugs.
Quantitative evaluation is the method of choice in most cases (65%). Quantitative
evaluation sometimes produces a binary output, e.g., when submitting successful/un-
successful steps to reproduce a bug. The binary output allows only two levels of the
quality of work to be expressed, so the agents are rewarded on a per-task basis for
every successful completion. In that case, the company usually requires no entry
tests for joining the contributing crowd. In other cases, the quality of work is not
easy to establish and the output is proportional to the quantity of finer-grained units
performed (e.g., word count in translation tasks) but the agents are usually asked to
complete entry tests. Pay rate for subsequent work is determined by the test results.
Other evaluation methods include subjective and peer/indirect evaluation, both at
17%. It is interesting to note that peer evaluation for double checking results is not
frequently employed, as companies find it cheaper to test the contributors once and
trust their skills later on. However, as companies start to offer more complex human

9 http://www.mturk.com/

http://www.mturk.com/
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tasks, quality assurance becomes imperative, so we expect so see a rise in peer and
indirect evaluation. Eleven companies combine pure PPP with other mechanisms.

Only three companies employ a combination of four or five different mechanisms
(Table 4). The most famous of them is uTest.com. As their business model requires
them to have a large crowd of dedicated professionals, it becomes clear why they
employ more than just simple PPP.

ScalableWorkforce.com is the only company in our study that advertises the impor-
tance of crowd (workforce) management. They offer the tools for crowd management
on Amazon Mechanical Turk to their clients. Their tools allow for tighter agent col-
laboration (creating a sense of community among workers), workflow management,
performance management and elementary career building.

No. of Inc. Mech. No. of Companies Percentage

1 116 83%
2 15 11%
3 6 4%
4 3 2%

Table 4: Number of incentive mechanisms used by social-computing companies.
Over 80% of the companies employ only one mechanism

Twelve companies (8.5%) rely uniquely on psychological mechanisms to assem-
ble and improve the agent community. The common trait is reliance on the indirect
influence of rankings in the agent’s (non-virtual) professional life. For example,
avvo.com attracts large communities of doctors and lawyers in the US who offer free
responses and advice to people visiting the website. Quality and timeliness of profes-
sionals’ responses affect their reputation rankings, which can be used as a prestige
advertisement to attract actual paying customers to their private practices. Another
very interesting example is companies such as crowdpark.de or prediculous.com.
They ask their users to “predict” the future by placing bets on upcoming events using
virtual currency. Users that have the best predictions over time earn virtual trophies
(badges), which is the only incentive for people to participate. The crowdsourced
odds can be used to adjust odds in real betting.

Team-based compensation was used by only three companies we surveyed. For
example, mercmob.com encourages formation of virtual human teams for various
tasks. An agent expresses confidence in the successful completion of a task by
investing part of a limited number of his “contracts”. Once invested, the contracts
are tied to the task, motivating the agents that accept the task to give their best to
self-organize in a team and attract others to accomplish the task. If in the end the
task is completed successfully each agent gets a monetary reward proportional to the
number of invested contracts.

Discretionary bonuses or quota systems are used by eleven companies (8%).
However, they are always used in combination with another mechanism – most
commonly PPP (64%), as is also the case in traditional companies.
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Deferred compensation is used by 7% of the companies, and usually as the only
mechanism employed. Bluepatent.com is a company that crowdsources the task of
locating prior art for potential patent submissions. The agents (researchers) are asked
to find and submit relevant documents proving the existence of prior art. Deciding
on the validity and usefulness of such documents is an intricate task, and hence the
decision on the compensation is delayed until an expert committee decides on it.
Advisemejobs.com pays out classical referral bonuses to the agents who suggest
appropriate job candidates.

Only 7% of the companies offer some kind of career advancements, combined
with other mechanisms. As the crowd structure is usually plain, career advances
usually mean a higher status, implying a higher wage. We have encountered only two
cases where advancement also meant some kind of structural change, with an agent
taking responsibility for leading or supervising lower-ranked agents (e.g., uTest.com).
In traditional companies the decision on a promotion of an employee is usually a
matter of subjective evaluation by his superiors. With promotion being the most
commonly employed traditional incentive, subjective evaluation is then also the
most commonly used evaluation method. However, if we take out of the picture
the companies running creative contests, where the artistic nature of the artifacts
forces the use of subjective evaluation, we see that in the world of Social Computing
this trend has reversed. Subjective evaluation trails behind quantitative and peer
evaluation (Table 5). This is explained by the fact that the use of information systems
enables cheaper measurements of different inputs and setting up of peer-voting
mechanisms.

Evaluation Method No. of Companies Percentage

Quantitative Evaluation 51 63%
Peer Voting + Indirect 35 43%
Subjective Evaluation 14 17%

Table 5: Use of evaluation mechanisms (excluding companies running creative
contests)

A small number of companies employ a combination of different incentive mech-
anisms. Locationary10 was a company that used agents spread around the world to
expand and maintain a global business directory by adding local business information.

Their strategy combined a number of incentive mechanisms: 1) “lottery tickets”
(a Quota system, also known as “conditional PPP”); 2) team-based compensation
(based on the “shares” of added companies); 3) deferred compensation, based on the
trust scores of the agents.

10 The incentive strategy was acquired before the company was taken
over and integrated by Apple, Inc. http://allthingsd.com/20130719/
apple-acquires-local-data-outfit-locationary/. The original URL was
http://www.locationary.com/

http://allthingsd.com/20130719/apple-acquires-local-data-outfit-locationary/
http://allthingsd.com/20130719/apple-acquires-local-data-outfit-locationary/
http://www.locationary.com/
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With every new entry added/corrected an agent wins “lottery tickets’ that increase
the chances of winning a reward in a lottery. However, there is a minimum quota
of tickets that represents the condition to enter the draw (hence “conditional PPP”).
Tickets are not tied to any particular directory entry. Agents are given different ticket
amounts for different actions (adding, editing or verifying different directory entry
fields). The number of tickets issued to an agent for editing an entry depends on how
valuable the (accuracy of the) entry is to the company. For example, a Google street
view URL is more valuable than the URL of the web page of the place. Similarly,
fixing outdated/incorrect data is highly appreciated.

This mechanism incentivizes the increased activity of the agents, but also moti-
vates them to cheat, as some people will start inputting invalid entries to increase
their chances of winning. Deferred compensation is used to counteract this caused
dysfunctional behavior. The agents are only allowed to enter the prize draws if (apart
from the ticket quota) their trust score is high enough. The trust metric plays a
crucial role here. Trust is proportional to the percentage of approved entries, and this
metric discourages agents from cheating. Entries can be approved or disapproved
only by other highly trusted agents (an example of peer evaluation). Trusted agents
are motivated to perform validation tasks by getting more lottery tickets than they
would get for adding/editing fields. On the other hand, cheaters are further punished
by subtraction of lottery tickets for every incorrect data field they provided.

The incentive strategy described so far does a good job of attracting a high number
of entries and keeping them fresh and accurate. However, it does not discriminate
between the directory entries themselves. That means that it motivates agents as
much to enter information on an insignificant local grocery store, as to enter/update
information on a high-profile company. As Locationary used to rely on advertising
revenues, that meant that an additional incentive mechanism attracting higher num-
bers of profitable entries needed to be included on top of the strategy described so far.
The team-based compensation played this role. Locationary used to share 50% of
the revenues originating from a directory entry with the agents holding “shares” of
that entry. Shares were given to the people who were first to provide new/additional
information on the entry. Again, cashing out was permitted only to the trusted agents.

This example demonstrates how different mechanisms are used to target different
necessities, and how they need to be composed to achieve their full effect. In Table 6
we list some examples of companies employing different evaluation methods within
different incentive mechanisms.

8.2.4.3 Survey Conclusions

With creativity contests and microtask platforms dominating the landscape of Social
Computing today we see that the organizational structure of agents is usually flat
or very simple. Hierarchies and teams of agents usually do not exist. In such an
environment, most Social Computing companies need to use only one or two simple
incentive mechanisms. Promotion, commonly used in traditional companies, is rarely
found within Social Computing companies. The reason is the short-lived nature
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Table 6: Examples of companies employing different evaluation methods (columns)
within different incentive mechanisms (rows) at the time the survey was compiled.
Note: mechanisms presented here may not represent the only or primary mechanisms
that the company uses

of transactions between agents and the Internet companies. For the same reason,
team-based compensation is also poorly represented. The idea of building a “career
in the cloud” is still considered in the theoretical domain.

On the other hand, most traditional companies combine different, elaborate mecha-
nisms to elicit particular responses from agents and retain quality workers [136]. The
mechanisms complement each other to mutually cancel out individual drawbacks. In
many cases the (more complex) mechanism combinations arose only after practical
use of simpler combinations exposed weaknesses which the agents would exploit to
their benefit. We encountered such experiences also in the surveyed social-computing
companies, with, e.g., the Locationary incentive scheme being a very illustrative
example thereof.

Our survey shows that as the price of application of quantitative, peer and indirect
evaluation has lowered, relative evaluation and PPP have become the most popular
incentive mechanisms among social-computing companies. Subjective evaluation,
although in total numbers well represented, is found largely within companies that
base their business model on organizing creativity contests. Psychological incentives
and gamification approaches are gaining ground. We expect them to achieve their
full potential as amplifiers for other incentive mechanisms.

The envisioned growth in complexity of business processes and organizational
structures for social computing will require novel, automated ways of handling the
behavior of agent crowds. That is why we perceive a necessity to develop models of
incentive mechanisms and incentive management frameworks fitting existing business
models and real-world socio-technical systems, capable of supporting complex,
composable incentive mechanisms.

Such frameworks need to be able to monitor worker crowds and perform runtime
applications and adaptations of incentive mechanisms to prevent the diverse negative
effects we described (e.g., free-rider problem, multitasking, biasing, anchoring, pref-
erential attachment), switching when needed between different evaluation methods,
rewarding actions and incentive conditions at runtime, while minimizing overall
costs. This way, particular worker groups and behaviors can be efficiently targeted.

Additional benefits would include the following:
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• Historical data can be used to detect performance bottlenecks, preferable team
compositions, optimal wages etc. Additionally, we can make predictions and
choose the optimal composition of incentive mechanisms for the future. This
opens up the possibility of novel ways to achieve indirect, automated team
adaptability through application of incentives.

• For certain business models, application of proven incentive patterns cuts costs
in both time and money. The incentive patterns can be tweaked to fit particular
needs based on feedback obtained via monitoring.

• By generalizing and formally modeling incentive mechanisms, we can encode
them in a system-independent manner. That way, they become portable and
reusable on different underlying systems, without new system-specific program-
ming code having to be written.

• The management of rewarding and incentives can be offered remotely as a Web
Service.

8.3 Modeling Incentives for Use in Socio-Technical Systems

This section builds on the first two sections to develop actionable incentive models
that allow us to:

1. Model the previously described incentive mechanisms.
2. Model the application of incentive mechanisms from (a) and responses to it.

Fig. 8.5: A conceptual illustration of a system capable of translating portable incentive
strategies into concrete rewarding actions for different socio-technical platforms

The models introduced in this section will allow us to build frameworks operating
on these models, and offering the functionality of incentive management to third
parties (Figure 8.5).
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8.3.1 Comprehensive Incentive Model

Application of incentives always requires two interested parties - an authority (prin-
cipal) and a worker (agent). The authority is interested in stimulating, promoting
or discouraging certain behavioral responses in workers. The incentive exhibits its
psychological effect by promising the worker a reward or a punishment based on
the actions the worker will perform. The wish to get the reward or escape the pun-
ishment drives the worker’s decisions on future actions. The reward (punishment)
can be material or psychological (e.g., a change of status in a community – ranking,
promotion). The type, timings and amounts of reward need to be carefully considered
to achieve the wanted effect of influencing a specific behavior in a planned direction.
In addition, introduction of incentives introduces additional costs for the authority,
who hopes to compensate for them through the newly arisen worker behavior (e.g.,
increased productivity).

However, as soon as an incentive mechanism is introduced, it produces dysfunc-
tional behavior responses in the worker population. The workers, being rational
agents, adapt to the new rules and change their working patterns, trying to exploit the
new incentive to profit more than the rest of the population. The authority compen-
sates for this by introducing other incentive mechanisms targeting the dysfunctional
behavior, further increasing the authority-side costs, and causing new types of dys-
functional behavior. However, once the proper combination of incentive mechanisms
is put in place and calibrated, the system enters a stable state. The problem with
crowdsourcing/social-computing processes is that the system may not stay long in
a stable state due to an unforeseen change in worker participation or collaboration
patterns. Therefore, the incentive setup needs to be reconfigured and re-calibrated
as quickly as possible, in order to avoid incurring high costs to the authority. This
feedback control-loop involving the authority and the worker represents the actual
incentive mechanism that we are interested in modeling.

Modeling an incentive mechanism, therefore, always involves modeling both the
authority and the worker side, as well as the possible interactions between them.
In Figure 8.6 we show an abstract representation of the model of an incentive
mechanism.

Workers differ from each other in having different sets of personal characteristics
(e.g., accuracy, speed, experience). The characteristics are determined by a private
set of variables stored in the internal state S. The internal state also contains records
of worker’s past actions. The internal state is private to the worker, and is used as one
of the inputs for the decision-making function fa that describes the worker’s choice
of the next action to perform.

In the majority of cases the internal state variables are normally distributed across
the worker population. Occasionally, certain variables can be intentionally given
predefined values to simulate a certain type of behavior, or a specific class of workers.
This can also be used to simulate changes in behavior after unconstrained interactions
among workers; for example, after an interaction with another worker a worker may
be “persuaded” to decrease his performance levels by lowering his internal effort
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Fig. 8.6: Incentive mechanisms need to capture the interaction between workers
(agent) and authority (principal)

metric. The algorithms modifying the internal state S are not prescribed by our model,
and are freely chosen by the system designer.

Apart from the internal state, each worker is characterized by the publicly exposed
set of performance metrics M, which are defined and constantly updated by the
authority for each worker. The performance metrics reflect the authority’s percep-
tion of the worker’s past interactions with the system (e.g., trust, rank, expertise,
responsiveness). Knowing this allows the worker to make better decisions on his
future actions. For example, knowing that a poor reputation will disqualify him from
getting a reward in future may drive the worker to work better or to quit the system
altogether. It also allows him to compare himself with other workers. Therefore, the
set of performance metrics is another input for the decision-making function fa.

The third input for the decision-making function fa is the set of promised rewards
(punishments) R. Rewards are expressed as publicly advertised amounts/increments
in certain parameters that serve as the recognized means of payment/prestige within
the system (e.g., money, points, stakes/shares, badges). They are specified per action,
per artifact, and per performance metrics (or a combination thereof), thus making
them also dependent on a particular worker. For example, a reward may promise
an increase of at least 100 points to the first/any worker who performs the action of
rating an artifact. The number of points can then be further increased or decreased
depending on the worker’s reputation.

Workers interact with the authority solely by performing actions over artifacts
(K) offered to the worker population by the authority. A worker’s behavior can thus
be described as a sequence of actions in time, At ∈ A = {A0, ...,An}, interleaved with
periods of idling (idling being a special case of action). The set of possible actions is
the same for every worker. However, the effects of the execution of an action may be
different, depending on the worker’s personal characteristics from the internal state
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S. For example, a worker with innate precision and more experience can improve an
artifact better than a worker not possessing those qualities.

As previously stated, a worker’s next action is selected through the use of a
decision-making function fa = f (S,M,R) potentially considering all of the following
factors: a) the statistically or intentionally determined personality of the worker; b) the
historical record of past actions; c) the authority’s view of the worker’s performance;
d) the performance of other workers; and e) promised rewards, with respect to the
current state of one’s performance metrics. The decision-making function is context-
dependent, and defined by the model designer based on the observed/expected worker
behavior.

From a social computing perspective, the authority’s motivation for offering
artifacts for processing to the worker crowd is to exploit the crowd’s numerosity to
either achieve higher quality of the artifacts (e.g., in terms of accuracy, relevance,
creativity), or lower the cost (e.g., in terms of time or money). This motivation guides
the authority’s choice of incentive mechanisms. The authority has at its disposal
a number of incentive mechanisms IMi. Each one of them should be designed to
target/modify only a small number of very specific parameters. Thus, it is the proper
addition or composition of incentive mechanisms that allows the overall effect of an
incentive scheme, as well as fine-tuning and runtime modifications.

An incentive mechanism IM takes as inputs: 1) the current state of an artifact Ki;
2) the current performance metrics of a worker Mj; and optionally 3) the output from
another incentive mechanism returning the same type of reward, R′

ak . The output of
an incentive mechanism is the amount/increment of the reward Rak to offer to the
worker Mj for the action ak over artifact Ki.

IM : (Ki,Mj,R′
ak)→ Rak (8.2)

The true power of incentive mechanisms lies in the possibility of their combina-
tion. The reward ( fR) can be calculated through a number of additions (+) and/or
functional compositions (◦) of different incentive mechanisms. For example, a worker
may be given an increment in points for each time he worked on an artifact in the
past. Each of those increments can then be modified, depending on how many other
workers worked on that same artifact. In addition, the total increment in points can be
further modified according to the worker’s current reputation. The finally calculated
increment value represents the promised reward. The set of finally calculated rewards
per worker Rw = { fR1 , ..., fRz} is then advertised to the workers, influencing their
future behavior, and closing the feedback loop. The major difficulty in designing a
successful incentive scheme lies in properly choosing the set of incentive parameters
(performance metrics, incentive mechanisms, and their compositions). Often, the
possible effects when using one set of parameters are unclear at design time, and an
experimental or a simulation evaluation is needed to determine them.
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8.3.1.1 Definitions

Now we can define the key terms related to incentive management:

Worker (Agent)
A human who is the target of incentives.

Authority (Principal)
The entity engaging the workers for productive working purposes, administering
incentives upon them.

Incentive
Any activity or scheme employed by the authority to stimulate (motivate) an
increased level of certain work-related qualities (e.g., productivity, speed, quality
of work, number of participants) or to discourage certain activities (e.g., dropouts
rate), before the actual execution of those activities.

Reward
Any kind of recompense for worthy services rendered or retribution for wrongdo-
ing exerted upon workers during the execution of the activity or after its comple-
tion. A reward can be made equivalent to an economic value (money or physical
goods), or a social status such as prestige, rank, or expertise.

Incentive Mechanism
A concrete rule for assigning/applying the rewards targeting a specific (group
of) workers, based on certain logical, temporal and spatial criteria; A concrete
implementation of an incentive for a given application context.

Incentive Element
An atomic component (construct) in terms of which incentive mechanisms can be
expressed.

Incentive Scheme
The combined global effect of the application of a set of incentive mechanisms.

8.3.2 Rewarding Model (The PRINC Framework)

In the comprehensive model presented in the previous section, the authority reads
a worker’s performance metrics and the changes in artifact states associated with a
worker as inputs for the incentive scheme. However, the model presented there says
nothing further about how the authority is able to interpret those inputs and output
concrete rewards. In this section, we investigate the authority’s internal model for
representing the workers, encoding incentive mechanisms and representing rewarding
actions. The model is named the Rewarding Model (RMod), and presents the core
component of the PRINC framework presented in [156].

For the authority (principal) the RMod represents the following aspects of a
real-world incentive loop:

State
Represents the quantitative state of the both the incentivized socio-technical
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system as well as the internal business logic state needed for making incentive
decisions. This includes global attributes and individual worker attributes repre-
senting different worker performance metrics (QoS).

Time
Expressed as a collection of time-annotated records of past and future worker
interactions supporting various time conditions and constraints. The notion of
timing is fundamental when dealing with incentives, as worker evaluation in most
cases depends on the history of their past behavior. Similarly, a reward may be
scheduled for a future moment if the performance metrics in the upcoming period
meet the expectations.

Structure
Allows representation and manipulation of various types of relationships among
workers. Workers are often stimulated just by being placed in a position to collab-
orate with people they find most comfortable to work with. In fact, proper team
composition can be vital to process success, and can often be subject to changes
during process execution. Finally, promotion, as one of the most widely used
incentive mechanisms, implies a clear hierarchical change.

The authority employs a group of workers to perform a complex process, con-
sisting of multiple tasks. It is assumed that the complete task lifecycle management
(e.g., splitting into subtasks, task descriptions, task assignment, task negotiation and
agreement) is under the control of the authority. A worker is assigned a (sub)task
to perform in a given time and agrees to be the subject of incentive evaluations.
Concretely, the authority and the worker agree that the worker may be subject to
rewards/penalties in some predetermined cases. Workers can work individually on
assigned tasks, in a formalized organization (team, collective) or relationship with
the authority (e.g., be employed, be part of teams, have managers). The authority’s
entire knowledge about the progress of the task is obtained from periodic messages
(updates) that it receives from the workers and subsequent reasoning about that data.
The application of rewards to the workers is similarly abstracted as legally binding
messages to worker.

A task is the basic working unit. Workers are rewarded for working on a particular
task within the task’s timeframe, although the outcome of the evaluation can also
depend on the history of previous contributions. Therefore, the lifetime of a worker
is not related to the duration of the task. The authority maintains its own view of the
workers and the relations between them in a community graph. The nodes in the graph
represent the workers, while the edges represent different real-world relationships
among the workers. For example, they can represent records of past collaborations,
notion of trust [165], dependencies, managerial relations, etc. In addition, each node
is described by a set of attributes. The attributes may represent task-specific (short-
lived) or permanent records of a worker’s performance. This is the most general
representation possible. However, in practice the model must be coupled with a
real-world socio-technical platform, so the nodes and relations need to be mapped to
entities in that platform.

The model assumes an iterative task execution. Iteration length is measured
in clock ticks. A clock tick is the basic unit of time measurement. A worker’s
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progress is read upon iteration expiry so the model can obtain up-to-date QoS
metrics. One iteration is the basic time unit when monitoring and evaluating task
execution. Iteration cycle length is tunable to allow better runtime adaptability, as the
iteration length can be a significant factor when evaluating results and can affect the
performance of the team.

In order to model history of past behavior, as well as scheduling of future perfor-
mance evaluations and rewarding actions, we include in the model the notions of
timeline and event. The timeline is a time-stamped collection of past and future event
records. An event is an object encapsulating an executable action and a timestamp.
Events are interpreted by the socio-technical platform as instructions or suggestions
to the platform itself or particular workers. For example, an event could notify a
worker that he needs to increase the QoS level of his service in future iterations,
or face penalties. Similarly, it could instruct the platform to dissolve a team, invite
new workers, or terminate contracts with others. Events can be generated by the
platform itself or originate from an incentive mechanism in the RMod. They can
target individual workers or groups of workers, depending on the query that forms
part of the action contained in the event object. An event can also target global
properties of the system itself.

An event can be in two states: scheduled and past. Scheduled events are used
to enforce/influence future worker behavior. They contain information to execute
performance measurements, evaluations or concrete rewarding actions at a specified
moment in the future. Scheduled events can be canceled or re-scheduled when
needed. The timestamp can be expressed either in iterations or in clock ticks. Time
expressed in clock ticks is fixed, whereas time expressed in iterations is automatically
recalculated to an appropriate clock tick if the iteration duration is altered. This can
be useful in many real-world situations. For example, a Christmas bonus is to be paid
out on a fixed date, while if a project stage is prolonged due to some unexpected
events, we want to reschedule the current iteration and perform the rewarding only at
its end. When the time to execute an event is reached, the contained action is executed
and the results stored back in the event, which is then archived and put into past state.
After that point, the purpose of the past event is to serve as a historical reference
for future evaluations of workers. An event execution can generate new events, or
perform modifications of the team structure and worker attributes. Events are initially
generated by executing rewarding actions, which are part of the enforced incentive
mechanisms. Figure 8.7 describes a typical working cycle of our RMod. Incentive
mechanisms (IMs) provide the necessary logic for performing worker evaluations
and rewarding actions. At every clock tick IMs get evaluated. Only the IMs that fulfill
a logical condition will be triggered to execute. The IM examines the current state of
the model, and if a rewarding action needs to be performed produces one or more
event objects. The rewarding action contained in the event will include the business
(incentive) logic specified in the IM. The events then get stored in the timeline. When
the appropriate time comes, the events get executed, modifying the attributes and
the graph structure, and possibly spawning new events. The RModManager boxes in
Figure 8.7 represent the system that implements the functionalities and manipulates
the RMod.
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Fig. 8.7: Components and interactions in RMod

The RMod allows us to express various basic incentive mechanisms, such as:

• “At the end of an iteration, reward each contributor who scored better than the
average score of his neighbors in that iteration.”

• “Reward every worker (contributor) who within the last n iterations scored a
score t or greater in at least k iterations” (k ≤ n).

• “Assign the person with most check-ins at a place a ’Mayor’ badge.”
• “Unless the productivity increases to a level p within the next n iterations,

replace the team’s current manager with the most trusted of his subordinate
workers.”

Furthermore, the model allows for easy composition of different incentive mecha-
nisms, a feature necessary to target different dysfunctional behaviors of workers.

8.3.3 Evaluating RMod Through Simulation

The Rewarding Model (RMod) presented in the previous section represented the
authority’s simplified view of the workers in a socio-technical platform. The RMod
is designed to be generic and simple enough to be able to encode most incentive
conditions and rewarding actions described in Section 8.2.4. However, referring back
to Figure 8.6 in Section 8.3.1, we see that in order to close the incentive loop we
need also to be able to model and simulate the behavioral responses of workers to
the applied incentives. Those responses are the result of the complex traits of human
nature, the scenario-specific working environment and the social characteristics of the
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worker community. Therefore, in order to model and simulate behavioral responses, a
context-specific model emphasizing selected behavioral traits needs to be developed
each time anew. In this section, we present a simulation methodology for developing
scenario-specific simulation models based on agent-based social simulation.

As shown in [51], most incentive mechanisms are developed based on empiri-
cal data obtained from different studies. However, the empirical findings are often
context-specific, and when applied in different environments may yield different
behavioral responses. This is especially true for incentive models that need to con-
sider social characteristics of the worker community, such as coordinated group
actions (e.g., worker resistance [115], informal forum-based worker coordination
[107], social/regional/ethnic peculiarities, voluntary work [70], importance of repu-
tation/flaunting [162], or web-scale malicious behavior [185]. An additional com-
plication is that these phenomena change often and characterize different subsets of
the crowd differently in different moments. This makes development of appropriate
mathematical incentive models difficult.

The major problem an incentive designer is faced with in this case is how to
evaluate the developed incentive mechanisms aimed at targeting disruptive or dys-
functional behaviors. The designer needs to consider factors, such as emerging,
unexpected and malicious worker behavior, incentive applicability, range of stability,
reward fairness, expected costs, reward values and timing. Failing to do so leads to
exploding costs and work overload, as the system cannot scale with the extent of
user participation typical of social-computing environments. Unbalanced rewards
keep new members from joining or cause established members to feel unappreciated
and leave. Ill-conceived incentives allow users to game the system, prove ineffective
against vandalism, or assign too many privileges to particular members, tempting
them to abuse their power.

In this section we present a methodology for incentive designers for quickly select-
ing, composing and customizing existing, real-world atomic incentive mechanisms,
and roughly predicting the effects of their composition in dynamic social-computing
environments. The model and simulation parameters can be changed dynamically,
allowing quick testing of different incentive setups and behavioral responses at low
cost. Specifically, we employ principles of agent-based social simulation [103, 61],
an effective and inexpensive scientific method for investigating behavioral responses
of large sets of human subjects. In theory, social simulation approaches (such as
ours) allow modeling of incentives and responses of workers of arbitrary complexity.
In practice, the social phenomena listed above as impeding factors for the develop-
ment of comprehensive mathematical incentive models at the same time pose big
obstacles for developing comprehensive simulation models, requiring development
of complex agent behavioral models. Nonetheless, as discussed in [61, 178], the
simulation approaches are a viable alternative to testing various behavioral responses
in real communities when this is impossible due to time, cost or ethical reasons.
All three limitations are especially accentuated when testing incentive effects and
their different combinations. In this case, speed is preferred over accuracy and eth-
ical considerations are an important feasibility factor. The simulation approach is
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therefore the method of choice in this case, offering fast experimental setups and
circumventing ethical issues.

Social simulation originated in computational social science to explore theoretical
ideas in the context of synthetic populations. Recently, this has been applied to crowd-
sourcing, in order to generalize results which otherwise would be tied to a particular
situation [22]. However, unlike the usual approach where agents interact directly
(and thus benefit from cooperative behavior or suffer from defective behavior), we
introduce a provider that facilitates interactions and determines the benefits or costs
of those interactions.

8.3.3.1 Example Scenarios

In order to better describe the methodology and subsequently evaluate it, we first
present two exemplifying scenarios based on real-world crowdsourcing applications.

Citizen-driven traffic reporting

Local governments have a responsibility to provide timely information on road
travel conditions. This involves spending considerable resources on managing in-
formation sources as well as maintaining communication channels with the public.
Encouraging citizens to share information on road damage, accidents, rockfalls or
flooding reduces these costs while providing better geographical coverage and more
up-to-date information11. Such a crowdsourcing process, however, poses data quality
related challenges in terms of assessing data correctness, completeness, relevance
and duplication.

Crowdsourced software testing

Traditional software testing is a lengthy and expensive process involving teams of
dedicated engineers. Software companies12 may decide to partially crowdsource
this process to cut time and costs and increase the number and accuracy of detected
defects. This involves letting remote testers detect bugs in different software modules
and usage environments and submit bug reports. Testers with different reputations
provide reports of varying quality and change the assigned bug severity. As single
bugs can be reported multiple times in separate reports, testers can also declare two
reports as duplicates.

The two scenarios exhibit great similarities. The expected savings in time and
money can in both cases be outweighed by an incorrect setup and application of
incentive mechanisms. Furthermore, the system could suffer from high numbers of

11 For a real world example visit the Vienna City Council’s “Sag’s Wien” initiative at:
https://www.wien.gv.at/sagswien/
12 For example, www.utest.com

https://www.wien.gv.at/sagswien/
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purposely incorrect or inaccurate bug report submissions, driving the processing
costs up. For the purpose of illustration, we join and generalize the two scenarios
into a single, abstract one that we will use in our simulation setup.

The Authority seeks to lower the time and cost of processing a large number
of Reports on various Situations occurring in the interest domain of the Authority.
The Workers are independent agents, occasionally and irregularly engaging with the
system managed by the Authority to perform one of the following Actions: Submit a
new Report on a Situation, Improve an existing Report, Rate the accuracy and impor-
tance of an existing Report, inform the Authority that two existing Reports should
be considered Duplicates. The Worker actions are driven by a combination of the
following factors: a) the possibility to earn Points (translating into increased chances
of exchanging them for money); b) the possibility to earn Reputation (translating
into higher status in the community); and c) the intrinsic propensity of people to
contribute and help or to behave maliciously. In order to influence and (de-)motivate
workers, the Authority employs a number of Incentive Mechanisms, collectively
referred to as the Incentive Scheme.

This scenario also needs to address the following challenges:

• Crowdsourced report assessment. The effort required for manual validation
of worker-provided reports may easily outweigh the gained effort and cost
reduction from crowdsourced reporting in the first place. Hence, workers need
to be properly stimulated to supplement and enrich existing reports as well as
vote on their importance, thereby lifting the verification burden off the Authority.
The system also needs to strike a balance not to collect too much information.

• Worker reputation (trust). A worker’s reputation serves as one potential indicator
for data reliability, assuming that reputable workers are likely to provide mostly
accurate information. Subsequently, reports from workers with unknown or low
reputation need to undergo more thorough peer assessment. The system must
support continuous adjustment of workers’ reputation.

• Adjustable and composable incentive scheme. An effective incentive scheme
needs to consider all past citizen actions, the current state of a report and the
predicted costs of processing a report manually in order to decide whether
and how to stimulate workers to provide additional information. It also needs
to correctly identify and punish undesirable and selfish behavior (e.g., false
information, deliberate duplication of reports, intentional up/downgrading of
reports).

The resulting complexity arising from the possible combination and configuration
of worker behavior, incentive schemes, and processing costs requires a detailed
analysis to identify a stable and predictable system configuration and its boundaries.
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8.3.3.2 Modeling and Simulation Methodology

Our methodology for simulating worker participation and incentive mechanisms in
crowdsourcing processes is depicted in Figure 8.8. It consists of four basic steps,
usually performed in multiple iterations:

1. defining a domain-specific meta-model by extending a core meta-model;
2. capturing worker’s behavioral/participation patterns and reward calculation in an

executable model;
3. defining scenarios, assumptions and configurations for individual simulation

runs; and
4. evaluating and interpreting simulation results.

These steps are described in more detail below.
We use the DomainPro13 modeling and simulation tool suite in each of the

outlined methodology steps to design and instantiate executable models of incentive
mechanisms and run simulations of those models. The tool allows creation of custom
simulation languages through metamodeling and supports agent-based and discrete
event simulation semantics (see [46]). However, the overall approach is generic and
can be easily applied using a different modeling and simulation environment.

Fig. 8.8: The methodology of simulation design and development

The simulation core meta-model is implemented in the DomainPro Modeling Lan-
guage. Optional extensions result in a domain-specific meta-model that defines which
component types, connector types, configuration parameters and links a simulation
model may exhibit. In our case, we extend the core meta-model to obtain what we re-
fer to as an incentive-centric meta-model. The obtained incentive-centric meta-model
serves as the basis for defining the simulation behavior, i.e., the executable simulation
model. Obtaining the executable simulation model requires definitions of workers’
behavioral parameters, Authority’s business logic (including incentive mechanisms

13 Tool available on request from:
www.quandarypeak.com

www.quandarypeak.com
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and cost metrics), the environment and the control flow conditions between them.
Finally, prior to each execution, the executable simulation model requires a quick
runtime configuration in terms of the number of Worker instances and monitored
performance metrics (Section 8.3.3.3). During the execution, we do near real-time
monitoring of metrics, and if necessary perform simulation stepping and premature
termination of the simulation run to execute model refinements.

The tool we use enables refinement at any modeling phase. A designer will typ-
ically start with simple meta- and simulation models to explore the basic system
behavior. She will subsequently refine the meta-model to add, for example, configu-
ration parameters and extend the functionality at the modeling level. This enables
simple incentive mechanisms to be tested first, and then extended and composed
once their idiosyncrasies are well understood.

Fig. 8.9: Partial screenshot of the implemented case study simulation model in
DomainPro Designer

Figure 8.9 provides a partial screenshot of the case study simulation model. The
simulation model comprises over 40 simulation parameters, determining various
factors, such as distribution of various personality characteristics in the Worker
population, injected worker roles (e.g., malicious, lazy), base costs for the Authority,
and selection and composition of incentive mechanisms. Describing them all in
detail/formally here would not be practical. Instead, the annotated source code of the
model and the meta-model is provided for download:14. The rest of this section is
written in a narrative style.

Location and importance characterize a Situation. Situations can be generated
with user-determined time, location and importance distributions, allowing us to

14 http://tinyurl.com/incentives-sim-model

http://tinyurl.com/incentives-sim-model
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concentrate more problematic (important) situations around a predefined location
in selected time intervals, if needed. For illustrative purposes, we generate situa-
tions with uniform probability across all three dimensions. The SituationGenerator
contains the activities for creating new situations and calculating phase-specific
simulation metrics on cost, reputation, points, actions and importance across reports,
situations and Workers.

The Worker’s SetNextStep activity represents the implementation of the worker’s
decision-making function fa, introduced in Section 8.3.1. As previously explained,
the Worker here considers the next action to perform based on:

1. internal state (e.g., location), including innate, population-distributed or arbitrar-
ily set personality characteristics (e.g., laziness, isMalicious);

2. current performance metrics (e.g., reputation, points);
3. advertised rewards (detectionReward, ratingReward, improvementReward).

The Worker’s location determines his/her proximity to a Situation, and, thus, the
likelihood to detect or act upon that Situation (the smaller the distance, the higher
the probability). However, two Workers at the same distance from a Situation are not
equally likely to act upon it. This depends on their personality and past behavior, and
the number of points they currently have. Default behavior of Workers is produced
by normally distributing values of certain S state metrics, thus determining the “per-
sonality” of the Worker, in this case, the likelihood to act upon a situation. However,
different Worker behaviors and personalities are obtainable through different roles.
The simulation model does not prescribe the complexity of the roles. Instead, the
incentive designer is free to implement them as necessary to simulate collective,
disruptive of malicious behavior.

Points and reputation are the principal two metrics by which the Authority assesses
Workers in our scenario. In principle, points are used by the Authority as the main
factor to stimulate activity of a Worker. The more points, the less likely a Worker
will idle. On the other hand, a higher reputation implies that the Worker will more
likely produce artifacts of higher quality. Each new Worker joining the system starts
with the same default point and reputation values. Precisely how the two metrics are
interpreted and changed thereafter depends on the incentive mechanisms used (see
below).

As we are primarily interested in investigating how reputation affects (malicious)
behavior, we characterize each agent by a reputation metric, as laboratory experi-
ments confirmed that reputation promotes desirable behavior in a variety of different
experimental settings [184, 111, 145, 162].

The four Behavior activities produce the respective artifacts – Reports, Update-
Infos, RatingInfos and DuplicateInfos. The Worker’s internal state determines the
deviations in accuracy, importance, improvement effect, and rating value of the newly
created artifacts. The subsequently triggered Report-located activities (CreatedR,
ImprovedR, RatedR and Detected) determine the Worker action’s effect on the two
metrics that represent the artifact’s state and data quality metrics at the same time –
Report accuracy and importance. We use Bayes estimation to tackle the cold-start
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assessment of report accuracy and importance, taking into account average values of
existing Reports and the reputation of the Worker himself.

The produced artifacts are queued at the Authority side for batch processing. In
PreProcessing activity we determine whether a Report is ready for processing. This
depends on the Report’s quality metrics, which in turn depend on the number and
value of Worker-provided inputs.

Processing Reports causes costs for the Authority. The primary cost factors are
low-quality Reports and undetected duplicate Reports. Secondary costs arise when
Workers focus their actions on unimportant Reports while ignoring more important
ones. Therefore, the Authority incentivizes the Workers to submit required quantities
of quality artifacts. As noted in Section 8.3.3.1, gathering as much inexpensive data
from the crowd as possible was the reason for the introduction of a crowdsourced
process in the first place.

Our proof-of-concept simulation model for the given scenario defines three basic
incentive mechanisms:

• IM1: Users are assigned a fixed number of points per action, independent of the
artifact. Submitting yields most points.

• IM2: The number of points is increased before assignment, depending on the
current quality metrics of the Report. For example, the fewer ratings or improve-
ments the higher the increment in points.

• IM3: Users are assigned a reputation. The reputation rises with accurately sub-
mitted Reports, useful Report improvements, correctly rated importance and
correctly flagged duplicates.

In Section 8.3.3.3, we compose these three mechanisms in different ways to
produce different incentive schemes which we run and compare.

For demonstration purposes we define only a single additional role - that of a
malicious worker. Malicious Worker behavior is designed to cause maximum cost for
the Authority. To this end, we assume malicious Workers to have a good perception
of the actual Authority characteristics. Hence, upon submission they will set initial
Report importance low and provide very inaccurate information subsequently. For
important existing Reports they will submit negative improvements (i.e., conflicting
or irrelevant information) and rate them low, while doing the opposite for unimportant
Reports.

8.3.3.3 Experimental Setup

Timing Aspects. We control the pace of the simulation by determining the num-
ber of Situations created per phase. Taking a reading of all relevant (i.e., experiment-
specific) metrics at the end of each phase provides an insight on how these metrics
change over time. All our simulations last for 250 time units (t), consisting of 10
phases of 25t each. Batch creation of Situations is representative for real world
environments, such as bugs that typically emerge upon a major software release
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or spikes in traffic impediments coinciding with sudden weather changes. Report
submission takes 5t, while improving, rating and duplication flagging require only 1t.
The exact values are irrelevant as we only need to express the fact that reporting re-
quires considerably more time than the other actions. Processing of Worker-provided
data on the provider side occurs every 1t. Note that for the purposes of the case
study, here we are only interested in the generic processing costs rather than the
time it takes to process that data. Each Report is assumed to cause 10 cost units for
minimum quality (modeled as a value of 0), and almost no cost when quality (through
Worker-provided improvements) approaches maximum (= 1). The higher the quality
of received Reports, the fewer Reports are needed to persuade the Authority to act
(see below).

Scenario-specific thresholds. As we aim for high-quality data and significant
crowd-base confirmation, the following thresholds need to be met before a Report is
considered for processing: at least three updates and high accuracy (> 0.75); or five
ratings and medium importance (> 0.5); or four duplication alerts; or being reported
by a Worker of high reputation (> 0.8) and having high importance (> 0.7). Workers
obtain various numbers of points for (correct) actions, the number depending on the
value of the action to the provider and the incentive scheme used.

Worker Behavior Configuration. A Worker’s base behavior is defined as 70%
probability idling for 1t, 20% submitting or duplication reporting, and 10% rating
or improving. Obtained points and reputation increase the likelihood to engage in
an action rather than idle. The base behavior represents rather active Workers. We
deliberately simulate only the top k most involved Workers in a community as these
have the most impact on benefits as well as on costs. Unless noted otherwise, k = 100
for all experiments.

Composite Incentive Schemes. The experiments utilize one or more of the
following three previously introduced Composite Incentive Schemes – CIS:

• CIS1 = IM1
• CIS2 = IM2 ◦ IM1 = IM2(IM1)
• CIS3 =CIS2+ IM3 = IM2 ◦ IM1 + IM3

CIS1 promises and pays a stable number of points for all actions. CIS2 dynam-
ically adjusts assigned points based on the currently available Worker-provided
data, but at least as high rewards as CIS1. CIS3 additionally introduces reputation
calculation.

8.3.3.4 Experiments

Experiment 1: Comparing Composite Incentive Schemes.
Here we compare the impact of CIS1, CIS2 and CIS3 on costs, assigned rewards,
Report accuracy and timely processing. Figure 8.10 displays incurred costs across the
simulation duration. All three schemes prove suitable as they allow 100 Workers to
provide sufficient data to have 20 Situations processed at equally high accuracy. They
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differ significantly, however, in cost development (Fig.8.10 inset), primarily caused
by undetected duplicate Reports (on average 0.2, 0.25 and 0.4 duplicates per Report
per phase for CIS1, CIS2 and CIS3, respectively). CIS1 yields stable and overall
lowest costs as the points paid induce just the right level of activity to avoid Workers
getting too active and thus causing duplicates. This is exactly the shortcoming of
CIS2 which overpays Workers who subsequently become overly active. CIS3 pays
even more, and additionally encourages Worker activity through reputation. The
cost fluctuations are caused by the unpredictable number of duplicates (however
remaining within bounds). Although more costly and less stable, CIS3 is able to
identify and subsequently mitigate malicious Workers (see Experiment 3 below).

Fig. 8.10: Incurred Report-processing costs for CIS1, CIS2 and CIS3. Inset: average
points paid per Worker

Experiment 2: the Effect of Worker/Situation mismatch.
Here we analyze the effects of having too few or too many Workers per Situation.
In particular, we observe per phase the cost, points assigned, Report importance (as
reflecting Situation importance) and reputation when:

1. the active core community shrinks to 20 Workers while encountering 50 Situa-
tions (20u/50s);

2. a balance of Workers and Situations (100u/25s);
3. many active Workers but only a few Situations (100u/5s).

A surplus of Situations (20u/50s) causes Workers to become highly engaged,
resulting in rapid reputation rise (Fig 8.12 bottom) coupled with extremely high
values of accumulated rewarding points (Fig 8.11 inset). Costs per Report remain low
as duplicates become less likely with many Situations to select from (0.18 duplicates
per Report). Here, CIS3 promises more reward for already highly rated Reports to
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counteract the expected inability to obtain sufficient Worker input for all Situation (on
average 22 Reports per phase out of 50). Subsequently, the Authority receives correct
ratings for Reports and can focus on processing the most important ones. Compare the
importance of addressed Situations in Figure 8.12 top. A surplus of active Workers
(100u/5s) suffers from the inverse effect. As there is little to do, reputation and
rewards grow very slowly. Perceiving little benefit, Workers may potentially leave
while the Authority has a difficult time distinguishing between malicious and non-
malicious Workers. Configurations (100u/5s) and (100u/25s) manage to provide
Reports for all Situations, therefore having average Report importance remaining
near 0.5, the average importance assigned across Situations.

Fig. 8.11: Costs per Report incurred at
various combinations of Worker and Sit-
uation count.

Fig. 8.12: Reputation acquired by Work-
ers (bottom), and Report importance
addressed, respectively remaining open

(top)

Experiment 3: Effect of Malicious Workers.
Here we evaluate the effects of an increasing number of malicious Workers on cost
when applying CIS3. Figures 8.13 and 8.14 detail cost and reputation for 0%, 20%,
30%, 40% and 50% malicious Workers. All Workers are considered of equal, medium
reputation 0.5 upon simulation start. The drop in costs across time (observed for all
configurations) highlights that the mechanism indeed learns to distinguish between
regular, trustworthy Workers and malicious Workers. The irregular occurrence of
undetected duplicates causes the fluctuations in cost apparent for 0% and 20%
malicious Workers. Beyond that, however, costs are primarily determined by low
accuracy induced by malicious Workers. CIS3 appears to work acceptably well up
to 20% malicious Workers. Beyond this threshold harsher reputation penalties and
Worker blocking (when dropping below a certain reputation value) need to be put in
place. In severe cases lowering the default reputation assessment might be applicable
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but requires consideration of side effects (i.e., thereby increasing the entry barrier for
new Workers).

Fig. 8.13: Costs per Report incurred due
to various levels of malicious Workers

Fig. 8.14: Average reputation acquired
by malicious and non-malicious Workers

8.3.3.5 Limitations and Discussion

Simulations of complex socio-technical processes such as the use case presented
here can only cover particular aspects of interest, never all details. Thus any results
in terms of absolute numbers are unsuitable for direct application in real-world
systems. Instead, the simulation enables incentive scheme engineers to compare the
impact of different design decisions and decide what trade-offs need to be made. The
simulation outcome provides an understanding which mechanisms might fail earlier,
which strategies behave more predictably and which configurations result in a more
robust system design.

In particular, the presented comparison of CISs in Experiment 1 gives insight
into the impact of overpaying as well as indicating that CIS3 would do well to
additionally include a mechanism to limit submissions and better reward the action
of flagging duplicates. Experiment 2 provides insights on the effect of having too
few or too many Workers for a given number of Situations. It highlights the need to
adjust rewards and reputation in reaction to shifts in the environment and/or worker
community structure. Experiment 3 provides insight into the cost development in the
presence of malicious workers and highlights the potential for mechanism extension.
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8.4 PRINGL – A Programming Framework for Incentive

Management

In the previous section we have introduced the Rewarding Model (RMod), which
is capable of encoding incentives in the form of scheduled application of rewarding
actions applied over an abstract model. We then showed through simulation that the
model was capable of detecting individuals with dysfunctional behavior and reducing
their influence. In this chapter we present the design of a programming framework
making use of the introduced RMod and allowing application of rewarding actions
on real-world socio-technical systems.

The incentive management programming framework is intended to be used by
two types of users:

1. incentive designers – domain experts who design and implement incentive
scheme for an organization;

2. incentive operators – organization members responsible for managing the every-
day running and adaptation of the scheme.

An incentive designer (Designer) is a multidisciplinary domain expert in areas
spanning management, economy, game theory and psychology. The Designer designs
on behalf of the Smart City platform a set of appropriate incentive mechanisms for
the given business model of the value-added application, taking into consideration
context-specific properties pertinent to the targeted population of workers/citizens.
An example of how this process is performed for two different experimental platforms
can be found in [51, 3].

The role of an incentive operator (Operator) has not been defined in the existing
literature, as its existence is subject to the existence of the novel type of incentive
management platforms that we describe here. While a Designer can be a person
external to the socio-technical platform, the Operator is a member of the management
of the socio-technical platform in charge of monitoring the application of incentives
and taking operative decisions on adaptations of various incentive parameters.

To exemplify the expected type of functionality an Operator performs, let us
assume the existence of a socio-technical platform offering a crowdsourced software
development service to its customers. The Operator’s role is to monitor the efficacy
of incentive schemes in use and adjust them when needed. For example, the oper-
ator might learn that teams in which testers were incentivized to report more bugs
throughout the entire development process performed worse than those incentivized
to report (fewer, but) more severe/dangerous ones in more mature product phases.
Based on this experience, the Operator can adjust the scheme (e.g., bug thresholds
and bonus amounts) to put more emphasis on quality rather than on quantity as soon
as the product has entered a fairly stable stage.

Both the Designer and the Operator can use the simulation modeling methodol-
ogy introduced in Section 8.3.3 to aid the design, composition and adjustment of
the incentive scheme. Operators in particular can benefit from the speed that the
social simulation offers (compared to the conventional incentive mechanism design)
when adaptations of the incentive scheme (e.g., parameter variations, turning on/off
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additional mechanisms) are necessary to counteract disruptive or newly emerging
dysfunctional behavior. Both Designer and Operator use a platform-independent,
largely declarative domain-specific language to encode/adjust incentive schemes that
are provided as input to the incentive management platform.

In this section we present the framework’s programming and execution model, the
semantics and syntax of PRINGL15. We describe PRINGL’s modeling paradigm, and
demonstrate its expressiveness by modeling a set of realistic incentive mechanisms.

In order to enact a PRINGL-encoded incentive on a socio-technical platform (i.e.,
apply the incentives on real crowd workers), we need a simplified and uniform
model of the platform’s workers, and the metrics and relationships that describe them.
We call such a model together with the framework that manages it an abstraction
interlayer (Fig. 8.15). More precisely, we use the term abstraction interlayer to denote
any middleware sitting on top of a socio-technical system, exposing to external users a
simplified model of its employed workforce and allowing monitoring of the workers’
performance metrics. The existence of an abstraction interlayer allows the incentive
designer to write fully portable incentives.

The PRINC framework (introduced in Section 8.3.2) possesses all the characteris-
tics of an abstraction interlayer. It features the general model (RMod) for representing
the state of a socio-technical system, reflecting its quantitative, temporal and struc-
tural aspects. PRINC’s mapping model (MMod) defines the mappings needed to
properly express the platform-specific versions of metrics, actions, artifacts and
attributes in their RMod cognates. Finally, PRINC coupled with SMARTCOM takes
care of exchanging messages with and receiving update events from the underlying
socio-technical platform, thus enabling the RMod abstract model to mirror the state
of the underlying system. This in turn allows us to express incentive mechanisms
decoupled from the underlying platform: to apply an incentive it suffices to alter the
RMod state, while the task of mirroring this change on the actual socio-technical
platform is delegated to PRINC and SMARTCOM.

In this chapter we assume the existence of PRINC as abstraction interlayer. The
business logic code provided in the examples in Section 8.4.4 is C# code executable
on PRINC. In theory, PRINGL can work without an abstraction interlayer. However,
this would imply that all message handling with the underlying crowdsourcing
system and complex monitoring logic would have to be written from scratch. This
contradicts one of the principal motives for the introduction of PRINGL, and is more
disadvantageous than building a completely system-specific incentive management
solution.

8.4.1 Overview

Figure 8.15 shows an overview of PRINGL’s architecture and usage in the overall
context of the incentive management framework. An incentive designer models an

15 PRogrammable INcentives Graphical Language– a domain-specific language for modeling
incentives for socio-technical systems.
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Fig. 8.15: Incentive management framework tools, showing an overview of PRINGL’s
programing model elements, architecture, users, operative environment and imple-
mentation.

incentive scheme provided in natural language by a domain expert as a PRINGL
program using PRINGL’s visuo-textual syntax. The visually expressed part of the
syntax is completely system-independent, while system-specific business logic can
be expressed as source code in an arbitrary programming language supported by the
abstraction interlayer. In this respect, its portability equals the portability offered by
the abstraction interlayer.

Starting from a PRINGL program the PRINGL code generator produces the follow-
ing artifacts, encoded in a conventional programming language:

• An incentive model expressed in terms of incentive elements, basic PRINGL
types and operators. This model also integrates the business logic code provided
by the incentive designer. The incentive element definitions from this model can
optionally be compiled into libraries for later reuse.

• Code for communication with the abstraction interlayer and application of the
incentives.

• Code for manipulation of the incentive model.
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These artifacts can be used to quickly build applications offering incentive man-
agement capabilities, e.g., a GUI-based application offering an incentive operator the
possibility to change the runtime parameters. As previously explained, the abstraction
interlayer takes care of communication with the concrete socio-technical system,
forwarding the rewarding actions and receiving the updates. To do this, we make
use of the SMARTCOM middleware introduced in Section 7.2. The abstraction inter-
layer delegates the burdensome tasks of communication and privacy management to
SMARTCOM, allowing advertising of incentives and monitoring of worker partici-
pation over popular (commercial) communication protocols. Figure 8.16 shows the
intended usage of SMARTCOM in the incentive management framework context.

Incentive 
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Platform
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System

(e.g., SmartSociety)

e.g., RESTe.g., protobuffer

e.g., 
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Fig. 8.16: SMARTCOM’s application context

8.4.1.1 Requirements

As PRINGL is a domain-specific language, the focus of the design requirements
lies primarily on coverage of the domain and usability by the stakeholders within
that domain. The design of the language was guided by the following requirements,
formulated according to the guidelines outlined in [113]:

1. Usability – provide an intuitive, user-friendly modeling DSL for incentive opera-
tors.

2. Expressiveness – provide an expressive environment for programming complex
real-world incentive strategies for incentive designers.

3. Groundedness – allow the use of de facto established terminology, components
and methods for setting up incentive strategies.

4. Reusability – support and promote reuse of existing incentive business logic.
5. Portability – support system-independent incentive mechanisms, agnostic of

type of labor or workers, and of underlying systems.
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8.4.2 Programming Model

To meet the specified requirements PRINGL was conceived as a hybrid visual/textual
programming language, where incentive designers can encode core incentive ele-
ments, while incentive operators can provide concrete runtime parameters to adapt
them to a particular situation. The language supports programming of the real-world
incentive elements described in [155, 172] and allows composition of complex in-
centive schemes out of simpler elements. Such a modular design also promotes
reusability since the same incentive elements with different parameters can be used
for a class of similar problems, stored in libraries and shared across platforms.

PRINGL allows incentive designers to model natural-language, realistic incentive
schemes (i.e., business logic) into a platform-independent specification through a
number of incentive elements represented by a visual syntax (graphical elements with
code snippets). The incentive scheme represents the whole business logic needed
for managing incentives in an organization. The scheme is expressed in PRINGL
as a number of prioritized incentive mechanisms representing a PRINGL program.
Each mechanism can then be further decomposed into a number of constituent
incentive elements described in the following subsections. The designer programs
new incentive elements or reuses existing ones from an incentive library to compose
new, more complex ones. The following sections describe the incentive elements and
operations on them.

8.4.2.1 Primitive Incentive Elements

From a business logic perspective, primitive incentive elements represent the basic
entities (workers, relationships and time units) that we use when composing incentive
rules. From a programming language perspective, they can be considered as atomic
types that are used in user-provided or library code that specifies business logic. We
use the two terms “type” and “incentive element” interchangeably. Apart from the
four conventional primitive types: string, bool, int and double, PRINGL defines
the types shown in Table 7. They do not have a direct visual representation. Only
primitive elements can be used as inputs and outputs of complex incentive elements
(Section 8.4.2.3).

PRINGL provides a number of operators for manipulating the introduced primitive
types.

8.4.2.2 Built-In Operators

• Set operators. – Union, intersection and complement on Collection<T>.
• Time operators. If working with adjustable intervals, it is advisable to use

operators wherever possible as they are evaluated at runtime and guarantee that
any external changes (e.g., deadline extensions) will be taken into account. A
common use case sees a user initializing an Interval from an iteration, and
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Type Description

Worker Represents an individual worker and his/her performance metrics
PoiT Represents a point in time. It can be instantiated by providing a fixed

datetime or obtained as the result of application of time operators
Interval Represents a named, addressable time interval. An interval can be: a) fixed;

or b) adjustable. Fixed intervals have predefined starting and ending times,
provided by two PoiTs, that cannot subsequently be altered. Adjustable
intervals reflect the external system’s changes to intervals, e.g., deadline
extensions (cf. iterations [156]). Changes are allowed to affect only points
in the future

Collection<T> An iterable collection of a primitive type T is also considered a primitive
type

Table 7: Primitive PRINGL types.

using interval operators to specify points in time at which an action is needed.
Time operators are commonly used with temporal specifiers.

– StartOf(Interval i) – returning the Collection<PoiT> containing a
single time point representing the interval’s currently expected starting time.

– EndOf(Interval i) – returning the Collection<PoiT> containing a
single time point representing the interval’s currently expected ending time.

– PartOf(Interval I, double p) – p[0,1] returning the PoiT at per-
centage p of the interval. PartO f (i,0) == StartO f (i);PartO f (i,1) ==
EndO f (i)

– MultiPoint(Interval i, int k) – returns a Collection<PoiT> of
points evenly distributed between StartOf() and EndOf().

– AllOf(Interval i) – returns a Collection<PoiT> of points represent-
ing all time points (depending on the resolution of the underlying system)
contained in the interval.

• Temporal specifiers. These are special operators used to instruct the execution
environment when to perform certain actions or evaluate predicates. As such,
they cannot be directly used in user-provided programming code, but are rather
offered as a choice through a visual GUI element (drop-down box) where needed.
Internally, they are represented as built-in functions that operate on a collection
of PoiTs that is provided by the environment at runtime.

– Always(Collection<PoiT>) – “at each PoiT in collection”.
– Sometimes(Collection<PoiT>) – “at least once in collection”.
– Once(Collection<PoiT>) – “exactly once in collection”.
– Never(Collection<PoiT>) – “never in collection”.
– First(Collection<PoiT>) – “oldest in collection”.
– Last(Collection<PoiT>) – “newest in collection”.
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• Structural operators. These perform structural queries/modifications by exa-
mining/re-chaining the relationships between worker nodes in the abstraction
interlayer (graph) model by using graph transformations [14].

– Querying:
· neighborsOf(Worker w, string relationType, int numHops,

bool directed) – returns a Collection<Worker> filled with work-
ers numHops hops away from Worker w over un-/directed relationType
relationships.

· managersOf(Worker w) – returns Collection<Worker> filled with
manager(s) of worker W. The relationship type representing the man-
agerial relation is obtained from the abstration interlayer.

· subordinatesOf(Worker w) – analogous to managersOf.
– Modifying:

· changeManager(Worker w, string teamLabel) – re-chains the
implicitly determined managerial relations within the members of the
teamLabel team to point to the new manager.

• Aggregation operators. These perform calculations on performance metrics
or events over a Collection<PoiT>, in a fashion similar to SQL’s aggregate
functions. The collection of time points over which the operators calculate is
provided by the runtime environment at each invocation. They can only be used
in predicate logic blocks P that are directly or indirectly reachable through
declaration relationships originating from a WorkerFilter F element.

– @AVG(double m) – returns the average value of the metric m over the given
time point collection.

– @COUNT(string evt) – returns the number of occurrences of event evt in the
timespan delimited by the first and last PoiT in the given input collection.

– @MAX(double m) – returns the largest value of the metric m over the given
time point collection.

– @MIN(double m) – returns the smallest value of the metric m over the given
time point collection.

– @SUM(double m) – returns the sum of the values of the metric m over the
given time point collection.

8.4.2.3 Complex Incentive Elements

Complex types enable PRINGL’s core functionality and are represented by corre-
sponding graphical elements. Their key property is that more complex types can
be obtained by visually combining simpler ones. Visual, rather than purely textual
representation was chosen to allow users to build up complex incentive schemes
by visually suggesting and restricting the choice of the possible components, thus
facilitating the process of construction of incentive mechanisms. Complex incentive
elements are managed through the following operations.
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Fig. 8.17: Complex incentive elements class hierarchy

8.4.2.4 Operations on Complex Incentive Elements

Definition – Complex types are defined by inheriting the following abstract metatypes:
IncentiveLogic, WorkerFilter, RewardingAction and IncentiveMechanism
(Fig 8.17). A new complex type inherits the predefined, addressable fields from the
metatype it redefines. In order for a type definition to be complete, the fields must be
filled out with appropriate values. Some fields are filled out automatically by PRINGL
depending on the context where they are used (auto parameters); others must be filled
out by the user (user-fields). The user-fields are: a) name, which specifies the name
of the new complex type; b) an arbitrary number of primitive-type input parameters
(params) that can be used in evaluations and passed to other incentive elements; c)
type-specific fields, specifying how a particular functionality of the newly defined
complex type is going to be executed – by indicating another incentive element to
invoke, or by providing an executable code snippet. Definition is performed through
appropriate graphical constructs being placed onto the working area. A new type
definition retains its parent metatype’s graphical representation. For the non-auto
input params (b), PRINGL visually exposes the appropriate number of GUI form
fields accepting the inputs that are to be filled out manually by the user. The input can
contain expressions with primitive types and/or references to other accessible fields.
To fill out type-specific fields (c), the user is expected to visually link the appropriate
incentive element type, thus effectively declaring/instantiating it (see below).

Declaration/Instantiation – When defining new complex types, the user indicates
(declares) which field/subcomponent instances will be required at PRINGL runtime
to instantiate the newly defined object by placing the corresponding graphical (filled)
element in the appropriate context within the working area, connecting it with
appropriate connectors from the parent type definition, and overriding parameter
values from the parent type definition, if needed. The auto parameters are loaded
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at instantiation by PRINGL transparently to the user. For example, in case of T
(Section 8.4.2.5) all named Intervals and all workers are passed as input parameters
and made available through predefined variable names (preceded with underscore).
This removes the need to know how to access certain data from a type definition, thus
making it self-contained and portable. The user-defined fields are initialized with
values calculated from the expression contained in the type definition and values
provided by the user or propagated from the composing elements. Type instances are
addressable objects that can be referenced (e.g., to read a field value) or invoked (see
below) from the programming code and other elements.

Indirect invocation – The IncentiveLogic, WorkerFilter and RewardingAc-
tion instances can also be “invoked” just by being referenced from expressions in
user code. When the PRINGL code generator encounters an instance reference in
an expression it transparently replaces it with an invocation of the default method
for that type. Default methods for filters and rewarding actions return the result-
ing Collection<Worker>. The default method of an IncentiveLogic type is a
function having input and output parameters as specified in its definition, and the
user-provided code as the function body. The input parameters are provided by
PRINGL runtime, so there is no need to pass any non-user parameters from the user
code. Expressions containing indirect invocations can be used as field values (see
Ex. 8.4.4.2, Fig. 8.27) or arbitrarily within the user-provided business logic code in
IncentiveLogic elements (see Ex. 8.4.4.3, Fig. 8.25, �). The indirect invocation
feature allows the user to pass instance references instead of output types of their
default methods; for example, we can pass a filter instance to an IncentiveLogic
element expecting a single input parameter of type Collection<Worker>. As these
are common situations, indirect invocation helps cut down on verbosity of user code.

Static invocation – In addition to indirect invocation, IncentiveLogic elements
can be invoked statically with arbitrary input parameters from the user code. In order
to make the static invocation, the IncentiveLogic type name is appended with
.invokeWith([<param-list> ]); see Ex. 8.4.4.3, Fig. 8.25, �.

8.4.2.5 Defining Complex Incentive Elements

Incentive Logic

These constructs encapsulate different aspects of business logic related to incen-
tives in reusable fragments (e.g., determine whether a condition holds, read a metric
value, or perform a simple action). They can be thought of as functions/delegates with
predefined signatures allowing only certain input and output parameters. They are
invoked from other PRINGL constructs, including other IncentiveLogic elements.
Implementation is dependent on the abstraction interlayer, but not necessarily on
the underlying socio-technical platform, meaning that many libraries can be shared
across different platforms, promoting reusability of proven incentives, uniformity
and reputation transfer. The Designer is encouraged to implement incentive logic
elements as small code snippets with intuitive and reusable functionality. Depending
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on the intended usage, incentive logic elements have different subtypes: Action,
Structural, Temporal, Predicate, Filter. Subtypes are needed to impose necessary
semantic restrictions, e.g., the subtype prescribes different input parameters and al-
lows PRINGL to populate some of them automatically16. Similarly, different subtypes
dictate different return value types. These features encourage high modularization
and uniformity of incentive logic elements. Descriptions of the incentive logic sub-
types are provided in Table 8. The incentive logic element definition is expressed in
PRINGL with the visual syntax element shown in a Fig. 8.18, with the appropriate
subtype symbol shown in the upper left corner. As is the case with other incentive
element definitions (presented in subsequent sections), the incentive logic element
incorporates the distinguishing geometrical shape (diamond in this case), as well
as auto-populated and user-defined parameters. Differently than other elements, it
contains a field into which the Designer inputs executable code in a conventional
programming language. The code captures the business logic specific to the incentive
that is being modeled, but must conform to the rules imposed by the incentive logic
subtype. As a shorthand, textual, inline notation for incentive logic elements we use
a diamond shape surrounding the letter indicating the subtype, e.g., T for temporal
logic.

P
  // Business logic expressed in 
  // interlayer-executable programming code

name:   IncentiveLogic
params: Type1 _param1 (auto),

Type2 param2 
output: OutputType 

Fig. 8.18: Visual element representing an IncentiveLogic definition

16 Marked with auto in figures
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Worker Filter

The function of a WorkerFilter element is to identify, evaluate and return
matching workers for subsequent processing based on user-specified criteria. The
criteria are most commonly related (but not limited) to worker’s past performance
and team structure. The workers are matched across different time points from the
input collection of Workers that is provided by the PRINGL environment at runtime.
By default, all the workers in the system are considered. The output is a collection of
workers satisfying the filter’s predicate.

If we denote the input set of Workers of a WorkerFilter X with Ix, and the
output set with Ox, then the functionality of X can be defined as the function fx:

fx : Ix → Ox

Ix = input(x)

Ox = {e ∈ Ox | e ∈ Ix ∧ px(e) = true}

where px is the filter’s predicate. Therefore, the functionality of a filter is to
return a subset of workers from the input set, i.e., to perform a set restriction. Both
SimpleWorkerFilter and CompositeWorkerFilter are subtypes of the abstract
metatype WorkerFilter (Fig. 8.17), and can be used interchangeably where a
worker filter is needed. A SimpleWorkerFilter element definition is expressed in
PRINGL with the visual syntax element shown in Fig. 8.19, while a right-pointed
shape F is used as the inline, shorthand, textual denotation. A filter’s type-specific
fields are filled out visually by the user, by connecting them with appropriate incentive
elements. Field descriptions are provided in Table 9.

Field Description

time restr An optional T returning a collection of time points which should be con-
sidered when evaluating workers. If omitted, the default value is a collection
containing only a single PoiT representing the present moment

temp spec An optional temporal specifier (Section 8.4.2.1) determining how to interpret
the filter predicate values across different time points. If unspecified, the
predicate is evaluated only for the last (most recent) PoiT in the collection

auxiliary An optional F that is used to fetch some global metrics needed for worker
evaluation, and possibly provide some intermediate results to be used for
evaluating the filter predicate

predicate A required P providing the predicate that will be evaluated against each
worker at specified time points

Table 9: SimpleWorkerFilter fields



210 8 Incentive Management

P

T

PredicateLogic

TempLogic SimpleFilter

time_rest: TempLogic

temp_spec: null

auxiliary: null

predicate: PredicateLogic

params:    
-    Type1 param1
-    Type2 param2

Fig. 8.19: Visual element used for SimpleWorkerFilter definition

Composite Filters

In Figure 8.20 we illustrate how a composite filter can be defined in PRINGL.
It consists of graphical elements representing instances of previously defined or
library-provided WorkerFilters. The elements are connected with directed edges
denoting the flow of Workers. There must be exactly one filter element without
input edges representing the initial filter, and exactly one filter element without
output edges representing the final filter in a composite filter definition. When a
CompositeWorkerFilter is instantiated and executed, PRINGL provides the input
for the initial filter, and returns the output of the final filter as the overall output of
the composite filter. Like any other PRINGL composite type, a composite filter can
also expose propagated or user-defined parameters.

MyCompositeFilter

A:FType1 B:FType2

C:FType3

D:FType4

<<initial>>

<<final>>

∩
intersection
(restriction)

union  ∪

\
complement

Fig. 8.20: An example CompositeWorkerFilter definition

A directed edge A −→ C implies that C takes as input A ’s output (the workers
matching the criteria of A ). The output of C is a set containing workers fulfilling
both filters’ conditions, thus effectively representing the A ∩ C operation. If an
edge is marked as negating (�), then A � returns the set complement of A ’s input,
i.e., input(A) \ A . When multiple edges enter a single filter element, then the union
(∪) of workers coming over the edges is used as the input for the filter element.
When multiple edges go out of a single element, then the same output set of workers
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is passed to each receiving end. Sometimes, we need a filter to forward the same
set of workers to multiple filters or to collect workers from multiple filters without
performing additional restrictions; the pass-through filter (predefined PassThru
type) contains no logic, except for a predicate always returning true.

Rewarding Action

Its function is to notify the abstraction interlayer (and consequently the socio-
technical platform) that a concrete action should be taken regarding specific workers
at a given time, or that certain specific actions should be forbidden to some workers
during a certain time interval. The rewarding actions can include, but are not limited
to, the following: adjust reward rates (e.g., salary, bonus), assign digital rewards (e.g.,
points, badges, stars), suggest promotion/demotion or team restructuring, display a
selected view of rankings to selected workers. The choice of the available actions
is dependent on the set supported by the interlayer and the actual socio-technical
platform. The abstraction interlayer is responsible for translating the action into
a system-specific message and delivering it to the underlying platform. PRINGL
expects the underlying system to acknowledge via the abstraction interlayer that the
suggested action was accepted and applied to a worker, because its outcome may
affect other incentive mechanisms. We use the trapezoid shape shown in Fig. 8.21
to denote the definition of a SimpleRewardingAction. For the shorthand notation,
we use A , both for simple and composite rewarding action elements.

T

TemporalLogic

A

ActionLogic

SimpleAction

    filter:       null

    exec_cond:    null

    exec_times:   TemporalLogic

    temp_spec:    null

params:       
+ Type1 param1
- Type2 param2

    delay:        (auto)

    action_logic: ActionLogic

Fig. 8.21: Visual element used for SimpleRewardingAction definition

In PRINGL’s programming model the output of a RewardingAction is a
Collection<Worker> containing affected workers, i.e., those to whom the ac-
tion was successfully applied. Informing the abstraction layer is performed as a
side-effect of executing the rewarding action. In order to perform the action, the
runtime environment needs to know to which workers the action applies, so a worker
filter needs to be used (filter field). In some cases, the workers that are reward-
ed/punished may be the same as the initially evaluated ones. In that case we can
reuse the original filter used for evaluation. In other cases, workers may be rewarded
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Field Description

filter An optional F determining the workers to whom to apply the action.
If omitted, the worker collection is by default provided by the runtime
environment from the output of the original evaluation filters

exec cond An optional P establishing whether the currently evaluated worker earned
the reward/punishment or not. If omitted, considered ‘true’ by default

exec times An optional T returning Collection<PoiT> determining the possible
execution points. If omitted, the environment defaults to the current PoiT
and executes immediately

temp spec An optional temporal specifier further restricting the original collection of
execution PoiTs. Defaults to Always() if omitted

delay A hidden parameter set by the environment and used for recalculating
execution times in composite rewarding actions. It contains a non-negative
integer time offset added to the execution PoiTs. The actual time unit is
determined as the basic time unit of the underlying layer (an RMod tick in
our case). The default value is zero

action logic A mandatory reference to an A element containing the system-specific
business logic that invokes the rewarding action

Table 10: SimpleRewardingAction fields

based on the outcome of evaluation of other workers (e.g., team managers for the
performance of team members). PRINGL’s runtime also needs to determine the timing
for action application (temp spec and exec times fields). We use temporal speci-
fiers (see Sec. 8.4.2.1) to determine the exact time moment(s) of the time series. For
defining incentives involving deferred compensation [155] we also need to specify an
additional predicate that will be evaluated at the execution time to establish whether
a worker fulfilled the reward criteria during the period from when the incentive was
scheduled until the execution point (exec cond field). The actual action to execute
is determined by the action logic field, pointing to a concrete A element. To
execute the action PRINGL needs to invoke the appropriate action in the abstraction
interlayer, which will then send out a system-specific message to the underlying
platform. Field descriptions are summarized in Table 10.

Composite Actions

Similarly to composite filters, a CompositeRewardingAction definition consists of
graphical elements representing instances of previously defined RewardingActions.
It must contain exactly one initial action a0, and exactly k0 final actions, where k0 is
the number of a0’s outgoing edges. The elements are connected with directed edges
denoting at the same time: a) Worker flow; and b) time delay. There must be no cycles
in the graph, i.e., the flow must be a tree with the root in the initial action, with each
final action being a leaf. Like any other PRINGL composite type, a composite action
can also expose propagated or user-defined parameters.
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MyCompositeAction

B:T2a:A1

<<initial>>

A:T1 C:T3

<<final>>

D:T4

<<final>>

3 5

0

p
q

(k,m)

(k,m)
(p)

(p)

(k)

output 
(k, m, p)

non-affected 
(l, n, q)

input 
(k, l, m, n)

k

l

m

n

Fig. 8.22: An example CompositeRewardingAction definition with branch delays
shown

Worker flow. A RewardingAction returns affected workers and passes them
over outgoing edges. Affected workers are those workers to whom the action was suc-
cessfully applied by the underlying system. The definition of a successful application
is system-specific. Therefore PRINGL expects the underlying system to acknowledge
via the abstraction interlayer that the suggested action was accepted and successfully
applied to the worker. The passing of workers is similar to that of composite filters.
The two major differences are:

1. The absence of graph cycles prevents the union (∪) operation on passed worker
sets.

2. Any RewardingAction element can either use the provided input workers, or
completely ignore them, and identify the input workers by itself. For example,
a SimpleRewardingAction does it by initiating the optional filter field.
This limitation allows the worker flow to be changed at arbitrary places in the
composition.

Figure 8.22 shows an example of a CompositeRewardingAction definition. It
also shows an example of worker passing. The initial action A is given the set
(k, l,m,n) as input. The execution of A ends with successful rewarding of workers
(k,m). This intermediate set is immediately added to the resulting output set. The
same intermediate set of workers is passed to actions B and D . Action D ends
with rewarding only one of those workers – (k). k is already part of the output, so
nothing else happens on this execution branch. The action B , on the other hand,
discards the input worker set (k,m), and determines its own input set (p,q). After
execution, B returns just (p), which is also added to the aggregate output set and
passed further as input to C , which also happens to reward p successfully.

Time delay. Each edge can optionally specify a time delay as a non-negative
integer without the unit. If omitted, zero is assumed. The actual unit is determined
transparently to the user as the basic time unit of the abstraction interlayer. PRINGL
forwards the delay value to the action to which the edge points.
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If this action is a SimpleRewardingAction, this equals to adding the specified
time offset to the hidden delay parameter. Later, when executing the action, PRINGL
will add the value of the delay parameter to each PoiT returned by the action’s
exec times T . If the delay is forwarded to a CompositeRewardingAction, then
the delay is forwarded to its initial action.

The execution of a composite action starts by first breaking it into linear execution
paths containing constituent simple actions. For each execution path PRINGL then
takes into account specified delays for each simple action and immediately schedules
it with the abstraction interlayer. However, as in this case we need to pass worker sets
between actions happening at different times PRINGL needs to store the intermediate
results (worker sets) that actions scheduled for a future moment will collect when
executed (memoization). In case more than one action is scheduled for execution at
the same time, the order is unspecified.

Example

The notion of affected workers is important for incentivizing, because the choice of
whether or not to perform a subsequent rewarding action may depend on whether
previous actions were successfully applied. Consider a company that wants to reward
workers either with free days or with a monetary reward. The choice is left to the
worker. Free days are offered first. Only workers that refuse the free days will be
awarded monetary rewards.

We define a new composite rewarding action BonusOrDays (Figure 8.23), which,
for the sake of demonstration, assumes the existence of a RewardAtEndProject
action to award monetary bonuses, as well as a newly defined action FreeDays to
award free days to the workers.

The output of a:FreeDays is the set of workers who accepted the three free
days offered. However, due to a complement edge (�) connecting a and b, the
output set of a is subtracted from the original input set. Therefore, the input of
b:RewardAtEndProject are only those workers who declined to accept free days
as reward, and want to be evaluated at the end of project and paid a bonus according
to their performance.

Incentive Mechanism

IncentiveMechanism is the main structural and functional incentive element.
It uses the previously defined complex types to select, evaluate and reward workers
of the socio-technical platform. As a self-sufficient and independent unit, it does
not have any inputs or outputs. It can be stored and reused through instantiations
with different runtime parameters. A complete incentive scheme can be specified
by putting together multiple incentive mechanisms, prioritizing them, and turning
them on/off when needed. Like other complex types, IncentiveMechanism also
has dedicated GUI elements for definition and instantiation (Fig. 8.24), as well as a
shorthand notation used in this book – IM. Table 11 defines the functionality of IM’s
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BonusOrDays

<<initial>>

a:FreeDays

<<final>>
30

b:RewardAtEndProject

A

AwardFreedays

FreeDays

    filter:       null

    exec_cond:    null

    exec_times:   null

    temp_spec:    null

params:       

+ int  action_logic.amount

    delay:        (auto)

    action_logic: AwardFreeDays

Aw

   

   

  

  

 

 

FreeDays

filter:      null

exec_cond:    null

exec_times:   null

temp_spec:    null

params:       

+ int  action_logic.amount

delay:        (auto)

action_logic: AwardFreeDays

 2

… Collection<Worker> result … 
if (RMod.Notify(_w, MSG_FREEDAYS, amount)) {
     result.Add(_w); //affected workers
}
return result;

… Collection<Worker> result … 
if (RMod.Notify(_w, MSG_FREEDAYS, amount)) {
     result.Add(_w); //affected workers
}
return result;

A
name:  AwardFreeDays
params: Worker _w (auto),

int amount 
output: Collection<Worker>  

params:        
+ int  action_logic.amount  3

Fig. 8.23: A CompositeRewardingAction letting the workers choose one of the
rewards.

fields. We show examples of the usage of IMs and other incentive elements in the
following section.

WorkerFilter

RewardingAction

IncentiveElement

    filter:   WorkerFilter

    exec_cond:   null

    appl_restr:         default

    inc_cond:   null

    rew_action:   RewardingAction

    priority:   0

params:
+ Type1 param1
+ Type2 param2

Fig. 8.24: An example IncentiveMechanism definition
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Field Description

exec cond An optional P element used as execution condition for the entire mechanism. Used to check
global and time constraints. The condition is commonly used to prevent unwanted multiple execu-
tions of the same mechanism. Defaults to true if omitted

appl restr Specifies how often a mechanism can be executed in a given interval. The runtime environment
then alters the exec cond accordingly, transparently to the user. This field can be used to turn
mechanisms on or off to obtain different incentive scheme configurations

filter An optional F specifying the default target Workers for the A specified in field rew action.
If not provided, it defaults to the collection of all the workers in the system. The filter is used to
evaluate workers’ past or current performance

inc cond An optional P used to interpret the workers returned by the filter and decide whether to proceed
with the rewarding. This condition is meant to be used when the evaluated and targeted worker
groups are not the same. In that case, we need to decide whether the results of the evaluation
performed through the filter should cause the invocation of the action(s). Returns true if omitted

rew action A mandatory A assigning the reward or penalty
priority An optional int indicating the priority of the mechanism’s execution. Zero by default

Table 11: Description of IncentiveMechanism fields.

Incentive Schemes (Incentive “Programs”)

The incentive strategy is the whole of the business logic needed for managing
incentives in an organization. The strategy in PRINGL is built bottom-up, by first
defining small, reusable chunks of business logic as different complex types. When
compiled, the new types are stored in the incentive library (Fig. 8.15) with fully
qualified names in hierarchical namespaces. From the library they can be instantiated
with different parameters and reused in definitions of other complex types, including
incentive mechanisms. The mechanisms are combined to obtain an incentive scheme
(Fig 8.25, �) – a set of high-level rules representing the incentive strategy. An
incentive scheme is the equivalent of a visual DSL program. Like any program, it
can be run with different parameters and used on different systems with similar
characteristics.

Figure 8.25 shows how incentive strategies are constructed. First, missing
or specific business logic fragments are defined and compiled into appropriate
IncentiveLogic elements (Figure 8.25, �). In the following steps, after being
visually declared, these and other existing library elements can be instantiated for use
in definitions of SimpleWorkerFilters and SimpleRewardingActions (Fig 8.25,
�). Similarly, filter and rewarding action type definitions are further used for defining
new composite filters and actions (�) and IncentiveMechanisms (�).

Moving up from step � towards � the need to know PRINC/PRINGL internals
decreases and reduces to understanding the meaning of exposed runtime parameters
on a purely visual dashboard. Steps � - � can be skipped altogether if the necessary
type definitions are already available from the library. The goal of PRINGL is exactly
to promote the reuse of well-defined and common business logic related to incentive
management.

Using the graphical elements, the user specifies the necessary runtime parameters
for different instances he uses. The GUI environment collects the parameters from
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all the constituent sub-components and propagates them upwards, possibly until the
top-most component’s graphical form. The user sets through the GUI whether to
propagate a parameter (+/- symbols, Fig 8.25), and therefore delegate the responsi-
bility for filling it out to an upper level, or provide a value at the current level and
hide it from upper layers. If a propagated parameter is supplied with different values
on different levels, then the rule is that the topmost value overrides all the others. For
example, if a parameter is propagated from the L level (�) to the incentive scheme
level (�), then the value defined at level � is used.

This is possible to do for all the elements that are used to perform predetermined
roles (e.g., a rewarding action of an IM, or the auxiliary logic of an F ). In this
case the runtime environment itself creates the instances and can therefore pass the
parameters from the GUI. When the environment does not control the creation of
instances (e.g., when IncentiveLogic elements are declared for arbitrary use from
code) the programmer must set them in the provided code directly.



8.4.3 Execution Model

The execution of a PRINGL program (incentive scheme) is performed in cycles, as
follows.

All IMs are triggered for execution whenever a triggering signal from the ab-
straction interlayer is received. It is the responsibility of the Designer to ensure
through priorities and execution conditions that a specific order of execution of IMs
is achieved. The order of execution of IMs with the same priority is not predeter-
mined. Execution conditions of the IMs with higher priorities are evaluated first.
Only after the higher-priority IMs have executed are the conditions of lower-priority
ones evaluated. This allows the higher-priority mechanisms to preemptively control
the execution of lower-priority ones by changing condition variables through side
effects. The execution time of any single IM is limited by design to a maximum time
T max

IM , which is the time needed to pass the message to the underlying socio-technical
platform. Therefore, a single execution cycle of an incentive scheme of n mechanisms
can last at most T max

sc = n×T max
IM . It is necessary that T max

sc < Ttick, where Ttick is the
basic time of the abstraction interlayer (tick in case of PRINC). The execution of an
IM begins by evaluating exec cond. If true, the associated filter is passed the
collection of all the workers in the system and invoked. The resulting workers are
then passed to the incentive cond to decide whether the execution should proceed
with rewarding. If it returns true, rew action is invoked. If the action does not
override its filter field PRINGL passes the collection of workers returned by the
IM’s filter field.

An F executes by checking for each worker from the input collection whether he
fulfills the provided predicate. This is done for each PoiT returned by time restr
( T ). The results are then interpreted in accordance with the provided temp spec.
For example, if the specifier is Once() then it suffices that the worker fulfilled the
predicate in at least one of the PoiTs in order to be placed in the resulting collection.
In case of composite filters the constituent sub-filters are executed in the defined order.
The initial sub-filter (marked <<initial>>) receives the initial collection of workers
from the environment, which is then passed on to subsequent filters. The resulting
collection of workers from the <<final>> sub-filter is returned as the overall result.
The <<initial>> filter is given different default inputs by the PRINGL environment
depending on where the composite filter is instantiated. The anonymous :Passthru
sub-filter instances are special PRINGL sub-filter types passing the union of workers
from all input edges on all output edges without performing any filtering.

A simple A is executed if the exec cond ( P ) returns true. In this case, the exe-
cution PoiTs for the action are obtained from exec times ( T ) and then interpreted
in accordance with the temp spec. Once the times are determined, the environment
schedules the action in the abstraction interlayer (in our case PRINC’s Timeline) and
provides the actual code that performs the action from the action logic ( A ).
However, during the entire runtime PRINGL keeps track of the scheduled action, in
order to honor temporal specifications and to detect rescheduling due to Interval
redefinitions. The workers to whom the action applies are taken from the associated
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T

ProjectEnd

A

AwardBonus

RewardAtEndProject

    filter:       null

    exec_cond:    null

    exec_times:   ProjectEnd

    temp_spec:    null

params:       
+ string project

+ double action_logic.amount
- string exec_times.projName

    delay:        (auto)

    action_logic: AwardBonus

this.project   

"MyProject"

incentive 
operator

other:OtherType

p1
p2
p3

bonusMech:EndProjectBonus

projectName
metricName

bonusAmount
months

0.1
12   

"effort"
"MyProject"

Priority 0

mech_k0

Priority k

mech_kn

P

T

F

Pred1

TeamAvg

PastProjects BetterThanAvg

time_rest: PastProjects

temp_spec:     SOMETIMES

auxiliary: TeamAvg

predicate: Pred1

params:    
+    int time_rest.months
+ string predicate.metricName

T

PastProjects

P
Pred2

CheckAlreadyRewarded

time_rest: PastProjects

temp_spec: NEVER

auxiliary: null

predicate: Pred2

params:    
+    int time_rest.months
+ string predicate.bonusEvt

P

   return RMod.getWorkerMetric(_w, metricName) > 
          TeamAvg.invokeWith(); //static inv.  

name:   Pred1
params: Worker _w (auto),

int months,
string metricName 

output: bool 

   return RMod.getWorkerMetric(_w, metricName) > 
          _parent.auxiliary;  //indirect inv.

OR

   return RMod.getIterations(months,…)
          .ForEach(x => EndOf(x));

T
name:   PastProjects
params: int months 
output: Collection<PoiT>  

  return (new List<PoiT>()).Add( 
EndOf(RMod.getIteration (projName,…)));

T
name:   ProjectEnd
params: string projName 
output: Collection<PoiT>  

P

 return RMod.getEvent(evtName,_w,_time) != null; 

name:   Pred2
params: Worker _w (auto),

PoiT _time (auto),
string evtName 

output: bool 

… Collection<Worker> result … 
if (RMod.Notify(_w., MSG_BONUS, amount)) 
{
     result.Add(_w); //affected workers
}
return result;

A
name:  AwardBonus
params: Worker _w (auto),

double amount 
output: Collection<Worker>  

  return Collabs.invokeWith().Average();

F
name:   TeamAvg
params: Worker _w (auto) 
output: double  

  return neighborsOf(_w, "collab", 1);

F
name:   Collabs
params: Worker _w (auto) 
output: Collection<Worker> 

1

2

3

4

5

incentive 
designer Incentive Logic

Filters & Actions

Composite Filters & Actions

Inc. Mechanisms

Inc. Scheme

MyExampleFilter

RewardAtEndProject

EndProjectBonus

    filter:   MyExampleFilter

    exec_cond:   null

    appl_restr:         default

    inc_cond:   null

    rew_action:   RewardAtEndProject

    priority:   0

this.projectName   
this.bonusAmount   

this.metricName   
this.months   

params:
+ string projectName
+ string metricName
+ double bonusAmount
+    int months
       
-    int filter.bta.time_rest.months
- string filter.bta.predicate.metricName
- string rew_action.project
- double rew_action.action_logic.amount

LEGEND:

+ -
italic

itblue

n

C#

- Declaration/Instantiation

- Definition simple/composite

- Instantiation

- Priority setting

- Composition

- Parameter propagation

- PRINGL-imposed

- PRINGL-provided

- Parameter input box

- Abstraction level

- Programming code

- User(s)

- Parameter propagation

bta:BetterThanAvg

<<initial>>

MyExampleFilter

car:CheckAlreadyRewarded

<<final>>

this.bta.time_rest.months   
"EVT_BONUS"

params:        
+    int bta.time_rest.months
+ string bta.predicate.metricName
-    int car.time_rest.mths
- string car.predicate.bonusEvt

Fig. 8.25: Incentive scheme from Example 8.4.4.3, illustrating the decrease in com-
plexity going from modeling of (low-level) incentive elements by incentive designers
to adjusting existing incentive schemes by incentive operators
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filter. As explained, if the local filter is omitted, PRINGL defaults to the workers
from the parent IM ’s filter.

The execution of a composite action starts by first breaking it into linear execution
paths containing constituent simple actions. For each execution path PRINGL takes
into account specified delays and adjusts the T elements in constituent actions
to account for provided delays, which are then (re-)scheduled with the abstraction
interlayer. However, as in this case we need to pass worker sets between actions
happening at different times PRINGL stores the intermediate results (worker sets) that
actions scheduled for a future moment will collect when executed (memoization). In
case more than one action is scheduled for execution at the same time, the order is
unspecified.

Executing incentive logic elements L results in invoking the instance similarly
to a conventional function. The environment passes both the auto parameters and any
user-defined ones. If user-defined parameters are omitted when an L is invoked
from the code by indirect invocation the parameters are obtained from the visually
exposed parameter fields. However, when supplied, the arguments provided in the
code override those provided in the fields. If the parameter value cannot be resolved
in either way, the invocation fails.

Parameters are collected and propagated automatically from instances created
to fulfill complex type field roles. In that case the runtime environment controls
the instantiation and therefore knows to which instances to pass the parameters
from the GUI. When the environment does not control the creation of instances
(e.g., when IncentiveLogic elements are declared for arbitrary use from code) the
programmer must set them in the provided code directly.

Overall, PRINGL’s execution is “best effort”. This means that PRINGL expects the
interlayer to pass to the underlying socio-technical system the rewarding actions to
be taken, but will not expect them necessarily to be observed. Acknowledgments
are used to keep track of successfully applied rewarding actions. If any error is
encountered during the execution, the currently invoking incentive mechanism fails
gracefully, but the execution of other mechanisms continues. The incentive scheme’s
execution needs to be stopped explicitly.

8.4.4 Evaluation

A domain-specific language (DSL) can be evaluated both quantitatively and qualita-
tively. Quantitative analysis of the language is usually performed once the language
is considered mature [113], since this type of evaluation includes measuring charac-
teristics such as productivity and subjective satisfaction, which require an established
community of regular users [160]. We therefore evaluate PRINGL qualitatively, which,
in general, can include comparative case studies, analysis of language characteristics
and monitoring/interviewing users. Analysis of language characteristics was chosen
as the preferred method in our case, since it was possible to perform it on the basis
of the findings gathered through analysis of numerous existing incentive models
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and presented in Section 8.2.4. Due to difficulties in engaging a relevant number of
domain experts willing to take part in monitoring we were unable to perform this
type of user-based evaluation at this point. Comparative analysis was not applicable
in this case, due to nonexistence of similar languages. The evaluation is performed
with respect to the language requirements elicited in Section 8.4.1.1. We constructed
an example suite covering realistic incentive elements identified in Chapter 8.2.4. By
implementing and analyzing different incentive use cases from the suite we showcase
the usage of PRINGL and argue for the coverage of the requirements. Concretely, the
requirements are evaluated as follows:

• The diversity of examples in the suite and the fact that they were obtained from
the broad survey of realistic incentive practices testify to PRINGL’s groundedness
and expressiveness.

• Through elaborate discussion of particular implementation details of different
suite examples we demonstrate PRINGL’s reusability and portability.

• While lacking the necessary conditions and metrics to conclusively show the
usability of the language, the implemented set of examples allows us to conclu-
sively argue for certain aspects of usability, such as “usefulness” and “portability”
(as defined in [160]).

Table 12)17 shows the coverage of the chosen examples with respect to introduced
incentive categories and their constituent parts. Some examples are presented partially
to illustrate/highlight the claimed capabilities that the particular example is supposed
to cover.

8.4.4.1 Example – Employee Referral

A company introduces an employee referral process18 in which an existing employee
can recommend new candidates and get rewarded if the new employee spends a year
in the company having exhibited satisfactory performance.

Solution: In order to pay the referral bonuses (deferred compensation) the com-
pany needs to: a) identify the newly employed workers; and b) assess their sub-
sequent performance. Let us assume that the company already has the business
logic for assessing the workers implemented, and that this logic is available as the
library filter GoodWorkers. In this case, we need to define one additional simple
filter NewlyEmployed, and combine it with the existing GoodWorkers filter. In Fig-
ure 8.26 we show how the new composite ReferralFilter is constructed. The
F instance n:NewlyEmployed makes use of: a) T PastMonths returning PoiTs
representing end-of-month time points for the given number of months (12 in this par-
ticular case); and b) predicate P Pred2 checking whether the employee got hired

17 Note that the Indirect and Subjective evaluation methods have been omitted from Table 12. The
former, because it implies use of sophisticated evaluation algorithms, but implementation-wise
would not differ from the Quantitative evaluation. The latter, because is not easy to uniformly model
in software, as it implies subjective human opinions that are unknown at design time.
18 http://en.wikipedia.org/wiki/Employee_referral

http://en.wikipedia.org/wiki/Employee_referral


222 8 Incentive Management

Ex.8.4.4.1 Ex.8.4.4.2 Ex.8.4.4.3 Ex.8.4.4.4 Ex.8.4.4.5

Incentive Category
PPP �
Quota/Discretionary �
Deferred Compensation �
Relative Evaluation �
Promotion �
Team-Based

Compensation
�

Psychological � �
Rewarding Action

Quantitative � �
Structural �
Psychological � �

Evaluation Method
Quantitative � � �
Peer Voting �

Table 12: Coverage of incentive categories, rewarding actions and evaluation methods
by the provided examples

12 months ago. Pred2’s general functionality is to check whether the abstraction
interlayer (RMod) registered an event of the given name at the specified time.

Discussion: The shown implementation fragment illustrates how easy it is to
expand on top of the existing functionality. Under the assumption that there exists
a metric for assessing the workers’ performance, and that it can be queried for past
values (cf. PRINC’s Timeline), introducing the employee referral mechanism is a
matter of adding a handful of new incentive elements.

ReferralFilter

n:NewlyEmployed

g:GoodWorkers

<<initial>>

<<final>>

  // return k (k=months) PoiTs 
representing last days of k past months. 

T
name:   PastMonths
params: int months 
output: Collection<PoiT>  P

 return RMod.getEvent(evtName,_w,_time) != null; 

name:   Pred2
params: Worker _w (auto),

PoiT _time (auto),
string evtName 

output: bool 

P

T

Pred2

PastMonths

NewlyEmployed

time_rest: PastMonths

temp_spec:     FIRST

auxiliary: null

predicate: Pred2

params:    
-    int time_rest.months
-    string predicate.evtName

 12
 "EMPLD"

Fig. 8.26: A CompositeWorkerFilter for referral bonuses
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8.4.4.2 Example – Peer Voting

Equally reward each team member if both of the following conditions hold: a) each
team member’s current effort metric is over a specified threshold; and b) the average
vote of the team manager, obtained through anonymous voting of his subordinates, is
higher than 0.5 [0–1].

Solution: As shown in Fig. 8.27 we compose an incentive scheme consisting
of two IMs – i1:PeerAssessIM, in charge of peer voting; and i2:RewardTeamIM
in charge of performing team-based compensation. IM i1 will execute first due
to its higher priority, and set the global variable done, through which the execu-
tion of i2 can be controlled ( P PeerVoteDone). IM PeerAssessIM uses the
F TeamMembers to exclude the manager from the rest of the team members. The
filter TeamMembers is a composite filter composed of two subfilters F GetManager
and F GetTeam, borrowed from Ex.8.4.4.5, Fig. 8.30. The resulting workers are
passed to A DoPeerVote, which performs the actual functionality of peer vot-
ing. The referenced rewarding action is simple; it just passes to A PeerVote the
workers who need to participate. The A PeerVote is performed by dispatching
messages to the workers and receiving and aggregating their feedback through the
abstraction interlayer. Once the peer voting has been performed, the manager’s as-
sessment is stored in global.mark, and the flag global.done is set to allow
execution of IM i2. Once set to execute, the IM i2 first reads all the team members
via F GetTeam. Whether they ultimately receive the reward depends on the evalua-
tion of the inc cond field. The field contains a conjunction of two indirectly invoked
P elements (Sec. 8.4.2.4). The condition expresses the two constraints from the in-

centive formulated in natural language. If it resolves to “true,” the A DoRewardTeam
applies a predefined monetary reward, sharing it equally among all team members
(via A RewardTeam).

Discussion: The key question here is how to support incentives requiring direct
human feedback, such as peer voting. Such interactions require support from the
abstraction interlayer. To support this functionality, the abstraction interlayer can
either rely on the functionality offered by the underlying platform, or provide this
functionality independently to safeguard voting privacy and incite expression of
honest opinions. In earlier chapters we presented SMARTCOM – a framework for
virtualization and communication with human agents. In this example we model
the latter variant in PRINGL, assuming the use of PRINC with SMARTCOM for
interaction with workers.
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8.4.4.3 Example – Bonus

Award a 10% bonus to each worker W who sometimes in the past 12 months had
a higher value of metric “effort” than the average of workers related to W via a
relationship of type “collab’, and who was not rewarded in the meantime.

Solution: Figure 8.25 shows the bottom-up implementation of this incentive
(�-�). First, at level � we define novel or context-specific business logic fragments
as IncentiveLogic L elements. This level relies on the abstraction interlayer
to read the updated worker metrics, obtain data about recorded events and send
system messages. At � we define new F and A types. Similarly, F and A def-
initions are further used for defining new composite filters and actions (�) and
IncentiveMechanisms (�). By setting the parameter fields the designer specifies
the necessary runtime parameters for different instances. Apart from constants, a
field can contain references to other fields “visible” from that element. The environ-
ment collects the field values (parameters) from all the constituent sub-components
and propagates them upwards, possibly until the topmost component’s GUI form.
Through the +/- symbols the designer controls whether to propagate a parameter
and, thus, delegate the responsibility for filling it out to the higher level, or provide
a value at the current level and hide it from higher levels. Parameter propagation
is one of PRINGL’s usability features. In Fig. 8.25 we show an example of parame-
ter propagation (marked in orange). Element T PastProjects (�) exposes the
parameter months. The same parameter is then re-exposed by F BetterThanAvg
(�), which uses PastProjects as its time restriction. The parameter is further
propagated up through F MyExampleFilter until it finally gets assigned the value
in IM EndProjectBonus (�).

Discussion: This incentive mechanism was chosen to highlight a number of
important concepts. Every underlined term in the natural language formulation of
this incentive mechanism is a specific value of a different parameter that can be
changed at will. In PRINGL terms, this means that the incentive operator can easily
switch between different (library) incentive elements of the same type/signature and
tweak the parameters to obtain different incentive mechanism instances. In this way,
incentive designers or operators can adapt generic mechanisms to fit their needs.
If we analyze the generic version of this incentive mechanism, we can see that it
embodies the principles of pay-per-performance incentives based on the value of a
quantifiable metric, but coupled with an additional condition that is evaluated relative
to co-workers. In addition, the mechanism contains two temporal clauses (“in past 12
months” and “in the meantime”), making it also a representative of the quota system
type of incentive.

The example also demonstrates reusability – the L PastProjects is reused
twice in two different F s. Also, steps �–� can be skipped altogether if the necessary
type definitions are already available from the incentive library. As we can see, at
levels �–� only visual programming is required. This means that there is no need to
know any interlayer internals, apart from understanding the meaning of propagated
parameters. So, if different platforms offer standardized implementations of the
commonly used incentive logic, the incentive elements become completely portable.
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8.4.4.4 Example – Rankings

Let us assume that the imaginary platform from Example 8.4.4.3 wants to extend the
existing incentive scheme with an additional incentive mechanism in an (admittedly
over-simplified) attempt to raise the competitiveness of underperforming workers:

Show the list of the rewarded employees and their performance (rankings) to those
workers that did not get the reward through application of IM EndProjectBonus
in Ex. 8.4.4.3 (Fig. 8.25).

Solution: Figure 8.28 shows the additional elements needed to support the
new mechanism. The composite F NonRewardedOnes reuses the existing F
MyExampleFilter from Ex. 8.4.4.3 as initial subfilter, and returns the set comple-
ment, i.e., the non-rewarded workers to whom the rankings need to be shown. In order
to display the rankings, we copy and paste the existing A RewardAtEndProject
from Ex. 8.4.4.3 and change only the value of the field action logic to point to
the the newly defined A ShowRankings, also shown in Fig. 8.28. Let us name
the newly obtained A RankingsAtEndProject. In the same fashion, we copy
and paste the existing IM EndProjectBonus from Ex. 8.4.4.3, make its filter
and rew action fields point to the newly defined F NonRewardedOnes and A
RankingsAtEndProject, respectively. The obtained IM performs the required func-
tionality.

Discussion: This example shows a common, realistic scenario, where additional
incentive mechanisms need to be added to complement the existing ones. In this
case, the added mechanism acts on the underpeforming workers psychologically by
showing them how they fare in comparison to the rewarded workers. Such mech-
anisms can be used to motivate better-performing underperformers, while having
a de-motivating effect on the worst performing ones. As we have shown, such a
mechanism can be easily and quickly constructed in PRINGL with minimal effort.

8.4.4.5 Example – Rotating Presidency

Teams of crowd workers perform work in iterations. In each iteration one of the
workers acts as the manager of the whole team. This scheme motivates the best
workers competitively by offering them a more prestigious position in the hierarchy.
However, in order to keep team connectedness in the longer run and foster equality
and fresh leadership ideas, a single person is prevented from staying too long in
the managerial position. Therefore, in the upcoming iteration the team becomes
managed by the currently best-performing team member, unless that team member
was already presiding over the team in the past k iterations.19

Solution: For demonstration purposes, we are going to fully model the type
definitions necessary for implementing the rotating presidency incentive scheme.
However, in practice it is reasonable to expect that a significant number of commonly

19 An iteration can represent a project phase, a workflow activity or a time period.
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 foreach (Worker w in _ws) {
   w.send(ShowRankings(_parent._parent.filter.bto));   
 }
 return _ws;

A
name:  ShowRankings
params: Collection<Worker> _ws (auto)

output: Collection<Worker>  

T

ProjectEnd

A

ShowRankings

RankingsAtEndProject

    filter:       null

    exec_cond:    null

    exec_times:   ProjectEnd

    temp_spec:    null

params:       
+ string project

+ double action_logic.amount
- string exec_times.projName

    delay:        (auto)

    action_logic: ShowRankings

this.project   

"MyProject"

bto:MyExampleFilter

<<initial>>

NonRewardedOnes

:PassThru

<<final>>

params:        
+    int bto.time_rest.months
+ string bto.predicate.metricName

    filter:   NonRewardedOnes

    exec_cond:   null

    appl_restr:         default

    inc_cond:   null

    rew_action:   RankingsAtEndProject

    priority:   0

this.metricName   
this.months   

params:
+ string metricName
+    int months
       
-    int filter.bto.time_rest.months
- string filter.bto.predicate.metricName

RankingsAtEndProject

NonRewardedOnes
EndProjectRankings

Fig. 8.28: Additional incentives elements needed to augment the incentive scheme
from Example 8.4.4.3 (Fig. 8.25) in order to display motivational rankings to the
non-rewarded workers from Example 8.4.4.3

RewSecondBest

    exec_cond:    null

    exec_times:   null

    temp_spec:    null

params:       

+ int teamID
- int filter.teamID
- int action_logic.teamID

    delay:        (auto)

    action_logic: SetManager

SecondBestTeamWrk

teamID
teamID

SetManager

A

    filter:       SecondBestTeamWrk

RewBest

    filter:       BestTeamWrk

    exec_cond:    null

    exec_times:   null

    temp_spec:    null

params:       

+ int teamID
- int filter.teamID
- int action_logic.teamID

    delay:        (auto)

    action_logic: SetManager

A

SetManager

BestTeamWrk

teamID
teamID

Priority 0

RotatingPresidency

i2:PreventTooLong

filter.teamID
inc_cond.iters _global.iters

_global.teamID

i1:RewardBest

_global.teamIDfilter.teamID
inc_cond.iters _global.iters

global:
int  teamID      4572
int  iters          2

Candidates

RewSecondBest

PreventTooLong

    filter:   Candidates

    exec_cond:   null

    appl_restr:         default

    inc_cond:   !NotSame && WasTooLong

    rew_action:   RewSecondBest

    priority:   0

params:
+ int filter.teamID
- int rew_action.teamID 
- int inc_cond["WasTooLong"].iters
+ int iters

P

NotSame

filter.teamID

P
WasTooLong

iters

Candidates

RewBest

RewardBest

    filter:   Candidates

    exec_cond:   null

    appl_restr:         default

    inc_cond:   NotSame

    rew_action:   RewBest

    priority:   0

params:
+ int filter.teamID
- int rew_action.teamID 
+ int inc_cond.iters

P

NotSame

filter.teamID

Fig. 8.29: Modeling the rotating presidency incentive scheme in PRINGL. Segment
showing the incentive scheme (top right), rewarding actions (top center and left), and
incentive mechanisms (bottom)

used type definitions would be available from a library, cutting down the incentive
modeling time.

Contrary to Example 8.4.4.3, this time we adopt a top-down approach in mod-
eling. In order to express the high-level functionality of the rotating presidency
scheme the Designer uses PRINGL’s visual syntax to define an incentive scheme
named RotatingPresidency (Fig 8.29, top right) containing (referencing) two
IM instances – i1 and i2, with the same priority (0). The RotatingPresidency
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scheme definition also contains a set of global parameters that are used for configur-
ing the execution of the scheme: teamID uniquely defines the team to which we want
to apply the scheme, while iters specifies the maximum number of consecutive
iterations a team member is allowed to spend as a manager. By choosing different
parameter values an incentive operator (Operator) can later adjust the scheme for use
in an array of similar situations in different organizations.

The two incentive mechanisms that the scheme references; i1 and i2, are in-
stances of the IM types RewardBest and PreventTooLong, respectively (Fig 8.29,
bottom). The IM RewardBest installs the best worker as the new manager if (s)he is
not the manager already. The IM PreventTooLong will replace the current manager
if the worker stayed too long in the position, even if the manager was again the
best performing team member. “Installing” or “replacing” a manager is actually
performed by re-chaining of management relations in the structural model of the
team by applying appropriate graph transformations [82] through the abstraction
interlayer.

When the incentive condition (inc cond field) of IM PreventTooLong evalu-
ates to true, this means that the current manager has occupied the position for too
long, and should now be replaced by the second-best worker. PRINGL does this by
invoking the specified A RewSecondBest and passing it the collection of workers
returned by the F Candidates. The F Candidates returns potential candidates
for the manager position – the best-performing Worker and the current manager. The
same filter is referenced from both IMs. However, the IM PreventTooLong invokes
F Candidates through a complex incentive condition field, referring to two P ele-
ments, which both need to be visually declared. PRINGL allows this as a shorthand no-
tation instead of forcing the user to create a container P element to perform the same
logical function. In this case, the exposed parameters cannot be simply referenced by
using the field name, but rather the parameters are accessed through an associative
array (C# Dictionary) bearing the same name as the field, while the names of the
used P elements serve as key names. For example, to access the P WasTooLong’s
parameter iters from IM PreventTooLong where P WasTooLong is used in the
inc cond field, we must write: inc cond["WasTooLong"].iters As it can be
visually tiring to read the lengthy fully qualified names of propagated parameters,
we often stop propagating such parameters and propagate a new, local one with the
same name, whose value we then copy to the long-named parameter (e.g., just iters
instead of inc cond["WasTooLong"].iters).

Both IMs get executed always as the nullified exec cond fields default to
true. However, IM PreventTooLong’s incentive condition (inc cond field) con-
tains: !NotSame && WasTooLong. It ensures that the A RewSecondBest of IM
PreventTooLong will never get executed at the same time as the A RewBest of
the IM RewardBest.

Two rewarding actions are instantiated and invoked from the IMs. The A RewBest
monitors the “effort” metric and rewards the best worker in the current iteration.
The A RewSecondBest replaces the current team manager with the second-best
performing worker when needed. The IM inc cond fields make sure that the two
actions do not get executed in the same iteration. The fact that a rewarding action
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instantiates its own filter means that it discards the workers passed to it by the
PRINGL environment from the encompassing IM’s filter field and rewards those
returned by the local filter.

In both actions most fields are nullified, meaning that the PRINGL execution
environment will assume the default field value. This means that the action logic
A SetManager will be unconditionally scheduled for execution.

We now show how the previously referenced filters are defined. We will first
describe the definitions of the three simple filters (Fig 8.30, right) and then use them
to visually assemble the definitions for another four composite filters (Fig 8.30, left).

• GetTeam: Returns all the workers belonging to the team with the specified
teamID. The filtering is performed by running each of the workers from the
input set against the predicate P IsTeamMember and including the worker
in the output if he fulfills the predicate.

• GetBest: Returns the worker who has achieved the highest value of the ‘effort’
metric by invoking the F GetWrkBestMetric and then just formally matching
him with the IsBest predicate. In this example we use the ‘effort’ metric [144],
but any other compatible performance metric could have been used and exposed
as a global parameter. This filter does not care to which team the evaluated
worker belongs – if used independently, it evaluates all the workers in the system.
This is why we always use it in composite filters, where we initially restrict its
input set with another filter.
In our example this filter encapsulates and hides the metric it uses for evaluating
the workers. In principle, it makes sense to propagate the metric name upwards
and thus make it user-settable, consequently making the whole scheme more
general. However, for readability purposes we decided not to propagate this
parameter in this example.

• GetManager: Invokes an F GetMgrByRelations that performs a graph query
[82] on the team model through the abstraction interlayer to determine the
manager within the provided input set of workers.

Candidates

:Passthru
<<initial>>

<<final>>
:Passthru

b:BestTeamWrk

a:CurrentMgr

params:        
- int  a.teamID
- int  b.teamID
+ int  teamID

teamID
teamID

 

a:BestTeamWrk

b:GetBest

<<initial>>

<<final>>

SecondBestTeamWrk

params:        
- int  a.teamID
- int  b.teamID
+ int  teamID

teamID
teamID

BestTeamWrk

a:GetTeam

b:GetBest

<<initial>>

<<final>>

params:        
- int  a.teamID
- int  b.teamID
+ int  teamID

teamID
teamID

CurrentMgr

a:GetTeam

b:GetManager

<<initial>>

<<final>>

params:        
- int  a.teamID
- int  b.teamID
+ int  teamID

teamID
teamID

GetTeam

time_rest: null

temp_spec:       default

auxiliary: null

predicate: IsTeamMember

params:    
+    int teamID
-    int predicate.teamID teamID

IsTeamMember
P

P

IsBest

GetBest

time_rest: null

temp_spec:       default

auxiliary: GetWrkBestMetric

predicate: IsBest

params:    
- string 
auxiliary.metricName "effort"

GetWrkBestMetric

F

GetManager

time_rest: null

temp_spec:      default

auxiliary: GetMgrByRelations

predicate: IsManager

params:    
- int auxiliary.teamID
+ int teamID
- int mgrID

teamID

0

GetMgrByRelations

F

IsManager

P

Fig. 8.30: Modeling the rotating presidency example: Segments show simple filters
(right) and composite ones (left)
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Composite filter type definitions are constructed visually. The following composite
filters are defined:

• CurrentMgr: Returns the current manager of the team. The F a:GetTeam
returns all the workers belonging to the team with the teamID, while the F
b:GetManager uses managerial relationships to determine the manager among
those workers.20

• BestTeamWrk: Returns the best individual from a previously identified collection
of team members. The F b:GetBest determines what “best worker” means in
this case.

• SecondBestTeamWrk: As the name suggests, returns the second-best worker
in the team. The subfilter a returns the best worker of the team and passes it
forward to the subfilter b via a negated edge (�). This means that b now receives
as input: input(a) \ a, i.e., in this particular case the collection of all workers
belonging to the team minus the best worker. Subfilter b returns the best worker
from this collection, and thus effectively the second-best worker of the team.

• Candidates: This filter simply uses the previously defined filters CurrentMgr
and BestTeamWrk and returns the set union of their results.

20 While managerial relations in principle need not be stored as a graph, and can thus be identified
much more easily, we still use the graph managerial relations as an easily understandable example
of how any graph-encoded structural property can be used in incentive management.



8.4 PRINGL – A Programming Framework for Incentive Management 231

P

  
st

at
ic

 D
ic
ti

on
ar
y<

Wo
rk
er

, 
in

t>
 l

ea
de

rH
is

to
ry

;
..

. 
 

  
if

 (
_w

s.
Co

un
t(

) 
==

 2
) 

{
if

 (
le

ad
er

Hi
st
or

y.
Co

nt
ai

ns
Ke
y(

_w
s.

Fi
rs
t(

))
){

  
le

ad
er

Hi
st
or

y.
Cl

ea
r(

);
  

le
ad
er

Hi
st
or

y[
_w

s.
La

st
()

] 
= 

1;
  

}e
ls

e{
  

le
ad
er

Hi
st
or

y.
Cl

ea
r(

);
  

le
ad
er

Hi
st
or

y[
_w

s.
Fi

rs
t(

)]
 =

 1
;

} 
 

}e
ls

e 
  

//
cu

rr
en

t 
ma
na

ge
r 
wa

s 
al
so

 t
he
 b

es
t

if
 (

le
ad
er

Hi
st
or

y[
_w

s.
Fi

rs
t(

)]
) 

< 
it

er
s)

 {
  

le
ad
er

Hi
st
or

y[
_w

s.
Fi

rs
t(

)]
++

;
  

re
tu
rn

 f
al
se

;
}

re
tu
rn

 t
ru
e;na

me
: 

  
Wa

sT
oo

Lo
ng

pa
ra
ms

: 
Co

ll
ec

ti
on

<W
or

ke
r>
 _

ws
 (

au
to

)
in

t 
it

er
s

ou
tp
ut

: 
bo

ol
 

S

//
 N
on

-c
om

pi
le
d 

Gr
Ge
n.

NE
T 
ru

le
:

ru
le
 S

ET
_M

AN
AG

ER
(v

ar
 t

ea
mI

D:
in

t,
 v

ar
 n

ew
Mg

rI
D:

in
t)

{
  

ne
wM
gr

:W
or

ke
r;

  
if

 {
ne

wM
gr

.m
ar

ke
d 

==
 t
ea

mI
D 

&&
 n
ew

Mg
r.

id
 =
= 

ne
wM
gr

ID
;}

  
no

tN
ew

Mg
r:

Wo
rk
er

;
  

if
 {

no
tN
ew

Mg
r.

ma
rk
ed

 =
= 

te
am
ID

 &
& 

  
  
  

no
tN
ew

Mg
r.
id

 !
= 

ne
wM
gr

ID
;}

<-
ol

dR
el

at
io
n:

Ma
na
ge

dB
y-

> 
no

tN
ew

Mg
r;

  
ne

ga
ti

ve
 {

no
tN
ew

Mg
r-

:M
an

ag
ed
By

->
ne

wM
gr

;}

  
mo

di
fy

 {
 n

ot
Ne

wM
gr

 -
:M

an
ag

ed
By

->
 n

ew
Mg

r;
de

le
te

(o
ld

Re
la
ti

on
);

  
}

}

na
me

: 
  

SE
T_

MA
NA
GE

R
pa

ra
ms

: 
in

t 
te

am
ID
,

  
  
  

  
in

t 
ne

wM
gr
ID

ou
tp
ut

: 
vo

id
 

sm

P

  
va

r 
te

am
s 

= 
(D
IC

T)
_w

.G
et

Da
ta

("
te

am
s"

, 
CO

MP
OS

IT
E)
;

  
re

tu
rn

 t
ea
ms

.C
on

ta
in
sK

ey
(t

ea
mI

D.
To

St
ri

ng
()

);

na
me

: 
  

Is
Te
am

Me
mb
er

pa
ra
ms

: 
Wo

rk
er

 _
w 

(a
ut

o)
in

t 
te

am
ID

ou
tp
ut

: 
bo

ol
 

A

Co
ll
ec

ti
on
<W
or

ke
r>
 a

ff
ec

te
d 

= 
sm

(t
ea

mI
D,
_w

s.
Fi

rs
t(

).
ID

);
re

tu
rn

 a
ff
ec

te
d;

na
me

: 
  

Se
tM
an

ag
er

pa
ra
ms

: 
Co

ll
ec

ti
on

<W
or

ke
r>
 _

ws
 (

au
to

)
in

t 
te

am
ID

ou
tp
ut

: 
Co

ll
ec

ti
on

<W
or

ke
r>
 

gm

P

  
re

tu
rn

 (
(i

nt
)_

pa
re
nt

.g
et

Pa
ra
m(

"m
gr

ID
")

 =
= 

_w
.I

D)
;

na
me

: 
  

Is
Ma
na

ge
r

pa
ra
ms

: 
Wo

rk
er

 _
w 

(a
ut

o)
in

t 
te

am
ID

ou
tp
ut

: 
bo

ol
 

  
if

 (
(i

nt
)_

pa
re
nt

.g
et

Pa
ra
m(

"m
gr

ID
")

 !
= 

0)
 r

et
ur

n;
 

 f
or

ea
ch
 (

Wo
rk
er

 w
 i
n 

_w
s)

 {
w.

ma
rk

(t
ea

mI
D)

;}
 

 _
pa

re
nt

.s
et

Pa
ra
m(

"m
gr

ID
",

 g
m(

te
am
ID

))
;

F
na

me
: 

  
Ge

tM
gr

By
Re
la

ti
on
s

pa
ra
ms

: 
Co

ll
ec

ti
on

<W
or

ke
r>
 _

ws
 (

au
to

)
in

t 
te

am
ID

ou
tp
ut

: 
vo

id
  

P

  
re

tu
rn

 (
_w

 =
= 

Ge
tW
rk

Be
st
Me

tr
ic

.t
he

Be
st

);

na
me

: 
  

Is
Be
st

pa
ra
ms

: 
Wo

rk
er

 _
w 

(a
ut

o)
ou

tp
ut

: 
bo

ol
 

S

//
 N
on

-c
om

pi
le
d 

Gr
Ge
n.

NE
T 
ru

le
:

ru
le
 M

AN
AG
ER

(v
ar

 t
ea
mI

D:
in

t)
:(

No
de

){
ma

na
ge

r:
Wo

rk
er

;
if

 {
 m

an
ag

er
.m

ar
ke

d=
=t

ea
mI

D;
 }

wo
rk
er

:W
or

ke
r;

if
 {
 w

or
ke

r.
ma

rk
ed

==
te

am
ID

; 
}

wo
rk
er

 -
:M

an
ag

ed
By

->
 m

an
ag

er
;

ne
ga
ti

ve
 { ot
he
rM

an
ag
er

:W
or

ke
r;

if
 {
 o

th
er

Ma
na

ge
r.

ma
rk
ed

==
te

am
ID

;}
ma

na
ge

r 
-:

Ma
na
ge

dB
y-

> 
ot

he
rM

an
ag
er

; 
} mo

di
fy

 {
re

tu
rn

 (
ma

na
ge

r.
id

);
}

}

na
me

: 
  

GE
T_

MA
NA
GE

R
pa

ra
ms

: 
in

t 
te

am
ID

ou
tp
ut

: 
in

t 

F
na

me
: 

  
Ge

tW
rk

Be
st
Me

tr
ic

pa
ra
ms

: 
Co

ll
ec

ti
on

<W
or

ke
r>
 _

ws
 (

au
to

)
st

ri
ng

 m
et
ri

cN
am
e

ou
tp
ut

: 
vo

id
 

 s
ta

ti
c 
Wo

rk
er
 t

he
Be
st

;
 .

..
 d

ou
bl

e 
be

st
Re
su

lt
 =
 

 _
ws

.M
ax

(x
 =

> 
(d

ou
bl

e)
x.

Ge
tD
at

a(
me

tr
ic

Na
me

, 
DO

UB
LE

))
;

 t
he

Be
st
 =

 _
ws

.F
ir

st
 (

x 
=>

 (
do

ub
le

)x
.G

et
Da

ta
(m

et
ri

cN
am

e,
 

DO
UB
LE

) 
==
 b

es
tR

es
ul

t)
;

  
if

 (
_w

s.
Co

un
t(

) 
> 

1)
 

re
tu
rn

 t
ru
e;

 
  

el
se

re
tu
rn

 f
al
se

;

 
if

 (
_w

s.
Co

un
t(

)
>

1)
re

tu
rn

 t
ru
e;

 
 

el
se

re
tu
rn

 f
al
se

;

P
na

me
: 

 
No

tS
am

e
pa

ra
ms

:
Co

ll
ec

ti
on

<W
or

ke
r>
 _

ws
 (

au
to

)
ou

tp
ut

: 
bo

ol
  

Fi
g.

8.
31

:M
od

el
in

g
th

e
ro

ta
tin

g
pr

es
id

en
cy

ex
am

pl
e.

Se
gm

en
ts

ho
w

in
g

th
e

in
ce

nt
iv

e
lo

gi
c

el
em

en
ts



232 8 Incentive Management

The incentive logic elements, shown in Figure 8.31, contain the low-level business
logic and code21 that communicates with the abstraction interlayer. The Designer
takes implements the incentive logic elements as small code snippets with intuitive
and reusable functionality. A short description of the functionality of the employed
elements is provided in Table 13.

Element Symbol Description

IsTeamMember P Determines whether a given worker belongs to a given team
IsManager P Checks whether the currently evaluated worker has the ID

previously determined to belong to the team manager by F
GetMgrByRelations

IsBest P Checks whether the currently evaluated worker is the same
as the one identified by the GetWrkBestMetric

NotSame P Determines whether the input contains two manager candi-
dates

WasTooLong P Keeps track of how many times a worker was in the manager
position, and returns true if the worker is not supposed to
become manager in the upcoming iteration

GetWrkBestMetric F Reads the value of the effort metric for each of the passed
workers in ws and updates the best worker

GetMgrByRelations F Invokes the read-only structural query S GET MANAGER
SetManager A Invokes the modifying structural query S SET MANAGER
GET MANAGER S Contains a compiled non-modifying GrGen.NET graph

query, here expressed in the GrGen rule language. The
rule only considers the nodes marked by the teamID tag
(see GetMgrByRelations). The rule matches and returns
a node that other nodes point to via ManagedBy-typed rela-
tions, but itself is not managed by another team member

SET MANAGER S Contains a compiled modifying GrGen.NET graph query
matching the old and the new manager, and re-chaining the
ManagedBy relations to point to the new manager node

Table 13: Incentive logic elements used in the rotating presidency example

Discussion: This example combines the promotion and psychological incentives.
Promotion is performed through a structural rewarding action, and is designed to
foster competitiveness and self-esteem. At the same time, team spirit and a good
working environment are being promoted by limiting the number of consecutive
terms, thus giving a chance to other team members. This example shows a fully
implemented and executable incentive scheme. Although the model may seem com-
plex at the first glance, it is worth noting that the type definitions of the two actions
(Fig 8.29, top) are almost identical, differing only in the filter they use – with the
first using the F BestTeamWrk and the second the F SecondBestTeamWrk. This

21 Here we use C# in all but S elements, which are shown in the original GrGen.NET rule
language: http://www.info.uni-karlsruhe.de/software/grgen/

http://www.info.uni-karlsruhe.de/software/grgen/
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means that once the Designer has modeled one of them, the other one can be created
by copying and pasting and referencing a different filter. Similarly, if at a later time
the underlying platform decided to use a different A to reward the best workers
(e.g., to pay out money instead of rotating team managers) the Designer would only
need to partially adapt the scheme by referencing a different A from the A ’s
action logic fields. Such adaptations can also be performed by incentive operators
with minimal understanding of the underlying code.

Filters such as GetTeam, GetBest and GetManager perform very common in-
centive functionality. In practice, this means that such components may be readily
available as library elements. Of course, if we need to use a company-specific flavor,
we can easily replace the default one with a proprietary element. For example, an
F GetManager may be available with a default auxiliary field F that looks
for a manager in the team model by inspecting the node tags for a given manager
tag. In that case, to adapt such a filter for our rotating presidency example the De-
signer needs to replace the default, tag-based F with a structural one, such as
GetMgrByRelations.

8.4.5 Implementation

Figure 8.15 (Sec. 8.4.1) shows an overview of the implemented components.
PRINGL’s language metamodel was implemented in Microsoft’s Modeling SDK
for Visual Studio 2013 (MSDK). Source code, screenshots and additional info is
available for download22 MSDK allows visual DSLs to be defined and translated
into an arbitrary textual representation. Using MSDK we generated a Visual Studio
plug-in providing a complete IDE for developing PRINGL projects. In it, an incentive
designer can create a dedicated Visual Studio PRINGL project and implement/model
real-world strategies using the visuo-textual elements presented in this book (Fig-
ure 8.32). The graphical elements provided in the implemented Visual Studio PRINGL
environment, although not as visually appealing as those presented here, functionally
and structurally match them fully. PRINGL models are stored in .pringl files that
get automatically transformed into the corresponding C# (.cs) equivalents. The
generated code can then be used in the rest of the project as regular C# code or
compiled in .NET assemblies (e.g., libraries or executables).

As a proof of concept, demonstrating the feasibility of implementation of the
introduced programming and execution model, we implemented the “rotating presi-
dency” example (Ex. 8.4.4.5) from Section 8.4.4.5. Figure 8.32 shows a screenshot
of implemented rotating presidency example using the VS PRINGL IDE as well as
the intended use of generated code artifacts. The implemented incentive elements
correspond to the individual element descriptions presented in example Ex. 8.4.4.5.
The entire scheme was modeled using the generated PRINGL tools, demonstrating
the feasibility of the proposed architectural design. The C# code obtained from the

22 http://dsg.tuwien.ac.at/research/viecom/PRINGL/

http://dsg.tuwien.ac.at/research/viecom/PRINGL/
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#region IncentiveLogic
    public static partial class IncLogic {
        public static Worker _w; 
        public static IEnumerable<Worker> _ws; 
        public static IHasParameters _parent;
        ...
        [P_Logic]
        public static bool WasTooLong(int iters)
        ...

PRINC interlayer

C#

.NET assembly

Simulated workers

digraph{
Worker2 -:ManagedBy-> Worker3;
Worker1 -:ManagedBy-> Worker3;
Worker0 -:ManagedBy-> Worker3;}

digraph{
Worker3 -:ManagedBy-> Worker2;
Worker1 -:ManagedBy-> Worker2;
Worker0 -:ManagedBy-> Worker2;}

PRINGL structural 
incentive

Fig. 8.32: Implementing the rotating presidency incentive scheme (Example 8.4.4.5)
using the PRINGL Visual Studio environment. Generated C# code performs calls to
PRINC APIs, which ultimately perform structural changes on the worker graph (part
of the RMod)

implemented model can be used to produce a custom-made incentive management
application using PRINC as the abstraction interlayer.

The implemented example supports an arbitrary number and structure of Workers
(represented as graph nodes) and their “effort” metrics. Worker nodes are inter-
connected with arbitrarily typed graph edges representing different relations. Our
PRINGL-encoded incentive scheme will only consider the workers belonging to the
team denoted by the teamID identifier, and only the managerial relations represented
by ManagedBy-typed edges. Events notify PRINC when iterations end and “effort”
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metrics change. The code generated from the implemented example monitors these
events and executes the incentive mechanisms that make sure the best-performing
worker is installed as the manager, but for not more than two consecutive iterations,
subject to being replaced by the runner-up in such a situation.

The evaluation of PRINGL’s performance was not of interest to us at this phase.
Furthermore, in the absence of any related domain-specific languages or modeling
approaches, no comparative analysis was possible.

8.4.6 Summary

Throughout this chapter we have argued for the necessity of composition and frequent
adjustments of incentive elements and mechanisms. In this respect, the roles of
Incentive Designer and Incentive Operator may be seen as critical to the success
of any future Smart City value-added application relying on citizen-provided effort
through the city’s socio-technical platform. For companies/organizations that will
operate the value-added applications, one of the major concerns will be to control
the effectiveness of the incentives and the costs associated with applying them.

In this chapter we introduced an incentive management framework to support
incentive designers and operators in designing, adapting and applying incentive
schemes, allowing quick adaptations to negative behavioral trends. The design has
been evaluated for the principal usability requirements. The associated domain-
specific language PRINGL was also introduced. Its visual syntax, the programming
and the execution model were described and discussed using a number of examples.
The language allows very generic and portable encoding of composite incentive
strategies that are independent of the number of managed peers, lending itself well to
application in Smart City domains.



Part IV

Towards the Smart City of the Future



Preface

Throughout this book we have presented our vision of future developments of the
Smart City concept based on novel advances in the areas of Cloud Computing,
Internet Of Things and Social Computing. The new Cyber-Human Smart City offers
the possibility to blend these technologies in a single application environment and
manage them in a coordinated manner through a unified platform. This synergy
allows more efficient (“smarter”) management of the city’s infrastructural resources
and human capital, including citizens’ privately owned property (sensors, actuators,
computing/storage units, and any IoT-enabled object offered for shared use) and their
own physical and cognitive abilities. Even more importantly, this synergy offers novel
possibilities to capitalize on personal capabilities and belongings, to learn about and
take an active part in the city’s decision-making and to engage with fellow citizens in
various collective activities in both virtual and physical domains. In this final chapter
we explore the benefits of horizontal integration of the described technologies and
present a research road map identifying the next important steps in the development
of Cyber-Human Smart Cities.



Chapter 9

A Road Map to the Cyber-Human Smart City

In Chapter 1 we have described and structured these benefits in an Architecture of
Values. We have discussed how the proposed Architecture of Values can serve as a
conceptual framework for a value generation process in Smart Cities of the future.
We have also presented a conceptual architecture of a Smart City platform that acts as
the technological basis for the embodiment of these values and the value generation
process. In subsequent chapters (Part II and Part III of this book), we presented a
number of the platform’s key technologies, based on our previous work in this field,
and described the recent advances in these areas that are necessary for supporting the
functionality of the platform. In this chapter we discuss how the introduced technical
solutions can work together to facilitate the value generation process, and map them
to particular values and problems introduced in Chapter 1. Finally, we discuss the
next steps in realizing the stated Cyber-Human Smart City vision.

9.1 Going Beyond the Contemporary Smart City – Horizontal

Integration as a Value Generator

The contributions described in Chapters 3–8 of this book individually offer solutions
to important research/technological challenges in the domains of Internet of Things
and Social Computing. However, only when these solutions are considered holisti-
cally do their potential benefits become obvious in the context of Smart Cities. In
the following we discuss, based on several practical examples, how the introduced
solutions can be horizontally integrated to help build our vision of the Cyber-Human
Smart City centered around the value generation architecture (Fig. 1.1). The values
the horizontal integration generates span all three value domains (infrastructural,
societal, business), going beyond contemporary Smart City goals and promising to
make the cities of the future smarter and more livable.
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9.1.1 Managing and Exploiting Diversity

Probably the biggest practical challenge that all contemporary Smart City visions
need to address is the scale and diversity of infrastructural elements that need to
be managed. While the scale is more of a technical problem, the diversity is a
problem that fundamentally hinders the development of the Smart City vision, since
it forces the city management to make hardware and software vendor choices and thus
establishes a centrally managed system, suffocating the liberal market and healthy
competition. Therefore, instead of citizens freely deciding on the equipment they
want to use and connect to the city’s grid and infrastructure management platform, it
is usually the city or a private company that establishes control centers that manage
the IoT infrastructure of a limited number of supported manufacturers and enforce
the safety, privacy and compliance policies. In a similar manner, managing humans
in existing social-computing platforms is usually scenario/application-centric. This
means that different platforms are not interoperable, and that a worker’s reputation
and experience cannot be transferred as evidence to other platforms, nor can a
platform be easily extended to support different types of labor. This is why the
majority of today’s social-computing platforms are crowdsourcing platforms offering
only simple tasks that can be solved individually and with limited expertise. This
means that contemporary social-computing platforms are not a serious contender to
traditional labor markets and cannot attract people to consider building professional
careers on social-computing platforms.

All the solutions presented in Parts II and III of this book were designed to
support diversity in an effort to alleviate such problems and allow management of
diverse hardware and human resources. Going back to the problem of free choice
of equipment manufacturer, our Smart City vision supports incentivizing citizens to
come together in collectives (e.g., representing particular buildings, neighborhoods or
interest groups) to discuss and decide on the equipment they want to acquire/install.
The choices may require different kinds of agreements and compromises, as the
potential benefits from the installed equipment will never be equal for all the affected
citizens. Based on this, the Smart City platform can offer different incentives to try
to get particular citizens “on board” and grow the IoT/infrastructure network. Of
course, which incentives would be employed in this case depends on the perceived
or calculated benefit that the city expects from the subsequent use of the equipment.

In case the installed equipment is, e.g., a “smart car controller” (a device able
to remotely locate the car and monitor emissions; possibly start, stop and restrict
movement of the vehicle), the benefit to the city is the ability to better plan and
manage the overall city traffic. Since the potential savings in the city budget can
be significant compared to the costs of incentives, the city invests in an incentive
scheme to stimulate citizens to buy and install such devices. The citizens are free
to choose different device manufacturers, since the Smart City platform is able to
provision, run and communicate with the different software instances on different
devices, due to the standardized API and model of the device.

It is not difficult to visualize the potential infrastructural values this could bring.
It would gradually allow a logically centralized management of the complete traffic
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infrastructure of the city, including the privately owned vehicles. This means that the
traffic flow could be optimized and emissions reduced. Citizens could be motivated
to take specific routes, use public transport or ride-sharing, offer rides to others, or
purchase pre-assigned CO2 quotas of others. Existing “brute-force” methods taken in
extreme cases of air pollution, such as license-plate rationing, are often inefficient.1

The described scheme, if underpinned by the majority of drivers in a city, could solve
this problem, in that it could control the traffic on a finer-grained level.

This brings us to the second point – the success of such a scheme is dependent
on both the high number of participating citizens and their willingness to embrace a
system where everyone sacrifices a piece of perceived freedom and privacy in order
to build a system that caters for the common good, and in the long run brings more
benefits to everyone. In this particular case, the citizen occasionally sacrifices the
freedom of movement with the personal vehicle (with respect to space, time, and
passenger restrictions), but gains in less congested streets and decreased pollution.
While in theory this sounds viable, in practice the phenomenon known as the “tragedy
of the commons”2 prevents the usability of the established scheme. This is why our
proposed approach relies on incentives, which serve not only to motivate increased
participation levels, but also to fight free-riding (dysfunctional behavior), as explained
in Chapter 8.

In this particular case, the citizens are being motivated to voluntarily install the
smart-car controllers and accept the participation rules by being offered tangible ben-
efits in terms of significantly reduced transportation costs in the long run (discounted
public transport, free ride-sharing, reduced registration costs, fuel tax refunds) upon
demonstrating active participation in the system. Dysfunctional behavior is easily
tracked and can be penalized, but the rules must be designed only to penalize re-
peated and planned gaming of the system. Occasional breaking of the rules must be
embraced and not penalized, to accommodate for unforeseeable human necessities.
It is important for the system not to be perceived by the citizens as disruptive and too
restrictive. In the long run, however, each participant must be aware that the system
is fair and beneficial to every honest participant. Apart from a clear incentive scheme
and participation rules, from the technical point of view, the fact that the SmartCity
platform is the sole point of control provisioning and managing the software executed
on the controllers is important to maintain faith in the fairness of the overall system.

While for the city’s management the infrastructural value produced by the de-
scribed scheme is important, for the normal citizens the scheme produces a clear
societal value, in that it establishes a novel system of creation of common good that
does social justice to its participants. Participation is voluntary, choice of manufactur-
ers is free, rules are transparent and equally applied, but not too restrictive. Without
the technological solutions presented in this book, establishing and automatically
managing a scheme of such diversity and scale would be difficult, if not impossible.

The primary goal of the described scheme is to allow efficient traffic flow in the
city and reduction of average travel times, number of taken rides, and gas emissions.

1 https://www.theguardian.com/cities/2014/mar/20/licence-plate-driving-bans-paris-ineffective-air-
pollution
2 https://en.wikipedia.org/wiki/Tragedy of the commons
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But once the scheme is in place and perceived as stable and expected to last, it
also opens up possibilities for the development of secondary business opportunities.
In fact, the city should encourage secondary business value generation, as the two
exist in a symbiosis which strengthens both parties – the city benefits by increasing
the attractiveness of the scheme, the citizens by running or using new business
opportunities. Concretely, the city could introduce emission/ride quotas, which could
be traded among the citizens. This would make the scheme more attractive by
allowing citizens that predominantly use public transport to sell their quotas and
earn, while still maintaining the overall emission level within the projected limit.
Businesses offering trading services would develop, where trading would surpass the
mere exchange or payment for quotas.

The example with the smart-car controllers shows how a single scheme introduced
by the city and embraced by the citizens through incentivization can produce various
infrastructural, societal and business values. There is practically an unlimited number
of possibilities for such multidimensional value generation that arise by managing
physical, digital and human infrastructure in a coordinated way.

9.1.2 Making Citizens Active Smart City Stakeholders

Uber and other similar citizen-driver applications have broken the taboo of citizen-
provided services and introduced the concept to the masses across the world. Even if
the pioneering companies are often labeled as controversial or exploitatory and are
met with protests and restrictions in various countries (especially where the activity
in question is centrally controlled and tightly regulated) the idea of citizen-provided
services has established itself as a viable reality. Private companies were the first to
jump on the train and reap the benefits of the novel business and labor model, but the
beneficiaries of it can be (and should be!) also the citizens and the municipalities.
The key presumption for this is that the participation and profit-sharing rules are
established by a trusted entity. In today’s societies such entities are the institutions run
by elected representatives. For this reason, (smart) cities are the perfect environments
for establishing and developing these new labor and business models.

Citizen-provided services, due to their pervasiveness and responsiveness, can be
a reasonable way to complement existing municipal inspection and maintenance
services and reduce their overall costs. For example, take the globally popular bicycle-
sharing schemes (e.g., Barcelona Bicing, Hangzhou Public Bicycle), where a city
establishes a city-wide network of bicycle rental stations that can be used for a small
fee. Maintaining such a network is extremely beneficial for a city, but at the same
time also costly, as it requires constant inspection of bicycles and replenishment of
stations. A common problem that occurs is that the stations on the periphery of the
city quickly become empty in the morning, while those in the downtown/business
parts get overfilled and lack empty parking slots. As a consequence, the unlucky
user either has to lose time to find another station with available bicycles, or ride
further away from the destination in search of a station with enough free slots. In the
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morning rush hour this can cause late arrival to work. In the afternoon, the situation
is the opposite. This severely affects the usability of the scheme, as citizens cannot
rely on the system and are unlikely to become regular users, defeating the original
goal of the introduction of such scheme.

In order to keep the bicycle counts in balance and do the basic checking, the city
has to deploy crews with trucks. Instead, the citizens themselves could be incentivized
to re-arrange the bikes and report bikes with problems, leaving it to the municipality
to do a single over-night tour of stations replacing the bicycles in disrepair. In order
for the scheme to work, the incentives for transferring a bicycle have to be attractive
and actively advertized to the nearby citizens. This means that the attractiveness of
the reward has to be varied dynamically, increasing with the importance of the action
(e.g., the reward should be higher if the station is already full than if a single slot
is still empty). Lottery-like incentives (Chapter 8) are a good choice in this case as
they allow the city to spend virtual lottery coupons instead of real money, and attract
participation with actual rewards offered only after some period.

Once established, the bicycle-sharing scheme can be used as the infrastructural
basis upon which to grow further business services. For example, under the assump-
tion that the bicycles possess a transportation basket a citizen-run delivery service
could be established, where citizens could be asked to transport a small (typically
low value) shipment from A to B, where A and B lie on or near the route intended
to be taken by the citizen, or run an errand.3 In this case, the reward could be more
substantial (e.g., monetary on the pay-per-performance basis) and proportional to
the difficulty and amount of effort taken to perform the delivery. The reward would
be split with the city for providing the physical infrastructure. While entrusting
everyday citizens with commercial and legal responsibilities (in this case, for in-
stance, associated with guaranteeing the delivery and privacy of the package) is a
complex issue, this is something that we already do with services such as UberX
(or People’s Uber). Therefore, these are not obstacles that cannot be overcome with
proper pre-screening, trust/reputation scores and signing of participation contracts
beforehand. As more and more everyday shopping is being done online, existence
of such a platform would be an efficient and ecological way to transport the goods
quickly across the town for the low-value, low-priority delivery business segment,
earning money for the city and the occasional citizen-cyclist, achieving a higher
utilization of the existing cycling infrastructure, and if managed intelligently also
allowing for a low-cost bicycle rearrangement across the stations.

Unlike Uber or ride-sharing schemes, here the citizens do not put at disposal
their own physical infrastructure, but rather use the city’s infrastructure (bicycles) to
take part in business activities. This is considered the conventional approach, like
when we use the city-built roads to do our business. What is different is that the
citizens put their cognitive and physical capabilities (labor) at the disposal of other
Smart City stakeholders (businesses). The synergy consists of businesses providing a
business and profit opportunity, the city providing the infrastructure and the citizens
providing the effort. All three stakeholders share the profits of the successfully

3 www.taskrabbit.com, http://goget.my



244 9 A Road Map to the Cyber-Human Smart City

accomplished task. What differentiates the described scheme and defines it as “smart”
is the diversity and dynamicity. The tasks that need to be accomplished are not
known in advance, the status of infrastructure changes dynamically (the station may
be empty, a street closed) and the people providing the effort are not known in
advance and execute the task with different quality of service.

The described scenario is a type of crowdsourced (or citizen-powered) mainte-
nance. While managing the participants in this scenario is an extremely challenging
task, the actual activities performed by the citizens are simple (inspecting a bicycle
for basic functionality, traveling from station A to station B). This makes the scenario
appear more plausible/feasible than if the activities of the individual participants
involved some highly professional tasks, because we implicitly assume that a random
person is capable of performing these simple tasks. However, from the manage-
ment/controllability perspective the difference in complexity is minor. Managing
ad hoc collectives of citizens that inspect and cater to cycling infrastructure has
similar complexity as managing ad hoc collectives of engineers and technicians for
predictive maintenance of air conditioning equipment. The experiences and technical
know-how gathered through establishment of citizen-powered schemes such as the
bike-sharing scheme can be further developed into different commercial or city-run
schemes for predictive and corrective maintenance of equipment. In the Smart Cities
of the future with millions of smart buildings equipped with all kinds of automated
systems, sensors and IoT devices, the scale and pervasiveness of all this equipment
makes it difficult to maintain.

This brings us to our next point – how to maintain the Smart City infrastructure?

9.1.3 Smart City Infrastructure Maintenance

Monitoring the diverse and pervasive equipment of a Smart City is an extremely
complex research challenge. In this book we have presented a number of solutions
that help us with this task by allowing us to abstract and uniformize the equipment,
and perform remote maintenance operations from a logically centralized point of
control. However, often remote (digital) maintenance (e.g., restarting a controller,
recalibrating a sensor) is not enough, and additional physical intervention is re-
quired (e.g., to replace a part). Furthermore, due to the interaction between pieces
of equipment produced by different manufacturers, in many cases a standardized
maintenance procedure cannot be applied, and an ad hoc procedure must be worked
out or approved by human experts. In such cases the interplay between human and
software solutions is indispensable. The IoT Cloud infrastructure is responsible for
monitoring and discovering potential problems, while teams of human professionals
are engaged when needed, and possibly dispatched to perform maintenance activities
on the spot.
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The big players in the market have already moved into the area of professional
human services. For example, both Amazon4 and Google5 already offer search and
engagement of human professionals for various “home services,” such as plumbing,
A/C installation and electrical repairs.

At the moment, the platform is only the mediator between the service consumer
and the service provider, vouching for the reputation of the service provider by
performing a pre-screening of the candidates, and guaranteeing a refund in case of
low service quality. It is not difficult to imagine, however, that future Smart City
platforms could also take a more active role in managing the engagement of the
professionals, in the way described in our motivating example. Having at its disposal
a database of professionals with proven qualifications, experience and reputation, the
platform can actively prompt the professionals to participate in ad hoc maintenance
teams. The ultimate consumer in this case need not be the City (municipality) itself.
The platform can again act as a trusted intermediary between commercial parties,
facilitating the business transactions. This can prove to be an alternative to the current
maintenance model where each smart building is connected to a static control center
which centrally monitors and maintains all the devices, thus severely restricting the
choice of device manufacturers and portability of devices.

The value such a scheme generates for the City is twofold. The diverse infrastruc-
ture of the city, both in public and in private ownership is monitored more closely and
readily maintained, thus reducing costs in the longer run. Additionally, the platform
actively promotes development and connection of local businesses with local cus-
tomers. Instead of paying a costly service fee to a third-party smart-building-control
center, the smart buildings and their residents are able to use the local professionals
for most of the simpler maintenance work. This also allows small independent repair
professionals to maintain their small businesses centered around local customers.

9.2 Towards the Smart Cities of the Future

Throughout this book we have presented a number of technological solutions that are
the essential drivers and technological enablers of the novel Cyber-Human Smart City
vision. But realizing the vision requires going beyond the technological advances
to enable a holistic, sustainable ecosystem. The most important step in this process
is abandoning the traditional, vertically closed Smart City and moving towards a
horizontally integrated Cyber-Human Smart City (Section 9.1), which supports equal
participation and integration of humans, smart devices and existing city facilities.
The focus on the “historical verticals” [80] limits the innovation, sustainability
and business potential of the city, thus its overall livability. Opening up this siloed
view of the Smart City will allow more horizontal integration and will fuel the
value generation process. Therefore, a Smart City needs to be a rich, self-sustaining

4 http://marketingland.com/amazon-launches-home-services-potential-challenger-to-yelp-google-
others-123460
5 http://www.cnbc.com/2015/12/22/google-plays-matchmaker-expands-home-services-ads.html
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Fig. 9.1: Cyber-Human Cities road map

ecosystem that facilitates both production and consumption of added values for all
the involved participants, ranging from humans to smart devices. The most significant
advantage of this novel vision is clearly reflected in the structured and holistic value
generation process, which is conceptualized in the proposed Architecture of Values
(Chapter 1).

In order to help attain this goal, the presented technological solutions also need
to be tightly horizontally integrated. The envisioned Smart City platform bears a
comprehensive, integrative function, offering more than the mere “stitching together”
of isolated technical solutions. Its primary goal is to facilitate the value generation
process by providing the foundation for the development and hosting of integrative
added-value services. A high-level overview of the Smart City platform is presented
in Chapter 1. In the following, we mainly focus on the platform’s core integrative
functionalities. We discuss the the state-of-the-art solutions, their limitations, and
identify future technology developments needed to realize Cyber-Human Smart
Cities.

The role of ICT in Smart City value generation is not in doubt. However, a
number of technical enablers are required to underpin this process. We have broadly
categorized them in four main groups:

1) Provisioning and utility-based consumption of infrastructure and services
2) Incentive Management
3) Activity coordination & Social Orchestration
4) Monitoring & Data Analytics

Figure 9.1 shows a road map with necessary steps (Smart City maturity levels)
towards realizing such an ecosystem for Cyber-Human Cities. The aforementioned
enablers of the value generation process are some of the main dimensions of our road
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Infrastructure
as Utility

Data analytics Social Orchestration Incentive Management Governance Citizen Informedness

ML-1 Stakeholders install,
manage and consume
exclusively their own
smart devices

Facilities motoring
data is collected man-
ually. Little to no
analytics

Manually-planned and
orchestrated social or-
chestrations

Sparse or no use of in-
centives in digital do-
main

Traditional city gov-
ernance policies are
enforced “manually”
through city’s institu-
tional mechanisms

No information
personalization. In-
formedness through
broadcasting or multi-
casting

ML-2 Smart City data can
be shared among the
stakeholders

Automatic data collec-
tion with offline mostly
manual data analytics

Complex, small-scale
static collaborations,
planned and orches-
trated by software

Heterogeneous,
platform-specific,
simple incentive
schemes used inde-
pendently by different
organizations

E-governance and
Open Data platforms

Information personal-
ization for individuals
Predefined delivery
channels

ML-3 Common access to spe-
cific resources such as
testbed facilities and
living lab resources

Automatic data collec-
tion and near real-time
data analytics

Large-scale, software-
planned static collabo-
rations on simple tasks
(crowdsourcing)

More widespread use
of incentives, limited
to sharing economy,
crowdsourcing. Simple
schemes

Conceptual Smart City
governance models and
frameworks

Advanced information
personalization. Deliv-
ery through multiple
(IoT) channels

ML-4 Complete infrastruc-
ture is open and
publicly accessible.
Incentive mechanisms
in place

Predictive, near
real-time analytics
spanning multiple city
sectors

Small-scale, dynam-
ically orchestrated
complex collective
collaborations.

Automated incentive
management. More
complex incentive
schemes

Technology-enabled
and automated gover-
nance of all Smart City
facilities

Passive anticipated as-
sistance and demon-
strative use of IoT de-
vices

ML-5 Smart City infrastruc-
ture is organized as a
full-fledged public util-
ity

Machine learning
approaches with au-
tomated feedback
loop

Large-scale, human-
orchestrated, dynamic,
complex, collective
activities

Dynamic adaptations
of incentives. Per-
sonalized, complex
incentives for ad-
vanced collaborative
tasks

Fully fledged socio-
technical governance
platform

Active anticipated as-
sistance and demon-
strative use of IoT de-
vices coupled with in-
centives

Table 1: Summary of road map dimensions and their maturity levels

map for the development of a comprehensive Smart City platform. Additionally, we
define two “cyber-human” maturity dimensions of the Smart City ecosystem:

5) Infrastructural & Social Governance
6) Citizen Informedness

These were identified as key enablers of horizontal integration and active citizen
involvement in Smart Cities of the future. Progressing along these dimensions are the
necessary steps to shift from traditional Smart Cities towards future Cyber-Human
Cities. In a sense, they can be seen as different maturity levels of the Cyber-Human
Cities. In the remainder of this section we discuss the most important dimensions of
the road map in more detail.

9.2.1 Utility-Based Consumption of Smart City Infrastructure and
Services

One of the dimensions (Fig. 9.1) of the Cyber-Human City platform road map
is the level to which it allows organization of Smart City ICT infrastructure as a
publicly accessible and open utility. This is reflected in its support for utility-based
consumption/delivery of Smart City infrastructure and services, in the sense of the
extent to which Smart City stakeholders are enabled to engage in utility generation
and consumption, as well as its distribution. We have identified the following maturity
levels (ML) of utility-based consumption of Smart City ICT infrastructure and
services: ML-1) Traditional consumption, where each citizen or organization installs,
manages and consumes exclusively their own smart devices; ML-2) The devices
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are still managed in the traditional manner, but the data can be shared among the
stakeholders, e.g., Xively; ML-3) Common access to specific resources such as test-
bed facilities and living lab resources, e.g., Living Labs [159]; ML-4) Complete Smart
City ICT infrastructure (e.g., sensory data, smart devices, smart home gateways, etc.)
is open and publicly accessible. Incentive mechanisms are implemented to stimulate
and facilitate infrastructure sharing; ML-5) Smart City infrastructure is organized as
a public utility. Delivery-consumption-compensation models are developed, enabling
Smart City stakeholders to engage in utility generation and consumption, as well as
its distribution in a self-regulating market. From Fig. 9.1, we notice that traditional
cities are at ML-1, Smart Cities 1.0 are at ML-2 and Smart Cities 2.0 are at ML-3.
Finally, to realize Cyber-Human cities an ML-5 of consumption of city infrastructure
and services is required.

The current state of the art can bring Smart Cities to ML-3 with respect to
this dimension. By integrating the solutions proposed in Chapters 2, 3 and 6 the
Cyber-Human platform is mature enough to facilitate open access to the Smart City
infrastructure resources and provide foundational automated incentive management
mechanisms towards a city-wide market for sharing infrastructure resources. By
integrating the proposed solutions to advance the Cyber-Human platform in this
direction, we can effectively enable Smart Cities to evolve to ML-4.

However, our vision of the Cyber-Human City requires a full-fledged organization
of Smart City infrastructure as a public utility (ML-5 in Fig. 9.1). One of the key
preconditions is to provide novel support for realizing the delivery-consumption-
compensation model for the infrastructure resources. Traditional public utilities
exclusively rely on existing markets, business models and monetary institutions
to realize this model. However, to realize broader participation in the previously
presented architecture of values Smart Cities largely lack suitable business models for
exchanging resources and services among the stakeholders. Moreover, infrastructure
owners and infrastructure brokers require an ecosystem to support trading of Smart
City services and assets. Unfortunately, this is largely missing in current Smart City
platforms.

Traditional models, e.g., banking/payment-processing systems, fall short regarding
the speed, scale and agility required to support trading in our Smart City ecosys-
tem: i) They mainly rely on invoicing as the only means to perform a monetary
transaction. ii) Banks only do business with people, not smart devices (which are
active participants in the Smart City platform). iii) privacy issues when trading with
sensitive information due to the involvement of a third party, e.g., a bank. iv) There
is a fixed lower boundary for a transaction amount, e.g., 0.01 EUR. v) Duration of
asset transfer or legal boundaries.

Therefore, to realize the utility-oriented delivery and consumption of Smart
City infrastructure resources and reach ML-5, we need to extend current models
and solutions to support the following set of design principles: Smart City trader
units – Devices and services/applications autonomously decide with whom to trade
and do business; Automated cash handling – It is difficult to manage and oversee
individual devices in the large-scale hyper-distributed environments, thus devices
need to have higher degree of autonomy; Micro-transactions (time- and size-wise) –
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Enabling pay-as-you-go consumption of IoT infrastructure (e.g., per data instance)
with small/no transaction fees across regions with different location and compliance
criteria; Scalable transaction processing – Supporting the large number of devices,
e.g., gateways capable of providing resources/capabilities and performing business
transactions; No central authority – Brings considerable benefits for the privacy
requirements, but keeps the whole process highly transparent.

One promising technology that can be used as a base for the solutions that can
support these principles is Blockchain [117, 141, 146]. Generally, a Blockchain is a
distributed database that maintains a continuously growing list of data records. Each
block holds a batch of transactions and since it is based on P2P consensus and strong
encryption it is very resilient against tampering and revision. This makes it a good
solution for any kind of transactions within inherently untrusted IoT networks. For
example, it could be used by smart devices to autonomously trade resources, e.g.,
sensory data, storage and network capacity among themselves, but also for secure
file transfer or different kinds of user-defined smart contracts. However, one of the
limitations of current Blockchain solutions is their lack of scalability, and although
there are partial solutions (e.g., side chains) a more scalable approach is required
to accommodate the number and frequency of transactions envisioned in our future
Smart City.

9.2.2 Data Analytics in Smart City Facilities and Urban Processes

The core of any Smart City is the ability to monitor various city facilities in order to
analyze their performance and optimize urban processes, e.g., within a specific sector.
Data analytics is probably the most advanced field in contemporary Smart Cities
and today it is usually used as a synonym for “smartness” in Smart Cities, mainly
because it can support answering different policy, planning, governance and business
questions, support decision making in enabling a smarter environment and even allow
for automated predictions and recommendations about urban processes. Despite
this there remain challenges to enable the horizontal (across different city sectors)
integration of Smart City data, which would allow full utilization of the potential of
Smart City data analytics. Our road map caters to this need by defining a dimension
that is used to evaluate the maturity level of Data analytics in Smart City facilities and
urban processes. As illustrated in Fig. 9.1, we define the following maturity levels
(ML) of Smart City data analytics: ML-1) Facilities monitoring data is collected
manually and there is little to no analytics of facilities performance, e.g., taking a
reading from an energy meter. ML-2) Automatic data collection with offline mainly
manual (software-assisted) data analytics of the facilities; ML-3) Automatic data
collection and near real-time data analytics, based on traditional models, e.g., energy
consumption models. ML-4) Predictive near real-time analytics for predictions and
recommendations, potentially across multiple city sectors, e.g., energy management
and building management. ML-5) Machine learning approaches with automated
feedback loop that enable continuous, fully automated optimization of facilities
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(via actuators), e.g., energy distribution and load balancing. From Fig. 9.1, we can
observe that traditional cities are at ML-1 and Smart Cities 1.0 are at ML-3. Current
developments in data analytics are enabling rapid evolution of Smart Cities towards
ML-4, i.e., enabling cross-domain predictive data analytics. Currently we are working
on addressing the challenges of reaching ML-4 of data analytics in Smart Cities in
the scope of the SMART-FI6 project.

The main objective of our current research effort in Smart City data analytics
is to facilitate the interaction between humans and smart devices in three main
activities: collecting, communicating and exploiting Smart City data. To this end, we
are developing a platform that strives to enable collection of the data from a variety of
sources, such as sensors, mobile devices or public open data services. Secondly, the
platform will provide mechanisms to enable the data coming from different networks
and protocols to be homogenized and communicated. Finally, it will provide facilities
to develop, deploy and orchestrate novel Smart City services, e.g., for predictions and
recommendations, in order to enable the city data to be transformed into disruptive
innovation building blocks for the Smart Cities of the future.

The main features of the aforementioned platform include design methodologies
and models for implementing unified Smart City data analytic functions, as well as
the runtime models for integration, deployment and operation of Smart City services.
These models are intended to enable seamless development and management of
micro data analytics services, which will serve as one of the main building blocks for
sustainable data analytics in future Smart Cities. We are also building a comprehen-
sive tool suite, based on cutting-edge data-processing architectures and technologies
such as lambda architecture, microservices and reactive data streams. The main ob-
jective is to address current challenges in Smart City data analytics, such as dynamic,
on-demand governance and elasticity management of the resource, quality and cost
dimensions of the data analytics micro services.

Finally, as shown in Fig. 9.1, to fully realize our vision of Cyber-Human Cities,
we need to advance contemporary data analytics approaches to the next level (ML-5).
This requires support for automated, online learning algorithms, based on deep-
learning neural networks in the context of Smart Cities, as well as provision of
mechanisms to support city-scale automated feedback loops in order to enable contin-
uous, fully automated monitoring, analytics and optimization of Smart City facilities
and processes. Although there are approaches based on machine learning and data
mining (e.g., [32, 179, 149]), which deal with Smart City analytics, a number of
challenges remain to enable the development of Smart City data analytics models that
exceed simplistic statistical models in complexity. Final precondition for reaching
ML-5 is support for continuous feedback loops, especially remote, real-time actuation
in Smart Cities. In our previous work, we have developed a comprehensive program-
ming model for developing large-scale IoT Cloud systems [121, 124, 122]. This
model can serve as a solid foundation for realizing Smart City feedback loops, how-
ever additional work is required to overcome the challenges of integrating such IoT

6 http://smart-fi.eu
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Cloud applications with machine learning approaches in a scalable and sustainable
manner.

9.2.3 Social Orchestration & Activity Coordination – Supporting
Complex Coordinated Activities

Unlike the general topic of activity coordination and composition7 in computer sci-
ence, which deals with the coordination of software processes, agents and computing
nodes, the concern of Social Orchestration is the coordination and composition of
activities collectively performed by the human participants. Both are extremely im-
portant in the context of the Cyber-Human Smart City. However, in this chapter the
focus is placed on Social Orchestration, as a novel and still underdeveloped area that
underpins the citizen inclusion in Smart City processes. Concretely, we discuss the
necessary technical solutions for successfully including and managing humans in
collective activities in a Smart City environment, and define the maturity levels to
help identify particular development stages of Social Orchestration support.

Social orchestration, even when not explicitly singled out as a distinctive feature
of a system, is a core functionality of any social-computing, socio-technical, cro-
wdsourcing or human-based CAS platform. In Section 6.1 we gave an overview of
state-of-the-art social computing systems and research prototypes. Based on this
overview, we are able to formulate the following distinctive properties that character-
ize social orchestration.

Orchestration Scale. The order of magnitude of the number of collaboration partic-
ipants. It can vary from an individual performing a single independent activity (e.g.,
answering a question) to a collaborative activity involving a significant proportion of
the overall city population (e.g., participating in an election).

Task Complexity. Defining what it means for a collective activity (task) to be
complex is highly context-specific. At the most general level, complex tasks are those
that can be broken down into a number of simpler (atomic) subtasks, possibly all the
way down to the subtasks that can be performed by a single person. The subtasks
can have logical or temporal interdependencies. The more interdependencies there
are, the more complex the aggregate task is. Task complexity can be considered from
two aspects: 1) Planning – how difficult it is to break down (analyze) a complex task
into a sequence of optimal subtasks; and 2) How difficult it is to execute the already
planed task, i.e., execute the subtasks.

Planning. Planning can be performed by software, by humans, or hybridly. Plan-
ning the execution of a complex task is often an algorithmically hard problem,
unsuitable for humans. When the task is a standardized one, for which known plan-
ning solutions exist, we often use an out-of-the-box software planner, or develop
one if the savings obtained through the optimality are worth it. We encounter such

7 See [2], Section III.7 for an overview of the area.
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tasks mainly in well-established and frequently repeated business processes (e.g.,
transportation, chain-supply).

In social environments, however, the tasks are rarely standard or even known
in advance, meaning that the likelihood of having at our disposal a ready-made
planning algorithm is low. At the same time, in such environments it is usually not
time- or cost-effective to develop scenario-specific algorithms. Furthermore, such
tasks are rarely dependent on the optimality of the solution, and in many such cases
where the optimality/accuracy can be sacrificed for speed, humans might be able
to provide acceptable ad hoc heuristics. Consider, for example, a user seeking to
solve a real-life situation similar to a river-crossing problem8 with the help of the
Smart City platform. While such problems have optimal solutions, in a real-life
situation adapting an existing algorithm to provide the optimal solution in the given
situation is too slow, while crowdsourcing such a problem is able to quickly provide
a solution [143]. Of course, human-based planning is far from trivial, as it often
requires complex negotiation, agreement and aggregation algorithms (cf. [148, 102]).
The results, however, are applicable to a broader class of problems.

Finally, hybrid planning means that both algorithmic and human capabilities are
applied to construct a plan. Often, the human component is used for interpreting the
context properly, and selecting/adapting an existing suitable algorithm or software
tool to perform the planning.

Dynamicity. This property refers to the time when a plan is generated/adapted.
If the planner possesses all the necessary information (inputs) to construct a plan
before the actual execution we refer to such execution as static. If the plan cannot
be fully constructed without inputs that are unknown until runtime, we refer to such
execution as dynamic. Most state-of-the-art social-computing platforms currently
only support static execution, with notable research prototype exceptions, such as
CrowdLang [112] and Smart Society [154], which demonstrate different levels of
execution dynamicity.

We can now define the maturity levels as follows: ML-1) Manually planned
and orchestrated small-scale social orchestrations, e.g., management of rescuers in
case of an accident; ML-2) Complex but small-scale static collaborations, typically
business processes, planned and orchestrated by software. Example: various BPEL
orchestration engines9 with support for BPEL4People; ML-3) Widespread use of
large-scale static collaborations, for simple tasks with respect to both planning and
execution. Planning done by software; exceptionally also “manually” by human
individuals. Example: existing crowdsourcing platforms [44]; ML-4) Small-scale
complex collaborations allow creation of ad hoc teams (collectives) of professionals.
The planning and execution is mostly software-driven, but to a limited extent, humans
are able to influence parts of the execution at runtime; ML-5) Full-scale negotiations
and agreements of human participants dynamically determine the further execution
course (dynamic human planning). Human planners make extensive use of software

8 https://en.wikipedia.org/wiki/River crossing puzzle
9 https://en.wikipedia.org/wiki/List_of_BPEL_engines

https://en.wikipedia.org/wiki/List_of_BPEL_engines
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services for planning. Collaborations are large scale, involving entire neighborhoods
or population groups.

ML-2 level corresponds to a traditional city, which extensively uses manual social
orchestration in non-business environments, and often a software-orchestrated static
orchestration in business processes. A Smart City 1.0 with its crowdsourcing and
resource pooling fulfills the maturity criteria of ML-3, and slightly surpasses it when
considering the recent onset of augmented-reality games such as Pokemon Go, which
allow humans to influence the orchestration and organize collectives. It is to be
expected that this trend will further develop in the Smart City 2.0 which will likely
exhibit all the complexity of level ML-4. ML-5 corresponds to the Cyber-Human
Smart City vision. The framework for programmatic coordination and collaboration
management presented in Chapter 7 is the direct enabler of ML-4 and sets the
technological foundation for ML-5.

9.2.4 Incentive Management

As we have argued extensively in Chapter 8, incentives are an indispensable enabler
and a control mechanism of social orchestrations. Therefore, any Smart City attempt-
ing to involve citizens more deeply and more actively will need to use some kind
of incentives to help foster participation, minimize attrition rates, improve quality
of contributions and combat dysfunctional behavior. However, only recently has
awareness of the importance of incentives and incentive management started to
grow significantly. The result is that advances in this area are still lagging behind
developments in the other technical “dimensions,” but they look set to rapidly close
the gap.

When comparing the levels of complexity and advancement of incentive manage-
ment, we observe the following properties.

Automated Incentive Management. Allows specification of complex incentive
mechanisms from standardized (library) components and automated application of
the mechanisms.

Incentive Comparability. The adoption of Automated Incentive Management
solutions is a technical enabler for the subsequent adoption of similar (comparable,
standardized) incentive mechanisms across different Smart City platform applications.
This allows citizens to assess the potential benefits among different incentive schemes,
increasing the overall transparency of the added-value services of the Smart City
platform.

Reputation Transfer. Standardized rewards and achievements are transferable,
allowing citizens to skip the cold-start problem and be selected to perform tasks
where a specific degree of reputation or qualifications are required. This is a necessary
precondition for sustainable digital careers, it increases citizen mobility, and it fosters
the generation of novel business values.
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Complexity. Refers to the number of employed incentive mechanisms in a sin-
gle incentive scheme. Powerful incentive schemes typically combine a number of
incentive mechanisms targeting different behavioral aspects (Chapter 8).

Dynamicity. Traditionally, incentive mechanisms are static rules that are only
manually (and relatively rarely) changed. In contrast, incentive mechanisms can
also be dynamically generated or adapted, i.e., constantly re-tailored to the targeted
citizen group or to the digital artifact with which they are associated [157].

We can now define the maturity levels as follows: ML-1) Incentives in the digital
domain are not used, or used very sparsely; ML-2) Incentives are used rarely and
independently by different organizations and platforms. Incentives are heterogeneous
and platform-specific and applied to users of those platforms/organizations only.
Mostly simple incentive schemes. No automated incentive management. No incentive
comparability; ML-3) Incentives are more commonly used but mostly to stimulate
sharing of resources (computing resources, devices, joint activities such as ride-
sharing) or simple crowdsourcing, but not of advanced cognitive/physical labor nor
collective complex activities. Incentive schemes are predominantly simple and non-
personalized; ML-4) Automated incentive management is used to produce concrete
incentives out of general incentives. This allows the use of more complex incentive
schemes. Incentives are more standardized and uniform, comparable across different
platforms; ML-5) Incentive mechanisms are dynamically generated and adjusted,
tailored to the targeted user group or the artifact with which they are associated [157].
Reputation transfer is possible.

Many traditional cities, especially in less developed countries, have yet to start
using incentives in the digital domain. While some smaller innovative companies
may be using them, none of the city services are using them. The reason is that the
sense that the city administration and infrastructure is there to serve its citizens is
lacking, so there is no push to try to additionally motivate the citizens to get actively
included in the functioning of the city. This places such cities on level ML-1. On
the other hand, some cities that host a technologically advanced local economy or
have an increased awareness of the importance of citizen inclusion are exhibiting all
the characteristics of level ML-2. A Smart City 1.0 is predominantly focused on the
usage optimization of infrastructural resources, and thus approaching maturity level
ML-3. A Smart City 2.0 is starting to pay more attention to the human capital of the
city. It is therefore realistic to expect that the accepted understanding of such a city
will exhibit many of the characteristics of level ML-4. Level ML-5 corresponds to
the described Cyber-Human Smart City vision. Incentive management technology,
such as the PRINGL framework presented in Chapter 8, is one the necessary enablers
of maturity levels ML-4 and ML-5.
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9.2.5 Citizen Informedness

In Section 1.6 we wrote about the education, informedness and active inclusion
of citizens in different life aspects of a city as the fundamental enablers of citizen
empowerment – one of the defining characteristics of a Cyber-Human Smart City.

Before defining the maturity levels, we must first define more precisely the
different characteristics/functionalities that a Cyber-Human Smart City platform can
implement in order to support different aspects of citizen informedness.

Delivery through IoT environment. The pervasiveness of the devices and their
presence in everyday objects makes them familiar and trusted. Therefore they are
a suitable medium for transmitting knowledge and information in small, easily
absorbable quantities. This can include advice coming from the devices in a smart
home about the amount of electricity the vacuum cleaner has used, or tips on energy
savings. In addition, since the incentives need to be advertised to the potential users,
the same environment can be used to notify the citizens of the benefits of participation
in specific city-run schemes.

Learning by example. Whenever applicable, practical demonstration of the usage
should be the favored approach. This concept is applicable at all scales, ranging from
the use of a single smart device, to a smart home, to the testing of city-wide changes
(such as changes in traffic regulation).

Information personalization. The Smart City platform services should filter and
deliver to the users (citizens) personalized information based on learned behavior
patterns and scheduled events. The concepts of IoT delivery and information person-
alization are already being practically used in commercial products such as Amazon
Echo and Google Home.

Anticipated assistance. The Smart City platform services or personal IoT devices
should act as autonomous agents in good faith on the citizen’s behalf and engage in
benevolent interactions with other citizens’ devices and services in order to increase
potential benefits. The citizen decides the agent’s allowed level of autonomy and
personally authorizes all legally binding activities. Smart City trader units are a good
example of how this concept can be applied to empower the citizens to trade personal
resources and consume IoT infrastructure as a utility.

We can now define the maturity levels as follows: ML-1) Complete lack of infor-
mation personalization. Citizens are informed through broadcasting (TV, newspapers)
or multicasting (mass SMS/email/leaflet campaigns to population groups) without
individual discrimination; ML-2) Information personalization is used to provide
information of interest to each individual citizen. The delivery channel is typically a
single, predefined one – mostly email, or a smartphone application; ML-3) Informa-
tion personalization is more advanced and delivered through a variety of channels
spanning various IoT devices in a citizen’s environment; ML-4) The IoT devices
are used to demonstrate and simulate different usage scenarios but on the individual
user level (e.g., to teach the user how to use a device). Anticipated assistance is
used, but only passively to filter the data, not to initiate interactions on the user’s
behalf (such as micro-transactions and barters); ML-5) The Smart City platform
orchestrates a large number of IoT devices and administers incentives to large groups
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of citizens to simulate potential outcomes of collective decisions (e.g., simulating
the outcomes of a political decision). Anticipated assistance is widely used to relieve
citizens of taking part in many SmartCity interactions. The software assistants are
fully autonomous within the given limits, and engage in trading and other interactions
on the user’s behalf (e.g., autonomously reserving a trip with accommodation on the
user’s behalf or commercially leasing the user’s currently free computing resources
to a third party).

Traditional cities are currently located between levels ML-1 and ML-2 – informa-
tion personalization is used, but mostly by private companies as a means of increasing
the attractiveness of their own services (Google Now, Apple Siri). The city itself
does not usually target its citizens personally. A conventional Smart City 1.0 is at
ML-3 – the IoT environment is used here for displaying and collecting informa-
tion. ML-4 level currently represents the state of the art in research (e.g., Living
Labs [159], autonomous negotiation agents [135]), but no significant practical/com-
mercial applications exist. ML-5 level represents the ultimate stage envisioned by
the Cyber-Human Smart City, where dealing with large amounts of low-level infor-
mation is delegated to software agents, leaving more time for the citizens to engage
in creative, political or relaxing activities.

9.2.6 Infrastructural and Social Governance

Automated governance is poised to become one of the cornerstones of Smart City
management. There are two diversity aspects that governance needs to cover: vertical
– allowing the transformation and enforcement of high-level city policies and goals
via a number of low-level operational procedures; and horizontal – allowing the
application of operational procedures over various infrastructural and social resources
and stakeholders with different properties, objectives, interests and backgrounds.
This diversity calls for the automation of the whole process, which inevitably must
consider hardware, software and humans and their interplay in the context of a Smart
City. As such, diversity management will play an important role in future Smart City
platforms, constituting the city’s Administrative Infrastructure (see Figure 1.2).

We have identified the following maturity levels of Smart City governance: ML-
1) Traditional city governance without ICT support. Governance targets the physical
infrastructure management processes under the city’s control. The governance en-
forcement is performed “manually” through the city’s institutional mechanisms;
ML-2) E-governance and Open Data which assume integration of various tradi-
tional stand-alone systems and services between government-to-customer (G2C),
government-to-business (G2B) and government-to-government (G2G) [18]; ML-
3) Conceptual Smart City governance models and frameworks, mainly focusing
on high-level Smart City objectives and policies; ML-4) Technology-enabled and
automated Smart City governance, enabling fine-grained and logically centralized
control of geo-distributed Smart City ICT infrastructure and applications; ML-5) So-
cial governance. In addition to the management of ICT infrastructure, the social
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infrastructure is also automatically managed, i.e., the platform supports procedures
and virtual organizations catering to the social needs of participating citizens. In Fig-
ure 9.1, the Infrastructural & Social Governance dimension illustrates the described
governance road map in relation to other dimensions.

As we have discussed in Section 9.1, ICT applications and services are becoming
an integration factor in optimizing urban processes, infrastructure and facilities, such
as urban transportation and energy management. In Chapter 5, we have discussed the
current ICT governance challenges in Smart Cities and proposed a governance frame-
work that is capable of supporting ML-4 of Smart City governance. We have shown
how this approach can be used to bridge the gap between high-level governance
objectives (which mainly concern city representatives and business stakeholders)
and operations processes. The latter concern technical stakeholders such as Smart
City service developers and operations managers, who need to implement concrete
operations processes conforming to or enforcing the high-level governance objec-
tives. We have demonstrated how our approach facilitates automated mapping and
enforcement of the high-level policies down to the technical level, i.e., Smart City
infrastructure and applications, effectively decreasing the risk of lost requirements
or over-regulated systems, reducing management costs and nourishing innovation
opportunities.

Apart from some work [81, 164] and initiatives10 on digital labor organization
and sustainability, the field of social governance has so far remained tucked away
in purely academical discourse. However, in Cyber-Human Cities automating also
the social governance is considered as one of the key goals that need to be achieved
in order to reach ML-5 in Fig. 9.1. At this level the Smart City platform is expected
to provide technological tooling or environments for unsupervised interaction and
exchange of opinions among participants in collective activities (virtual social fab-
ric), mechanisms for ensuring/certifying transparency and fairness of all employed
algorithms governing citizen participation, and established procedures for filing com-
plaints or addressing unjust treatment. Digital (self-)organizations, such as digital
unions or interest groups, should provide an institutional means of representation
and a tool for fighting for own interests.

9.3 Conclusion

In this chapter we have presented the necessary requirements and a road map with
concrete technological advancements needed to move beyond contemporary Smart
Cities and towards the Smart Cities of the future. We have discussed how horizontal
integration across the variety of Smart City sectors and domains can serve as the
main driver behind the value generation process in the architecture of values. To
facilitate such a horizontal integration, we proposed empowering and exploiting in
synergy diverse Smart City stakeholders. This is in contrast with the conventional

10 http://www.faircrowdwork.org/
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“representative-driven” development approaches of existing Smart City initiatives.
Based on a number of concrete application examples, we argued that making citizens
active stakeholders can bring a range of benefits such as first-hand experience,
overall presence in space and time, and better technical know-how, e.g., gathered
through establishment of citizen-powered schemes. Another key accelerator of value
generation is the structured provisioning and governance of Smart City infrastructure
and applications based on comprehensive automation tools. We posit that an efficient
and effective management of Smart City systems is the key stepping stone towards
utility-based consumption of Smart City resources and more importantly a crucial
step towards democratizing Smart City facilities and values.

Based on these observations, requirements, our previous work and state-of-the-art
approaches we have derived a comprehensive road map to realize the presented vision
of Cyber-Human Smart Cities. The proposed road map describes the expected future
advances, in terms of novel models and technologies, that are needed to foster and
fully utilize the value generation process in Cyber-Human Cities. Since Smart Cities
are a complex, living and ever-evolving ecosystem, we have structured the road map
along six fundamental dimensions, each defining clear maturity levels. Although the
advances along the individual dimensions undoubtedly bring additional benefits to
all the involved Smart City stakeholders, only by adopting a holistic approach that
pushes forward along all the dimensions and blends in the proposed concepts, models
and technologies can the full potential of future Cyber-Human Cities be realized.

As a final word, we hope that this book can serve as a signpost indicating future
directions in the multidisciplinary Smart City research area, but also offer a preview of
the upcoming challenges and required development activities to Smart City managing
authorities and interested business stakeholders.
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