Learn

Robotics
Programming

Learn Robotics Programming

Build and control autonomous robots using Raspberry Pi 3
and Python

Danny Staple

BIRMINGHAM - MUMBAI

Learn Robotics Programming

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George

Acquisition Editor: Akshay Jethani

Content Development Editor: Priyanka Deshpande
Technical Editor: Mohit Hassija

Copy Editor: Safis Editing

Project Coordinator: Drashti Panchal

Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Tom Scaria

Production Coordinator: Jyoti Chauhan

First published: November 2018
Production reference: 1281118

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78934-074-7

www.packtpub.com

http://www.packtpub.com

OFF ANY PACKT

Internat Internet
of Things Robotics of Things
for Ar:ﬁims using Python Programming

31
&

it

L ek

GCo to
and use this code in the checkout:

To my dear wife, Carol, for her love, her inspiration, and her unwavering support.

A Mapt

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

mapt.io

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.Packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Danny Staple builds robots and gadgets as a hobbyist, makes videos about his work with
robots, and attends community events such as PiWars and Arduino Day. He has been a
professional Python programmer, later moving into DevOps, since 2009, and a software
engineer since 2000. He has worked with embedded systems, including embedded Linux
systems, throughout the majority of his career. He has been a mentor at a local CoderDojo,
where he taught how to code with Python. He has run Lego Robotics clubs with
Mindstorms. He has also developed Bounce!, a visual programming language targeted at
teaching code using the NodeMCU IoT platform.

The robots he has built with his children include TankBot, SkittleBot (now the Pi Wars
robot), ArmBot, and SpiderBot.

I would like to thank David Anderson for being a great person to bounce ideas off and for
his motivational energy. I would like to thank Ben Nuttall and Dave Jones for GPIOZero,
and for helping me out countless times on twitter. Dave Jones kickstarted my journey into
computer vision in a restaurant in Cardiff and is the author of the PiCamera Library.
Finally, I would like to thank my children, Helena and Jonathan, for their support and
patience, even occasionally reviewing diagrams for me.

About the reviewer

Leo White is a professional software engineer, and a graduate of the University of Kent.
His interests include electronics, 3D printing, and robotics. He first started programming on
the Commodore 64, later wrote several applications for the Acorn Archimedes, and
currently programs set-top boxes for his day job. Utilizing the Raspberry Pi as a base, he
has mechanized children's toys and driven robot arms, blogging about his experiences and
processes along the way, has given presentations at Raspberry Jams, and entered a variety
of robots in the Pi Wars competition.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Chapter 1: Introduction to Robotics

What does robot mean?

Advanced and impressive robots
Robots that look like humans and animals
The Mars rovers

Robots in the home
The washing machine
Other household robots

Robots in industry
Robot arms
Warehouse robots

Competitive, educational, and hobby robots

Summary

Questions

Further reading

Chapter 2: Exploring Robot Building Blocks - Code and Electronics

Technical requirements
What is inside a robot?
Types of motors, sensors, and actuators
Motors and actuators
Status indicators — displays, lights, and sounds
Types of sensors
Controllers and IO
10 pins
Controllers
Planning components and code structure
Planning our robot
Summary
Questions
Further reading

Chapter 3: Introducing the Raspberry Pi - Starting with Raspbian

Technical requirements
What can the Raspberry Pi do?
Speed and power
Connectivity and networking
The recommended Raspberry Pi version

Table of Contents

What connections will we use?
Raspberry Pi Hats

What is Raspbian?

Preparing an SD card
Flashing the card in Etcher

Getting Etcher
Using Etcher to write to the card

Summary
Questions
Further reading

Chapter 4: Preparing a Raspberry Pi for a Robot - Headless by Default

Technical requirements
What does headless mean and why?
Setting up wireless on the Raspberry Pi and enabling SSH
The wpa_supplicant.conf file
Finding your Pi on the network
Apple macOS
Microsoft Windows
Linux
Testing the setup
What if you cannot reach the Raspberry Pi?
Using PuTTY or SSH to connect to your Raspberry Pi
Configuring Raspbian
Renaming your Pi
Securing your Pi (a little bit)
Reboot and reconnect
Updating the software on your Raspberry Pi
What is sudo?
Shutting down your Raspberry Pi
Summary
Questions
Further reading

Chapter 5: Backing Up the Code with Git and SD Card Copies
Technical requirements
How code can be broken or lost
SD card data loss and corruption
Bad changes to the code or configuration
Combinations
Strategy 1 - keep the code on the PC and upload it
Strategy 2 — using Git to go back in time
Strategy 3 — making SD card backups
Windows
Mac and Linux

42
45
46
46
48
48
49

50
50
50

51
51
52
54
55
56
56
56
57
57
58
59
61
63
65
66
69
70
70
70
71
71

72
72
73
73
74
74
74
77
79
79
81

[ii]

Table of Contents

Linux 81

Mac 82
Cloning with DD 82
Summary 83
Questions 83
Further reading 83
Chapter 6: Building Robot Basics - Wheels, Power, and Wiring 84
Technical requirements 84
Choosing a chassis kit 85
Size 85
Wheel count 86
Wheels and motors 87
Simplicity 89
Cost 89
Conclusion 89
Choosing a motor controller 90
Integration level 90
Pin usage 91
Size 91
Soldering 92
Connectors 93
Conclusion 93
Powering the robot 94
Test fitting the robot 96
Assembling the base 100
Assembling the base, motors, and wheels 102
Plastic motor brackets 103

Metal motor brackets 104

Adding the castor wheel 105

Putting the wheels on 106
Bringing the cables up 107

Fitting the Raspberry Pi 108
Adding the batteries 109
The USB power bank 109
Mounting the AA battery holder 110

The completed robot base 111
Summary 111
Questions 112
Further reading 112
Chapter 7: Drive and Turn - Moving Motors with Python 113
Technical requirements 113
Connecting the motors to the Raspberry Pi 114
Wiring in 116
Independent power 118

[iii]

Table of Contents

Writing code to test your motors
Preparing libraries
Test — finding the motor hat
Test — the motors move
Troubleshooting
How does this code work?
Steering a robot
Types of steering
Steerable wheels
Fixed wheels
Other steering systems
Steering the robot we are building
The robot object — code for our experiments to talk to the robot
Why make this object?
What will we put in the robot object?
Write a script to follow a predetermined path
Summary
Questions
Further reading

Chapter 8: Programming Line-Following Sensors Using Python

Technical requirements

Attaching line sensors to the robot and Raspberry Pi
What are optical line sensors?
What other new parts will we use?
Construction plan
Getting the correct length
Mounting sensor modules
Wiring the sensor in

Painting the test track

Writing the code - testing the sensors
Calibrating the sensors
Test code
Troubleshooting

Writing the line-following behavior
Adding the sensors to the Robot object
Creating the line-following behavior code
More troubleshooting
Extra ideas

Summary

Questions

Further reading

Chapter 9: Programming RGB Strips in Python
Technical requirements

119
119
120
121
122
123
124
125
125
127
128
128
129
130
131
136
139
139
140

141
141
142
142
144
144
145
146
147
153
155
156
157
159
159
160
162
165
166
167
167
167

168
168

[iv]

Table of Contents

Comparing light strip technologies
RGB values
Attaching the light strip to the Raspberry Pi
Logic levels
Soldering headers on
Attaching the LED strip to the robot
Wiring the LED strip
Adding a power switch
Making a robot display code object
Adding LEDs to the robot object
Testing the LEDs
Troubleshooting
Using the light strip for debugging the line follower robot
Line follower basic LEDs
Color systems
Hue
Saturation
Value
Converting these
Adding a rainbow
Summary
Questions
Further reading

Chapter 10: Using Python to Control Servo Motors
Technical requirements
What are servo motors?
What is in a servo?
Sending input positions to a servo motor
Positioning a servo
Code for turning a servo
Calibrating your servos
Adding a pan and tilt mechanism
Building the kit
Attaching the pan and tilt to the robot
Creating pan and tilt code
Making a servo object
Adding the servo to the robot class
Creating a behavior
Running it
Troubleshooting
Summary
Questions
Further reading

Chapter 11: Programming Distance Sensors with Python

169
172
172
173
174
176
177
179
180
184
185
186
187
187
189
189
190
190
190
190
192
192
193

194
194
195
196
197
199
201
203
203
205
209
210
210
212
213
215
215
216
216
217

218

[v]

Table of Contents

Technical requirements
Choosing light versus ultrasonic sensors
Optical sensors
Ultrasonic sensors
Why use two sensors?
Attaching and reading an ultrasonic sensor
Securing the sensors to the robot
Wiring the distance sensors
Voltages and level shifting
Wiring the breadboard
Reading an ultrasonic distance sensor
Troubleshooting
Avoiding walls — a script to avoid obstacles
Making our distance sensor object
Adding the sensor to the robot class
Making the obstacle avoid behaviors
First attempt at obstacle avoidance
More sophisticated object avoidance

Menu modes — choosing your robot's behavior

Managing robot modes
The web service
The template
Running it
Summary
Questions
Further reading

Chapter 12: Programming Encoders with Python

Technical requirements
What are encoders?
Use of encoders
Types of encoders
Encoding direction and speed
The encoders we will be using
Attaching encoders to the robot
Lifting up the Raspberry Pi
Preparing the encoders
Wiring the encoders to Pi
Detecting the distance traveled in Python
Simple counting
Adding encoders to the Robot object
Extracting the class
Adding the device to the Robot object
Turning ticks into millimeters
Driving in a straight line

218
219
219
220
221
222
223
224
224
225
229
233
234
234
237
238
239
242
245
246
249
251
252
254
255
255

257
257
258
258
258
260
261
262
263
264
265
269
269
271
272
273
274
276

[vil

Table of Contents

Concepts for correction
Creating a Python PID Control object
Straight line code
Troubleshooting this behavior
Driving a specific distance
Refactoring unit conversions into the EncoderCounter class
Setting the constants
Creating the combined behavior
Making a specific turn
The drive_arc function
Further ideas
Summary
Questions
Further reading

Chapter 13: Robot Vision - Using a Pi Camera and OpenCV
Technical requirements
Setting up the Raspberry Pi Camera
Attaching the camera to the pan and tilt mechanism
Wiring in the camera
Setting up OpenCV
Setting up the Pi Camera software
Getting a picture from the Pi
Installing libraries
Building our first app with these tools
OpenCV camera server app overview
The CameraStream object
Building a template
The image server main app
Visual processing with behaviors
Web app core
Controllable behaviors
The template
Running the image server
Colors, masking, and filtering — chasing colored objects
Getting information about an object
Caveat about red objects
Enhancing the PID controller
The behavior code
The template
The behavior
Running the behavior
Tuning the PID controller settings
Troubleshooting
Enhancements that you could make
Detecting faces with Haar cascades

276
278
279
281
282
282
283
284
286
290
292
292
292
293

294
295
295
296
300
301
302
302
302
303
303
304
306
307
309
310
313
315
315
316
317
318
319
320
320
320
326
327
328
329
329

[vii]

Table of Contents

Finding objects in an image
Integral images
Basic features
Planning our behavior
The code for face tracking
Using this behavior
Troubleshooting
Summary
Questions
Further reading

Chapter 14: Voice Communication with a Robot Using Mycroft
Technical requirements
Introducing Mycroft
Speech to text
Wake words
Utterances
Intent
Skills
Dialog
Vocabulary
Adding sound input and output to the Raspberry Pi
Physical installation
Installing Raspbian for the voice assist Pi
Installing the Respeaker software
Installing Mycroft on the Raspberry Pi
Base installation
Getting Mycroft to talk to the sound card
Starting to use Mycroft
Troubleshooting
Programming Mycroft skills for the robot functions
Building the intent
The settings file
The requirements file
Creating the vocabulary files
Dialog files
Current skill folder
Troubleshooting
Adding another intent
Vocabulary
Code
Running with the new intent
Summary
Questions
Further reading

329
330
331
332
333
337
337
337
338
338

340
340
341
341
341
342
342
342
342
343
343
344
345
346
347
347
348
350
351
351
353
355
356
356
357
357
358
359
359
359
360
360
361
361

[viii]

Table of Contents

Chapter 15: Programming a Gamepad on Raspberry Pi with Python 362

Technical requirements 362
When speech control won't work - why we need to drive 363
Choosing a controller 363
Design and overview 364
Preparing the Raspberry Pi for our controller and driving with it 367
Enhancing the image app core 368
Writing the behavior 370
The template (web page) 373
The stylesheet 376
Creating the code for the sliders 380
Running this 385
Upgrading the menu and displaying code for full headless 386
Making menu modes compatible with Flask behaviors 386
Loading video services 386
Styling the menu 389
Making the menu template into buttons 389
Making it start when the Pi starts 391
Adding lights to the menu server 391
Using systemd to automatically start the robot 392
Enhancement Ideas 395
Summary 395
Questions 396
Further reading 396
Chapter 16: Taking Your Robot Programming Skills Further 397
Online robot building communities — forums and social media 397
YouTube channels to get to know 399
Technical questions — where to get help 399
Meeting robot builders — competitions, makerspaces, and meetups 400
Makerspaces 400
Maker Faires, Raspberry Jams, and Dojos 401
Competitions 402
Suggestions for further skills — 3D printing, soldering, PCB, and
CnC 403
Design skills 403
2D design for illustration and diagrams 403
3D CAD 403
Skills for shaping and building 404
Machine skills and tools 404
Hand skills and tools 405
Electronics skills 406
Electronics principles 406
Taking soldering further 407
Custom circuits 407

[ix]

Table of Contents

Finding more information on computer vision 408
Books 408

Online courses 409

Social media 409
Extending into machine Learning 410
Robot Operating System 411
Summary 411
Further reading 411
Chapter 17: Planning Your Next Robot Project - Putting It All Together 413
Technical requirements 413
Visualizing your next robot 414
Making a block diagram 416
Choosing the parts 417
Planning the code for the robot 418
Letting the world know 419
Summary 420
Appendix 421
Assessments 427
Other Books You May Enjoy 436

Index 439

[x]

Preface

Learn Robotics is about building and programming a robot with smart behaviors. It covers
the skills required to makes, and build, a gadget from parts, including how to choose them.
This book follows with how to make the code to make those parts do something interesting.
The book uses Python, together with a little bit of HTML/CSS and JS.

The technology shown here is intended to include things that are available and affordable,
and the code intended to demonstrate concepts, so that these can be used and combined to
create even more interesting code and robots.

It combines aspects of being a programmer, with aspects of being a robot maker, with a
number of specialist topics such as computer vision and voice assistants thrown in.

Who this book is for

This book is intended for someone with a little programming experience. They do not need
to be an expert-level programmer, but to have written some lines of code and be
comfortable with looping, conditionals, and functions. Object oriented (class and object)-
based programming isn't necessary, but is introduced in the book.

The book does not require a specialist workshop, although there will be a little soldering.
This will be introduced later in the book.

The reader does not need to have any experience at all of electronics or making things, but
hopefully a healthy interest in learning more, since some very basic concepts are introduced
throughout the book. Being keen to build a robot, get it to do stuff, and find out what to do
with it next is probably the most important aspect of the book.

What this book covers

Chapter 1, Introduction to Robotics, introduces what a robot is, together with examples.

Chapter 2, Exploring Robot Building Blocks — Code and Electronics, starts looking at the
components of a robot. This is where we will start making choices about the robot's parts
and it also introduces the block diagrams for both systems and code.

Preface

Chapter 3, Introducing the Raspberry Pi - Starting with Raspbian, introduces the Raspberry Pi
and its connections, the Raspbian Linux operating system we'll use on it, and also covers
the preparation of an SD card for use in a robot.

Chapter 4, Preparing a Raspberry Pi for a Robot - Headless by Default, looks at what a
"headless" Raspberry Pi means and getting the Pi ready to run without a keyboard or
screen.

Chapter 5, Backing Up the Code with Git and SD Card Copies, outlines how to restore things
when they go wrong. This establishes habits to prevent you from losing your work.

Chapter 6, Building Robot Basics - Wheels, Power, and Wiring, introduces the choices and
trade-offs for building the robot base, finding out what to buy, and taking your first steps in
assembling it.

Chapter 7, Drive and Turn - Moving Motors with Python, covers how to connect our robot to
the Raspberry Pi and write code to make the robot move, laying down the foundations for
the code in subsequent chapters.

Chapter 8, Programming Line-Following Sensors Using Python, adds line sensors to the robot,
explains how to fit them, and explains then how to use them to make line-following code.

Chapter 9, Programming RGB Strips in Python, demonstrates how to add an LED strip to the
robot and write code to drive it, which the reader can then use to extend behaviors with
colorful lights, for aesthetics, debugging, and information. This chapter also introduces
soldering.

Chapter 10, Using Python to Control Servo Motors, gives our robot a set of servo motors, for
the purpose of moving a "head" around, and shows the principles by which servo motors
can be programmed.

Chapter 11, Programming Distance Sensors with Python, introduces distance sensors.
Through the addition of a pair of variable inputs, we can make our robot avoid walls and
obstacles autonomously.

Chapter 12, Programming Encoders with Python, demonstrates the concepts of odometry,
measuring how far the robot has traveled according to wheel rotations, and uses it to
compensate for motor variations and make accurate turns using a proportional-integral
controller.

[2]

Preface

Chapter 13, Robot Vision - Using a Pi Camera and OpenCV, connects our robot to a camera
mounted on the servo driven pan and tilt head. We program the robot to follow colored
objects, or track faces in the camera, while allowing us to view its activity on a computer or
phone.

Chapter 14, Voice Communication with a Robot Using Mycroft, introduces a voice assistant
running on a second Pi, Mycroft, which we can program in Python to communicate with
our robot and ask it to do things.

Chapter 15, Programming a Gamepad on Raspberry Pi with Python, is where we use
HTML/CSS and JS to turn a phone into a smart game-like controller for our robot so that we
can manually drive it, and launch autonomous behaviors at a touch, while seeing through
the robot's camera.

Chapter 16, Taking Your Robot Programming Skills Further, looks at the wider world of
robotics, what communities there are, how to get in touch with other robot builders and
makers, potential development areas, and where to compete with a robot.

Chapter 17, Planning Your Next Robot Project - Putting It All Together, is the final chapter,
where we summarize what you have seen in the book, while encouraging you to plan the
construction of your next robot.

Chapter 18, Appendix, will cover extra information to help build your robot.

To get the most out of this book

Before you begin with this book, you need to have programmed a little in a text
programming language. I am assuming some familiarity with variables, conditional
statements, looping, and functions.

In terms of manual skills, I assume that you can use a screwdriver, that you can deal with
occasional fiddly operations, and that you won't be too scared off by the possibility of
soldering things.

Please find a well-lit work surface to build the robot on when those sections come, and
somewhere to store it where it won't get dropped or damaged.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

[3]

http://www.packtpub.com
http://www.packtpub.com/support

Preface

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Learn-Robotics-Programming. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789340747_ColorImages.pdf.

Code in Action

Visit the following link to check out videos of the code being run:

http://bit.ly/2FLWilr

[4]

http://www.packtpub.com/support
https://github.com/PacktPublishing/Learn-Robotics-Programming
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789340747_ColorImages.pdf
http://bit.ly/2FLWiIr
http://bit.ly/2FLWiIr
http://bit.ly/2FLWiIr
http://bit.ly/2FLWiIr
http://bit.ly/2FLWiIr
http://bit.ly/2FLWiIr
http://bit.ly/2FLWiIr
http://bit.ly/2FLWiIr
http://bit.ly/2FLWiIr

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "This creates the myrobot . img file as a clone of the whole SD card in your home

directory."

A block of code is set as follows:

import socket
print ('$s 1is alive!' % socket.gethostname ())

Any command-line input or output is written as follows:
C:\Users\danny>ping raspberrypi.local

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"You'll see two download links, Download Torrent and Download Zip. Click

the Download Zip button and save this file."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at customercare@packtpub. com.

[5]

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[6]

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

Introduction to Robotics

Throughout this book, we will build a robot and create programs for it that give the robot
behaviors that make it feel intelligent and able to make decisions. We will write code to use
sensors to observe the robot's surroundings, and build real-world examples of advanced
topics such as vision, speech recognition, and talking.

You will see how the simple build techniques, when combined with a little bit of code, will
result in a machine that feels like some kind of pet. You will also see how to debug it when
things go wrong, which they will, and how to give the robot ways to indicate problems
back to you, along with selecting the behavior you would like to demonstrate. We will
connect a joypad to it, give it voice control, and finally show you how to plan a further
robot build.

Before we start building a robot, it's worth spending a little time on an introduction to what
robotics really is, or what a robot is. We can explore some of the types of robots, along with
the basic principles that distinguish a robot from another type of machine. We will think a
little about where the line between robot and non-robot machines are, then perhaps muddy
that line a little bit with the somewhat fuzzy truth. We will then look at the types of robots
that people start building in the hobbyist and amateur robotics scene.

In this chapter, we will be covering the following topics:

¢ What does robot mean? Where the word comes from, and what exactly defines a
robot.

e Top robots, where we'll take a look at some amazing real robots.
e Robots in industry, to explore robots seen in factories and warehouses.
¢ Robots in the home, to show how robots are already with us in our lives.

e We'll look at competitive, educational, and hobby robots where people are using
robots for fun, learning, and showing off.

Introduction to Robotics Chapter 1

What does robot mean?

A robot is a machine that is able to make autonomous decisions based on input from
sensors. A software agent is a program that is designed to automatically process input and
produce output. Perhaps a robot can be best described as an autonomous software agent
with sensors and moving outputs. Or, it could be described as an electromechanical
platform with software running on it. Either way, a robot requires electronics, mechanical
parts, and code.

The word robot conjures up images of fantastic sci-fi creations, devices with legendary
strength and intelligence. These often follow the human body plan, making them an
android, the term for a human-like robot. They are often given a personality and behave
like a person who is in some simple way naive. Refer to the following diagram:

3D Printer

= 'ju

Science fiction and real-world robots. Images used are from the public domain OpenClipArt library

The word robot comes from sci-fi. The word is derived from the Czech for slave, and was
first used in the 1921 Karel Capek play, Rossums Universal Robots. The science fiction author
Isaac Asimov coined the word robotics as he explored intelligent robot behavior.

Most real robots in our homes and industries have a few cutting edge and eye catching
examples standing out. Most do not stand on two legs, or indeed any legs at all. Some are
on wheels, and some are not mobile but still have many moving parts and sensors.

Robots like washing machines, autonomous vacuum cleaners, fully self regulating boilers,
and air sampling fans have infiltrated our homes and are part of everyday life. They aren't
threatening, and have became just another machine around us. The 3D printer, robot arm,
and learning toys are a bit more exciting though. Take a look at the following diagram:

[8]

Introduction to Robotics Chapter 1

OUTPUT (make a
change in the world)

PROCESSING
Controller & Code

INPUT (sense
the state of the world)

O O

The robot, reduced

At their core, robots can all be simplified down to what is represented in the preceding
diagram with outputs, such as a motor, inputs, and a controller for processing or running
code. So, the basis of a robot, represented as a list, would look something like this:

¢ A robot has inputs, and sensors to measure, and sample a property of its
environment

¢ A robot has outputs, motors, lights, sounds, valves, sounds, heaters, or other
types of output to alter it's environment

¢ A robot will use the data from its inputs to make autonomous decisions about
how it controls its outputs

Advanced and impressive robots

Now you have an overview of robots in general, I'll introduce some specific examples that
represent the most impressive robots around, and what they are capable of. These robots
are technical demonstrations, and with the exception of the Mars robots, have favored their
closeness to human or animal adaptability and form over their practical and repeated use.

[9]

Introduction to Robotics Chapter 1

Robots that look like humans and animals

Take a look at the following picture and understand the similarities between robots and
humans/animals:

A selection of human and animal-like robots. Cog: an Mit Project, Honda ASIMO By Morio,
Nao From Softbank Robotic, Boston Dynamics Atlas, Boston Dynamics BigDog
(https://commons.wikimedia.org/)

What these robots have in common is that they try to emulate humans and animals in the
following ways:

e The first robot on the left is Cog, from the Massachusetts Institute of Technology.
Cog attempted to be human-like in its movements and sensors.

e The second robot is the Honda ASIMO, which walks and talks a little like a
human. ASIMO's two cameras perform object avoidance, and gestures and face
recognition, and have a laser distance sensor to sense the floor. It can follow
marks on the floor with infrared sensors. ASIMO is able to accept voice
commands in English and Japanese.

e The third robot in this selection is the Nao robot from Softbank Robotics. This
rather cute, 58 cm tall robot was designed as a learning and play robot for users
to program. It has sensors to detect its motion, including if it is falling, and
ultrasonic distance sensors to avoid bumps. Nao uses speakers and a microphone
for voice processing. Nao includes multiple cameras to perform similar feats to
the ASIMO.

¢ The fourth robot is Atlas from Boston Dynamics. This robot is speedy on two legs
and is capable of natural looking movement. It has a laser radar (LIDAR) array,
which it uses to sense what is around it to plan and avoid collisions.

[10]

Introduction to Robotics Chapter 1

e The right-most robot is the Boston Dynamics BigDog, a four legged robot, or
quadruped, which is able to run and is one of the most stable four legged robots,
capable of being pushed, shoved, and walking in icy conditions while remaining
stable.

We will incorporate some features like these in the robot we will build, using distance
sensors to avoid obstacles, a camera for visual processing, line sensors to follow marks on
the floor, and voice processing to follow and respond to spoken commands. We will use
ultrasonic distance sensors like Nao, and experiment with distance sensors a little like
Asimo. We will also look at pan and tilt mechanisms for camera a little like the head used
in Cog.

The Mars rovers

The Mars rover robots are designed to function on a different planet, where there is no
chance of human intervention if something goes wrong. They are robust by design. New
code can only be sent to a Mars rover via a remote connection as it is not practical to send
up a person with a screen and keyboard. The Mars rover is headless by design. Refer to the
following photo:

The Curiosity Mars rover by NASA

[11]

Introduction to Robotics Chapter 1

Mars rovers depend on wheels instead of legs, since this is far simpler to make a robot
stable, and there is far less that can go wrong. Each wheel on the Mars rovers has it's own
motor. They are arranged to provide maximum grip and stability to tackle the rocky terrain
and reduced gravity on Mars.

The Curiosity rover was deposited on Mars with its sensitive camera folded up. After
landing, the camera was unfolded and positioned with servo motors. The camera package
can be positioned using a pan and tilt mechanism so it can take in as much of the Mars
landscape as it can, sending back footage and pictures to NASA for analysis.

Like the Mars robot, the robot we will build in this book will use motor-driven wheels. Our
robot will also be designed to run without a keyboard and mouse, being headless by
design. As we expand the capabilities of our robot in this book, we will also use servo
motors to drive a pan and tilt mechanism.

Robots in the home

Many robots have already infiltrated our homes. They are overlooked as robots because on
first glance they appear commonplace and mundane. However, they are more sophisticated
than they seem.

The washing machine

Let's start with the washing machine. This is used every day in some homes, with a
constant stream of clothes to wash, spin, and dry. But how is this a robot? Let us
understand this by referring to the following diagram:

[12]

Introduction to Robotics Chapter 1

User Controls kK - Display
Water

Temperature
Sensor
|
Spin Motor \ !

7T~
I

/ Water Heater

Speed Sensor T~_=| Washing Machine

controller)

Water Pumps
* N
Door Lock b
l *} Water Level
T 7 Sensor
Dosor Open Water Valves |~
ensor

The humble washing machine as a robot

The preceding diagram represents a washing machine as a block diagram. There is a central
controller connected to the display, and with controls to select a program. The lines going
out of the controller are outputs, and the lines going into the controller are data coming in
from sensors. The dashed lines from outputs to the sensors show a closed loop of output
actions in the real world causing sensor changes; this is feedback, an essential concept in
robotics.

The washing machine uses the display and buttons to let the user choose the settings and
see the status. After the start button is pressed, the machine will check the door sensor and
sensibly refuse to start if the door is open. Once the door is closed and the start button is
pressed, it will output to lock the door. After this, it uses heaters, valves, and pumps to fill
the drum with heated water, using sensor feedback to regulate the water level and
temperature.

[13]

Introduction to Robotics Chapter 1

Each process could be represented by a set of statements like these, which simultaneously
fill the drum and keep it heated:

start water pump
turn on water heater
while water is not filled and water is not at the right temperature:
if water filled then
stop water pump
if water is at the right temperature then
turn off heater
else
turn on water heater

Note the else there, which is in case the water temperature drops below the right
temperature a bit. The washing machine then starts the drum spinning sequence: slow
turns, fast spins, sensing the speed to meet the criteria. It will drain the drum, spin the
clothes dry, release the door lock, and stop.

This washing machine is in every respect a robot. A washing machine has sensors and
outputs to affect its environment. Processing allows it to follow a program and use sensors
with feedback to reach and maintain conditions. A washing machine repair person may be
more of a roboticist than I.

Other household robots

A gas central heating boiler has sensors, pumps, and valves and uses feedback mechanisms
to maintain the temperature of the house, water flow through heating, gas flow, and ensure
that the pilot light stays lit.

Smart fans use sensors to detect room temperature, humidity, and air quality, then output
through the fan speed and heating elements.

A computer printer is also a robot, with moving part outputs and sensors to detect all those
pesky paper jams.

[14]

Introduction to Robotics Chapter 1

Perhaps the most obvious home robot is the robot vacuum cleaner. Refer to the following
diagram:

A robotic vacuum cleaner (PicaBot By Handitec)

This wheeled mobile robot is like the one we will build here, but prettier. They are packed
with sensors to detect walls, bag levels, and barrier zones, and avoid collisions. They most
represent the type of robot we are looking at.

As we build our robot, we will explore how to use its sensors to detect things and react to
them, forming the same feedback loops we saw in the washing machine.

Robots in industry

Another place robots are commonly seen is in industry. The first useful robots have been
used in factories, and have been there for a long time.

[15]

Introduction to Robotics Chapter 1

Robot arms

Robot arms range from very tiny and delicate robots for turning eggs, to colossal monsters
moving shipping containers. Robot arms tend to use stepper and servo motors. We will
look at servo motors in the pan and tilt mechanism used in this book. An impressive
current industrial arm robot is Baxter from Rethink Robotics:

The Rethink Robotics Baxter Robot

Many robot arms are unsafe to work next to and could result in accidents. Not so with
Baxter; it can sense a human and work around or pause for safety. In the preceding image,
these sensors can be seen around the "head." The arm sensors and soft joints also allow
Baxter to sense and react to collisions.

Baxter also has a training and repeat mechanism for workers to adapt it to work, using
sensors in the joints to detect their position when being trained or playing back motions.
Our robot will use encoder sensors so we can precisely program wheel movements.

Warehouse robots

Another common type of robot used in industry is those that move items around a factory
floor or warehouse.

[16]

Introduction to Robotics Chapter 1

There are giant robotic crane systems capable of shifting pallets in storage complexes. They
receive instructions on where goods need to be moved from and to within shelving
systems:

Intellicart Line Following Robot

Smaller item-moving robot vehicles often employ line sensing technology, by following
lines on the floor, wire underneath the floor via magnetic sensing, or marker beacons like
ASIMO does. Our robot will follow lines like these. These line-following carts frequently
use wheeled arrangements because these are simple to maintain and can form stable
platforms.

Competitive, educational, and hobby robots

The most fun robots can be those built by amateur robot builders. This is an extremely
innovative space.

[17]

Introduction to Robotics Chapter 1

Robotics always had a home in education, with academic builders using them for learning
and experimentation platforms. Many commercial ventures have started in this setting.
University robots tend to be group efforts, with access to increasingly hi-tech academic
equipment to create them, as shown in the following picture:

: ‘,r';l.’,\}, OH B 0 T

-

Kismet and OhBot

Kismet was created at MIT in the late 90s. There are a number of hobbyist robots that are
derived from it. It was groundbreaking at the time, using servo motors to drive face
movements intended to mimic human expressions. This has been followed in the
community with OhBot, an inexpensive hobbyist kit using servo motors, which can be
linked with a Raspberry Pi, using voice recognition and facial camera processing to make a
convincing display.

Hobby robotics is strongly linked with open source and blogging, sharing designs, and
code, leading to further ideas. Hobbyist robots can be created from kits available on the
internet, with modifications and additions. The kits cover a wide range of complexity from
simple three-wheeled bases to drone kits and hexapods. They come with or without the
electronics included. An investigation of kits will be covered in Chapter 6, Building Robot
Basics - Wheels, Power, and Wiring. I used a hexapod kit to build SpiderBot to explore
walking motion. Refer to the following photo:

[18]

Introduction to Robotics Chapter 1

Spiderbot - built by me, based on a kit. Controller is an esp8266 + Adafruit 16 Servo Controller

Skittlebot was my Pi Wars 2018 entry, built using toy hacking, repurposing a remote
control excavator toy into a robot platform. Pi Wars is an autonomous robotics challenge
for Raspberry Pi-based robots, which has both manual and autonomous challenges. There
were entries with decorative cases and interesting engineering principles. Skittlebot uses
three distance sensors to avoid walls, and we will investigate this kind of sensor in chapter
11, Programming Distance Sensors with Python. Skittlebot uses a camera to seek out colored
objects, as we will see in Chapter 13, Robot Vision - Using A Pi Camera And OpenCV. Here is
a photo of Skittlebot:

Skittlebot - My PiWars 2018 Robot - based on a toy

[19]

Introduction to Robotics Chapter 1

Some hobbyist robots are built from scratch, using 3D printing, laser cutting, vacuum
forming, woodwork, CNC, and other techniques to construct the chassis and parts. Refer to
the following set of photos:

Building Armbot

I built the robot from scratch, for the London robotics group the Aurorans, in 2009. The
robot was known as eeeBot in 2009, since it was intended to be driven by an Eee PC laptop.
The Aurorans were a community who met to discuss robotics. The robot was later given a
Raspberry Pi, and a robot arm kit seemed to fit it, earning it the name Armbot. In the
current market, there are many chassis kits and a beginner will not need to measure and cut
materials in this way to make a functioning robot. This was not built to compete, but to
inspire other robot builders and kids to code. Towards the end of the book, we will cover
some of the communities where robots are being built and shared, along with starting
points on using construction techniques to build them from scratch.

The television series Robot Wars is a well known competitive robot event with impressive
construction and engineering skills. There is no autonomous behavior in Robot Wars
though; these are all manually driven, like remote control cars. Washing machines,
although less exciting, are smarter, so they could be more strictly considered robots.

Summary

In this chapter, we have looked at what the word robot means, and the facts and fiction
with robots. We have defined what a real robot is, and gained some idea of what a machine
needs to do to be considered a robot.

[20]

Introduction to Robotics Chapter 1

We've investigated the robots seen in the home, and in industry, and those that are
designed to amaze or have traveled to other planets. We've also looked at hobbyist and
education robots, and how some of these are just built for fun. You've seen some block
diagrams of real-world devices that may not have been considered robots, and have seen
how our homes may already have a number of robots present.

Now we know what robots are, let's move on to the next chapter, in which we'll look at
how to plan a robot so we can build it.

Questions

Based on the topics covered in this chapter, answer the following questions:

What element of a robot is used to monitor its environment?

What type of robot element do motors represent?

What are the three elements of a robotic system?

Where have robots been operating the longest in regular usage?

Why are wheels used more often than legs?

What is the principle connecting output, input, and control in a loop?

NSOk =

Why might a household washing machine be considered more robotic than a UK
Robot Wars entry?

Further reading

Refer to the following links:

Honda Asimo: nttp://asimo.honda.com/

Baxter at Rethink Robotics: https://www.rethinkrobotics.com/baxter/

Kistmet at MIT: http://www.ai.mit.edu/projects/humanoid-robotics-group/
kismet/kismet.html

The OhBot: nttp://www.ohbot .co.uk/
The Mars Science Laboratory at NASA: https://mars.nasa.gov/msl/

[21]

http://asimo.honda.com/
http://asimo.honda.com/
http://asimo.honda.com/
http://asimo.honda.com/
http://asimo.honda.com/
http://asimo.honda.com/
http://asimo.honda.com/
http://asimo.honda.com/
http://asimo.honda.com/
http://asimo.honda.com/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
https://www.rethinkrobotics.com/baxter/
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
http://www.ohbot.co.uk/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/
https://mars.nasa.gov/msl/

Exploring Robot Building Blocks
- Code and Electronics

In this chapter, we will go over the parts and systems that make up robots. What are the
parts of a robot? These parts will be both software (code, and other) and hardware. How do
they go together? When starting to make a robot, it's valuable to think about the parts you
want and how they relate to each other. I recommend you sketch a plan of your robot—a
block diagram as a guide to the connected code and parts.

In this chapter, we will be covering the following topics:

¢ What is inside a robot? We will take apart a robot and examine its parts

¢ Types of motors, sensors, and actuators - details on these robot parts
Controllers and IO - we will look at the main controllers and input/output
functions

Planning components and code structure—we will make block diagrams to
describe code, and components anywhere

A plan of our robot—example plans of the robot we will build in this book

Technical requirements

For this chapter, you will require basic drawing materials, such as a pen and paper. While
software such as Draw.io, Dia, Pencil, Inkscape, or Visio could be used, a back-of-an
envelope sketch of a block diagram is a great start to robot planning. Most of my robots
start that way.

Exploring Robot Building Blocks - Code and Electronics Chapter 2

What is inside a robot?

We can start by looking at a robot as a physical system. However, instead of looking at it all
joined together, you can see how a typical hobby rover looks when totally disassembled in
the following diagram:

y

"

A hobby rover with components laid out

[23]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

A robot can also be visualized as a block diagram of connected parts. Block diagrams use
simple shapes to show a rough idea of how things may be connected. Refer to the following
diagram:

Key

Control
Motor heahile Sensor

Left Distance
Motor Sensor
Motor ¢ (controller)
Controller Raspberry Pi D — EI
Sensor

A robot block diagram

The preceding diagram is a block diagram. This is not a formal notation; the important
factor is that you can clearly see the blocks of functionality you intend in the hardware,
with the high-level flow of data between them. This can be a sketch on the back of a bit of
scrap paper. The key I've created is off the top of my head, but it must be something that
helps distinguish sensors, outputs, and controllers.

An important thing to note is this is not a schematic, nor a scale diagram of a finished robot.
It does not even attempt to represent the actual electronic connections, or small details such
as having to signal an HCSR04 sensor before it responds; it just gives a general idea of the
data flow. This is the right sketch to show how many motors there are, the kinds of motors,
how many sensors, and, if known, what additional control circuitry is needed.

It is from this diagram that you can start to flesh out more detail, such as examining the
electrical connections, thinking about the power requirements, the actual hardware, and
how much space will be needed. For a bit of fun, pick up some paper and sketch a block
diagram for a robot you'd like to create. This is the first step toward making it happen.

[24]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

Types of motors, sensors, and actuators

A motor is an output device that results in rotation when power is applied. An actuator is
an output device, which is any device that creates movements from an electrical signal.
Examples of actuators are solenoids, valves, and pneumatic rams. Motors are a subset of
actuators too.

A sensor is a device that provides input to a robot, allowing it to sense its environment.
There are more sensor types than a single book can list, so we'll keep to the commonly
available and fun-to-use ones.

Motors and actuators

I've laid out some of the different kinds of motors, all of which are used in robotics. Let's
take a look at what each one does, and how we might use them for different kinds of
motion, as shown in the following photo:

Different motor types

I've shown some common motor types in the preceding photo. Let's understand them in
detail:

1. The most common type of motor is the DC motor. This has the property of
spinning in proportion to the amount of voltage running through it.

2. A bare DC motor like this tends to spin a little too fast to be useful bare, and is
very easily stopped. This is a DC Gear motor—a DC motor fitted with a gearbox,
providing a reduction in speed and increase in mechanical advantage so it can
move a larger load. Note that this gear motor is missing soldered leads! These
types are most useful in the wheels of a robot. We will be attaching gear motors
very much like the second image to our robot in chapter 6, Building Robot Basics
- Wheels, Power, and Wiring and chapter 7, Drive and Turn - Moving Motors with
Python.

[25]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

3. This is the servo motor (or servomechanism). A controller sends a signal to this

type of motor telling it what angular position to move to, with code working in
degrees. The motor will attempt to reach and hold that position using it's own
internal feedback loop, which means it can repeatably reach the same position.
Servo motors are used in pan and tilt mechanisms to position sensors, robot
arms, or other limbs and appendages, where the ease of positioning makes them
more suitable than other motor types. We will be programming servo motors in
Chapter 10, Using Python to Control Servo Motors.

. This is a stepper motor. These have coils powered in a sequence to allow the

motor to step a certain number of degrees, so it can be used for very precise
motions. Stepper motors tend to be slower and generate a lot of heat compared
with DC motors or servo motors, but are most suitable for fine control, like that
needed in 3D printers and high-end robot arms. They are also more expensive
than the other types.

All motors will require some sort of hardware so a
microcontroller/computer like the Pi can drive them. This hardware
allows the Pi to switch power hungry devices without destroying them.
Don't connect DC motors, stepper motors, or solenoids directly to a
Raspberry Pi!

Linear actuators are devices where electrical signals are converted into motion along a
single axis. These can be a stepper motor driving a screw in a fixed enclosure or magnetic
systems that work like mag-lev trains and move very smoothly. Refer to the following

photo:

Linear actuators: By Rollon91

[26]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

A solenoid is a simple linear actuator using an electromagnetic coil with a metal core that is
pulled or pushed away when power is applied to it. A common use of this type is in a
doorbell mechanism. They are also used to operate valves on hydraulic or pneumatic
actuators, which can create powerful motions like those seen in excavators and large
industrial robotic arms.

Status indicators - displays, lights, and sounds

Another helpful output device is a display—a simple light (or LED) to indicate the status of
some part of the robot, or an array of LEDs, a display that can show some text, or a full
graphical display like those found on a mobile phone. We will be connecting an LED strip
to the robot as a display in Chapter 9, Programming RGB Strips in Python.

Speakers and beepers can be used for a robot to communicate with humans by making
sounds. The sound output from these can range from simple noises up to speech or playing
music.

Many robots do not have any mounted status indicators and rely on a connected phone or
laptop to display their status for them.

Types of sensors

I have a small selection of common sensors I use—similar to those that will be covered in
this book. These have been used in robots I have built. Let's examine each one, and what we
would use it for. Note that these may look different from the same sensor types seen before
- there is a large variation in sensors that perform the same task, and when we get to
adding them into the robot, we will cover their variants in more detail. Refer to the
following set of photos:

o [o |o <

A selection of sensors from my robots

[27]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

Let's understand each image in detail:

1.

This is a Raspberry Pi Camera module, which connects directly into a Raspberry
Pi. We will be using this camera for our visual processing programming in
Chapter 13, Robot Vision - Using A Pi Camera And OpenCV. This module can
capture single images or video sequences. It can generate a lot of data quickly,
which is one of the complications for robot vision. It is sensitive to lighting
conditions.

This is a distance sensor, the VL53L0X Time of Flight laser ranging sensor. It uses
an infrared laser to bounce off objects and detect how far away they are. This
type of sensor sends a detected range directly to the controller. It can be sensitive
to lighting conditions. The VL53L0X sensors use 12C, which means they send
information as data directly to the Raspberry Pi, and can share their two
communication pins with many other devices. I12C is good for when you have
lots of sensors and outputs, and you are starting to run out of places to connect
things. I2C sensors are handy, but they tend to be more expensive than sensors
without this capability.

This is another distance/ranging sensor - the HCSR04 ultrasonic distance sensor -
which bounces sound pulses off objects instead. It's more sensitive to the types of
material an object is made from and will fail to detect some surfaces, but is
impervious to lighting conditions. The HC-SR04 requires the controller to trigger
a pulse of sound, and then time the echo, which we will have to manage in our
code for it. It has a far greater range than the VL53L0x laser sensor, and is far
cheaper, but is also less sensitive at near distances. We will be programming both
sound and light-based range sensors in Chapter 11, .

This is a set of three line sensors, that use light to detect transitions from light to
dark. They can be adjusted to sense in different conditions. There are a few
variations of these modules. We will use a set of these sensors for line following
in Chapter 8, Programming Line-Following Sensors Using Python. These will each
provide an on or off signal, depending on light or dark areas beneath it. They are
the simplest of the sensors we will use in this book.

The fifth sensor is a pair of microphones with some tape to stick them crudely to
a robot. These can connect directly to PCM pins on a Pi, but other microphones
may need to be connected to electronics to process their signal further, into
something the Raspberry Pi uses. There are arrays of four microphones or a
single microphones that can be used, and in some contexts can detect the
direction of sound as well. Microphones will be used for voice processing in
Chapter 14, Voice Communication With A Robot Using Mycroft.

[28]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

6. The last sensor is an optical interrupt sensor, which passes infra-red light
through a gap between two posts to detect whether something is between them,
interrupting the beam. These are used with notched wheels to sense rotations,
which can determine how far a robot has gone and introduce more accuracy into
movements. Using an offset pair of these sensors with a wheel can encode the
direction of the movement as well as its speed, and such an arrangement is
known as an encoder. There are complete encoder assemblies available as
sensors too, making it mechanically simpler to use them. We will investigate
using encoders in Chapter 12, Programming Encoders with Python.

There are many more sensors not covered here to detect positions of limbs, light, smoke,
heat sources, and magnetic fields. These can all be used to make more advanced robots and
add more interesting behavior.

Controllers and 10

At the center of the robot block diagram are the controllers. Robots usually have a main
controller, a computer of some kind. They may also have some secondary controllers, and
some more unusual robots have many controllers. Sticking with the conventional main
controller, this is the system that your code will run. It is the part that connects all the other
components together and forms the basis of their interactions.

10 pins

IO pins are used for input and output from the controller; they give the controller its ability
to connect to real-world sensors and motors.

The number of IO pins on the controller can be a major limiting factor in what you can
connect to a robot without using secondary controllers. You may also see the term General
Purpose Input Output (GPIO). Controller IO pins have different capabilities.

The simplest IO pins are only able to output an on/off signal, or read an on/off signal, like
in the following image; these are known as Digital IO pins. However, these can be
programmed to perform more complicated tasks by detecting timing between signals,
which is exactly the principle used in the HC-SR04 distance sensor. Refer to the following
diagram:

[29]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

A digital signal

Some IO pins may be able to read varying levels, like that in the following image; these are
analog input pins. If a sensor produces a changing resistance or continuous scale of values,
then an analog pin may be the suitable place to connect it. Refer to the following diagram:

An analog signal

Pulse Width Modulation (PWM) pins are able to output a cycling digital waveform,
allowing the code to select the frequency and how much time they are on for. The simple
idea is that the length of ontime vs offtime in a cycle will change to vary an output signal
and is often used to control the speed of motors. We will spend more time on PWM pins in
Chapter 6, Building Robot Basics - Wheels, Power, and Wiring, and Chapter 7, Drive and Turn
- Moving Motors with Python. Refer to the following diagram:

A PWM signal

Some IO pins can be used to form data transmission lines, like serial, 125, 12C, and SPI
buses. They are known as data buses. This can be used to send data to or from other
controllers and intelligent sensors. We will encounter these as we program with them in
part 2 of the book. Many controllers allow the usage mode of pins to be configured in the
software you run on them, but some capabilities are restricted to certain pins.

[30]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

Controllers

Although it is possible to use bare controller chips with the right skills to create
surrounding electronics and your own PCBs, we will keep things simple in this book by
using controller modules. These tend to come in packaged and easy-to-use systems. The
next set of photos shows a few of them:

=)
ol
\38
=
, B
N C [H]
2 B
B -
=z
g
S

A selection of controller modules

The preceding photo shows a selection of some of my favorite controllers. They can all be
powered via a USB connection of some kind, and for all but the Raspberry Pi, programmed
over the same connection. They all have easy-to-use connectors for making use of their IO
pins. For each of the controllers, what are they, and what are their pros and cons? Let's

understand them:

1. The Raspberry Pi 3B+, the latest in the Raspberry Pi line at the time of writing, is
the most powerful in this lineup, and is the controller we are using for our robot,
as it is the most capable of visual processing from a camera. This fast and capable
controller is closer to a phone in complexity. It's IO pins support many of the
databus types, and digital IO, but for analog reading and some other IO
functions, external controllers are needed. It is also the most expensive in this
group and uses the most power.

2. The Raspberry Pi Zero W is an inexpensive, lighter weight alternative to the full
Raspberry Pi. It supports a camera and speakers. The Zero WH model includes
the headers for IO too. It will perform speech and visual recognition, but will be
slower at these than a Raspberry Pi 3. Their small size makes them an interesting
option for a remote control pad though.

[31]

Exploring Robot Building Blocks - Code and Electronics

Chapter 2

3. This is the ESP8266 or NodeMCU. This controller has built-in Wi-Fi, and in this

NodeMCU format can be programmed very easily from a PC using the same
system as the Arduino, with Micropython or in Lua. It has plenty of IO pins, but
only one is able to read analog signals. It supports many data bus types. It is
somewhat faster and can hold larger programs than the Arduino. It is the
cheapest controller in this lineup.

. The Micro:bit was released in 2015 for use in education, and is ideal for children.

Its use in robotics requires a further adapter if you need more than the 3 IO pins
shown, but it is still a pretty capable robot controller and comes with a nice built-

in LED matrix. This can be programmed in Micropython, C, JavaScript, and a

number

of other languages.

The last panel is an Arduino Leonardo, based around the Atmega 328 chip, and

is a controller module that formed the basis of most of my robots around
2010-2012. The Arduino was important for the ease with which it could be
connected to a PC via USB and programmed to immediately interact with
devices attached to its IO pins. The Arduino is mostly programmed in the C++
language. In terms of IO, it has built-in pins to read analog devices, many digital
pins, PWM output pins, and can be set up to handle most data buses. The
Arduino is very flexible, but the processor is very simple; it is not capable of
visual or speech processing tasks. The Arduino has the lowest power
consumption of all the options shown here.

An honorable mention should go to the PIC microcontroller, not pictured here. These were
used for hobby robotics long before any of the others, and have a thriving community since
they are small, have low power consumption, and are extremely cheap.

Here is a comparison of controllers based on pro's and con's:

Controller Name

Pros

Cons

Very low power consumption, very

Quite large, least capable processor, not

inexpensive. Runs a full Linux system.

Wi-Fi and Bluetooth.

Arduino flexible IO. suitable for visual processing or speech.
Needs external adapters for connections,
Micro:bit LED Matrix, easy to program. not suitable for visual processing or
speech.
Many programming languages, onboard Not suitable for visual processing or
ESP8266/NodeMCU |Wi-Fi, very cheap, flexible IO, can be . p SING O
speech. Only a single analog input pin.
very small.
Small, powerf;l, suitible for sg[r.ne ViSl(Jial Slower than the Raspberry Pi 3.
Raspberry Pi Zero W|PTOCCSSINE and SPEech FECOgIILOn, and g, ya1na] devices needed for analog

input.

[32]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

Powerful. Easy access to IO pins. Runs a Large, power hungry, and
full Linux system. Suitable for visual expensive. Has some heat

Raspberry Pi 3 . e .. .
poerty processing and speech recognition. Wi- [issues. External devices needed for
Fi and Bluetooth. analog input.
. S . In addition to the Raspberry Pi 3, power
Raspberry Pi 3B+ Heat issues with Pi 3 are remedied. over Ethernet pins reduces compatibility

Otherwise, the same as the Pi 3.

with add-on boards (Hats).

Where the other controllers may run a simple interpreter or compiled code, both the
Raspberry Pis run complete operating systems. They both have Wi-Fi and Bluetooth
capabilities, which we will use to make a robot headless and connect with game controllers.
The Raspberry Pi 3B+ also consumes the most power when operating, a trade-off worth
making for the behavior we are aiming to program.

Planning components and code structure

You've now briefly seen some components you might use in a robot, and you've
encountered a block diagram to put them together. This is where you may start taking the
next step and thinking further about how things will be connected, and how the code you
write for them will be structured. Code is easier to reason about when taken as logical
blocks instead of one large lump. Arranging code in ways that are similar to a hardware
functionality diagram will help navigate your way around as it becomes more complicated.

So, let's return to the robot block diagram seen before.

This diagram has three sensors and two outputs. Throughout this book, you will see
diagrams like this, and then be adding new modules along with new bits of code to deal
with them. Each component (sensor, output, and controller board) may need a few bits of
code to deal with it, and then you need some code for the behavior of combined modules.

Motor controllers come in many flavors, they have slightly different ways to output to
motors, they may have monitoring for battery levels, and some more sophisticated ones
interface with wheel encoders directly to ensure wheels have traveled a specified amount.
When we write behavior for a robot, we may not want to rewrite it if we change the motor
controller. Even if there are no plans, mixing the direct motor controller code with the
behavior code would make it harder to reason about. Making an interface layer, an
"abstraction" between the real motor controller code and a common interface, will make
that possible; we will see this in practice in chapter 7, Drive and Turn - Moving Motors with
Python.

[33]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

This is similar for each sensor; they will have some code to manage how they get signals
and turn them into usable data. All these devices may have setup and teardown code that
needs to run when starting or stopping behavior that connects to them. The camera is quite
a sophisticated example of this, where a lot of processing is needed to get the data values
we can use to perform a task. Refer to the following block diagrams:

L %" @ e C L)_E:, (»t g O (i Ve] i Face Object And Drive
‘ A vD\'(: Collic s’J," < ’“’"} Avoid Collisions gg;;ﬁ";f‘
¢ f I T i
«dn ((.9
W He@ (. S } D 2 >PI' 5(" Wheels [;Sr:zgfs Camera

A quick software block diagram, in pen on an envelope, and the same diagram using the Pencil software

Just like the hardware, a simple diagram can represent the software, which can be made in
a drawing program or sketched on any paper you have to hand. In the preceding image,
I've deliberately chosen a hand-drawn one, so you don't feel that you need a drawing tool
to do this. This won't be tidy, but it's easily redrawn, and can even be done on the back of
receipt paper if an idea comes to you while out dining. Important here is that if you use
pencil, go back over it in a pen or fineliner so it doesn't fade, and if you can, scan this for
later reference. Since it may be clearer to me than the reader, I have made this in a computer
drawing tool in the right panel, but don't feel you need to do this.

Using a software tool may take longer than a hand-drawn version, and a quick sketch is
probably needed then, as it can be easy to be distracted by the quirks and styling of a tool.

In terms of the design itself, this is still a very simplistic view. The Wheels box will be a
block of code to deal with asking the wheel motor controller to do things. This may sit on
top of code written by the motor controller company, or talk directly to IO pins connected
to the controller. Distance sensors would be a block of code to read distances from the
sensors, triggering them when necessary. We will be looking at two different kinds of
sensors and comparing them. By having a block of code like this, swapping out the sensors
at this level means the other code won't have to change.

[34]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

There is also a block of code for the camera, doing fiddly stuff like setting it up, resolution,
white balancing, and other fiddly parts that we will cover. On top of this is a layer that will
use the camera images to get the position of a colored object and return this position
information to the layer above.

Across the motors and distance sensors is a behavior layer that allows the robot to
automatically avoid collisions, perhaps when it is below a threshold on one side; this will
override other behavior to turn away from that obstacle and drive off a bit.

The top layer is another behavior that will take the position data from the Get Object
Position code, use this position to choose a direction, then instruct the motors to drive to the
object. Because this behavior goes through the Avoid Collisions behavior, there will be a
complicated interaction that leads the robot to seek the correct object, but avoiding
obstacles and going around things. It will also not come close enough to the intended object
to collide with it.

Each module is fairly simple, perhaps with the lower layers that are closer to the hardware
being more complex, especially in the camera case.

Breaking the code down into blocks like these means that you can approach a single block
at a time, test, and tweak its behavior, and then focus on another one. When you have
written blocks like this, you can reuse them. It's likely you will need the motor code
multiple times, and now will not need to write it multiple times.

Using blocks to describe our software lets us implement the blocks and their interactions in
different ways. We can consider whether we will use functions, classes, or services for these
blocks. I will spend more time on this as we start writing the code for this and show the
different ways.

Planning our robot

Let's put all of this to use, and plan the robot that we are making in this book. Although as
we go through chapters we will be adding new components each time, having an overall
map in our minds as we go helps us to see where we are. It is quite exciting to start to
picture all the things a robot will do. Let's start with a list of what our robot will do and be:

It will have wheels and be able to drive around the floor

It will have a Raspberry Pi 3 controller
It will have a motor controller for the wheels

It will be able to follow lines with a pair of line following sensors

[35]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

It will be able to indicate its status with a set of multicolored LEDs
The robot will use a pair of servo motors for a pan and tilt mechanism

It will be able to avoid walls and navigate around obstacles with either ultrasonic
or laser distance sensors

It will have an encoder per wheel to know how far it has moved

The robot will use a camera to sense colored objects or faces

The robot will have a microphone and speaker to work with voice commands
It will have a game pad as a remote control

It will need power for all of these things

Phew, that is a lot of functionality. Now, we need to draw the hardware blocks. Refer to the
following block diagram:

Speech Control |

Speaker Microphone

q)) Q Distance Sensors (Light or Ultrasonic)
: Left ‘ Right '
77777777777777777777 | ' '
Left Wheel Assembly ! ! !
' 1 1
Motor Encoder e | --------------- !
””””””””””” P |
Motor Controller Controller ' Line Sensors :

(Raspberry Pi ' .

)
@y T

dilll1L
TTTTTTT

0-- Camera Assembly

Camera Pan Tilt

@ 1] ﬁ 3

Right Wheel Assembly ! Game Pad Indicator LED's

Servo Servo

-------------------- x| | 0000

Block diagram of the robot we will build. Created using the draw.io web app

[36]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

Although this looks like a daunting amount of robot, we will be focusing on an area of
functionality in each chapter and building it before moving to other areas. The annotation
here is not any formal notation, it is just a way of simply visualizing all the parts that will
need to be connected. Along with this, I usually sketch roughly where I would physically
place sensors and parts in relation to each other, as follows:

Distance Sensors

Line Sensors
Raspberry Pi

Motor
Controller

Motor ncodejrs
(under Pi)

An overview of how the robot could be physically laid out. Created with Inkscape

This sketch is not exhaustive, accurate, or to scale, but just an idea of where I want the parts
to end up. Note a few things in this diagram:

¢ Sensors have a clear field of view, and the distance sensors are pointing out to the
sides. I'll cover more in the relevant sensor chapters on why this is important.

¢ Encoders are placed over the wheels where they will be used; line sensors need
to be under the robot where the lines will be.

¢ Heavy items, specifically batteries, should be kept low to avoid a robot falling.
e Batteries need to be changed, so think about access to them.

[371]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

e Try to keep components that are directly connected quite close to each other.

e This is a rough plan. It need not be this detailed, and this is not the test fit. Real
dimensions, design compromises, and hitches will mean that this will change.
This is just a starting point.

As we work through the book, we will look at the details in these diagrams, and start to
flesh out the real robot, making some of this less fuzzy. Any diagram like this, at the start of
a project, should be taken as a bit rough and not to scale, or to be followed blindly, but as a
guide, or a quick map to start working from.

Summary

In this chapter, you've been able to see a number of the different component parts that go
into a robot, and through a block diagram as a plan, start to visualize how you'd combine
those blocks to make a whole robot. You've seen how you can quickly sketch your robot
ideas on an envelope, and that drawing tools on a computer can be used for a neater
version of the same diagram.

You've had a quick tour of motors, sensors, and controllers, along with a few ways, such
as analog, digital, PWM, and databuses, for controllers to communicate with the other
devices connected to them.

Following on from this, you've seen a plan of the robot we will build in this book.

Questions

1. What is an IO pin?
2. What tools do you need to make a block diagram?

3. What are the drawbacks of the laser ranging sensor versus the ultrasonic distance
sensor?

4. What type of system is a microphone?
5. What kind of IO pin is correct for measuring varying resistance?
6. What type of 10 pin would be suitable for detecting an on/off signal?

[38]

Exploring Robot Building Blocks - Code and Electronics Chapter 2

Further reading

e Raspberry Pi Sensors by Rushi Gajjar: Integrate sensors into your Raspberry Pi
projects and let your powerful microcomputer interact with the physical world.

e Make Sensors: A Hands-On Primer for Monitoring the Real World with Arduino
and Raspberry Pi by Tero Karvinen, Kimmo Karvinen, and Ville Valtokari. Learn
to use sensors to connect a Raspberry Pi or Arduino controller with the real
world.

e Make Electronics: Learning by Discovery by Charles Platt: This is useful if you
want to find out more about electronic components and dive deeper into
individual components.

[39]

Introducing the Raspberry Pi -
Starting with Raspbian

For this book, we will be building a robot using the Raspberry Pi, and at the time of writing,
the Raspberry Pi 3B+ is the current model. We will investigate why I've chosen this specific
board as a controller, and we will also look at the connections on the Raspberry Pi and how
we will use them, the plus Raspbian software we will use on it, and we will finish by
preparing Raspbian for use on the Raspberry Pi.

By the end of this chapter, you will know the following:

e What the Raspberry Pi is, what it can do, and why I chose it

e What Raspberry Pi connections we will use for the sensors and actuators in our
robot

e What the Raspbian operating system is and why I am using it
e How to prepare an SD card with Raspbian to use in your robot

Technical requirements

For this chapter, you will require the following;:

e A microSD card storing 16 GB
e A Raspberry Pi 3B+

¢ A Windows, Linux, or macOS computer or laptop connected to the internet and
able to read/write to SD cards

Check out the following video to see the Code in Action:

http://bit.ly/2Q0oX2Y4

http://bit.ly/2QoX2Y4
http://bit.ly/2QoX2Y4
http://bit.ly/2QoX2Y4
http://bit.ly/2QoX2Y4
http://bit.ly/2QoX2Y4
http://bit.ly/2QoX2Y4
http://bit.ly/2QoX2Y4
http://bit.ly/2QoX2Y4
http://bit.ly/2QoX2Y4

Introducing the Raspberry Pi - Starting with Raspbian Chapter 3

What can the Raspberry Pi do?

As we saw in Chapter 2, Exploring Robot Building Blocks - Code And Electronics, the
controllers chosen for a robot can be one of the most important choices you make. This will
determine what kinds of inputs and outputs you have, what the power requirements of
your electronics will be, what types of sensors you will be able to use, and what code you
will run. Changing a controller could mean rewriting the code, redesigning where the
controller would fit, and changing the power requirements.

Raspberry Pi is a range of small computers designed for use in education, which have
became quickly a favorite of makers due to being a complete computer with the cost and
size of a microcontroller, with using IO pins for connecting to custom hardware. All the
Raspberry Pi models have abilities such as attaching a camera, display, and keyboard, and
some kind of networking. We are specifically working with the Raspberry Pi 3 range.

Speed and power

The Raspberry Pi is powerful enough to handle some visual processing tasks, with later
models being able to perform this faster. The same can be said for the voice recognition
tasks too. It is for this reason that the faster 3 and 3B+ models are recommended. The Zero
and Zero W are much slower, and although the system will still work, the speed may be
frustrating.

The Raspberry Pi is powerful enough to run a complete computer operating system, a
version of Linux. We will explore this later, but this allows us to use Python to perform the
visual processing and voice processing using libraries and tools that are well maintained by
others. Other controllers, such as the Arduino, Esp8266, and Micro:bit simply do not have
the capabilities to perform these tasks.

There are alternative controllers that run Linux, such as the Beaglebone, C.H.I.P.,
OnionlOT, and Gumstix Linux computers, but these are either more costly than the
Raspberry Pi or less capable. They also don't come with the camera integration. Although
the Beaglebone has superior analog IO connectivity, the Raspberry Pi 3B+ makes for the
better all-rounder, and has plenty of options for extending it.

[41]

Introducing the Raspberry Pi - Starting with Raspbian Chapter 3

Connectivity and networking

The Raspberry Pi 3B+ comes with USB ports and HDMI ports too. We don't plan on using
them in this book, although they are handy for debugging if things go really wrong and
you lose contact with a robot using a Raspberry Pi. With that in mind, having an additional
screen and keyboard handy is recommended. It has a wired Ethernet port that can be used
to connect it to a network, but this would be inconvenient for keeping in touch with a robot,
so we will favor the Wi-Fi.

Raspberry Pi 3, 3B+, and Zero W models all have Wi-Fi and Bluetooth on board.
Throughout this book, we will be using Wi-Fi to connect to the robot so we recommend a
model that has this.

The Raspberry Pi has IO pins to allow you to connect it to the sensors. In the Raspberry Pi
3B+, the GPIO connections are ready to use, due to having the pins (known as headers)
already soldered in place. The Raspberry Pi Zero is smaller and cheaper, but usually comes
without these headers. The early Raspberry Pi boards had different IO connectors, both of
which are reasons to stick with the 3B+.

The recommended Raspberry Pi version

Putting all this together, the Raspberry Pi 3B+ is a complete computer with IO and a special
connector for a camera. It is capable of visual and speech processing, has onboard Wi-Fi
and Bluetooth, and can run Python code, and has presoldered headers ready for connecting
to robot devices, as well as being small and relatively cheap. Later Raspberry Pi versions
may supersede these with faster processing and additional capabilities.

What connections will we use?

When building the robot, we will be using a subset of the connections the Raspberry Pi has
to offer. Lets take a look at what those connections are and how we will use them. As we
connect sensors and parts to the Raspberry Pi, we will cover the connections in detail, so do
not feel you need to memorize these now. However, this pin diagram may serve as a
reference for these connections.

[42]

Introducing the Raspberry Pi - Starting with Raspbian Chapter 3

In the following image, the highlighted areas show the connections in use. Note that on the
3+, there is an additional four-pin connector (POE) that we will not be using. First, we will
be using the power connector, located at the top right of the following image; this plugs in
via a micro-USB connector similar to that on many phones. We will use this while learning
to go headless, and this is one of the options for powering a robot. We can plug USB battery
packs into this port if they are able to provide the correct amount of power. Refer to the
following diagram:

Jamod

10 0t
(T
IWaH

L1IANHIHLI

olpny

CSI (CAMERA)

(=)
:‘{{
(=]
=)
i
o
5

§10Z |d Ald=qdsey & @
Z'TA 9 2P0 £ Id Alaqdsey r
[N, N

Ulaw

Raspberry Pi connections

The top-middle highlighted port is the CSI port; this is for the Pi Camera, which we will
attach when preparing to do visual processing.

We will be using the MicroSD card slot under the Pi to run our code. We will not be using
Ethernet or HDMI, as we will be talking to the Raspberry Pi via Wi-Fi.

[43]

Introducing the Raspberry Pi - Starting with Raspbian Chapter 3

When we connect a Game Pad to the robot later in the book, we will be using the USB ports
to connect to it. Take a look at the following diagram:

:

X

3

2 =

= z 3

o O alla)

n 0

N i 8 o
n Qo =

© - Z N © o -

i — O 4 — N

n O

ID_SDO
13 Q@ GND
26

I2S LRCLOCK 19

The Raspberry Pi GPIO Port (B+, 2, 3, 3B+, Zero, and Zero W)

The large connector across the bottom of the Raspberry Pi connections image is the GPIO
port. The preceding image shows a close-up diagram with the names and uses of some of
the pins shown. This is where we will connect most of our sensors and motors. It has SPI,
12C, Serial, and 125 databuses, and digital IO pins to attach external devices to.

SPI, I12C, and Serial are used to send control and sensor data between a controller and smart
devices. 125 is used to carry encoded digital audio signals (PCM) to and from the Raspberry
PI The ports for these databuses can be enabled through configuration, or the pins can be
used as general digital pins when the databuses are not enabled.

The 5V pins will be used to provide power to the Raspberry Pi while on the robot, along
with the pins marked GND, an abbreviation of ground, which is the equivalent of a minus
terminal on a battery or power supply. We may be using 3.3V power for sensors that
require this supply level.

[44]

Introducing the Raspberry Pi - Starting with Raspbian Chapter 3

Although there is an audio port on the Raspberry Pij, this is not really suitable for driving a
speaker, so we will be using the 12S pins on the GPIO port for this. The I2S pins are 18, 19,
20, and 21. We will be using this for the voice processing.

The pins marked SDA and SCL are an I12c databus. We will be using this for some sensors,
and it is also used by some motor control boards. Instructions are sent over this port.

Pins 9, 10, and 11 form the SPI port, which we will be using to connect RGB LEDs to.

The other pins that are numbered, without a specific word or shading type, are general
purpose IO pins, which we can use for digital inputs and outputs with motor controllers,
servo motors, line sensors, encoders, and ultrasonic sensors.

You'll note that the numbering here is a little mixed up, and this is because these numbers
correspond to the numbering of pins on the Raspberry Pi's main processor chip, and not the
pin positions on the GPIO port, which is also sometimes used. This is a quirk of the Pi
worth getting used to and is known as the BCM numbering system, as an abbreviation of
the Broadcom chip these numbers refer to.

Raspberry Pi Hats

Raspberry Pi Hats (also named Bonnets) are circuit boards designed to plug into the GPIO
header and conveniently add capabilities to the Raspberry Pi, such as driving motors or
specific sensors. Some allow further use of GPIO pins, and some would require you to use
other interface boards to gain access to other pins.

These Hats use GPIO pins for different purposes; for example, audio hats will use the 12s
pins for audio interfacing, but some motor controller hats use the same pins as general
purpose digital IO pins to control motors instead. Using such hats together would be
problematic, so be aware of this when using multiple hats or specific buses. We will explore
this more in chapter 6, Building Robot Basics - Wheels, Power, and Wiring, when we choose a
motor controller.

[45]

Introducing the Raspberry Pi - Starting with Raspbian Chapter 3

What is Raspbian?

Raspbian is the choice of software we will use to drive the Pi, an OS that our code will run
in. It is the official operating system recommended by the Raspberry Pi Foundation, and
comes with software specifically prepared to make working with the Raspberry Pi

easier. Raspbian can be set up to support a full desktop, albeit that, due to the Raspberry
Pi's hardware limitations, it would feel a little less powerful and slower than your normal
laptop.

Raspbian is based on the Debian Linux distribution, which is a collection of software set up
to run together, giving lots of functionality and many possibilities. Linux distributions like
this are the basis of many large internet servers, mobile phones, and other devices with
apps. Raspbian has the software closest to the Raspberry Pi hardware, namely the kernel
and drivers, which are made specifically for the Pi and optimized for them. It also has some
neat ways to configure the specialized features that Raspberry Pi users might need.

We will use it in a more minimal way than a desktop, forgoing the keyboard, mouse, and
monitor support. This minimal version is known as Raspbian-Lite because it is a much
smaller download when desktop software is not required, and because it uses less space on
the MicroSD card. Not running a window manager will free up memory and use less of the
processing power of the Pi, keeping it free for activities such as visual processing. We will
then extend Raspbian-Lite with the software and tools we will use to program our robot.

As you work through the book, you will mostly be interacting with the robot through code
and the command line. Linux and Raspbian are written with command-line usage over a
network in mind, which is a good fit for the headless nature of programming a robot.

We will make a lot of use of Linux's strong support for the Python programming language
and the network tools that Linux provides. Raspbian is widely used in the Raspberry Pi
community and is among the easiest to find answers for when help is needed. It is not the
only OS for the Pi, but it is the most useful choice for someone starting on the Raspberry Pi.

Preparing an SD card

To use Raspbian on a Raspberry Pi, you will need to put the software onto a micro SD card
in a way that the Raspberry Pi can load it.

[46]

Introducing the Raspberry Pi - Starting with Raspbian

Chapter 3

First, we need to download Raspbian. To do this, take your browser to the Raspberry Pi
Raspbian Downloads Page: https://www.raspberrypi.org/downloads/raspbian/. On this
page, you'll see two distributions: Raspbian With a Desktop and Raspbian Lite. Both these

links will be the current version of Raspbian:

Raspbian is the Foundation's official supported operating system. You can install it
with NOOBS or download the image below and follow our installation guide.

Raspbian comes pre-installed with plenty of software for education, programming
and general use. It has Python, Scratch, Sonic Pi, Java, Mathematica and more.

The Raspbian with Desktop image contained in the ZIP archive is over 4GB in size,
which means that these archives use features which are not supported by older
unzip tools on some platforms. If you find that the download appears to be corrupt
or the file is not unzipping correctly, please try using ZZip (Windows) or The
Unarchiver (Macintosh). Both are free of charge and have been tested to unzip the
image correctly.

RASPBIAN STRETCH WITH
DESKTOP
Image with desktop based on Debian Stretch
@ Version April 2018 @
Release date: 2018-04-18

Kernel version: 4.14
Release notes Link

SHA-256: 0e2922e551a895b136f2ea83d1lbcOca7le016e6d50244ba3da52bd7 3P242dc96
64d£5d1b6

RASPBIAN STRETCH LITE

Minimal image based on Debian Stretch

Version: April 2018
Release date: 2018-04-18
Kernel version: 4.14
Release notes: Link

[® Download Torrent | & Download zIP

[Download Torrent | & Download zIP
SHA-256: 5a0747b2bfb8c8664192831b7dc5b22847718alch77639al£3db368

The Raspberry Pi downloads screen

[47]

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/

Introducing the Raspberry Pi - Starting with Raspbian Chapter 3

The Raspbian Lite downloads can be seen highlighted in the preceding image. You'll see
two download links, Download Torrent and Download Zip. Click the Download Zip
button and save this file. Note that the versions do change, so please use the current
version. This file is big, at around 400 MB! It will be named something like 2018-06-27~
raspbian-stretch-lite.zip, with a current release data and name in it. You do not
need to unzip this file.

Flashing the card in Etcher

To put this software onto the SD card in a way the Pi will load it, we cannot just copy the
zip onto it. It needs to be stored on the card in a particular way. The Etcher software offers a
simple way to do this, and is available for Windows, Mac, and Linux computers.

Getting Etcher

Point your browser at https://etcher.io/ and then use the download button to choose
the version for your computer and download it. The following are the steps for different
OSes:

¢ On Windows, you will have to download an Etcher setup file. Double-click this
and give it permission to install Etcher.

¢ On macOS, you will have to download an Etcher DMG. Open this file and drag
the Etcher package into your apps.

¢ On Linux, you will have to download an appImage. You will need to make this
file executable and run it.

Now, start the Etcher app.

[48]

https://etcher.io/
https://etcher.io/
https://etcher.io/
https://etcher.io/
https://etcher.io/
https://etcher.io/
https://etcher.io/
https://etcher.io/

Introducing the Raspberry Pi - Starting with Raspbian Chapter 3

Using Etcher to write to the card
To write the image to the SD card with Etcher, follow these steps:

1. At this point, insert your micro SD card into the correct port on your laptop.
2. Click the Select image button in Etcher, and than choose the Raspbian Lite zip

you downloaded:

Select image

FETCHER

Etcher with Select image highlighted

3. Etcher will automatically detect the SD card unless you have multiple cards
present, and the flash button will be highlighted. You can press this button and it
will prepare the card. This might take a few minutes. If you are asked by your
computer for permission to write to the card, please accept it.

You may load this onto a Pi with a screen and keyboard, but before we can use
this Raspberry Pi for a robot, we will need to make changes to the SD card on

your computer in the next chapter.

[49]

Introducing the Raspberry Pi - Starting with Raspbian Chapter 3

Summary

In this chapter, you've seen more of what the Raspberry Pi is, and what connections on the
Raspberry Pi we will be using.

We have learned about the Raspbian operating system, which is derived from Linux, how
to download it, and how to put this software onto a micro SD card for use in the Raspberry
Pi.

In the next chapter, we will make this card headless so that we do not require a screen,
keyboard, or mouse to use this Raspberry Pi and contact it from our computer.

Questions

Answer the following questions:

1. What is the name of the software we will be using on our Raspberry Pi?

2. What did we use to make the SD card?

3. What is the CSI connector on the Raspberry Pi for?

4. Which versions of the Raspberry Pi are recommended for use in this book?

Further reading

Refer to the following links:

¢ The Raspberry Pi Foundation Guide to Installing Raspberry Pi Operating
Systems: https://www.raspberrypi.org/documentation/installation/
installing-images/README .md.

¢ Raspberry Pi By Example, Ashwin Pajankar and Arush Kakkar, published by
Packt Pblishing, which has a section on alternative operating systems for a
Raspberry Pi, along with many interesting Raspberry Pi projects.

¢ Raspberry PI GPIO Pinout (https://pinout.xyz/): This describes how different
boards are connected to the Pi in terms of the pins they actually use. It's useful to
know that most boards only use a subset of these pins.

[50]

https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/

Preparing a Raspberry Pi for a

Robot - Headless by Default

In this chapter, you will learn why the Raspberry Pi controller on a robot should be
wireless, or headless; what headless means; and why it's useful in robotics. You will see
how to set up a Raspberry Pi as a headless device from the beginning, and how to connect
to this Raspberry Pi once on the network, and then send your first instructions to it.

We will cover the following topics in this chapter:

What does headless mean and why is it useful?
How do you make a Raspberry Pi headless?
Finding your Raspberry Pi on the network
Connecting to your Raspberry Pi

Sending your first commands, such as configuring Raspbian and changing the
robot's name

Technical requirements

For this chapter, you will require the following;:

A Raspberry Pi preferably a 3B+ (but a Pi 3 will do)

A USB power supply or port capable of 2.1 amps

A USB to Micro-USB cable

The MicroSD card you prepared in the previous chapter

A Windows, Linux, or macOS computer or laptop connected to the internet and
able to read/write to SD cards

PuTTY software on Windows (SSH software is already available on Mac and
Linux desktops)

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

The GitHub link for the code is as follows:

https://github.com/PacktPublishing/Learn—-Robotics-Fundamentals-of-Robotics—
Programming/tree/master/chapter4

Check out the following video to see the Code in Action:

http://bit.1ly/2TOLgN5

What does headless mean and why?

A headless system is a computer designed to be used from another computer via a
network, for when keyboard, screen, and mouse access to a device is inconvenient.
Headless access is used for server systems and for building robots. Refer to the following
diagram:

Keyboard

Mouse &

Monitor

Directly attached to Pi

Not mobile, tethered

A Raspberry Pi tethered to a screen, keyboard, and mouse

The preceding diagram shows a system with a head where a user can sit in front of the
device. You would need to take a screen, keyboard, and mouse with your robot—not very
mobile. You may be able to attach/detach them as required, but this is also inconvenient
and adds bulk. There are systems designed to dock with Raspberry Pis like this and are
portable, but when a robot moves, you'd need to disconnect or move with the robot.

[52]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter4
http://bit.ly/2TOLqN5
http://bit.ly/2TOLqN5
http://bit.ly/2TOLqN5
http://bit.ly/2TOLqN5
http://bit.ly/2TOLqN5
http://bit.ly/2TOLqN5
http://bit.ly/2TOLqN5
http://bit.ly/2TOLqN5
http://bit.ly/2TOLqN5

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

I have seen, at some events, a robot with a tiny screen attached and someone using a
wireless keyboard and mouse as an option. However, in this book we are going to focus on
using a robot as a headless device. Take a look at the following diagram:

Using WiFi to instruct the
Raspberry Pi
From a computer or Laptop

e

-

-

No tether, suitable for
mobile robots

A Raspberry Pi on a robot in a headless configuration

The Raspberry Pi in the preceding diagram is mounted on a robot as a headless device. This
Raspberry Pi is connected to batteries and motors, but not encumbered by a screen and
keyboard; those are handled by another computer. The Pi is connected wirelessly to a
network, which could be through a laptop. Code, instructions, and information are sent to
and from the Raspberry Pi via this wireless network. To interact with it, you use the screen
and keyboard on your laptop. However, you would usually expect your robot to function
autonomously, so you would only connect to the Pi to modify things or test code. As an
alternative to bringing a laptop to control a robot everywhere, it can be more convenient to
add a few indicator LEDs (which we will add in chapter 9, Programming RGB Strips in
Python) and a wireless Joypad (to be added in chapter 15, Programming A Gamepad On
Raspberry Pi With Python) so you can start and stop autonomous behaviors, view the robot's
status, or just drive it without needing to hook up the laptop at all. This Raspberry Pi is free
from the screen and keyboard.

Most of the time, a screen and keyboard are not required. However, it is
worth having them around for the few cases in which you lose contact
with the Raspberry Pi and it refuses to respond via the network. You can
then use a screen and keyboard to connect with it and see what is going
on.

[53]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

For our headless access to the Raspberry Pi, we will be using the SSH system, a secure shell.
SSH gives you a command line to send instructions to the Pi and a file transfer system to
put files onto it. As SSH connects over a network, we need to configure our Raspberry Pi to
connect to your own wireless network.

Making a Pi headless makes it free to roam around. It keeps a robot light by not needing to
carry or power a screen and keyboard. Being headless makes a robot smaller, since a screen
and keyboard are more bulky. It also encourages you, the maker, to think more about
autonomous behavior since you can't always type commands to the robot.

Setting up wireless on the Raspberry Pi and
enabling SSH

To make your Raspberry Pi headless, we need to set up Wi-Fi. First, you will need to insert
the MicroSD card we made earlier back into your computer. If you have come straight here
from Etcher, you should remove the card and reinsert it so that the computer can recognize
the new state of the drive. You will see the card shows up as two disk drives.

One of the drives is called boot; this is the only one that you can read in Windows.
Windows will ask if you want to format one of these disks. Click Cancel when Windows
asks you. This is because part of the SD card holds a Linux-specific filesystem that is not
readable by Windows.

In boot, you'll need to create two files:

¢ ssh: Create this as an empty file with no extension
e wpa_supplicant.conf: This file will contain your Wi-Fi network configuration

It is important that the SSH file has no extension, so it is not ssh.txt or
some other variation. Windows will hide extensions by default so you
may need to reveal them. On Windows, in File Explorer, go to the View
tab, look for the Show/Hide pane, and then tick File name extensions. In
general, when working with code, having the extensions displayed is
important so I recommend leaving this option ticked.

[54]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

The wpa_supplicant.conf file

The first line you must provide in the wpa_supplicant.conf file is a country code. These
are known as iso/iec alpha2 country codes and you should find the appropriate country
code for the country you are in, by going to https://datahub.io/core/country-list. This
is important, as the Wi-Fi adapter will be disabled by Raspbian if this is not present, to
prevent it from operating outside the country's legal standard, and interfering or being
interfered with by other equipment. In my case, I am in Great Britain, so my country code is
GB. Let's take a look at the code:

country=GB

Then, add the following lines. update_config means that other tools used later are
allowed to update the configuration:

update_config=1
ctrl_interface=/var/run/wpa_supplicant

Now, you can define the Wi-Fi network your robot and Raspberry Pi will connect to:

network={
ssid="<your network ssid>"
psk="<your network psk>"

}

Please be sure to specify your own network details instead of the placeholders here. The
pre-shared key (PSK) is also known as the Wi-Fi password. These should be the same
details you use to connect your laptop or computer to your Wi-Fi network.

The completed wpa_supplicant.conf file should look like this:

country=GB
update_config=1
ctrl_interface=/var/run/wpa_supplicant

network={
ssid="<your network ssid>"
psk="<your network psk>"

}

[551]

https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list
https://datahub.io/core/country-list

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

Ensure you use the menus to eject the MicroSD card so the files are fully written before
removing it. Now, with these two files in place, you can use the MicroSD Card to boot the
Raspberry Pi. Plug the MicroSD card into the slot on the underside of the Raspberry Pi. The
contacts of the MicroSD card should be facing the Raspberry Pi in the slot; it will only fit
properly into the slot in the correct orientation.

Plug a Micro-USB cable into the side of the Raspberry Pi and connect it to a power supply.

As the technical requirements suggested, you should have a power supply able to provide
around 2.1 amps. Lights turning on means that it is starting.

Finding your Pi on the network

Assuming your SSID and PSK are correct, your Raspberry Pi will now have registered on
your Wi-Fi network. However, now you need to find it. The Raspberry Pi will use dynamic
addresses (DHCP), so every time you connect it to your network, it may get a different
address; linking to your router and writing down the IP address can work in the short term,
but doing that every time it changes would be quite frustrating.

Luckily, the Raspberry Pi uses a technology known as mDNS to tell nearby computers that
it is there. mDNS is the Multicast Domain Name System, which just means that the
Raspberry Pi sends messages to all nearby computers, if they are listening, to say that its
name is raspberrypi.local and giving the address to find it. This is also known as
Zeroconf and Bonjour. So, the first thing you'll need to do is ensure your computer is able
to receive this.

Apple macOS

If you are using an Apple Mac computer, it is already running the Bonjour software, which
is already mDNS capable.

Microsoft Windows

On Windows, you will need the Bonjour software.

If you have already installed a recent version of Skype or iTunes, you will already have this
software. You can use this guide (https://smallbusiness.chron.com/enable-bonjour-
65245.html) to check that it is already present and enable it.

[561]

https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html
https://smallbusiness.chron.com/enable-bonjour-65245.html

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

You can check whether it is already working with the following command in a Command
Window:

C:\Users\danny>ping raspberrypi.local

If you see this, you have Bonjour already:

PING raspberrypi.local (192.168.0.53) 56(84) bytes of data.
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seg=1 ttl=64 time=0.113 ms
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seg=2 ttl=64 time=0.079 ms

If you see this, you'll need to install it:

Ping request could not find host raspberrypi.local. Please check the name
and try again.

To do so, browse to the Apple Bonjour For Windows site at https://support.apple.com/
downloads/bonjour_for_windows and download it, then install Download Bonjour Print
Services for Windows. Once this has run, Windows will now be able to ask for mDNS
devices by name.

Linux

Ubuntu and Fedora desktop versions have had mDNS compatibility for a long time. On
other Linux desktops, you will need to find their instructions for Zeroconf or Avahi. Many
recent ones have this enabled by default.

Testing the setup

The Raspberry Pi's green light should have stopped blinking and only a red power light
should be visible.

In Windows, summon a command line by pressing the Windows key and then CMD. In
Linux or macOS, summon a Terminal.

From this Terminal, we will try to ping the Raspberry Pj, that is, find the Pi on the network
and send a small message to elicit a response:

ping raspberrypi.local

[571

https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows
https://support.apple.com/downloads/bonjour_for_windows

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

If everything has gone right, the computer will show that it has connected to the Pi:

$ ping raspberrypi.local

PING raspberrypi.local (192.168.0.53) 56(84) bytes of data.

64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=1 ttl=64 time=0.113 ms
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=2 ttl=64 time=0.079 ms
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=3 ttl=64 time=0.060 ms
64 bytes from 192.168.0.53 (192.168.0.53): icmp_seq=4 ttl=64 time=0.047 ms

What if you cannot reach the Raspberry Pi?

If the Raspberry Pi does not appear to be responding to the ping operation, these are some
initial steps you can take to try to diagnose and remedy the situation. If it works already,
skip to the next heading. Refer to the following steps:

1.

First, double-check your connections. You should have seen a few blinks of a
green light and a persistent red light. If not, ensure that the SD card is seated
firmly and that the power supply can give 2.1 amps.

Use your Wi-Fi access point settings with the Pi booted and see if it has taken an
IP address there.

This may mean that Zeroconf/Bonjour is not running on your computer correctly.
If you have not installed it, please go back and do so. If you have and you are on
Windows, the different versions of Bonjour print services, Bonjour from Skype,
and Bonjour from iTunes can conflict if installed together. Use the Windows
add/remove functions to see if there is more than one and remove all Bonjour
instances, then install the official one again.

Next, turn the power off, take out the SD card, place this back into your
computer, and double check that the wpa_supplicant.conf file is present and
has the right Wi-Fi details and country code. The most common errors in this file
are the following:

e Incorrect Wi-Fi details

¢ Missing quotes or missing or incorrect punctuation

e Incorrect or missing country code

e Parts being in the wrong case

. The SSH file is removed when the Pi boots, so if you are certain it was there and

has been removed, this a good sign that the Pi actually booted.

[581]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

6. Finally, this is where you may need to boot the Pi with a screen and keyboard
connected, and attempt to diagnose the issue. The screen will tell you whether
there are other issues with wpa_supplicant.conf or other problems. With
these problems, it is important to look at the screen text and use this to search the
web for answers. I cannot reproduce all those here, as there are many kinds of
problems that could occur here. If you cannot find this, I recommend asking on
Twitter using the tag #raspberrypi, on Stack Overflow, or in the Raspberry Pi
Forums at https://www.raspberrypi.org/forums/.

Using PuTTY or SSH to connect to your
Raspberry Pi

Earlier, we added a file to our Raspberry Pi boot named ssh. This activated the SSH service
on the Pi. As mentioned before, SSH is an abbreviation for a secure shell, intended for
secure network access. In this case, we are not specifically targeting the secure encryption
capabilities, although those are still a good idea when using the robot in a public place,
such as a competition, but are using the remote networking capability of being able to send
instructions and files to and from the Raspberry Pi without having physical access to it.

The PuTTY tool is a handy tool for accessing SSH and is available for Windows, Linux, and
Mac. If you already have and use an SSH client, please use that, but it is worth noting that
not all of the Windows command-line SSH clients support the Zeroconf/Bonjour protocol.

PuTTY installation information can be found at https://www.ssh.com/ssh/putty/. This
has links under the Download section for Windows, PuTTY For Linux, and PuTTY For
Macs.

[591]

https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/
https://www.ssh.com/ssh/putty/

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

Once you have PuTTY installed, let's get it connected to your Raspberry Pi. First, start up
PuTTY. Here is a screenshot that can help in understanding the configuration:

% PuTTY Configuration ? X
Category:
~ISession Basic options for your PuTTY session
~Logging : -
S Terminal Specify the destination you want to connect to
-Keyboard Host Name (or IP address) Port
~Bell ‘ raspberrypi.locall ‘ ‘22 ‘
Features
SWindow Connection type: . .
Appearance QORaw (OTelnet ORIlogin ®ssH O Serial
~Behavi
© a\no!.lr Load, save or delete a stored session
Translation
Selection Saved Sessions
~Colours ‘ ‘
—IConnection s
Data Default Settings P Load
armbot
Proxy
~Telnet esp-mode Save
eine orionrobots-ap .
~Rlogin orionrobots_host Delet
+ SSH orionscrollpi elete
" Serial skittlebot v
Close window on exit:
QO Always O Never (® Only on clean exit
About Help Open Cancel

Connecting to the Pi

You will see something like the preceding screenshot, where you can type
raspberrypi.local and click Open to log in to your Pi. It is likely that the first time you
do this, PuTTY will show you a security warning and ask you to add the Pi's key if you
trust it. Click Yes; it will only ask you this again if another device with the same name
shows up with a different key. You may also see this if connecting to another fresh
Raspberry Pi with the same hostname and different keys.

[60]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

When you see the Login as dialog, type pi, press Enter, and use the password raspberry.

You will now see something like this, and you have connected to the Pi:

)LUTELY NO WARRANTY, to the extent

from f

not been

lIi

Successfully connected

Configuring Raspbian

Now we are connected, let's do a few things to prepare the Raspberry Pi for use: change the
user password and change the hostname to make the Pi more secure.

We can perform many of these tasks with the raspi-config tool, a menu system to perform
common configuration tasks on Raspbian. We start it with another tool, sudo, which runs
raspi-config as root, a master user. Refer to the following command:

sudo raspi-config

[61]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

The raspi-config interface will appear, as follows:

f pi@raspberrypi: ~ — O X
Plus Re -3 ~

Raspberry Pi Software Configuration Tool (raspi-config)

1 Change User Password Change password for the current u

2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional sett

5 Interfacing Options Configure connections to peripher

6 Overclock Configure overclocking for your P

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest ve

9 About raspi-config Information about this configurat
<Select> <Finish>

The raspi-config

[62]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

Renaming your Pi

Every fresh Raspberry Pi image is called raspberrypi. This means that if there is more than
one of those in a room, your computer will not be able to find yours. It's time to think of a
name. For now, I will use myrobot, but I am sure you can think of something better. You
can change this later too. It can be letters, numbers, and dash characters only — keep it short

though. Perform the following steps:

1. In raspi-config, select Network Options, and then, under this, click on
Hostname:

f pi@raspberrypi: ~
Raspberry Pi 3 Model B Plus Rev 1.3 ~

Raspberry Pi Software Configuration Tool (raspi-configqg)
1 Change User Password Change password for the current u
2 Network Options Configure network settings
3 Boot Options Configure options for start-up
4 Localisation Options Set up language and regional sett
5 Interfacing Options Configure connections to peripher
6 Overclock Configure overclocking for your P
7 Advanced Options Configure advanced settings
8 Update Update this tool to the latest wve
9 About raspi-config Information about this configurat

<Select> <Finish>

Network options

[63]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

2. You should be on a screen like this; press Enter here and type in your new name,
then press Enter to set this:

f pi@raspberrypi: ~ - O X

Raspberry Pi Software Configuration Tool (raspi-configq)
Set the visible name for this Pi
N2 Wi-fi Enter SSID and passphrase
N3 Network interface names Enable/Disable predictable networ
<Select> <Back>

Change the hostname

[64]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

Securing your Pi (a little bit)

Right now, your Raspberry Pi has the same password as every other Raspberry Pi fresh
from an image. This is probably not a great way to keep the robot secure, so it's
recommended you change it. Perform the following steps:

1. In the top menu of raspi-config, select Change User Password:

f pi@raspberrypi: ~ — 0 X
Raspberry Pi 3 Model B Plus Rev 1.3 ~

Raspberry Pi Software Configuration Tool (raspi-configqg)
1 Change User Passwor Change password for the current u
2 Network Options Configure network settings
3 Boot Options Configure options for start-up
4 Localisation Options Set up language and regional sett
5 Interfacing Options Configure connections to peripher
6 Overclock Configure overclocking for your P
7 Advanced Options Configure advanced settings
8 Update Update this tool to the latest wve
9 About raspi-config Information about this configurat

<Select> <Finish>

Changing the password

2. When you select this, type a new password for your robot—something you will
remember, more unique than raspberry, but nothing you would also use for
something sensitive such as email or banking.

[65]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

Reboot and reconnect

It's time to finish configuration and restart the Pi. Refer to the following steps:

1. First, use the Tab button to get to the Finish item and press Enter:

f pi@raspberrypi: ~ — 0 X
Raspberry Pi 3 Model B Plus Rev 1.3 ~

Raspberry Pi Software Configuration Tool (raspi-configqg)
1 Ange 3 ejiafe ange pa ord for the current u
2 Network Options Configure network settings
3 Boot Options Configure options for start-up
4 Localisation Options Set up language and regional sett
5 Interfacing Options Configure connections to peripher
6 Overclock Configure overclocking for your P
7 Advanced Options Configure advanced settings
8 Update Update this tool to the latest wve
9 About raspi-config Information about this configurat
<Select>
v
Select Finish

2. The next screen will ask if you want to reboot the Pi. Select Yes and press Enter.
The Raspberry Pi will start to reboot and the PuTTY session will be disconnected
as it does so, as shown:

[66]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

f pi@raspberrypi: ~ — a X

Would you like to reboot now?

Say Yes to rebooting

Wait for a few minutes; the lights on the Pi should blink a bit and then settle
down.

You will see the green activity lights on the Pi stop, and PuTTY will tell you it has
lost connection to it (it is now shut down). The red light will stay on until you
remove the power supply:

PuTTY Fatal Error X

8 Server unexpectedly closed network connection

OK

PuTTY telling you the Pi connection has gone

[671]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

PuTTY only sends commands to and from the robot; it does not understand that
this command will shut down the Pj, so it does not expect the connection to then
be closed. You and I know better, as we told the Pi to reboot.

3. After this, you will need to connect to it again with PuTTY, but using the new
hostname you gave your robot, with the . local ending and your new
password:

Specify the destination you want to connect to

Host Name (or IP address) Port
‘myrobot.local| ‘ ‘22 ‘

Connection type:
ORaw OTelnet ORIlogin ®SSH O Serial

Reconnect to the Raspberry Pi

4. Now, you should be able to log in and see your prompt as pi@myrobot, or
whatever your robot's name is. Your screen will appear as follows:

ibution te

s in /1 /
UTELY NO WARRANTY, to the extent
from fe

Mounted on

/dev/shm
/run
/run/loc

Reconnected to the Raspberry Pi

[68]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

Now, that we are reconnected to the Raspberry Pi, we can try a simple Linux command to
see the size of the filesystem — that is, if we are using the whole SD card. Linux commands
are often abbreviations of things you want to ask the computer to do.

The df command in the preceding screenshot shows the device free space, or how much
free space there is available in the various storage locations connected to your Raspberry Pi.
Adding a -h makes it display this in human-readable numbers, with the G, M, and K
suffixes for gigabytes, megabytes, and kilobytes. Type the df -h command, as shown in
the previous screenshot, and it will show that /dev/root is close to the full size of the SD
card, with some other devices taking up the rest of the space.

Updating the software on your Raspberry Pi

One last thing to do here is to ensure your Raspberry Pi has up-to-date software on it. This
is the kind of process you start off and leave going while getting a meal, as it will take a
while. Type the sudo apt-get upgrade -y command and you should see the following:

pi@myrobot:~ $ sudo apt—-get upgrade -y
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following packages will be upgraded:
bluez-firmware curl libcurl3 libcurl3-gnutls libprocps6é pi-bluetooth
procps
raspi-config wget
9 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 1,944 kB of archives.
After this operation, 16.4 kB of additional disk space will be used.
Get:1 http://archive.raspberrypi.org/debian stretch/main armhf bluez-
firmware all 1.2-3+rpt6 [126 kB]

Please let the Pi continue until it is complete here, and do not interrupt or turn the power
off until the pi@myrobot :~ $ prompt has reappeared.

[69]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

What is sudo?

So, you've probably seen a pattern with typing this sudo thing in a few of the commands.
This command tells the Raspberry Pi to run the following command (such as raspbi-
config or apt-get) as a root user, the Linux administrator/superuser. You can read it as
super user do. This is needed for software that will make changes to the system or perform
updates. It's usually not needed for user programs though.

Shutting down your Raspberry Pi

When you are done with the Pi for a session, it's not very nice to the filesystem to just
unplug it.

Pulling power from the Raspberry Pi when it is not expected can cause

loss of files and SD card corruption. You may lose your work on it and

you may also damage the SD card enough to need to replace it. Always
use the correct shutdown procedure.

It's strongly advised to tell it to shut down. To do this, use the following command:

pi@myrobot:~ $ sudo shutdown -h now

Wait for the green light activity to stop; PuTTY will detect it has disconnected. You can now
safely disconnect the power from the Raspberry Pi.

Summary

In this chapter, you've seen what it means to set a Raspberry Pi free from a screen and
keyboard by making it headless. You set up an SD card to connect to your Wi-Fi and to
open up the SSH port so you can connect to it.

You've learned how to use raspi-config to personalize your Pi and secure it with your own
password. You then made the first small steps in looking around the Linux system it has
running on it. You also ensured the Raspberry Pi is up to date and running the most current
software.

You then learned how to safely put the Pi into shutdown mode, so that filesystem damage
does not occur when you unplug it.

[70]

Preparing a Raspberry Pi for a Robot - Headless by Default Chapter 4

In the next chapter we will look at ensuring you don't loose valuable robot code or
configuration when things go wrong. We will learn about what can go wrong, and how to
use Git, SFTP and SD Card back ups to protect our hard work.

Questions

Answer the following questions:

1. What are the major items you would not leave attached to a headless computer?

2. If you gave your robot the hostname awesomegiantrobot, what address would
you use to reach it in PuTTY?

3. Why is it advisable to expand the filesystem on your Raspberry Pi?
4. How do you properly shut down the Raspberry Pi?

Further reading

Refer to the following book:

e Internet of Things with Raspberry Pi 3 by Maneesh Rao: This book uses a wired
headless Raspberry Pi for the demonstrations and experiments inside it

[71]

Backing Up the Code with Git
and SD Card Copies

As you create and customize the code for your robot, you will have invested many hours in
getting it to do awesome things that, unless you take precautions, could all suddenly
disappear. The programs are also not the whole story, as you've already started configuring
Raspbian for use on the robot. You want to keep your programs and config in case of
disaster, and be able to go back if you make changes you regret.

In this chapter, we will learn the following;:

e How code can be broken or lost: The ways that code can be broken and the
disasters you might face.

¢ Strategy 1—keep the code on a PC and upload it: How to use your PC/laptop to
store the code and upload it to the Pi.

e Strategy 2—using Git to go back in time: How you can ensure that you can go
back to previous versions, or just compare versions, and protect yourself against
changes you might regret.

e Strategy 3—making SD card backups: So you can go back to a whole
configuration that worked.

Technical requirements

For this chapter, you will require the following;:

e The Raspberry Pi and the SD card you prepared in the previous chapter
e The US power supply and cable you used with the Pi

Backing Up the Code with Git and SD Card Copies Chapter 5

¢ A Windows, Linux, or macOS computer or laptop, connected to the internet and
able to read/write to SD cards

¢ Software: FileZilla and Git

¢ On Windows: Win32DiskImager

Here is the GitHub link for the code files:

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals—-of-Robotics—
Programming/tree/master/chapter5

Check out the following video to see the Code in Action:

http://bit.ly/2DM9fzh

How code can be broken or lost

Code and its close cousin, configuration, take time and hard work. Code needs
configuration to run, such as Raspbian configuration, extra software, and necessary data
files. Both need research and learning, design, making them, testing, and debugging.

Many bad situations can lead to the loss of code. These have happened to me a week before
taking robots to a show, after weeks of work, and I learned the hard way to take this quite
seriously. So, what can happen to your code?

SD card data loss and corruption

SD card corruption is when the data on the SD card used to hold your code, Raspbian, and
anything you've prepared on it is broken. Files become unreadable or the card becomes
unusable. The information on the SD card can be permanently lost.

If a Raspberry Pi unexpectedly loses power, the SD card can be in an poor state, causing
data loss. A hot Pi can slowly bake an SD card, damaging it. Visual processing on a Pi is
one way it can get hot. SD cards get damaged if something bad happens electrically to the
Pi via the GPIO pins or its power supply. MicroSD cards are also very small and easily lost
when not in the Pi.

[73]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter5
http://bit.ly/2DM9fzh
http://bit.ly/2DM9fzh
http://bit.ly/2DM9fzh
http://bit.ly/2DM9fzh
http://bit.ly/2DM9fzh
http://bit.ly/2DM9fzh
http://bit.ly/2DM9fzh
http://bit.ly/2DM9fzh
http://bit.ly/2DM9fzh

Backing Up the Code with Git and SD Card Copies Chapter 5

Bad changes to the code or configuration

We all make mistakes. At those times, you'll want to go back and see what you've changed.
If you've made a lot of changes, it may no longer be clear which things are different and
what differences (if any) have broken the code.

You can render your robot useless with bad configuration, such as the Pi not being on the
network or booting anymore. An upgrade to system packages may go wrong and lead to
code not working, or needing extensive changes to the code for it to work again.

Combinations

These problems can combine to cause real nightmares. I've seen changes in the code lead a
robot to misbehave and damage itself in a way that made the SD card corrupted. I've been
updating packages on the operating system when the power cable was knocked out,
corrupting the SD card and breaking Raspbian two weeks before a major robot event, and it
was painful rebuilding it. This was a lesson learned the hard way.

Back up the code and back up the SD card configuration. Over the rest of this chapter, we'll
look at some solutions to keep your robot's software safe from many kinds of disaster.

Strategy 1 - keep the code on the PC and
upload it

Secure File Transfer Protocol (SFTP), lets you transfer files from a computer to a Pi. This
lets you write code on nice editors on your computer, then upload it to the Raspberry Pi.

You can choose your editor and have the safety of more than one copy. SFTP uses SSH to
copy files to and from the Raspberry Pi over the network.

First, make yourself a folder on the PC to store your robot code in, then we can make a test
file that will just print a bit of text and exit:

hello.py
print ("Raspberry Pi is alive")

We will copy this to the robot and run it.

[74]

Backing Up the Code with Git and SD Card Copies Chapter 5

We will use the SFTP tool FileZilla from https://filezilla-project.org. Download this
and follow the installation instructions:

[Filezilla - O X

File Edit View Transfer Server Bookmarks Help

HY BT NaOokO L TAS8

Host:| sftp://myrobot.loca Username:| pi Password: eeeee Port: Quickconnect |:|
4 y 3 . §
P ™
Status: Direxry listing of “/home/pif successful ‘ S
Status: M Sq h o
Put Put your p d Click this to make
Local s{ sftp:/iyourobot.local |hox Write Pi here. undatio here. the connection.
in here.
L c Y, | —
+ chapter4
chapter5 v

< >

Filename File... Filet Last m... Filena File... Last... Per.. Ow...

This shows
FileZilla is not yet
connected.

- nected to any server
2) hello.py 29 Pyth... 14/06...

1 file. Total size: 29 bytes Not connected.

Find Your hello.py

Server/Loc... D.. Remote file Size Pr.| coqe folder here.

Queued files Failed transfers Successful transfers

@ Queue: empty -

FileZilla

Plug in and power up your Raspberry Pi. Notice in the bottom of the right-hand panel, it
says Not connected. In the host box, type the local hostname you gave your robot Pi in the
headless setup, prefixed with sftp://. For example, sftp://myrobot.local. In the
Username, type pi and enter the password you set up before. Click the Quickconnect
button to connect to the Raspberry Pi, as shown:

[75]

https://filezilla-project.org
https://filezilla-project.org
https://filezilla-project.org
https://filezilla-project.org
https://filezilla-project.org
https://filezilla-project.org
https://filezilla-project.org
https://filezilla-project.org
https://filezilla-project.org

Backing Up the Code with Git and SD Card Copies

Chapter 5

Server/Loc... D.. Remote file Size Pr... Status

Queued files Failed transfers Successful transfers

Esf’(p://pi@myrobot.local - FileZilla - m} X
File Edit View Transfer Server Bookmarks Help
=== === | N T3 3
€V B =OhO %, FTA28
Host: Username: Password: Port: -
& 4 -
Status: Directory listing of "/home/pi" successful
Status: Deleting "/home/pi/hello.py"
Local site:| nny\Dropbox\2018-robotics-foundation\chapter5\my_robot_project\ - |Remote site:| /home/pi v
= chapter5 NEXY &
my_robot_project = ? home
chapter6 pi
robot book v
Filenare File... Filetype Last modified Filename Filesize Filetype Last modified Permis... Ow.
<) hello.py 32 Python Source File 15/06/2018 08:51:33 .bash_history 408 BASH_... 14/06/2018 ... -rw---.. pipi
W profile 675 PROFIL... 18/04/2018 ... -rw-r-- pipi
1) bashrc 3,523 Bash R... 18/04/2018 ... -rw-r-- pipi
4 bash_logout 220 Bash L... 18/04/2018 ... -rw-r-- pipi
1 file. Total size: 32 bytes 4 files. Total size: 4,826 bytes

e @ Queue: empty

The Raspberry Pi connected

When connected, you'll see files on the Raspberry Pi in the right-hand Remote Site panel,
like the preceding image. Use the left-hand local site panel to go to your code on your
computer. You can click hello.py, highlighted in the top-left of the following screenshot,
and drag it to the the lower right-hand panel to put it on the Raspberry Pi:

Filename File... Filet Last m...
. [, :/ -
4 hello.py — 29 Pyth.. 14/06...

Selected 1 file. Total size: 29 bytes

Server/Loc... D... Remote file Size Pr... Status
B stp//pi.. N
C\Use... -- Ihome/oi}.ﬁ. 29 N.. Connect

Successful transfers

Queued files (1) Failed transfers

Remote site:| /home/pi

= ? /
= 7 home
pi
Filenamé Fil... File... Last ... Per.. Ow. 2
a hello.py 29 Pyt.. 14/0... -rw.. pipi
W profile 675 PR.. 18/0.. -rw... pi pi v

Selected 1 file. Total size: 29 bytes

Transferring a file

[761]

Backing Up the Code with Git and SD Card Copies Chapter 5

When you drag the file over, you should see it in the Queued files section. Since this file is
small, it will only be in this queued state for an instant. You can also use the same system
too for larger files and folders. You'll soon see the file over in the remote site (the Raspberry
Pi), shown on the right of the preceding screenshot. To run this code, use PuTTY to log in
to the Pi and try the following;:

pi@myrobot:~ $ python hello.py
Raspberry Pi is alive

Strategy 2 — using Git to go back in time

Git is a popular form of source control, a way to keep a history of changes you've made to
code. You can go back through changes, see what they were, restore older versions, and
keep a commented log of why changes were made. Git also lets you store code in more than
one location in case your hard drive fails. Git stores code and its history in repositories, or
repos. In Git, you can make branches, copies of the whole set of code, to try ideas in parallel
with your code and later merge those back to the main branch. I will get you started, but
this section can only scratch the surface of what Git is capable of.

To install Git, please follow the instructions at https://git-scm.com/book/en/v2/Getting—
Started-Installing-Git for your computer. Windows and Mac users may be able to use
the GitHub app for easier setup. Git requires you to set your identity using a command line
on your computer:

> git config —--global user.name "<Your Name>"
> git config —-—global user.email <your email address>

To put this project under source control, we need to initialize it and commit our first bit of
code. Make sure you are in the folder for your code (my_robot_project)in a command
line on your computer and type the following;:

> git init .

Initialized empty Git repository in

C:/Users/danny/workspace/my_robot_project/.git/

> git add hello.py

> git commit -m "Adding the starter code"

[master (root-commit) 1l1cc8dc] Adding the starter code
1 file changed, 1 insertion (+)

create mode 100644 hello.py

[77]

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Backing Up the Code with Git and SD Card Copies Chapter 5

git init . tells Git to make the folder into a Git repository. git add tells Git you want
to store the hello.py file in Git. git commit stores this change for later, with -
m <message> putting a message in the journal. Git shows you this commit has been

created.
We can now see the journal with git log:

> git log

commit 11cc8dc0b880b1dd8302ddda8adf6e3591bf340fe (HEAD —-> master)
Author: Your Name <your@email.com>

Date: <todays date>

Adding the starter code

We then modify the code in hello.py, changing it to this:

import socket
print ('$s 1is alive!' % socket.gethostname ())

If you copy this to the Pi using SFTP, this will say myrobot is alive! or whatever you
set the hostname of your robot to be. However, it is the Git behavior we are interested in.
Let's see how this code is different from before:

> git diff hello.py

diff --git a/hello.py b/hello.py

index 3eab0d8..fa3db7c 100644

--- a/hello.py

+++ b/hello.py

@@ -1 +1,2 @@

—-print ("Raspberry Pi is alive")

+import socket

+print ('$s is alive!' % socket.gethostname())

This is Git's way of showing the differences. You've taken away a print line, and in its place
added an import and then a print line. We can add this into Git to make a new version, and
then use git log again to see both versions:

> git add hello.py
> git commit -m "Show the robot hostname"
[master 912f4de] Show the robot hostname
1 file changed, 2 insertions(+), 1 deletion(-)
> git log
commit 912f4de3fa866ecc9d2141e855333514d9468151 (HEAD —-> master)
Author: Your Name <your@email.com>
Date: <the time of the next commit>

Show the robot hostname

[78]

Backing Up the Code with Git and SD Card Copies Chapter 5

commit 11cc8dc0b880b1dd8302ddda8adf63591bf340fe (HEAD -> master)
Author: Your Name <your@email.com>
Date: <todays date>

Adding the starter code

We have only just scratched the surface of the power of Git. See the reference in the Further
reading section on how to branch, use remote services, roll back to previous versions, and
find tools to browse the code in the Git history.

Strategy 3 - making SD card backups

Git and SFTP are great for keeping code safe, but they don't help you reinstall and
reconfigure Raspbian on a card. The procedures for Windows, Linux, and Mac are quite
different for this. The basic idea is to insert the SD card and use a tool to clone the whole
card to a file known as an image, which you can restore with Etcher when you need
recovery. Warning: you should restore images to cards of the same size or larger. First,
properly shut down your Raspberry Pi, take its SD card, and put that into your computer.
These clean images are large so do not put them in your Git repository. It's beyond the
scope of this chapter, but I recommend finding a way to compress these files as they are
mostly empty right now. In all cases, expect this operation to take 20-30 minutes due to the
image sizes.

Windows

For Windows, we'll use Win32DiskImager. Get an installer for this at https://
sourceforge.net/projects/win32diskimager. Run this and follow the installation
instructions. Since we will use it immediately, I suggest leaving the Launch immediately
checkbox ticked.

[79]

https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager
https://sourceforge.net/projects/win32diskimager

Backing Up the Code with Git and SD Card Copies Chapter 5

You'll be presented with this screen:

% Win32 Disk Imager - 1.0 - O X
Image File Device
[| o\~
/\\ /,’)\\\
Hash ar '

D Read Only Allocated Partitions

Progress

Cancel Read Write Verify Only Exit

Done.

Win32 Disk Imager

Highlighted on the right is the Device; this should have automatically found the SD card

device. Use the folder icon highlighted to choose where the image file will be stored. Now,
refer to the following screenshot:

%2 Select a disk image X
« v 4 « Downloads » robot_backups v O | Search robot_backups P
Organize ~ New folder =+ M @
e
W This PC ~ Name Date modified 1
m Desktop

No items match your search.
|5 Documents | |

Downloads

h Muigir | <€ | | | | >

N A
S

File name: |myrobot.img v ‘ Disk Lrj\?ges (*img *IMG) ™

Choose the location

[80]

Backing Up the Code with Git and SD Card Copies Chapter 5

Inamed my image myrobot . img in the File name box in the the preceding screenshot, and
then clicked the Open button to confirm this.

Image File Device
E/Downloads/robot_backups/myrobot.img” [D:\] <
s |:| Read Only Allocated Partitions

Hash ‘_l |4
Progress

[] Read Only Allocated Partitions | |
Progress r Cancel Read Write Verify Only _'.‘ IL Exit

51%

[
5L

v 16.5531MB/s 07:46/15:12
Cancel Read Write Verify Only Exit

Reading the image

After clicking Open, you'll see a screen like the left side of the preceding screenshot, and
your selected location should be in the Image File box. Click on the Read button to start
copying the image. As the image is being read, you'll see the highlighted progress bar. In
the bottom right is an estimation of the time remaining. When it's done, Win32 Disk Imager
will tell you that the read was successful and you can then exit the software.

Mac and Linux

Backing up SD cards is done on a command line on a Mac and in Linux. After inserting the
card, you'll need to find the devices location. This is different on Linux and Mac:

Linux
Type the following:

S dmesg

This will output a lot of stuff, but you are interested only in a line near the end that looks
like the following:

sd 3:0:0:0: [sdb] Attached SCSI removable disk

The card is in the square brackets, [sdb], which may be different on your computer. The
SD card location will be /dev/<drive location>:for example, /dev/sdb.

[81]

Backing Up the Code with Git and SD Card Copies Chapter 5

Mac
To list the disk drives on a Mac:

$ diskutil list

The output should look like this screenshot:

/dev/disk0 (internal, physical):

42 TYPE NAME SIZE IDENTIFIER
0: GUID partition_scheme *500.1 GB diskO0

1: EFI EFI 209.7 MB diskOsl

2: Apple HFS Macintosh HD 4399.2 GB disk0s2

/dev/diskl (internal, physical):

#: TYPE NAME SIZE IDENTIFIER
0: FDisk partition_scheme *7.9 GB diskl

1: Windows_ FAT 32 boot 45.2 MB disklsl

2: Linux 7.8 GB diskls2

Diskutil list output with the boot name and device location highlighted

In this list, /dev/disk1 has a device named boot, so in my case /dev/disk1 is the SD
card location.

Cloning with DD

On macOS and Linux, once you have the SD location (such as /dev/sdb or /dev/disk1),
you can then start the clone with the dd command. This command dumps data to and from
drives. Read this section thoroughly and be careful to get the locations right, as you can
destroy the contents of an SD card or your computer hard drive. If you are at all unsure, do
not use this method. The if parameter is the input file, which in this case is your SD card.
The of parameter is the output file, the myrobot . img file you are cloning your card into.
The bs parameter is the block size, so making this large, such as 32M, will make the
operation quicker:

$ sudo dd if=/dev/sdb of=~/myrobot.img bs=32M

Password:

474+2 records in

474+2 records out

15931539456 bytes (16 GB, 15 GiB) copied, 4132.13 s, 3.9 MB/s

[82]

Backing Up the Code with Git and SD Card Copies Chapter 5

You will need to type your user password for this to start. This creates the
myrobot . img file as a clone of the whole SD card in your home directory. dd will give no
output until it is complete, and will then show you stats about the operation.

Summary

In this chapter, you have learned how to look after your code and configuration, which you
will spend time on for your robot. You have seen how things can go wrong, and the
strategies to protect yourself from them. You have a starting point with Git, SFTP, and SD
card backups that can be used together to let you be a bit more experimental and fearless
with code changes for your robot.

In the next chapter, we will see how to build a basic robot.

Questions

For what reasons would you use source control?
What would you use branching for?
Why keep SD card copies?

L e

What reasons are there for editing files on another computer and uploading them
to the Raspberry Pi?

Further reading

o The Git Handbook on GitHub: https://guides.github.com/introduction/git-
handbook/. This is a comprehensive look at what Git is, and the problems it
solves, and a starting point to using its functionality.

¢ Hands-On Version Control with Git: https://www.packtpub.com/application-
development /hands-version-control-git-video. This is a video tutorial on
using Git.

e The GitHub Guides: https://guides.github.com/. A series of guides on getting
the best out of Git and GitHub.

o GitLab Basics: nttps://docs.gitlab.com/ee/gitlab-basics/. GitLab is a great
alternative to GitHub, with a large community and some excellent guides on
using Git.

[83]

https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://www.packtpub.com/application-development/hands-version-control-git-video
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/
https://docs.gitlab.com/ee/gitlab-basics/

Building Robot Basics -
Wheels, Power, and Wiring

In this chapter, we will start building the robot. I'll show you how to choose a robot chassis
kit with wheels and motors, a motor controller, and some power for the robot, talking
through the trade-offs and things to avoid. I'll show you how to check that everything will
fit and then build the robot, showing you how to build yours too.

In this chapter, we will learn the following;:

e How to find and buy robot chassis kits

Understanding the trade-offs when choosing a motor controller

Understanding battery and power trade-offs

How to test-fit parts

How to assemble parts on a robot chassis

Technical requirements

For this chapter, you will require the following;:

e A computer with access to the internet.
A Raspberry Pi 3.

A set of screwdrivers, M2.5, M3 Posidrive, and some jeweler's screwdrivers are
recommended.

A pair of long nose pliers. Optionally, a set of miniature metric spanners.

Some electrical tape.

Hook and loop or Velcro tape.

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

¢ Drawing software such as www.draw.io, Inkscape, Visio, or similar software.

¢ Nylon Standoff Kit with M2.5 and M3 threads. These can be found in many
online retailers. (M2 or M2.5 are both fine, but must be M3; you may need more
than one kit.)

You will be choosing and purchasing a chassis, motor controller, and battery compartment
in this chapter, but do not buy them yet.

Check out the following video to see the Code in Action:

http://bit.ly/2FS8yYa

Choosing a chassis kit

The chassis, like the controller, is a fundamental decision when making a robot. Although
these can be self-made using 3D printing or toy hacking, the most simple place to start is
with a chassis kit. These kits contain sets of parts to start off your robot build. A chassis can
be changed, but it would mean rebuilding the robot.

The internet has plenty of chassis kits around. Too many, so how do you choose one?

Size

Getting the size for a robot right matters too. Take a look at the following photos:

Robot chassis sizes compared

Chassis 1 is 11 cm in and just about fits a controller in it, but is too tiny. This will make it
hard to build your robot. Squeezing the controller, power, and all the sensors into this small
space would need skill and experience beyond the scope of a first robot build.

[85]

http://bit.ly/2FS8yYa
http://bit.ly/2FS8yYa
http://bit.ly/2FS8yYa
http://bit.ly/2FS8yYa
http://bit.ly/2FS8yYa
http://bit.ly/2FS8yYa
http://bit.ly/2FS8yYa
http://bit.ly/2FS8yYa
http://bit.ly/2FS8yYa

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Chassis 2 is Armbot. This large robot is 33 cm by 30 cm, with an arm reach of another 300
mm. It needs eight AA batteries, big motors, and a big controller. These add to the expense
and may cause issues around power handling for a new builder. It has lots of space, but
issues around weight and rigidity. Armbot is one of my most expensive robots, excluding
the cost of the arm!

Chassis 3 in the preceding image will fit the Pi, batteries, and sensor, but without being
large and bulky. It is around the right dimensions, being between 15-20 cm long and 10-15
cm wide. Those that have split levels might be great for this, but only one or two levels, as
three or four will make a robot top heavy and may cause it to topple. This has enough space
and is relatively easy to build.

Wheel count

Some chassis kits have elaborate movement methods, legs, tank tracks, and tri-star wheels,
to name a few. While these are fun and I encourage experimenting with them, this is not the
place to start at. So, I recommend a thoroughly sensible, if basic, wheels on motors version.

There are kits with four-wheel drive and six-wheel drive. These can be quite powerful and
will require larger motor controllers. They may also chew through batteries, and you are
increasingly the likelihood of overloading something. This also makes for trickier wiring, as
seen in the following:

Four-wheel drive robot

[86]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Two-wheel drive is the simplest to wire in. It usually requires a third wheel for balance.
This can be a castor wheel, roller ball, or just a Teflon sled for tiny robots. Two wheels are
also the easiest to steer, avoiding some friction issues seen with robots using four or more
wheels.

Two wheels won't have the pulling power of four or six-wheel drive, but they are simple
and will work. They are also less expensive:

Two wheels with a castor

Wheels and motors

A kit for a beginner should come with the wheels and the motors. The wheels should have
simple non-pneumatic rubber tires. The most obvious style for inexpensive robots is shown
in the following photo. There are many kits with these in them:

Common inexpensive robot wheels

[871]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

The kit should also come with two motors, one for each wheel, and include the screws or
parts to mount them onto the chassis. I recommend DC Gear motors, as the gearing will
keep the speed usable while increasing the mechanical pushing power the robot has.

Importantly, the motors should have the wires connected, like the first motor in the
following photo:

Gear motors with and without wires

It is tricky to solder or attach these wires to the small tags on motors, and poorly attached
ones do have a frustrating habit of coming off. The kits you will want to start with have
these wires attached, as can be seen in the following:

Encoder wheel and slot close up

Another point to note is that where the motors are mounted, the kits should have some
encoder wheels, and a slot to read them through. The encoder wheels are also known as
odometry, tacho, or tachometer wheels.

[881]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Simplicity

You don't want to use a complex or hard-to-assemble kit for your first robot build. I've
repeated this throughout with two-wheel drive, two motors with the wires soldered on and
steering clear of large robots, or unusual and interesting locomotion systems, not because
they are flawed, but because it's better to start simple. There is a limit to this, a robot kit that
is a fully built and enclosed robot leaves little room for learning or experimentation and
would actually require toy hacking skills to customize.

Cost

Related to simplicity is cost. Robot chassis kits can be brought from around $15, up to
thousands of dollars. Larger and more complex robots tend to be far more costly. For this
book, I am aiming to keep to the less costly options or at least show where they are
possible.

Conclusion

So, now you can choose a chassis kit, with two wheels and a castor, two motors with wires
soldered on them, slots, and encoder wheels. These are not expensive, and widely available
on popular internet shopping sites as "Smart Car Chassis," with terms like "2WD":

The robot kit I'm using

The kit I'm working with looks like the preceding photo when assembled without the
Raspberry Pi.

[891]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Choosing a motor controller

The next important part you'll need is a motor controller. Much like the motors, there are a
number of trade-offs and considerations before buying one.

Integration level

Motor controllers can be as simple as motor power control driven from GPIO pins directly,
such as the L298. This is the cheapest solution: a generic L298N motor controller can be
connected to some of the IO pins on the Raspberry Pi. These are reasonably robust and
have been easily available for a long time. They are flexible, but using parts like this will
take up more space and need to be wired point to point, adding complexity to the build:

A selection of motor control boards: The L298, PiZMoto, PiConZero, and Full Function Stepper Hat

Others are as complex as whole IO controller boards, many of which hide their own
controller similar to an Arduino, along with motor control chips. Although the cheapest
and most flexible ways are the most basic controllers, those with higher integration will
reduce size, keep the pin usage count low (handy when you are connecting a lot to the
robot), and may simplify your robot build.

They often come integrated with a power supply too, but we will look at power in more
detail later in this chapter.

Motor controllers can be bought as fully integrated Raspberry Pi hats, boards designed to
fit exactly on top of a Raspberry Pi. These tend to have a high level of integration, as
discussed before, but may come at the cost of flexibility, especially if you plan to use other
accessories.

[90]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Pin usage

When buying a motor controller in Raspberry Pi hat form, pin usage is important. If we
intend to use microphones (PCM/I2S), servo motors, and I2c and SPI devices with this
robot, having boards that make use of these pins is less than ideal.

Simply being plugged into pins doesn't mean they are all used, so only a
subset of the pins is usually actually connected on a hat.

To get an idea of how pins in different boards interact on the Raspberry Pi, take a look
at https://pinout.xyz , which lets you select Raspberry Pi boards and see the pin
configuration for them.

Controllers that use the I2C or serial bus are great because they make efficient use of pins
and that bus can be shared.

At the time of writing, PiConZero, the Stepper Motor Hat, and ZeroBorg all use I12C pins.
The Full Function Stepper Motor Hat is able to control DC motors and servo motors, is
cheap, and is widely available. It also has the pins available straight through on the top and
an I2C connector on the side. It's designed to work with other hats and allow more
expansion.

Size

The choice of this depends on the chassis, specifically the size of the motors you have. In
simple terms, the larger your chassis, the larger a controller you will need. The power
handling capacity of a motor controller is specified in amps. For a robot like the The Robot
Kit I'm Using image, around 1 to 1.5 amps per channel is good. The consequence of too low
a rating can be disaster, resulting in a robot that barely moves, while the components cook
themselves or violently go bang. Too large a controller has consequences for space, weight,
and cost:

[91]

https://pinout.xyz
https://pinout.xyz
https://pinout.xyz
https://pinout.xyz
https://pinout.xyz
https://pinout.xyz
https://pinout.xyz

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

An L298n with a Heatsink

The level of integration can also contribute to size. A tiny board that stacks on a Pi would
take up less space than separate boards. Related to size is if the board keeps the camera port
on the Raspberry Pi accessible.

Soldering

As you choose boards for a robot, you will note that some come as kits themselves,
requiring parts to be soldered on. If you are already experienced with this, it may be an
option. For experienced builders, this becomes a small cost in time depending on the
complexity of the soldering. A small header is going to be a very quick and easy job, and a
board that comes as a bag of components with a bare board will be a chunk of an evening,.

For this book, I will recommend components that require the least soldering.

[92]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Connectors

Closely related to soldering are the connectors for the motors and batteries. I tend to prefer
the screw type connectors. Other types may require matching motors or crimping skills:

Screw terminals for motor and battery connections

Conclusion

Our robot is space constrained; for this reason, we will be looking at the Raspberry Pi hat
type form factor. We are also looking to keep the number of pins it binds to really low. An
I2C-based hat will let us do this. The Full Function Stepper Motor Hat (also known as the
Full Function Robot Expansion Board) gets us access to all the Pi pins while being a

powerful motor controller:

The Full Function Stepper Motor Hat

[93]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

It's available in most countries, has space for the ribbon for the camera, and controls servo
motors. I recommend this hat for the robot in this book. As a close second, I recommend the
4tronix PiConZero hat, or assembling a stack of PiBorg hats. These may be harder to source
outside of the UK. The reader will need to adapt the code, and consider a tiny shim to
retain access to the GPIO pins if using a different board.

Powering the robot

The robot needs power for all its parts. There are two major power systems that need to be
considered: the power for all the digital parts, such as the Raspberry Pi and sensors, and
then the power for the motors.

Motors need their own power system for a few reasons. First, they consume far more
electrical power than most other components on the robot. They may require different
voltages; it's not uncommon to have low voltage and high current capacity supplies for
motors. The other reason that they need their own power system is that they can cause
interference. They can pull enough power that other circuitry has brownouts and loses
power long enough to get into an inconsistent or reset state, which would lead to SD card
corruption on a Pi, and they can also introduce electrical noise to a power line as they are
used, which could cause digital parts to misbehave.

There are two major strategies for powering a robot with motors:

¢ Dual batteries: The motors and the rest of the robot have completely separate
sets of batteries, ensuring that their power is independent

¢ Battery eliminators: A battery eliminator circuit (a BEC or uBEC) , switching
supply or regulator

[94]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

This photo shows a UBEC package:

Picture of a Bec

Dual batteries are the most certain option to avoid any brownout, loss of power, or
interference issues. This can take up a lot of space; however, a USB power bank is a simple
and effective way to do this. Choose one with small outer case dimensions, but a high
power rating, such as 10,000mAh, and an output of at least 2.1A.

The power supplies built into motor controller boards can be used, but these often have too
low an output rating and can be very inefficient, wasting much battery power. They are
very likely to lead to brownouts.

Here is a picture of a USB battery used for the Pi:

The USB power bank from Armbot - slightly old and battered, but still effective

[95]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

A battery eliminator circuit is lighter and takes up less space, although you may need a
bigger set of batteries. However, by sharing a supply with motors it is still vulnerable to the
voltage drops that cause controller resets and line noise for the controller. This will affect
switching power supply Pi shims like the Wide Input Shim and the power supplies built
into some motor controllers.

You will need to ensure that at least 2.1A can be handled, preferably more. It's not
uncommon to see 3.4A and 4.2A power banks. UBECs with 5A ratings are also fairly
common.

To keep things simple in this robot, and not have to deal with reset issues, we will go with
the dual battery approach, and accept the cost in bulk and weight:

F’

The 4 x AA battery box we will use with the motors

For the motors, 4 x AA batteries will suffice. I recommend using Nickel Metal Hydride
rechargeable batteries for them, not just because they can be recharged, but also because
they can deliver more current if needed than alkaline batteries. To save space, we can use
the two up/two down or back to back configuration like the battery box shown in the diagram.

Before buying these parts, we will test fit them.

Test fitting the robot

I recommend test fitting before actually ordering parts. This helps me be more confident
that they will fit and you know where they will roughly go. This step is optional, but it can
save you time and money later.

[961]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

This is another exercise in which you can use paper and a pen, or an app such as DrawlO
on the internet. First, I find the dimensions for all the parts. Here is a screenshot from
Amazon showing how to spot product dimensions:

Product details

Colour Name: Black
Product Dimensions: 9.7 x 8 x 2.2 cm ; 240 g

Boxed-product Weight: 281 g

Delivery information: We cannot deliver certain products outside mainland UK

Finding product specifications

Some information digging is needed to find these for your parts. For each, first find a shop
you can buy them at, such as Amazon, a number of online shops, or eBay. You can then
search for, or ask for information about, the dimensions of each board or item. Make sure
you are looking at the dimensions of the part and not its packaging. The next diagram
shows a datasheet for a battery box and its dimensions:

57.01

-
|
m

511
———4} .

8 Eti dda 4
e, L b @ U ' |
1 _; { k - i)

Reading product drawings

Image searches on dimensions or part datasheets can find you diagrams like the preceding
image. In this case, the dimensions are in mm. The + signs show the manufacturing
variation of plus or minus the next number. When test fitting, err on the higher side, so take
57+1 as 58 mm for that dimension.

So, the dimensions I have are as follows:

¢ The Raspberry Pi: 85 mm x 56 mm.
e The chassis: Mine suggests it is 100 mm x 200 mm. Be aware that the dimensions
here are outer dimensions and will include the wheels.

[97]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

e The motor controller fits over the Pi so is counted here as the Pi. This will make
things taller, but is only really a concern for a multi-level robot chassis.

e The 4 x AA battery box: The type I suggested is 58 mm x 31.5 mm.
e The USB power bank: 60 mm x 90 mm.

For this, drawing rectangles to scale is enough detail. In DrawlO, create a new blank
diagram. The next screenshot shows what to put in the diagram:

| test_fit-drawio.xml

L File Edit View Arrange Extras Help Unsaved changes. Click here to save

)| 100% Q Q n T "R 20 —- - + IS N
:> Arrange
Search Shapes Q 3. Click on the
"Arrange Tab"
To Back
Scratchpad

Font size [©'] 90pts 60pts

c Width Height
v} 4. Type your size -
swap your units Constrain Proportions
General (mm) for pt's
d Power Bank ® ion 275.5p< 138pt<
I: :] Text ot - Left Top
D I ZX\\ Chassis o o=
<) |E A4
| Batteries | Al Rotate 90°
<> D 1. Drag a rectangle ZLRE;:?";:%'(WO:EA Flip
from here into
to drawing A Label, hit enter Horizontal Vertical
8 O 5. Repeat for all the
items. -
Copy Size
— =
El D D tﬁ Clear Waypoints
Edit Data Edit Link
™1 #
More Shapes... i | Page-1 +

Using Draw IO to create test fit parts

As shown in the preceding screenshot, use the general palette on the left to drag out
rectangles. It helps to clearly label each part; double-click a rectangle and type a label into
it. Press Enter to accept the label. The item should still have a blue highlight.

[981]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Click the tabs in the right to select the "arrange" tab. Here, type your dimensions (swap
millimeters for points) into the width and height boxes. Notice I've also put a text label on
the "front" of the chassis. The next diagram shows parts brought together to line them up in
the chassis:

Front

Raspberry
Pi

Chassis

Ad
Batteries

Power Bank

The test fit

Now, you can drag the parts together. The Pi should be near the front of the robot, as we'll
later have sensors here, and the motor cables can go forward into it. In the preceding image,
I've just dragged the rectangles into place. Draw.io helps you here by showing blue
guidelines for centering and aligning objects. I put the power bank at the rear, with the AA
batteries closer to the Pi so they can go into the motor controller easily.

This looks like it will fit. It's not 100% accurate, but good enough to say this will probably
work.

Now, it's time to buy parts. My shopping list looks like this:

The chassis kit.
The Full Function Stepper Motor Hat.
4 x AA battery box.

4 x metal hydride AA batteries. If you don't have one, you will need a charger for
these too.

1 x USB power bank able to deliver 3 amps or more.

[991]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Assembling the base

Let's build! Assuming you bought a chassis similar to mine, you will be able to assemble it
with these steps; for a completely different chassis, I strongly recommend consulting their
documentation for assembly instructions. You will have a collection of parts covered in a
layer of paper. This is to prevent the plastic from getting scratches, and can be safely
removed. You can do this by getting a nail under it, or failing that, a craft knife. It's not
essential to remove it, but a robot looks better without it. The next diagram shows how:

— —

Removing the protective backing from robot parts

For a kit with a plastic motor bracket, you should now have parts like those shown in the
following photo:

Robot kit parts

[100]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

In the kit, you should have the following;:

o Two wheels.

o Two encoder wheels.

o Two motors, with the wires.
e A castor wheel.

e The screws and brass standoffs to mount the castor wheel. I've replaced one set
of screws with a nylon, non-conductive one. You should be able to do the same
from the nylon standoff kit.

e In the middle is the chassis plate itself.

¢ On the right are plastic brackets to mount the motors. Your kit may have metal
types, which work slightly differently and come with four extra screws.

e Finally, there are four screws and four nuts to mount the motors.

The following photo shows what parts for a metal motor bracket look like for an alternative
kit:

Metal type motor bracket

The other parts not shown are going to be very similar to this.

[101]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Assembling the base, motors, and wheels

We'll start by attaching the encoder wheels onto the motor. It's best done at this stage.
When assembling the motor, observe on which side the wires are attached to the motor, as
shown in the first panel of the following photos:

The wires are attached to the motor

Follow these steps:

e The encoder wheel should be attached on the same side as the wires.

e Look at the encoder wheel, and note that it has an axle hole with two flattened
sides.

¢ The axles on the motors have the same shape.

e Line the encoder wheel-shaped hole with the motor axle on the same side as the
wires and gently push it on. It should have a little friction. Repeat this for the
other motor. You should have two motors with encoder wheels on them, on the
same side as their wires. Next, we will fit the motor brackets to the robot.

0 If you have the metal type, skip to the section for this.

[102]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Plastic motor brackets
To fit the plastic type of bracket, first look for the slots to fit it. Look at the following set of
photos:

Plastic motor mount

For fitting, follow these steps:

1. The arrows point at the slots. Push the plastic brackets through the slots.

2. With the brackets in place, I've pushed the motor against the bracket; note that
the wires and encoder wheel face the inside of the robot, and that the encoder
should be under a cutout in the chassis body for it.

3. Here, push an outer bracket onto the outside of the robot; there is another slot in
the chassis for this to fit into.

4. Push the long screws through from the outside.

[103]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

5. Then, push a nut onto the screws and use a screwdriver to screw them in.

6. For the nut closest to the chassis, one of its flattened edges should hold it in place
as you tighten the screw. For the outer nut, use a spanner or pliers to hold it.

7. You will need to repeat the same steps for the other side.

Metal motor brackets

The metal type of bracket is slightly different; its assembly is shown in the following
photos:

(1) o

o
A

o

H

Assembling metal motor brackets

For this, perform the following steps:

1. You should be able to see two small screw holes in the top of the bracket; these
are threaded. There will be two short screws per bracket.

2. The chassis will have holes in the wheel mount area that will match these. Line
this up, and then screw the short screws through the chassis holes into the
bracket.

3. Take the motor, and ensure the wires are facing away from you. Push the long
screws through the two holes in the motor.

4. Then, take this motor assembly, and line up the long threads with the holes on
the side of the bracket.

5. Now, push nuts onto the threads that stick out the other end of the bracket.

[104]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

6. You can tighten the ones furthest from the chassis with pliers, or a spanner and a
screwdriver. The ones closer will catch on one flat side, so you'll only need a
screwdriver.

7. You will now have the completed assembly.

You will need to repeat this assembly for the other side. You should now have a motor
mounted on each side.

Adding the castor wheel

Next, it is time to fit the castor wheel, as shown in the following image:

Fitting the castor wheel

[105]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Use these steps with the previous image:

1. This is the castor. It has four screw holes.

2. You need to push a metal screw through the hole so the thread is facing away
from the wheel.

3. Now, screw one of the brass standoffs into this screw.

L

Repeat this for the four other sides.

Line the other side of the standoffs with the four holes on the chassis. Note that
this castor wheel is a rectangle, not a square. Make sure the wheel is facing down.

i

Push one of the screws through and screw it down.

I suggest you screw the opposite corner.

This will make the remaining two screws easier to put in.
The cast should now be attached to the robot like this.

© © N

Putting the wheels on

The wheels now need to be pushed on, as shown in the following photos:

Fitting the wheels

Follow these steps:

1. First, note that they have two flattened sides in their axle hole, like the encoder
wheel.

2. Line the wheels up with the axles, taking into account the flat edges, and push
them on.

3. Sometimes, rotating the wheels until they push in helps. You should be able to
push the wheel on, being sure to support the motor from the other side. After
doing this, you may want to realign the encoder wheel with their slots.

[106]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Bringing the cables up

A last minor step in chassis assembly is to bring the cables up so you have access to them
for later steps. Refer to the following photos, which shows the details:

Bringing the wires up

Perform the following steps:

1. First, gather the two wires from one motor. Locate the small slot in the middle of
the chassis.

2. Push the wires through.

3. Gently pull them through to the top of the chassis so they are poking out as
shown. Repeat this for the other motor.

We should now have a robot that looks like this (motor brackets will vary):

The assembled chassis

We're now ready to add the electronics.

[107]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Fitting the Raspberry Pi

We will not yet fit the motor controller, and will address that in the next chapter, but we
can fit the Raspberry Pi now and prepare it to have other boards connected to it. We need
to put standoffs on the Pi so it can be bolted onto the chassis, but leave room for the motor
bracket mounting, and later sensors that will go under the Pi. The following photos show

how:

Fitting the Raspberry Pi

Perform the following steps:

1.

For this, you will need a small posi screw driver, a small spanner or pliers, 2 x
M2.5 screws, 4 x M2.5 16 mm standoffs with threads, 4 x M.25 10 mm standoffs,

and the Raspberry Pi.

Push a 16 mm standoff thread up through the screw hole from the bottom of the
Pi.

Then, screw a 10 mm standoff onto the top of these, with the thread facing
upwards, using the pliers/spanner to hold the standoff.

Repeat for all four corners.

. Line two of these up with some slots or screw holes on the chassis and screw

them in from underneath.

. On the chassis I used, there were only two holes that line up, so I screwed those

in and used the other standoffs to keep the Pi level.

[108]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Adding the batteries

There are two sets of batteries that you have bought: the 4 x AA battery holder (with a set
of rechargeable metal hydride batteries) and a USB power bank, which will contain a
lithium ion cell and USB charging system.

We will mount these on the back of the robot, where they will counterbalance some of the
sensors that we will later add.

The USB power bank

Do not connect the power bank to the Raspberry Pi yet (or be sure to log in and shut it
down properly before pulling the power out if you have done so). The following photos
show how I fitted the USB power bank:

K2)

Mounting the power bank

[109]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

For a chassis and power bank the same size as mine, use the following instructions:

1. For this power bank, we will use some hook and loop tape, two M3 screws and
two M3 nuts, a screwdriver, and an M3 spanner or pliers.

2. Take alook at the power bank, and note that one side has the USB connector on
it. This should end up on the left of the robot.

3. To mount it on this robot, I used two additional screws with nuts to support it,
level with the screws from the castor wheel.

4. T've positioned them in these slots so the power bank is stable, and I used the
spanner to tighten them up a little.

5. Measure out two lengths of the hook and loop tape (both sides) and stick them to
the power bank.

6. Stick the other side to the robot.

7. Push the power supply down so the hook and loop engages. This connection will
hold reasonably well.

Alternatives are to use sticky tack (for a really cheap but flimsy connection), cable ties,
double sided tape, or rubber bands to hold the battery in place. These can be used for
different sizes of battery.

Mounting the AA battery holder

The AA battery holder is a fairly simple part to add, as shown in the next photos:

Mounting the AA battery holder

[110]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

First, stick an adhesive hook and loop strip on the AA battery holder as shown, then stick a
strip on the robot so the AA holder can be placed just in front of the power bank. Stick it
down. Do not insert the AA batteries yet.

At a pinch, sticky tack can be used for this, as the AA battery box needs to be removable to
replace the cells in it.

The completed robot base

You will now have a completed the robot base, and in the next chapter we can add the
motor controller and start wiring it. It should look something like the following photo:

The completed chassis

Summary

You've now learned how to choose the parts for a robot, and some of the reasoning and
design decisions that have gone into this one. You've seen how to use a simple tool to test
fit these parts and see what will work before buying anything. You've then bought the
parts, and built your starting robot platform.

In the next chapter, we will fit the motor controller, then start writing the code to get this
platform moving.

[111]

Building Robot Basics - Wheels, Power, and Wiring Chapter 6

Questions

Answer the following questions, based on the topics covered:

e Why is it a good idea when using multiple Raspberry Pi "hats" or "bonnets" to
look at the pin usage?

e Why have we chosen to power the Pi separately from the motors?

e What are the consequences of too small a motor controller?

e Why do I recommend test fitting before buying any parts?

Further reading

Refer to the following book:

e More robot chassis designs can be found in Raspberry Pi Robotic Blueprints by Dr.
Richard Grimmett, including modifying an RC car into a robot.

[112]

Drive and Turn - Moving Motors
with Python

In this chapter, we will take the robot we started building in the last chapter, connect the
motors to the Raspberry Pi, and build the Python code to make them move. We will cover
programming techniques to create a layer between the physical robot and its behavior code
to reduce the impact of hardware changes. The robot will move! We will finish by taking
the robot on a small set path.

The following topics will be covered in this chapter:

e How to connect motors to the Raspberry Pi

How to test motors with simple code
How to steer the robot—thinking about interfaces

How to make a robot code object, a layer of code for the motors and chassis

How to make the robot drive a repeatable path

Technical requirements

For this chapter, you will require the following;:

e A computer with access to the internet

The chassis built in the previous chapter

The motor controller bought in the last chapter

Jewelers' screwdrivers

A USB-to-Micro USB cable (which should have come with the power bank on the
assembled chassis)

Four AA batteries from the last chapter, charged

A 2-meter-square flat space for the robot to drive on

Drive and Turn - Moving Motors with Python Chapter 7

Be prepared to catch your driving robot going over the edges if you use a
table! It's best to use the floor.

Check out the following video to see the Code in Action:

http://bit.ly/2RcphGM

Connecting the motors to the Raspberry Pi

In this section, we are trying to connect the motor to the Raspberry Pi. The following is the
block diagram that we are aiming for as our output:

Left Right
Wheel <):l Motor Hat > Wheel
Motor Motor

I

Raspberry Pi

Block diagram of the robot

The first step in connecting the motors is to fit the motor hat onto the Raspberry Pi. The
motor hat should look like the following:

[114]

http://bit.ly/2RcphGM
http://bit.ly/2RcphGM
http://bit.ly/2RcphGM
http://bit.ly/2RcphGM
http://bit.ly/2RcphGM
http://bit.ly/2RcphGM
http://bit.ly/2RcphGM
http://bit.ly/2RcphGM
http://bit.ly/2RcphGM

Drive and Turn - Moving Motors with Python Chapter 7

The full function stepper motor hat

In this section, we will attach this hat to our robot, and wire it in so we can start
programming our robot. The following photo shows how:

Fitting the motor controller
Perform the following steps :

1. You will need the controller board (remove the foam strip if it has one),
insulation tape, and a small screwdriver.

2. The Raspberry Pi 3B+, mounted on the robot chassis, has four pins (indicated by
the red arrow in the preceding photo). Other Pi models do not have this. This
will need to be insulated from any terminals on the motor board above.

[115]

Drive and Turn - Moving Motors with Python Chapter 7

3. On the underside of the motor control board, place a strip of insulating tape, as
shown, to cover any metal that could make contact with these four pins.

4. Line up the motor board socket with the Pi header. The four holes in the corners
should also line up with the screw threads facing up.

5. Gently and evenly push the motor board onto the Raspberry Pi, guiding the
screw threads through until the board is firmly seated on the GPIO header.

6. The robot should now look like image 6 in the preceding photo.

Wiring in
We'll start with a diagram. Right now, we won't wire in the ground (black) wire on the
batteries until we are ready to power it up. I suggest using a little insulation tape to tape the

tip of it down to a plastic part of the chassis, so it does not catch on anything.

The following diagram is kind of a makeshift switch:

Do NOT make this connection yet!

Battery
Box

El
el

5V-12V Gnd

M2

[o]o[o]o]o][o]o]o]o[o]

BN

Right Motor

Gnd

M1

M4

GND

Left motor

M3

How to wire up the motors and batteries

[116]

Drive and Turn - Moving Motors with Python Chapter 7

As you connect up, it should look like the preceding diagram.

The following photo shows the steps for the connections:

Steps for connecting the wires

Perform the following steps to connect the wires:

1. Loosen up the screw terminals for the 5V-12V terminal (vIn), GND, the two M2
connectors, and the M1 connectors.

2. Push the red wire from the AA battery box into the screw terminal marked
5V-12V, so the metal part of the wire is in the slot formed by the metal cover.

3. Screw it down firmly, it should look like as image 3, the wire should not pull out
easily. Ensure that it is the metal part that is being held, and not the plastic part
of the wire, its insulation.

4. Repeat for the motor terminals, making the connections shown in image 4.

5. The result should look like image 5.

[117]

Drive and Turn - Moving Motors with Python Chapter 7

Independent power

So far, although we have been using a headless display, we have been plugging our
Raspberry Pi into the wall. Now it is time to try powering it independently for the next few
steps. Refer to the following photo:

Going onto independent power

Perform the following steps:

1. Plug the Micro USB (tiny) end of the cable into the Pi in the USB micro-socket
indicated by the arrow in image 1 in the preceding photo.

2. Fit the four AA batteries; you may need to pop the battery box up and push it
back down again after this.

3. You can power up the motor board now by wiring the black wire from the motor
into the GND terminal indicated by the arrow in image 3, next to 5V-12V. When
you do so, a light should appear on the motor board to show it is active.

[118]

Drive and Turn - Moving Motors with Python Chapter 7

4. Turn on the Pi by plugging the USB A (wide) end into the power bank. The
intention from here is to keep the micro-USB tiny end in, and only
connect/disconnect the USB A (wide) end when powering the Pi.

5. The Raspberry Pi and motor board are now powered, as shown in image 5.
Congratulations, your robot is now running on independent power.

SD cards can become corrupted by removing power from the Pi without
shutting it down properly. When you plan to turn it off, please ensure you
use the notes from Chapter 4, Preparing a Raspberry Pi for a Robot - Headless
by Default, to log in with PuTTY and shutdown the Raspberry Pi properly
before removing power.

Writing code to test your motors

We will need to download the library to work with the motor board we have chosen. Many
robot parts, apart from the simplest ones, have an interface library to control the motors
and other devices on the board. It's time to log in to your Pi, using PuTTY again.

Preparing libraries

We will download this code from a project on GitHub using Git, but featuring the
Raspberry Pi. So, first, we will need to put Git on the Pi; we are also going to need 12C
(i2c-tools and python-smbus) and pip so we can install things into Python. Type the
following command:

pi@myrobot:~ $ sudo apt—-get install -y git python-pip python-smbus i2c-
tools

It will now install these tools for you.

Now, to get the library, we'll use Git and download it from GitHub, installing it for use in
any of your scripts with the following command:

pi@myrobot:~ $ pip install
git+https://github.com/orionrobots/Raspi_MotorHAT
Collecting git+https://github.com/orionrobots/Raspi_MotorHAT

Cloning https://github.com/orionrobots/Raspi_MotorHAT to /tmp/pip-c3sFoy-

build
Installing collected packages: Raspi-MotorHAT
Running setup.py install for Raspi-MotorHAT ... done

Successfully installed Raspi-MotorHAT-0.0.1

[119]

Drive and Turn - Moving Motors with Python Chapter 7

We now have the libraries prepared for starting the robot. Documentation for the
Raspi_MotorHAT library is sparse, but can be found at https://github.com/orionrobots/
Raspi_MotorHAT along with some examples of using it.

Test - finding the motor hat

The Raspberry Pi uses I2C to connect to this motor hat. I2C buses let you send and receive
data, and are flexible in that we can connect many devices to the same bus. To enable 12C,
you'll need to use raspi-config again. We'll enable SPI while we are here. Type the

following command:

$ sudo raspi-config

Now, we use advanced settings on this. The following screenshot shows how:

Raspberry Pi Software Configuration Tool (raspi-config) | Raspberry Pi Software Configuration Tool (raspi-config)

1 Change User Password Change password for the current u P1 Camera Enable/Disable connection to the

2 Network Options Configure network settings P2 SSH Enable/Disable remote command lin

3 Boot Options Configure options for start-up P3 VNC Enable/Disable graphical remote a

4 Localisation Options Set up language and regional sett P4_SPI Enable/Disable automatic loading

ps 12 Enable/Disable automatic_loading |

6 Overclock Configure overclocking for your P P6 Serial Enable/Disable shell and kernel m

7 Advanced Options Configure advanced settings P7 1-Wire Enable/Disable one-wire interface

8 Update Update this tool to the latest ve P8 Remote GPIO Enable/Disable remote access to G
9 About raspi-config Information about this configurat

<select> <Finish> <Select> <Back>

! Raspberry Pi Software Configuration Tool (raspi-config) !

Would you like the ARM I2C interface to be enabled?

Pl Camera Enable/Disable connection to the
P2 SSH Enable/Disable remote command lin
P3 VNC Enable/Disable graphical remote a
P4 SPI Enable/Disable automatic loading
P5 I12C Enable/Disable automatic loading
P6 Serial Enable/Disable shell and kernel m
P7 1-Wire Enable/Disable one-wire interface
P8 Remote GPIO Enable/Disable remote access to G
<select> <Back>

Using raspi-config to enable SPI and 12C

[120]

https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT
https://github.com/orionrobots/Raspi_MotorHAT

Drive and Turn - Moving Motors with Python Chapter 7

First, select Interfacing Options, then I12C. The Pi will ask if you want this interface to be
enabled. Select YES. You will then be back at the Interfacing Options screen. Since we will
soon need it, select SPI and YES again. Finally, press Esc twice to finish raspi-config. It
will ask if you want to reboot. Select YES, then wait for the Pi to reboot and reconnect to the
Raspberry Pi.

With I2C, we need a way to say which device we are talking to. Just like houses in a street,
an address allows us to say which one we specifically want.

We should check that the Raspberry Pi is able to see the motor hat with sudo i2cdetect
-y 1:

pi@myrobot:~ $ sudo i2cdetect -y 1
0123456789 abcdef

00: == == == == == == = —— —— = = —— ——

10: == —= == == —— o - —— —— oo o o o o

208 == —— —— m— —m —m —m o o o o o

30 == == —= = m— e e e

40: == == —= —= —— —— o oo o o o

50 == == == —= = = —— = = —— o

60: —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— 6f

70: 70 —-= —= —= —— —— —— ——

This scans the I2C bus 1 for devices attached to our Raspberry Pi. It shows numbers at the
addresses if something is found. The device found at addresses 6£ and 70 is our motor
controller. If you cannot see this, power down the Raspberry Pi, and carefully check that
the insulation tape is present over the pins shown in the preceding photo, and that the
motor hat has been plugged in, then try again.

The addresses are hexadecimal, so each digit counts to 16 instead of 10. When used in code,

n_n

these will get an 0x prefix. Note this is "zero" and then lower case"x".

Test — the motors move

Next, we need a test file to demonstrate that the motors work.
Create the following file, called test_motors.py:

from Raspi_MotorHAT import Raspi_MotorHAT

import time
import atexit

mh = Raspi_MotorHAT (addr=0x6f)

[121]

Drive and Turn - Moving Motors with Python

Chapter 7

Im = mh.getMotor (1)
rm mh.getMotor (2)

def turn_off motors():
Im.run (Raspi_MotorHAT.RELEASE)
rm.run (Raspi_MotorHAT.RELEASE)

atexit.register (turn_off_motors)

Im.setSpeed(150)
rm.setSpeed (150)

Im.run (Raspi_MotorHAT.FORWARD)
rm.run (Raspi_MotorHAT.FORWARD)

time.sleep (1)

Now, upload it to your Raspberry Pi (using the methods found in chapter 5, Backing Up the
Code with Git and SD Card Copies).

Move your robot from your desk and down to the floor for this next step,
as it is will move and may not go in the direction you expect it to!

To run this code, through PuTTY on the Pi, type the following:

pi@myrobot:~ $ python test_motors.py

Your robot should now drive roughly forward. It may move slightly off, but it should not
be turning or going backward and both motors should be moving.

Troubleshooting
If you see any problems, try this troubleshooting chart and go back:

Symptom

Likely cause and solution

You see:
ImportError: No module
named smbus

You have missed the step installing the required packages.
Ensure you have followed the apt-get install steps above.

You see other errors

Please go back and carefully check that you have typed and
uploaded the code above to the Raspberry Pi.

One or both sides are
going backwards

The motor wires are the wrong way. On the motor terminals
only, swap the black and red wire. Refer to the How to wire up the
motors and batteries photo for help.

[122]

Drive and Turn - Moving Motors with Python Chapter 7

The light is on the
controller, but one or Please ensure that both motors wires are firmly screwed into the
both motors are not terminals. Please see the steps in the Wiring in section.
moving.
No light on the motor |Please make sure you have attached both the battery wires into
controller and no the correct terminals, as shown in the Independent power section.
movement Please ensure that your batteries are well charged.
Some veer will be expected. If it is sever, ensure that both motors'
Turning or veering connections are good, and that neither the wheels nor the
encoder disks are binding/caught on the chassis.

How does this code work?

The first few lines are imports. Let's take a look at the code:

from Raspi_MotorHAT import Raspi_MotorHAT

import time
import atexit

The Raspi_MotorHAT library is the one we installed for interacting with our motors. The
time library allows us to work with time; in this case, we will use it for a delay between
starting and stopping motors.

The atexit library allows us to run code when this file exits.

In the following lines, we will connect to the motor hat and the two motors we have
connected:

mh = Raspi_MotorHAT (addr=0x6f)
1m mh.getMotor (1)
rm mh.getMotor (2)

The first line here makes a Raspi_MotorHAT object with the I2C address passed in as
addr, which we saw in the scan, 0x6£. We call the returned object mh, as an abbreviation
for motor hat.

We then create shortcuts to access the motors, 1m for left motor and rm for right motor. We
get these motor controls from the mh object, using the motor number shown on the board.
Motor 1 is left and motor 2 is right.

[123]

Drive and Turn - Moving Motors with Python Chapter 7

We will now define a function, turn_off_motors, which will run the
Raspi_MotorHAT.RELEASE on each motor on this board—an instruction to make the
motors stop:

def turn_off_motors () :
Im.run (Raspi_MotorHAT.RELEASE)
rm.run (Raspi_MotorHAT.RELEASE)
atexit.register (turn_off_motors)

We then pass that into atexit.register (turn_off_motors), a command that will run
when this file finishes—when Python exits. This will run even when there are errors.
Without this, the code following could break in some interesting way and the robot

will keep driving. Robots without this kind of safeguard have a habit of driving off tables
and into walls. If they carry on trying to drive when their motors are stuck, it is bad for the
motors, motor controllers, and batteries, so it's better to stop.

The speed of the motors for this controller/library ranges from 0 to 255. Our code sets the
speed of each motor to just above half speed, and then runs
the Raspi_MotorHAT.FORWARD mode, which makes each motor drive forward:

Im.setSpeed(150)
rm.setSpeed (150)

Im.run (Raspi_MotorHAT.FORWARD)
rm.run (Raspi_MotorHAT.FORWARD)

Finally, we ask the code to wait for one second:
time.sleep (1)

This allows the motors to run in their forward drive mode for one second. The program
will then exit. Since we told it to stop motors when the code exits, the motors will stop after
this one second.

Steering a robot

Now we've made a robot drive forward. But how do we steer it? How will it turn left or
right?

There are a few major forms of steering. We'll take a look at a few, settle on the one our
robot actually has available to use, and write some test code to demonstrate it.

[124]

Drive and Turn - Moving Motors with Python Chapter 7

Types of steering

The most common techniques for steering a wheeled vehicle (including a robot) fall into
two major categories, with a couple of slightly unusual variants.

Steerable wheels

In movable wheels, one or more wheel in a robot can be turned in a different direction from
the others. When the robot drives, the differently positioned wheel will make the robot
turn. The following diagram shows how:

o (o) , '(6\—@\\%)
\ \ \
s L

o o @\O\» => 10}

Rack and pinion steering above, and wagon steering below

The preceding diagram shows two common styles of movable wheel steering on a robot.
The direction of movement is shown by the green arrows. Changes to the shape of the
robot and the angle of the wheels are shown by the white arrows. Refer to these points:

1. Rack and pinion is commonly used in cars. When straight, the car will go
forward.
2. When one bar is moved, shown by the black and white arrows, the car will turn.

[125]

Drive and Turn - Moving Motors with Python Chapter 7

3. The other common type is wagon style steering, used in homemade racing karts.
When straight it goes forward.

4. When the front bar is turned, the vehicle will turn.

Variants include robots with the ability to independently turn each wheel and drive
sideways; Ackerman steering, where the proportion by which wheels rotate is different;
and rear steering where a front set of wheels and rear set of wheels steer—used in long
vehicles. The photo below shows a robot with a turning set of front wheels:

Wagon steering Unotron robot with Arduino Nano controller (built by my son with my assistance)

An example of steering in a robot is the Unotron chassis kit from 4Tronix. The previous
photo shows a robot my son built with the Unotron kit. There is a single motor-driven
wheel at the back. The two front wheels are steered by a servo motor that turns the whole
front plate.

The disadvantages with this type of steering are related to space, weight, and complexity. A
chassis set up for movable wheel steering requires more moving parts and space to house
them. Unotron is as simple as it gets. There is more complexity, which can lead to required
maintenance.

The distance needed to make a turn (known as the turning circle) or for robots with
steerable wheel systems tends to be longer, as these must drive forward/backward to steer.

You will require one large motor for the fixed axle, as you will not be able to distribute
power across two motors, at least not without complex mechanisms to balance the input. If
the mechanism is not completely centered after steering, the robot will veer.

[126]

Drive and Turn - Moving Motors with Python Chapter 7

Fixed wheels

More common in robots are fixed-wheel steered robots. This is where the wheels' axes are
fixed in relation to the chassis. The relative speed of each wheel or set of wheels sets the
direction of the robot. That is, the wheels will not turn from side to side; however, by one
side going faster than the other, the robot can make turns. The common use case for this is
known as skid steering. Look at the following diagram:

@ NG A
L
e 4k 4

Fixed wheel steering or skid steering

The diagram above shows this in action. In this case, the white arrows show the relative
speed of the motors. The green arrows show the direction of the robot:

¢ In the first image, the motors are going at the the same speed, so the robot is
driving straight forward.

¢ In the second image, the motors on the right are going fast, the motors on the left
are going slow. The robot will be driving forward and left.

These have a number of advantages. If you intend to use tank tracks, you will need this
type of drive system. It is mechanically simple in that a drive motor per wheel is all that is
needed to make turns. The code for this is still simple, where turning can be made by
driving one side faster and, in the case of a pair of sensors, sensor feedback can drive motor
speeds per side. Skid steering allows a robot to turn on the spot, doing a full 360
degrees—essentially in a turning circle the width of the widest/longest part of the robot.

There are some disadvantages to using this, though. When turning, some wheels are being
dragged sideways, causing a lot of friction. Also, as there are motors on each side, with
motor controller parts per side, any minor differences in the motors, their gearing, or the
controller output can result in a veer.

[127]

Drive and Turn - Moving Motors with Python Chapter 7

Other steering systems

The controller we are using on our robot actually allows us to control four motor channels.
We are not using it this way in this book, but this can be used for some special wheel types
known as Mecanum wheels, which allow skid steering style motions along with crabbing
motions where a robot can drive left or right without turning. Technically, this is still fixed
wheel steering. The following photo shows a base with Mecanum wheels:

Mecanum wheels on the Uranus Pod by Gwpemu [CCBY 3.0 (https://creativecommons.org/licenses/by/3.0)

These are amazingly flexible but mechanically complex, high maintenance, heavy, and
expensive. They are fun though.

Steering the robot we are building

Based on the three wheel chassis we have chosen, with one castor wheel, and then a driven
wheel on each side, independently controlled, we will be using skid steering. By varying
the speed and direction of these, we will steer our robot. We can also spin 360 degrees with
it. The castor negates the problem mentioned with the drag seen on four and six wheel skid
steer robots.

We can demonstrate how simple the code is by making the robot spin on the spot with one
change to the previous code. Spinning is done by making one motor go backward while the
other goes forward. We already have motors going forward. If you look

at test_motors.py, there are the following lines:

[128]

https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0

Drive and Turn - Moving Motors with Python Chapter 7

Im.run (Raspi_MotorHAT.FORWARD)
rm.run (Raspi_MotorHAT.FORWARD)

You can modify this so one of them goes BACKWARD:

Im.run (Raspi_MotorHAT.FORWARD)
rm.run (Raspi_MotorHAT.BACKWARD)

Run this on the Pi with python turn_motors.py and your robot will now spin to the
right. Swap them so left (1m) is BACKWARD and right (rm) is FORWARD and it will spin the
other way.

What about less aggressive turns? In the previous code, before the direction lines, we also
set the speed of each motor:

Im.setSpeed(150)
rm.setSpeed (150)

Im.run (Raspi_MotorHAT.FORWARD)
rm.run (Raspi_MotorHAT.FORWARD)

We can make a gentler turn by resetting 1m and rm direction mode to FORWARD, and then
making one of the speeds smaller in relation to the other:

lm.setSpeed(50)
rm.setSpeed (150)

Im.run (Raspi_MotorHAT.FORWARD)
rm.run (Raspi_MotorHAT.FORWARD)

This will make the robot drive forward and turn gently to the left.

The robot object — code for our experiments
to talk to the robot

Now we have seen how to move and turn our robot, we come on to a layer of software to
group up some of the hardware functions, but isolate them from behavior. Why would we
want that? When we chose our motor controller, we made a lot of trade-offs to arrive at one
that works for our project. Motor controllers are one of the parts of a robot that can change,
because the considerations change or we simply want to build our next robot. Although
broadly having two motors and controlling the speed and direction is the same kind of
operation, each controller does it slightly differently, so creating a layer in front of it makes
a facade—we get to use the same commands to it, even if it changes.

[129]

Drive and Turn - Moving Motors with Python Chapter 7

Each controller has a quirks. With this one, we set a run mode and speed. Many controllers
use zero to mean stop, but this one uses a RELEASE mode, which is slightly different from
speed 0 where the motors are held. Controllers often use negative numbers to mean to go
backward; this one has a BACKWARD mode. The speed values on this controller go from
0-255. Some go from -128 to 128, or 0-10. What we can do is to create an object with an
interface to hide quirks specific to this controller.

Why make this object?

An interface is designed to give you a way to interact with some other code. It creates a
way to simplify, or make more consistent, different underlying systems to make them
behave the same way, like all of the types of motor controller mentioned. Refer to the
following block diagram:

(1) @)

) Path followin
Path following =

)) behaviour
behaviour mixed v
with-setup and
maotor control Robot hardware

setup and control

Software layers

It also provides a way to cleanly separate parts of code into layers. Different layers means
that you are able to change one part of some code, without it making huge changes in
another. In the previous diagram, panel 1 shows a block of code that has different systems
mixed together. It will be hard to change; adding a new behavior or swapping the motor
controller in this code would be quite tricky.

The code represented by panel 2 shows two separate systems interacting. They have a
relationship where the Path Following Behavior is in control of the Robot hardware setup
and control code.

If we write a new behavior, we can use the hardware control library again. We will be
writing many behaviors, and we will be able to reuse the robot object throughout, perhaps
extending it occasionally. After all, who wants to keep writing the same code?

[130]

Drive and Turn - Moving Motors with Python Chapter 7

This common interface means we could make an object that looks the same from the
outside on other robots, and our behaviors will still work. So, if the motor board changes,
we won't need to modify the behavior code.

The Robot hardware setup/control block in the second panel of the previous photo
and Mecanum wheels on the Uranus Pod by Gwpcmu will be our Robot object. It is a real
version of our interface. It will hide the quirks of our "full function Stepper Hat" board.

What will we put in the robot object?
The following code will do the following;:

We need to have the motor hat set up

We want it to deal with the exit state

We want a stop_motors function that will stop motors

Let's use percentages to mean speeds—values of 0 to 100. We can map this to
what the controller really wants

The modes are particular to this controller or it's library. We can use negative
values to mean going backward

It will also later act as a "gatekeeper” to data buses that require code to hold
exclusive locks on them and some of the hardware

Our interface (therefore our object) will not contain the behavior, other than the
stopping on exit safeguard

We will put it in a new file, named robot . py:

from Raspi_MotorHAT import Raspi_MotorHAT

import atexit

class Robot (object) :
def _ _init_ (self, motorhat_addr=0x6f) :

Setup the motorhat with the passed in address
self._mh = Raspi_MotorHAT (addr=motorhat_addr)

get local variable for each motor
self.left_motor = self._mh.getMotor (1)
self.right_motor = self._mh.getMotor(2)

ensure the motors get stopped when the code exits
atexit.register (self.stop_motors)

[131]

Drive and Turn - Moving Motors with Python

def

Note there are comments in the init, stating what these fragments of code do. So far, our
Robot object has set up our motor hat and has a way to stop the motors. The code is the
same setup code we have seen before, but structured slightly differently. When we create a
Robot object, this code will set up the motor hat, get the left and right motors, and register

stop_motors (self) :
self.left_motor.run (Raspi_MotorHAT.RELEASE)
self.right_motor.run (Raspi_MotorHAT.RELEASE)

a stop system.

We can test this in another file named behavior_path.py:

import robot
from Raspi_MotorHAT import Raspi_MotorHAT
from time import sleep

= robot.Robot ()
.left_motor.setSpeed (150)

.left_motor.run (Raspi_MotorHAT.FORWARD)
.right_motor.run (Raspi_MotorHAT.FORWARD)

leep (1)

This starts by pulling in the robot . py file we just created with an import. It will go
forward for one second and stop. But we still have to set speeds specific to this board (not

r
r
r.right_motor.setSpeed(150)
r
r
s

out of 100). Let's fix that in robot .py (new code will be in bold):

from Raspi_MotorHAT import Raspi_MotorHAT

import atexit

class Robot (object) :

def

def

def

_ _init_ (self, motorhat_addr=0x6f) :
self._mh = Raspi_MotorHAT (addr=motorhat_addr)

self.left_motor = self._mh.getMotor (1)
self.right_motor = self._mh.getMotor(2)
atexit.register (self.stop_motors)

convert_speed (self, speed):
return (speed * 255) / 100

stop_motors (self) :
self.left_motor.run (Raspi_MotorHAT.RELEASE)
self.right_motor.run (Raspi_MotorHAT.RELEASE)

[132]

Drive and Turn - Moving Motors with Python Chapter 7

We can now use convert_speed, to use speeds from 0 to 100. This will return us speeds
from 0 to 255 for this motor hat. For other motor hats, this would return something else.

We do this by multiplying the speed by 255 and dividing by 100—this is a standard way of
turning a percentage into a fraction of the 255. We multiply first because we are doing
integer (whole number) maths, and dividing 80/100 with whole numbers will give 0, but
dividing (80*255) by 100 will give 204.

This is still unwieldy though—to use it, we need this in behavior_line.py:

import robot
from Raspi_MotorHAT import Raspi_MotorHAT
from time import sleep

= robot .Robot ()
.left_motor.setSpeed(r.convert_speed(80))

.left_motor.run (Raspi_MotorHAT.FORWARD)
.right_motor.run (Raspi_MotorHAT.FORWARD)

r
r
r.right_motor.setSpeed(r.convert_speed(80))
r
r
sleep (1)

This still uses the run and setSpeed methods of the motorHat code, which are specific to
this control board. Other boards don't work the same way. So, let's wrap it further:

from Raspi_MotorHAT import Raspi_MotorHAT
import atexit

class Robot (object) :
def _ _init_ (self, motorhat_addr=0x6f) :
Setup the motorhat with the passed in address
self._mh = Raspi_MotorHAT (addr=motorhat_addr)

get local variable for each motor
self.left_motor = self._mh.getMotor (1)
self.right_motor = self._mh.getMotor(2)

ensure the motors get stopped when the code exits
atexit.register (self.stop_motors)

def convert_speed(self, speed):
return (speed * 255) / 100

def set_left (self, speed):
self.left_motor.setSpeed(self.convert_speed (speed))

def set_right (self, speed):

[133]

Drive and Turn - Moving Motors with Python Chapter 7

self.right_motor.setSpeed(self.convert_speed (speed))
def stop_motors(self):

self.left_motor.run (Raspi_MotorHAT.RELEASE)

self.right_motor.run (Raspi_MotorHAT.RELEASE)

In this update, I've added the set_left and set_right methods. These take a speed as a
percentage and set the speed using the motor. set Speed method internally. This still
leaves us with the motor run function. In many of my robots, as mentioned previously, I
use negative values to mean the motor goes backward.

This is a bit trickier. We need to do two things:

¢ Determine if the speed is above, below, or equal to zero and set the mode for the
run function

e Remove the sign from the speed for set Speed so it's always a positive value

We can use a simple i f logic to get the run command. We can replace the convert_speed
method in the class to return a mode and positive value. I've used comments to show the
two sections to this function:

def convert_speed(self, speed):
Choose the running mode
mode = Raspi_MotorHAT.RELEASE
if speed > O0:
mode = Raspi_MotorHAT.FORWARD
elif speed < O:
mode = Raspi_MotorHAT.BACKWARD

Scale the speed
output_speed = (abs(speed) * 255) / 100
return mode, int (output_speed)

So, the default mode that we will get at zero is RELEASE, or stop. If the speed is above 0, we
return the FORWARD mode, and if it's below 0, we return BACKWARD.

We then add one more operation to our speed calculation: abs (number) . This returns the
absolute value, which removes the sign from a number. For example, -80 and 80 will both
come out as 80.

We then need to change our motor movement methods to use this speed conversion:

def set_left (self, speed):
mode, output_speed = self.convert_speed (speed)
self.left_motor.setSpeed (output_speed)
self.left_motor.run (mode)

[134]

Drive and Turn - Moving Motors with Python Chapter 7

def set_right (self, speed):

mode, output_speed = self.convert_speed (speed)
self.right_motor.setSpeed (output_speed)
self.right_motor.run (mode)

So, for each motor, we will get the mode, output speed from the passed-in speed, then
call setSpeed and run.

The whole of robot . py should now look like this the following:

from Raspi_MotorHAT import Raspi_MotorHAT

import atexit

class Robot (object) :

def

def

def

def

_ init_ (self, motorhat_addr=0x6f) :
Setup the motorhat with the passed in address
self._mh = Raspi_MotorHAT (addr=motorhat_addr)

get local variable for each motor
self.left_motor = self._mh.getMotor (1)
self.right_motor = self._mh.getMotor (2)

ensure the motors get stopped when the code exits
atexit.register (self.stop_motors)

convert_speed(self, speed):
Choose the running mode
mode = Raspi_MotorHAT.RELEASE
if speed > O:
mode = Raspi_MotorHAT.FORWARD
elif speed < O:
mode = Raspi_MotorHAT.BACKWARD
Scale the speed
output_speed = (abs(speed) * 255) / 100
return mode, int (output_speed)

set_left (self, speed):

mode, output_speed = self.convert_speed(speed)
self.left_motor.setSpeed (output_speed)
self.left_motor.run (mode)

set_right (self, speed):

mode, output_speed = self.convert_speed(speed)
self.right_motor.setSpeed (output_speed)
self.right_motor.run (mode)

[135]

Drive and Turn - Moving Motors with Python Chapter 7

def stop_motors(self):
self.left_motor.run (Raspi_MotorHAT.RELEASE)
self.right_motor.run (Raspi_MotorHAT.RELEASE)

Our simple behavior in behaviour_line.py is now only a few lines:

import robot
from time import sleep

r = robot.Robot ()
r.set_left (80)
r.set_right (80)
sleep (1)

This simplification means we can build on this code to create more behaviors. What is more
fun, is because I have a common interface Robot object for my big robot, ArmBot, or my
other Raspberry Pi robots, I could take this behavior_lines.py and run the same code on
them. They would all go forward for one second at 80% of their motor speed.

Write a script to follow a predetermined path

So, we now get to the first behavior that feels like a robot.

Let's make a quick sketch of a path for us to get our robot to follow:

1

Path for our robot

[136]

Drive and Turn - Moving Motors with Python Chapter 7

In the previous diagram, I've drawn a path. The straight lines are for driving forward, the
1s mean one second. We don't yet have a way to consider distance traveled, only time. We
may be able to guess at times relative to distances, but they will not be very precise. The
gentle curves are a turn where we slow one motor down with respect to the other.

The final spiral means a victory spin on the spot when the path is complete—we can do this
by putting one motor in reverse while the other drives forward.

Let's write this code. First, we want the imports, sleep and robot. But before we do
anything, let's make some helper functions for this behavior. I called my file
behavior_path.py:

import robot
from time import sleep

def straight (bot, seconds):
bot.set_left (80)
bot.set_right (80)
sleep (seconds)

def turn_left (bot, seconds):
bot.set_left (20)
bot.set_right (80)
sleep (seconds)

def turn_right (bot, seconds):
bot.set_left (80)
bot.set_right (20)
sleep (seconds)

def spin_left (bot, seconds):
bot.set_left (-80)
bot.set_right (80)
sleep (seconds)

The helpers use much the same language we described the behavior in. We have
straight, turn_left, turn_right and spin_left. These are not in the robot object
because other behaviors may use more continuous behavior than this. I've called the robot
object bot now, because one letter variable names such as r become less easy to find, read,
or reason about when there is more code.

[137]

Drive and Turn - Moving Motors with Python Chapter 7

These helpers each set the motor speeds, then sleep for a determined number of seconds.
We can then create the robot object and sequence them by adding this to
behavior_path.py:

bot = robot.Robot ()
straight (bot, 1)
turn_right (bot, 1)
straight (bot, 1)
turn_left (bot, 1)
straight (bot, 1)
turn_left (bot, 1)
straight (bot, 1)
spin_left (bot, 1)

Now, we can upload this to the Raspberry Pi and run it via PuTTY with the following;:

$ python behavior_path.py

Now, if your robot is anything like mine, you saw it drive and make turns, but the turns
have overshot by some way and the robot may be veering to one side. We can fix the
overshoot here by reducing the amount of time in the turn steps:

bot = robot.Robot ()
straight (bot, 1)
turn_right (bot, 0.6)
straight (bot, 1
turn_left (bot,
straight (bot, 1

)

0.6)

)
turn_left (bot, O

)

1

.6)
straight (bot, 1
spin_left (bot, 1)

You will need to tweak these values to get close to 90 degree turns. This takes patience:
change them and upload them. This is a crude form of calibration—tuning values in our
code to match the quirks of our robot.

You may be able to account for some of the veer by tuning one motor to be slower in the
straight function:

def straight (bot, seconds):
bot.set_left (80)
bot.set_right (70)
sleep (seconds)

But this will hold up for a while and may be hard to fine tune. Why do we get this veer?

[138]

Drive and Turn - Moving Motors with Python Chapter 7

Motor speeds can vary, even those from the same manufacturers. Add to this variations in
wheel diameters, axle positioning, weight distribution, slippery or uneven surfaces, and
motor controller sides (less likely) and it's easy to see that you are actually unlikely to get a
perfectly straight line from a robot this way. Depending on what sensors we are following,
this may or may not be a problem. To account for this problem, we will introduce
encoders/speed sensors in a later chapter and calibrate those sensors to get a more accurate
version of a path behavior.

Without sensors, a robot is not able to determine where it is or if it has bumped into
anything, so if it ran into a wall, you probably had to go and move it to where it had room
to move.

Summary

In this chapter, we've learned how to connect the motors to the Raspberry Pi via the motor
control board. We've then powered it up and downloaded, then installed the libraries for it.
We've demonstrated our motors work, and then started building a first layer of code for
our behaviors to use, while seeing how a layer like that could be made for different robots.
We saw our robot move in a path and tuned it, while finding out some of the shortcomings
from using motors without any sensors.

In the following chapters, we will start adding sensors and building behaviors using these
Sensors.

Questions

Answer the following questions:

1. Why do we use the atexit.register mechanism?

2. How can we correct a motor going the wrong way?

3. What are the main advantages of a common interface for a Robot object?
4. How must the motors move relative to each other to make this robot turn?

[139]

Drive and Turn - Moving Motors with Python Chapter 7

Further reading

¢ For more information on the style used for the Robot object, along with the use
of similar interfaces and classes, I recommend Learning Object-Oriented
Programming by Gastén C. Hillar, which not only works through these concepts
in Python, but takes them more generally and show them how they apply also to
C# and JavaScript languages.

[140]

Programming Line-Following
Sensors Using Python

This is the first chapter where you will be using sensors. Sensors allow a robot to react to its
environment in some way, which allows the start of real robot-like behavior. We will be
adding line sensors to our robot, and then creating line-sensing behavior, as seen in robots
used in industries such as warehouses. Line sensing can be performed using hidden lines
such as wires under a floor, but it's far easier to use visible lines. Visible lines can be
detected using either a camera or simple optical sensors bouncing light off the floor below
and detecting the level of light coming back.

In this chapter, we'll learn the following:

e How to attach line sensors to your robot and wire them to the Pi

e How to paint yourself a line follower test track

e How to write code to test sensors and tune them to see them working
e How to use sensors to write a line-following behavior in Python

Technical requirements

For this chapter, you will require the following;:

e A computer with access to the internet.
A robot fitted with the Raspberry Pi.

The robot code object from Chapter 7, Drive and Turn - Moving Motors with
Python.

A screwdriver (pozi, for 2 or 2.5M).

A pair of long nose pliers.

Some male to female jumper cables—also known as Jumper Jerky and DuPont
cables. The male-to-female bit is really important!

https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=31&action=edit#post_30
https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=31&action=edit#post_30
https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=31&action=edit#post_30
https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=31&action=edit#post_30
https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=31&action=edit#post_30

Programming Line-Following Sensors Using Python Chapter 8

¢ A Small Plus size 400 tie point breadboard.
¢ 3M nylon standoff and bolts kit

e Two line tracking/following/tracing digital sensor modules. The black/blue lens
parts on the modules is the actual sensor. Modules KY-033 or Tcrt5000 are
suitable. Do not get the analog type sensor unless it also has digital output. Take
note if it outputs high or low for detecting white objects. If white objects are low,
you will need the following pull_up=True.

e Large-format paper sheets—A2 is good.
¢ A black marker pen.

TTKECOdeforiTﬂSChafﬁerisathttps://github.com/PacktPublishing/Learn—Robotics—

Fundamentals—-of-Robotics-Programming/chapter8.

Check out the following video to see the Code in Action:

http://bit.ly/2zvYNce

Attaching line sensors to the robot and
Raspberry Pi

In this section, we will get to know the parts we are about to use and then mount them on
the robot, wiring up to the Pi.

What are optical line sensors?

There are a few types of sensor that can be used. One type is known as hall sensors, which
can detect magnetic strips or current carrying cables. The other type are optical sensors.
Basic optical line sensing bounces infrared light off of whatever is below the robot. It then
detects the intensity of the reflected light.

[142]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/chapter8
http://bit.ly/2zvYNce
http://bit.ly/2zvYNce
http://bit.ly/2zvYNce
http://bit.ly/2zvYNce
http://bit.ly/2zvYNce
http://bit.ly/2zvYNce
http://bit.ly/2zvYNce
http://bit.ly/2zvYNce
http://bit.ly/2zvYNce

Programming Line-Following Sensors Using Python Chapter 8

These send a data value depending on this. The sensor we will use turns this intensity into
a binary, 1 or 0, value by seeing if the detected light passes a threshold. The following photo
shows the sensors:

A pair of line sensors

The previous photo shows a typical pair of inexpensive optical line sensors. Between the
two mounting holes, you can see there are black and blue lenses. These are the optical
element. This element should be as close as it can be to the surface we are sensing, without
causing the robot to drag.

Below the optical element (and a mounting hole) is an adjustment element. This adjustment
sets the threshold that the sensors go from 0 to 1, based on the reflected light. One of the
steps we will take when they are turned on is to adjust these.

[143]

Programming Line-Following Sensors Using Python Chapter 8

What other new parts will we use?

In this chapter, to wire and attach sensors to the robot, we are introducing two other robot
parts. The following photo shows a bunch of jumper wires and a breadboard:

P o5qoO
epoqgc

NN R T R N A e

}

WM R R R RO R R R R A R 3 i b ok sk —a

1y b

- 8 " 8
@ & = an
- . wEea0
“ & " s
L BN BN B BN
Fryoe;

© @~ e N -

+

+l'-.' E s sww - =mans L B B B L B
Esm e - EmEEw -sEwe -aEee L I I B)

Some of the required tools

In the previous photo, there are jumper wires (1) and a breadboard (2). Jumper wires allow
you to jump connections from one part to another, making connections between them. The
breadboard lets you push wires and components into it, and also to make connections
between them. The green lines illustrate the connections that are under the squares/holes
you can see.

Construction plan

To attach the sensors, first we must create standoffs of the correct length. We then bolt the
sensors to the bottom of the robot with them. After this, we stick the breadboard using a
self adhesive strip to the USB battery. We then wire the sensors to the breadboard, and
finally the Raspberry Pi to the right tie points on the breadboard.

[144]

Programming Line-Following Sensors Using Python

Chapter 8

Getting the cor

rect length

For the sensors to work, they need to be as close to the ground as possible, without actually
touching it. To get this length for your robot, you will need to combine a few of the 2.5 m

standoffs to reach from the bottom of the chassis, so the bottom of the sensor ends up about
5 mm from the floor (the bottom of the wheels). We are going to build the assembly shown

in the following diagram:

wheel

chassis
Standoffs
Sensor
/1'/ e I
5mm$

How the sensors should end up

[145]

Programming Line-Following Sensors Using Python Chapter 8

Mounting sensor modules

The following photo provides details on actually mounting the modules onto the underside
of the robot where they will be most effective:

’@‘ @’ @‘ .@‘\]

Attaching the sensors

You may need to try a few combinations, in my case, a 20 mm and 12 mm standoff together
(giving 32 mm) worked. To attach the sensors to the robot with the standoffs, perform the
following steps (each step corresponds to an image in the previous photo):

1.

Bolt them together.

2. They should end up like this.

Take the combined standoff, a sensor, and the correct nylon screw for the
standoff. The screw should be on the same side of the sensor board as the lumpy
parts.

Bolt the sensor onto the standoff.

Repeat this—you should have two, with the same length.

Mount the two sensor modules under the robot. The sensor lenses should be
facing forward, and the wiring points the back of the robot. This chassis has a
handy slot here, allowing me to adjust how close together the two sensors are.
Put them about 20 to 30 mm apart.

[146]

Programming Line-Following Sensors Using Python Chapter 8

Wiring the sensor in

The next diagram shows how the connections (not wiring details) will look. Connections in
red are new connections:

Left Right
Wheel {——— Motor Hat ~==——=>> Wheel
Motor Motor

f

Left Line ss==v Raspberry Pi W, Right Line

Sensor Sensor

Diagram with line sensors added

First, we will need to place a breadboard onto the robot. A breadboard lets us poke wires
and component leads into slots that are connected electrically to make connections without
needing soldering that are easy to modify.

Do not make connections to and from a breadboard on any circuit that is
powered up! This may cause damage to the components, sensors, or
controller boards. This is a very easy way to destroy a Raspberry Pi.

The following photo shows how to attach the breadboard:

Attaching a breadboard

[147]

Programming Line-Following Sensors Using Python Chapter 8

Perform the following steps:

1. This is the breadboard. On the back of it should be some backing to a self-
adhesive strip.

2. Peel the backing from the strip.

3. Line the board up with the USB battery. Note that you should try to keep the

battery level indicator, if your USB battery has one, clear. My indicator was on
the underside of mine.

4. Stick the breadboard down firmly.

The next step is wiring the cables in. At this point, it is helpful to have the following
Raspberry Pi GPIO diagram for reference:

o .2V o s oV
@%Lﬁoﬁmﬁomﬁw:ﬂw,\ﬁéﬁoﬁﬁ§
FY Y Y YY Y Y Y'Y Y o
felieee80080080008008

a @ a

0000000000000000000
> < O ORNDNN>00 2 Q000mo0ma o 0
M a O Z < NN ™M - = -2
m n un (U] ™ @ (0]

Raspberry Pi GPIO pins used for this sensor

In the previous diagram, I've changed my annotations to highlight the connections we will
make. First, note that the bottom of the diagram would be the front of the robot, so the
upper row would be the front row of GPIO pins. I've highlighted a 3.3v pin and a GND
pin. These will provide power to the sensor in the correct range for the Pi. I've also
highlighted pins 23 and 16. These will be the left and right sensor input pins respectively.

[148]

Programming Line-Following Sensors Using Python Chapter 8

Next, we need to wire the sensor and bring the connections up to the top of the robot
chassis. The following photo shows you the steps you'll need:

Sensor connections at the bottom of the robot

Always use the darkest colored edge on grouped jumper wires for
ground. If there are left and right groups, it can help to clearly mark one
side, the left side, with a bit of insulation tape.

To wire the sensor, follow these steps using the preceding photo as a reference:

1. With the male-to-female jumper wire strip, make two strips of three. You can do
this by taking three ends and gently pulling them apart from the others. Keeping
the three attached will make it easier to work with than with three separate wires
for each sensor.

2. For each cable, plug one end into a sensor. As a general guideline, if one side is a
darker color, wire this one into ground, G or GND on the sensor. This pin may
be marked "-" or "-ve" for negative too. This makes it easier to identify which way

up it should be later. Take a note of the order of pins on the sensor—mine are

"GVS": Ground, Voltage, and Signal.

3. Push the other end through a wider hole between the bottom of the chassis to the
top. In my robot, this was the same hole I pushed the motor cables through.
Repeat steps 2 and 3 for the other sensor.

[149]

Programming Line-Following Sensors Using Python Chapter 8

4. At the top of the chassis, gently pull the cables through. You may knock the
motor cables out doing this. I did have to reconnect a couple of my motor cables
at this step. There should be plenty of cable for each sensor hanging over the

breadboard:

L B B - = ouowow 5

- - Eow - = " omom ::

LU B B o =5 = N5

- = e en " 5 = E N a_-

:Row8 ----k

A

= : a3 wam

'Slgnal =& mEom 2:

" "R EE

" EEEE Vo“agedq; . Grc_)und

Saman Pins [""||na Pins
- .. LR EY .

LI B B B .16 ™ ~

L RNl - ... 17 M

* [Row 19 " -

' Right =i

"« | Signal nae e

- . .E. L L B B

(mmmowo. TR :.

LB] .Il.:.

LR I - .o o= KA

"N mREE mwwwww L]

R AN S N ummw =, LE

A - wewow o= &&

Connecting the sensors to the breadboard at the top of the robot

5. We can now take the wires we pulled through from underneath and wire them
into the breadboard.

6. Connect the wires from the sensor so G/GND (this should be the darker colored

wire) goes into the blue track on the breadboard, V/VCC (middle) goes to the red
track, and S/OUT goes to a pin on the breadboard.

[150]

Programming Line-Following Sensors Using Python

Chapter 8

7. Keep the left sensor connections in a left-hand row (I went with row 8) and the
right in a right hand row (row 19):

.‘ gh‘.h
L

o
HAT \00.{211

-‘ !Jl

/| Stepper Motor

Potie
L

: 5=12VA.2A

Per(3A max) ¢
\m‘;w mu -~

Connecting the power to the sensors from the Pi

Next, we need to make the power connections to the Pi as shown in the preceding photo.
Peel off another strip of two cables—preferably with a black wire in them. These will be the

power connections. Here is how to connect them:

1. At the leftmost row (1) of the breadboard, plug the black wire into the blue strip

(ground) and the lighter color into the red strip (which will be 3.3v).

[151]

Programming Line-Following Sensors Using Python Chapter 8

2. To plug these into the Raspberry Pi, reference the GPIO diagram in the
photo, Attaching a breadboard; the black wire is GND, and should be on the top
row, three pins in from the left. The lighter colored wire is 3.3v, and should be
plugged into the the first pin from the left on the bottom row:

Wiring the breadboard sensor signals to the Pi

Now we need two individual wires; these carry the signal from the sensors to the Pi. Pull
two individual ones from the strip. We will be using the breadboard rows we've plugged
the sensor signal cables into. Holes in breadboard rows are connected horizontally up to the
middle groove. I've added a green highlight to row 10 in the photo, Connecting the power to
the sensors from the Pi, to show how that row's holes (also known as tie-points) are
connected. The preceding photo shows how to wire the sensor signals from the breadboard
to the Raspberry Pi. Refer to the following steps:

1. One cable should be plugged into the same breadboard row as the left sensor
(row 8) and the other cable should be plugged into the same row as the right
sensor (row 19).

[152]

Programming Line-Following Sensors Using Python Chapter 8

2. We can wire these two sensor cables into the Pi. The left, from row 8, should be
plugged into IO pin 23 on the Pi. The right, from row 19, goes into pin 16 on the
Pi. Reference the GPIO diagram in the photo, Attaching a breadboard, to see where
those pins are. Pin 23 is eight pins from the left on the top row. Pin 16 is three
pins in from the right on the top row. Your sensor is now ready to test! The
completed robot should look like this:

e ST T Ty

Q. S

Completed line following robot on a test track

Double check your wiring before applying power. Damage to the
Raspberry Pi and sensors could occur if it's not wired correctly.

Painting the test track

To test our sensors and our code, you will need a test track. A test track for line-following
needs to be a thick, continuous line, in a loop. It must not have any sharp turns and it's
probably best it doesn't cross anywhere. Curving bends are good.

[153]

Programming Line-Following Sensors Using Python Chapter 8

The thickness should be around 15 mm. The more consistent this is, the easier it will be for
your robot—my own has a few curves that are too thick! Beware of this. This needs to be as
close to a solid consistent black as you can manage. The contrast here is important. Any
gaps may cause the robot to misbehave. The line should ideally be matte black, that is, not
shiny as, if it's too shiny, it will still reflect enough light to be treated as white.

The next photo shows you how to draw or paint a test track:

Drawing the test track

In the previous photo, I've started by making two outlines and shading between them. You
may also find this easier with a thicker chisel-tip permanent marker than the type [used. A
test track can also be printed if you have access to A3 or, better yet, A2 printing systems. It
can be made from multiple sheets of A4 papers stitched together but try to ensure that these
will not get separated by the robot rolling over them.

For a very large track, spray painting MDF boards white and using thick black tape is an
option, but it is harder to get the curves with this. For larger tracks, I've taped paper sheets
to MDF boards.

You'll note that the corners are all curves—none are sharp angles. This robot may drive
right over an angle that is too tight for it; a robot with more sensors may be able to handle
it. Some robots use arrays of sensors or downward-facing cameras for line following, with
an increase in cost and complexity too. The angle I have drawn in the top left of my line is a
bit tight, but the robot can be made to follow this by tweaking the sensor gap.

I also created a simple black bar, for calibration and a simple stop test. This can be in the
middle of the same sheet of paper. This is shown in the following photo:

[154]

Programming Line-Following Sensors Using Python Chapter 8

Drawing a calibration bar

Finally, when actually testing with this, you must ensure the test track is held down well. I
placed coins or heavy flat objects in the corners, giving the robot some clearance or keeping
them flat enough for the robot to drive over them. Without this, the track may slip under
the robot and confuse the sensors.

Strong sunlight will be a problem as these sensors are based on infrared (IR) light—they are
optical beams. We cannot see them, but it is the reflection of this beam that the sensor is
looking for. Strong sunlight can flood the sensor with IR so it cannot see it's own beam any
more and will not sense dark spots. Other IR beams can also interfere with it too, such as
security systems and PIRs. Using the robot in an indoor setting is advisable. Having the
sensor close to the ground will also help.

Writing the code - testing the sensors

We can now test the sensors out for real. Power up the Pi and motor board and log in.

First, we'll need another library—this time a more general library for talking to devices and
sensors connected via the GPIO. Install this on the Pi:

pi@myrobot:~ $ pip install gpiozero

GPIO Zero is a library designed to make interaction with devices attached to the Pi GPIO
very simple. It has lots of good examples and documentation on the internet. We will be
using it where our hardware does not require more specialist libraries.

[155]

Programming Line-Following Sensors Using Python Chapter 8

Calibrating the sensors

Now, if your sensor has an adjustment pot, you may need to calibrate the sensors a little. As
mentioned, these sensors turn the amount of reflected light into a value and they then have
a threshold that will output t rue or false for when the value crosses a threshold. The
adjustment sets where this threshold is. The next photo shows how:

Calibrating the sensors

This means adjusting them to around the right value. On each of the sensors, there is an
adjustable element—a trimpot, which you can put a screwdriver into. The light will be on;
this means that the sensor is detecting white (ambient) light, "no line," and will be sending a
low signal. Turn the adjustment slowly anticlockwise until the light just goes off. For the
sensor I have, the light turning off means that the sensor is not detecting white, which
would mean it has detected a line—the output would then be high:

e If the robot is close to a white reflective surface, such as paper, the light should be
on. The output will be low as this is "no line."

e If the robot is not close to a white reflective surface, including a dark surface, the
light will be off. The output will be high because this is "line detected."

If the light stays on, try this adjustment with the S (sense/signal) line disconnected and by
making the same adjustment.

[156]

Programming Line-Following Sensors Using Python Chapter 8

There are sensors that behave in the opposite way—their light goes on
when over the black, and off when on the white. With them, the pull_up
parameter should be removed.

Test code

Our test code is simple. We will drive the robot until we meet the line and then stop. I put
this in a file called stop_at_1line.py:

from robot import Robot

from time import sleep

from gpiozero import LineSensor

r = Robot ()

lsensor
rsensor

LineSensor (23, pull_up=True)
LineSensor (16, pull_up=True)

lsensor.when_line = r.stop_motors
rsensor.when_line = r.stop_motors
r.set_left (60)
r.set_right (60)
while True:

sleep(0.02)

You should be able to upload this to the robot, place the robot a few centimeters away from
hitting a black line, then run it with python stop_at_line.py. The robot should drive to
the line and then stop.

Let's examine how this works. The first three lines are imports:

from robot import Robot
from time import sleep
from gpiozero import LineSensor

r = Robot ()

We import the Robot object from chapter 7, Drive and Turn - Moving Motors with Python, so
we can turn the wheels. sleep is imported so we can use time delays. From the gpiozero
library, we can import a LineSensor object. This object does a bunch of handy things, as
we'll find out. After the imports, we create our Robot object.

[157]

https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=31&action=edit#post_30

Programming Line-Following Sensors Using Python Chapter 8

In two lines, we create objects to handle the sensors:

lsensor = LineSensor (23, pull_up=True)
rsensor = LineSensor (16, pull_up=True)

The LineSensor object is given the pin number it expects the input to be at. The pull_up
parameter instructs the pin to enable a local pull up resistor, this stops the pin "floating"
between high and low when the sensor is off, and will keep the signal on the pin at a logical
high until something is detected, then the sensor will pull it low. There will be more detail
on resistors later in this book. We call them 1sensor and rsensor for left and right
respectively:

lsensor.when_line = r.stop_motors
rsensor.when_line = r.stop_motors

These two lines do something slightly new. In the sensor objects, we set a member called
when_1line. We store the stop_motors method from the robot object in them. What this
means is that either sensor then detects a transition from white to black, that it has crossed
onto a black line, the st op_motors method will be called. A number of the sensors in the
GPIO Zero library work this way, triggering code when something happens. This is known
as event driven programming, where what the code does depends on things being
triggered. The function that gets called (in this case stop_motors) is known as a handler.

In the following two lines, we start the motors moving forward:

r.set_left (60)
r.set_right (60)

They will now do this until the code stops (the atexit code we had before) or
stop_motors is triggered by the sensors.

Finally, we go into a loop. The loop here just passes the time, since the triggers are now
doing the actual work:

while True:
sleep(0.02)

The sleep here is so the loop doesn't spin very fast—without that, the Pi could become
unresponsive. Always have a small s1eep (wait time) in a loop like this.

This code does not exit when it reaches the line so you will need to send a Ctrl + C sequence
from PuTTY to stop it.

[158]

Programming Line-Following Sensors Using Python Chapter 8

Troubleshooting

The following is a set of steps to troubleshoot when the robot does not drive and then stop

at the line:

e If you see any errors, ensure you have installed the GPIO Zero library, and that
you have the code from the last chapter working. Check your code for syntax
errors or names typed differently.

e If the robot does not move at all, check that the motor wires are connected. They
could have been dislodged while putting in the sensors.

e If the robot does not stop, do the following:

Check that the sensor wiring for both is complete and correct:
going via the breadboard to the correct pins on the Raspberry Pi.
Make sure the wires are firmly pushed in.

Ensure the sensors are lit over the white and off over the dark. If
they stay lit, turn them gently anticlockwise until the light goes off.
If they will not light over the white, the sensors may be too far
from the floor, so use different standoffs to get them closer. If they
are as close as they can be to the white, they may need to be
adjusted slightly clockwise.

Check that the contrast between the light and dark parts of your
test track is strong and the track isn't too shiny.

It may not work in strong sunlight or if there are other IR sources
nearby.

If it lights, the stop bar may be too narrow and the robot driven
over it before it could be detected; try making the bar thicker.
Some sensors work the other way up, so you may need to remove
pull_up=True from the parameters for the sensor in the code.

Writing the line-following behavior

Now we are ready to build a more interesting behavior. However, for the same reasons
covered in chapter 7, Drive and Turn - Moving Motors with Python, we now want to add our
sensors into the robot object. This means that, on a different robot with sensor on different
pins, or regardless of the pull up configuration, the behavior written on top of the robot
layer will still work. We will add the sensors to this, then create the line-following behavior.

[159]

Programming Line-Following Sensors Using Python Chapter 8

Adding the sensors to the Robot object

Open up robot . py from the last chapter. In the imports section, we will want the
LineSensor object from GPIO Zero:

from gpiozero import LineSensor

In the constructor, the __init__ method for the robot object, we can set up our line
sensors. While the names 1sensor and rsensor are fine for the test code, in the robot
object, we will have other sensors later, also on the left and right. So it's better to be explicit
in naming these. We'll call them left_line_sensor and right_line_sensor. The
following is that section of the code, with the new code in bold:

def _ _init_ (self, motorhat_addr=0x6f) :
Setup the motorhat with the passed in address
self._mh = Raspi_MotorHAT (addr=motorhat_addr)

get local variable for each motor
self.left_motor = self._mh.getMotor (1)
self.right_motor = self._mh.getMotor (2)

ensure the motors get stopped when the code exits
atexit.register (self.stop_motors)

Setup the line sensors
self.left_line_sensor = LineSensor (23, pull_up=True)
self.right_line_sensor = LineSensor (16, pull_up=True)

If your sensors did not need pull_up, you should remove that from this
set up also.

As we saw in the test, we register handlers for the state of the sensor changing. We need to
be aware that when the code is stopped, atexit stops the motors, but if the LineSensor
handlers fire and start a motor just after, a motor could be turning left.

When working with code that calls back in this way, this kind of bug is called a race
condition. This means we need a more sophisticated exit. This should ensure all those
handlers are set to None when we exit the code. We also may just want to clear the sensor
handlers anyway in a more sophisticated behavior.

[160]

Programming Line-Following Sensors Using Python Chapter 8

So we'll create a stop_all method to do this, and make this our new atexit handler.
Note that the handlers are cleared before we stop the motors—this is so the motors cannot

be started between us stopping them and clearing the handlers. The modified code is in
bold:

def _ _init__ (self, motorhat_addr=0x6f) :
Setup the motorhat with the passed in address
self._mh = Raspi_MotorHAT (addr=motorhat_addr)

get local variable for each motor
self.left_motor = self._mh.getMotor (1)
self.right_motor = self._mh.getMotor (2)

ensure the motors get stopped when the code exits
atexit.register (self.stop_all)

Setup the line sensors
self.left_line_sensor = LineSensor (23, pull_up=True)
self.right_line_sensor = LineSensor (16, pull_up=True)

def stop_all (self):
self.stop_motors()

Clear any sensor handlers
self.left_line_sensor.when_line = None
self.left_line_sensor.when_no_line = None
self.right_line_sensor.when_line = None
self.right_line_sensor.when_no_line = None

The complete robot . py for my robot is in https://github.com/
PacktPublishing/Learn—-Robotics-Fundamentals-of-Robotics—

Programming/blob/master/chapterS/robot.py,ﬁJStnOtethatyOUISInay
be slightly different if your sensor did not need the pull up settings.

[161]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/robot.py

Programming Line-Following Sensors Using Python Chapter 8

Creating the line-following behavior code

This behavior will track the line we drew, driving around it and following its curves. Our
line-following behavior can be described with a few simple sentences and then we can
build it. Let's assume this code starts with the sensor either side of the line; when it crosses
into the line, the robot needs to pull to the side to get that sensor back off it. The next
diagram shows the behavior visually:

1. Robot Straddles Line

No sensors triggered, = —---=-= -
so it drives forward.

2. Right sensor Triggered

Since the right sensor has
crossed the Tine, it's
triggered, reversing the motor.
The robot turns right.

3. Not Crossing The Line

The no_line trigger will fire,
so the right motor will go
forward again. Both motors
forward, makes the robot go

straight again.

Robot line-following behavior

[162]

Programming Line-Following Sensors Using Python Chapter 8

The same behavior can be described as follows:

e The robot starts driving

e When a sensor detects it is on the line, the same wheel will slow down or go
backwards, turning the robot to put the sensor just outside the track, which will
turn the robot back onto the line

e When the a sensor detects it is off the line, the wheel will go up to full speed,
going forward in a straight line.

The last two points actually describe four events, two for each sensor.

It will need a little bit of fine-tuning and state. We will put the behavior code into an object
so it can contain its tuning parameters and the handlers we will register. A good name for
thisis line_following_behavior.py.

We will start by importing the Robot object and time.sleep:

from robot import Robot
from time import sleep

Next, we will create our LineFollowingBehavior class. This will set up and manage the
behavior. This has two variables that we can tune with our behavior. Variables intended to
be tuned this way have a nickname, fiddle factors, as they are likely to need tweaking for
the robot to work correctly. Depending on other factors, you may increase the speeds here,
but 30% is a good starting point:

class LineFollowerBehavior:
def __init__ (self, the_robot, forward_speed=30, cornering=-30):
self.robot = the_robot
self.forward_speed = forward_speed
self.cornering = cornering

The __init__ method or constructor here takes one mandatory

parameter, the_robot(plus self), and two optional ones. The first is the robot object it
will use. forward_speed is the speed the robot will drive at when going forward on the
line—too fast, and it is likely to overshoot a lot before reacting to line changes. You can tune
this to be faster. The cornering member sets the speed of a motor when the robot is
reacting to detecting a line. This may be a lower speed than forward_speed for longer
turning circles or a negative speed for it to turn tighter circles or on the spot.

Let's create the first handler:

def when_left_crosses_line(self):
self.robot.set_left (self.cornering)

[163]

Programming Line-Following Sensors Using Python Chapter 8

This says when the left sensor crosses the line, we will set the left motor speed to the
cornering speed. At -30, this will turn on the spot to the left. We'll do the same for the
right one too:

def when_right_crosses_line(self):
self.robot.set_right (self.cornering)

Next, we need to straighten up when the robot has come off the line:

def when_left_off_line(self):
self.robot.set_left (self.forward_speed)

def when_right_off_line(self):
self.robot.set_right (self.forward_speed)

This is simple—we set the motors to turn back to the forward_speed setting.

Next, we need a run method, to set everything up and start the robot moving. This run
method connects the handlers to the sensors. It tells both motors to go to forward speed.
Then, like the previous test code, it sits in a loop while the events take care of the rest of the
behavior:

def run(self):

Setup conditions

self.robot.left_line_sensor.when_line = self.when_left crosses_line

self.robot.left_line_sensor.when_no_line = self.when_left _off line

self.robot.right_line_sensor.when_line =
self.when_right_crosses_line

self.robot.right_line_sensor.when_no_line =
self.when_right_off_line

Start driving

self.robot.set_left (self.forward_speed)

self.robot.set_right (self.forward_speed)

while True:

sleep(0.02)

bot = Robot ()
behavior = LineFollowerBehavior (bot)
behavior.run ()

These last three lines will create a robot object, then create the behavior using this robot
object and finally tell the behavior to run. This will be handy when we want ways to have
more than one behavior.

[164]

Programming Line-Following Sensors Using Python Chapter 8

The full code for this file is in https://github.com/PacktPublishing/
Learn-Robotics-Fundamentals—-of-Robotics-Programming/blob/master/

chapter8/line_following_behavior.py.

More troubleshooting

Here is what to do if this does not result in the robot following the line at all:

e First, verify that you can still run the previous test code; if not, follow the
troubleshooting there and come back when that works.

e Check for errors: Check that your file is like this code, that there are no syntax
mistakes, and that you have typed the same names for things. Libraries should
be present from the previous tests.

e Maybe the robot drives straight over the line, jitters, drives for a while following
the line, then gets stuck somewhere, or misses a turn. This is where lots of
fiddling and fine tuning comes in:

Check that you have not swapped the left and right sensor
connections.

Reduce the speed.

The line may need to be thicker.

The line may have turns that are too tight.

Other markings on the sheet may be interfering.

The line darkness/contrast with the white may need to be stronger.

The line may be too shiny. Some line follower test tracks were
unreliable because of this.

Beware of strong light or direct sunlight; it can play havoc by
flooding out the sensor light.

Ensure that, for the whole of the line, the sensors are far apart
enough to be either side of it. The red lights should be on when
they are over the white on either side of the line when you start the
robot; they should be far enough apart that both red lights can be
lit.

You can alter forward_speed to be slower, or corner_speed to
corner faster or slower depending on which way it jitters and
veers.

[165]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter8/line_following_behavior.py

Programming Line-Following Sensors Using Python Chapter 8

e If it is turning a little too late, you can get the readings faster with a
tweak in robot . py. Normally, the LineSensor object will queue
around five values, at a rate of 100 per second; it will then start to
base activation on the average of these. This means it could be
around 30/40 milliseconds before it flips. Reducing the queue
length for this will make the robot respond faster, but may make it
more jittery:

self.left_line_sensor = LineSensor (23, queue_len=3,
pull_up=True)

self.right_line_sensor = LineSensor (16, queue_len=3,
pull_up=True)

Hopefully, by this point, you have a robot that can mostly follow lines. It does take lots of
tuning to get this good and to make smooth turns.

Extra ideas

You can make a test track that crosses; this needs to work a little like train crossings—in
that there are white lines cutting through the black lines for the two sensors either side to
pass through.

Adding an LED facing down in the robot to control the light under may make the sensors
more stable, although they do have their own IR LEDs too.

Using magnetic hall effect sensors and a wire, there are ways to make a hidden track under
a floor or an MDF board, for example. The wire needs some electricity passing through. The
full details are outside the scope of this book, but this is a fun idea.

You could also paint an inverted track, with a black background and a white line then
modify the code to deal with that. Pi Wars supplies an autonomous event test track with a
line painted this way.

[166]

Programming Line-Following Sensors Using Python Chapter 8

Summary

In this chapter, you have learned how to connect your first sensor, a line sensor, to the
robot. You've used a breadboard and wired the sensor into the Raspberry Pi.

You've added the sensor into the robot object, so it can be used in behaviors and so the
behavior can be used with robots using sensors such as these on different pins. You have a
test track to be able to test and demonstrate the line-following behavior and, if you are
feeling excited, you know how to draw more of them. Finally, you've built a behavior for
line tracking and seen it work—a simple bit of code but a behavior that starts to feel a little
smart.

In the next chapter, we will make our robot both easier to debug and a little more visually
engaging by using a multi-color LED strip with it.

Questions

What can happen if the test track is too shiny or not dark enough?
What are the other names for the GND or G pin?
Why would strong sunlight interfere with the sensor?

L

In event-driven programming, like we've used in this chapter, what do you call
the section of code that will be called when an event is triggered?

Further reading

e If you found the pin numbering confusing, please read the notes on GPIO Zero
and Raspberry Pi pin numbering at https://gpiozero.readthedocs.io/en/
stable/recipes.html#pin-numbering

¢ Additional troubleshooting and help on event handlers not firing from GPIO
Zero: https://gpiozero.readthedocs.io/en/stable/faq.html#my—event—

handler-isn-t-being-called.

[167]

https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/recipes.html#pin-numbering
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called
https://gpiozero.readthedocs.io/en/stable/faq.html#my-event-handler-isn-t-being-called

Programming RGB Strips in
Python

LED lights can be used with a robot to debug and give it feedback, so the code running on
the robot can show its state. Colored RGB LEDs let you mix the red, green, and blue
components of light to make many colors, adding brightness and color to a robot. We've
not paid much attention to making it look fun, so this time we can add some of that.

In this chapter we will learn the following;:

e How to choose and buy LED technologies that will work with the Raspberry Pi
and look good on our robot

e How to attach them to the robot
e How to write lighting code to create dynamic displays
¢ How to integrate them with a behavior and display a rainbow

Technical requirements

¢ A computer with internet access and Wi-Fi

The robot, a Raspberry Pi, and code from the previous chapter
An APA102 or SK9822 LED arrangement
A logic level converter (also known as a shifter) with at least two channels

Some double-sided sticky tape

Precut jumper wires for breadboard connections

Optional: If the level converter or LED stick comes with separate headers, you
will need the following:
¢ A soldering iron and stand

¢ Soldering iron tip cleaning coils

Programming RGB Strips in Python Chapter 9

e Some solder

Safety glasses

Fume extractor
A well-lit stable desk to solder at

A second breadboard (to use to hold the headers in when
soldering)

The code for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/

master/chapter9.

Check out the following video to see the Code in Action:

http://bit.ly/2AsosCv

Comparing light strip technologies

There are many competing technologies for light strips. We will limit it to LED types, as
incandescent and fluorescent lighting tends to require far more power and are less suitable
for these small robots.

The simplest are a set of lights that simply turn on when power is applied. These are of one
color only and would not make for great information displays. If you want other colors,
you would need to buy another color and attach it to a different output.

A improvement on these are strips that can have a color chosen, but this applies to the
whole strip. You could change the color of a whole strip to display information. These
require three IO pins per strip. If you wanted more than one color at a time, you would
need many pins.

The most useful kind in our case, which we will work with in this chapter, are addressable
RGB LEDs. Addressable means that each individual LED in the strip can be set, allowing a
sequence of colors along the strip. As we have a limitation on the number of IO pins we can
use, we will use the types with built-in controllers that allow us to use only a few pins.
However, there are pitfalls in buying these to be aware of.

These LED controllers all take a stream of data. They take the red, green, and blue
components that they need; then pass the remaining data to the next LED. This means that
they can be arranged in strips, rings, or square matrices. The strips can be rigid sticks of
eight or flexible strips meters long.

[169]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
http://bit.ly/2AsosCv
http://bit.ly/2AsosCv
http://bit.ly/2AsosCv
http://bit.ly/2AsosCv
http://bit.ly/2AsosCv
http://bit.ly/2AsosCv
http://bit.ly/2AsosCv
http://bit.ly/2AsosCv
http://bit.ly/2AsosCv

Programming RGB Strips in Python Chapter 9

There are also some completely alternate technologies such as the LED Shim from Pimoroni
and LED Matrices in color using shift registers. The LED Shim is one of the best and easiest
to use of these technologies but, at the time of writing, is hard to find. We won't be using it
in our examples; however, its electronics setup is a matter of sliding it over the GPIO

pins. Code for the Pimoroni LED Shim will be included in the GitHub repository
accompanying this chapter, but a stick of eight will be used for examples.

The other two major groups are synchronous (four-pin) and asynchronous (three-pin) LED
strips. Both can be used with the Raspberry Pi, but the three-pin type have finer timing
requirements, that do not play well with motor control and other sensors or devices.
Because of this, I strongly suggest avoiding those types and using the four-pin types. They
all have quirks, but are mostly compatible.

Here are the recommended types:

e APA102C Dotstar
e SK9822

If you intend to use other types, they are not guaranteed to be compatible, and you will
have to alter the LED code.

Four-pin devices have a line for a clock and a line for data. The clock line is controlled by
the Pi and the data output to the LED is synchronized to this. It means that the Pi does not
need to have split precision timing as the LED device will only register data when the clock
line changes. The following screenshot shows the clock versus a single data line for these
LED types:

Clock

Data

Time

LED data with a clock

[170]

Programming RGB Strips in Python Chapter 9

For our robot, we need eight or more LEDs ideally. There are a few products that provide
this— Pimoroni's Blinkt, Sparkfun Lumenati 8-Stick, RasPiO Inspiring stick,

and ChipperNut's StarChip16. Some will require soldering headers but work in a very
similar way. If the rigid sticks of eight cannot be found, a higher density strip will do;
however, you may want to cut and attach eight of them to a rigid backing.

The following photo shows some of the types of addressable RGB LED configurations I
have experimented with:

1. An LED 8 stick

aEEEEann

These usually have APA102C
or sk9822 LEDs.They will
need some supporting
circuits.

so0l1d by the me
Tittle bulk

These are what we will most
Tikely use.

4. Bx8 marrix

Fun, but too big
for our robot.

A personal favo
but quite hard to i
outside of the vk, |

Little else will be as
easy TO use.

Types of addressable RGB LEDs

Other types that are not the SK9822/APA102C may not be compatible and may require
changes to the code or electronics to adapt them.

These may need to be bought from specialist electronics or hobbyist stores local to your
region. The best method is to look for resellers of Sparkfun, Pimoroni, or RasPiO parts on
their own sites. The strips can be found on Alibaba.

[171]

Programming RGB Strips in Python Chapter 9

RGB values

If you are not familiar with RGB values, the red, green, and blue light colors can be mixed
to make any color combination. This is the same principle used by most, if not all, color
display screens you have seen. TVs, mobile phones, and computer screens all mostly use
this. LEDs use the same principle to produce many colors.

The amounts of each to mix are usually specified as three-number components. In this case,
they are numbers ranging from 0 for absolutely turned off, to 255 for full intensity, with
values in between for many levels of intensity. The colors are mixed simply by adding, so
adding all of them at full brightness will make white.

Although this theoretically gives many colors, in practice, the differences between an
intensity of 250 and 255 will not really be discernible on most RGB LEDs.

Attaching the light strip to the Raspberry Pi

Before we can write code to display color sequences on our LEDs, we need to wire them to
our Raspberry Pi and attach them to our robot. After we have finished this section, the
robot block diagram will look like the following:

Left Right
Wheel <{——= Motor Hat ———> Wheel
Motor Motor

f

Left Line ———> Raspberry Pi < Right Line

Sensor Sensor

¥

Level
Shifter

LED
Strip

The robot block diagram with the LED strip

[172]

Programming RGB Strips in Python Chapter 9

Logic levels

To attach an RGB LED strip to the Pi, we need to be aware that the Raspberry Pi GPIO pins
operate at 3.3V, and the majority of these lights operate with logic at 5V. This logic level
voltage applies to the high digital level. If we try to drive these directly from the Pj, at too
low a voltage, the results may be inconsistent at best. If we are signalling back to the Pi, too
high a voltage will damage it! This is a process we will need to get familiar with, as the next
few sensors will also require this.

The simple answer to this is to use a logic level converter; the following photo shows two
types of these:

o C e

. |

K “CND

o .r'l Lo dis | r".ll 4

e -’i':'ﬂ-l.fl‘l.".l.ﬂ'l"l't" '1
L L
o B *

iy ;
Y ¥ @

Logic level converters

Four channel bidirectional converters are relatively common online in packs of three to five,
and I would suggest buying at least three as further sensors will also need these. Try to get
the kind pictured previously in blue. It's worth noting that the generic type are similar to
mine, but there are Adafruit and Sparkfun models with different wiring, so if you buy one
of them, you will need to carefully look at the wiring labels and wire it differently to those

connections.

[173]

Programming RGB Strips in Python Chapter 9

Let's take a closer look at the logic level converter I am using in the following photo:

“GND, %

A J\
{ SNEESEAE O

», /Bidirectiony

A close look at the logic converter

Level converters have a low side, marked 3V here, also known as low voltage, and a high
side, marked 5V here, known as high voltage. There are ground connections on both sides,
which are connected through to each other. There is then the section marked here as the
Bidirectional Bus. This is a set of channels (four in this case), where logic levels presented
at a pin on the 3V side of the channel will be output on the other side of the channel at 5V,
and the reverse, with logic levels presented at the 5V side of the channel being output on
the 3V side of the channel.

We will connect each GPIO pin for the LEDs to a level converter low side channel, and then
the high side for each of those channels will go to the data and clock pins on our LED strip.

They usually come with separate headers to solder on, so we'll need to examine how to do
SO.

Soldering headers on

It is likely that two of the parts you have bought this time have come with headers in a bag
that you can solder onto them. This means that you are going to need a small bit of tuition
in soldering on these headers.

First, as mentioned in the requirements, as well as a soldering iron and solder, you should
also have safety goggles, an extractor or well-ventilated space, an additional breadboard,
and a well-lit work space.

[174]

Programming RGB Strips in Python Chapter 9

You may be wondering why an extra breadboard. Since we are soldering headers on, one of
the easiest ways to hold them is to place the long side of the headers into the breadboard,
then place our device on top, as shown in following photo.

You should be wearing your safety goggles at this point. Warm up the soldering iron;
depending on the iron you are using, this will take a few minutes. If you have a tip thinner
or cleaner, I recommend using that both to get a good clean tip and to check that the iron is
hot enough. Pull out a bit of solder ready to use too. The next photo shows how to make
your first solder joint:

Making a solder joint

When soldering these, it is helpful usually to solder two opposite corners, so I started with
the bottom left. Take a look at the previous photo. To actually make the joint, first heat the
pin from the header and the pad (the ring that the pin goes through) on the board with the
iron. Gently feed solder in to the other side of the cable—not too much. When it is hot
enough, the solder will melt, and flow over the pad, making a rounded tent-like shape,
which is just enough solder. You can then pull away the solder and the iron. Be sure to heat
both the pad and the lead, otherwise you may end up with a dry joint, where the solder
does not flow properly over the pad. After soldering the first pin, make sure that the board
is level and the leg soldered right into it, heating it to make any adjustments. I recommend
then soldering the pin at the diagonally opposite corner next to keep it straight. You can
then solder the remaining pins.

For more detail on learning to solder, see the Further reading section for more detailed
soldering instructions. When you have done this for your level converter board and the
LED strip, they are ready to use.

[175]

Programming RGB Strips in Python Chapter 9

Attaching the LED strip to the robot

Finding a place to put the LED strip can be tricky. Our robot is busy. Wire lengths to the
board matter. The front of our robot will have many more sensors very shortly. We also
want to see our lights from above instead of from the front. I chose to put the LEDs on top
of the batteries, where there may be a little wiring over them, but they won't be competing
for space with the sensors. It means I can see them from the top, which makes sense for a
floor-driving robot. The following photo shows you how:

Fitting the LEDs

We will use double-sided sticky tape to fit these, as shown in the previous photo. You may
also use Velcro strips for this. First, cut off a length to fit under the LED strip. Stick it to the
the strip and pull off the backing. Then, as the previous photo shows, stick this down onto
the 4xAA battery box. I suggest holding it in place for a short while for it to stick well.

[176]

Programming RGB Strips in Python Chapter 9

Wiring the LED strip

First, we need to carefully wire the logic level converter into place. There are a number of
configurations for wiring these, so the PIN labels are extremely important. The level
converter should be placed over the notch on the breadboard, and then connections made
to the rows it occupies. Importantly, the low voltage side of the logic converter should be
facing the front of the robot (which I'll call the bottom of the breadboard). Have a look at
the next photo to see how:

SRR

JEmaREEEEASE 3

-ERBREEREEE S G

| " a s mEsEEE
MuEENuRRNN

Logic level converter on the breadboard

Now we will arrange our circuit around this. The following Raspberry Pi connections
diagram will help to see what we will connect:

900 25
» 1@O8
- @@ 12
13 () GND

17@@ 18
27()() GND
22@@ 23
00
5 OO anp
19O 16
26 (H()20
GND(OH(O) 21

3.3vO() 24

scL (OO enp
4 OQ TX
GND() () Rx
> 10@ () GND
ano(OHO)7

The Raspberry Pi connections to the LED strip

[177]

Programming RGB Strips in Python Chapter 9

The Raspberry Pi connections show pins 10 and 11, which are the data SPI (MOSI) and
clock SPI output from the Raspberry Pi. We will connect these to the logic level converter.
The following screenshot shows the new wiring:

5V | V+ | Vee

Gnd
Clk | Ci
Data | Di

led strip

right line sensor

left line sensor

O O ul
e <
o O

[

= o

0 =<

2 O

S @

o}

x

Recommended breadboard layout for the level converter and RGB LEDs

The connections in the brighter color are the new ones we will make now and the darker
ones show connections you have made in previous chapters. We connect GPIO 10 and 11 to
the low side of the channels on the level converter. We connect the low side of the level
converter's power and ground connections. There is then a wire from a 5V pin on the
Raspberry Pi to the red power strip at the top of the breadboard. We connect the high side
logic converter power up to this 5V strip, and the ground from the high side to the blue
ground line on the top power strip.

[178]

Programming RGB Strips in Python Chapter 9

We then connect the LED strip using male to female jumper wires. The LED 5V should go
to the top red power line on the breadboard, and the LED G or GND to the blue ground
line at the top of the strip. The clock should go to the high side of the channel that GPIO 11
went into, and the data pin to the high side of the channel that GPIO 10 went to. You have
now fully wired the LED strip. The robot will look like the next photo:

Fully connected and lit LEDs

Yours will not yet be lit. In the next section, we will get them lit too. What I hadn't noticed
in this photo and, you should check for, is that one of the motor connections has come
loose. Be sure to check that you've not knocked these loose while connecting the LEDs.

Double-check the connections; it is most important that the ground and
voltage connections to the LEDs or logic level converters are not swapped.
Ensure that the Pi GPIO pins 10 and 11 are connected to the low side of
the logic converter only. The Raspberry Pi, LED, battery, and logic level
converter can be damaged by wiring mistakes here. I personally have
destroyed controllers by not being careful with wiring!

Adding a power switch

You'll note in the bottom of the breadboard in preceding photo that I've added a
breadboard-friendly switch so I don't have to keep screwing that black cable into the robot
for power, with a breadboard jumper going back to the robot. I suggest doing the same, but
it's not essential. The next diagram shows this optional (but useful) addition to the
breadboard:

[179]

Programming RGB Strips in Python Chapter 9

Black Wire
From Batteries il eeeesseeeccece
o oo s 000000000
e e e o0 000000 00
e e e e e e e e 00 e e
® o 060000000 00
e e e oo e
) D

Wire To Gnd Terminal
On motor Controller

Adding a power switch

To do this, first find a breadboard-friendly slider switch. Unscrew the black cable between
the motor batteries and motor controller, then push it into the breadboard location shown
here—note that it's a bit thinner than normal breadboard jumpers, so it may not be the best
connection. You then need a wire from the other terminal of the switch to the screw
terminal on the motor controller. Note this is only for the motor power and will not switch
off the Pi.

Making a robot display code object

As discussed previously, although we are building around an APA102C-based stick, there
is more than one type of RGB LED system. We could choose something with any number of
implementations. The best way to deal with this, as we saw in the chapter on motors, is to
abstract it that is, to put the code into an object with an interface we've designed so that the
small differences in interfaces between real hardware and their libraries is hidden from the
behaviors.

So, what interface would we want for the LEDs? First, we'd want them to be available on
the robot as methods in robot . 1leds. We will want to clear the LEDs (turn them all off), set
an individual LED to an individual color, or set a bunch/range of LEDs to a list of colors.

We also want the robot code to tell us how many LEDs we have, so if the number changes,
some of the animations or displays will still make some sense.

For colors, we will use three values (r, g and b) as tuples or small three-item lists when
passed in. In Python, a tuple is a small number of items grouped together. When I say
color as a parameter, this is a tuple of (r, g, b).

[180]

Programming RGB Strips in Python Chapter 9

So, as a structure, we will use the following:

e robot.leds: This is an LEDs class, which we would put as a child of the existing
robot class as a member leds. These are the members we would have in it:
e set_one (led_number, color): This sets one LED at
led_number to the specified color.

e set_range (a_range, color): This sets a range of LEDs using
an a_range Python range to color. Python ranges can be defined
with a list of LED numbers or by using the range function, for
example, range (2, 8) will create the list [2, 3, 4, 5, 6, 7].

e set_all (color): This sets all of the LEDs to the color specified.

e clear (): This clears all of the LEDs to black, turning them all off.

e show () : All of the other methods buffer a state, allowing
individual LEDs to be set. This actually writes the LED states out
to the device. The LEDs will not change or update until this is
called. With the way most of these devices operate, they expect all
the LEDs to be set in one stream of data.

e count: This holds the number of LEDs in the strip.

So, let's write this code for the APA102C types (which should also be compatible with the
SK9822). In the GitHub repository will be code for the LED Shim, too. First, we will need
the spidev package to talk to SPI devices. So, on the Raspberry Pj, type the following:

pi@myrobot:~ $ pip install spidev

Our code must start by importing this and setting up the device. Put the following code in
leds_8_apal02c.py (named after the device type and the number of LEDs in it):

import spidev

class Leds (object) :
def _ _init__ (self):
MOSI - default output, (Master Out, Slave in) is 10. Clock is 11.
self.device = spidev.SpiDev ()
self.device.open (0, 0)
self.device.max_speed_hz = 15000

We create the default SpiDev connection self.device and open bus 0 and device 0 on it.
Note I've left a comment in here about the pin numbers to keep this information handy. Bus
0 is always pins 9, 10, and 11. There is another SPI bus (number 1) on pins 19, 20, and 21 . It
is also possible to "bit-bang" (using code to emulate dedicated bus functions) talking at
much slower rates to some devices on any pins, but that may be too slow for these LEDs.

[181]

Programming RGB Strips in Python Chapter 9

We must set max_speed_hz for the clock speed of our SPI bus, otherwise we have not
defined the speed we expect it to work at, which may lead to the LEDs not getting correct
data. We set this to 15 kHz, that is, 15,000 data items per second. You can increase this but
this may reduce reliability.

We have set up a property for the number of LEDs in our LED class, called count. This
property can be read like a variable, but is defined in a way that is read only and won't be
accidentally overwritten.

We also set up a place to store the LED colors as colors we want to show until we are
ready to display them. We set it up with all zeros—this is off. We make an array with a
single color of (0, 0, 0) in it and then multiply it by count to give us an array with that
many colors:

self.colors = [(0,0,0)] * self.count

@property
def count (self):
return 8

Now, we create the methods to interact with the strip. Setting a single LED is fairly
straightforward:

def set_one(self, led_number, color):
self.colors[led_number] = color

This code will raise KeyError if the user attempts to set an LED out of range.

Setting a bunch of LEDs using a range means looping over the range:

def set_range(self, a_range, color):
for led_number in a_range:
self.colors[led_number] = color

Now, we get to setting all of the LEDs and clearing them. These are basically the same
operation:

def set_all(self, color):
self.colors = [color] * self.count

def clear(self):
self.set_all((0, 0, 0))

In set_all, we use the same trick, multiplying an array of one color by the number of
LEDs. The clear method just uses the (0, 0, 0) off color with set_all.

[182]

Programming RGB Strips in Python Chapter 9

Finally, we need the show code, to actually send the colors we've configured to the LEDs.
All of these LED strips require you to set them all at one time, so storing them in a buffer
and then sending it allows us to compose displays with different colors. The APA102C has
a particular way of sending data on the SPI bus, defined in the datasheet links in the Further
reading section. We compose this using bytes, data components holding 8 binary bits,
giving a numeric range of 0-255 when used alone:

Data purpose Data format

Header—wake up LEDs |4 bytes of 0 or [0, 0, 0, 0]

1 byte - 224 (hex Oxe0) and a brightness from 0-31. I use Oxel—low brightness in

First color brightness hex

First color components |3 bytes—the red, green, and blue components of the color

nth color brightness 1 byte—a prefix of 111 then 5 bits for brightness

nth color components |3 bytes—the red, green and blue components of the color

End of data 4 bytes of padding are recommended, a set of Os again [0, 0, 0, 0]

You can see that our code will need to construct this dataset from our colors buffer and
then send it to the device:

def show(self):

Create the wake up header

data = [0] * 4

for color in self.colors:
data.append (0Oxel)
data.extend(color)

data.extend ([0]* 4)

send it

self.device.xfer (data)

This starts by setting a data variable to a list of four Os. Then, for each LED, I first add the
brightness byte, then extend the list with the color. In Python, a list has the append
method, which will append a single item onto the end of a list. It also has the extend

method, which treats the color as a list and places all of the values from the color list on to
the data list.

We extend the list with four more Os as an end of data section. We send it to 1ed_device
using the SPI xfer method, shorthand for transfer, which will transfer over all the bytes in
data.

[183]

Programming RGB Strips in Python Chapter 9

Other LED implementations would be more or less the same, although there are some, such
as the Pimoroni LED Shim, which have a library that can be wrapped by this very easily.

Adding LEDs to the robot object

Next, we should update our robot . py file to deal with an LED system. This is clearly
optional, but if we want to use it then we should set one up. We will start by adding it to
the constructor (init) method for Robot (the new code is in bold):

from Raspi_MotorHAT import Raspi_MotorHAT
from gpiozero import LineSensor

import atexit

import leds_8_apalO2c

class Robot (object) :
def _ _init_ (self, motorhat_addr=0x6f) :
Setup the motorhat with the passed in address
self._mh = Raspi_MotorHAT (addr=motorhat_addr)

get local variable for each motor
self.left_motor = self._mh.getMotor (1)
self.right_motor = self._mh.getMotor (2)

ensure the motors get stopped when the code exits
atexit.register(self.stop_all)

Setup the line sensors
self.left_line_sensor = LineSensor (23, queue_len=3, pull_up=True)
self.right_line_sensor = LineSensor (16, queue_len=3, pull_up=True)

Setup the Leds
self.leds = leds_8_apalO2c.Leds ()

We also want to ensure that when we stop our robot, the LEDs are turned off too:

def stop_all (self):
self.stop_motors ()

Clear any sensor handlers
self.left_line_sensor.when_line = None
self.left_line_sensor.when_no_line = None
self.right_line_sensor.when_line = None
self.right_line_sensor.when_no_line = None

[184]

Programming RGB Strips in Python Chapter 9

Clear the display
self.leds.clear()
self.leds.show()

The complete code can be found at https://github.com/PacktPublishing/Learn-

Robotics-Fundamentals—-of-Robotics-Programming/blob/master/chapter9/.

Testing the LEDs

Now, we can create code to test our LEDs and troubleshoot. We'll make something that
simply flashes a couple of different colors on the LEDs. Create a file called 1leds_test.py.

First, we need to import our robot. We import t ime since this will be animated:

from robot import Robot
from time import sleep

Now, let's set up our bot along with a couple of named colors:

bot = Robot ()
red = (255, 0, 0)
blue = (0, 0, 255)

The next part is a loop to alternate between the two colors as a test:

while True:
print ("red")
bot.leds.set_all (red)
bot.leds.show ()
sleep(0.5)
print ("blue")
bot.leds.set_all (blue)
bot.leds.show ()
sleep(0.5)

The prints are there for our benefit, so we can see when the system will be sending the data
to the LEDs. We use the set_all method to prepare all the LEDs to show the red color,
then call the show method to actually send it to the device. The code will sleep for half a
second, making it reasonable time for a human to see the colors. It then does the same again
with the blue color. The complete code is at: https://github.com/PacktPublishing/
Learn-Robotics—-Fundamentals—-of-Robotics-Programming/blob/master/chapter9/leds_

test.py.

[185]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter9
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter9/leds_test.py

Programming RGB Strips in Python Chapter 9

When these files have been uploaded to the Raspberry Pj, typing the following should
show the red/blue alternating LED display:

pi@myrobot:~ $ python leds_test.py

Troubleshooting
If you encounter problems trying to light the LEDs, please try these tips:

e For Pi booting issues, turn it off immediately then do the following:
¢ Check your wiring. Ensure the level converters are the correct way
around. There should be no heat.

¢ The previous diagram shows the power from the LEDs coming
from the 5V line on the Pi. The power supply may not be able to
power the LEDs and the Pi. In this case, take a fernale-female jump
cable, and wire the 5V for the light strip only to the V line on row
15 of the PWM/Servo connectors on the motor controller.

e If errors are shown, do the following;:
¢ Check you have enabled SPI (as shown in Chapter 7, Drive and
Turn - Moving Motors with Python). On the Pj, the file
/dev/spidev0. 0 should exist:

pi@myrobot:~ $ ls /dev/spidev0.*
/dev/spidev0.0 /dev/spidev0.1

¢ Check you have installed the spIDev Python package.

e Carefully check the code for mistakes and errors. If it's the code
from GitHub, create an issue!

e The LEDs do not light at all:
e Check your wiring. First ensure that power and ground are the
right way around and fully connected. There should be no heat.
¢ Ensure that the clock and signal lines are the right way around.
After checking power, I usually swap these and test them.

¢ Ensure that the wiring to the logic level converter is
correct—nothing is missing or connected to the wrong side.

e The wrong colors are showing (or no light at all):
¢ Try reducing the speed in self.device.max_speed_hz; if the
cables are longer, or the logic converter is different then logic
transitions may be lost.

[186]

https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=31&action=edit#post_30

Programming RGB Strips in Python Chapter 9

¢ Carefully check the show code, it should be sending the correct
number of colors for the light and the brightness code. If the lights
are not based on the APA102c, check the datasheet for differences.

e This can happen if you skip the logic level converter or leave a
signal cable disconnected, so check your wiring.

Using the light strip for debugging the line
follower robot

Now we get to use these for some fun. We have our line follower robot kind of working,
and it does have the LEDs underneath on the sensors, but we are now able to modify the
line follower code to light up red when it it crosses the line and blue when it goes off the
line.

Line follower basic LEDs

First open up the 1ine_following_behavior.py code from the last chapter. After the
imports, add the following new code (in bold):

from robot import Robot
from time import sleep

cross_line_color = (255, 0, 0)
off_line_color = (0, 0, 255)

We've added a couple of preset colors. Note I've not used the color names here, but names
for their purpose. I can then tune the RGB values for purple/green, yellow/orange, or any
other combination without changing any other code.

When making our LED class, we had a method for setting a range of LEDs, set_range. We
are going to use this to create a left range and a right range. We are going to base these
ranges on the number of LEDs so, if we drop in a different LED class, this design will
respond to it and use a different number of left or right LEDs. We will divide the line into
quarters, so the leftmost quarter is for left_indicator and the rightmost for
right_indicator. We'll leave the middle two quarters blank for now. The changes for
this are in bold code:

[187]

Programming RGB Strips in Python Chapter 9

class LineFollowingBehavior:
Note - this is the robot ON the line.
def __init__ (self, the_robot, forward_speed=30, cornering=-30):
self.robot = the_robot
self.forward_speed = forward_speed
self.cornering = cornering

led_gtr = int(self.robot.leds.count/4)

self.right_indicator = range (0, led_gtr)

self.left_indicator = range(self.robot.leds.count - led qgtr,
self.robot.leds.count)

The calculations there mean that if we use a different number of LEDs, our indications still
make sense. Note, these sides may be reversed on your strip, in which case, swap the
left_indicator and right_indicator settings here.

We now modify the event handlers to set ranges of LEDs to different colors depending on
the state of the sensors. We make sure the LEDs get shown:

def when_left_crosses_line(self):
self.robot.set_left (self.cornering)
self.robot.leds.set_range(self.left_indicator, cross_line_color)
self.robot.leds.show()

def when_right_crosses_line(self):
self.robot.set_right (self.cornering)
self.robot.leds.set_range(self.right_indicator, cross_line_color)
self.robot.leds.show()

def when_left_off_line(self):
self.robot.set_left (self.forward_speed)
self.robot.leds.set_range(self.left_indicator, off_line_color)
self.robot.leds.show()

def when_right_off_line(self):
self.robot.set_right (self.forward_speed)
self.robot.leds.set_range(self.right_indicator, off_ line_color)
self.robot.leds.show()

Upload the replacement 1ine_following_behavior.py and test it on the line track
again, and you will see the colors blinking as the robot drives.

What if we wanted to have a rainbow for our robot?

[188]

Programming RGB Strips in Python Chapter 9

Color systems

RGB is able to express colors in a method that is close to the way the hardware works, but it
is less convenient for expressing intermediate colors or creating gradients between them.
Colors that appear close to the eye can be a little far apart when in RGB. Because of this,
there are other color systems. We will be using them in this chapter to make rainbow type
displays and we will use them when visual processing to assist our code in detecting
objects.

The other color system we will use is HSV—Hue, Saturation, and Value.

Hue

Imagine taking the colors of the spectrum and placing them on a circle, blending through
red to orange, orange to yellow, yellow to green, green to blue, blue to purple and back
round to red. The hue expresses a point around this circle. It does not say the brightness of
the color or how vivid it is. The following diagram shows how these points can be
represented on a color wheel:

A color wheel of hues

[189]

Programming RGB Strips in Python Chapter 9

In the previous diagram, the circle shows that between 0 and 60 degrees, a red hue is seen.
As you look at the compass points around the circle, the colors they will show should be
clear. Colors are blended as you move around from one hue to another. You may have seen
something like this in a color wheel gadget on a painting or drawing computer program. A
continuous wheel setup like this is what lets us make a rainbow.

Saturation

If you take a color such as red, it can be a grayish/dull red or a vivid strong red. Saturation
is an expression of the vividness of the color. As you go towards a zero, only shades of gray
will be seen. As saturation is increased, color begins to emerge—first in pastel tones,
through to poster colors, and then to strong hazard sign or pure colors at the high end of
the saturation scale. Setting saturation to 0 would make only shades of black, white, and

gray.

Value

The value of the color is its brightness ranges from black at 0, through to a very dark
version of the color, to a very bright color. Note that this does not approach white (in other
words, pink colors), but a very bright red. To approach white, the saturation would need to
be reduced too. Other color systems (such as HSL) specify a light component that would
make things white this way.

Converting these

We will not need to deal with formulas to convert HSV into RGB, as Python, our chosen
programming language, has a colorsys library to deal with these conversions. The only
thing to note is that this library works in normalized values from 0 to 1, where fractions
between express the full range. So, for the input, we'd have to turn our position around a
circle into a 0-1 value and for the RGB output, we will need to turn the 0-1 values into 0-255
values. I'll show you how we do this in the code.

Adding a rainbow

We will set the middle LEDs to our rainbow, that is, from the first quarter of LEDs, to the
whole set of LEDs minus a quarter. Looking at the hue wheel, a rainbow could be made by
going around the hue wheel. We will, as mentioned, be working in values of 0.0 to 1.0 for
the hue, so we'll divide this by the number of middle LEDs we use.

[190]

Programming RGB Strips in Python Chapter 9

We want vivid colors, so set the saturation to 1.0 (fully colored). These LEDs can be
intensely bright, so I tune this down by using a brightness of 0.6. You can tune this to taste.

For this, we will need to update the code in 1ine_following_behaviour.py again. Let's
start in the imports by getting the colorsys library to convert between hue and RGB
values:

from robot import Robot
from time import sleep
import colorsys

Now we can add the code to set the middle rainbow to our setup for the line-following
behavior:

def __init__ (self, the_robot, forward_speed=30, cornering=-30):
self.robot = the_robot
self.forward_speed = forward_speed
self.cornering = cornering

led_gtr = int (self.robot.leds.leds_count/4)

self.right_indicator = range (0, led_gtr)

self.left_indicator = range(self.robot.leds.count - led_gtr,
self.robot.leds.count)

led_half int (self.robot.leds.count/2)
hue_step = 1.0 / led_half

for n in range(led_half):
led index = led gqtr + n
hue = hue_step * n
rgb colorsys.hsv_to_rgb(hue, 1.0, 0.6)
rgb = [int (c*255) for c in rgb]
self.robot.leds.set_one(led_index, rgb)
self.robot.leds.show()

The 1ed_half variable is used to create our loop over the middle set of LEDs. hue_step is
set up to 0.8 divided by the number of LED's in the middle bar, so we can use this in a loop
to get the color.

We then loop from 0 to 1led_half, storing the index in n. We create 1ed_index by adding
the current index to 1ed_gtr, giving the middle set of LEDs.

The hue value is calculated using hue_step times the current index. It is this hue value
sweep that gives us the rainbow.

[191]

Programming RGB Strips in Python Chapter 9

On the next line, the code uses the colorsys.hsv_to_rgb method to create an RGB color
from our hue value, with full intensity and slightly lowered brightness, and to store it in a
variable, rgb. This will still be in terms of 0.0 to 1.0, so we need to multiply all the
components by 255 and make them integers again. We store this back in rgb.

We then call self.robot.leds.set_one to actually set the LED at 1ed_index to the
color stored in rgb.

After the loop, we call self.robot.leds.show () so we can see our rainbow.

Upload this and run it, and a rainbow should appear between the two indicator bars of
your robot.

Summary

In this chapter, you have learned how to interact with and use RGB LEDs, how to choose
and buy RGB LED strips that will work with the Raspberry Pi. We then understood

the Logic-level conversion for interfacing with devices that do not run at the Raspberry Pi's
3.3V. Further we studied soldering basics and how to put headers on devices that arrive
needing them. Finally we learnt how to wire in the LED's and stick them onto your robot,
writing code to make them light, bringing LED code in with other robot behaviors and how
the HSV color system works and can be used to generate rainbows

In the next chapter, we will look at servo motors, and build a pan and tilt mechanism for
moving sensors.

Questions

1. When soldering, do you heat the pad, the pin, or the solder?

2. Why do you not connect the LED strip directly to the Raspberry Pi?

3. Why are we using fractions of the number of LED's in the LED class for our
ranges?

4. What is the difference between a HSV color with a saturation of 0 and a
saturation at the full range?

[192]

Programming RGB Strips in Python Chapter 9

Further reading

Free detailed guides to soldering can be found at the following sites:

° Sparkfun: https://learn.sparkfun.com/tutorials/how-to-solder-through-
hole-soldering/—a well illustrated first users guide to soldering

o Adafruit: https://learn.adafruit.com/adafruit-guide—-excellent-
soldering—as the title suggests, this guide shows how to do excellent soldering

e The Basic Soldering Guide by Alan Winstanley is an ideal place to learn more about
how to solder and extend the skill you've started to pick up in this chapter. This
goes into great depth about the tools and types of solder.

e Make Electronics: Learning by Discovery by Charles Platt: I've started to cover some
basic electronics, such as shifting logic levels and timing diagrams. To get a real
feel for electronics, Make Electronics is a superb introduction.

e Practical Electronics for Inventors, Fourth Edition by Paul Scherz and Simon Monk:
This gives practical building blocks electronics that can be used to interface a
robot controller with almost anything or build new sensors.

The datasheets for the LED types in use give you more detailed technical information about
their operation and electrical characteristics: APA102C Datasheet and SK9822 Datasheet.

The colorsys library, like most Python core libraries, has a great reference: https://docs.
python.org/2/library/colorsys.html.

[193]

https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering/
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://cdn-shop.adafruit.com/datasheets/APA102.pdf
https://www.pololu.com/file/0J1234/sk9822_datasheet.pdf
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation
http://Python%202.7%20Colorsys%20Documentation

10

Using Python to Control Servo
Motors

Servo motors can be used to make precise and quite repeatable motions. They can be
controlled with the Raspberry Pi or add-on boards. We will be using them to build a pan
and tilt mechanism—a head to position a sensor.

In this chapter, we will cover the following topics:

¢ What servo motors are and where you might see them in use

¢ How servo motors are positioned and how to position them with the Raspberry
Pi

e What a pan and tilt mechanism is and how to build one with servo motors

e How to add this pan and tilt service to the robot object and test it

Technical requirements

For this chapter, you will require the following;:

e The robot with the Raspberry Pi built in the previous chapters
¢ Screwdrivers—small pozi

Small pliers or a set of miniature spanners
Nylon bolts and standoffs kit—2.5 mm
¢ A two-axis mini pan-tilt micro servos kit

Using Python to Control Servo Motors Chapter 10

e Two micro SG90/9g servo motors if the kit does not include them, with their
hardware and servo horns

o Cutting pliers or side cutters
¢ Safety goggles

Check out the following video to see the Code in Action:

http://bit.ly/2P4RqO1

What are servo motors?

Servo motors, or servomechanism motors, are used to position robotic appendages such as
arms, grippers, and sensor mounts or to create other movements where position is the
important factor. Unlike the wheel motors (DC motors), where speed is the factor, these
motors are used where (to some level of accuracy) a position of 90 degrees or 110 degrees
might be required. Code can be used to control these precise positioning movements or a
sequence of them. The following photo shows a small selection of servo motors:

A small selection of servo motors

These come in many sizes, from the very small at around 20-30 mm (shown in my photo) to
those large enough to move heavy machinery. The next photo shows some of these servos
in use for a small variety of my robots:

[195]

http://bit.ly/2P4RqO1
http://bit.ly/2P4RqO1
http://bit.ly/2P4RqO1
http://bit.ly/2P4RqO1
http://bit.ly/2P4RqO1
http://bit.ly/2P4RqO1
http://bit.ly/2P4RqO1
http://bit.ly/2P4RqO1
http://bit.ly/2P4RqO1

Using Python to Control Servo Motors Chapter 10

A small selection of servo motors in robots

SpiderBot uses 18 servo motors to precisely position and control legs. The slightly simpler
UnoTron robot uses a single servo motor to steer the pair of wheels and sensor at the front.
TankBot uses a single servo motor to position the turret on the robot, with the sensors and a
Raspberry Pi mounted inside the turret. ArmBot has six servo motors of different sizes;
they are used to position the arm and its gripper.

What is in a servo?

The compact form of a servo motor hides a controller, a gearbox, and sensors. These motors
work by having a built-in feedback system. The feedback system requires some
explanation. A servo motor takes input from a controller, which specifies a position for the
motor to go to. The servo has its own controller and an internal sensor of the motor's
current position. It will compare the current motor position with the position that has been
requested, and will generate an error—a difference. Based on this difference, the servo will
drive its motor to try and reduce that error to zero.

[196]

Using Python to Control Servo Motors Chapter 10

The following diagram shows this feedback loop:

Input -
requested l::>
position

Speed/Direction
For Motor

Servo
comparing
controller

Motor
Position
Drives
Sensor

Position Feedback

Position
Sensor

The servo motor control loop

Some special servo motors, such as those used in the aforementioned Armbot, have an
additional output, allowing you to read the state of the position sensor in your own code
too.

Sending input positions to a servo motor

Signals are sent to servo motors using Pulse Width Modulation (PWM). This a system also
used to drive DC motors, and our robot has been generating these already. PWM is a
square wave, that is, a wave of two states, on or off only. It is the timing of the signal that is
interesting. You generate pulses, and the length in time of the pulse encodes the
information. So, a shorter pulse is a lower value, and a longer pulse is a higher value. In
some systems, the period must be the same, and it is the duty cycle (on time to off time
ratio) that changes. Servo motors are less fussy, and the pulse length is the only important
feature.

[197]

Using Python to Control Servo Motors Chapter 10

Refer to the following diagram for an example:

Short Pulse
H
< Period >
¢ fo
time
L
Long Pulse, fixed off time
>, Off time is the .y
H < »
same
Period
< is >
longer
L
Long Pulse, fixed period
Off time is
H Y shorter
Period
is the same
L S|

Pulse width modulation for servo motors

In the previous diagram, each graph has time as the X axis. The Y axis for each of the
stacked graphs has L for a logic low and H for a logic high. The top graph shows short
pulses being sent. The latter graphs at the bottom show where the pulse time has been
increased; however, they vary in an important aspect. In the middle graph, the off time has
been kept the same, but the period (how often the cycle repeats) has been changed.

In the bottom graph, the period has stayed the same, but the off time has been shortened.
Current servos will respond to either type of timing, as long as the cycle frequency is at
around 50 or 60 hertz (hz)—that is, it cycles 50 or 60 times a second. A hertz is a cycle per
second.

[198]

Using Python to Control Servo Motors Chapter 10

Currently, in our robot, we already have a chip in the motor controller that is able to
perform the fixed period PWM style (incidentally designed to control LEDs; see

the Additional reading section at the end of this chapter). We can send when the off time and
the on times should start in a fixed period, which means it will behave like the bottom
graph for longer pulse widths. This leads us nicely into the next chapter, where we will
make our robot do this.

Positioning a servo

To position a servo, we need to set up a servo horn so we can see it move, and then plug it
into the motor controller board. A servo horn is a small collar with one or more arms,
usually used to connect the servo spindle/axle to a mechanism they will move. Your servo
motors will come with small bags of hardware, which will contain a few different horn
types and screws to attach them both to the servo and the parts you want them to move.
The following photo shows the bag and how to attach a horn to a servo:

Fitting a servo horn

[199]

Using Python to Control Servo Motors Chapter 10

Screw a one arm horn together with the servo, as shown. Use the very short small screws
for this as the longer screws will break the servo. Note that the long collar of the horn fits
over the servo's output spindle. Try to line up the arm of the horn in the middle.
Importantly, in the last image, don't over-tighten the collar screw though as, once the servo
is powered up, you may need to loosen it and set the middle again. The

following photo shows how to connect the servo to the full function motor hat board on the
robot. Make sure the robot is fully powered down before connecting this:

Plugging a servo into the control board

In the previous photo, the servo connector is indicated. There are three slots on the
connector: brown is ground (G), red is voltage (V), and yellow/orange is signal (S). Looking
at the motor hat, there is a 4 x 3 block of connectors. These are marked PWM/Servo. The
columns are marked by a channel number (0, 1, 14, and 15), and the rows are marked with a
pin label (GVS).

This servo will go into channel 0. GVS refers to ground, voltage, and signal—so line up the
yellow from the servo connector with row S and the brown with G. This should put the red
in the middle. The connector from the servo should slot right in. This will be similar on
controllers, such as the PiConZero, but may require some soldering work on the Adafruit
motor hat.

[200]

Using Python to Control Servo Motors Chapter 10

Code for turning a servo

We'll write some test code that lets the user type a value in degrees and make the servo
move to it. The library we are already using for the robot has a PWM module. We start our
test code by importing the PWM module and creating the object to work with it. Note we
must specify the address here—it's the same I2C device as we are using for the motors, and
has the same address. This code is located in the servo_type_position.py file:

from Raspi_MotorHAT.Raspi_PWM_Servo_Driver import PWM
import atexit

pwm = PWM(0x6f)

This sets the timebase for it all
pwm_frequency = 60

pwm.setPWMFreq (pwm_frequency)

Observe that we have atexit again, so we can ensure the controller stops signalling the
motor. The servo works in cycles at 50 Hz or 60 Hz. We set up the PWM frequency, and
keep this value for later use in calculations.

Next, let's set up the math needed to move the servo. On some controllers, you will not
need this but, on this board, we need to set this up ourselves.

When setting out calculations in code, use nice descriptive variable names
and comments. This will aid you in understanding your code and
thinking if the math makes sense. You will read code many times after
writing it, so this principle applies well to any variable or function names
—one that tells you what it means or what it does costs little to nothing.

To move a servo motor, you need to send pulses. For most servos, turning the motor to -90
degrees from the center requires a pulse of 1 ms, keeping at the center requires a pulse of
1.5 ms, and turning it to 90 degrees requires a pulse of 2 ms. We need to find the period at 1
divided by the frequency.

The chip we are using specifies its pulses in terms of a time, per cycle; it turns the pulse on
and, per cycle, it turns the pulse off. These pulse times are in steps of 0 to 4095 (12 bit)
where 4095 is the end of the period. So we need to calculate our servo's movement. Let's
define a convert_degrees_to_pwm function to do all this math as it's nice to let the
computer do it. Some calculations only need to be made once, so we can pull them above
the function definition. Note I'm using descriptive variable names for this.

[201]

Using Python to Control Servo Motors Chapter 10

An s or p would mean far less than steps_per_ms—steps per millisecond. The .0 values
ensure the calculations keep their decimals, otherwise Python will truncate them all to
integers too early. We use the term deflect to mean how far from the center (to either side)
the servo turns:

Frequency is 1/period, but working ms, we can use 1000
period_in_ms = 1000 / pwm_frequency

The chip has 4096 steps in each period.

pulse_steps = 4096.0

Mid point of the servo pulse length in milliseconds.
servo_mid_point_ms = 1.5

What a deflection of 90 degrees is in pulse length in milliseconds
deflect_90_in_ms = 0.5

Steps for every millisecond.

steps_per_ms = pulse_steps / period_in_ms

Steps for a degree.

steps_per_degree = (deflect_90_in_ms * steps_per_ms) / 90.0
Mid point of the servo in steps

servo_mid_point_steps = servo_mid_point_ms * steps_per_ms

def convert_degrees_to_pwm(position) :
return int (servo_mid_point_steps + (position * steps_per_degree))

We imported atexit so we could make sure the servo is stopped, that is, not trying to seek
or hold position, when our code stops. Let's set that up now. pwm. set PWM sets when the
start and the end of the pulse is. By setting the PWM to 4096, this sets an extra bit that sets
the pin to fully off; no pulses means the servo will relax. We can register this with atexit:

def stop():
Set pin off flag
pwm.setPWM (0, 0, 4096)

atexit.register (stop)

We can now create a loop to ask for user input, convert it to a value, and send that to the
servo motor. The raw_input function in Python asks the user to type something and stores
it in a variable. We convert it into an integer to use it, then convert that into an end step
time:

while (True):

position = int (raw_input ("Type your position in degrees (90 to -90, O
is middle): "))
end_step = convert_degrees_to_pwm(position)

pwm.setPWM (0, 0, end_step)

[202]

Using Python to Control Servo Motors Chapter 10

We call pwm. setPwM with 0 as the pulse start, and our calculated PWM end step as the
pulse end.

You can now turn the robot on and send this code to it. Zero should be in the middle. Do
not give it values outside of the range as you may damage the servo. We will add code later
to protect against this damage.

Calibrating your servos

The servo horn allows you to see the servo motors movement. Zero should be close to the
middle. First, use a screwdriver with the horn to line zero up with the middle.

If the servo motors motion is impeded, including an attempt to move it
past its limits, it will pull higher currents to try and reach the position;
however, this stalling can cause a lot of heat and damage to the stalled
motor.

Now try entering 90 and -90. You may find the two sides are not actually reaching 90.
Servo's can vary slightly. To adjust this outward, the deflect_90_in_ms value can be
increased. Do so in small 0.1 increments, as going too far here may lead to servo damage.

When your servo has been calibrated, it is a good idea at this point to use this code with
each servo to ask it to go to position 0 before going to the next step. You can do this by
plugging the second servo into the 1 channel on the servo's connector, then swapping the
first parameter of every pwm. setPwWM from O to 1. You will have tested both servos and both
channels.

Adding a pan and tilt mechanism

We are now going to build and add a pan and tilt servo mechanism to our robot. This will
be like a head for our robot to mount sensors on it. A pan and tilt mechanism allows a
sensor (or anything else) to be moved through two axes under servo motor control.

[203]

Using Python to Control Servo Motors Chapter 10

Pan is to turn left or right. Tilt is to tilt up or down. The following photo shows a pan and
tilt mechanism:

A pan and tilt mechanism from a common kit

If you can, get a kit that looks like the previous photo, if not, you will have to look at the
vendors details for instructions to build it—ensure it is the type that uses two servo motors.
We will build the kit, mount it onto our robot, and plug it into the controller.

Our robot block diagram will look like the following:

Pan Tilt

Servo Servo
Left Right
Wheel <——— Motor Hat ~=——> Wheel
Motor Motor

i

Left Line ———> Raspberry Pi </=——_ Right Line

Sensor Sensor

4

Level
Shifter

LED
Strip

Block diagram of the robot with servo motors added

[204]

Using Python to Control Servo Motors Chapter 10

Building the kit

You will need your pan and tilt kit, a screw driver, and a cutter. The following photo shows

the parts of the mechanism laid out:

Right Arm

Tilt Plate

Left Arm

servo Horns

Pan Base
Servo Motor

Servo Motor

I

The parts of the pan tilt mechanism

In the parts shown in the photo, take note of the terms for the different plastic sections; I
will be using those for the assembly. Next to these are the screws that would have come

with the kit too.

[205]

Using Python to Control Servo Motors Chapter 10

First assemble the base as shown in the following photo:

Preparing the pan base

aware of other people in the room and tiny sharp plastic bits landing.

The plastic here will ping off, so don't do this without safety goggles. Be
0 Please wear safety goggles for this step!

Let's start building the kit by following the given steps:

1. Measure out and cut a cross-shaped servo horn to fit the base. There are ridges in
the base it will need to fit into. You will need to shorten the long arms of the
servo horn to just over three holes, and make them slightly thinner with the
cutters. Line up the servo horn in the base, so the arms are in the recessed area,
and the servo horn collar is facing away from the base.

[206]

Using Python to Control Servo Motors Chapter 10

2. Using the long tiny screws, screw them from the base into the tiny holes on the
servo horn. Note that, with some servo horns, only the horizontal or the vertical
screws may line up; two will suffice but four is more secure. The assembly
continues in the following photo:

Assembling the left arm and tilt plate

3. To assemble the left arm, line up the stud with the hole on the tilt plate and push
it in. Take one of the servo motors and the two screws with collars. The servo
rests on the two brackets on the tilt plate, and when screwed in will hold the left
arm in place. Ensure the servo's spindle aligns with the stud and hole before
screwing it in. The next photo shows assembly of the right arm:

Assembling the right arm

4. To assemble the right arm, you will need another servo horn—this time the kind
with just a collar and a single straight arm. You may need to cut it to fit the
intended recess on the right arm. Use one of the tiny screws to bolt this onto the
right arm of the mechanism. The servo horn you have attached will be at the
front of the mechanism.

[207]

Using Python to Control Servo Motors Chapter 10

5. Slot another servo (this will be the pan servo) into the slots at the bottom lined
up, as shown in the second panel of the photo, with the spindle facing the bottom
of the photo, as shown in the third panel. This servo motor will face downward
and be the pan servo. The next photo shows how to bring the left and right arm
of the mechanism together:

Combining the left arm and right arm

6. When combining the arms, note that there is a matching slot for the pan servo in
the left arm assembly; mate this with the pan servo, and the collar of the right
arm servo horn with the tilt servo you screwed onto the tilt plate.

7. Use one of the very short screws to attach the collar of the right arm to the tilt
servo, keeping the tilt plate upright.

8. Use two of the small thin screws to screw the two arms together. The next
photo shows how to attach the mechanism to its base:

-’

Combining the base with the mechanism

9. Push the collar from the servo horn screwed into the base, onto the pan servo
spindle. Line it up so the long axis of the base is in line with the bottom of the
mechanism. Use one of the very short screws to bolt the collar onto the servo. The
final panel shows the fully assembled pan and tilt mechanism.

[208]

Using Python to Control Servo Motors Chapter 10

Attaching the pan and tilt to the robot

The next photo shows how to attach the pan and tilt mechanism to the robot:

Attaching the pan and tilt to the robot

Follow these instructions along with the steps shown in the photo:

1. For this, you'll need two bolts, and two nuts to attach the pan and tilt to the
robot.

2. Drop the screws into the short end of the pan and tilt base so they are pointing
down.

3. The chassis I recommended has a slot across the front, which came in handy for
the line sensor. This is perfect also for mounting this pan and tilt mechanism,
with the screws through the slot.

4. Thread on the nuts and tighten from beneath the robot.

5. Wire in the servos. The tilt (up and down servo) should be plugged into servo
channel 0 and pan (left and right) plugged into servo channel 1.

You are now ready to write code and try out the new head for your robot.

[209]

Using Python to Control Servo Motors Chapter 10

Creating pan and tilt code

For our pan and tilt code, we will again build this in layers. We will create a servo class
and bury the previous calculations in it. We will then set up our robot class to have an
instance of the servo class, and ways to access the servo setup to pan and the servo to tilt.

Making a servo object

In this object we will encapsulate (that is, create a module to hide the details of) converting
an angle into a servo movement. We will make a Servos class in a servos. py file for this.
The servos.py file starts off with only an import. So we'll go straight into the constructor
(the __init__ function).

This should look pretty familiar, we are taking the device address and the calibration
parameter as the arguments, and then setting up all the calculations created in the last
section within the Servos object. I've made that deflection/calibration parameter
deflect_90_in_ms so thatit can be overridden with the value obtained calibrating your
Servos:

from Raspi_MotorHAT.Raspi_PWM_Servo_Driver import PWM

class Servos (object) :
def _ _init_ (self, addr=0x6f, deflect_90_in_ms = 0.6):
"""addr: The i2c address of the PWM chip.
deflect_90_in_ms: set this to calibrate the servo motors.
it is what a deflection of 90 degrees 1is
in terms of a pulse length in milliseconds."""
self._pwm = PWM(addr)
This sets the timebase for it all
pwnm_frequency = 60
self._pwm.setPWMFreq (pwm_frequency)

Frequency is 1/period, but working ms, we can use 1000
period_in_ms = 1000.0 / pwm_frequency

The chip has 4096 steps in each period.

pulse_steps = 4096.0

Mid point of the servo pulse length in milliseconds.

servo_mid_point_ms = 1.5

Steps for every millisecond.

steps_per_ms = pulse_steps / period_in_ms

Steps for a degree

self.steps_per_degree = (deflect_90_in_ms * steps_per_ms) / 90.0
Mid point of the servo in steps

self.servo_mid_point_steps = servo_mid_point_ms * steps_per_ms

[210]

Using Python to Control Servo Motors Chapter 10

We are storing the PWM object in sel£._pwm. We only keep some of the variables for later,
and the rest are intermediate calculations.

The triple-quoted string at the top of the constructor is known as docstring in Python.
Any string declared at the top of a function, method, class, or file becomes a special kind of
comment, which many editors can use to show you more help when using it. It's handy to
use in any kind of library layer. This also complements all of the nice explanatory
comments that we've carried in from the test code.

Next, we want a safety function in order, to turn all of the servo motors off. Sending no
pulse at all will do that and relax the servos, protecting power and saving the motors from
damage. As seen previously, setting a start time of 0 and 4096 for off flag will generate no
pulse:

def stop_all (self):
0 in start is nothing, 4096 sets the OFF bit.
self._pwm.setPWM(0, 0, 4096)

self._pwm.setPWM(1l, 0, 4096)
self._pwm.setPWM(14, 0, 4096)
self._pwm.setPWM(15, 0, 4096)

Now, we add our conversion function, much like we saw in the preceding but now
localized to the class. This is only going to be used internally, so I've prefixed it with an
underscore:

def _convert_degrees_to_pwm(self, position):
return int (self.servo_mid_point_steps + (position *
self.steps_per_degree))

Finally, in this class, we need a method to actually move the servo to a chosen angle:

def set_servo_angle(self, channel, angle):
"""position: The position in degrees from the center. -90 to 90"""
Validate
if angle > 90 or angle < -90:
raise ValueError ("Angle outside of range")
Then set the position
off_step = self._convert_degrees_to_pwm(angle)
self._pwm.setPWM(channel, 0, off_step)

[211]

Using Python to Control Servo Motors Chapter 10

I've used docstring again in this method to tell the user what it does and what the limits
are. Next is a bit of validation. This adds a bit of limitation to protect the system from being
sent an out of range value. It uses a Python exception and raises this. An exception pushes a
problem like this up to calling systems until one of them handles it, killing the code if it

wasn't handled. The full code can be found at nttps://github.com/PacktPublishing/
Learn-Robotics—Fundamentals—-of-Robotics-Programming/blob/master/chapterl0/

Servos.py.

Adding the servo to the robot class

Next, we need to patch this into the Robot class in robot . py. First, let's import it. I have
added it after our leds_8_apal02c import:

import leds_8_apall2c
from servos import Servos

This then needs to be set up in the constructor for Robot, passing along the address:

class Robot (object) :
def _ _init_ (self, motorhat_addr=0x6f) :
Setup the motorhat with the passed in address
self._mh = Raspi_MotorHAT (addr=motorhat_addr)

get local variable for each motor
self.left_motor = self._mh.getMotor (1)
self.right_motor = self._mh.getMotor (2)

ensure the motors get stopped when the code exits
atexit.register(self.stop_all)

Setup the line sensors
self.left_line_sensor = LineSensor (23, queue_len=3, pull_up=True)
self.right_line_sensor = LineSensor (16, queue_len=3, pull_up=True)

Setup the Leds
self.leds = leds_8_apall2c.Leds()

Set up servo motors for pan and tilt.
self.servos = Servos (addr=motorhat_addr)

[212]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter10/servos.py

Using Python to Control Servo Motors Chapter 10

Now, we should make sure it is stopped when the robot is stopped, or the code breaks by
adding it to the stop_all code:

def stop_all (self):
self.stop_motors ()

Clear any sensor handlers
self.left_line_sensor.when_line = None
self.left_line_sensor.when_no_line = None
self.right_line_sensor.when_line = None
self.right_line_sensor.when_no_line = None

Clear the display
self.leds.clear ()
self.leds.show ()

Reset the servos
self.servos.stop_all()

The last thing to do in the robot . py file is to map setting pan and tilt values to the actual
servo motors:

def set_pan(self, angle):
self.servos.set_servo_angle(l, angle)

def set_tilt (self, angle):
self.servos.set_servo_angle (0, angle)

I added these at the end of the file, although it doesn't matter, as long as it's in the class. I'd
recommend making sure it is after the stop_all method.

Creating a behavior

We will make the pan and tilt head move in small circles of around 30 degrees. This
behavior will demonstrate the mechanism and the parts of the code to talk to it. The code
will create repeating animated kind of behavior. So, we will keep a time base—a current
time. This allows us make our movement based on that. We will be using the time base to
draw the circle.

Create a new file; I suggest the name circle_pan_tilt_behavior.py.

[213]

Using Python to Control Servo Motors Chapter 10

We will start with some imports; the Robot object, the math library, and some timing:

from time import sleep
import math

from robot import Robot
We prepare the math library as we are going to use sine and cosine to calculate that circle.

We'll make a frames_per_circle variable we can adjust to say how many steps it will go
through.

The math functions work in radians, so we will take a full circle of radians, which is 2 *

m and then divide that by frames_per_circle, this gives us a multiplier we'll

call radians_per_frame. We can multiply this back out with the current frame to give us
a radian angle for the place on the circle later. We work with radians and not degrees here
because we'd end up with a constant multiplier taking the degrees into radians and
dividing by frames per circle, so we'd end up back with radians_per_frame anyway:

class CirclePanTiltBehavior (object) :
def _ _init_ (self, the_robot):
self.robot = the_robot

self.current_time = 0

self.frames_per_circle = 50

self.radians_per_frame = (2 * math.pi) / self.frames_per_circle
self.radius = 30

When our behavior runs, we can then take current_time, and turn it into a frame by
using the modulo (remainder) operation with frames_per_circle. This constrains the
number between zero and the number of frames. This is all in a while True loop so it
keeps running until the user stops it:

def run(self):
while True:

)

frame = self.current_time % self.frames_per_circle

We then take this frame, and turn it back into radians, a position around the circle, by
multiplying it back with radians_per_frame. This gives us a value we call
frame_in_radians:

frame_in_radians = frame * self.radians_per_frame

[214]

Using Python to Control Servo Motors Chapter 10

The formula for drawing a circle is to make one of the axes the cosine of the angle, times the
radius, and the other the sine of the angle, times the radius. So, we calculate this and feed
each axis to a servo motor:

self.robot.set_pan(self.radius * math.cos(frame_in_radians))
self.robot.set_tilt (self.radius * math.sin(frame_in_radians))

We do a small time sleep to give the motors time to reach their position, and then add one
(increment) the current time:

sleep(0.05)
self.current_time += 1

That entire method together is as follows:

def run(self):
while True:

frame = self.current_time % self.frames_per_circle
frame_in_radians = frame * self.radians_per_frame
self.robot.set_pan(self.radius * math.cos(frame_in_radians))
self.robot.set_tilt (self.radius * math.sin(frame_in_radians))
sleep(0.05)
self.current_time += 1

Finally, we just want to start up and run our behavior:

bot = Robot ()
behavior = CirclePanTiltBehavior (bot)
behavior.run ()

Running it
You will need to send servos.py, robot.pyand circle_pan_tilt_behavior.py to

the Raspberry Pi over SFTP, and then on the Pi, type python
circle_pan_tilt_behaviour.py to see it. The head should now be making circles.

Troubleshooting
If you find problems getting this to run, try the following:

¢ Ensure that the servo motors are plugged into the correct ports and are the right
way around. The "S" pin should go into a yellow cable on most servos.

[215]

Using Python to Control Servo Motors Chapter 10

e Lots of jittering can mean you have less than fresh batteries—please ensure they
are nice and fresh.
e If you run DC motor behaviors from other chapters, you will note some odd
behavior:
e First: The servo may move and droop—this means you need fresh
batteries or are not using Metal Hydride rechargeables.
¢ Second: The drive motors may go very slowly, this is because you
have set the PWM frequency lower to accommodate the servo's.
You should increase the forward speed/cornering speed
numbers—I doubled mine.

Summary

In this chapter, you have learned about Servo motors, how to control them with your motor
controller, and how they work. You've built a pan and tilt mechanism with them, and
added code to the Robot object to work with that mechanism. Finally, you've demonstrated
all of the parts with the circling behavior.

In the next chapter, we will look at distance sensors and create behaviors for your robot to
avoid objects.

Questions

1. What does the acronym PWM mean?

2. In terms of the servo motor's internal mechanism, from what components is the
error calculated?

3. What is a servo horn?

4. What could result from a servo being impeded when trying to reach a requested
position?

[216]

Using Python to Control Servo Motors Chapter 10

Further reading

e This servo motor control hat is based on the PCA9685 device. The PCA9685
product datasheet (https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf)
contains full information about operating this chip. I highly recommend
referencing this.

e [also recommend looking at SG90 servo motor datasheet (http://www.ee.ic.
ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf) for information
about their operation.

e The AdaFruit guide to the pan and tilt (https://learn.adafruit.com/mini-pan-
tilt-kit-assembly) mechanism has a set of assembly instructions. They are in a
slightly different order from mine but may give a different perspective if this is
proving to be tricky.

[217]

https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
https://cdn-shop.adafruit.com/datasheets/PCA9685.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly
https://learn.adafruit.com/mini-pan-tilt-kit-assembly

11

Programming Distance Sensors
with Python

In this chapter, we will be taking a look at distance sensors and how to use them to avoid
objects. We will look at the different types of sensors. We will then build a layer in our
robot object to abstract away the hardware differences. By doing this, we can then create a
behavior for object avoiding. We'll also take a slight diversion into menu modes for
selecting them.

You will learn about the following topics in this chapter:

e What distance sensors are and how to choose them

¢ How to connect distance sensors to your robot and test them
e How to create a smart object avoidance behavior

e How to create a menu to select different robot behaviors

Technical requirements

You will require the following for this chapter:

¢ The Raspberry Pi Robot and the code from the previous chapters
Two HC-SR04 ultrasonic sensors

Male to female jumpers

Breadboard pre-cut jumper wires kit

Two additional bidirectional level shifters (12C safe), soldered, as shown in
Chapter 9, Programming RGB Strips in Python.

Two brackets for the HC-SR04 sensor
A crosshead screwdriver

Programming Distance Sensors with Python

Chapter 11

e Miniature spanners or small pliers

e The code for this chapter will be available on GitHub

Check out the following video to see the Code in Action:

http://bit.ly/2Q3iLRg

Choosing light versus ultrasonic sensors

The most common ways to sense distance are to use ultrasound or light. The principle of
both types is to fire off a pulse and then sense its reflected return, using either its timing or
angle to detect a distance. We will focus on the types of sensors that measure the time for a
response, otherwise known as the time of flight. The following diagram shows how

reflection time is used in these sensors:

1. Pulse Fired - "Ping”

A pulse of Tlight or sound is
fired from the sensor.

*

T

N

0 [

3. Time calculated

The time for the pulse to go
out and return will vary
based on the distance.

2. Pulse Reflected - "Pong”

A pulse of light or sound is
reflected.

——
T

N

O [

4. Distance calculated

Using the speed of light, or
sound with the return time,
gives a distance.

Reflections of a distance sensor

[219]

https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter11
http://bit.ly/2QjiLRg
http://bit.ly/2QjiLRg
http://bit.ly/2QjiLRg
http://bit.ly/2QjiLRg
http://bit.ly/2QjiLRg
http://bit.ly/2QjiLRg
http://bit.ly/2QjiLRg
http://bit.ly/2QjiLRg
http://bit.ly/2QjiLRg

Programming Distance Sensors with Python Chapter 11

Optical sensors

Light-based sensors use infrared laser light that we cannot see. These devices can be very
small, however they can suffer in strong sunlight and fluorescent light, making them
misbehave. Some objects reflect light poorly or are transparent and are undetectable by
these sensors. In competitions where course times are detected with infrared beams, the
beams and these sensors can interfere with each other. However, unlike ultrasonic sensors,
these are unlikely to cause false detections when placed on different sides of a robot.
Optical distance sensors can have higher accuracy, but over a more limited range. They can
be expensive, although there are cheaper fixed range types of light sensors out there. The
following photo shows an optical-based sensor:

A VL530LOx on a carrier board

Ultrasonic sensors

Sound devices use ultrasonic sound with frequencies past human hearing limits, although
they can annoy some animals, including dogs. Mobile phone microphones and some
cameras pick up their pulses as clicks. Ultrasonic devices tend to be larger, but cheaper
since sound travels fairly slowly with respect to light and is easier to measure. Soft objects
that do not reflect sound, such as fabrics, can be harder for these to detect.

[220]

Programming Distance Sensors with Python Chapter 11

The following photo shows the HC-SR04, a very common and inexpensive sound-based
distance sensor:

The HC-SR04

Regarding sound type devices, they are more expensive than I’C-based devices, but HC-
SR04 are common and inexpensive. They have a range of up to 4 meters from a minimum
of about 2 cm.

Why use two sensors?

Having two sensors allows a behavior to detect that side is closer, so the robot may be able
to detect where openings are and make a move for where there is more space to drive. The
following diagram shows how this works:

1. Forward single sensor 2. Two Ssensors
Robot can avoid the wall in Robot can avoid front and
front. Teft wall.

P
~

Using two sensors

[221]

Programming Distance Sensors with Python Chapter 11

Considering all of these options, we will use the HC-SR04 because it is cheap and because it
is easy to add two or more of these sensors.

Attaching and reading an ultrasonic sensor

First, we should wire in and secure these sensors to the robot. We will talk about the
requirements for wiring them and go a little further into the voltage levels that we touched
upon in chapter 9 Programming RGB Strips in Python, explaining why we use them. We
will then write some simple test code that we can use to base our behavior code on in the
next section. After this selection, the robot block diagram will look like what's shown in the
following diagram:

Pan Tilt

Servo Servo
Right Left
Wheel <::I Motor Hat =———> Wheel
Motor Motor

f

Left Line ——= Raspberry Pi <=/ Left Line

Sensor Sensor
Level Level Level
Shifter Shifter Shifter
Left Right
Ultrasonic LED Ultrasonic
Sensor Strip Sensor

Robot block diagram with ultrasonic sensors

[222]

Programming Distance Sensors with Python Chapter 11

Securing the sensors to the robot

In the Technical requirements section, I added a HC-SR04 bracket. Although it is possible to
make a custom bracket, without CAD and other making skills, it is more sensible to use one
of the common market options. The following photo shows the bracket I'm using;:

Ultrasonic HC-SR04 sensor brackets with the screws hardware

These are fairly easy to attach to your robot, assuming that your chassis is similar enough to
mine, in that it has mounting holes or a slot to attach this bracket to:

Steps for mounting the sensor bracket

[223]

Programming Distance Sensors with Python Chapter 11

To mount the sensor bracket while using the preceding photos as a guide, perform the
following steps:

1. Push the two bolts into the holes on the bracket.
2. Push the bracket screws through the holes at the front of the robot.

3. Thread a nut from underneath the robot on each and tighten. Repeat this for the
other side.

4. The robot should look like this, with the two brackets mounted.

The following photos show how to push the sensors into the brackets:

§—§'§ ?3”“
== (y!

1* pga =R
A “‘““}"““‘m
A 23w o

1184}
3 &3,
FTETp1

13
L8 ;3 ‘\LL' B3 HaH Hah

Pushing the sensors into the brackets

As shown in the preceding photos, the distance sensors can be simply pushed into the
brackets, since they have a friction fit. The electrical connector for the sensor should be
facing upward.

Wiring the distance sensors

Wiring these is a little tricky, and first needs a little more explanation on the use of voltage
level shifters, which we saw in chapter 9, Programming RGB Strips in Python. The sensors
are 5V devices, and the Raspberry Pi GPIO pins operate at 3.3V. Therefore, we need more
level shifting.

Voltages and level shifting

I want to take a closer look at level shifting and help you have more of an idea of voltages
and how logic levels interact.

[224]

Programming Distance Sensors with Python Chapter 11

Voltage is a measure of how much pushing energy there is on the electrical flow. Different
electronics are built to tolerate or to respond to different voltage levels. Putting too high a
voltage through a device can damage it. Putting too low a voltage and your sensors or
outputs may simply not respond. The following graph shows the effects that different
levels have:

Voltages

B Logic High For 5v Devices
Logic Threshold For 5v
a Devices.
will Damage 3.3v devices
3.30 .
Logic Hi For 3.3v. May be too
low for 5v devices.
2.30
2.00 Logic Threshold For 3.3v
2
Everything Below is Low
1
0.00

0
The Pi Receives alogic The Pi takes this as a This is a logic 0 This is maybe logic1 This will destroy the Pi

] logic 1
For The Pi

Voltages and logic levels

Although we are dealing with logic devices that output a true/false value, this is
represented by a high or low voltage. These voltages must be above a threshold to be true,
and below it to be false. We must be aware of these electrical properties, or we will destroy
things or fail to get them to communicate.

Wiring the breadboard

Each ultrasonic sensor uses two wires, so a level shifter for the left-hand side and the right-
hand side are needed. Ensure that the whole robot is switched off before proceeding any
further.

[225]

Programming Distance Sensors with Python Chapter 11

The signal on one side is out and the other is in, so IC safe bidirectional level shifters will
leave the least room for problems. Here is a simplified view of the connections to illustrate
how it works:

GND

Controller IO Pins

fritzing

Simplified view of wiring distance sensors

In the simplified view, first note that the ground pins are connected. The 5V actually also
supplies the 3V side, so you do not need to connect this to the Pi as an additional step. The
wires above the bidirectional bus going to the HC-SR04 represent 5V logic level 1O signal
lines. The wires below represent 3.3V logic level IO signal lines going to the Raspberry Pi
IO pins. We will need a circuit like this for each side. The reality is a bit messier as we now
have a breadboard with other components to deal with.

[226]

Programming Distance Sensors with Python Chapter 11

The following diagram shows how this is really wired for the two sides, accommodating
the breadboard with other sensors and outputs attached:

i i
[led o] [ied s
epeee sscee , spees sese

.
ine sensor

e
[led o]
SEEERCETEERCET L/ § ETEEE

leftline sensor //
|

oo offe d .I off e
\ehl ese sor l Lr ht line sensor
b

90149
S 01d9
LZ 0149
L1 OldD

Wiring the level shifters for the HC-SR04 distance sensor

To wire the level shifters, use the preceding diagram as a guide, along with these steps:

1. The two marked wires must be moved to holes further from the middle notch to
accommodate the level shifters.

2. Now, plug in two more level shifters. Ensure that they are the right way around,
and that the Pi GPIO is only plugged into the 3.3V side.

[227]

Programming Distance Sensors with Python Chapter 11

3. The wires shown here are the power for the new level shifters. Use pre-cut
jumper wires for this.

4. These wires from GPIO 5, 6, 17, and 27 will go via the level shifters to the
ultrasonic sensor. Wire them, as shown here, to the 3.3V side of the level shifter
bidrectional bus. Use male to female jump wires for this.

With the level shifters wired, the next step is to wire the breadboard over to the ultrasonic
sensor. The following diagram shows how to do this:

led strip

........... \\Ifl///

- BRI AR
left line sensor | right line sensoi

9 0Id9
S 0Id9D
L2 0IdD
L1l OIdD

Wiring the HC-SR04 sensors into the level shifters

To wire the sensors into the breadboard, take a strip of 4 from the male to female jumper
wires for each side. Then, wire them, as shown in the preceding

diagram. Warning—depending on where your breadboard has been placed, the distance
sensor wires may not reach. If this is the case, join two male to female wires, and use some
electrical tape to bind them together.

[228]

Programming Distance Sensors with Python Chapter 11

As always, please double-check your connections before you continue.

Reading an ultrasonic distance sensor

To be able to write code for the distance sensor, we will need to look at a few areas of its
operation. As suggested previously, this system works by bouncing sound pulses off of
objects, and timing their travel time.

A pulse is used on the trigger pin to ask for a sound pulse and timing to be sent. 10
microseconds is this pulse length, that is, 0.00001 seconds:

10 x 1079 = 107° = 0.00001

The echo pin responds by returning a pulse with a length corresponding to the sound
travel time. The following diagram shows the timing of these:

signal On The Trigger Pin

Pulse should be
at least 10
microseconds

L

‘Time 10 20 30 40 50 60 70 80 90 100 110 120 130 140
microseconds

Response on the Echo Pin

The length of the
return pulse
signals the sound
travel time.

L

’ Time 0 10 20 30 40 50 60 70 80 20 100 110 120 130 140
microseconds

Timing of a pulse and the response for an HC-SR04 distance sensor

By measuring the time between the rising edge (when the pulse goes from low to high) and
the falling edge (when a pulse goes down from high to low) of the response pulse, we can
then multiply this by a factor to calculate the distance.

[229]

Programming Distance Sensors with Python Chapter 11

The distance factor depends on the speed of sound in air. We are looking to get a distance
in centimeters. So, the right conversion would be to use centimeters per second. For the
speed of sound in the air, it is around 34,300 cm/s (343 m/s). However, the time we have
been given is the total time of the send and the return — which is twice the distance we want
to measure—so we should divide that number by 2, giving a factor of 17,150. Therefore, we
can multiply the return time in seconds by 17,150.

The speed of sound in centimeters per second is as follows:

343 x 100 = 34300

The multiplication factor for distance is half this speed:

34300/2 = 17150

As we did with our servo motor control class previously, we should use comments and
descriptive names to help us explain this part of the code. Let's write some code. This time,
I'm going to let the comments in the code explain what it is doing. This is a good way to
make code that remains maintainable. I've called this file test_hcsr04.py.

First, there are some imports:

import time
from gpiozero import DigitalInputDevice, DigitalOutputDevice

Then, we prepare the input and output pins for our sensors. Note that I'll be leaving in
print statements to show what is going on when it is run:

Setup devices, an input device and an output device, with pin numbers for
the sensors.
print "Prepare GPIO pins"

Left sensor

left_trigger = DigitalOutputDevice (17)
left_echo = DigitalInputDevice (27)
left_trigger.value = False

Right sensor

right_trigger = DigitalOutputDevice (5)

right_echo = DigitalInputDevice (6)

right_trigger.value = False

[230]

Programming Distance Sensors with Python Chapter 11

Now, the pin the sensors tied in may have been high, which may lead the sensor to produce
an odd result, so we need it to settle. We only need to do this for the first time we use it:

wait a little, to iron out spurious responses.
print "Warm up time"
time.sleep(0.5)

The make_measurement function that's shown in the following code actually gets the
reading. It sets a timeout, so it won't wait forever for a reading. It signals the device with a
pulse on the trigger pin for 10 microseconds. The device will emit an ultrasonic sound and
wait for its return:

def make_measurement (trig_device, echo_device):
"""Fyunction to get the distance measurement"""
Timeout - we'll use this to stop it getting stuck
time_out = time.time () + 1

This off-on-off pulse tells the device to make a measurement
trig_device.value = True

time.sleep(0.00001) # This is the 10 microseconds
trig_device.value = False

Still in make_measurement, our code waits for the echo pin to rise, to go from low to high,
and stores this as a pulse start time. Note that it will time out if we do not catch the pulse
start:

Here, we wait for the pin state to stop being 0, that is, to go from
low to high

When it rises, this is the real pulse start. Assign it once - it may
already have changed!
pulse_start = time.time ()
while echo_device.pin.state == 0:
pulse_start = time.time ()

We ran out of time here.

if pulse_start > time_out:
print "timed out - missed pulse start"
return 100

[231]

Programming Distance Sensors with Python Chapter 11

Waiting for the echo pin to go low and storing that gives us a pulse end time. We will also
watch out for a timeout here:

Now we wait for the echo_device pin to stop being 1, going from high,
to low, the end of the pulse.
pulse_end = time.time ()
while echo_device.pin.state == 1:
pulse_end = time.time ()
if pulse_end > time_out:
print "timed out - pulse end too long"
return 100

Subtracting the pulse start from the pulse end gives us a pulse duration, which, on this
sensor, is exactly the flight time of the sound from pulse to echo. We multiply this by 17,150
to get a distance. I've heavily commented that multiplication:

The duration is the time between the start and end of pulse in
seconds.

pulse_duration = pulse_end - pulse_start

This number is the speed of sound in centimeters per second - 34300
cm/s. However, the pulse has travelled TWICE

the distance, so we get half of this. (34300 / 2) = 17150.

distance = pulse_duration * 17150

This distance will have lots of decimal places, but actually, two decimal places takes us to a
10th of a millimeter, which is more than enough, so we round up the distance.
Now, make_measurement can return it:

Round it to 2 decimal places, any finer doesn't really make sense.
distance = round(distance, 2)
return distance

Now, we have a measurement function, and have done some setup—we can use a loop to
read each sensor, print the output, and wait a little before measuring again:

while True:
Make our measurements and print them

left_distance = make_measurement (left_trigger, left_echo)
right_distance = make_measurement (right_trigger, right_echo)
print "Left: ", left_distance, "cm", "Right:", right_distance

[232]

Programming Distance Sensors with Python Chapter 11

Sleep a bit before making another.
time.sleep(0.5)

Now, you can turn on your Raspberry Pi and upload this code. Put an object anywhere
between 4 centimeters and a meter away from the sensor and start the code on the Pi with
python test_hcsr04.py. As you move around the object, your Pi should start outputting
distances like the following:

| e e B N e | e B B
(]

e
=
e
Le 7
e
e
e

e e e e
-]

»

Testing our sensors

Because it is in a loop, you will need to press Ctrl + C to stop the program running.

Troubleshooting

The following points should be taken into consideration while troubleshooting;:

¢ The most common problem is that the trigger and echo pins are swapped. I
highly recommend swapping the trigger/echo pin numbers in the code and
testing it again. Don't swap the cables on a live Pi!

[233]

Programming Distance Sensors with Python Chapter 11

e Next, ensure that the surface you are testing on is hard. Soft surfaces, such as
clothes, curtains, or your hand will not respond as well as glass or plastic.

e Make sure that your surface is fairly big. Anything smaller than about 5 cm
square may be harder to measure.

e Please check the code and indentation if you are getting invalid values.
¢ Did you double-check the wiring? Turn off the Pi and try this.
e As alast resort, it's possible that the device or the level shifter are faulty. This is

rare, but not impossible. Try swapping the sensor out on the affected side first,
and if that still doesn't work , then swap out the level shifter.

Avoiding walls - a script to avoid obstacles

Now that we have tested both sensors, it's time to integrate our new sensors with our robot
class, and then create an obstacle avoidance behavior for them. We've seen how to write
line sensor code that was event-based. For this sensor, we will use a different style, that is,
polling. Our behavior loop will read the sensors, and then choose behavior accordingly. For
the most part, the way the code will react to things does not change, and it is a decision
about where to put the loop for checking sensor state—in the sensor object, or in your own
code.

Making our distance sensor object

To integrate this into our robot, we will start by creating a DistanceSensor object. It will
have a simple get_distance method. This is a simple interface which we could swap out
for implementations of other distance sensors. We will construct it with the two pin
numbers. This code will look quite familiar to the code we tested. Put this into
distance_sensor_hcsr04.py.

Start again with some imports, and this time, a docstring for the module. Module
docstrings usually state why a module exists or what it is for:

"""Object for the HC-SR04 distance sensor type."""
import time # import the whole thing, we need more than Jjust sleep
from gpiozero import DigitalInputDevice, DigitalOutputDevice

[234]

Programming Distance Sensors with Python Chapter 11

As we saw in the testing, the system can time out when the reading is too close, or too far
away. To avoid timeouts being as clumsy as 100 and making our robot behave badly, we
can use an exception to show that the data wasn't good. An exception is a way of returning
an error condition from functions, until something is able to handle it, and is used for when
something invalid occurs. Our behavior can use this to detect that we are missed a

reading and respond or ignore to the reading as needed. We can define our own

exception, NoDistanceRead , to show this condition:

class NoDistanceRead (Exception) :

"""The system was unable to make a measurement"""

pass # We aren't doing anything special, but python syntax demands us
to be explicit about this.

Now, we can create our sensor class in such a way that we can make an instance of it for
each distance sensor. The constructor will set up the pins:

class DistanceSensor (object):
"""Represents a distance sensor."""
def __init__ (self, trigger_pin, echo_pin):
Setup devices, an input device and an output device, with pin
numbers for the sensor.
self._trigger = DigitalOutputDevice (trigger_pin)
self._trigger.value = False
self._echo = DigitalInputDevice (echo_pin)

The core of this class is a method to get the distance using the sensor on the pins we just set
up. It should look familiar as it is the code we looked at previously. First, we set up
timeouts, and then we send a pulse:

def get_distance(self):
"""Method to get the distance measurement"""
Timeout - we'll use this to stop it getting stuck
time_out = time.time () + 2

This off-on-off pulse tells the device to make a measurement
self._trigger.value = True

time.sleep(0.00001) # This is the 10 microseconds
self._trigger.value = False

[235]

Programming Distance Sensors with Python Chapter 11

Now, we time the start of the pulse. Notice that this time, if it times out, we raise the
NoDistanceRead exception:

Wait for the pin state to stop being 0, going from low to high

When it rises, this is the real pulse start. Assign it once - it
may already have changed!
pulse_start = time.time ()
while self._echo.pin.state == 0:
pulse_start = time.time ()

We ran out of time
if pulse_start > time_out:
raise NoDistanceRead ("Timed Out")

And then we time the end of the pulse with the same exception if we fail to get it in good
time:

Wait for the echo pin to stop being 1, going from high, to low,
the end of the pulse.

pulse_end = time.time ()
while self._echo.pin.state == 1:

pulse_end = time.time ()

Pulse end not received

if pulse_end > time_out:

raise NoDistanceRead ("Timed Out")

And yet again, we get the pulse duration and turn it into a distance in centimeters, and then
round it up a bit:

The duration is the time between the start and end of pulse in
seconds.

pulse_duration = pulse_end - pulse_start

Speed of sound in centimeters per second - 34300 cm/s. However,
the pulse has travelled TWICE

the distance, so we get half of this. (34300 / 2) = 17150.

distance = pulse_duration * 17150

Round it to 2 decimal places, any finer doesn't really make
sense.

distance = round(distance, 2)

return distance

[236]

Programming Distance Sensors with Python Chapter 11

Adding the sensor to the robot class

We will then create an instance of one of these DistanceSensor objects for each side in the
robot class. First, regarding the imports in robot . py, we add the following to get us the
class definition, as well as a convenient link to NoDistanceRead (the new code is in bold):

from Raspi_MotorHAT import Raspi_MotorHAT
from gpiozero import LineSensor
import RPi.GPIO as GPIO

import atexit

import leds_8_apalO2c
from servos import Servos
from distance_sensor_hcsr04 import DistanceSensor, NoDistanceRead

Now, we need to set these up in the constructor for our robot:

class Robot (object) :
def _ _init__ (self, motorhat_addr=0x6f) :
Setup the motorhat with the passed in address
self._mh = Raspi_MotorHAT (addr=motorhat_addr)

get local variable for each motor
self.left_motor = self._mh.getMotor (1)
self.right_motor = self._mh.getMotor (2)

ensure the motors get stopped when the code exits
atexit.register(self.stop_all)

Setup the line sensors
self.left_line_sensor = LineSensor (23, queue_len=3, pull_up=True)
self.right_line_sensor = LineSensor (16, queue_len=3, pull_up=True)

Setup The Distance Sensors
self.left_distance_sensor = DistanceSensor (17, 27)
self.right_distance_sensor = DistanceSensor (5, 6)

Setup the Leds
self.leds = leds_8_apall2c.Leds()

Set up servo motors for pan and tilt.
self.servos = Servos (addr=motorhat_addr)

[237]

Programming Distance Sensors with Python Chapter 11

Notice how I've grouped them next to the line sensors here. We are not using handlers with
these, so there is no particular cleanup needed, so we won't add anything to the robot's stop
method. We are now ready to add a behavior.

Making the obstacle avoid behaviors

This chapter is all about getting a behavior; how can a robot drive and avoid (most)
obstacles? It will of course be limited by the sensor's specifications, smaller objects, or
objects with a soft/fuzzy shell such as upholstered items, which will not be detected. Let's
start by drawing what we mean:

@ @

Obstacle avoidance basics

In the preceding example, a basic robot will detect a wall, turn away, keep driving until
another wall is detected, and then turn away from that. We can use this to make our first
attempt at a wall avoiding behavior.

[238]

Programming Distance Sensors with Python Chapter 11

First attempt at obstacle avoidance

Here, we will need a loop that does the following;:

¢ Gets the distances from each sensor

e If a sensor reads less than 20 cm (a reasonable threshold), then set the opposite
motor in reverse to turn the robot away from the obstacle

e Wait a small time and loop round again

We'll put this loop in a run method. There's a small bit of setup regarding this. We need to
set the pan and tilt to 0 so that it won't obstruct the sensors. I've put this code in
simple_avoid_behavior.py. Start with importing the robot, the exception, and the sleep
for timing;:

from robot import Robot, NoDistanceRead

from time import sleep

The following class will be the basis of our behavior:

class ObstacleAvoidingBehavior (object) :
"""Simple obstacle avoiding"""
def _ _init__ (self, the_robot):
self.robot = the_robot

In this behavior, we will use the LEDs on the robot to show a bar graph so that the closer a
sensor detects an object, the more lights will be lit. These calculations in the constructor set
up the display. leds_per_distance is a multiplier to turn on the right number of LEDs.
The commented out print statement can be put in to check this value. We also define a
color for this bar graph:

Calculations for the LEDs
led_half = int (self.robot.leds.leds_count/2)

self.max_distance = 100

self.leds_per_distance = led_half / float (self.max_distance)
print ("Leds per distance", self.leds_per_distance)
self.sense_colour = (255, 0, 0)

[239]

Programming Distance Sensors with Python Chapter 11

Still thinking about the display, which will greatly aid in debugging, we will take a distance
and make an LED count. First, we will use the min function—a Python that's built-in for
getting the minimum of two values—and we limit to a max distance, then subtract this
distance from our max distance, only allowing a minimum of 0, so that we light more LEDs
when an object is closer. We multiply it by the leds_per_distance value, which is
calculated in the constructor. This will give us a floating point number. We then round this
up to an integer with int (round ()), as we can only have a whole number of LEDs turned
on. This means that after our division, if we end up with a value like 3.8, which we'll round
up to 4.0, then convert into an integer to light four LEDs:

def distance_to_led_bar(self, distance):
Invert so closer means more LED's.
inverted = self.max_distance - min(distance, self.max_distance)
led_bar = int (round(inverted * self.leds_per_distance))
return led_bar

Now, we have a way to get the number of LEDs from a distance, and we can create a
display function to take a distance from each sensor and turn it into a display. It uses
distance_to_led_bar for each side. Note that your LEDs may be the other way around,
in which case swap the left_distance and right_distance in this display method:

def display_state(self, left_distance, right_distance):
Clear first
self.robot.leds.clear ()
Right side
led_bar = self.distance_to_led_bar (right_distance)
self.robot.leds.set_range (range (led_bar), self.sense_colour)
Left side
led_bar = self.distance_to_led_bar (left_distance)
Bit trickier - must go from below the leds count, to the leds
count.
start = self.robot.leds.leds_count - led_bar
self.robot.leds.set_range (range (start, self.robot.leds.leds_count),
self.sense_colour)

Now show this display
self.robot.leds.show ()

[240]

Programming Distance Sensors with Python Chapter 11

The following method is how we'll choose a speed for each motor, depending on a distance
sensor. A close sensor will go backward:

def get_motor_speed(self, distance):
"""This method chooses a speed for a motor based on the distance
from it's sensor"""
if distance < 20:
return -100
else:
return 100

The run method is the core, since it has the main loop. First, we should put the pan and tilt
mechanism in the middle so that it doesn't obstruct the sensors:

def run(self):
self.robot.set_pan (0)
self.robot.set_tilt (0)

Now, we will start the main loop:

while True:
Get the sensor readings
try:
left_distance =
self.robot.left_distance_sensor.get_distance ()
except NoDistanceRead:
left_distance = 100
try:
right_distance =
self.robot.right_distance_sensor.get_distance()
except NoDistanceRead:
right_distance = 100

We still chose to default to 100, but we could skip to the next loop instead. We will then
display our readings by using the display_state method that we defined previously:

Display this
self.display_state(left_distance, right_distance)

[241]

Programming Distance Sensors with Python Chapter 11

Now, we will use the distances with our get_motor_speed method and send this to each
motor. We will print these values for debug aid, too:

Get speeds for motors from distances

print ("Distances: 1", left_distance, "r", right_distance)
self.robot.set_left (self.get_motor_speed(left_distance))
self.robot.set_right (self.get_motor_speed(right_distance))

Since this is our main loop, we will wait a little before we loop again. Under this is the
setup and starting behavior:

Wait a little
sleep(0.1)

bot = Robot ()
behavior = ObstacleAvoidingBehavior (bot)
behavior.run ()

To test this, set up the test space to be a few square meters wide. Avoid obstacles that the
sensor will miss, such as upholstered furniture or thin obstacles such as chair legs.

Send the code to the robot and try it out. It will start to drive until it encounters an obstacle.
This kind of works; you can tweak the speeds and thresholds, but the behavior gets stuck in
corners and gets confused quite a lot.

Perhaps it's time to consider a better strategy.

More sophisticated object avoidance

As we mentioned previously, the preceding behavior can leave the robot stuck. It will
appear to be indecisive regarding some obstacles, and will occasionally end up ramming
things. It may not stop in time, or turn into things. It's time to make a better one that will
behave a bit more smoothly.

So, what is our strategy? Well, first, let's think in terms of the nearest sensor and the
furthest. We can work off of the speeds of the motor nearest to it, the motor further from it,
and a time delay. The reason for the time delay is so that we can do things such as turn
right away from a wall, and not alternate between two states just in front of it. Let's build
some code, similar to the last behavior, around this change.

First, copy the simple_avoid_behavior.py file into a new file
called avoid_behavior.py.

[242]

Programming Distance Sensors with Python Chapter 11

We won't be needing get_motor_speed, so remove that; we will replace it with a function
called get_speeds:

def get_speeds(self, nearest_distance):

if nearest_distance > 100:
nearest_speed = 100
furthest_speed = 100
delay = 100

elif nearest_distance > 50:
nearest_speed = 100
furthest_speed = 80
delay = 100

elif nearest_distance > 20:
nearest_speed = 100
furthest_speed = 60
delay = 100

elif nearest_distance > 10:
nearest_speed = -40
furthest_speed = -100
delay = 100

else: # collison
nearest_speed = -100
furthest_speed = -100
delay = 250

return nearest_speed, furthest_speed, delay

These numbers are all for fine-tuning, but the important factor is that, depending on the
distance, we slow down the motor further from the obstacle, and if we get too close, it will
drive away. Since our only estimate of how far the robot drives is time, we have a delay,
and we will increase this to ensure that we go far enough to not jitter. This is only a part of
the whole behavior, but a vital part. Based on this, and knowing which motor is which, we
can then drive our robot. Most of the remaining code will stay the same.

We then need to change our run function so that it can use the get _speeds method for the
nearest sensor. The code remains the same for the setup, loop, reading sensors, and
displaying state:

def run(self):
Drive forward
self.robot.set_pan(0)
self.robot.set_tilt (0)
while True:
Get the sensor readings
try:

[243]

Programming Distance Sensors with Python Chapter 11

left_distance =
self.robot.left_distance_sensor.get_distance()
except NoDistanceRead:
left_distance = 100
try:
right_distance =
self.robot.right_distance_sensor.get_distance ()
except NoDistanceRead:
right_distance = 100
Display this
self.display_state(left_distance, right_distance)

Now, we use these to determine a nearest and furthest distance. Notice that we take

the min or minimum of the two distances, which we will feed into

the get_speeds method. We get back the speeds for both motors and a delay, then print
out the variables so we can see whats going on:

Get speeds for motors from distances
nearest_speed, furthest_speed, delay =
self.get_speeds (min(left_distance, right_distance))
print ("Distances: 1", left_distance, "r", right_distance,
"Speeds: n", nearest_speed, "f", furthest_speed,
"Delays: 1", delay)

Now, we need to check which side is actually nearer, left or right, and set up the correct
motors:

Send this to the motors

if left_distance < right_distance:
self.robot.set_left (nearest_speed)
self.robot.set_right (furthest_speed)

else:
self.robot.set_right (nearest_speed)
self.robot.set_left (furthest_speed)

Instead of sleeping a fixed time, we sleep the delay time. The delay is in milliseconds, so we
need to multiply it to get seconds:

Wait our delay time
sleep(delay * 0.001)

[244]

Programming Distance Sensors with Python Chapter 11

The rest of the code will remain the same. The full code for this file can be found at https:/
/github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics—

Programming/blob/master/chapterll/avoid_behavior.py.

When you run this code, you should see far smoother avoidance. You may need to tweak
the timings and values. The bottom two conditions with reversing, and reverse turning, are
the ones that may need to be tuned higher if the robot isn't quite pulling back enough.

There are still flaws in this behavior, though. It does not construct a map at all, and has no
reverse sensors, so while avoiding objects in front, it can quite easily reverse into objects
behind it. Adding more sensors could resolve some of these problems, but we cannot
construct a map just yet as our robot does not have the sensors to accurately determine how
far it has turned or traveled.

Menu modes - choosing your robot's
behavior

We now have a collection of robot behaviors, and we will be growing a few more of them,
but beside the behaviors, we are going to create a simple menu system to select them. A
convenient and phone friendly way to do this is to serve it to a browser, so we will also take
that approach with our robot. Using HTTP and HTML also means that we could later let
other systems make requests to our robot too. HTTP sends requests in a URL—first, the
http:// protocol identifier, a server hostname, myrobot .local, a path, /mode/foo, and
it may have additional parameters after that. We will be using the path of the URL to
determine what our robot will do.

As we have done with other systems, we will create a few logical sections and blocks to
handle different aspects of this:

¢ We will have code to manage the robot's modes, and start and stop known
scripts. It can also give us a list of those known scripts.

e A web server will be used for the code to send pages to the user, and respond to
requests.

¢ A template for the server to send to the user, with some placeholders replaced by
code. The actual user interface is here.

[245]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/avoid_behavior.py

Programming Distance Sensors with Python Chapter 11

An overview of how this will work is as follows:

1. The browser will ask our web server for a page to display
2. Our web server will ask our mode management for a list of scripts it can start

3. The web server will use this list to make a menu, using a template to render it
into a page, and send that to the user

4. In the browser, when the menu item links are clicked, they will make requests to
the web server

5. The web server will act on mode change requests by making calls to the mode
system to act on the requests

6. The server will send statuses back to the browser after these requests

Managing robot modes

We can manage modes by starting and stopping our behavior scripts as subprocesses. The
mode manager will have a configuration for our known modes.

Let's start a file called robot_modes.py. This will contain a class
called RobotModes that will handle robot processes and return a list of known scripts.
Let's start with some imports and the top of the class definition:

import subprocess

class RobotModes (object) :
"""Our robot behaviors and tests as running modes"""

The first thing we will provide is a configuration. The configuration comes in two sections;
one maps a mode name to a file—a Python file. Note that we are specifying a list of files,
and not inferring it. Although we could take our mode/path section and add .py to get a
file, this would be bad for two reasons:

e It would couple us directly to script names; it would be nice if we could change
underlying scripts for the same mode name

¢ Although the robot is not a secure environment, allowing arbitrary subprocesses
to run is very bad, so restricting it keeps the robot a little more secure

[246]

Programming Distance Sensors with Python Chapter 11

Here is the mode config, mapping a mode to a filename. The mode name is a short name,
also known as a slug, a compromise between human readable and machine readable — they
are usually restricted to lower case and underscore characters, and are shorter than a full
English description. Our filenames are quite close to slug names already:

Mode config goes from a "mode_name" to a script to run. Configured
for look up.

mode_config = {
"avoid_behavior": "avoid_behavior.py",
"circle_head": "circle_pan_tilt_behavior.py",
"test_leds": "leds_test.py",
"test_hcsr04": "test_hcsrO04.py",
"stop_at_line": "stop_at_line.py",
"line_following": "line_following_behavior.py",
"behavior_line": "behavior_line.py",
"behavior_path": "behavior_path.py"

}

The next half of the configuration is a list, with a mode named slug and human intended
text to show on a screen. We can use the order of this to configure our menu. If we want to
add a behavior to the menu, we must add it to both lists:

Menu config is a list of mode_names and text to display. Ordered as
we'd like our menu.
menu_config = [

{"mode_name": "avoid_behavior", "text": "Avoid Behavior"},
{"mode_name": "circle_head", "text": "Circle Head"},
{"mode_name": "test_leds", "text": "Test LEDS"},
{"mode_name": "test_hcsr04", "text": "Test HC-SR04"},
{"mode_name": "stop_at_line", "text": "Stop At Line"},
{"mode_name": "line_following", "text": "Line Following"},
{"mode_name": "behavior_line", "text": "Drive In A Line"},
{"mode_name": "behavior_path", "text": "Drive a Path"}

With the fixed configuration aside, this class is also managing processes. Therefore, we
need to keep track of the current process and check whether it is running:

def _ _init_ (self):
self.current_process = None

def is_running(self):

[247]

Programming Distance Sensors with Python Chapter 11

"""Check if there is a process running. Returncode is only set when
a process finishes"""

return self.current_process and self.current_process.returncode is
None

Note that we can check for both a process being set, and if it has a returncode. Python only
sets the returncode for a process that has completed, so this can indicate that a process is
still running.

Now, we need to look at how we can start a process from a mode name. Before we run it,
we need to check that the previous behavior has stopped. Running two

modes simultaneously could have quite strange consequences, so we should be careful not
to let that happen.

This code then maps the mode_name to a process name, and starts it with Python. It returns

True if a process was started:

def run(self, mode_name) :
"""Run the mode as a subprocess, but not if we still have one

running"""
if not self.is_running():
script = self.mode_config[mode_name]
self.current_process = subprocess.Popen (["python", script])

return True
return False

Finally, the class needs a way to ask it to stop a process. Note that this will not try to stop a
process when it is not running. When we stop the scripts, we will use Unix signals, which
let us ask them to stop in a way that lets their atexit code run. You can send a signal

via SIGINT, which is the equivalent of the Ctrl + C keyboard combination:

def stop(self):

"""Stop a process"""

if self.is_running():
Sending the signal sigint is (on Linux) similar to pressing

ctrl-c.

The behavior will do the same clean up.
self.current_process.send_signal (subprocess.signal .SIGINT)
self.current_process = None

[248]

Programming Distance Sensors with Python Chapter 11

An alternative implementation of this kind of menu would be to update all our behaviors in
such a way that they could be imported, and making sure that their cleanup was a bit
tighter than leaving it down to the atexit logic.

Currently, a user must ask for a process to stop before starting another process. This could
be improved by signalling the old process to stop and waiting when a new behavior is
requested. We would have to be careful not to make the menu block when this happens.

The web service

Python on Linux has many ways to make a simple web server, and many of these extend
quite well to the Raspberry Pi. We will be using a popular framework for this known as
Flask (see the Further reading section to find out more). Let's use it to run some code on your
robot in response to a click on a web page. Flask lets us use a page layout that lets us
replace parts of the page in our code, known as a template.

We will need to prepare our Raspberry Pi by installing flask via SSH:

$ sudo pip install flask

Flask lets us set up handlers for links to perform tasks. Let's make a script that acts as our
menu webservice, which uses Flask and our RobotModes. Flask scripts are just Python;
they consist of some setup, helper functions, and routes—functions that are associated with
a path in the URL. I've called mine menu_server.py.

First comes the imports. We need the parts of Flask to make an app and render a template,
as well as our robot modes:

from flask import Flask, render_template
from robot_modes import RobotModes

Now, we will create a Flask app to contain the routes, and an instance of our RobotModes
class from before:

A Flask App contains all its routes.
app = Flask(__name__)

Prepare our robot modes for use
mode_manager = RobotModes ()

[249]

Programming Distance Sensors with Python Chapter 11

Next, we need a helper function to render the menu. The menu will be a template
called menu.html (which we'll define later), which takes a menu config and an optional
status message to display. Most of our modes will need this:

def render_menu (message=None) :
"""Render the menu screen, with an optional status message"""
return render_template ('menu.html', menu=mode_manager.menu_config,
message=message)

Flask works by decorating Python functions with routes, that is, how a URL typed at the
web server can reach them. We only need three routes: the index at the top, running a
behavior mode, and stopping the mode. Notice that for the run and stop, we set a message
when rendering the menu:

@app.route ("/")
def index () :
return render_menu ()

@app.route ("/run/<mode_name>")

def run (mode_name) :
Use our robot app to run something with this mode_name
mode_manager.run (mode_name)
return render_menu (message="%s running" % mode_name)

@app.route ("/stop")

def stop():
Tell our system to stop the mode it's in.
mode_manager.stop ()
return render_menu (message='Stopped')

Finally, now that we have our routes, we can start the web app. Without specifying any
other port, our server will run on port 5000. I've enabled debugging so that we can see any
problems with this in our browser:

Start the app running
app.run (host="0.0.0.0", debug=True)

However, before we can run it, we need to provide the template, menu.html.

[250]

Programming Distance Sensors with Python Chapter 11

The template

Our HTML template actually defines our display, and lets us separate the way the robot
menu looks from how it is handled. This template combines HTML and the Jinja2 template
system. We need to make a templates folder and put this file in there. We could add
further styling to this later, but here are some basics. Put this in a file called
templates/menu.html.

Our template starts with a header that sets the page title and a heading, both saying My
Robot Menu. Feel free to change these to your robot's name:

<html>
<head>
<title>My Robot Menu</title>
</head>
<body>
<h1>My Robot Menu</hl>

Next, we have an i f statement. When we issue commands, we want the robot to be able to
respond with a status. The double brackets {{ }} are used to surround a replacement; the
content will have message in the paragraph:

{% if message %}
<p>{{ message }}</p>
{% endif %}

The next section is a list, that is, the menu itself. We use the tag and then a for loop,
which will create a list item with a link for each menu item. It will
use .mode_name and . text to make that link, combining /run with the mode name:

% for item in menu %}
{{ item.text }}
% endfor %}

Before closing our list, we need to add one more menu item—the st op button:

Stop</1li>

</body>
</html>

[251]

Programming Distance Sensors with Python Chapter 11

The nice thing with a template like this is that you can preview this code as itisin a
browser without the server and make some sense of what it should look like. The following
screenshot shows it in preview mode:

[My Robot Menu X

C | @ file:)///C:/Users/danny/Dropbox/2018-

My Robot Menu

1% if message %]}
| | message ||
195 endif %o

1% for item in menu % /|

o |litem.text |
1% endfor %
e Stop

Previewing the template

You'll note that when you preview it, all of the template bits are showing as the browser
doesn't know them. You'll need to run the app to see it properly rendered.

Running it

Upload the robot_modes.py and menu_server.py files to the robot, and then
the templates folder. On the Raspberry Pi, via SSH, it can be started with the following
code:

$ python menu_server.py
* Serving Flask app "test_flask" (lazy loading)
* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

[252]

Programming Distance Sensors with Python Chapter 11

You can now point your browser at your robot (http://myrobot.local:5000/) to see the
menu. You should be able to click a mode, and see the robot start that behavior. Clicking
stop will do the equivalent of a CTRL + C to stop the behavior. The following screenshot
shows how it should look (with a few menu items clicked):

[My Robot Menu X

&= C' | ® Not secure | myrobot.local:5000

My Robot Menu

* Avoid Behavior
s Circle Head

o TestLEDS

o Test HC-SRO4
* Stop At Line

¢ Line Following
e DriveIn A Line
¢ Drive a Path

* Stop

The My Robot Menu in a browser

When you click a behavior or stop, the output from this is shown in the message area:

[My Robot Menu X

< C' | ® Not secure | myrobotlocal:5000/stop

My Robot Menu

Stopped

Avoid Behavior
Circle Head
Test LEDS

Test HC-SR04
Stop At Line
Line Following
Drive In A Line
Drive a Path
Stop

The stop button has been clicked — a Stopped message is shown

[253]

http://myrobot.local:5000/
http://myrobot.local:5000/
http://myrobot.local:5000/
http://myrobot.local:5000/
http://myrobot.local:5000/
http://myrobot.local:5000/
http://myrobot.local:5000/
http://myrobot.local:5000/

Programming Distance Sensors with Python Chapter 11

Notice that the behavior's outputs; it's print statements—are coming out in the web server
console:

192.168.0.57 - - [03/Sep/2018 21:12:24] "GET / HTTP/1.1" 200 -
192.168.0.57 - - [03/Sep/2018 21:12:28] "GET /run/test_leds HTTP/1.1" 200 -
red
blue
red
blue
red
blue
Traceback (most recent call last):

File "leds_test.py", line 16, in <module>

sleep (0.5)

KeyboardInterrupt
192.168.0.57 - - [03/Sep/2018 21:12:32] "GET /stop HTTP/1.1" 200 -

You will need to press CTRL + C on the Pi to exit this menu server app. We have only
scratched the surface of this, and this system is quite rudimentary. The menu system could
be made far prettier with CSS and bootstrap. Tools like jQuery could be used so that a page
isn't reloaded every time you click options, and there are ways to get the console output
from a script onto the page. I recommend looking at the additional reading
recommendations in the Further reading section for Flask.

This tiny robot web app has no security mechanism, authentication, or
passwords. It is beyond the scope of this book, but is a serious
consideration worth further research if you plan to use this on shared Wi-
Fi systems.

Summary

In this chapter, we have learned how to add distance sensing to our robots, along with the
different kinds of sensors that are available. We've seen code to make it work. We then
created behaviors to avoid walls, and looked at how a simplified, but flawed behavior
could be made, and how a more sophisticated and smoother behavior would make for a
better system.

At the end of this chapter, we added a small menu system to our robot to start different
modes from a connected web browser.

In the next chapter, we will be looking again into driving predetermined paths and straight
lines, but using an encoder to make sure that the robot moves far more accurately.

[254]

Programming Distance Sensors with Python Chapter 11

We will use an encoder to compare our motor's output with our expected goals and get
more accurate turns.

Questions

1. What might interfere with a light-based distance sensor?

2. Why do we divide the speed of sound by two?

3. Why, in the more complicated behavior, has a variable delay been introduced?
4. Why could the robot still reverse into things?

Further reading

There are a number of other tutorials on these sensors on the internet worth reading for
further knowledge and experimentation:

e First, I recommend looking at the datasheet for the sensor. You can search for the
HC-SR04 datasheet. The Mouser link for it can be found at https://www.mouser.
com/ds/2/813/HCSR04-1022824.pdf, but be warned that this may change

e ModMyPi has a tutorial with an alternative way to wire these and level shift their
IO: https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-
the-raspberry-pi.

¢ Raspberry Pi Tutorials also has a breadboard layout and Python script, using
RPi.GPIO instead of gpiozero, at https://tutorials-raspberrypi.com/
raspberry-pi-ultrasonic-sensor—hc-sr04/

e GPIOZero has its own class for dealing with the distance sensor, but it is only
ﬁlﬂableforlongercﬁstanceS:https://gpiozero.readthedocs.io/en/stable/

api_input.html#distance-sensor—-hc-sr04.

We've started to use many pins on the Raspberry Pi. When trying to find pins to use, I
highly recommend visiting the Raspberry Pi GPIO at https://pinout.xyz/.

There are many scholarly articles on more interesting or sophisticated object behavior. I
recommend reading Simple, Real-Time Obstacle Avoidance Algorithm (https://pdfs.
semanticscholar.org/519e/790c8477cfbld1al76e220£010d5ec5b1481.pdf) for Mobile
Robots for a deeper look at these behaviors.

[255]

https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distance-sensor-hc-sr04
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf
https://pdfs.semanticscholar.org/519e/790c8477cfb1d1a176e220f010d5ec5b1481.pdf

Programming Distance Sensors with Python Chapter 11

For getting to know Flask, the Flask website at http://flask.pocoo.orgis highly
recommended. I also recommend the book Mastering Flask (https://www.packtpub.com/
web-development /mastering-flask), written by Jack Stouffer, published by Packt.

Jinja2, the Python template engine we used, is documented for reference at http://jinja.

pocoo.org/.

The HTML used in this chapter is extremely simple. To get a deeper look into the ways you
could enhance the simple menu system, I recommend the eLearning video guide Beginning
Responsive Web Development with HTML and CSS [eLearning] (https://www.packtpub.com/

web-development /beginning-responsive-web-development-html-and-css—elearning-
video). Another good place to get to grips with HTML is https://www.freecodecamp.org/,
which offers assessed online courses in coding web pages.

[256]

http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
http://flask.pocoo.org
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
https://www.packtpub.com/web-development/mastering-flask
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.packtpub.com/web-development/beginning-responsive-web-development-html-and-css-elearning-video
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/

12

Programming Encoders with
Python

It is useful in robotics to sense the movements of motors and wheels. We've driven a robot
along a path, but it's unlikely that it has stayed on course. Detecting this and travelling a
specific distance is useful in creating behaviors. In this chapter, we will investigate the
sensors that can be used for this and then program the robot to move in a straight line, and
for a specific distance. We will then look at how to make a specific turn. Please note that
this chapter will contain math.

In this chapter, you will learn about the following topics:

¢ Distance and speed measuring sensors—encoders and odometry

e How to attach the sensors to your robot

¢ Creating code to work with these sensors and detect a basic distance (in ticks)
¢ Seeing how to correct for veer in a robot and actually drive in a straight line

Calibrating the sensors to travel a specified distance

Calibrating to make a known turn

Technical requirements

Refer to the following requirements for this chapter:

e The Raspberry Pi robot and the code from the previous chapters (you will
require level shifters from chapter 11, Programming Distance Sensors with Python,
regarding the breadboard).

» Two slotted speed sensor encoders. Search for slotted speed sensor, Arduino

speed sensor, LM393 speed sensor, or Photo Interrupter module. See the The
encoders we will be using section for images of these.

Programming Encoders with Python Chapter 12

¢ Long male-to-female jumper cables.

¢ A ruler to measure the size of the wheels on your robot, or better yet calipers, if
you can use them.

¢ The code for this chapter is available in GitHub.

Check out the following video to see the Code in Action:

http://bit.ly/2r4j5VK

What are encoders?

Encoders are sensors that change value based on the movement of a part. They detect
where the shaft is or how many times an axle has turned. These can be rotating, or sensing,
along a straight line track.

Sensing how far something has traveled is also known as odometry, and the sensors can
also be called tachometers, or tachos for short. The sensors suggested in the Technical
requirements section may also show up as Arduino tacho in searches.

Use of encoders

Our robots use electronic sensors. Cars and large commercial vehicles use electronic or
mechanical sensors for speedometers and tachos.

Encoders are used as an alternative to stepper motors in items such as printers and
scanners. Sensing the amount turned is an essential component of servomechanisms, which
we saw in Chapter 10, Using Python to Control Servo Motors. They are also used in control
dials for high-end audio or electrical test/measurement systems. These are self-contained
modules that look like volume knobs, but can be turned indefinitely.

Types of encoders

The following photo shows some ways that you can measure movement, along with an
encoder wheel and strip:

[258]

https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter12
http://bit.ly/2r4j5VK
http://bit.ly/2r4j5VK
http://bit.ly/2r4j5VK
http://bit.ly/2r4j5VK
http://bit.ly/2r4j5VK
http://bit.ly/2r4j5VK
http://bit.ly/2r4j5VK
http://bit.ly/2r4j5VK
http://bit.ly/2r4j5VK

Programming Encoders with Python Chapter 12

Encoder sensors

The sensors shown in the preceding picture fall into a few categories, and correspond to the
points that follow:

1. This is a variable resistor. These analog devices can measure a turn, but don't
tend to allow continuous rotation. They have mechanical wipers on a metal or
resistant track, which can wear down. This is not strictly an encoder, but
handy. On the Pj, they require analogue to digital conversion, so they aren't
really suitable for this application. They are used inside servo motors.

2. This motor includes magnet sensing encoders, known as hall-effect sensors.
Magnets on a wheel or strip pass next to the sensor, causing the sensor values to
go high and low.

3. This is a common optical sensor. Using a slot with an IR beam passing through,
they sense when the beam is interrupted. These are used in computer trackballs,
printers, and robotics. These produce a chain of pulses. Due to the beam being
interrupted, they are known as photo-interrupters or opto-interrupters. We will
be using this kind.

4. Optical sensors usually use a slotted wheel, or a slotted strip for linear encoding,
with transparent and opaque sections. A variation can be made by using a light
sensor and light/dark sections, but these are less common.

[259]

Programming Encoders with Python Chapter 12

Encoding direction and speed

Basic encoding measures how many wheel slots pass the sensor. This will give speed and
distance. By using two sensors slightly apart, you can also encode the direction. The
following diagram shows how this would work:

Speed only Speed With Direction
" i i 1 1l
Pin 1
L
H H
Pin 1 Pin 2
L Lo
1234

Encoding speed and direction with multiple sensors

The system on the left only encodes the speed. The wheel on the right encodes direction,
with a sequence of 1, 2, 3, 4. The direction of the sequence indicates the direction of the

wheel.

To build a robot with a record and replay type user interface, or a mouse/trackball,
direction is important information, so the additional complexity and space needed to
encode the directions is needed. We are using the cheaper option of speed only, so we will
need to account for this in the code.

[260]

Programming Encoders with Python Chapter 12

Each pulse has a rising edge, where it goes up, and a falling edge, where it goes down. To
count the number of pulses, we can count one of these edge types, or both types for double
the number of transitions.

The encoders we will be using

We will use slot encoders that fit right above the encoder wheels we added in Chapter 6,
Building Robot Basics - Wheels, Power, and Wiring. These encoders have digital outputs, and
we can count the pulses from them in Python to sense how far a wheel has turned. The
following photo shows two types of sensor that I recommend:

The types of sensor we are using

On the left is the FC-03 photo interrupter module, and on the right is the Waveshare Photo
interrupter module.

We are going to use encoder wheels that are attached to the motor shafts. These are in line
with the wheels. If there are encoder wheels running at a different rate from the wheels,
this will need to be accounted for. There are conditions they cannot account for such as
slipping, and wheel and tire sizes. Encoders attached to separate idler wheels give better
data, but they are trickier to attach to a robot and keep in contact with the floor.

[261]

Programming Encoders with Python

Chapter 12

The following diagram shows what the robot block diagram will look like after attaching

the encoders:

Left

Motor

Wheel <——=

Left Line
Sensor \\

Pan
Servo

Motor Hat

i

Servo

/ Sensor

Raspberry Pi

Left Right
Encoder Encoder
Level Level evel
Shifter Shifter Shifter
Left Right
Ultrasonic LED Ultrasonic
Sensor Strip Sensor

Robot block diagram with encoders

Attaching encoders to the robot

Our robot is now getting quite busy, and our Raspberry Pi is above the slots for the
encoders. We may need taller Pi standoffs to accommodate the encoders. Due to them being
under the Pi, we should wire them in a little before returning the Pi. After bolting in the Pi,
we will wire them through the level shifters to the Pi, as well as the power and ground.

[262]

Programming Encoders with Python Chapter 12

Before we start changing the robot and making it harder to see, we will need to know the
number of slots in the encoder wheel for later, which is shown in the following photo:

Encoder wheel

My encoder wheels came out at having 20 slots. If the seller you bought the robot chassis
from printed this, you would be able to check that your number is the same as theirs.

Lifting up the Raspberry Pi
These sensors will need to go underneath the Pi, so it will need to be gently lifted up

(without disrupting wires) to accommodate them. The following sequence of photos shows
how to lift it:

Unscrewing and lifting off the Pi

[263]

Programming Encoders with Python Chapter 12

You will need to carefully unscrew the bolts holding the Pi to the chassis so that the Pi can

gently lift away without disrupting the cables. Keep the screws for replacing the Pi on the
robot, which we will do later. Do not reattach the Pi yet.

Preparing the encoders

Before we can use the encoder sensors, we need to prepare and fit them:

1. As the encoders will be going under the Raspberry Pi, we should attach the male
to female jump wires to the sensors now. I also suggest covering the electrical
contacts that will be sticking up under the Pi with a little insulation tape:

The sensors with cable connections

2. Importantly, the cables should be plugged into the ground (GND), voltage (5V or
VCC), and digital output (D0/OUT). If it is present, the analog output (A0) pin
should not be connected. If it is possible, the ground pin should have the darkest
color, or the voltage should be the lightest color. To help keep this clear, I

suggest wrapping a small stripe of insulation tape around the end of the signal
line.

As these sensors' pin configurations can vary, get a reference photo of the
9 sensor pin labels before putting it under the Pi.

[264]

Programming Encoders with Python Chapter 12

3. Now that they are wired, you can fit them to the robot chassis. As a guide, the
following picture shows a bare chassis with each of the sensor types fitted to
show you where you would push them in:

Fitting the encoder Sensors

4. The sensors should friction fit into the slots above the encoder wheels and stay in
place.

5. Once these are in place, you can replace the screws to attach the Pi to the chassis.

At this point, check that all your connections are back in place—I found
that the motor connections in their terminals came loose and had to be
reconnected at this point.

Wiring the encoders to Pi

The following diagram shows a simplified breadboard circuit for these sensors. Please note
that some of these sensors work with 3.3V, in which case the level shifter can be skipped.

[265]

Programming Encoders with Python Chapter 12

If you are not sure, leave the level shifter in:

opto-interruptor
speed sensor

DO NOT CONNECT A0

5V

GPIO
pin

Simplified speed sensor connections

We will make this circuit in the context of a busy robot with other connections. If the cables
from the sensors to the robot are not long enough, use a further set of male-to-female
cables, as shown in the following photos:

Joining the cables to extend them

[266]

Programming Encoders with Python Chapter 12

1. Bring the male end of one, and join it to the female end of the other.

2. Use insulation tape to keep this joint from separating. If the extension colors are
different, try tagging the signal (D0) line with some insulating tape at each end.

The following diagram shows the current robot wiring, which is for comparison with the
new wiring for these sensors:

GPIO 26

by
o
o
g

eft line sensor right line sensor

PR
LR B O O O O A O

....“.lgﬂ..JIIL.

Eht distance sensor

RN E RN
LI I B B O B B O A

FRE RN
LI B O

led strip

The current wiring of the robot

[267]

Programming Encoders with Python Chapter 12

The following diagram shows the new connections for these sensors:

< ~
o o
o o
0 0
eft line sensar | right line sensor |
Y,
ZOADNTLER 70
VAL 1S

left distance EEI‘IE.‘JI’l

N (00 NOT CONNECT A0 | [DO NOT conNECT Aol

left right
speed sensor speed sensor

The steps for connecting the encoders to Raspberry Pi

Let's perform the following steps:

1.

Connect the Raspberry Pi GPIO pins 4 and 26 to the free channels of the low
voltage side of the level shifters.

Now, connect the sensor's DO pins to the high side of the level shifter channels.
Pay attention to the labels on the sensor — some have a different pin ordering.
Use the photo reference suggested earlier if you need help with this.

Connect the sensor to the power connectors at the back of the breadboard.

The sensors are now ready for programming.

[268]

Programming Encoders with Python Chapter 12

The number of wire-to-wire points on this robot will make it hard to add
new connections or repair. Although beyond the scope of this book,
making your own PCBs would make this thicket of cabling much neater.
This would also be less fragile, and take up less space. It does, however,
come with a cost to changing it.

Detecting the distance traveled in Python

Using these devices requires us to count pulses. In this section, we will create some code to
turn on the motors, and count pulses for a while. This will validate that the sensors are
connected correctly. We will then take this code and make it part of the robot class as a
behavior.

Simple counting

This code will count the number of cycles up and down on the signal pin for each wheel,
and print them as we go to test the sensors. We will run our motors for about 1 second.

The following code can be found in GitHub under Chapter 12 as

test_encoders.py (https://github.com/PacktPublishing/Learn-
Robotics-Fundamentals-of-Robotics-Programming/blob/master/

chapterlZ/test_encoders.py)

Let's start with the usual robot class import and time:

from robot import Robot
import time

Next, we'll add an import for a GPIOZero input device. We can use the pin it sets up to
count our pulses:

from gpiozero import DigitalInputDevice

[269]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/test_encoders.py

Programming Encoders with Python Chapter 12

The encoders generate pulses; we will want to count them and track their state. We will use
more than one of them. Creating a class from the outset seems like the right strategy. From
here, we can pass our pin number to the constructor. The first thing it needs to do is set up
a pulse counter:

class EncoderCounter (object) :
def __init_ (self, pin_number):
self.pulse_count = 0

Still in the constructor, we need to set up the device and how we will count pulses with it.
The device has a . pin object, which was set up from our pin number. The .pin has a
when_changed event, which we can drop our own handler into so that it can be called
every time the pin changes. The pin will change from up and then to down (rising and
falling) for every slot:

self.device = DigitalInputDevice (pin=pin_number)
self.device.pin.when_changed = self.when_changed

We need to define when_changed for our class to add one to the pulse_count:

def when_changed(self):
self.pulse_count += 1

We can set up our robot object and create an EncoderCounter for each side's sensor. We
connected our devices to pins 4 and 26:

bot = Robot ()
left_encoder = EncoderCounter (4)
right_encoder = EncoderCounter (26)

To display values, instead of just using s1eep, we will loop, checking against an end time.
We will start the motors, and go into the main loop:
stop_at_time = time.time() + 1

bot.set_left (90)
bot.set_right (90)

[270]

Programming Encoders with Python Chapter 12

while time.time () < stop_at_time:

In this loop, we print the readings on both sensors.

Since tight loops can cause things to break (especially with our sense threads), it should
sleep a little, too:

print "Left:", left_encoder.pulse_count, "Right:",
right_encoder.pulse_count
time.sleep(0.05)

When the loop ends, the program will be done, so our robot will automatically stop. You
can send this code to the robot and run it. You will now be able to see the robot veering
through the encoder's values. The output will look a little like this:

pi@myrobot:~ $ python test_encoders.py

Left: 0 Right: O
Left: 0 Right: 1
Left: 2 Right: 2
Left: 3 Right: 4
Left: 5 Right: 7
Left: 8 Right: 10
Left: 10 Right: 14

Left: 56 Right: 74

The encoders are counting, and it shows that the robot moved less on the left wheel, and
more on the right wheel, and veered left. The distances are in encoder ticks, a tick being
each counted event.

If the encoder values stay at zero, go back and check your wiring and pin number usage
carefully. Note that if you do not use level shifters, a pull down or pull up resistor may be
required.

Adding encoders to the Robot object

To use this sensor in other code or behaviors, we should move it into the Robot object. We
can then import our code into the Robot object, and set up the two sides with the correct
pins. The encoders need some cleanup code to be added to them.

[271]

Programming Encoders with Python Chapter 12

Extracting the class

We'd already made a class, so this can be moved to the encoder_counter.py (https://
github.com/PacktPublishing/Learn-Robotics-Fundamentals—-of-Robotics—Programming/
blob/master/chapterlZ/encoder_counter.py)fﬂe.TTﬁsneedStheinlportforthe
DigitalInputDevice and has the same constructor, which is also the case when changed.
The direction member has been added to account for reversing:

from gpiozero import DigitalInputDevice

class EncoderCounter (object) :
def __init__ (self, pin_number) :
self.device = DigitalInputDevice (pin=pin_number)
self.device.pin.when_changed = self.when_changed
self.pulse_count = 0
self.direction = 1

Our when_changed handler should use the direction, and we need a method to set this
direction. We can use assert to validate our setting, which will throw an exception if it
doesn't meet the condition with the given text. A cheap but brutal way of ensuring input
values make sense:

def when_changed(self):
self.pulse_count += self.direction

def set_direction(self, direction):
"""This should be -1 or 1. """
assert abs(direction)==1, "Direction %s should be 1 or -1" %
direction
self.direction = direction

For cleanup, add a reset and a way to stop the counters so that the handler isn't called
again:

def reset (self):
self.pulse_count = 0

def stop(self):
self.device.close()

[272]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/encoder_counter.py

Programming Encoders with Python Chapter 12

Adding the device to the Robot object

We need to modify Chapter 11, robot.py (https://github.com/PacktPublishing/Learn-
Robotics-Fundamentals—-of-Robotics-Programming/blob/master/chapterll/robot.
py) code to add the sensors. Start by importing EncoderCounter:

import leds_8_apalO2c

from servos import Servos

from distance_sensor_hcsr04 import DistanceSensor, NoDistanceRead
from encoder_counter import EncoderCounter

Inthe __init__ constructor method, we need to set up left and right encoders. I did this
just after the distance sensors:

Setup The Distance Sensors
self.left_distance_sensor = DistanceSensor (17, 27)
self.right_distance_sensor = DistanceSensor (5, 6)

Setup the Encoders
self.left_encoder = EncoderCounter (4)
self.right_encoder = EncoderCounter (26)

To make sure that the encoders are cleaned up when our Robot object has stopped, we call
the encoder's st op methods in the stop_all method:

Clear any sensor handlers
self.left_line_sensor.when_line = None
self.left_line_sensor.when_no_line = None
self.right_line_sensor.when_line = None
self.right_line_sensor.when_no_line = None

self.left_encoder.stop()
self.right_encoder.stop()

The finished code for robot . py is on GitHub (https://github.com/PacktPublishing/
Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapterl2/
robot .py). As we made a behavior from this, we'll use it to measure distance in millimeters.

[273]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter11/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/robot.py

Programming Encoders with Python Chapter 12

Turning ticks into millimeters

To calculate real distances, we need the sizes of the wheels. We cannot account for slipping,
but we can know how much a wheel has turned, which is at the same rate as the encoders.
Using the wheel's diameter, we can calculate how far it has turned. Using a ruler or
calipers, measure the diameter across the wheel. The following photo shows you how you
can do this:

[[i

|||||||||

...............

|
1

I St Simeopeon “an 6000 o
“__luuluuluuhmluuhluluuhLuluuluuh|||I|n|‘|m|u I

Measuring the wheel

My wheel came out at 70 mm to the nearest mm. Also measure the width from midpoint to
midpoint of the two motor-driven wheels on the robot. We will need this information soon.
Mine came out at about 130 mm.

We know how many slots are on the encoders, and we expect two ticks (the rising and
falling) per slot, so we can take the number of slots * 2, which would be the number of ticks
per whole turn of the wheel — in my case, this is 40.

Pi is the ratio of the diameter to the circumference of the wheel. To get the circumference,
we multiply the diameter by Pi, giving us 7D, where D is the diameter. We can divide Pi by
the number of total edges per revolution, and then when we multiply this by the number of
ticks T and then the diameter D, and we will get a number for the distance d that wheel has
traveled:

[274]

Programming Encoders with Python Chapter 12

dzixDxT
40

So, how would we turn this into code? Refer to the following steps:

1. Make a new file called test_distance_travelled.py. First, at the top of the
file, we will need to import math for the calculations, the Robot object, and time:

from robot import Robot
import time
import math

2. Next, we can define our constants—the wheel's diameter and the number of ticks
per revolution. Please use the values you obtained, not the ones that I have
shown here:

wheel diameter_mm = 70.0
ticks_per_revolution = 40.0

3. Create a function to convert the ticks, counted into a distance. It's converted to
integers, since fractions of a millimeter are just not appropriate for this
measurement. Since part of the conversion doesn't change, we make that a
constant, too:

ticks_to_mm_const = (math.pi / ticks_per_revolution) *
wheel_diameter_mm
def ticks_to_mm(ticks) :

return int (ticks_to_mm_const * ticks)

4. Next, we define our robot, set up a stop time, and start the motors:
bot = Robot ()
stop_at_time = time.time() + 1

bot.set_left (90)
bot.set_right (90)

[275]

Programming Encoders with Python Chapter 12

5. In the loop, we display the distance by calling t icks_to_mm on the pulse counts:

while time.time () < stop_at_time:

print "Left:", ticks_to_mm(bot.left_encoder.pulse_count), \
"Right:", ticks_to_mm(bot.right_encoder.pulse_count)

time.sleep (0.05)

6. When uploaded to the robot and run, the output will look this:

pi@myrobot:~ $ python test_distance_travelled.py
Left: 0 Right: O

Left: 5 Right: O

Left: 16 Right: 10

Left: 32 Right: 21

Left: 368 Right: 384
Left: 395 Right: 417

Driving in a straight line

By now, you may have seen differences in the outputs, that is, a veer. In only 400 mm, my
left side is around 20 mm behind the right, an error that is climbing. Depending on your
motors, your robot may have some veer too. It is rare for a robot to have driven perfectly
straight. We'll use the sensors to correct this.

Note that this is still dead reckoning; slipping on surfaces or incorrect
measurements can still set this off course. This works better on wooden
flooring or MDF boards, and poorly on carpet.

Concepts for correction

Driving in a straight line needs a closed feedback loop. The following diagram shows how
this loop works:

[276]

Programming Encoders with Python Chapter 12

expected position difference

speed
error ;
controller adjustment motor speed

'
motor turns
'

v

L—encoder position encoder

Closed loop control of a motor's speed

We take an expected position or set point. The encoder position (feedback data from the
real world) is subtracted from the expected position to get an error value. This is fed into a
controller, which generates speed adjustment. Apply that speed adjustment to the motor
speed so that the motor turns more or less, changing the feedback received from the
encoder.

To go straight, we pick the left motor as a primary and use its encoder as the expected
position, then aim for the right encoder to keep up with it. Our error will therefore be the
difference between the encoders. Set a constant speed for the left motor, and the right speed
will come from the controller.

We will use a PID controller to adjust the speed of the right motor. This has three
components:

e P -> proportional: The error value multiplied by a constant. This corrects for
immediate errors.

¢ I ->integral: The sum of the error values so far, multiplied by a constant. This
corrects for continuing errors.

e D -> derivative: This takes the difference between the last error value and now,

also multiplied by a constant. This is to push back a little against sudden
changes.

[277]

Programming Encoders with Python Chapter 12

By manipulating the constants, we can tune the controller so that each factor will influence
the final outcome more. For our behaviors, we won't be using the derivative component,
which is equivalent of having its constant set to zero.

The integral can give the robot some self-tuning, but it needs to have a very small constant,
as high values can make the robot start to wobble instead.

The right motor speed will be as follows:

integral_sum = integral_sum + error
right_motor_speed = speed + (error * proportional_constant) + (integral_sum
* integral_constant)

We need unused motor speed capacity for our right motor to speed up or
slow down to match the left. If the speed is too close to 100%, we will get
clipping. An integral behavior with clipping here can make the robot
behave quite strangely, so watch out for clipping at 100%! Use no more
than 80% input speed.

Creating a Python PID Control object

We will use this in a few places, so let's make a PID Control object. I put this in a file
named pid_controller.py. Note that this is really only a PI (proportional integral)
controller. This needs no imports. Here is the class and its constructor:

class PIController (object) :
def __init__ (self, proportional_constant=0, integral_constant=0):
self.proportional_constant = proportional_constant
self.integral_constant = integral_constant

Running sums
self.integral_sum = 0

The constructor takes the constants; I've preloaded these with zero so the components can
be isolated. The class stores these values. Then, we set up a variable to store the integral
sum, which grows with time. It is not unusual to abbreviate the proportional_constant
as pK and the integral_constant as iK. You may do so if you wish; I've used the longer
names in the code examples to make it easier to read.

[278]

Programming Encoders with Python Chapter 12

The following code handles the values for the two components. Handling the integral has
the effect of increasing the integral sum:

def handle_proportional (self, error):
return self.proportional_constant * error

def handle_integral (self, error):
self.integral_sum += error
return self.integral_constant * self.integral_sum

The following bit of code handles the error to generate the adjustment:

def get_value(self, error):
p = self.handle_proportional (error)
i = self.handle_integral (error)
return p + i

I've left the proportional and integral parts available here as p and i; the reader may want
to print them to debug and tune their controller.

Straight line code

I called this straight_line_drive.py (https://github.com/PacktPublishing/Learn-
Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapterl2/straight_
line_drive.py). Let's import the Robot object, time, and our new PI Controller. Set up the
Robot object too, and set up a slightly longer stop_at_time value so that our robot drives
a bit further:

from robot import Robot
from pid_controller import PIController
import time

bot = Robot ()
stop_at_time = time.time() + 60

[279]

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/blob/master/chapter12/straight_line_drive.py

Programming Encoders with Python Chapter 12

Instead of setting each motor to a speed, start with a master speed value of 80, and set both
motors to this:

speed = 80
bot.set_left (speed)
bot.set_right (speed)

Before going into our main loop, set up the controller. You may need to tune these
constants. Note how small the integral constant is:

pid = PIController (proportional_constant=4, integral_constant=0.2)

In the loop, start by sleeping so that our encoders have something to measure. Get the
encoder values, and compute the error:

while time.time () < stop_at_time:
time.sleep(0.02)
Calculate the error
left = bot.left_encoder.pulse_count
right = bot.right_encoder.pulse_count
error = left - right

That error needs to be handled by the controller, and used to make the right_speed. We
print debug information here:

Get the speed
adjustment = pid.get_value (error)
right_speed = int (speed + adjustment)
print "left", left, \
"right", right, \
"right_speed:", right_speed, \
"error:", error, \

)

"adjustment: %.2f" % adjustment

We then set the right motor speed to the newly adjusted value, and the loop is done:

bot.set_right (right_speed)

[280]

Programming Encoders with Python Chapter 12

When we run this, the robot should be following a fairly straight course. It may start off
unstable, but should hone in on a constant adjustment:

pi@myrobot:~ $ python straight_line_drive.py

left 0 right 0 right_speed: 80 error: 0 adjustment: 0.00
left 0 right 0 right_speed: 80 error: 0 adjustment: 0.00
left 0 right 0 right_speed: 80 error: 0 adjustment: 0.00
left 0 right 1 right_speed: 75 error: -1 adjustment: -4.20
left 1 right 2 right_speed: 75 error: -1 adjustment: -4.40
left 2 right 2 right_speed: 79 error: 0 adjustment: -0.40
left 2 right 4 right_speed: 71 error: -2 adjustment: -8.80
left 3 right 5 right_speed: 70 error: -2 adjustment: -9.20
left 4 right 6 right_speed: 70 error: -2 adjustment: -9.60
left 5 right 7 right_speed: 70 error: -2 adjustment: -10.00
left 6 right 8 right_speed: 69 error: -2 adjustment: -10.40

left 32 right 34 right_speed: 58 error: -2 adjustment: -22.00

left 109 right 108 right_speed: 74 error:
left 110 right 110 right_speed: 70 error:
left 112 right 112 right_speed: 70 error:
left 114 right 114 right_speed: 70 error:
left 116 right 116 right_speed: 70 error:
left 117 right 117 right_speed: 70 error:

adjustment: -5.20
adjustment: -9.20
adjustment: -9.20
adjustment: -9.20
adjustment: -9.20
adjustment: -9.20

O O O O O

The robot starts off with no error as the motors engage, but the right engages faster. At 32
ticks, the integral pulls the adjustment pretty high. By around the 100's, the integral caused
a small overshoot, but it settles in for this -9. 20 adjustment, which keeps both motors
driving at the same speed, and the robot straight. Tuning of the P and I constants, as well as
the loop timing, may result in earlier corrections—the initial encoder values are too small to
be useful.

Troubleshooting this behavior

Here are a few steps to take if the robot is wobbling, or doesn't manage to travel in a
straight line:

¢ The robot takes too long to compensate: Increase the proportional component.

e The robot overshoots massively (that is, it swerves one way, then the other):
Reduce the height of both components.

¢ The robot is making increasing wobbles: The integral is too high, and that right
speed may be going above 100. Bring down the integral component, and perhaps
the requested speed.

[281]

Programming Encoders with Python Chapter 12

Driving a specific distance

For this behavior, we'll use the PI Controller again, and incorporate the distance
measurements into our encoder object. We will calculate how many ticks we want the left
wheel to have turned for a given distance, and then use this instead of a timeout
component.

Refactoring unit conversions into the
EncoderCounter class

We'll want the conversions for our encoders in the the EncoderCounter class so that we
can use them in these behaviors. Open up your encoder_counter.py class. First, we need
the math import:

from gpiozero import DigitalInputDevice
import math

At the top of the class, add ticks_to_mm_const as a class variable (not an instance
variable) so that we can use it without any instances of the class. Set this to none initially so
that we can calculate it:

class EncoderCounter (object) :
ticks_to_mm_const = None # you must set this up before using distance

methods

In our class, we want to be able to retrieve the distance the wheel has traveled directly from
the encoder, in mm. Add this at the end of the file:

def distance_in_mm(self):
return int (self.pulse_count * EncoderCounter.ticks_to_mm_const)

Notice that ticks_to_mm_const is pulled from the class, and not self (the instance). We
want to calculate the opposite, that is, the number of ticks from a distance in mm. To do
that, divide the distance in mm by the same constant we multiplied by. This is a
staticmethod, so that it does not require an instance to be used:

[282]

Programming Encoders with Python Chapter 12

@staticmethod
def mm_to_ticks (mm) :
return mm / EncoderCounter.ticks_to_mm_const

Add a way to set the constants in the file (for different robot configurations):

@staticmethod

def set_constants (wheel_diameter_mm, ticks_per_revolution):
EncoderCounter.ticks_to_mm_const = (math.pi / ticks_per_revolution) *

wheel_diameter_mm

Save this file.

Setting the constants

So far, we can use our robot metrics in our behaviors. Now, we want the Robot object to
store our measurements, and register them with the encoders. In robot . py, just before the
constructor, specify some of these numbers:

class Robot (object) :
wheel_diameter_mm = 69.0
ticks_per_revolution = 40.0
wheel_distance_mm = 140.0
def _ _init_ (self, motorhat_addr=0x6f, drive_enabled=True) :

Register these with the encoders:

Setup the Encoders

EncoderCounter.set_constants (self.wheel_diameter_mm,
self.ticks_per_revolution)

self.left_encoder = EncoderCounter (4)

self.right_encoder = EncoderCounter (26)

[283]

Programming Encoders with Python Chapter 12

Creating the combined behavior

I'll put this code into drive_distance_behavior.py. The starting point is a few imports
and creating the robot instance. Import the EncoderCounter to use its metrics, the
PIController, and the robot object:

from robot import Robot, EncoderCounter
from pid_controller import PIController
import time

Define the drive_distance function, which will take a robot instance, a distance in ticks,
and an optional speed defaulting to 80. We'll start by making a primary and secondary
motor and controller decision:

def drive_distance (bot, distance, speed=80):
Use left as "primary" motor, the right is keeping up
set_primary = bot.set_left
primary_encoder = bot.left_encoder
set_secondary = bot.set_right
secondary_encoder = bot.right_encoder

Note that we store the set_left and set_right functions in variables—we can just call
the variables like functions. We now have a well-defined primary and secondary motor. Set
up the PIController, and start the two motors:

controller = PIController (proportional_constant=5,
integral_constant=0.2)

start the motors, and start the loop
set_primary (speed)
set_secondary (speed)

Now, we are in the driving distance loop. We should continue the loop until both encoders
reach the right distance. We need to sleep before the rest of the loop so that we have some
data for our calculations:

while primary_encoder.pulse_count < distance or
secondary_encoder.pulse_count < distance:
Sleep a bit before calculating
time.sleep(0.05)

[284]

Programming Encoders with Python Chapter 12

Get the error, and feed it into the controller:

How far off are we?
error = primary_encoder.pulse_count - secondary_encoder.pulse_count
adjustment = controller.get_value (error)

We can send this to the secondary motor, and debug the data too. Because the adjustment is
non-integer, we allow two decimal places by using {:.2£}:

How fast should the motor move to get there?
set_secondary (int (speed + adjustment))
Some debug
print ("Primary c:{} ({} mm)\tSecondary c:{} ({} mm) e:{}
adjustment: {:.2f}".format (
primary_encoder.pulse_count, primary_encoder.distance_in_mm(),
secondary_encoder.pulse_count,
secondary_encoder.distance_in_mm(),
error,
adjustment

))

Set up the robot, calculate how far you want it to go, and get it moving;:

bot = Robot ()

distance_to_drive = 1000 # in mm - this is a meter
distance_in_ticks = EncoderCounter.mm_to_ticks (distance_to_drive)
drive_distance (bot, distance_in_ticks)

We will use the robot cleanup (atexit) to stop the motors. When this is run, the robot
drives for around a meter and stops. My robot, when stopping, looked like this:

i -15.20

left 986 right 986 right_speed: 64 error: 0
1 i -15.00

p O
left 997 right 991 right_speed: 70 error: p 5

There is a 6 mm discrepancy between the motors. 3 mm may have been lost in rounding
values to integers — we can't really make partial ticks.

[285]

Programming Encoders with Python

Chapter 12

There are a few ways this could be improved. Applying a PID controller to the distance
moved by the primary could make it close in more precisely on the exact distance to travel.
Detecting no movement in either encoder could be used to make the code stop after a
timeout so that it doesn't drive off without stopping.

Making a specific turn

The next task we can use our encoders for is to make a specific turn. When turning a robot,
each wheel is going through an arc. The following diagram illustrates this:

intended
wheel
paths

distance
between
wheels

Turn Angle ;\

Turn
Radius

0

| Robot |/

L

Arc Distance

= angle x radius

o

Angle (in
radians)

Radius

Tllustrating wheel movement when turning through an arc

The inner wheel clearly drives a smaller distance than the outer wheel, and from the basics
of differential steering, this is how we make the turn. To make an exact turn, we need to
calculate these two distances, or the ratio between them. The following diagram shows how

the wheels and the turn relate to each other:

[286]

Programming Encoders with Python Chapter 12

Mid Point Between
Wheels

e/ Wheel Mid Points

Relating wheels to turn radiuses

If we consider the turn radius as setting where the middle of the robot would be, an inner
wheels turn radius will be the difference between the turn radius and half the distance
between the wheels. The outer wheel's turn radius would be the turn radius added to half
the distance.

We convert our angle to turn into radians, and we can then multiply this angle by each
wheel radius to get the distances that each wheel needs to move through. Python has math
functions to convert degrees to radians.

Start with a copy of drive_distance_behavior.py and call
it drive_square_behavior.py. Add the math import, like so:

from robot import Robot, EncoderCounter
from pid_controller import PIController
import time
import math

At the end of this file, let's modify it to do what we want it to do. It can be helpful to state
what functions you would like to have, and then implement them to fit. We'll make it a bit
smaller than a meter, too. For a radius to test with, I've added 100 mm to the robot's wheel
distance. Anything less than the wheel distance, and the center of the turn will be between
the wheels instead of outside of them:

bot = Robot ()

distance_to_drive = 300 # in mm
distance_in_ticks = EncoderCounter.mm_to_ticks (distance_to_drive)

[287]

Programming Encoders with Python Chapter 12

radius = bot.wheel_distance_mm + 100 # in mm
radius_in_ticks = EncoderCounter.mm_to_ticks (radius)

for n in range(4):
drive_distances (bot, distance_in_ticks, distance_in_ticks)
drive_arc(bot, 90, radius_in_ticks, speed=50)

Since we are driving in a square, we want to drive four times. For straight lines, drive each
wheel the same distance, then make 90 degree arcs of our radius. I've reduced the speed for
the arc so that there is less of a slipping problem.

Go back up in the file to upgrade our method for driving a distance to one to drive two
distances, one for each wheel. I've renamed the drive_distance function
todrive_distances:

def drive_distances (bot, left_distance, right_distance, speed=80):

Depending on the angle we want to turn, either motor could be the outer motor, and
driving a longer distance. Since there is an upper limit in speed, we choose our primary and
secondary motors based on which is the longer distance. Swap the code that set up the
primary/secondary for this:

We always want the "primary" to be the longest distance, therefore
the faster motor
if abs(left_distance) >= abs(right_distance):
print ("Left is primary")
set_primary = bot.set_left
primary encoder = bot.left_encoder
set_secondary = bot.set_right
secondary_encoder = bot.right_encoder
primary distance = left_distance
secondary_distance = right_distance
else:
print ("right is primary")
set_primary = bot.set_right
primary encoder = bot.right_encoder
set_secondary = bot.set_left
secondary_encoder = bot.left_encoder
primary distance = right_distance
secondary_distance = left_distance
primary_to_secondary_ ratio = secondary distance / (primary_distance *
1.0)
secondary_speed = speed * primary_to_secondary_ratio
print ("Targets — primary: %d, secondary: %d, ratio: %.2f" %

[288]

Programming Encoders with Python Chapter 12

(primary_distance, secondary_distance, primary to_secondary_ratio))

The encoders and motors are as they were in the preceding code. However, the decision is
made using abs, the absolute value, because a longer distance in reverse should still be the
primary motor. So, to determine how far the secondary wheel should go, we compute a
ratio—to multiply with the speed now, and later the primary encoder output.

Since we are using this method more than once, reset the encoder counts. I put this in
before setting up the PIController:

primary_encoder.reset ()

secondary_encoder.reset ()

controller = PIController (proportional_constant=5,
integral_constant=0.2)

Since we can be going in either direction, set the encoder direction. Python has a copysign
method to determine the sign of a value. Then, start the motors:

Ensure that the encoder knows which way it is going
primary_ encoder.set_direction (math.copysign(1l, speed))
secondary_encoder.set_direction (math.copysign(l, secondary_speed))

start the motors, and start the loop
set_primary (speed)
set_secondary (int (secondary_speed))

When we start this loop, we again need to be aware that one or both motors could be going
backwards:

while abs (primary_encoder.pulse_count) < abs(primary_distance) or
abs (secondary_encoder.pulse_count) < abs(secondary_distance):
And sleep a bit before calculating
time.sleep(0.05)

Calculating the error for the secondary depends on the ratio between the two distances:

How far off are we?
secondary_target = primary_encoder.pulse_count *
primary_ to_secondary_ratio

[289]

Programming Encoders with Python Chapter 12

error = secondary_target - secondary_ encoder.pulse_count

This will still go into the same adjustment calculation through the pid, however, this
adjustment may also cause a change in direction here:

set_secondary (int (secondary_speed + adjustment))
secondary_encoder.set_direction (math.copysign(1,
secondary_speed+adjustment))

The reader may also want to expand the debug that we had to take into account for the
secondary speed and targets. Now, because we are trying for precision, the primary motor
may reach its goal before the secondary, and isn't set up to reverse. So, stop this motor
when it reaches its goal, and set the base speed of the secondary to zero, which will mean
only adjustments will apply, if any. Note that we still use the absolute values here:

Stop the primary if we need to

if abs(primary_encoder.pulse_count) >= abs (primary_distance):
print "primary stop"
set_primary (0)
secondary_speed = 0

And we are done with the drive distances function.

The drive_arc function

Here is where we convert to radians, determine the inner radius, and set up the distances
for each wheel to drive. This code is to be added in drive_square_behaviour.py, after
the drive_distances function.

Start with a function definition, and a helpful docstring:

def drive_arc(bot, turn_in_degrees, radius, speed=80):
""" Turn is based on change in heading. """

[290]

Programming Encoders with Python Chapter 12

We turn the robot's width into ticks, the internal measurement of distance, and use half of
that to get the wheel radiuses. We also determine which is the inner wheel:

Get the bot width in ticks
half width_ticks =
EncoderCounter.mm_to_ticks (bot.wheel_distance_mm/2.0)
if turn_in_degrees < 0:
left_radius = radius - half_width_ticks
right_radius = radius + half_width_ticks
else:
left_radius = radius + half_width_ticks
right_radius = radius - half_width_ticks
print "Arc left radius {:.2f}, right_radius {:.2f}".format (left_radius,
right_radius)

We display the debug on what the radii are. Combine this with the turn in radians to get
distances. We convert the absolute value of the turn in degrees. We don't want to reverse
into a turn, but to turn the other way:

radians = math.radians (abs (turn_in_degrees))

left_distance = int (left_radius * radians)

right_distance = int (right_radius * radians)

print "Arc left distance {}, right_distance {}".format (left_distance,
right_distance)

Finally, feed these distances into the drive_distances function:
drive_distances (bot, left_distance, right_distance, speed=speed)

The robot should be able to drive in a square shape. It can still miss due to slipping, or
inaccuracies in the measurements. Tuning of the proportional and integral control values
will be required.

Examining the full code for drive_distances and drive_arc, it may become apparent
that there is some repetition in determining the inner/outer and the primary/secondary
parts. This may also not behave correctly if reversing through a corner.

[291]

Programming Encoders with Python Chapter 12

Further ideas

You could now use this code to make further geometric shapes, or to follow paths without
a line. By combining the sensors here with distance sensors, it may be possible to start
memorizing distances between walls. High level left turn/right turn 90 degree functions
could be added as building blocks for right-angled path construction.

Summary

In this chapter, we have seen how to incorporate wheel encoder sensors into our robot, and
used them to determine how far each wheel has turned. We've seen how to use this to get
the robot onto a straighter path using a reduced PID Controller and then used this to drive
a specific distance. We then took the calculations further to calculate turning a corner in
terms of wheel movements, and drive the robot in a square.

In the next couple of chapters, we will be exploring giving our robot even more interactive
and intelligent behaviors, with chapters on visual processing using a Raspberry Pi Camera,
speech processing on a handset with MyCroft, and adding a gamepad to the handset to
remotely drive or select modes on the robot.

Questions

1. What are the edge types we are counting with our encoder code?

2. Why should we not drive motors at 100% for these control systems?

3. What are some factors that encoders on the wheels/motors like this cannot
account for?

[292]

Programming Encoders with Python Chapter 12

Further reading

PID Control is a deep subject. It is a key area in self-balancing robots, drones, and other
autonomous control systems. Here is a great video series so that you can explore these

further:

® Youtube: Brian Douglas - PID Control - A brief introduction

I've greatly simplified some of the corner turning algorithms. A very in-depth article on
how this was used for a competition winning Lego Mindstorms robot holds a more detailed
method:

® G W Lucas - Using a PID-based Technique For Competitive Odometry and

Dead-Reckoning
® http://www.seattlerobotics.org/encoder/200108/using_a_pid.html

[293]

https://www.youtube.com/watch?v=UR0hOmjaHp0
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html
http://www.seattlerobotics.org/encoder/200108/using_a_pid.html

13

Robot Vision - Using a Pi
Camera and OpenCV

Giving a robot the ability to see things allows it to behave in ways to which humans relate
well. Computer vision is an area that much research is currently devoted to, but some of the
basics are already available for use in our own code, with the Pi Camera and a little bit of
work. In this chapter, we will use the robot and camera to drive to objects, and follow faces
with our pan-and-tilt mechanism. I'll also give you a way to see what your robot is seeing.
In this chapter, you will learn the following:

e Setting up a Raspberry Pi Camera on your robot, in terms of both software and
hardware

e Revisiting Flask, the web server from chapter 11, Programming Distance Sensors
with Python, to see what the robot sees on your phone or laptop

¢ Revisiting color models, covered in chapter 9, Programming RGB Strips in
Python, and learning how to mask images with them.

¢ Using contours to detect the largest blob of color in an image and pointing the
robot at it

¢ Using Haar cascades to detect faces, and pointing the pan-and-tilt mechanism at
them

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Technical requirements

For this chapter, you will need the following items:

The robot with the pan-and-tilt mechanism from chapter 12, Programming
Encoders with Python.

The Python code for the robot up to chapter 12, Programming Encoders with

Python, which can be downloaded from the GitHub at https://github.com/
PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/

tree/master/chapter12. We will be extending and modifying this for new
functionality.

The Raspberry Pi Camera v2.

A 300 mm-long Pi Camera cable. This is because the cable included with the
camera is too short. Be sure this is a Raspberry Pi 3 cable, and not a Pi Zero cable.

2 M2 bolts and M2 nuts.

A small square of thin cardboard—a cereal box will do.

A small jeweler's screwdriver.

A kids' bowling set—the type with differently colored pins (plain, with no
pictures).

A well lit space for the robot to drive in.

You will also require internet access while working on this project.

The code for this chapter is on GitHub, available at https://github.com/
PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/

master/chapterl3.

Check out the following video to see the Code in Action:

http://bit.ly/2KCklbE

Setting up the Raspberry Pi Camera

We will first attach the camera to the pan-and-tilt assembly. We can then use a longer cable
to wire the camera into the Pi.

[295]

https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=36&action=edit#post_35
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter12
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter13
http://bit.ly/2KCklbE
http://bit.ly/2KCklbE
http://bit.ly/2KCklbE
http://bit.ly/2KCklbE
http://bit.ly/2KCklbE
http://bit.ly/2KCklbE
http://bit.ly/2KCklbE
http://bit.ly/2KCklbE
http://bit.ly/2KCklbE

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

When we have completed this installation, our robot block diagram will look like the
following;:

Camera
Tilt
Servo Servo
Left Right
Wheel <{——= //Motor Hat =———=>> Wheel
Motor Motor
Left Line ﬁ Right Line
Sensor / Sensor
Raspberry Pi
Left Right
Encoder Encoder
Level Level Nl_evel
Shifter Shifter Shifter
Left Right
Ultrasonic LED Ultrasonic
Sensor Strip Sensor

Our robot block diagram with the camera added

Attaching the camera to the pan and tiit
mechanism

In chapter 10, Using Python to Control Servo Motors, you added a pan-and-tilt mechanism to
your robot. The camera will be mounted onto the front plate of this mechanism. There are
brackets and kits, but they are not universally available. Feel free to use one of these if you
can adapt it to the pan-and-tilt mechanism; if not, have a few plans.

[296]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Building a robot requires creative thinking and being adaptable, as well as the necessary
technical skills. I frequently look through the materials I have for possible solutions before I
go and buy something. Sometimes, the first thing you attempt will not work, and you'll
need a plan B. My plan A was to use a hook-and-loop fastener (like Velcro), stuck directly
to the camera, but it does not adhere well to the back of the camera. So I had to adapt my
plan: plan B was to use a square of cardboard and make holes for 2 mm screws in it, bolt
the camera to the cardboard, and then use the hook-and-loop fastener to attach this to the
Pi.

The following photo shows the parts needed for this:

The parts needed for our plan to fit the camera module

In the preceding photo, we have some thin card, 2 mm bolts and screws, the Pi Camera
module, some scissors, a small spanner (or pliers), some hook-and-loop tape, and a small
screwdriver.

The following photos show the steps to mount the camera. Work carefully through each
numbered step in the following list:

1. First, cut a small amount for one side of the hook-and-loop fastener, and adhere
it to the pan and tilt mechanism:

[297]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Some hook-and-loop tape on the pan and tilt mechanism

2. Cut out a small square of cardboard the right size to fit the camera, then use a
pencil to poke through the camera screw holes to mark a dot. Then take a
pointed tool, and, on a firm surface, punch a hole where you made the pencil
mark:

Using a pen to mark screw positions

[298]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

3. Use a couple of M2 bolts and nuts to fasten the camera onto the cardboard
carrier. Note that the bolt-facing side is at the back—this is so any protruding
thread won't interfere with the hook and loop:

Bolting the camera to the cardboard

4. Now cut a small amount of the hook-and-loop fabric, to which the fabric on the
pan and tilt mechanism will fasten, and stick it to the back of the cardboard:

The back of the cardboard/camera assembly with our hook-and-loop fastener

[299]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Don't attach the camera yet, as we need to change the cable first. Note that the camera may
have film covering the lens—this should be removed.

Wiring in the camera

The next sequence of images shown how we will wire the camera into the Raspberry Pi:

The camera connector slot and the motor board

Please follow these steps:

1. The Raspberry Pi has a slot specifically for the camera—the camera cable fits into
this. We will be wiring our camera into this slot, but on our robot, this is
currently covered by the motor board.

2. To get around this, we will need to lift this board gently off the Pi. If the cables
for the motors are tight, disconnect them for these steps.

3. When you connect the camera to the Pi, the long cable will need to pass through
this board. Keep this in mind as you perform the next step.

[300]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Now, I recommend following this guide on How To Connect The Raspberry Pi Camera Module
(https ://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-
2-raspberry-pi-3/) using the long 300 mm cable. After following the guide, you should
have the cable installed the correct way around in the camera, then going through the slot
in the motor board, and into the port the right way around on the Raspberry Pi. Double-
checking that your connections are the right way around before replacing the motor board
will save you a lot of time. The next photo shows the steps to complete this assembly:

Completing the camera interface

Follow these steps, using the preceding as a reference:

1. Gently replace the motor board, pushing it down onto the Pi and the spacers.
Reconnect the motor cables if needed.

2. Push the camera onto the hook-and-loop attachment on the pan-and-tilt head,
with the cable facing upwards.

This camera is now wired and ready to use.

Setting up OpenCV

In this section, we will set up the camera, activating it in Raspbian and getting a test
picture. Then we will add the libraries to start interacting with the camera for visual
processing.

We will then build our first app with the tool, to demonstrate that the parts are in place and
give us a starting point for the behaviors.

[301]

https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/
https://www.techcoil.com/blog/connect-raspberry-pi-camera-module-raspberry-pi-2-raspberry-pi-3/

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Setting up the Pi Camera software

Power up the Pi on external power (that is, plugged into a USB wall adapter) for this
operation, leaving the motors powered down for now, and log in via PuTTY. At the
Terminal, type the following;:

pi@myrobot:~ $ sudo raspi-config

In raspi-config, select the 5 Interfacing Options option by selecting it, then pressing
Enter, and then selecting P1 Camera. You will then be asked if you would like the camera
interface to be enabled. Select Yes and Ok, then Finish. If you are asked to reboot at this
point, answer Yes.

Getting a picture from the Pi

The first thing we need to do, to confirm that our setup was successful, is to ask the Pi
camera to take a picture for us. This will check whether all the connections are good or not.
If there are problems detecting the camera, please go back and check that the cable
connection is correct, that you have installed picamera, and that you have enabled the
Raspberry Pi camera in raspi-config.

Reconnect to the Raspberry Pi with PuTTY, and type the following to get a picture:
pi@myrobot:~ $§ raspistill -o test.]jpg

raspistill takes a still image, and the —o parameter tells it to store that image in
test.Jjpg. You can then use your SFTP client (which we set up in the headless chapter) to
download this image and verify it on your computer. You will notice that the picture is
upside down, due to how the camera is mounted. Don't worry—we will correct this with
our software.

Installing libraries

OpenCV is a library with a collection of tools for manipulating pictures and extracting
information from them. The name is an abbreviation of Open Computer Vision. The tools are
strung together to make useful behaviors and pipelines for processing images. To be able to
run our code on the Raspberry Pi, we will need to install the Python OpenCV library there.

[302]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

We will also install NumPy, the numeric python library. This lets us to do manipulations of
large blocks of numbers. An image stored on a computer is essentially a large block of
numbers, with each tiny dot having similar content to the three-color numbers we sent to
the LEDs in chapter 9, Programming RGB Strips in Python.

Also, at a Terminal, install the following before rebooting. This may take five minutes or so
to complete:

pi@myrobot:~ $ sudo apt install python-opencv opencv-data

pi@myrobot:~ $ sudo pip install picameralarray] numpy
pi@myrobot:~ $ sudo reboot

After a reboot, the system will be ready to use with the camera. We will continue testing on
external power for the next few operations. At the time of writing, this installation will give
you OpenCV 2.4.9—the code will have to be adapted for later versions. The later OpenCV
versions are still quite complicated to install.

Building our first app with these tools

Downloading one picture at a time is fine, but we actually need to be able to do things with
those pictures on the robot. We also need a handy way to see what the robot is doing with
the camera data. For that, we will reach back into our toolkit, and use a Flask web server to
serve up our pictures. We can use the core of this app to make a few different behaviors.
We'll keep the base app around for them.

OpenCV camera server app overview

The following diagram shows a pipeline, with our image data going from the camera,
through the pipeline, and out to our web browser. The process image step can be anything
we require; for this example, we'll apply a color mask, which we explore in more depth in
the next section:

[303]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

- 4

convert to opencv »| process a frame

join with original

Y

serve over http
jpg encode — (along with a — —>
template)

render in users
browser

The image server app

It's time to start building the code to do this. Because this is fairly complex, we'll break it
down into two major parts: first, a CameraSt ream object, which will send our frames to an
image_server.py script, the second part of our code project.

The CameraStream object

This will act as a helper library, to set up the camera, and get data streams from it. I suggest
putting it in pi_camera_stream.py:

from picamera.array import PiRGBArray
from picamera import PiCamera

import numpy as np

import cv2

These imports give us the PiCamera code needed to access our camera. cv2 is OpenCV, the
computer vision libraries used to process the images. Here, NumPYy is aliased, or
nicknamed, np. The next few lines set up a few reusable parameters:

size = (320, 240)
encode_param = [int (cv2.IMWRITE_JPEG_QUALITY), 90]

[304]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

We will keep the images we capture at a small resolution of 320 by 240—this means we are
sending less data, so we will process less too, which will keep the system reasonably quick.
Also, higher resolutions may lead to more noise and edge defects, which would require
further filters to compensate for. The encode parameter will be used when we convert the
images to send to the browser. This function will set up the camera:

def setup_camera():
camera = PiCamera ()
camera.resolution = size
camera.rotation = 180
return camera

After initializing the camera, we set its resolution to the size. mentioned that the camera is
the wrong way up, so we set its rotation to 180 degrees to turn it round. We will need a
function to start capturing a stream of images (a video, but at our own rate of control):

def start_stream(camera) :
image_storage = PiRGBArray (camera, size=size)

cam_stream = camera.capture_continuous (image_storage, format="bgr",
use_video_port=True)
for raw_frame in cam_stream:
yield raw_frame.array
image_storage.truncate (0)

For storing our image, we need to set up the PiRGBArray, which is designed for storing
RGB images. We then set up the stream of data with capture_continuous. Thisis a
picamera method setup to repeatedly take photos. We give it the image store and tell it to
format the output data as bgr, which is the way OpenCV stores color data. The last
parameter to this is use_video_port, which, when set to true, results in a reduction in
image quality in exchange for faster production of frames.

The cam_streanm it returns can be looped through for frames, until we choose to stop.
Python has a concept of iterators—data structures that can be looped through, such as lists
and generators. Generators are like lists, but instead of holding all of the content, they
produce the next bit of data just in time for when it's needed.

[305]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

This loop is actually a generator itself. The line after for gets the raw .array from the
frame that was captured. It then uses yield. What this means is that the output of this
function can also be looped over as a generator, so when called, its return value can be
looped over, and the code in this for loop will execute just enough to produce one raw
frame, then the next, and so on. Python generators are a way to construct processing
pipelines.

The last line of the loop calls t runcate on the output array. This resets it, ready to hold the
next image. The PIRGBArray can be configured to store many images in sequence, but we
only operate on one at a time, so we must truncate it.

The final thing we can place in our pi_camera_stream.py script is a function to encode
an image with OpenCV, as shown here:

def get_encoded_bytes_for_frame (frame) :
result, encoded_image = cv2.imencode('.jpg', frame, encode_param)
return encoded_image.tostring()

We will be using this pi_camera_stream utility for a few of our behaviors.

Building a template

Just like the Flask app we built previously, this one will require an HTML template to
render. Create a file in the templates folder named image_server.html.

First, our video server sets up an HTML document, with a title and a level 1 heading:

<html>
<head>
<title>Robot Image Server</title>
</head>
<body>
<hl1>Robot Image Server</hl>

Now, we add the image link that will display the output of our server:

[306]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Note the url_for here. This is asking the Flask renderer (via Jinja2) to insert the URL for a
route in flask. This will make more sense with the following Flask code. Finally, we just
close the tags in the template:

</body>
</html>

The image server main app

This part of the app will set up Flask, start our camera stream, and link them together. We
will put this in our image_server.py script. First, we need to import all of these
components and set up a Flask app, as follows:

from flask import Flask, render_template, Response
import pi_camera_stream
import time

app = Flask(__name__)

The first route is one we've seen before, an index page, using the preceding template:

@app.route('/")
def index () :
return render_template ('image_server.html')

Now we get to the tricky bit, the video feed. Although some of the encoding is done in the
preceding section, we need to turn this into an HTTP stream of data; that is, data that your
browser expects to be continuous:

def frame_generator () :
"""This is our main video feed"""
camera = pi_camera_stream.setup_camera ()

allow the camera to warmup
time.sleep(0.1)

We will need to let the camera warm up. I've put this in the app, and not in the camera
setup, as if it's combined with other setup activities (like servo movements), the
time.sleep could account for both:

[307]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

for frame in pi_camera_stream.start_stream(camera) :
encoded_bytes = pi_camera_stream.get_encoded_bytes_for_frame (frame)
Need to turn this into http multipart data.
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + encoded_bytes +
b'\r\n")

This function is actually another Python generator. It loops over every frame coming from
start_stream. It then gets the JPG-encoded bytes for each of those frames. The line at the
end surrounds the data with HTTP content declarations, and gives it to yield. We place b
in front of this string to tell Python to treat this as raw bytes, and not perform further
encoding on the information. The \r and \n items are raw line-ending characters.

This function will then generate a loopable stream of those HTTP content frames:

@app.route('/display"')
def display():
return Response (frame_generator (),
mimetype='multipart/x-mixed-replace; boundary=frame')

This Flask display route generates a response with our preceding frame_generator
function. If that is a generator, then Flask will keep consuming items from that generator,
and sending those parts to the browser. It also specifies a content type. Note the boundary
we called frame. We could call it anything, as long as both this part and the ——frame in the
preceding data stream agree on what to call it. Frame just seems sensible.

Now we can just add the code to start Flask. I've put this app on port 5001, so it can be
started from the menu server in Chapter 12, Programming Encoders with Python. They could
possibly be integrated, but this may make setup/tear down complicated:

app.run (host="0.0.0.0", debug=True, port=5001)

Now we can upload all three of these parts, ensuring that the template is uploaded into the
templates directory on the Pi. Start the app with python image_server.py.

[308]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Point your browser at the app by going to http://myrobot.local:5001 (or your robot's
address), and you should see a video served there like the following:

<« C @® Notsecure | myrobot.local:5001

Robot Image Server

!

Screen capture of the robot image server

If you see errors while running this, please check that you are able to capture an image with
raspistill, then check your code for errors.

Visual processing with behaviors

Our image service works, but has a major flaw. If we want our robot to be doing something,
even when the network is not perfect, we need to be able to run a behavior in parallel with
this. That behavior needs access to the image data, as well as the server too.

We will approach this by making the Flask web app a secondary process, with the behavior
as the primary process for the robot when it is running. Python has a handy tool for exactly
this kind of structure, called multiprocessing. Find out more at https://docs.python.org/
2/library/multiprocessing.html.

[309]

http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Communicating between multiple processes is tricky. If two processes try to access (read or
write) the same data at the same time, the results can be unpredictable and cause strange
behavior. So, to save them trying to access data at the same time, we will use the
multiprocessing queue object. These are set up so processes can safely put copies of items
into the queue for the other to take off. We will use one queue to send images to the server,
and another to get control data from user interactions in the browser.

The following diagram shows the way data will flow through behaviors such as these:

image
queue

Browser server visual processing
process behavior

A

control queue

Data flow between a browser, server process, and robot behavior

There are a few caveats: we will only place images in the image queue when it's empty, so it
will only ever contain one image. However, this prevents the visual processing behavior
trying to overwrite an image in shared memory when a server is trying to output it. The
control queue has no such restriction; we'll just expect that users interactions will not
produce control messages faster than the behavior loop will consume them.

We will separate out the web app as a core and then write a behavior based on it. We can
use this multiple times.

Web app core

In this design, the web app core will handle setting up the queues, running the server
process, and the Flask-based routing. It will be written in Flask style, which tends to consist
of plain Python functions in a module. We'll put this code in image_app_core.py.

[310]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

As an interface to this, our other behaviors will be able to do the following:

e start_server_process (template_name) will start the web app server, with
a template name passed in.

® put_output_image (encoded_bytes) can be used to put images into the
display queue.

® get_control_instruction () is used to check and return instructions from the
control queue. It has no opinion about what is in them; plain text seems good.

Let's start off with some documentation and imports:

"""The flask/webserver part is slightly independent of the behavior,
allowing the user to "tune in" to see, but should not stop the
robot running"""

import time

from multiprocessing import Process, Queue

from flask import Flask, render_template, Response

We import Queue and Process to create the process and communicate with it. We then use
the same imports for Flask that we used previously. Note—we are not importing any of the
camera parts in this module.

Next, we define our Flask app and the queues. We will also define a global
display_template here, in which we'll store the main app template. When we use this
app core, we'll set this with it. We only really want 1 frame queued, but we put in 2 in case
of hiccups while transmitting—although we can check if a Queue is empty, this is not 100%
reliable, and we don't really want one part of the app waiting for the other:

app = Flask(__name__)

control_gueue = Queue ()
display_gueue = Queue (maxsize=2)
display_template = 'image_server.html'

Now we have our routes. The index route is only different in that it uses the
display_template:

@app.route('/")
def index () :
return render_template (display_template)

[311]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Next, we will create the loop for getting frames: a new version of frame_generator that
gets frames from the display_queue (we'll put frames into the queue later). So that it
doesn't spin (that is, run very quickly in a tight loop), we put in a sleep that limits the frame
rate to 20 frames per second. This loop also turns our data into multi-part data:

def frame_generator():
"""This is our main video feed"""
while True:
at most 20 fps
time.sleep(0.05)
Get (wait until we have data)
encoded_bytes = display_queue.get ()
Need to turn this into http multipart data.
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + encoded_bytes +
b'\r\n")

@app.route ('/display"')
def display():
return Response (frame_generator(),
mimetype='multipart/x-mixed-replace; boundary=frame')

The display route is exactly as in the preceding snippet. The next route allows us to put
messages in the control queue for the robot behavior:

@app.route ('/control/<control_name>')

def control (control_name) :
control_gueue.put (control_name)
return Response ('queued')

That gives us all the internals of the core, but now we need the interface for the behaviors to
use. We'll start with start_app_process:

def start_server_process (template_name) :

"""Start the process, call .terminate to close it"""

global display_template

display_template = template_name

server = Process (target=app.run, kwargs={"host": "0.0.0.0", "port":
5001})

server.start ()

return server

[312]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

This takes a template_name and stores it in the global display_template, used in the
index route in the preceding code block. Instead of calling app . run, we create a Process
object. This takes a function to run (app . run), and some parameters need to be given to it
(the host and port settings). We then start this process, and return it so it can be stopped
later.

The next interface task is putting an image into the queue. We only want to do this if there
isn't an image there, so we don't run up a big buffer. It means if nothing is connected, the
first frame will be stale, but another one will be along so quickly that it won't affect the
user:

def put_output_image (encoded_bytes) :
"""Oueue an output image"""
if display_gueue.empty () :
display_queue.put (encoded_bytes)

Finally, for this interface, we need the function to get the control messages out. Here, we
also check if the queue is empty, and return None for no message if there is nothing. If we
have a message, we get it from the queue:

def get_control_instruction():
"""Get control instructions from the web app, if any"""
if control_gqueue.empty () :
nothing
return None
else:
return control_queue.get ()

Controllable behaviors

We can try out our core with a behavior that senses images to the web service, and accepts
a simple exit control message.

This can be put in the control_image_behavior.py file. The imports will be the
image_app_core interface, and the pi_camera_stream:

import time
from image_app_core import start_server_process, get_control_instruction,

put_output_image
import pi_camera_stream

[313]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

We then add a function that runs our simple behavior with a main loop. It sets up the
camera and waits. The waiting is outside the setup_camera, so other activities, such as
servo motor movement, can be added:

def controlled_image_server_behavior () :
Setup the camera
camera = pi_camera_stream.setup_camera ()
allow the camera to warmup
time.sleep(0.1)

And then, still in this function, we get frames from a camera stream:

Send frames from camera to server

for frame in pi_camera_stream.start_stream(camera) :
encoded_bytes = pi_camera_stream.get_encoded_bytes_for_frame (frame)
put_output_image (encoded_bytes)

In that for loop, which will consume all the frames, it gets each one, then puts it on the
web app queue. In this loop, we can also try accepting a control instruction to exit:

Check any control instructions
instruction = get_control_instruction()
if instruction == "exit":

print ("Stopping")

return

This will use return to stop the behavior when the exit instruction is received from the
control queue. We then need to start the server and start our behavior. try and finally
ensure that anything in the finally part will always be run; in this case, it will make sure
the web server app is terminated (stopped) too:

process = start_server_process ('control_image_behavior.html')
try:

controlled_image_server_behavior ()
finally:

process.terminate ()

You'll see we start the server process with an control_image_behavior template. We
need to provide that.

[314]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

The template

This template, in templates/control_image_behavior.html, is the same as the one
before, but with two important differences, shown here in bold:

<html>
<head>
<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<title>Robot Image Server</title>
</head>
<body>
<hl1>Robot Image Server</hl>

Exit
</body>
</html>

In this template, we load a library on the browser called jquery, for which documentation
is available at https://api.jquery.com/. This is handy for interactive web pages. We are
using it with an anchor tag (the a tag) we saw in the menu earlier, but this has an onclick
handler. That handler uses jquery tosend ' /control/exit' to our web app. Since our
web app makes a control instruction from anything after control, this will put exit in the
control. The
 just creates a line break so that the exit link is shown below the image.

Note that, if you wanted to run this where internet access is difficult, you would need to
enhance the server to serve the jquery library too. This code tells the browser to download
it directly from the internet.

Running the image server

To run the image server, you need to upload all three files: image_app_core.py,
control_image_behavior.py and templates/control_image_behavior.html.On
yourPLLmepython control_image_behavior.pyh)ﬁaﬂthepnxrs&

You will then need to go to your browser, and point it at http://myrobot.local:5001 (or
the address of your robot). You will see the pictures again. If you then click on the Exit link,
your app should gracefully quit.

[315]

https://api.jquery.com/
https://api.jquery.com/
https://api.jquery.com/
https://api.jquery.com/
https://api.jquery.com/
https://api.jquery.com/
https://api.jquery.com/
https://api.jquery.com/
https://api.jquery.com/
https://api.jquery.com/
http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001
http://myrobot.local:5001

Robot Vision - Using a Pi Camera and OpenCV

Chapter 13

Colors, masking, and filtering — chasing
colored objects

Now we have some basics ready, we can use this to build some more interesting behaviors.
The next one will be to chase, but not get to close to, a colored object. This requires a few
stages. Let's start with a diagram showing an overview of this whole behavior:

image x
center reference

Key

direct control
or feedback

—

indirect
effects

- >

direction i A left = speed + offset
id direction offset—3»] right = speed - offset
> p
1
1
1
1
object i i \
JE¢ object size > speed |
position reference !
X spee '
pid 1
. . 1
object size > .
view
moves
1
1
1
1
1

get object info from
image

visual

<

processing

image
queue

Camera images

Browser

The color-tracking behavior

This behavior contains elements you've seen before: the PID controller and the image queue
to the browser. The first thing you'll notice is that there are 2 PIDs. One controls the speed

of the motors; the other is an offset, which controls their heading.

The speed PID will take a reference size and the size of an object (based on the radius of a
circle around it) processed from the camera, it will then provide a base speed to both
motors to try and get that radius close to the reference value. That way, the robot will
maintain a distance from an object of a known size.

[316

]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

The heading PID will take a reference center X coordinate, the middle of the image, and the
visual processing will produce the X coordinate for the center of an enclosing circle. This
PID will produce an output to try and get the difference between these coordinates to zero.
By adding to one motor's speed, and reducing the speed of the other, the robot will try to
turn to face the object (or, if you swap them for fun, it'll turn away!).

The images are sent, via an image queue using the app core, to the browser. Not shown in
the previous diagram is the fact that there is also a control queue with messages to start the
motors, stop the motors, and exit the behavior.

The final part of this, and probably the most interesting, is the color tracking. This is
controlled by the box labelled get object info from image. Let's see how that works next.

Getting information about an object

We are using colored pins from a kid's bowling set. They come in nice, bright, primary
colors. I will use green as an example. Let's look at the image processing as a pipeline in the
following diagram:

capture image | convertto o | filter colors
(320 * 240) - hsv 7| with a mask.

elawed

+
make outlines fit circles get the .
—»{ from masked > around > largest > P ESielilis
(contours) contours circle

Getting color object information from a camera

[317]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

The preceding diagram starts from the camera. As mentioned, we work in a low resolution
to keep things fast. Next, we convert this to HSV, the colorspace we mentioned in Chapter
9, Programming RGB Strips in Python. We use HSV because it means we can filter colors in a
specific range of hues, by their light (very dark objects may confuse us), and by saturation,
so objects that are almost grey are not included. RGB (or BGR) images are tricky to filter, as
getting the different light and saturation levels of a particular hue (say, the blues) is not
really viable. So, we convert to HSV.

OpenCV has a function, cv2.cvtColor, to convert whole images between colorspaces.
Note that OpenCV uses 0-179 for the hue range, instead of 0-359. This is so it fits in a byte
(0-255), but you can convert hue values by simply dividing by 2 if you know the value you
want.

After converting to HSV, we apply a filter (or mask) that will output white if the object is in
a known HSV range, or black if it's not. There is a function in OpenCV to do this
cv2.inRange. This gives us a very easy black and white output, a masked image, to draw
around for our system.

Drawing around it is the next thing we do—this means creating outlines, known as
contours, which specify only the boundary points of our object. OpenCV again provides a
cv2.findContours function to do exactly this, which returns a list of shapes, each defined
by their outlines.

We can then take the outlines, and ask OpenCV to draw circles around them using
cv2.minEnclosingCircle for each of the contours. We will then have a bunch of circles,
described by a center x,y coordinate and radius.

Our object may have highlights, producing more than one circle, and other objects may also
produce smaller circles. We are only interested in one, the largest of these, so we can loop
through the circles, and keep only the largest.

This largest circle's coordinates and radius give us enough information for our robot to start
chasing an object. Let's build this code.

Caveat about red objects

We will use green because red is slightly tricky, as it requires two masks. The hues for red
cross a boundary between 179 (the upper limit of our hue range) and 0 (the lower limit), so
we would have to mask the image twice and then combine these with an or operation. The
cv2.bitwise_or function can be used for this, if the reader wants to try that.

[318]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Enhancing the PID controller

We are going to be using more PID controllers. We still don't require the differential
component, but we will develop an issue with our integral component building up while
the motors take time to move. The integral has a sum that starts to grow if there is a
constant error. It is good to correct for that error, but can result in large overshoot. This
overshoot, due to the integral still growing after the robot has started to react, albeit slowly,
is called integral windup.

To reduce the overshoot from this sum, we can prevent this sum from getting too large by
introducing a windup limit to our PID.

Open up the pidcontroller.py file and make the changes in bold in the following
snippet. First, add the windup_1limit parameter, which defaults to None if it isn't set:

class PIController (object) :

def __init__ (self, proportional_constant=0, integral_constant=0,
windup_limit=None) :
self.proportional_constant = proportional_constant
self.integral_constant = integral_constant

self.windup_limit = windup_limit
Running sums
self.integral_sum = 0

We then want to prevent our integral growing if we have a limit, and hit it. But we do want
to allow changes that reduce the size of the integral_sum. The comment in the integral
handler explains how it changes:

def handle_integral (self, error):
"""Integral will change if
* There is no windup limit
* We are below the windup limit
* or the sign of the error would reduce the sum"""
if self.windup_limit is None or \
(abs (self.integral_sum) < self.windup_limit) or \
((error > 0) != (self.integral_sum > 0)):
self.integral_sum += error
return self.integral_constant * self.integral_sum

[319]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Another thing is we are able to start and stop this behavior from the web page. If we
start it again, we won't want the PIDs to carry old values. So we should have a reset
function to zero out the integral sum. Put this after the handle integral function:

def reset (self):
self.integral_sum = 0

The behavior code

This behavior has two files—a template to pass to our app core with the control buttons,
and then the main behavior code.

The template

Copy the template from templates/control_image_behavior.html to
templates/color_track_behavior.html. We will add two further controls to this,
start and stop, displayed here in bold:

Start <a href="#"
onclick="$.get ('/control/stop') ">Stop

Exit

We will run the program with the robot stopped first, so we can tune in with our phone or
browser and click a Start button to see if it is moving.

The behavior

We'll put this in a file called color_track_behavior.py. There's no surprise that we start
with the imports. Because we are bringing together many elements, there are quite a few,
but we have seen them all before:

import time

from image_app_core import start_server_process, get_control_instruction,
put_output_image

import cv2

[320]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

import numpy as np

import pi_camera_stream
from pid_controller import PIController
from robot import Robot

Now, we set up our Behavior class. We pass this the robot object, and also set up some
tunable values for the object size and color:

class ColorTrackingBehavior (object) :
"""Behavior to find and get close to a colored object"""
def _ _init__ (self, robot):
self.robot = robot
Tuning values

self.low_range = (25, 70, 25)
self.high_range = (80, 255, 255)
self.correct_radius = 120

self.center = 160
Current state
self.running = False

The 1ow_range and high_range values are used for the color filter (as seen in the
preceding Pipeline diagram). Colors that lie between these HSV ranges would be white in
the masked image. Our hue is 25 to 80, which correspond from 50 to 160 degrees on a hue
wheel. Saturation is 70 to 255 — any lower starts to be washed out, or produces grey colors.
Light is 25 (very dark) to 255 (fully lit).

The correct_radius value is used to set the size we want the object to be in view, and so
behaves as a kind of distance setting. The center should be half the horizontal resolution
of the pictures we capture.

The last member variable set here is running. This will be set to True when we actually
want the robot to be moving. When set to False, the processing still occurs, but the motors
and PIDs will stop.

The next bit of code is to process any control instructions from the web app:

def process_control (self):

instruction = get_control_instruction()
if instruction == "start":

self.running = True
elif instruction == "stop":

[321]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

self.running = False

if instruction == "exit":
print ("Stopping")
exit ()

This services the start, stop and exit buttons. It uses the running variable to start or
stop the robot moving. Next we have the code that will find an object from a frame. This
implements the pipeline shown in the preceding snippet. We'll break this function down a
bit though:

def find_object (self, original_frame):
"""Find the largest enclosing circle for all contours in a masked
image.
Returns: the masked image, the object coordinates, the object
radius"""

Because this code is complex, we have a documentation string (docstring) explaining
what it does and what it returns. First, let's get the masked_image from our frame,
converting it to HSV first, then perform the inRange filter on it:

frame_hsv = cv2.cvtColor (original_frame, cv2.COLOR_BGR2HSV)
masked = cv2.inRange (frame_hsv, self.low_range, self.high_range)

Now that we have the masked image, we can draw contours around it:

Find the contours of the image (outline points)

contour_image = np.copy (masked)

contours, _ = cv2.findContours (contour_image, cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)

In this version of OpenCV, the original image is altered by the contours operation. Since we
don't want this, we make a copy of our masked image. We find contours and use
RETR_LIST, as we are not interested in a hierarchy (which is capable of more complicated
analysis) and want to keep it fast. CHAIN_APPROX_SIMPLE tells findContours how we
want each contours boundary to be stored. A boundary is a list, or chain of points. Simple
asks OpenCV to simplify this to the least number of points; for example, four points for a
rectangle.

[322]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

There are other settings, such as CHAIN_APPROX_NONE, that would return every point along
the rectangle's entire outline, but this would make the next part of the pipeline slower, so
we use SIMPLE to keep it quick.

The next thing is to find all the enclosing circles for each contour. We use a tiny loop to do
this. minEnclosingCircle means to get the smallest circle that entirely encloses all points
in a contour:

Find enclosing circles
circles = [cv2.minEnclosingCircle (cnt) for cnt in contours]

Each circle is made up of a radius and coordinates—exactly what we want. However, we
only want the biggest one:

Filter for the largest one
largest = (0, 0), O
for (x, y), radius in circles:
if radius > largest[1]:
largest = (int(x), int(y)), int(radius)
return masked, largest[0], largest[1l]

We store a largest value of 0, and then we loop through the circles. If the circle has a
radius larger than the one we stored, we store the values. It's a little sneaky, but we also
convert all the values to int here, as minEnclosingCircle produces non-integer floating
point numbers.

We end this function by returning the masked image, the largest coordinates, and the
largest radius. Our next function will take an original frame a and processed frame, turn
them into a nice dual screen display, and put them on the output queue through to the web

app:

def make_display(self, frame, processed):

"""Create display output, and put it on the queue"""

Make a dualscreen view - two images of the same scale joined
together

display_frame = np.concatenate((frame, processed), axis=1l)

encoded_bytes
pi_camera_stream.get_encoded_bytes_for_frame (display_frame)

put_output_image (encoded_bytes)

[323]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

The only new thing here is the concatenate function to join the two images. You can
change the axis parameter to 0 if you wanted screens stacked vertically, instead of
horizontally.

The next function processes a frame of data through both of the preceding functions,
finding the objects, and setting the display. It then returns the object info as follows:

def process_frame (self, frame):
Find the largest enclosing circle
masked, coordinates, radius = self.find_object (frame)
Now back to 3 channels for display
processed = cv2.cvtColor (masked, cv2.COLOR_GRAY2BGR)
Draw our circle on the original frame, then display this
cv2.circle (frame, coordinates, radius, [255, 0, 0])
self.make_display (frame, processed)
Yield the object details
return coordinates, radius

Note we use cvtColor again here—this is because we need the two images, the original
frame and processed frame, to use the same color system in order to be able to join them
into a display. We use cv2.circle to draw a circle around the tracked object so we can see
what our robot has tracked on the web app, too.

The next function is the actual behavior, turning the preceding coordinates and radius into
robot movements. When we start our behavior, the pan-and-tilt mechanism may not be
pointing straight forward. We should ensure it is with the following commands, and then
start the camera:

def run(self):
Set pan-and-tilt to middle, then clear it.
self.robot.set_pan(0)
self.robot.set_tilt (0)
Start camera
camera = pi_camera_stream.setup_camera ()

While these are setting up, we can prepare the two PID controllers we need for speed and
direction:

speed pid - based on the radius we get.
speed_pid = PIController (proportional_constant=0.8,
integral_constant=0.1, windup_limit=100)

[324]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

direction pid - how far from the middle X is.
direction_pid = PIController (proportional_constant=0.25,
integral_constant=0.1, windup_limit=400)

These values I arrived at through much tuning. A section below Tuning the PID controller
settings will cover how to tune the PIDS.

Now we wait a little time for the camera and pan and tilt servos to settle, then we turn off
the servos in the center position:

warm up and servo move time

time.sleep(0.1)

Servo's will be in place - stop them for now.
self.robot.servos.stop_all ()

print ("Setup Complete")

We can then enter the main loop. First, we get the processed data from the frame. Notice we
use brackets to unpack coordinates into x and y:

Main loop
for frame in pi_camera_stream.start_stream(camera) :
(x, y), radius = self.process_frame (frame)

We should check our control messages at this point. We then check if we are allowed to
move, or if there is any object big enough to be worth looking for. If there is, we can start as
follows:

self.process_control ()
if self.running and radius > 20:

Now we know the robot should be moving, so let's start calculating error values to feed the
PID controllers. Now is also a good time to print some debug;:

The size is the first error

radius_error = self.correct_radius - radius

speed_value = speed_pid.get_value (radius_error)

And the second error is the based on the center
coordinate.

direction_error = self.center - x

direction_value = direction_pid.get_value(direction_error)

[325]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

print ("radius: %d, radius_error: %d, speed_value: %.2f,

o

direction_error: %d, direction_value: %.2f" %
(radius, radius_error, speed_value, direction_error,
direction_value))

The speed value and direction value will now contain the values to combine and send to
the motors:

Now produce left and right motor speeds
self.robot.set_left (speed_value - direction_value)
self.robot.set_right (speed_value + direction_value)

We said the preceding code was what we did if the robot is running. If it is not, or there is
no object worth examining, then we should stop the motors. If we have actually hit the
stop button, we should also reset the PIDs:

else:
self.robot.stop_motors ()
if not self.running:
speed_pid.reset ()
direction_pid.reset ()

We have now finished that function and the behavior class. Now, all that is left is to set up
our behavior and web app core, then start them as follows:

print ("Setting up")

behavior = ColorTrackingBehavior (Robot ())
process = start_server_process ('color_track_behavior.html'")
try:
behavior.run ()
finally:

process.terminate ()

Running the behavior

To run this behavior, you will need to upload color_track_behavior.py, the modified
pid_controller.py file, and the template at
templates/color_track_behavior.html.I'll assume that you already have robot .py
and the other supporting files uploaded.

[326]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

When you start this app with python color_track_behavior.py, it will start the web
server and wait. At this point, you should use your browser to connect to
http://myrobot.local:5001 and you should be able to see your robot's image feed. You
are able to see the object and its circle, along with links to control the robot, as shown in the
following screenshot:

&« C @® Not secure | 192.168.1.245:5001/#

Robot Image Server

The color tracking web app

To make the robot start moving, press the Start button on the web page.

When the robot starts moving, you will see the PID debug output in the console (PuTTY).
This will only show when the robot is running. You can press the Stop button on the web
page to stop the robot moving, or the Exit button to exit the behavior.

Tuning the PID controller settings

I start with a proportional constant of 0.1, and raise it, using Nano to make quick edits on
the PI, until the robot starts to overshoot—that is, it goes past its target, then returns far
back—then I halve this proportional constant value.

[327]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

It may then have a constant error, so I then start raising the integral constant by about 0.01
until that is smoothed. It is a slow process: start by getting the object close to dead center
and by tuning speed_pid until it's pretty good, then come back for direction_pid.

Do not try to tweak all the values at once—rather, change one thing and
retry.

For a deeper look at this, see Tuning A PID Controller in the Further Reading section.

Troubleshooting

If the servo motors stop to slow down, the simplest fix is to use fresh batteries. You may be
able to reduce this with a capacitor between the servo power and ground. A capacitor is an
electronic component used to smooth out noise. A 470f capacitor will do nicely.

If the code fails to start, remove _nowait from the queue operations in the app core—some
errors will only show with this taken out. However, leaving it removed can mean the robot
behavior will stop when a web client momentarily loses connection.

If there are syntax errors, please check your code carefully.

Please ensure that the previous examples with the web app have worked with the camera,
and that you have carried out troubleshooting from any errors.

You may simply need good lighting, as the mask may not pick up poorly lit objects. Also,
use the web app to check your robot is in view, and that the mask shows your object mostly
in white. If this isn't so, then you may need to tune the upper and lower HSV ranges. The
hue is the factor most likely to cause problems, as the saturation and value ranges are quite
permissive.

If the robot starts weaving from side to side, you may need to tune the direction PID.
Reduce the proportional element somewhat. If the robot barely turns, you can increase the
proportional element a little. If the robot is stopped, but not facing the detected object, then
increase the integral element for the direction PID by about 0.01. The same tweaks apply if
the same problems are seen when the robot moves back and forward.

[328]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Enhancements that you could make

This code is fun, but there are many ways the reader could improve this. Here are some
suggestions:

¢ Use the control pipeline to allow a user to tune the color filters, correct radius,
and PID values from the web page.

Perhaps the initial PID values should be close to the other tunable values?

There is quite a lot of setup code—which could go into a own function/method.
Could the queues to the web page be used to send the debug data to the page,
instead of printing them in the console?

Perhaps you could find ways to integrate this with the menu app better.
Currently, it runs on a separate port as a totally different app.

The field of view for tracking with the Pi Camera is pretty narrow. A wide-angle
lens would improve the field of view a lot, letting the robot see more.

Detecting faces with Haar cascades

Tracking faces (or other objects) by features is a smart behavior. Using different cascade
model files, we could pick out objects other than faces. There is a common technique,
known as Haar cascades, which are well documented in a paper by Paul Viola and Michael
Jones. We will give an overview of this technique, then put it into use on our robot to create
a fun behavior.

Finding objects in an image

We will be using an algorithm implemented in OpenCV as a single and useful function,
which makes it very easy to use. It provides a simple way to detect objects. There are more
advanced and complex methods, involving machine learning, but this one is used in many
places, including in camera apps on phones. The images we'll work with will be converted
into greyscale (black through grey to white) for this detection method. Each pixel here
holds a number for the intensity of light.

[329]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Integral images

There are two stages applied in the function. The first is to produce an image integral, or
summed area table, as shown in the following diagram:

Image Integral Image

9 9)
Using The other sums
9 9
5 5 we can use the previous sums to
make the next.
5 5
5 5 new sum = 164 (left) + 166 (above)
+ 1 (pixel from image) - 146 (the
5 5 cells summed twice) = 185
5 5 - 170
5 5 The Sum, or integral 16 214
5 5 185 238
At this point (3, 3), 44 o
5 5 represents the sum of this 206 264
5 5 pixel and all the others: 219 282
O+9+5+9+5+1+5+
9 9 1+0). 244 316
9 9 291 372

Integral images and summed area tables

This creates an array of numbers with the same dimensions as the image. At each
coordinate is the sum of the intensities of all the pixels between the current coordinate and
(0, 0). Tricks can be used with such an image to quickly find the sum of any rectangle shape
in the image, or their difference. See the Viola-Jones paper in the Further Reading section for
more detail. The cascade stage is able to use this integral image to quickly perform its next
powerful trick.

[330]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Basic features

The next part of this puzzle is scanning the image for features. The features are extremely
simple, involving looking for the difference between two rectangles, so they are quick to
apply. The following diagram shows a selection of these basic features:

Simple rectangular feature types

The rectangles in the preceding diagram are applied, but the term cascades gives a clue as
to how they are applied. An object can be described as a set of features that we can try and
experiment with. There are face cascades with 16,000 features to apply. Applying every
single one to every part of an image would take a long time. So they are applied in groups,
starting perhaps with just one. If this fails, that part of the image is not subject to any
further feature tests. Instead, they cascade into later group tests. The groups include
weighting and applying groups of these features at different angles.

If the features in all the tests pass all the way into the last check, then it is taken as a match.
For this to work, we need to find the feature cascade that will work to identify our object.
Luckily, OpenCV has such a file designed for face recognition, and we have already
installed it on our Raspberry Pi.

[331]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

This whole operation of applying the summed area, then using the cascade file to look for
potential matches, is all available through two OpenCV operations:

e cv2.CascadeClassifier (cascade_filename) will open the given cascade
file, which describes the features to test, so that these can be used on images. This
only needs to be loaded once, and can be used on all the frames. This will return
a CascadeClassifier object.

® CascadeClassifier.detectMultiScale (image) applies the classifier check
to an image.

Planning our behavior

We can use code fairly similar to our color tracking behavior to track faces. We'll set our
robot up to use the pan-and-tilt mechanism to follow the largest face seen in the camera.
The next block diagram shows an overview of the face behavior:

l center x } > \ an
> y popsition > pan servo
Key 1
center !
direct control object pid tilt ey
iy 1
or feedback position position .
_) X | 3 1
1
object view

position moves
indirect y '
effects 1
- > :
1
get Ot#gﬁ: T;z;dénates <€ Cameraimages |[€ == === 2

Ic:Egﬁ: Browser

The face tracking behavior

[332]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

So this will look very familiar. The differences are in the data we are sending to the PID
controllers, and that each PID controls a difference servo motor.

The code for face tracking

The code for this behavior will seem very familiar—it started as a copy of the previous
behavior, and was adapted for this present purpose. It's possible that refactoring could
yield more common code, but it is currently simpler to work with a copy for now. This code
will go into the face_track_behavior.py file. I've not even created a new template, as
the color track template will work just fine for this. The imports are the same as before:

import time

from image_app_core import start_server_process, get_control_instruction,
put_output_image

import cv2
import numpy as np

import pi_camera_stream
from pid_controller import PIController
from robot import Robot

The init function for our class is slightly different, and our tuning parameters have center
positions and a minimum face size. I've also brought the PID controllers out to the class, so
they can be tuned here, and then reset in the control handler (this could be done to the
previous behavior too). The Haar cascade we will use is loaded in the constructor. There are
a number of other cascade files in the same directory, with which you could try to track
things other than a face:

class FaceTrackBehavior (object) :
"""Behavior to find and point at a face."""
def _ _init__ (self, robot):
self.robot = robot
cascade_path =
"/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml"

self.cascade = cv2.CascadeClassifier (cascade_path)
Tuning values

self.center_x = 160

self.center_y = 120

self.min_size = 20

self.pan_pid = PIController (proportional_constant=0.1,
integral_constant=0.03)

[333]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

self.tilt_pid = PIController (proportional_constant=-0.1,
integral_constant=-0.03)

Current state

self.running = False

The process control here differs, in that the motors are stopped and PIDs reset when the
stop instruction is received, and not in the loop:

def process_control (self):

instruction = get_control_instruction ()
if instruction == "start":

self.running = True
elif instruction == "stop":

self.running = False
self.pan_pid.reset ()
self.tilt_pid.reset ()
self.robot.servos.stop_all ()

elif instruction == "exit":
print ("Stopping")
exit ()

This behavior still has a find object method; however, this has different return values, in
that it produces a rectangle instead of a circle. This is where we convert the image to
greyscale, then send it through the cascade detectMultiScale method to get a list of
matches. We then loop through to find the largest, and return its information as follows:

def find_object (self, original_frame):
"""Search the frame for an object. Return the rectangle of the
largest by w * h"""
Make it greyscale to reduce the data used
gray_img = cv2.cvtColor (original_frame, cv2.COLOR_BGR2GRAY)
Detect all the objects
objects = self.cascade.detectMultiScale (gray_img)
largest = 0, (0, 0, 0, O) # area, x, vy, w, h
for (x, y, w, h) in objects:

item_area = w * h
if item_area > largest([0]:
largest = item_area, (x, y, w, h)

return largest[1]

[334]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

The make_display and process_frame functions are simpler than the color tracking
behavior. There is only one image, no mask, and we draw the rectangle onto this before
outputting it. The rectangle takes two coordinates: a starting x,y and an ending x,y. To get
the second, we need to add the width and height back in:

def make_display(self, display_frame):
"""Create display output, and put it on the queue"""
encoded_bytes =
pi_camera_stream.get_encoded_bytes_for_frame (display_frame)
put_output_image (encoded_bytes)

def process_frame(self, frame):
Find the largest matching object

(x, vy, w, h) = self.find_object (frame)
Draw a rect on the original frame, then display this
cv2.rectangle (frame, (x, y), (x + w, yv + w), [255, 0, 0])

self.make_display (frame)
Yield the object details
return x, y, w, h

Now comes the run section. This will need to be broken down. We start with the camera
setup and warm-up time:

def run(self):
start camera
camera = pi_camera_stream.setup_camera ()
warm up time
time.sleep(0.1)
print ("Setup Complete")

Like the track color behavior, we start the main loop by processing the frame and checking
for control instructions:

Main loop

for frame in pi_camera_stream.start_stream(camera) :
(x, v, w, h) = self.process_frame (frame)
self.process_control ()

[335]

Robot Vision - Using a Pi Camera and OpenCV

Chapter 13

We then only want to be moving if we've detected a large enough object (using height as
faces tend to be bigger in this dimension) and if the robot is running:

if self.running and h > self.min_size:

When we know the robot is are running, for both pan and tilt, we feed the PIDs and send
the output values straight to the servo motors. Note that, to find the middle of the object,

we take the coordinate, and add half its width or height.

Pan

pan_error = self.center_x - (x + (w / 2))
pan_value = self.pan_pid.get_value (pan_error)
self.robot.set_pan (int (pan_value))

Tilt

tilt_error = self.center.y - (y + (h /2))

tilt_value = self.tilt_pid.get_value(tilt_error)
self.robot.set_tilt (int (tilt_value))

So that we can track what is going on here, a debug print statement is recommended:

print ("x: %d, y: %d, pan_error: %d, tilt_error: %d,

pan_value: %.2f, tilt_value: %.2f" %
(x, y, pan_error, tilt_error,

pan_value, tilt_value))

Finally, we need to add the code for setup and running our behavior:

print ("Setting up")
behavior = FaceTrackBehavior (Robot ())

process = start_server_process ('color_track_behavior.html')
try:

behavior.run ()
finally:

process.terminate ()

[336]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Using this behavior

To run this behavior, you will need to have uploaded the files for the color track behavior
already. This behavior uses the same library and template code as our face track behavior.
So, you need only upload the face_track_behavior.py file.

This behavior is started in exactly the same way, by starting $ python
face_track_behavior.py, and then sending the browser to
http://myrobot.local:5001.You must press the start button for the robot to move.

Troubleshooting

Start with the troubleshooting steps that we covered for the previous behavior—this should
get you most of the way.

If the camera is failing to detect faces in the picture, try making sure the area is well lit. The
detection algorithm is only for faces that face the camera straight on, and anything
obscuring a part of the face will fool it. Faces only partially in frame are also likely to be
missed. Faces that are too far away or small are filtered Reducing the minimum parameter
may help with this, but may also generate false positives, as tiny face-like objects can be
picked up.

Please do check the indentation matches, as this can change the meaning of where things
happen in Python.

Summary

In this chapter, you have seen how to set up the Raspberry Pi Camera module. You then
used it to see what your robot is seeing - the robot's view of the world.

You were able to get the robot to display its camera as a web app on a phone or desktop,
and then used the camera to drive smart color and face-tracking behaviors. I've suggested
ways this could be enhanced, and hopefully given you a taste of what computer vision can
do.

In the next chapter, we will create a speech control system for our robot, so you will be able
to talk into a handset and the robot will respond to your instructions by launching
behaviors.

[337]

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

Questions

1. We used the HSV color system when tracking colored objects. Why would the
RGB color system not work for this?

2. PID controllers (or PI control) were used for both behaviors. To the color-tracking
behavior, we added an anti-windup measure—what would happen without this
limit?

3. When performing computer vision, we use a low resolution for the images. What
are some of the reasons for choosing a low resolution?

4. Why do we use queues to send data between the processes in our system?

5. In the color-tracking behavior, what step is needed in between using color filters

to make a masked image, and generating enclosing circles for the remaining
blobs?

For further learning, I recommend the reader try the other cascade files found in the
/usr/share/opencv/haarcascades folder on the Raspberry Pi. Perhaps you could try
swapping features of the two behaviors, in order to use the servo motors to track the
colored object, or chase the faces?

An advanced system with more PID controllers could use the pan-and-tilt mechanism to
track the object, then engage the main wheels to chase it and aim to center the pan, while
keeping the object in view.

Further reading

e To delve in far greater depth into using the Raspberry Pi Camera, I recommend
the PiCamera Documentation, available at https://picamera.readthedocs.io/.

¢ Also, to gain insight into further techniques, the Py Image Search website, at
https://www.pyimagesearch.com, has great resources.

* OpenCV and visual processing are a complex topic, only briefly covered here. I
recommend OpenCV 3 Computer Vision With Python Cookbook, available at https:/

/www .packtpub.com/application-development/opencv-3-computer-vision-
python-cookbook, for more information.

e Streaming video through Flask is a neat trick, and is explored further in Video
Streaming With Flask, at nttps://blog.miguelgrinberg.com/post/video-
streaming-with-flask.

e I recommend the Flask Books at https://flaskbook.com/ for other neat ways to
use Flask to manage your robot from your phone or laptop.

[338]

https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://www.pyimagesearch.com
https://www.pyimagesearch.com
https://www.pyimagesearch.com
https://www.pyimagesearch.com
https://www.pyimagesearch.com
https://www.pyimagesearch.com
https://www.pyimagesearch.com
https://www.pyimagesearch.com
https://www.pyimagesearch.com
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://www.packtpub.com/application-development/opencv-3-computer-vision-python-cookbook
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://flaskbook.com/
https://flaskbook.com/
https://flaskbook.com/
https://flaskbook.com/
https://flaskbook.com/
https://flaskbook.com/
https://flaskbook.com/
https://flaskbook.com/

Robot Vision - Using a Pi Camera and OpenCV Chapter 13

e Tuning A PID Controller - we touched on this in chapter 12, Programming
Encoders with Python, and needed more in this chapter. Robots For Roboticists | PID
Control, available at http://robotsforroboticists.com/pid-control/, is a little
heavy on the math, but has an excellent section on manually tuning a PID.

* Rapid Object Detection using a Boosted Cascade of Simple Features, by Paul Viola and
Michael Jones, available at https://www.cs.cmu.edu/~efros/courses/LBMV07/
Papers/viola—-cvpr-01.pdf. This paper, from 2001, discusses in more detail the
Haar cascade object-finding technique that we used.

¢ A good video introducing face tracking is Detecting Faces (Viola Jones Algorithm) -
COﬂqndeﬁﬂﬁk,avaﬂabkfathttps://www.youtube.com/watch?v=uEJ7lVlUmMg
which dives into the combination of techniques used.

¢ The Cascade Classification OpenCV Documentation, at https://docs.opencv.
org/2.4/modules/objdetect /doc/cascade_classification.html, shows the
reference for the library functions used in the face tracking behavior.

e OpenCV also has a tutorial on face tracking (for Version 3.0), called OpenCV: Face
Detection using Haar Cascades, which is available at https://docs.opencv.org/3.
3.0/d7/d8b/tutorial_py_face_detection.html.

[339]

http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
http://robotsforroboticists.com/pid-control/
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://www.youtube.com/watch?v=uEJ71VlUmMQ
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.3.0/d7/d8b/tutorial_py_face_detection.html

14

Voice Communication with a
Robot Using Mycroft

Using our voices to ask a robot to do something and having a voice respond has long been
seen as a sign of smarts. Devices around us such as Alexa and Google Assistant have these
tools, and being able to program our system to integrate with tools such as these gives us
access to this powerful system. Mycroft is a Python-based open source voice system. We
will get this running on the Raspberry Pi, by connecting it to a speaker and microphone,
and then we will run instructions on our robot based on words we speak.

The following topics will be covered in this chapter:

e What Mycroft is and an overview of how our system will work

e How to add a speaker/microphone board to a Raspberry Pi

e How to install and configure a Raspberry Pi to run Mycroft

e How to create our own skills code to connect the Voice Assistant to our robot

Technical requirements

You will require the following for this chapter:

¢ An additional Raspberry Pi 3b+ (not the one already in the robot)
e An SD Card
¢ The Respeaker 2-Mics HAT

e Mini Audio Magnet Raspberry Pi Speaker—a tiny speaker with a JST connector
or a speaker with a 3.5 mm jack

e USB power supply
e The robot from the previous chapters (after all, we intend to get this moving)

Voice Communication with a Robot Using Mycroft Chapter 14

The code for this chapter is available on GitHub at https://github.com/PacktPublishing/

Learn—-Robotics—-Programming/tree/master/chapterl4.

Check out the following video to see the Code in Action:

http://bit.ly/2zpPPxi

Introducing Mycroft

MyCroft is a software suite known as a voice assistant. Once set up, MyCroft will be
listening for voice commands. It is then able to determine the actions to perform based on
those commands. We'll dig a little deeper into this. MyCroft is based on Python; it is also
open source and free. Most of the voice processing is actually done in the cloud (at the time
of writing, on the Google system, but a Mozilla system is soon to be available). After
commands are processed, Mycroft will then use a voice to respond to the human.

MyCroft is well documented online and has a community of users. There are some
interesting alternatives that, when a reader has played with the concepts, they could
consider. These are Snips.ai, Snowboy.ai, and Google, to name a few.

What are the concepts of a Voice Assistant?

Speech to text

This generally describes systems that can take audio containing human speech and turn it
into a series of words, that a computer can then process.

These can run locally or they can run in the cloud on far more powerful machines.

Wake words

Voice assistants usually have a wake word; this is some phrase or word that is spoken
before the rest of a command, to get the attention of the voice assistant. It would be
something such as the Hey Siri, Hi Google, and Alexa utterances. For Mycroft, the word
MyCroft or the phrase Hey MyCroft will suffice.

The voice assistant will usually only be listening for the wake words, and will ignore all
audio input until the wake words. The wake word is usually recognized locally on the
device, in contrast with the other sounds which are sampled and then sent to a speech-to-
text system for recognition.

[341]

https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14
http://bit.ly/2zpPPxi
http://bit.ly/2zpPPxi
http://bit.ly/2zpPPxi
http://bit.ly/2zpPPxi
http://bit.ly/2zpPPxi
http://bit.ly/2zpPPxi
http://bit.ly/2zpPPxi
http://bit.ly/2zpPPxi
http://bit.ly/2zpPPxi

Voice Communication with a Robot Using Mycroft Chapter 14

The MyCroft wake word can be changed.

Utterances

An utterance is the general term for something a user will say. These must be somehow
matched by the vocabulary that the voice assistants skills define. It is a collection of
vocabulary terms that will then result in an intent being invoked.

The vocabulary in MyCroft comprises lists of phrases. A vocabulary file usually contains
interchangeable phrases and synonyms.

A good example of an utterance would be asking mycroft about the weather: Hey Mycroft,
what is the weather?

Intent

An intent is a thing that the voice assistant can do—an action—for example, finding what
today's weather is like. We will be building intents to interact with our robot. An intent is
part of a skill. An intent is defined with some code, for what it does, and then what dialog
is used to respond.

An example would be that, in the weather skill, the utterance What is the weather? will
trigger the intent to go fetch the current weather for the configured location and then speak
the details of this back to the user.

An example for our robot would be ask the robot to drive straight, with an intent that starts
the straight line behavior on the robot.

Skills

Skills define the vocabulary for utterances, then actions or intents to carry out on them.
Later in this chapter, we will build a myrobot skill with intents to make it move and stop.

Dialog

In MyCroft terminology, dialog is anything that Mycroft speaks back to the user. A skill
can have a collection of dialogs with a known name. These can then have different sets of
synonymous actual words to speak and can have different languages.

[342]

Voice Communication with a Robot Using Mycroft Chapter 14

Vocabulary

As mentioned, utterances, once converted into text are matched to vocabulary. Vocabulary

files, like dialogs, are logical parts of an intent, helping match what was said to some action.
The vocabulary files contain synonymous phrases, and can also be organized into language
and locale sets to make your skill multi-lingual.

Adding sound input and output to the
Raspberry Pi

Before we can use a voice processing/voice assistant, we need to get the basic setup of
giving the Raspberry Pi some speakers and a microphone. At the time of writing, there are
a number of Raspberry Pi add-ons that can provide this. One simple one, with a
microphone array (for better recognition) and a connection to speakers is the Seeed Studio
Respeaker 2 HAT, which is widely available.

We will be creating a separate voice assistant board that will communicate with our robot,
but we won't be putting it directly on the robot. This is for a few good reasons:

¢ Noise: A robot with motors will be a noisy environment. Having a microphone
anywhere near the motors will make it close to useless.

e Power: The voice assistant is listening constantly. The robot has enough demands
for power already with the other sensors that are running on it. This applies both
in terms of battery power and the CPU power needed.

e Size and physical location: The speaker and voice HAT sit on top of the robot.
While separate PCM (I2s) amplifiers and mics could be fitted on to the robot,
they would add far more complication to an already busy robot.

So, for these practical reasons, this will be a second Raspberry Pi, set up just as a voice
assistant.

[343]

Voice Communication with a Robot Using Mycroft Chapter 14

The next photograph shows the Respeaker 2-Mics Pi HAT:

Speaker
Connectors

The Respeaker 2-Mics Pi HAT (Seeed Voicecard)

The hat has two microphones, which are two tiny rectangle metal parts on each side of the
Respeaker HAT. Speakers must be connected to it to hear output from it. The Respeaker 2
HAT has a button connected to a GPIO pin, and an array of three RGB LEDs, which our
apal02 LED class could drive. The reader could consider these to enhance the code.

Physical installation

Take the new Raspberry Pi 3b+. The Respeaker 2 HAT will sit directly on the Pi headers,
and the board overhang must be over the Pi, not sticking out.

[344]

Voice Communication with a Robot Using Mycroft Chapter 14

The speakers will have either a tiny two pin connector (JST) type that fits snugly in a single
two-pin socket on the board, or you may have speakers that plug into the 3.5 mm jack on
the Respeaker 2. The next photograph shows the speaker plugged into it:

The Mycroft Voice Assistant Respeaker set up on my desk

I've left mine bare on a desk as shown in the previous photograph. However, a Raspberry
Pi case or project box could be used—be sure to ensure that there is somewhere to secure
the speaker and that the microphones are not covered up.

The only other hardware needed is an SD card and power supply. For the next few
sections, I strongly recommend using a mains power supply. Do not plug it in and power it

up yet.

Installing Raspbian for the voice assist Pi

First, we need a new Raspberry Pi SD setup; for this I recommend the same procedures
from chapter 3, Introducing the Raspberry Pi - Starting with Raspbian, and Chapter 4,
Preparing a Raspberry Pi for a Robot - Headless by Default. When coming to the hostname
section, I chose VoiceAssist. It must be different from the name used for the Pi on the
robot. Ensure it is connected to Wi-Fi and you can reach it via SSH (PuTTY).

[345]

Voice Communication with a Robot Using Mycroft Chapter 14

When in the raspi-config section, make these additional settings:

¢ Go to 5-Interfacing Options | SPI |Enable.
¢ Go to 7-Advanced Options | A4 Audiol Force 3.5MM Jack and press Enter.

Please continue through chapter 4, Preparing a Raspberry Pi for a Robot - Headless by Default,
including rebooting and updating the Pi. We also need the Git tool, PulseAudio, and
Mplayer:

$ sudo apt—-get install -y git pulseaudio mplayer

Installing the Respeaker software

The Respeaker HAT has software and drivers to enable it. These are installed from a
GitHub repository owned by Seeed Studio (yes there really are 3 e's!), who created the
Respeaker 2 HAT. This will take about 10-15 minutes to perform:

git clone https://github.com/respeaker/seeed-voicecard.git
cd seeed-voicecard

sudo ./install.sh

sudo reboot

After a reboot, it's time to see if the Raspberry Pi has set up the sound card. In a PuTTY
session type aplay -1 to list playback devices. In the output, it should contain a line
saying card 1: seeed2micvoicec if the card has been picked up.

Similarly, we can check the recording devices by typing arecord -1 and, in the output,
you should find a line containing the microphone array: card 1: seeed2micvoicec
[seeed-2mic-voicecard]. There may be more on this line, but this shows the device has
been set up.

We can now test this card. We will make a small recording from the microphones to a voice
file by typing the following:
$ arecord -f CD >/tmp/test.wav

£ tells arecord (alsa recording tool) to use a CD standard for the audio. > is sending the
recorded data to the /tmp/test.wav file. You can speak to the mics and then press Ctrl + C
to finish the recording.

[346]

Voice Communication with a Robot Using Mycroft Chapter 14

If you are using the 3.5 mm jack, you will need to raise the headphone volume. Type
alsamixer -c 1 to startit on card 1. This will show you a number of level meters. The
first will be headphone. Use the up arrow on your keyboard to increase its volume (perhaps
to full) and then Esc to finish.

We can now play that file back on our speaker:

$ aplay -f CD -Dhw:1 /tmp/atest.wav

You should now hear that recording. The -D flag is selecting the output device 1, which
would be the Respeaker HAT.

Installing Mycroft on the Raspberry Pi

In this section, we will install and begin to interact with the MyCroft system on our Pi; by
the end of this section, we will have had some small dialog with it and be ready to create
our own skill for MyCroft.

MyCroft has a prebuilt SD card image for a Raspberry Pi called PiCroft. However, this
image does not always support the recent Raspberry Pi types (such as the Pi3) or different
sound cards. We already have an image that can play and record audio on our Raspberry
Pi, so we are going to install this the same way that a PiCroft SD card image is made from a
standard Raspbian.

This will require some command-line work and file editing to connect it up to our sound
hat (or sound card) as the initial installation doesn't yet connect it to the sound output.

Base installation

First, we get a script from GitHub that will perform this installation:

$ wget
https://rawgit.com/MycroftAI/enclosure-picroft/stretch/home/pi/update.sh

The wget command fetches an update. sh file from the internet, a shell script that contains
commands to install the Mcyroft system.

It will take a long time—be prepared to leave it for 30 minutes to an hour. It will
occasionally require responses too. Run it with the following:

$ bash update.sh

[347]

Voice Communication with a Robot Using Mycroft Chapter 14

You will be asked if you want to install, please type Y to get the installation started.
Towards the end of the installation, it will ask you to press a key and take you into Nano (a
text editor on board the Raspberry Pi). Press Ctrl + X to finish.

We will need to let Mycroft start up and prepare everything; the simplest way here is to
reboot the Pi using sudo reboot and wait for it to come back. Mycroft will start up, but
won't yet be able to output audio.

SSH in (log in with PuTTY) and you will see Mycroft starting. Let it run for five minutes or
so while it sets up its handlers and devices.

Getting Mycroft to talk to the sound card

Now you need to connect Mycroft and the sound card.

We need the PulseAudio service to start when the Pi starts, so to do this we will create a
systemd service file for it. Press Ctrl + C to exit Mycroft so you can type commands again.

We can use the Nano editor already in the Pi to create this file with the $ sudo nano
/etc/systemd/system/pulseaudio.service command.

When the editor window appears, type the following into it:

[Unit]
Description=PulseAudio Service

[Install]
WantedBy=multi-user.target

[Service]

Type=simple

PrivateTmp=true

ExecStart=/usr/bin/pulseaudio --system --realtime --disallow-exit

The service file starts with Description of Unit (units can be things other than services).
This is human-friendly text, so you can put what you like. It's probably sensible to say
Pulseaudio Service here.

The [Install] section contains a WantedBy statement, which says at what stage during
boot up the service configured must start. We say multi-user.target, which targets the
point at which users can log into the Pi.

[348]

Voice Communication with a Robot Using Mycroft Chapter 14

The last section of this file is [Service], which details what and how to run. We say
Type=simple because we just want to start the process and leave it. PrivateTmp=true
tells systemd that we want this service to have it's own private /tmp directory. ExecStart
is critical; it specifies the pulseaudio program with /usr/bin/pulseaudio and the
parameters to run it with. The parameters together mean to run as a system service, to stay
running until we reboot.

Press Ctrl + X to exit Nano, answer ¥ when asked to save (write the buffer), and then Enter
to accept the filename. We need to enable that service with $ sudo systemctl enable
pulseaudio.

We also need the pi user, which we log in as and Mycroft runs as, to have access to
PulseAudio. To do this, we need to add this user into the PulseAudio security groups.
The usermod command adds a user into groups. —a means add and -G means to groups.
Case is important here. We list the groups that are needed with commas (no spaces) and the
pi user:

$ sudo usermod —-a -G pulse,pulse-access pi

We also need to tell PulseAudio to let us connect from another user. To do this, use $
sudo nano /etc/pulse/system.pa. Go to the bottom of the file and add the following:

#allow localhost connections
load-module module-native-protocol-tcp auth-ip-acl=127.0.0.1

Save and close this file.

Now we need to get details of our card, so we can set those up for Mycroft. In pulseaudio
terminology, a sink is a device that you can send audio data to—an output device. We want
to list those. However, pulseaudio has quite verbose output, so we use the egrep tool to
filter it to the lines with the card index (number) and the card type to ensure we find our
Seeed studio Respeaker card. To filter those, we tell egrep to filter for lines that have
index or alsa.card_name. The | character allows either/or operators on search filters.

$ pacmd list-sinks | egrep "indexl|alsa.card_name"

This should show something like the following:

* index: 0
alsa.card_name = "bcm2835 ALSA"
index: 1
alsa.card_name = "seeed-2mic-voicecard"

[349]

Voice Communication with a Robot Using Mycroft Chapter 14

This tells me that the bcm device is my default, but at device 1 is the HAT—2mic-
voicecard.

We can now edit the file to configure Mycroft's sound output, $ sudo nano
/etc/mycroft/mycroft.conf, and edit the similar lines to match:

"play wav_cmdline": "paplay -d 1 %1",
"play_mp3_cmdline": "mplayer -ao pulse::1 %1"

Note that the number 1 in -d 1 and pulse: :1 should be the card index number you found
above. Press Ctrl + X to write this out and reboot one more time; your Pi should start
talking to you.

Starting to use Mycroft

It's worth connecting with ssh (putty) or leaving a monitor connected to see when Mycroft
is ready to accept input. When it is, you should be able to speak to it. Say clearly Mycroft say
hello within a meter of the microphones on the Pi. It may respond please wait a moment while
I finish booting up. Give it a minute, and try again.

Mycroft will then tell you it needs to be paired at mycroft.ai now. You will need to register
the device using the code it gives you. You will need to create an account there to do so (or
log in if this is a second device/attempt).

Once you have done so, you can then try speaking mycroft say hello and it should respond
with hello. You will hear a sound when Mycroft has heard its wake up word and is
listening. You will need to speak as clearly as you can—I've found that it needs you to
clearly pronounce each syllable; those t and 7 sounds are not optional.

Other things you can say include the following:

o mycroft weather: This will use the weather skill and tell you the weather. It may be
for the wrong location; use the mycroft.ai website to configure your device to
your own location.

e mycroft what is 23 times 76: This will use the wolfram skill, which can handle
mathematical questions.

o mycroft wiki banana: This will use a wikipedia skill and Mycroft will tell you what
it has found about the banana.

[350]

https://mycroft.ai/

Voice Communication with a Robot Using Mycroft Chapter 14

Try these out to get used to talking to Mycroft so it responds. It may say I don’t understand
and the log will tell you what it heard, which can help you try to tune how you pronounce
things for it.

We can now create a skill to connect Mycroft to our robot.

Troubleshooting
If you are not able to get Mycroft to speak or recognise talking, try the following:

¢ Ensure you have a good network connection from your Raspberry Pi. Mycroft is
only going to work where you can reach the the internet. See the Mycroft
documentation for handling proxies.

e Attaching a monitor while the Pi is booting may reveal error messages.

e Please consult the Seeed documentation for the Respeaker 2 Voicecard (https://
github.com/respeaker/seeed-voicecard).

e Mycroft has a troubleshooting system starting with: Troubleshooting and
Known errors (https ://mycroft. ai/documentation/troubleshooting/).

e Mycroft is under active development. Taking the latest PiCroft image and
applying the Respeaker and PulseAudi may help—although, at the time of
writing, the Raspberry Pi 3b+ was not supported by the PiCroft image, so it had
to be built on the Raspbian Stretch image. In short, getting this installed and
running is subject to change.

e Mycroft can fail to boot properly if the internet connection isn't great and
rebooting it can help.

¢ PulseAudio can be tricky to debug, requiring diving into the internet to diagnose
problems. The/var/log/messages file on the Raspberry Pi can tell you about
system problems. Also, systemctl status pulseaudio will tell you if the
service is dead or in some way broken. Do make sure the Pi user has been added
to the previous pulse groups.

Programming Mycroft skills for the robot
functions

The robot backend provided by the flask menu is good enough to create a Mycroft skill for.
The next diagram shows an overview of our voice system:

[351]

https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/
https://mycroft.ai/documentation/troubleshooting/

Voice Communication with a Robot Using Mycroft Chapter 14

Google speech
to text

| Raspberry Pi Voice Assistant \ ’ Raspberry Pi On Robot 1

I mycroft listens I behavior

. . text turned into vocab matched to
speaks instruction’ o utterances vocabulary parts skills and intents I processes I
(on wake word) I I x
User I i I I
I send.s request I
Robot I
I Skl I flask web server I
mycroft speaks intent chooses <—| I
spoken respoﬂse‘_| dialog H dialog](— ’ resp:nse - request started

Overview of the robot skill

From the previous diagram, you can see that after you say something with the wake word,
upon waking, MyCroft will transmit the next utterance to the Google speech to text system.
This will then return the text that Google interpreted.

MyCroft will then match this against vocabulary files for the region you are in and match
that with intents set up in the skills. Once matched, an intent in a skill will be invoked. Our
robot skill has intents that will mostly make network (HTTP) requests to the Flask Menu
server we created for our robot in Chapter 11, Programming Distance Sensors with Python.
When the flask server responds to say that the request has been processed (perhaps the
behavior is started), the robot skill will choose a dialog to speak back to the user, perhaps to
confirm that the request has been carried out or if there was a problem.

To build this, we will not need to change our menu server, except perhaps to add more
behaviors from later chapters in; please refer to Chapter 11, Programming Distance Sensors
with Python if you want to do this.

We'll start with a simple skill, with a basic intent, and then the reader can expand this to
perform more. I've picked the Drive Forward (behavior_line from chapter 7, Drive and
Turn - Moving Motors with Python) because it is simple.

[352]

https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=37&action=edit#post_34

Voice Communication with a Robot Using Mycroft Chapter 14

It's worth noting that the time taken to get the speech processed at Google means that this
is not suitable for stopping in a hurry; the voice recognition can take some time. Using the
stop button on the menu server (from Chapter 12, Programming Encoders with Python) will
be more effective. A reader could consider using GPIOZero in the intent, and a
when_pressed handler to trigger the stop handler on the menu server.

Building the intent

We can start with the intent, then look at some vocabulary. To build it, we will use a library
built into MyCroft named adapt.

Create a folder called my-robot-skill, which we will work in to build the MyCroft skill.
The main intent file willbe an __init__.py file in this folder. This means that Python in
Mycroft will treat the whole folder like it is a Python library, called a package. Let's start
putting some code in my-robot-skill/__init__ .py:

from adapt.intent import IntentBuilder
from mycroft import MycroftSkill, intent_handler
from mycroft.util.log import LOG

import requests

The imports have IntentBuilder to allow us to build and define intents around
vocabulary. MyCroftSkill is a base class that we will use; our code will use this base to
plug into the Mycroft system. intent_handler allows us to mark which parts of our code
are actually intents, associating the code with IntentBuilder. By importing LOG, we are
able to write information out to the MyCroft console and see problems there.

The final import, requests, is a tool to let us make requests to web servers from in Python.
This means we can use it to activate menu options on our robots menu server remotely:

class MyRobot (MycroftSkill):
def _ _init__ (self):
MycroftSkill.__init__ (self)
self.settings.load_skill_settings_from_file ()
self.base_url = self.settings.get ("base_url")

[353]

Voice Communication with a Robot Using Mycroft Chapter 14

In this section, we've started creating our skill class, from the base, MyCroftskill. As we
setup our class, call __init__ on the base class, so it can perform any further set up
needed by a base skill. Loading the base class would have prepared some settings; we then
ask for one of these, base_ur1l. This will be the address of our Flask server on our other
Raspberry Pi, as we've named it or as it appears on a network. We'll see a settings file
later—this allows us to separate the configuration there from the code:

@intent_handler (IntentBuilder ("") .require ("robot") .require ("DriveForward"))

def handle_drive_forward(self, message):
try:

requests.get (self.base_url + "/run/behavior_line")
self.speak_dialog('Robot"')
self.speak_dialog('Starting')

except:
self.speak_dialog("UnableToReach")
LOG.exception ("Unable to reach the robot")

For proper code indentation, kindly refer to the GitHub link: https://
github.com/PacktPublishing/Learn-Robotics-Programming/tree/

master/chapterld/my-robot-skill.

This code defines an intent such as Mycroft Robot drive forward. We have a method named
handle_drive_forward, which is decorated with intent_handler by the @ sign;
decorating means to wrap a method in some further handling as it is defined. This
intent_handler defines what language would activate the handler in its parameter; here,
we use IntentBuilder with a set of required vocabulary. Since all of our robot intents will
have the word robot in it, we require this bit of vocabulary, then we also require the
specific DriveForward vocabulary. We will later set up what actual words can be
interpreted to mean those bits of vocabulary.

The inside of the function has a try/except statement. This will attempt to contact the
robot and speak some UnableToReach dialog if it fails to do so. We will put something in
the dialog files to make that clear to the user. We use LOG . exception to show the actual
exception to the user; there may be other reasons that this code failed. You can use LOG with
.error or .info to add debug to these skills.

[354]

https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill
https://github.com/PacktPublishing/Learn-Robotics-Programming/tree/master/chapter14/my-robot-skill

Voice Communication with a Robot Using Mycroft Chapter 14

The function will use requests.get on the whole address (URL) of the menu option,
constructed with a /run/line_following part (this could be another behavior). This will
be sent to the Flask server on the robot to run, behaving as if you had clicked that option in
the menu. After this request, Mycroft will speak Robot starting to notify the user that it has
been contacted.

As we build more such intents, we could try to generalize this into some inner method. We
are also treating many error types as unable to reach the robot, while not inspecting the result
code from the server other than it was contacted.

This file then needs to profile a create_skill function outside of the class, which Mycroft
expects to find in skills:

def create_skill():
return MyRobot ()

The settings file

Our intent started by loading a setting. We put this in my-robot-skill/settings.json
and it defines the one URL we use.

A URL, or uniform resource locator, defines how to reach some kind of resource; it starts
with a protocol specification—in this case, ht tp for a web (hypertext) service. This is
followed by a colon (:) and then two slashes (/ /) with a hostname or host address—the
network address of the computer/server/Raspberry Pi the resource will be on. As a host can
have many services running, we can then have port number, with a colon as a
separator—in our case, : 5000. After this, you could add a slash (/) then select a specific
resource in the service; we don't do so in these settings, but we append specific resources in
the previous intent.

Please use the hostname/address of your robot Raspberry Pi if it is different:

{
"base_url": "http://myrobot.local:5000"

}

[355]

Voice Communication with a Robot Using Mycroft Chapter 14

The requirements file

Our skill uses the requests library. When Mycroft encounters our skill, we should tell it to
expect this. In Python, requirements files are the normal way to do this. Put the following in
my-robot-skill/requirements.txt:

requests

Creating the vocabulary files

We next need to create a folder inside the skill folder for the vocabulary. This should be my-
robot-skill/vocab/<IETF language and locale>. A language/locale means we
should be able to define vocabulary for variants such as en—us for American English and
zn-cn for simplified Chinese; however, at the time of writing, en-us is the most supported
Mycroft language, with other language support being developed. Further reading on the
Mycroft forums may be needed to support other languages.

Each intent has its language defined in one or more vocabulary pieces, each of which go
into a vocabulary file, with each separate line in the file holding a different phrase meaning
the same as all of the others. These allow a human to naturally vary the way they say
things, something people normally only notice they do when a machine fails to respond to
their slightly different way of asking for something.

So, for our intent, we need two vocabulary files. There is a bit of a trick in thinking up
useful similar phrases for the vocabulary files. Let's start off with my-robot -
skill/vocab/en-us/robot.voc:

robot

my robot

ask robot to

tell the robot to

So any of those phrases will be used where we have said robot in our previous intent
builders. Next is my—-robot-skill/vocab/en-us/DriveForward.voc:

drive forward
drive in a line
drive

go forward

move forward

go go go

Note the capitalization of the vocabulary file name must match the intent builder; I've then
used my own convention of capitalizing the non-shared vocab parts.

[356]

Voice Communication with a Robot Using Mycroft Chapter 14

Inevitably, when you test this, you will eventually try to say a sensible sounding phrase
that isn't there. Mycroft will tell you Sorry, I don’t understand, and you will add another
similar phrase to the vocabularies above.

Dialog files
We also want to define the phrases Mycroft will say back to you. We have three that our
intent requires so far. These go into a my-robot-skill/dialog/en-us folder. It's the

same as the vocabulary files mostly. The first is the common word robot in my-robot-
skill/dialog/en-us/Robot.dialog:

The Robot
Robot

Then, we can define my-robot-skill/dialog/en-us/UnableToReach.dialog as
follows:

Sorry I cannot reach the robot.

The robot is unreachable.

Have you turned the robot on?

Is the menu server running on the robot?

By defining multiple possible dialogs, Mycroft will randomly pick one to make itself less
repetitive. We need my-robot-skill/dialog/en-us/Starting.dialog

Starting
is Starting
will Start

Current skill folder
Our skills folder should look like this now:

e my-robot-skill
e init_ .py
® requirements.txt
® settings.json
® vocab
® en-us
® robot.voc

e DriveForward.voc

[357]

Voice Communication with a Robot Using Mycroft Chapter 14

e dialog
® en-us
e Robot.dialog
e Starting.dialog
® UnableToReach.dialog

We are going to now need to upload this whole folder structure to our robot, using SFTP
(FileZilla) to your Mycroft Pi, at the /opt /mycroft/skills folder and Mycroft will
automatically load this skill. If you need to update the code, uploading the files to this
location again will cause Mycroft to reload it.

Any problems loading or using the skill will be shown on the Mycroft output—either on a
monitor or an ssh session into the Voice Assistant Pi. The output can also be found in
/var/log/mycroft/skills.log—the less Linux tool is useful for looking at log output
like this, using Shift + G to jump to the end of the file or typing /myrobot to jump to its
output.

You then need to power up the robot, ssh in and start the menu server with python
menu_server.py.

You can then try out your skill with Mycroft tell the robot to drive forward. Mycroft should
beep to show the user it's awake and, once it has got the words from speech to text, it
should send /run/behavior_line to the menu server on the robot. You should hear
Mycroft say one of the dialog phrases, such as The robot Is starting and see the robot drive
forward.

Troubleshooting

If you encounter problems making intent respond please try the following;:

e First check the syntax and indenting of the previous Python code.

¢ Ensure that your robot and the voice assistant Raspberry Pi are on the same
network; I've found this to be problematic with some Wi-Fi extenders and IP
addresses are needed instead of myrobot . local—you can use the
settings. json file to configure this.

[358]

Voice Communication with a Robot Using Mycroft Chapter 14

Adding another intent

Now we have our skill, adding a second intent becomes fairly easy, using another of the
modes in our robots menu server. For this, I will pick the line following behavior. You may
need to calibrate the line sensors again, and prepare the line for following if it has been put
away. You may also notice that, since introducing the servo motors, the motors seem
slower for the same settings, so I suggesting increasing the speed factors on the line
following behavior; I doubled these to 60 and -60 on my robot.

Vocabulary

We will need to create some line following vocabulary; we can put this in my-robot -
skill/vocab/en-us/FollowLine.voc

follow a line

follow the line

follow lines

line following

line following behavior

Code

In the my-robot-skill/__init__ .py file, add the following to the MyRobot skill:

@intent_handler (IntentBuilder ("") .require ("robot") .require ("FollowLine"))

def handle_follow_line(self, message):
try:

requests.get (self.base_url + "/run/line_following")
self.speak_dialog('Robot")
self.speak_dialog('Starting')

except:
self.speak_dialog ("UnableToReach")
LOG.exception ("Unable to reach the robot")

This is almost identical to the Drive forward intent, with only the FollowLine vocabulary
included, the name of the handler (which could be anything, but must not be the same as
another handler), and the URL endpoint. This is ripe for refactor. Refactoring is changing
the appearance of code, without affecting what it does. This is useful for dealing with
common/repeating code sections or improving how readable code is.

[3591]

Voice Communication with a Robot Using Mycroft Chapter 14

In the same file, add the following:

def handle_start_behavior (self, mode_name) :

try:
requests.get (self.base_url + "/run/" + mode_name)
self.speak_dialog('Robot"')
self.speak_dialog('Starting')

except:
self.speak_dialog ("UnableToReach")
LOG.exception("Can't reach the robot")

This will be a common start behavior handler. It takes mode_name as a parameter and uses
that in its request. All of the dialog and error handling we saw before is here. The two
intents now become far simpler. Change them to the following;:

@intent_handler (IntentBuilder ("") .require ("robot") .require ("DriveForward"))
def handle_drive_forward(self, message):
self.handle_start_behavior ("behavior_line")

@intent_handler (IntentBuilder ("") .require ("robot") .require ("FollowLine"))
def handle_follow_line(self, message):
self.handle_start_behavior ("line_following")

Adding new intents is now easier as we can reuse handle_start_behavior.

Running with the new intent

You can now upload the folder structure again—since the vocab and __init__files have
changed. When you do so, note that Mycroft will automatically reload the changed skill so
it is immediately ready to use.

Summary

In this chapter, you've seen how to get a Raspberry Pi to run the Mycroft environment and
you've connected it to a speaker/microphone combination. You've been able to play with
Mycroft and get it to respond to different voice commands.

[360]

Voice Communication with a Robot Using Mycroft Chapter 14

You've learned about the terminology of voice assistants, intents, skills, utterances,
vocabulary, and dialog. You've been able to put that into practice by creating a skill that
communicates with the robot, starting a skill on the robot.

In the next chapter, we will connect a Joypad to our second Raspberry Pi and use this to
remotely drive or trigger behaviors on our robot. We will also set up another systemct1
file to start menuserver when the robot starts.

Questions

Try these assessment questions to check your understanding:

e Why would the user define multiple variations for each vocabulary part?

e Similarly, why would they do this for the dialog?

e Why did we wrap our intent with try/catch?

e What is the significance of the en-us string in the vocabulary/dialog file
structures?

¢ How did we make the Pi start the pulseaudio system when it boots?

Suggested enhancement task: Add more intents to the skill, for example, wall avoiding.
You could add a stop intent although the response time may make this less than ideal. Also,
could the RGB LEDs on the Mycroft be used?

Further reading

MyCroft has a large community that supports and discusses the technology at https://
community.mycroft.ai/.Itis strongly recommended that the troubleshooting information
at this community is used as, at the time of writing, MyCroft is under active development

and has both many quirks and many new features. It's also a good place to share skills you
build for it.

Seeed Studio, the creaters of the Respeaker 2-Mics HAT host documentation and code for
this device, along with bigger four-and six-microphone versions at https://github.com/
respeaker/seeed-voicecard.

[361]

https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard
https://github.com/respeaker/seeed-voicecard

15

Programming a Gamepad on

Raspberry Pi with Python

The robot we've been programming and making has many behaviors, but some end up
with the robot on the other side of the room. We've also got a neat camera with some visual
feedback available on what the robot is doing. Wouldn't it be neat to take control and drive
the robot sometimes? In this chapter, we will see how. We will build a control system that
includes our visual control for the robot.

The following topics will be covered in this chapter:

When speech control won't work — why we need to drive

Choosing a control pad — what we are going to use to drive the robot, and why
Preparing the Raspberry Pi for remote driving — how to get the basic driving
system going

Upgrading the menu and display code for full headless — integrating the driving
with display and menu

Making it start when the Pi starts — using systemd to get our menu system to
start automatically

Technical requirements

For this chapter you will need the following items:

Your Raspberry Pi robot with the camera set up and code
A touch screen device like a phone with Wi-Fi.
A wireless network

The GitHub code for this chapter is at https://github.com/PacktPublishing/Learn—

Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapterlb.

https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15
https://github.com/PacktPublishing/Learn-Robotics-Fundamentals-of-Robotics-Programming/tree/master/chapter15

Programming a Gamepad on Raspberry Pi with Python Chapter 15

Use the 0_starting_point folder to find the complete code from the previous chapters
and the full_system folder on GitHub for the full code of this chapter.

Check out the following video to see the Code in Action:

http://bit.1ly/2DQkt6b

When speech control won't work - why we
need to drive

So in the last chapter, we built a Mycroft system to launch behaviors. If you tried to build
intents to make the robot stop in time, or drive left or right, you will probably have noticed
that even with the clearest speaking, it takes some time to respond.

Speech control also only really works in a quiet room. Any time a robot is out (you would
like to drive it somewhere), this is not so useful.

Mycroft is also utterly dependent on having access to the internet. It is one thing to have a
small shared network for a robot and a controller, it's another to always require internet
access, which can become tricky when not at your home, school, or lab.

An external controller can be responsive, giving you fast control over the robot's
movements. With a local network, it won't need external internet access. It can be used to
drive a robot back to you after a behavior has run and you've stopped it, and be used to
stop errant behavior. And with a bit of thought, it can be used to deliver useful, or plain
interesting, feedback on what your robot is doing.

Choosing a controller

We want to be able to control our robot with something that is handheld and wireless.
Trailing a wire to our robot would make little sense. Having seen how our robot drives in
Chapter 7, Drive and Turn - Moving Motors with Python, we will want a control system that
affects the wheels in a direct way.

One way to do this would be to use a Bluetooth joypad. There are a large number of these
on the market, which may require specialist drivers to read. Bluetooth has a habit of
dropping pairings at inopportune times.

[363 1]

http://bit.ly/2DQkt6b
http://bit.ly/2DQkt6b
http://bit.ly/2DQkt6b
http://bit.ly/2DQkt6b
http://bit.ly/2DQkt6b
http://bit.ly/2DQkt6b
http://bit.ly/2DQkt6b
http://bit.ly/2DQkt6b
http://bit.ly/2DQkt6b

Programming a Gamepad on Raspberry Pi with Python Chapter 15

However, you already have a handheld device, in your pocket, your phone. It has a touch
screen, capable of reading finger movements. With a bit of the right code, you can display
the video between controller bars, creating a kind of robotic periscope you can drive around
and see (it's quite tricky to drive on camera - harder than overhead). We've already been
building web applications for our robot, that we can access over Wi-Fi, and most phones
can connect to that. So instead of going out and buying a new joypad, we will make a web
app that your phone can access, like an app, to drive the robot and see a robot's-eye-view of
the world.

Design and overview

So, to make a phone web app, a little bit of design on how we would expect this to work is
needed. This could be as simple as a pen drawing on a scrap of paper, or using a drawing
tool to get professional-looking results. The next image shows a screen mockup of this:

Exit Button | | Right Motor slider

Users |

Thumb
f

Left Motor sSlider

S

| Camera Feed

Screen mockup of driving web app

The mockup shows a mobile phone screen in landscape mode. The top of the screen has an
exit button, and we can set this up to go to our menu after instructing the app to exit.

[364]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

The middle of the screen has a video feed from the robot, using the mechanism described in
the previous chapter. The left and right have sliders. The sliders, like an analog joystick, can
be dragged to any position on their track with touches, and when let go will spring back to
the middle. The next image shows how this works:

Slider Slider Being Slider
neutral Touched Released

Springs back
to middle a

Tittle each

frame.

Slider return to middle behavior

Note that they don't immediately drop to the middle when let go, but animate back to this
over a few frames. We'll need a little math to make that happen in our code.

These sliders let you drive the robot tank-style (with a joypad, the two analog sticks would
be set up to perform the same way). Each slider controls the speed of a motor. While this
sounds tricky (not like driving a car), with a little practice it is a very sensitive way to drive
a two-wheeled robot. The further away from the middle you slide a slider, the faster the
associated motor will go. We will also ensure that in the case of a loss of communications,
the robot motors will stop after a second.

This is exactly the same control system your behaviors have been using throughout the
book, but made interactive. The next diagram shows some of the motions needed for
common moves:

[365]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

Q Stopped * Forward

1 _Ei

+ Backwards O Spin Right

] (m

O Spin Left ¥ Forward And Left

m 'm/

Common moves on two sliders

The red dots represent where your thumb is touching the screen. By sliding both forward,
the robot will drive forward, and the further you slide them, the faster it will go. Backwards
is sliding them both back. To spin the robot, slide them in opposite directions. To drive
forward and a little left, or right, you slide both forward but bring the right slider a little
higher than the left. You are also able to compensate for veer this way.

[366]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

Preparing the Raspberry Pi for our controller
and driving with it

Our Raspberry Pi has already been able to run web services, using Flask to create a menu
server and video servers. We can use image and control queues to make a behavior interact
with a web server. We are going to reuse these capabilities. In the phone app, the slider
controls will need to be smart. The next diagram shows the parts of our manual drive
system:

—---------------\

!
Vide Web Browser On Phone

[- XIT]
touches> H W @ Slider Gadget sllder updates

A

I
User I Page Script

7/

\---------------—

image feed control requests

GEEE N I I I N I IS BN BN BN BN BN BN B | EE O

’ .

[Flask Web Server J

display frame queue control message queue

[
|
|
|
1 [Behavior J
|
|
|
|

A l]

image frames stop motors set motor speed

| v
/ camera \ [Robot }

\ Raspberry Pi On Robot 4

B U i iy e

The system overview of a manual drive app

At the bottom layer, the stop motors and set motor speed calls are made to the robot. These
are from the behavior based on timeouts or on the control message queue from the server.
Meanwhile, the behavior loop will also be taking image frames from the camera, encoding
them, and pushing them onto the display frame queue.

[367]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

The next layer up is the Flask web server. This consumes the display frame queue
supplying frames to the multi-part image feed. The Flask server will handle control
requests and push them onto the control message queue.

On the phone, there is a page script, which will handle slider updates and turn those
into control requests using the jQuery library. The slider gadget turns touch events
into slider updates (it will be doing animation and converting for this).

The page itself uses an img tag to display the video feed like before, and places the slider
widgets. The exit button is really just a simple link here.

The page script and slider widget will require JavaScript and CSS programming.

Enhancing the image app core

To build this, we will start by extending and reusing the image app core we used in the
previous chapters. We'll add a few features:

e Serving static files: Our JavaScript and CSS files will be served here, along with a
local copy of the jQuery library. Flask does this automatically, but we need cache
headers so it stays fresh.

¢ Extending control to allow a whole path: Currently it only allows a single word,
we need a bit more than that now. This way we can
tell /control/set_left/100 to put set_left/100 on the control message
queue.

¢ Add an exit handler that redirects to the menu server and puts an exit message
on the control queue.

First, we will need a few more helpers imported from Flask. We are editing
the image_app_core.py file:

from multiprocessing import Process, Queue

from flask import (Flask, render_template,

Response, redirect, request)

Note that I've surrounded the import with brackets, this is so we can spill the imports to a
new line. We will be using the redirect and request helpers for our exit handling.

[368]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

To stop things we don't want being cached, we can instruct Flask to add no-cache headers
after every request:

Qapp.after_request
def add_header (response) :

response.headers|['Cache-Control'] = "no-cache, no-store, must-
revalidate"

return response

Next, we need to modify our control system to handle longer control messages. We use the
path: prefix, so the longer message can be just a path in the URL. The prefix with the
colon tells Flask the type of data to expect. By saying it is a path, slash characters are
expected in this string:

@app.route ('/control/<path:control_name>")
def control (control_name) :
control_queue.put (control_name)
return Response ('queued')

The last extension to this is the exit handler. This will put an exit on the queue and
redirect. This image app core system runs on port 5001, but our menu server runs on port
5000, so we replace the port in the current url_root to get there:

Qapp.route('/exit')

def handle_exit():
control_queue.put ('exit')
menu_server = request.url_root.replace('5001', '5000')
return redirect (menu_server, code=302)

code=302 will mean the response to the browser shows this exit redirection is temporary,
so that if an exit is asked for again, it should still come and make the request here first.
Browsers on phones can be tricky in that they try to minimize the number of requests,
mostly to avoid unnecessary traffic. This is usually handled through various caching
(keeping results local on the phone), but for us this will mean requests don't get to our
robot, or arrive in a strange order. We intend to ensure that this doesn't happen, here by
saying the redirection is temporary, and we will use other ways later to prevent caching.

[369 1]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

Create the static folder. We will put JavaScript and CSS code in this static folder. We
will also make a local copy of the jQuery library. Make a 1ib directory under static, then
download jQuery (the minimum version at the time of writing is at https://code. jquery.
com/jquery-3.3.1.min.js) and store it in the 1ib folder. You should have
astatic/lib/jquery-3.3.1.min. js file.

Writing the behavior

The next part we will need is the behavior. This will not be that complex and use code seen
before in the visual processing chapters, with a small bit of additional code in the control
message area. I'll put this in manual_drive.py, starting with the imports we've seen for
visual processing:

import time

from robot import Robot

from image_app_core import start_server_process, get_control_instruction,
put_output_image

import pi_camera_stream

We'll make a ManualDriveBehavior class. In this, we'll store a robot object, and keep
track of timeouts. The timeout will stop the robot if there are no more control messages:

class ManualDriveBehavior (object) :
def _ _init_ (self, robot):
self.robot = robot
self.timeout = time.time() + 1

The control section may need a little breaking down. This code is in the context of our
Behavior class. We look for a control instruction, and if there is one, we can keep looking
for more by looping. Before processing the instruction, we will reset the timeout:

def process_control (self):

instruction = get_control_instruction()
while instruction:
self.timeout = time.time() + 1
parts = instruction.split('/")

[370]

https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js
https://code.jquery.com/jquery-3.3.1.min.js

Programming a Gamepad on Raspberry Pi with Python Chapter 15

We will now process the instruction. We now split this into a command, and parameters,
by the / character that is used for URLs. We can take the parts; the first part will be the
command. We can check if this command is set_left or set_right:

if parts[0] == "set_left":
self.robot.set_left (int (parts([1l]))
elif parts[0] == "set_right":

self.robot.set_right (int (parts([1]))

We check for the command matching, and then set the robot motor speed to the next part of
the instruction, the speed. This will currently be a string, so we use int to convert it into an
integer number for our motors.

We also need to handle the exit command:

elif parts[0] == "exit":
print "Stopping"
exit ()
instruction = get_control_instruction ()

The exit command will exit our application. If this list of command handlers exceeds five,
this could be improved by using a dictionary (like menu_modes) and then calling different
handler methods.

Note that we then get another instruction. This is the end of the while loop; the instruction
is used to come back into the loop. The reason we will do this is our phone app may have
queued a number of instructions for both motors, so we should try to any queued
instructions and deal with them immediately. We are now done with processing control.

The next method in our behavior is to make the display. Since the video feed is simply what
the camera sees, we just get the frame, encode it, and put it on the server image queue:

def make_display(self, frame):
"""Create display output, and put it on the queue"""
encoded_bytes = pi_camera_stream.get_encoded_bytes_for_frame (frame)
put_output_image (encoded_bytes)

[371]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

We then need our behavior's run method, along with our method's main loop. This starts
with some setup, similar to the color tracking:

def run(self):
Set pan and tilt to middle, then clear it.
self.robot.set_pan(0)
self.robot.set_tilt (0)
start camera
camera = pi_camera_stream.setup_camera ()
warm up and servo move time
time.sleep(0.1)
Servo's will be in place - stop them for now.
self.robot.servos.stop_all ()
print ("Setup Complete")

We then enter into our main loop, around feeding camera frames through to the display:

Main loop
for frame in pi_camera_stream.start_stream(camera) :
self.make_display (frame)

The other things our main loop needs to deal with are control instructions and the
automatic stop. It can be quite frustrating to watch a robot drive off into the distance or off
a desk, so it will revert to stopping if nothing is making sense. This is still in the for loop.

self.process_control ()

Auto stop

if time.time () > self.timeout:
self.robot.stop_motors ()

We now finish our behavior with the top-level code to create and start the components:

print "Setting up"

behavior = ManualDriveBehavior (Robot ())

process = start_server_process ('manual_drive.html')
behavior.run ()

[372]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

The template (web page)

So, our server has been asked to show the templates/manual_drive.html template.
This will have the code to render our widgets:

<html>
<head>

Now, that we are in our head section, we are targeting a phone, and we want the system to
render the display to fit a phone, ensuring that it adapts to the display size. The display is
mostly visual, with little text, so we don't want the user's touch interactions to accidentally
scale the display. The next line tells the browser that this is our intention:

<meta name="viewport" content="width=device-width, initial-
scale=1.0, user-scalable=no">

We are going to give our display some particular looks and style. With more sophisticated
pages, the style is kept in a separate sheet, in our case display.css. But this could be
used in multiple pages to give them a similar style. We are also going to use the jQuery
library, and a touch-slider system that we will build. These are the HTML equivalent of
imports. Putting a question mark after the library path for these will cause our phone to
reload this every time; it's intended again to stop a cache preventing us from reloading
fixed code. There's a title to go on the top of the tab:

<link rel="stylesheet" type="text/css" href="/static/display.css?">
<script src="/static/lib/jquery-3.3.1.min.Jjs"></script>
<script src="/static/touch-slider.js?"></script>
<title>Manually Drive The Robot</title>
</head>

We are done with the head section, and we will then use the body to define the drawn parts
of our page:

<body>
<svg id="left_slider" class="slider_track">
<circle cy="50%" cx="50%" r="15%" class="slider_tick"/>
</svg>

[373]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

The first part of our body is a slider track. We use an svg object for the track. SVG-scalable
vector graphics can be used directly within an HTML page in all current smart phone
browsers. Here, we create an svg container, but give it a class of slider_track which we
can use to style both tracks, and an ID of 1eft_slider which we can use both to position
it, and to attach it to the touch events. As a general guide, a class is used to attribute many
objects with the same properties, and an ID is intended to identify a particular object. These
identifiers can be used for CSS, or in the JavaScript, to create code behaviors for those
objects.

In the svg, we have a circle element. We set the center X, center y, and radius of our circle.
The width and height percentages are in relation to the slider track it's contained in, putting
the circle in the middle of the track. The radius % is slightly complex, it's based on the
diagonal size of the svg element; suffice to say you may need to adjust this if it's looking
too big or too small. The circle's color will come from the stylesheet:

Exit

This will give us a link to exit the app, but it also has a class and ID. The button class will
be associated with fonts, colors, and styles that could be used for other buttons (for example
to enhance the menu app), but the exitbutton ID is used in the stylesheet to position this
in the place we designed before.

Next, we have our video block. This time, the img tag for the video is contained inside
a div. We want our video to keep its ratio (4:3) on any size screen, and the div tag helps us
to preserve the ratio while letting it fill to fit the space:

<div id="video"></div>

The next element in our body will be the right slider. This is a repeat of the left, with only
the ID being different. You could copy and paste the left code, changing the ID:

<svg id="right_slider" class="slider_track">
<circle cy="50%" cx="50%" r="15%" class="slider_tick"/>
</svg>

[374]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

Now we have the elements that are drawn on our page, we need some JavaScript code to
connect things together. JavaScript is different in syntax from Python; you normally declare
variables with var instead of just naming them, you use semicolons ; to end lines, and use
curly brackets { } to delimit blocks, so the indentation is more out of convention and
keeping it readable than for the computer. JavaScript has many concepts that are common
with Python; it uses classes/objects in a different syntax, but for the same reasons.

In our page, we will need a function to send motor speed data as control messages. To put
JavaScript on our page, we need to enclose it in <script> tags. First, we create a sequence,
this is changed and sent for every message. It serves to prevent the page cache giving us
strange results:

<script type="text/javascript">

var sequence = 0;
function set_motor (name, speed) {
S.get ('/control/set_' + name + '/' + speed, sequence);

sequence ++;

The speed is combined with a motor name (left or right) and then sent to the server to put
on the control queue. We are using $. get to send this, a jQuery function that performs an
HTTP GET request. GET usually means to request information, there is an alternative POST
type to send information (like POSTing a letter), but in this case GET is easier to link up
with our existing control queue system and not rewrite other behaviors using it.

An important idea in JavaScript is that a function can be a bit of data. We've used it before
in Python in our square driving system when we swapped which motor was on the inside
of a curve. In JavaScript, passing a function in as a parameter to another function is a
common way to do things. Because this is done often, functions used that way are not even
given names; they are anonymous functions, or can be called lambdas.

Now, we need to set up the sliders and link them with set_motor so they will update this
every time they change. jQuery has a special function, $ (), which will run any function
passed to it when the page has completed loading;:

S (function () {
var leftSlider = new Slider('left_slider', function (speed)
{set_motor ('left', speed);});
leftSlider.setup();
var rightSlider = new Slider('right_slider',
function (speed) {set_motor ('right', speed);});

[375]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

rightSlider.setup();
b

We gave the page load system an anonymous function. In this, we start by creating a new
Slider object (we'll see how these are made in the library). The Slider objects constructor
looks like S1ider (id, when_updated) where id is the id of the object we are turning
into a slider (an svg track), and when_updated will be a function to call when the slider
has changed.

We construct a leftslider and a rightSlider, setting their IDs to the page element Ids.
We then give an anonymous function to make make a further call with the speed of the left
or right motor to set_motor.

We now end our page by closing all the tags:

</script>
</body>
</html>

You can start to run this now to see how it looks. Upload the whole folder (including
templates) to the robot, and then run python manual_drive.py. Point a browser at
http://myrobot.local:5001/ , substituting your robot's hostname or address to see it.
At this point, I strongly suggest using the desktop browser to discover errors in the HTML
or JavaScript. At the time of writing, Firefox, Safari, and Chrome have support for
emulating mobile devices in the browser and touch events too, so these seem like the best
candidates.

It probably looks a bit flat, with things totally flat or in the wrong place, nothing like the
mockup. The video works though. We've yet to tell the browser where we want things on
the page, or what colors to make them. We also don't have the slider code yet.

The stylesheet

So, we can now give it some style. Stylesheets can take up a lot of time in tuning and
getting them just right, visually. Create the static/display.css file to hold this style
information. If you think my color choices are terrible, please feel free to substitute your
own; search w3c colors to find suitable colors to use. Names or hex (#1ab3c5) colors can
be used.

[376]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

CSS styles sections start with a selector, a way to match objects in the HTML page. These
can be made from tag names, class names prefixed with a full stop, or ids prefixed with a #
mark. For a comprehensive look at css selectors, see the additional reading. Each section
uses braces { } to delimit a section of style. The styles in that section are made of a property
name, a colon :, and then a setting for it. These are followed by a semicolon ; to end each
setting.

We'll start by making our slider track 10% of the viewport width, that is, 10% as big as the
screen. CSS has a special unit, vw, for this, along with vh for percentage of the viewport
height. See additional reading for notes on CSS units:

.slider_track {
width: 10vw;

We'll also give the slider track a solid line border, in the color blue, and a light blue
background. This will match our mockups:

height: 90vh;
border: 1px solid blue;
background-color: lightblue;

This uses a CSS selector . s1ider_track, which says this style applies to all objects with
that as their class. Both of our sliders have this class, so changes here affect both of them.

We also need to style the tick, the circle we see on the sliders. Let's just give it a light
pinkish fill color, like our mockups:

.slider_tick {
fill: mistyrose;

}

Now we've described the general properties of our sliders, we need to tell our browser to
put these left and right. When making a display match closely to the screen mock up, we
can use absolute positioning with viewport percentages to say exactly where things should
be. Here, we use #left_slider with the # mark meaning an id instead of a class,
identifying a single specific object. Let's put the left slider on the left, and the right on the
right:

[377]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

#left_slider {
position: absolute;
left: 5vw;
top: 5vh;

t

#right_slider {
position: absolute;
right: 5vw;
top: 5vh;

You can try this by uploading it, stopping the running behavior and starting it again, then
reloading. You'll see the exit button and video are in the wrong place. In fact, the exit
button doesn't look like a button at all, so let's make it a nice big touch button with some
styling. We will combine a class selector and an id selector, so you can reuse the button to
enhance the menu and make that more touch friendly later.

First, we make button a block type. As it's just a link, it usually expects to be just a bit of
text, but as we want a rectangular block, we'll give this 10% of the viewport height to make
it pretty big. We'll leave width to be more specific later:

.button {
display: block;
height: 10vh;

We want the text to be in the center both vertically and horizontally for a block. There is a
style for the text alignment horizontally. By setting the line height to the height of the block,
the text will be centered by default. We will make the text twice as large using 2em:

text-align: center;
font-size: 2em;
line-height: 10vh;

[378]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

We want to take the underline of the button text, which you normally get with a link. We'll
also give it some color, a blue background with white text:

text—-decoration: none;
background-color: blue;
color: white;

This class can be used on other buttons, but this is specifically an exit button. So, we want to
position it exactly on our layout. Yet again, we use absolute positioning, and set the width
to keep it centered. If our left is 30vw, we want the right to be 30vw too. So 100vw-60vw
=40vw, and we make the width to be 40vw:

#exitbutton {
position: absolute;
width: 40vw;
left: 30vw;
top: 5vh;

Trying this out you will now see the exit button in the right place, but the video is still in
the top left. Depending on the screen you use, it may also be too big or small. We need to
do a little trickery to get it the right size and position.

If you recall from the previous chapter, we've chosen to keep our video at 320 x 240 to
reduce how much data is being used for it. This has a ratio of 4:3, which we will want to
preserve. Video can look strange if this ratio, the aspect ratio, is changed. If you check the
HTML page, we actually have a video container div, with the img tag pointing at the feed
inside. This is so we can combine them to get the shape we want. First, we want that
container to be a block. We want it to be 20% from the top of the screen. The vmin unit is a
percentage of the minimum dimension of the screen, so it ensures that this block is never so
large it would obscure the two slider bars:

#video {
display: block;
margin-top: 20vh;
width: 80vmin;
height: 80vmin;

[379]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

We want this to be centered. We can't use absolute positioning because we actually don't
know if vmin is width or height. Setting the left and right margins to auto will instruct the
browser to try and make those the same, automatically positioning the object in the
horizontal middle of the screen:

margin-left: auto;
margin-right: auto;

Our outer container is in the middle, and constrained to not be too big.

The inner object (img) should fill the outer container horizontally (100%), but be
constrained so its height is the 4:3 ratio, or 75% of the width. The padding instructions use a
container width for their percentage, so a cheeky (but documented) trick is to set padding-
bottom to this percentage, which will keep the inner video feed object at the right shape. By
selecting #video img, we are applying this style to the img object inside the object with the
video id:

#video img {
width: 100%;
padding-bottom: 75%;
}

Apply this and our page is fully styled. It should now look a lot like the mock up in your
browser, with the video. The slider bars still don't do anything yet though. Note that you
may need to force your browser to reload the stylesheet.

We now need to add the slider code.

Creating the code for the sliders

The sliders are going to be slightly smart. They will need to respond to touch events,
moving the circle to match the touch location, and sending an update message to show how
far this movement is from the middle. The sliders will automatically return to the center
when the touch events stop, so they are somewhat animated. We will use JavaScript for
these, and create a JavaScript Slider object definition (equivalent of a Python class) that we
can make the two sliders with.

[380]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

As defined in our HTML, we will put this in static/touch-slider. js. As we are in

a . js file, the <script> tags are not needed. We'll start with a constructor for our object,
storing the id as a selector, and using the when_updated function to call back when the
slider changes:

function Slider (id, when_updated) {
this.selector = '"#' + id;
this.when_updated = when_updated;
i

This is the constructor; in JavaScript, the class prototype is defined separately from this
constructor. We'll start that prototype with a method for handling touch events
(touchMove). We will keep a member variable, touch, set to true if the screen is currently
being touched. Note that a comma (,) is used to separate items in the prototype definition:

Slider.prototype = {
touched: false, // is a touch still occuring
touchmove: function (event) {

When this t ouchmove function is bound to an event, it is called with the event detail as a
parameter. These JavaScript event handlers are a lot like the functions we've used in Python
when writing the line follower code. We read the target Touches member of that event to
find out the places the screen is being touched. When we look at the first item, it is a list, but
we assume there is only one touch for the target (a slider track). We then get the relative
position of this touch from the top of the slider:

var touch = event.targetTouches[0];
// Get the touch relative to the top of the slider
var from_top = touch.pageY - $(this.selector).offset () .top;

Now we have a relative position, we can convert it into a percentage of the total track's
length and call another method to handle the change (we'll figure out what to put there
later; for now, we just want the touches):

// height of track in pixels

var trackheight = $(this.selector) .height();

// Convert this to twice a percentage of the track. (0 is the
middle)

[381]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

var relative_touch = (from_top/trackheight) * 100;
this.set_position(relative_touch);

Now we know that the track is being touched, we will set that variable. We will also make
sure that this event stops here, as we do not want the touches to the track being used to
scroll or zoom the page, so we prevent the default event handler:

this.touched = true;
event .preventDefault ();
I

The next handler is to tell our system that the touches have stopped on this target:

touchend: function (event) {
this.touched = false;
}I

Our system will be animating moving back to the center when it's not touched. The
animation should be quite responsive. We also want it to send updates to our robot, but not
too many as it would fill the control queue. So our slider will have two timers, one to
animate/update it, and another to call the page code when things have changed. In

the setup function, we will bind the handlers and prepare these timers. JavaScript uses
interval timers to repeatedly call bits of code. The timings are in milliseconds:

setup: function() {
S(this.selector) .on('touchmove', this.touchmove.bind(this));
$S(this.selector) .on('touchend', this.touchend.bind(this));
setInterval (this.update.bind(this), 50);
setInterval (this.update_if_changed.bind(this), 200);

}I

In this snippet, all of our methods are passed to these events with a .bind (this) suffix.
This ensures that when this is used in those functions, it is our slider object.

[382]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

The next method our Slider will need is setting the position, used in our touchmove
handler, and we will also use it when animating back to zero. This method will set the
position, ensuring it is a whole number, log this to the JavaScript console (useful for
debugging), update the slider track, and set a changed variable so the slower timer can
check for differences. The position starts off at 50 percent, which is the middle of the
track:

changed: false,
position : 50,
set_position: function(new_position) {
this.position = Math.round(new_position);
console.log(this.id + " - " + this.position);
S (this.selector).find('.slider_tick') [0].setAttribute('cy"',
this.position + '$"');
this.changed = true;

}I

We update the track by using the selector we made, then finding the slider tick inside it.
This find produces a list, even if in our specific case there is only one; you could have
multiple child items. We use setAttribute to modify the center X property of the circle,
which will cause it to move to the right place on the track.

The next method we will need should perform the animation of the track, making it spring
back to the 50% mark if it is pulled away. This will look a little like our PID controller code,
with a slight trick.

First, we calculate an error; this is how far away we are from the 50% mark:

update: function() {
var error = 50 - this.position;

Now, we get a change value by scaling the error proportionally, with a factor of 0. 3, and
add/subtract an extra 0. 5 to ensure the movement rounds up to at least 1%:

var change = (0.3 * error) + (Math.sign(error) * 0.5)

Now, we only want to actually change the movement if we are not touching the track, so it
stays where you keep your thumb. The animation should also only be changing if the
current position is not at the neutral 50% mark:

[383]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

if(!'this.touched && this.position != 50) {

We now use our update position function, adding the current position to the change
amount we've set. This will finish the if statement, and the update method:

this.set_position(this.position + change);

b

The last method we need in our touch slider is the target of our slower updates, which will
check our changed flag, and if it is different, call the when_changed handler with the new
number.

Here we need to convert from the values used by the slider to display the circle as a
percentage from 0 (top of the slider) and 100% (bottom of the slider), to values for setting
our motor speeds, from 100 (full forward), to 0 (stopped), and down to -100 (full reverse).
The next image illustrates this conversion:

Slider Motor
Positions Speeds
0% 0 100

50% _/ —(position * 2)» 100 —100-y—>» 0 _/

100% 200 -100

Slider positions illustrated

[384]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

The previous image should assist in understanding the conversion done in this next section
of code:

update_if_changed: function() {
if (this.changed) {
this.changed = false;
this.when_updated (100 - this.position * 2);

}i

Running this

You can now upload the whole set of files to a folder on your robot. As before, you can
use python manual_drive.py to run this.

You can use developer mode on a browser to view the web page before trying it on a
phone, by right-clicking on your page and clicking Inspect element. In the developer tools,
there will be buttons for emulating phone devices and touch events. You can check that
dragging the sliders has the desired results, and click on the Console button to see if there
are errors from the JavaScript. Point it at http: //myrobot.local:5001 (using your
robot's hostname or address).

Common problems in JavaScript and CSS are missing punctuation such as semicolons,
commas, or brackets. Having class or ID selectors that do not match (or are missing the
required dot/hash mark syntax) will make styles fail to apply, or element lookups in
JavaScript produce no results.

It can be difficult to get phones to reload code, so try to shake out any problems in a
desktop browser first, then start your phone's internet browser and point it at the same
location. With the phone, you should be able to use your thumbs to drive the robot.

If your robot seems to be pausing, and then spending a while catching up with your events,
you could adjust the update_if_changed interval time to something longer.

It will take some practice to drive the robot manually. I suggest practicing overhead driving
first, and when you have got the hang of that, try driving through the camera. The frame
rate on the camera is not very high, and the driving loop is currently constrained by this
frame rate.

[385]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

Upgrading the menu and displaying code for
full headless

We are now able to drive our robot from the phone, but the menu doesn't seem very touch
friendly. It also will not successfully run any of the behaviors with displays using Flask. We
will make the menu buttons bigger and more touch friendly, using styles similar to our
manual drive behavior. The menu can also load our server page after clicking a behavior
with a server like this one, or the visual tracking behaviors from the last chapter.

Making menu modes compatible with Flask
behaviors

If you've already tried running the Flask-based behaviors (any of the visual processing, and
the manual drive) in the menu, you will have noticed some very odd behavior indeed. Your
behavior will appear to be doing the right thing with sensors on the robot, but the web
service fails to do anything useful on port 5001.

This is due to Flask operating in a way that uses its own subprocesses to manage itself
when in debug mode, which allows it to reload changed code. We won't be using it in

debug mode, so the fix for this is to remove debug when it's run. Edit the last few lines
of menu_server.py, noting that debug=True is removed from the run line:

Start the app running
if you enable debug, disable the reloader here.
app.run (host="0.0.0.0")

You can now add the manual drive, color tracking, and face tracking behaviors to the menu
and they will start properly.

Loading video services

When we click on a menu option for one of the video server-based behaviors, they start, but
then we need to send our browser to port 5001 on our robot manually. It would be kind of
neat if we performed a redirect to one of these behaviors when we start them. We know
how to redirect, as we've done it in the manual drive behavior when handling the exit
button. However, we only want the menu system to do this for a mode that has such a
service. To do this, we can update our mode config, which was a simple list, changing it
into dictionaries containing a script to run, and optionally a true/false server value to say
we need to redirect.

[386 1]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

So first in robot_modes.py, we'll change the mode_config to have this option. I've
skipped the middle options, but they will follow the same pattern of changes:

mode_config = {
"avoid_behavior": {"script": "avoid behavior.py"},
"circle_head": {"script": "circle_pan_tilt_behavior.py"},
"color_track": {"script": "color_track_behavior.py", "server":
True},
"face_track": {"script": "face_track_behavior.py", "server": True},
"manual_drive": {"script": "manual_drive.py", "server": True}

The new manual drive behavior has been added here. (You will need to follow the pattern
inmenu_config to get new options to show).

In the previous example code, the last three behaviors have the "server": True setting.
We now need to modify the . run method to use this changed structure and pick out the
script. While there, we'll also make it stop any still running process when a new one starts;
the return value is also redundant, so I've removed it:

def run(self, mode_name) :
"""Run the mode as a subprocess, and stop any we still have one
running"""
while self.is_running():
self.stop()
script = self.mode_config[mode_name] ['script']
self.current_process = subprocess.Popen (["python", script])

Next, we need a method to check whether we should redirect, based on the flag of the
mode being True, and the current process still being alive. Note the explicit is True, this
makes it clearer that the value is a True/False flag:

def should_redirect (self, mode_name):
return self.mode_config[mode_name] .get ('server') is True and
self.is_running()

[387]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

We have prepared robot_modes.py; the menu_server.py file is where the menu flask
app runs, which will need to perform the redirect. We will use the request object,
modifying the port on url_root again, but we will also wait a few seconds so the child
app has a chance to start running. Add these imports to menu_server.py:

import time
from flask import Flask, render_template, redirect, request
from robot_modes import RobotModes

Now, we can set up our run handler to redirect when the mode intends:

@app.route ("/run/<mode_name>")
def run (mode_name) :
Use our robot app to run something with this mode_name
mode_manager.run (mode_name)
if mode_manager.should_redirect (mode_name) :
Give the other process time to start
time.sleep(3)

The 3-second sleep is so our child service can be running before we direct a user there. You
may need to make this longer if it's not fast enough. Before redirecting, it's worth checking
that the child process is actually running. It's possible that for some reason it failed to run,
so we should not redirect to it. We can ask our mode_manager if the process is running;:

If it's not broken
if mode_manager.is_running() :

Now, we can perform the redirect, replacing the port number:

Now redirect
new_url = request.url_root.replace('5000', '5001')
return redirect (new_url)

[388]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

This leaves the question of what to do if it failed. The answer is to show our menu again,
but with a message to signal the failure. At the end is the fallback to our normal, non-server
behavior, which says that the process is now running;:

else:
return render_menu (message="%s dead." % mode_name)

o

return render_menu (message="%s running" % mode_name)

Styling the menu

Our menu now works, but if we are driving this with a phone, the links are not very
phone/touch-friendly. We suggested we might be able to reuse the stylesheet in the menu.
Before we start, add the following cache behavior so we see fresh styles as we did in
image_app_core.py. Add the following to menu_server.py

Qapp.after_request
def add_header (response) :
response.headers|['Cache-Control'] = "no-cache, no-store, must-

revalidate"
return response

Making the menu template into buttons

Before we change anything in the menu template, we should load our stylesheet into it.
Open up templates/menu.html and add the link to that file. We can add a charset

definition too:

<head>

<meta charset="UTF-8">

<title>My Robot Menu</title>

<link rel="stylesheet" type="text/css" href="/static/display.css">
</head>

The menu template currently uses a list of items for the menu. We can add a class to that
list to make it a menu type list, and the button class to the links so we can style them:

[389]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

<ul class="menu">
{% for item in menu %}
{{ item.text
Yi</1i>
{% endfor %}
Stop</1li>

Save this, and we will then need to open up the static/display.css stylesheet to define
what a list with the menu class looks like. The .button selector is already covered. We will
make the list container fill the screen width, but without any extra margins (space around
the outside of the item) or padding (space between the inside of the item and its child list
items):

.menu {
width: 100%;
margin-top: O;
margin-bottom: O0;
padding: O;

Our menu consists of list items. Although it is a list of buttons, the default way it's
displayed is with a dot, a bullet point. We want to set this to none (no shape), and not
position based on the bullet point either. We can use CSS 1ist-style properties to change
that. The selector here applies to list items (11) that are children of a .menu class object:

.menu 1li {
list-style-type: none;
list-style-position: initial;

Finally, to make this nice and touch friendly, we can make the buttons a little wider, at the
same width. 60vw (60 percent of the viewport width) should do it. We use the margin auto
trick to center this. The buttons are .button class children. Finally, so we can see the
separate items, we add a 1-pixel light blue border to them:

.menu .button {
margin-left: auto;
margin-right: auto;

[390]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

width: 60vw;
border: 1lpx solid lightblue;
}

Upload the whole directory again, and start the menu server with python
menu_server.py. You could embellish the CSS by adding round buttons or putting
spacing between the buttons. You should be able to click on the tracking or driving
behaviors and after 3 seconds be redirected to their page. Clicking the exit buttons or link
should take you back to the menu.

Once you have tested this out on a desktop, you are ready to try it on your phone.

Making it start when the Pi starts

You now have a menu system to launch your robot behaviors, and a set of compatible
behaviors in it. Although using ssh to log in is great to debug, see problems, and fix them, if
you want to demonstrate your robot, it is even better to turn on your robot, point your
phone browser at it once the lights stop blinking, and go.

We are going to do two things to make this useful:

e Use an LED to indicate that it's ready (in menu mode) to allow the robot to tell us
before our phone has linked to the page

e Use systemd to automatically start the menu Flask server when the robot is
switched on

Adding lights to the menu server

We won't want the whole robot system added to our menu, but the lights alone can be used
to indicate our robot is now ready. We will import the LED system, turn it on as the server
starts, and then turn it off/release it when the first mode/run request arrives.

Open the menu_server.py file, and we can import the LEDs:

from robot_modes import RobotModes
from leds_8_apalO2c import Leds

[391]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

We need to set up our LEDs and turn one LED green:

Prepare our robot modes for use
mode_manager = RobotModes ()

leds = Leds()
leds.set_one (1, [0, 255, 0])
leds.show()

In our run method, we need to clear the LED. Since we only want to do it once, we can set
the global LEDs to None, and then check this next time:

def run (mode_name) :
global leds
if leds:
leds.clear()
leds.show ()
leds = None

You can test this by uploading the menu server code and running it again. The LED should
light when it starts, then when you select another behavior, it will go out. It should work
perfectly to move from the menu to the LED test behavior.

Using systemd to automatically start the robot

We encountered systemd in the voice control chapter as a way to automatically start the
PulseAudio system. Here, you can use systemd to start the menu when the Raspberry Pi is
ready. See additional reading for more information about Raspberry Pi systemd.

This is done by creating a unit file, which we will copy into place on our Pi.

Call this file menu_server.service. First we give it a description, and tell systemd to start
our service after we have networking on our Raspberry Pi:

[Unit]
Description=Robot Menu Web Service
After=network.target

[392]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

Now, we tell systemd we want this to start as the Pi is ready for users to log in:

[Install]
WantedBy=multi-user.target

The next section configures how to run our menu. The working directory should be the
place you have copied your robot files into. In my case, this is /home/pi/full_system.
The ExecStart statement tells systemd the command to run the service. However, it does
not assume a path the way a shell would, so prefix the python command

with /usr/bin/env:

[Service]
WorkingDirectory=/home/pi/full_system
ExecStart=/usr/bin/env python menu_server.py
User=pi

You will now need to set this up on the Raspberry Pi. First, upload it to your Raspberry Pi
home directory, then you'll need sudo to copy it into the system configuration. Type this
via SSH on the Pi. Note you will see permission errors if you miss the sudo:

$ sudo cp menu_server.service /etc/systemd/system/
We should now ask systemd to load our configuration, and then enable our service:

$ sudo systemctl daemon-reload
$ sudo systemctl enable menu-server

The system will confirm it is enabled with this:

Created symlink /etc/systemd/system/multi-
user.target.wants/menu_server.service —
/etc/systemd/system/menu_server.service.

You can then try starting your service with this:
$ sudo systemctl start menu_server

This may fail, and you will see Unit menu_server.service is not loaded
properly: Invalid argument if there are problems with the unit file. Please correct
them, copy it back over, and rerun the sudo commands to install the new file.

If starting this server is successful, you will see the green light go on, showing it is ready.
You will then be able to point your browser at the robot and control it.

[393]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

If you want to see more of what the server is doing, you can use this command:

$ systemctl status menu_server

And the Pi will respond with something like this:

® menu_server.service - Robot Menu Web Service
Loaded: loaded (/etc/systemd/system/menu_server.service; enabled; vendor
preset: enabled)
Active: active (running) since Wed 2018-11-07 21:59:26 UTC; 10s ago
Main PID: 16006 (python)
CGroup: /system.slice/menu_server.service
L—16006 python menu_server.py

Nov 07 21:59:26 myrobot systemd[l1]: Started Robot Menu Web Service.

Nov 07 21:59:26 myrobot env([16006]: * Serving Flask app "menu_server" (lazy
loading)

Nov 07 21:59:26 myrobot env[16006]: * Environment: production

Nov 07 21:59:26 myrobot env[16006]: WARNING: Do not use the development
server in a production environment.

Nov 07 21:59:26 myrobot env[16006]: Use a production WSGI server instead.
Nov 07 21:59:26 myrobot env[16006]: * Debug mode: off

Nov 07 21:59:26 myrobot env[16006]: * Running on http://0.0.0.0:5000/
(Press CTRL+C to quit)

This can show some recent activity, but you may want to follow the output of behaviors as
they run. To do this, you will need to use the journalctl command. Use —u to specify the
service we created, and then - £ to follow the log:

$ journalctl -u menu_server -f

We will then be able to see servers as they run. Perhaps not as convenient for debugging,
but handy for launching services. Use Ctrl + C to stop following.

You can now reboot the robot, wait for the green light, and start driving it. The green light
will also mean that your Mycroft Voice Assistant can send requests to the robot too.

If you upload new code, you will need to restart the service. You can use the following
command to do so:

$ sudo systemctl restart menu_server

Congratulations, your robot is now truly headless! It doesn't even need a PC or laptop to
start it doing things.

[394]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

Enhancement Ildeas

You could enhance the system in many ways. Adding a shutdown menu link will mean
you could more gracefully shut down the Pi, where it would start the command sudo

poweroff.

You could consider changing the menu to a grid, by using the menu space differently, as
you may need to scroll to get there.

For desktop compatibility, the manual driving system could be enhanced with keyboard
interactions to drive the robot, which are not quite as fun as the phone, but a handy
fallback.

Summary

Your robot has now gained the ability to be driven manually. It may take you a while to get
used to handling it, and manually correcting for veer (motors behaving slightly differently)
is harder than when the PID systems correct themselves, but you will gain skills at driving
it with your phone. You can use the camera on the front of the robot to get a robot's-eye-
view of the world.

You've also seen how to connect your menu server up to the video server apps such as
manually driving, color tracking, or face tracking. By making the buttons more touch
friendly on the menu server, you can use a phone to launch most behaviors.

Finally, we gave the menu server a way to indicate being ready on the robot with an LED,
and then set it up to start automatically when the robot is turned on. If your robot and
phone can connect to the same network (perhaps you can set up your phone hotspot in a
wpa_supplicant.conf file), you will be able to launch the behaviors from places outside
your lab and demonstrate them to people.

In the next chapter, we will look at meeting the robot-making community, where to find
further skills in robot building, and programming so you can continue building.

[395]

Programming a Gamepad on Raspberry Pi with Python Chapter 15

Questions

These questions should help you check your understanding;:

A S o

What is a static file?

What does the path: prefix mean for a section of a Flask route?
What is the unit vw in CSS, and why do we use it?

How do you get events when a screen is touched in JavaScript?
What do the selectors .button and #video mean for CSS/jQuery?

In the systemd service file, what does the
statement After=network.target intend?

Further reading

To find out more about the topics covered in this chapter:

The Flask API documentation (http://flask.pocoo.org/docs/1.0/api/)is
highly recommended, both to help understand the Flask functions we've used,
and to see other ways this flexible web server library can be used.

For a more guided look at the Flask web server, Isuggest reading Flask By
Example, by Gareth Dwyer, showing you how to build more involved web
applications using Flask.

CSS selectors are used throughout HTML, CSS, and JavaScript applications. A
good combination of reference and tutorial can be found at the W3C Schools CSS
Selectors (https://www.w3schools.com/cssref/css_selectors.asp) website. I
would recommend exploring the site for its information on most web application
technologies. For CSS units, see W3C Schools CSS Units (https://www.
w3schools.com/cssref/css_units.asp) to practice and find more types of units
to use.

For getting more familiar with the JavaScript, CSS, and HTML technologies used
here, freeCodeCamp (https://www.freecodecamp.org/) is a valuable resource,
with self-learning modules.

Raspberry Pi has handy documentation on user systemd files at https://www.
raspberrypi.org/documentation/linux/usage/systemd.md. The Redhat
Administrators Guide - Creating And Modifying systemd Unit Files (https://access.

redhat .com/documentation/en-us/red_hat_enterprise_linux/7/HTML/system_
administrators_guide/secthanaging_Services_with_systemdenit_Files) is
a very comprehensive reference on the different sections and statements.

[396]

http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
http://flask.pocoo.org/docs/1.0/api/
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.w3schools.com/cssref/css_units.asp
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://www.raspberrypi.org/documentation/linux/usage/systemd.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-Managing_Services_with_systemd-Unit_Files

16

Taking Your Robot
Programming Skills Further

You've now learned some of the basic building skills and some of the more interesting
programming tricks with robotics. But this robot is only really suitable for a lab, it's not
really ready for competitions or touring, and this is only the start of a robotics journey.
There is also a large community of robot builders and makers, coming from many angles.
How can you be part of this?

In this chapter, you will learn about the following:

e Where to find other people building robots online and become part of
communities

Where to actually join and share spaces with other robot builders and
demonstrate or build with them

Further building skills and where to continue learning about robot construction

Places to develop knowledge about OpenCV and computer vision

Where further study is available on machine learning and Al

Online robot building communities — forums
and social media

Robot building is a topic that shares space with the general community of makers. Makers
are everywhere. There are ham radio and electronics enthusiasts who are more connected
with the electronics side of the robot building; there are artists who are using devices such
as the Arduino and Raspberry Pi to bring their creations to life. Teachers are using these
devices to show children the world of technology, or to assist in teaching other subjects to
them. There are also people with problems to solve, and brilliant and sometimes crazy
ideas to try out.

Taking Your Robot Programming Skills Further Chapter 16

Robotics can be part of the maker community, which has a very strong presence on social
media such as Twitter, Instagram and YouTube. Searching them for tags such

as #raspberrypi (https://twitter.com/hashtag/RaspberryPi), #arduino (https://
twitter.com/hashtag/Arduino), and #makersgonnamake (https://twitter.com/
hashtag/makersgonnamake) will reveal many of these conversations going on. A rallying
point is the @GuildOfMakers (https://twitter.com/guildofmakers) account on Twitter. I
talk about robotics making on my own account, @0rionrobots (https://twitter.com/
orionrobots), from which I follow many robot communities and share what that I myself
have been making.

Another part of the robotics community is far more focused on the Al side of robotics, with
specialist groups in visual processing, speech recognition with the various
implementations, and more advanced topics such as neural networks and deep learning, or
genetic algorithms. These communities may be close to universities and company research
bodies. For speech processing, the Twitter tags #mycroft (https://twitter.com/hashtag/
mycroft) and #voiceassistant (https://twitter.com/hashtag/voiceassistant?f=
tweetsvertical=default) will find these. For visual processing, the tags
#computervision (https://twitter.com/hashtag/computervision?f=tweetsvertical=
default) and #opencv (https ://twitter.com/hashtag/opencv?f=tweetsvertical=
default) will find relevant conversations and blogs. Searching for TensorFlow and machine
learning will help. The YouTube channel ComputerPhile (https://www.youtube.com/user/
Computerphile) has some great videos on the concepts and theory.

Finding Twitter feeds from universities involved, such as MIT Robotics (https://twitter.
com/MITRobotics?lang=en), CMU Robotics Institute (https://twitter.com/cmu_
robotics?lang=en), and The Standford Vision and Learning Lab at http://svl.stanford.
edu/ will reveal some amazing projects. Industrial robotics companies tend to be less
helpful to makers, but can be a source of inspiration.

Robot parts vendors online often have great projects along with community influence. In
the UK, we have Pimoroni (https://blog.pimoroni.com/), 4Tronix (http://4tronix.co.
uk/blog/), and Coolcomponents (https://coolcomponents.co.uk/blogs/news), to name
only a few. In the US, there is Adafruit (https://blog.adafruit.com/) and Sparkfun
(https://www.sparkfun.com/news). Finding these vendors on social media will often reveal
robotics and maker discussion, as well as sources for parts and projects.

The online Instructables (https://www.instructables.com/) community shares many
projects, including robotics builds and other things to make that will help a robot maker,
either in experience or tooling. The Hackaday (https://hackaday.com/) website also has
many great stories and tutorials.

[398]

https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/RaspberryPi
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/Arduino
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/hashtag/makersgonnamake
https://twitter.com/guildofmakers
https://twitter.com/guildofmakers
https://twitter.com/guildofmakers
https://twitter.com/guildofmakers
https://twitter.com/guildofmakers
https://twitter.com/guildofmakers
https://twitter.com/guildofmakers
https://twitter.com/guildofmakers
https://twitter.com/guildofmakers
https://twitter.com/orionrobots
https://twitter.com/orionrobots
https://twitter.com/orionrobots
https://twitter.com/orionrobots
https://twitter.com/orionrobots
https://twitter.com/orionrobots
https://twitter.com/orionrobots
https://twitter.com/orionrobots
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/mycroft
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/voiceassistant?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/computervision?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://twitter.com/hashtag/opencv?f=tweets&vertical=default
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/MITRobotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
https://twitter.com/cmu_robotics?lang=en
http://svl.stanford.edu/
http://svl.stanford.edu/
http://svl.stanford.edu/
http://svl.stanford.edu/
http://svl.stanford.edu/
http://svl.stanford.edu/
http://svl.stanford.edu/
http://svl.stanford.edu/
http://svl.stanford.edu/
http://svl.stanford.edu/
https://blog.pimoroni.com/
https://blog.pimoroni.com/
https://blog.pimoroni.com/
https://blog.pimoroni.com/
https://blog.pimoroni.com/
https://blog.pimoroni.com/
https://blog.pimoroni.com/
https://blog.pimoroni.com/
https://blog.pimoroni.com/
https://blog.pimoroni.com/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
http://4tronix.co.uk/blog/
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://coolcomponents.co.uk/blogs/news
https://blog.adafruit.com/
https://blog.adafruit.com/
https://blog.adafruit.com/
https://blog.adafruit.com/
https://blog.adafruit.com/
https://blog.adafruit.com/
https://blog.adafruit.com/
https://blog.adafruit.com/
https://blog.adafruit.com/
https://blog.adafruit.com/
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.sparkfun.com/news
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://hackaday.com/
https://hackaday.com/
https://hackaday.com/
https://hackaday.com/
https://hackaday.com/
https://hackaday.com/
https://hackaday.com/
https://hackaday.com/

Taking Your Robot Programming Skills Further Chapter 16

YouTube channels to get to know

First, my own: orionrobots (https://www.youtube.com/orionrobots). I share many of my
robot builds, experiments with sensors, and code on the channel. I put the code on GitHub
with the intent that people can learn from and build on my ideas.

The maker James Bruton (https://www.youtube.com/user/jamesbruton), aka XRobots,
makes very complicated and large 3D printed robotic builds, making in his own home
creations that rival the great university robots, robotic costumes with real functionality, and
self-balancing walkers.

The Ben Heck show (https ://www.youtube.com/playlist?list=
PLWwOSCTSLTkijtGC2zFzQVbFnbmLY3AkIa) is less robotics, more general making, including
robotics. This is far more focused on the maker side than the coding side, but is an
extremely inspiring resource.

Computerphile (https://www.youtube.com/user/Computerphile)is a YouTube channel
that has great videos on programming, including aspects of robotics, visual processing, and
artificial intelligence. It includes interviews with some of the great figures still around in
computing.

The Tested channel (https://www.youtube.com/user/testedcom) features Adam Savage of
the Mythbusters team, with very skilled makers doing in-depth builds and sharing their
work and techniques.

The vendors Makezine (https://www.youtube.com/user/makemagazine), Adafruit
(https://www.youtube.com/user/adafruit), Sparkfun (https://www.youtube.com/user/
sparkfun), and Pimoroni (https://www.youtube.com/channel/
UCuiDNTaTdPTGZZzHm0iriGQ) have YouTube channels (and websites) that are very tutorial-
based, and can help in getting to know what is available.

Technical questions — where to get help

For technical questions, Stack Overflow can help, with specialist areas for Raspberry Pi
(https://raspberrypi.stackexchange.com/), Electronics (https://electronics.
stackexchange.com/), and Robotics (https://robotics.stackexchange.com/). Quora
(https://hi.quora.com/) offers another question and answer community for technical
questions. Raspberry Pi has a forum at https://www.raspberrypi.org/forums/. MyCroft
has a community forum at https://community.mycroft.ai/.

[399]

https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/orionrobots
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/user/jamesbruton
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/playlist?list=PLwO8CTSLTkijtGC2zFzQVbFnbmLY3AkIa
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/testedcom
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/makemagazine
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/adafruit
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/user/sparkfun
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://www.youtube.com/channel/UCuiDNTaTdPTGZZzHm0iriGQ
https://raspberrypi.stackexchange.com/
https://raspberrypi.stackexchange.com/
https://raspberrypi.stackexchange.com/
https://raspberrypi.stackexchange.com/
https://raspberrypi.stackexchange.com/
https://raspberrypi.stackexchange.com/
https://raspberrypi.stackexchange.com/
https://raspberrypi.stackexchange.com/
https://raspberrypi.stackexchange.com/
https://raspberrypi.stackexchange.com/
https://electronics.stackexchange.com/
https://electronics.stackexchange.com/
https://electronics.stackexchange.com/
https://electronics.stackexchange.com/
https://electronics.stackexchange.com/
https://electronics.stackexchange.com/
https://electronics.stackexchange.com/
https://electronics.stackexchange.com/
https://electronics.stackexchange.com/
https://robotics.stackexchange.com/
https://robotics.stackexchange.com/
https://robotics.stackexchange.com/
https://robotics.stackexchange.com/
https://robotics.stackexchange.com/
https://robotics.stackexchange.com/
https://robotics.stackexchange.com/
https://robotics.stackexchange.com/
https://robotics.stackexchange.com/
https://robotics.stackexchange.com/
https://hi.quora.com/
https://hi.quora.com/
https://hi.quora.com/
https://hi.quora.com/
https://hi.quora.com/
https://hi.quora.com/
https://hi.quora.com/
https://hi.quora.com/
https://hi.quora.com/
https://hi.quora.com/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/
https://community.mycroft.ai/

Taking Your Robot Programming Skills Further Chapter 16

OpenCV has a forum for technical questions following the Stack Overflow style at http://
answers.opencv.org/questions/.

Twitter is a more open format, where you can ask technical questions. To do so, be sure to
use hashtags for the subject matter, and perhaps tag some influential twitter robotics people
to help.

Video channels on the subject are good places to ask; of course, do watch the video to see if
the answer is there.

A trick for finding alternative tech and solutions on search engines is to type the first
technology you think of, then vs (as in versus) and see what completions are suggested.
This will give you new options and ways to solve problems.

Meeting robot builders — competitions,
makerspaces, and meetups

As you start to build more, meeting up with other makers is a must. First, you will gain
from the experience and knowledge in the community, but also there is a great social
aspect. Some events are free, but the larger ones will have fees associated with them, with
the best mix being free and regular local groups, with travel to larger gatherings
occasionally.

Makerspaces

Makerspaces — these spaces are for any kind of maker, be it robotics, crafting, arts, or radio
specialists. They serve as tool collectives with a collection of the tools a maker may need,
along with space to use them.

It is in these spaces you can expect to find a collection of 3D printers, laser cutters, lathes, a
full electronics bench, CnC machines (computer controller tools to cut material), and all
kinds of hand tools.

Some have the materials for making your own printed circuit boards (PCB's). Makerspaces
also have a community of people using the tools for their projects. People are there for the
community and are happy to share their experience and knowledge with anyone.

[400]

http://answers.opencv.org/questions/
http://answers.opencv.org/questions/
http://answers.opencv.org/questions/
http://answers.opencv.org/questions/
http://answers.opencv.org/questions/
http://answers.opencv.org/questions/
http://answers.opencv.org/questions/
http://answers.opencv.org/questions/
http://answers.opencv.org/questions/
http://answers.opencv.org/questions/
http://answers.opencv.org/questions/

Taking Your Robot Programming Skills Further Chapter 16

Makerspaces are a great place to learn about making and practice skills. Some, such as the
Cambridge Makerspace (https://twitter.com/cammakespace), have robot clubs. Around
me, I have the London Hackspace (https://london.hackspace.org.uk/), Richmond
Makerlabs (https://richmondmakerlabs.uk/), and South London Makerspace (https://
southlondonmakerspace.org/). Examples can be found in most major cities, for example,
in Mumbai there is the Makers Asylum (https://www.makersasylum.com/). Make magazine
has a Directory Of Makerspaces (https://spaces.makerspace.com/), although searching
Google Maps for makerspace and hackspace near you will probably yield results.

There are Makerspaces in many cities and towns around the world. They are also known as
maker collectives, Hackerspaces, and fab labs. They tend to want to be found on search
engines and social media, so should be easy to search for. If there are none in your area,
reaching out via social media to other makers may find like minds to organize small groups
like this yourself; just be clear on what a venue allows, as, for instance, soldering can be a
problem until a dedicated space is found with a large enough collective.

Maker Faires, Raspberry Jams, and Dojos

Maker Faires (https://makerfaire.com/)—many countries host these festivals of making,
where people gather to show and build things together, robotics often being a part of such
festivals. These can be one-day events, or camping festivals like the EmfCamp (https://
www . emfcamp . org/) in the UK. These are places to get started on new skills, show and tell
things you've made, and see what others have been making.

Raspberry Jams (https://www.raspberrypi.org/jam/) and Coder DOjOS (https://
coderdojo.com/) are groups that get together to regularly exercise their programming and,
sometimes, maker skills. A Coder Dojo is a community programming workshop. A
Raspberry Jam is a similar event, closely related to Raspberry Pi. They can be aimed at
adults and kids, so do find out what there is locally and what they are aiming at. Becoming
a mentor for kids at a Dojo or Jam is a great way to get to know other interested makers and
programmers.

They also tend to have quite inspiring Twitter feeds.

[401]

https://twitter.com/cammakespace
https://twitter.com/cammakespace
https://twitter.com/cammakespace
https://twitter.com/cammakespace
https://twitter.com/cammakespace
https://twitter.com/cammakespace
https://twitter.com/cammakespace
https://twitter.com/cammakespace
https://twitter.com/cammakespace
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://london.hackspace.org.uk/
https://richmondmakerlabs.uk/
https://richmondmakerlabs.uk/
https://richmondmakerlabs.uk/
https://richmondmakerlabs.uk/
https://richmondmakerlabs.uk/
https://richmondmakerlabs.uk/
https://richmondmakerlabs.uk/
https://richmondmakerlabs.uk/
https://southlondonmakerspace.org/
https://southlondonmakerspace.org/
https://southlondonmakerspace.org/
https://southlondonmakerspace.org/
https://southlondonmakerspace.org/
https://southlondonmakerspace.org/
https://southlondonmakerspace.org/
https://www.makersasylum.com/
https://www.makersasylum.com/
https://www.makersasylum.com/
https://www.makersasylum.com/
https://www.makersasylum.com/
https://www.makersasylum.com/
https://www.makersasylum.com/
https://www.makersasylum.com/
https://www.makersasylum.com/
https://www.makersasylum.com/
https://spaces.makerspace.com/
https://spaces.makerspace.com/
https://spaces.makerspace.com/
https://spaces.makerspace.com/
https://spaces.makerspace.com/
https://spaces.makerspace.com/
https://spaces.makerspace.com/
https://spaces.makerspace.com/
https://spaces.makerspace.com/
https://spaces.makerspace.com/
https://makerfaire.com/
https://makerfaire.com/
https://makerfaire.com/
https://makerfaire.com/
https://makerfaire.com/
https://makerfaire.com/
https://makerfaire.com/
https://makerfaire.com/
https://www.emfcamp.org/
https://www.emfcamp.org/
https://www.emfcamp.org/
https://www.emfcamp.org/
https://www.emfcamp.org/
https://www.emfcamp.org/
https://www.emfcamp.org/
https://www.emfcamp.org/
https://www.emfcamp.org/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://www.raspberrypi.org/jam/
https://coderdojo.com/
https://coderdojo.com/
https://coderdojo.com/
https://coderdojo.com/
https://coderdojo.com/
https://coderdojo.com/
https://coderdojo.com/

Taking Your Robot Programming Skills Further Chapter 16

Competitions

Robotics competitions are still fairly rare outside of academia. The FIRST (https://www.
firstinspires.org/robotics/frc) engineering initiative in the US is about getting schools
and colleges to build robots and compete, with a few sporadic FIRST teams outside the US.
FIRST challenges can be autonomous and manually driven. Most countries do have some
kind of Science Technology Engineering and Mathematics (STEM) available at https://
www.stem.org.uk/ arobotics competition which you will be able to find out about on the
internet; be sure to see if they are open to the general public or just schools.

In the UK, the PiWars (https://piwars.org/) competition is run annually and involves
many autonomous and manual challenges set around the Cambridge University School of
computing. It has a strong community element and is a great place to meet robot

builders as a competitor or spectator. The #piwars (https://twitter.com/hashtag/
piwars) Twitter tag has quite an active community discussing this, particularly when robot
makers are gathering to build and test robots before the event too. Another competition in
the UK is Micromouse, http://www.micromouseonline.com/, which is all about maze-
solving robots with other kinds of robots exhibited by makers too. Both also have small
robot markets. The annual Raspberry Pi parties are a fun get-together, but the focus is much
more on meeting and less on building together.

The Robotex (https://twitter.com/hashtag/PiWars) international robotics exhibition is
held in Estonia, and combines lots of show and tell with days of competitions and serious
prizes. They welcome robot builders working with electronics and Pis alongside Lego and
other materials.

As these require travel, you should probably consider a large-enough box, with bubble
wrap or packing foam, to safely transport your robot(s) to and from such events. I advise
that you remove the batteries to reduce the possibility of a stray wire causing a short and
packing them into a plastic bag to insulate them from any metal. I also recommend a field
repair kit with a breadboard, wires, spare batteries, a charger, all the screwdriver types,
replacement components for logic-level shifters, hook and loop tape, a standoff kit, and
possibly a multimeter. Robots often need a little tuning and repair when arriving at an
event.

[402]

https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.stem.org.uk/
https://www.stem.org.uk/
https://www.stem.org.uk/
https://www.stem.org.uk/
https://www.stem.org.uk/
https://www.stem.org.uk/
https://www.stem.org.uk/
https://www.stem.org.uk/
https://www.stem.org.uk/
https://www.stem.org.uk/
https://www.stem.org.uk/
https://piwars.org/
https://piwars.org/
https://piwars.org/
https://piwars.org/
https://piwars.org/
https://piwars.org/
https://piwars.org/
https://piwars.org/
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
http://www.micromouseonline.com/
http://www.micromouseonline.com/
http://www.micromouseonline.com/
http://www.micromouseonline.com/
http://www.micromouseonline.com/
http://www.micromouseonline.com/
http://www.micromouseonline.com/
http://www.micromouseonline.com/
http://www.micromouseonline.com/
http://www.micromouseonline.com/
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars
https://twitter.com/hashtag/PiWars

Taking Your Robot Programming Skills Further Chapter 16

Suggestions for further skills — 3D printing,
soldering, PCB, and CnC

As you build more robots, you will want to create more elaborate or customized systems.

So, to build a robot that is competition grade, you will need some additional skills in the
hardware building aspect—which are worth spending time on.

Design skills

We've used block diagrams and simple drawings. However, to become more serious about
robot building you'll want to design your own parts, or look further into how bought parts
will integrate. You will want to create cases, chassis, sensor mounts, brackets, wheel types,
and any number of parts. CAD (Computer aided design) is key.

2D design for illustration and diagrams

For 2D design and illustration, I recommend Inkscape (https://inkscape.org/). This is
more artistic than CAD-oriented, but if you want to make logos and other designs it is quite
handy. The Book of Inkscape: The Definitive Guide to the Free Graphics Editor by Dmitry
Kirsanov is highly recommended, and shows the principles of the system from the
perspective of a main developer on the project.

Draw.io (https://www.draw.io/) is useful for creating diagrams like the ones in this book.
You can combine these two systems using Inkscape to make new shapes to use in Draw.io.
Inkscape allows more freedom in terms of shape manipulation, but Draw.io is better for
placing shapes and connecting things.

3D CAD

It is thoroughly worth getting to know 3D CAD systems such as Fusion 360 (https://www.
autodesk.com/campaigns/fusion-360-for-hobbyists), OnShape (https://www.onshape.
com/products/free), and OpenSCAD (http://www.openscad.org/). OpenSCAD is totally
free, the others tend to have free entry-level CAD systems for makers.

3D CAD systems will let you design parts, and then create further designs to test
assembling them.

[403]

https://inkscape.org/
https://inkscape.org/
https://inkscape.org/
https://inkscape.org/
https://inkscape.org/
https://inkscape.org/
https://inkscape.org/
https://inkscape.org/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.draw.io/
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.autodesk.com/campaigns/fusion-360-for-hobbyists
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
https://www.onshape.com/products/free
http://www.openscad.org/
http://www.openscad.org/
http://www.openscad.org/
http://www.openscad.org/
http://www.openscad.org/
http://www.openscad.org/
http://www.openscad.org/
http://www.openscad.org/
http://www.openscad.org/
http://www.openscad.org/

Taking Your Robot Programming Skills Further Chapter 16

All of them will take some investment in time, and I recommend using tutorials and
YouTube videos to get to grips with them. The Makers Muse channel (https://www.
youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg) is a good place to start on this.

The following are book recommendations for 3D CAD:

e Fusion 360 for Makers by O'Reilly
e OpenSCAD for 3D Printing by Al Williams

The Thingiverse (https://www.thingiverse.com/) community share 3D designs for
printing and making, and one very effective technique can be to either draw inspiration
from, reuse, or repurpose creations seen there. If you can, import a bracket into Fusion 360,
add the particular holes/base or connectors you need; it could save hours of work trying to
model a mount for a sensor from scratch. The community will also have tips on printing
these. Alternatives are Pinshape (https://pinshape.com/) and GrabCad (https://

grabcad.com/).

Skills for shaping and building

Now you have CAD drawings of parts, you can send them to places to have them made, or
learn techniques for manufacturing them yourself.

As a general recommendation, the MIT How To Make Almost Anything (http://fab.
cba.mit.edu/classes/863.14/) course materials (which are updated annually) are a
fantastic resource for finding ways to put things together—although they look plain, the
links there are very useful. As mentioned in the social media section above, YouTube and
other channels are rich now with practical examples and hands-on tutorials for making
things.

Machine skills and tools

CnC Milling and 3D printing allow you create solid parts and can give great results,
however, each are a field of their own with many skills to learn on the way. Laser cutting
allows you to make flat parts, but with some ingenuity flat parts can be assembled (like so
many types of furniture) into sophisticated, solid 3D objects.

The Youtube channel NYC CNC (https://www.youtube.com/user/saunixcomp) covers a lot
of CnC tips and usage; however, the online book Guerrilla guide to CNC machining, mold
making, and resin casting by Michal Zalewski is also a brilliant resource.

[404]

https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.youtube.com/channel/UCxQbYGpbdrh-b2ND-AfIybg
https://www.thingiverse.com/
https://www.thingiverse.com/
https://www.thingiverse.com/
https://www.thingiverse.com/
https://www.thingiverse.com/
https://www.thingiverse.com/
https://www.thingiverse.com/
https://www.thingiverse.com/
https://www.thingiverse.com/
https://www.thingiverse.com/
https://pinshape.com/
https://pinshape.com/
https://pinshape.com/
https://pinshape.com/
https://pinshape.com/
https://pinshape.com/
https://pinshape.com/
https://pinshape.com/
https://grabcad.com/
https://grabcad.com/
https://grabcad.com/
https://grabcad.com/
https://grabcad.com/
https://grabcad.com/
https://grabcad.com/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
http://fab.cba.mit.edu/classes/863.14/
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp
https://www.youtube.com/user/saunixcomp

Taking Your Robot Programming Skills Further Chapter 16

For all of these machining techniques, I would not suggest going out and buying your own
to start, but to find out more about the local-community Makerspaces mentioned
previously and use the facilities they have there. Some libraries are also getting into this
with 3D printers and simple maker materials. Using these will be cheaper than buying your
own, you will be among a community of others with experience, and it will be far easier
than trying to go it alone.

If you just want the 3D printed, or laser cut parts, there are places online that will make
things for you. Ponoko (https://www.ponoko.com/), RazorLAB (http://www.razorlab.co.
uk/), 3DIng (https://www.3ding.in/), Protolabs (https://www.protolabs.co.uk/),
Shapeways (https://www.shapeways.com/), and 3D Hubs (https://www.3dhubs.com/) are
some of the companies that offer such services. Looking for 3D printing and laser cut
services in your region in a search engine will not be difficult, but it will still help to have
gained some experience through a Makerspace to understand what is and isn't possible
with these machines. Using the wrong machine for a job, or making the wrong design
decisions, could lead to huge costs.

3D printers, laser cutters, and CnC machines require routine maintenance and upkeep
tasks; for example, levelling a 3D print bed or tramelling the CnC chuck. They also require
consumables such as stock (plastic filament, wood to mill ,or laser cut), replacement
components, and bed adhesive materials. Unless you are printing a lot, it is rarely an
economy to own your own when you have access to another via a Makerspace or an online
market.

Hand skills and tools

Some basic woodworking and crafting skills are always handy. Practicing these at a
Makerspace will help you see how things can go together. With this comes knowing how to
choose wood that is suitable, as much wood is too soft, too heavy, or too irregular. Wood
can be carved by hand, or used in the aforementioned CnC machine.

Learning modelling skills, such as using plasticard, creating molds, and casting, are other
ways to make 3D parts. Plasticard is an inexpensive flexible material of varying thickness,
that can be easily cut by hand, perhaps using a printed template, and then assembled.

Woodworking can be used to create molds and makeshift robot chassis. Molds allow you to
make multiple copies or use materials in high quality parts. Casting can be tricky,
especially dealing with bubbles, but there are good books on the subject. For this, I
recommend the book Secrets of Expert Mold Making and Resin Casting by Karl K. Juelch, and
the Guerilla Guide To CnC mentioned in the machine tools section.

[405]

https://www.ponoko.com/
https://www.ponoko.com/
https://www.ponoko.com/
https://www.ponoko.com/
https://www.ponoko.com/
https://www.ponoko.com/
https://www.ponoko.com/
https://www.ponoko.com/
https://www.ponoko.com/
https://www.ponoko.com/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
http://www.razorlab.co.uk/
https://www.3ding.in/
https://www.3ding.in/
https://www.3ding.in/
https://www.3ding.in/
https://www.3ding.in/
https://www.3ding.in/
https://www.3ding.in/
https://www.3ding.in/
https://www.3ding.in/
https://www.3ding.in/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.protolabs.co.uk/
https://www.shapeways.com/
https://www.shapeways.com/
https://www.shapeways.com/
https://www.shapeways.com/
https://www.shapeways.com/
https://www.shapeways.com/
https://www.shapeways.com/
https://www.shapeways.com/
https://www.shapeways.com/
https://www.shapeways.com/
https://www.3dhubs.com/
https://www.3dhubs.com/
https://www.3dhubs.com/
https://www.3dhubs.com/
https://www.3dhubs.com/
https://www.3dhubs.com/
https://www.3dhubs.com/
https://www.3dhubs.com/
https://www.3dhubs.com/
https://www.3dhubs.com/

Taking Your Robot Programming Skills Further Chapter 16

Further interesting material skills, such as working with metal, allow for even bigger
robots. This means learning how to cut, shape, and weld metal parts. This is not needed for
most smaller robots.

Carbon fiber or Kevlar materials are really useful in fighting robots, but not the
autonomous kind we have been building in this book.

This is a place where the Instructables (https://www.instructables.com/) community
(briefly mentioned previously) will really help, with practical instructions and tutorials on
building things. You can either follow along complete projects, or just skim read for
techniques to borrow from them. As well as looking for robots, look at modelling
techniques (often similar), plasticard builds, woodwork, or metal work tutorials.

Electronics skills

The next thing is to extend your electronic skills. We have been using Raspberry Pi hats,
and modules to build our robots. This is fine when beginning, but starts to feel clumsy
when there are a lot of parts, with demands on space or fragile wiring making it far from
ideal. You'll note our wiring on the robot is very crowded.

Electronics principles

Learning more about the functions of the electronic components and common circuits will
help you understand your robot further, expand it, find ways to reduce the size, or
eliminate problems on the robot.

Power electronics will give you a better understanding of the motor controller and battery
regulation circuits in your robot. Digital electronics will let you connect other logic devices,
use new sensors, or aggregate them in useful ways. Analog electronics will also open up
new types of sensors and actuators, and give you tools to diagnose many electrical
problems that can crop up.

Learn how to draw, and read schematic circuits for the common parts. Online courses and
YouTube channels teach electronics step by step, with books such as Make: Electronics by
Charles Platt giving a very hands-on learning path.

The EEvBlog (https://www.eevblog.com/episodes/) channel is less step by step, but offers
more general immersion in electronic engineering concerns.

[406]

https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.instructables.com/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/
https://www.eevblog.com/episodes/

Taking Your Robot Programming Skills Further Chapter 16

Taking soldering further

Many more parts are available if you learn more soldering. Although we've done a little
soldering, it's just the bare minimum. Soldering is a skill that many makers use daily.

Good places to start are the Raspberry Pi guide to soldering (https://www.raspberrypi.
org/blog/getting-started-soldering/), The Adafruit Guide To Excellent Soldering (nttps:/
/learn.adafruit. com/adafruit7guide7excellentfsoldering), and the EEVBlog Soldering
tutorial (https://www.youtube.com/watch?v=J5Sb21gbpEQ).

I recommend starting in a local Makerspace, where you will be able to benefit from others,
and doing simple soldering projects. Soldering headers onto a module is a pretty basic way
to start, along with kits such as those made by Boltportclub (https://www.boldport.club/)
to stretch those skills a bit further. Soldering allows you to start thinking about creating
your own boards or Raspberry Pi hats.

You will start off soldering simple headers, and what are known as "through hole"
components, because they go through a hole in the board. This is the right type of
construction to gain confidence with the technique.

As you become more confident, you will find kits that use Surface Mount soldering. Surface
mount components do not have legs that go through holes, but simple metal pads that are
soldered directly onto copper pads on the board. They take up far less space, so allow for
smaller constructions, but they are also quite a lot more fiddly, and eventually require fairly
professional tools to do. The more simple surface mount components, such as LEDs,
resistors, and capacitors, can be soldered by hand. See the EEVBlog Surface Mount tutorial
(https://www.youtube.com/watch?v=b9FC9£A1£QE) for a starting point.

Devices with tens of pins may not work, and would require solder ovens and solder paste.
At that point, you may be making custom circuits and a PCBA (Printed Circuit Board and
Assembly) service might be the correct path.

Custom circuits

As you gain confidence with electronics and soldering, you will want to create more of
your own circuits, and transfer them onto more professional-looking PCBs, to save space
and perhaps make them easier to wire. Breadboards are good for learning and
experimenting, but they are not ideal for competing, and quickly become bulky and untidy,
while point-to-point wiring is fragile and prone to mistakes.

[407]

https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://www.raspberrypi.org/blog/getting-started-soldering/
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.youtube.com/watch?v=J5Sb21qbpEQ
https://www.boldport.club/
https://www.boldport.club/
https://www.boldport.club/
https://www.boldport.club/
https://www.boldport.club/
https://www.boldport.club/
https://www.boldport.club/
https://www.boldport.club/
https://www.boldport.club/
https://www.boldport.club/
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE
https://www.youtube.com/watch?v=b9FC9fAlfQE

Taking Your Robot Programming Skills Further Chapter 16

The first stage of custom, more-permanent circuits is using stripboard or perfboard and
soldering components onto them. This is definitely a good further step from breadboards,
and will save space. They can still be a little bulky and messy, though. You may also want
to use parts that are surface mounted, or have irregularly laid out legs of different sizes,
and don't fit conveniently on perfboard or stripboard.

To take your circuits to the next level, learning to design PCBs is the next path. You will be
able to save yet more space, have more robust circuits, and can now use tiny surface mount
parts. You could even design PCBs that are for light structural placement too.

Although for breadboards you can use Fritzing (http://fritzing.org/home/. It has been
used extensively in this book), I don't recommend it for schematic or PCB

work. To design these, software such as KiCad (http://kicad-pcb.org/) or Eagle
(https://www.autodesk.com/products/eagle/overview) are gOOd hobbyist tools. I
recommend the book KiCad Like a Pro by Peter Dalmaris.

You can use facilities at local Makerspaces to make PCBs or send them to board houses to
have them beautifully made, with fine tracks, lettering, and fancy colored soldermasks
(you'll see more such terminology in the field). Custom PCBs allow you to really tune the
layout to avoid any point-to-point wiring, work with tiny surface mount parts, add helpful
text right on the board for some wiring, and get a really professional look. Some even use
this to make other parts for the robot, structural parts, or front panels in PCB.

Finding more information on computer
vision
You've now started to see computer vision in Chapter 13, Robot Vision - Using a Pi Camera

and OpenCV. We used OpenCV to track colored objects and faces, but barely scratched the
surface of computer vision.

Books

To continue learning OpenCV, I recommend the book OpenCV with Python By Example by
Prateek Joshi, Packt Publishing. This uses computer vision to build augmented reality tools,
and to identify and track objects, and takes you through different image transformations
and checks, showing screenshots for each of them. It is also quite fun with lots of hands-on
code.

[408]

http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://fritzing.org/home/
http://kicad-pcb.org/
http://kicad-pcb.org/
http://kicad-pcb.org/
http://kicad-pcb.org/
http://kicad-pcb.org/
http://kicad-pcb.org/
http://kicad-pcb.org/
http://kicad-pcb.org/
http://kicad-pcb.org/
http://kicad-pcb.org/
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview

Taking Your Robot Programming Skills Further Chapter 16

Computer vision can be extended to 3D computer vision with the Kinect, which are tricky
to find as they are no longer made, but they have a 3D sensing system that make them
valuable for use in robots. They may still be found on eBay or at pre-owned game shops.
The O'Reilly book, Making Things See, is more oriented at desktop computers (it predates
the Raspberry Pi), but is a great place to become familiar with this awesome sensor.

Online courses

I have already recommended PyImageSearch (https://www.pyimagesearch.com/)

in chapter 13, Robot Vision - Using a Pi Camera and OpenCV as it contains some of the best
resources for learning OpenCV and experimenting with machine vision. It is a free
resource, but the maintainer of the website, Adrian Rosebrock, also has a book called Deep
Learning for Computer Vision with Python.

Learn Computer Vision with Python and OpenCV (https://india.packtpub.com/in/
application—development/learn—computer—vision—python—and—opencv—video)—iiPath
video that is a 1 hour and 20 minute-long course by Kathiravan Natarajan — dives in some
depth into many aspects, using the excellent Jupyter tool to experiment with image
transformations.

The TensorFlow Tutorials (https://www.tensorflow.org/tutorials/) website (a machine
learning framework) has tutorials specifically aimed at using it in computer vision. It is
certainly an interesting idea, but there may be simpler OpenCV pipelines. Training up
machine learning systems to perform visual recognition can take a lot of time and sample
data. It's worth noting that the Haar Cascade files we used have probably been optimized
with machine learning systems.

A further video course—Advanced Computer Vision Projects by Matthew Rever (https://
www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-
projects-video)—has further computer vision projects, culminating in using the
TensorFlow machine learning system to analyze human poses from camera input.

Social media

The twitter tags #computervision and #opencv were mentioned in the Online robot
building communities section, and they are a good place to ask questions or share your
work about the subject.

[409]

https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=39&action=edit#post_36
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://india.packtpub.com/in/application-development/learn-computer-vision-python-and-opencv-video
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/tutorials/
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video
https://www.packtpub.com/big-data-and-business-intelligence/advanced-computer-vision-projects-video

Taking Your Robot Programming Skills Further Chapter 16

Computerphile has a small Computer Vision playlist (https://www.youtube.com/watch?v=
C_zFhWdM4iclist=PLzH6n4zXuckoRdljS1M2k35BufTYXNNeF) explaining the concepts and
theory of some visual processing algorithms, but does not tend to dive into hands-on
implementation.

Extending into machine Learning

Some of the smartest sounding types of robotics are those involved in machine learning.
The code used throughout this book has not used machine learning, instead using well-
known algorithms. The PID controller is a system that makes adjustments to read a value,
but it is not machine learning. However, optimizing PID values might come from a
machine learning algorithm. We used Haar Cascades to detect faces; this was also not
machine learning, but a machine learning system was probably used to generate the
Cascades. Machine learning tends to be great at optimizing tasks and discovering and
matching patterns, but poor at making fully-formed intelligent-seeming behavior.

The basic overall idea with many machine learning systems involves having a set of
starting examples, with some information on which are matches and which are not. The
machine is expected to determine or learn rules on what is or is not a match. This may be a
fitness score, based on learning rules to maximise such a score. This aspect is known as
training the system.

For PID control system, fitness would be based on settling to the set point in the fewest
steps with little or no overshoot, based on training values from data — like machine
variations, response times, and speed.

Once again, I recommend the Computerphile AI Video playlist (https://www.youtube.
com/watch?v=t1S5Y2vm02clist=PLzH6n4zXuckquvnQOK1MDxyT5YE-SA8P s) video series for
getting to know the concepts around machine learning; it's not hands-on, but is more
focused on the ideas.

Machine learning can be quite focused on data and statistics, but the techniques learned can
be applied to sensor data to make this more relevant to robotics. There are many examples
of the TensorFlow system being used to build object recognition systems. Genetic
algorithms evolving solutions have been used to great effect for robot gaits in multi-legged
systems or finding fast ways to navigate a space.

[410]

https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=C_zFhWdM4ic&list=PLzH6n4zXuckoRdljSlM2k35BufTYXNNeF
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps
https://www.youtube.com/watch?v=tlS5Y2vm02c&list=PLzH6n4zXuckquVnQ0KlMDxyT5YE-sA8Ps

Taking Your Robot Programming Skills Further Chapter 16

Robot Operating System

Some of the robotics community make use of the Robot Operating System (ROS), refer
to—http://www.ros.org/. This is used to build common, cross-programming language
abstractions between robot hardware, and behaviors. It's intended to encourage common
reusable code layers for robot builders. Al systems built on top of this can be mixed and
matched with lower level systems. The behaviors/robot layers we have built allow some
reuse, but are very simplified compared with ROS.

The book ROS Programming: Building Powerful Robots by Lentin Joseph, et al covers linking
the TensorFlow Al system with ROS-based robotics.

For a simpler introduction, Robot Operating System (ROS) for Absolute Beginners: Robotics
Programming Made Easy by Lentin Joseph uses a combination of the Python and C++
programming languages to build a smart Al robot.

Summary

In this chapter, you learned about finding out who else and where else robots like this are
being made, and how to be part of those communities. You've also seen where to compete
with a robot, where to get more advice, and how to find information to progress the
different skills you've started building much further. In the next chapter, we will be
summarizing everything that we have learned throughout the book, with a view towards
building your next robot.

Further reading

The following are further practical robotics books available that I enjoy:

e 123 Robotics Experiments for the Evil Genius by Myke Predko: This is perhaps a
little dated, but spends time on the construction and workshop techniques along
with building electronics circuits. It doesn't really dig into code.

® Robot Programming: A Guide to Controlling Autonomous Robots by Tracey Hughes
and Cameron Hughes: A code-based investigation into robotic programming
techniques, based on the Java programming language. A colorful and well-
illustrated book. You will find the robot built in this book fits the criteria to start
programming in that book pretty well, with only a gripper needed to complete it.

[411]

http://www.ros.org/
http://www.ros.org/
http://www.ros.org/
http://www.ros.org/
http://www.ros.org/
http://www.ros.org/
http://www.ros.org/
http://www.ros.org/
http://www.ros.org/
http://www.ros.org/

Taking Your Robot Programming Skills Further Chapter 16

o Robot Building for Beginners by David Cook: This book leads you through building
"sandwich", a scratch-built robot based on a lunchbox. It is a little more maker-
and electronics-based but is quite a fun project to follow.

 Robot Builder’s Bonanza (4th Edition) by Gordon McComb: This was an influencial
book and is quite extensive in covering the ways to make a robot. This is the best
book for going beyond buying kits and into the construction of bigger and more
mechanically complicated robots.

[412]

17

Planning Your Next Robot
Project - Putting It All Together

You've now seen throughout this book how to plan, design, build, and program a robot.
We've covered many of the starting topics with some hands-on experience in them, an
example demonstrating the basics, and some ideas of how those could be improved. In this
chapter, we will think about your next robot. How would you plan and design it? What
skills might you need to research and experiment with? What would you build?

The following topics will be covered in this chapter:

e Visualizing your next robot — what will it look like?
e Making a block diagram — identify the inputs/outputs and parts it would need.

¢ Choosing the parts — what trade-offs will you think about to choose parts for the
robot?

¢ Planning the code — what software layers and components might this robot need,
what behaviors would be fun?

¢ Let the world know - how would you share your plans, or your robot, with
interested people?

Technical requirements

For this chapter, I recommend having some diagramming tools, a pen, and some paper. The
online tool Draw.io would be a good recommendation.

e Pen/pencils

e Paper - a sketchbook, like graph paper, is great, but the back of an envelope will
do

¢ A computer with internet and access to Draw.io

Planning Your Next Robot Project - Putting It All Together Chapter 17

Visualizing your next robot

When we started this book, in chapter 2, Exploring Robot Building Blocks - Code and
Electronics, we first learned how to look at robots as a sketch. I suggested that you make
quick drawings, as rough as you such as, with a pen, and then move on to more formal
block and layout diagrams later.

Every robot starts with a bit of inspiration. Perhaps there is a competition you want to try,
maybe you've seen something like another robot or an animal you want to mimic (crabs are
fascinating!). Other inspirations may come from seeing an amazing new part or sensor, or
wanting to learn/play with a new skill. You may even have made a list of amazing robots
you want to try and build.

Before building a robot, make a short bullet-point list of what it will do, what
sensors/outputs it will have, and what it might have to deal with. This lets you focus your
efforts. This is an example, which I made for my Spiderbot project (inspired by being sent a
six-legged robot chassis):

e It will have six legs (yes, an insect, not a spider)
o [will use it to experiment with legs and gaits
¢ It will be able to avoid walls

Your quick sketches could first be a basic six-legged stick drawing, with some squares at
one end to represent the ultrasonic sensor, and perhaps a few arrows with notes to depict
what they mean. You've seen this technique in detail in chapter 2, Exploring Robot Building
Blocks - Code and Electronics. My preferred first sketches are with a biro on graph paper,

but I'll use any paper I have, as shown in the following photo:

[414]

https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=40&action=edit#post_25

Planning Your Next Robot Project - Putting It All Together Chapter 17

Sketching your ideas on paper

Visualizing the robot can be made with 2D, 3D or profile sketches. Here are a few tips:

e Draw lightly, then follow through with firmer strokes when you are more
confident with the design.

¢ Annotate it a lot with anything that comes to mind.

e Don't worry about being to scale, dimensioning, or being a perfect drawing; this
is simply to capture your own ideas to flesh out.

e It can be a good idea to date it, and put a working name on it, even if you have a
better name later.

* Feel free to combine block style representations with sketchy visual versions.

¢ Keep a biro/pencil and notepad/scrap paper with you somewhere so you can
quickly jot down ideas. A whiteboard is great if you are near one. A pencil can let
you erase and rewrite, and a ballpoint pen is easy to keep in a bag or pocket.

¢ Get the big ideas down first, come back for detail. It's easy to get bogged down in
detail on one aspect, forget the other parts, and run out of time. You can always
make a tiny note to remind yourself.

[415]

Planning Your Next Robot Project - Putting It All Together Chapter 17

This process can be revisited at any time during the robot build, perhaps when you have
further ideas, when you have a problem you are solving, or want to refine it. Most ideas
start with some bullet points and a scribbled sketch; waiting for access to a computer or
trying to draw it perfectly will detract from the next amazing idea you already have in your
mind—get it down first.

Making a block diagram

Now you have a sketch of roughly what it will look like, recall how in chapter 2, Exploring
Robot Building Blocks - Code and Electronics and throughout the book we created block
diagrams showing the robot we built there. Any robot can be represented this way. This is
where you would have a block for each input and output, and then create controller and
interface blocks to connect them to. Don't worry at this stage about the diagram being
perfect, the main point is it conveys an idea of what will probably be connected to what. It's
also quite likely that the initial diagram will need some change as you build a robot and
come across constraints that you were not aware of.

Here are two stages of a block diagram for SpiderBot. I knew going in that each leg had
three motors, but not a lot else. The next image shows the diagram showing rough
connections, thrown together in a short time with Draw.io, from a biro-on-graph paper
sketch:

--
E Leg (Servo motors) ! @ E Leg (Servo motors) ! @
. .
. .
: Hip V-angle | | Hip H-Angle | Knee : : Hip V-angle Hip H-Angle | ' Knee :
' h ' H
LY | L
| pistance sensor @ /" | Distance Sensor

v

Controller
Leg 1 Leg2 Leg 1 (esp 8266) Leg2

Leg3 Leg4 Leg3 {—I_
Servo Controller
g
Y

Leg5 Leg6 Leg5

Leg 4

I3

Leg6

Thicker Line
- means 3 Pins

Spiderbot block diagram

[416]

https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=40&action=edit#post_25

Planning Your Next Robot Project - Putting It All Together Chapter 17

The other block diagram to consider is software, which we will visit in
the Planning the code for the robot section.

Choosing the parts

Now you have a rough sketch of the robot and the block diagram, you are ready to start
choosing the parts you would use to build a robot. Throughout this book, we have looked
at the trade-offs between different kinds of sensors, different chassis kits, controllers, and so
on. These are trade-offs on weight, complexity, availability (you don't want a part that is
irreplaceable), and cost, which were covered in detail in chapter 6, Building Robot Basics -
Wheels, Power, and Wiring.

If the robot has been inspired by a particular kit—for example, Spiderbot was inspired by
me being sent such a kit—then this will possibly constrain the other part choices you need
to make. It is clear that I'd need to support 18 servo motors, however, at the time of writing,
a 16-motor controller was available, so I elected to use two IO pins of my controller to deal
with it.

Another tradeoff was the controller. I knew that I'd want Spiderbot to be Wi-Fi enabled, but
it wasn't going to be doing visual processing, so a small, cheap, and low-power controller
like the ESP8266 was a great choice for it.

For power, I knew that it would require a lot of current for all those servos, but it wouldn't
be able to carry a great deal of weight, so a more specialist LiPo battery would be needed,
along with a charger/protection circuit.

When choosing the parts, consider how they will fit together: is there a clear path to
interfacing the choice of motor controller with your choice of main controller? Have these
two components been used together or are you prepared for the complexity of making a
new interface? Based on the parts you think you will buy, collect their dimensions, and try
making a test-fit diagram, as we did in chapter 6, Building Robot Basics - Wheels, Power, and
Wiring. This is best done before buying new parts.

It was then a matter of finding stockists to buy it. I do have some local favorites (such as
CoolComponents, Pimoroni, and ThePiHut), and you will find those in your region as you
build more. Looking for local Pimoroni, Sparkfun, Raspberry Pi, and Adafruit stockists will
help you find the right kind of store.

[417]

https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=40&action=edit#post_29

Planning Your Next Robot Project - Putting It All Together Chapter 17

Amazon, Alibaba, and eBay can also be used to find modules on their markets, but be very
clear what it is you are buying and how much support you will get. Individual parts can be
found at large stockists such as Element14, Mouser, RS, and Digikey; although they tend
not to have many prebuilt modules, they are reliable and have large catalogs.

This is mostly online. There may be high street sellers of electronics and mechanical parts,
but this is becoming rarer.

Another thing you may do is use parts from an existing stock, which you will build up as
you build robots. Toys can be hacked into robot chassis, motors can be salvaged from old
printers and electromechanical systems (with care). In this case, the test-fit diagram will

help you see what you may need to change to make things work with the salvaged parts.

Now, you are ready to assemble your new robot. The building guides in chapter ¢,
Building Robot Basics - Wheels, Power, and Wiring, and chapter 7, Drive and Turn -
Moving Motors with Python, along with the basic soldering guide in chapter 9, Programming
RGB Strips in Python, will get you started, although the additional reading and skills
suggested in Chapter 16, Taking Your Robot Programming Skills. Further will give you many
more options for assembling the robot.

Planning the code for the robot

Now you have the parts, and you've starting building the robot. The next thing to consider
is the code for the robot. We started planning code in layers in chapter 2, Exploring Robot
Building Blocks - Code and Electronics, and then explored this further in chapter 7, Drive and
Turn - Moving Motors with Python under the Robot object heading.

The general idea is to create layers of code in the system. For a basic robot, these layers
could be just functions or classes, and for a more complicated one, these may be different
software components talking on a shared software bus (like a message queue or as
connected services). The library we have already built will work for many small-wheeled
robots, with some refining as you gain experience with it, and behaviors can be adapted for
new sensors and outputs if you have kept the behavior separate from the hardware
concerns.

Use diagrams to draw the blocks and layers to express where those boundaries lie. Expect
to write code in modules and blocks that you link together, so each individual part can be
reasoned about. It should not be necessary to get lost in the details of an SPI databus
transaction when thinking about how to make pleasing LED patterns.

[418]

https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=40&action=edit#post_25
https://cdp.packtpub.com/learn_robotics___fundamentals_of_robotics_programming/wp-admin/post.php?post=40&action=edit#post_30

Planning Your Next Robot Project - Putting It All Together Chapter 17

Then you can also use diagrams to explore the behavior from a data-flow perspective, like
the PID and feedback diagrams used to express the behaviors in chapter 13, Robot Vision -
Using a Pi Camera and OpenCV, for the color object and face tracking behaviors, or as data
pipelines such as those in the same chapter showing the image transformations. Don't
expect to capture the whole story in one diagram; sometimes a few are needed to approach
the different aspects of the behavior.

Spend time to consider the tricky areas here, such as additional math that might be needed
if the sensor/movement relationship is complicated. You might not get it right the first time,
so building it and reasoning about why it behaved differently from your expectations will
be needed. This is where going and finding similar works on the internet, or reading one of
the may recommended books will yield a deeper understanding of what you are
attempting. In most cases, persistence will pay off.

There are formal representations for diagrams like flowcharts or the UML (Unified
Modelling Language) types. These are worth finding out about and learning as a resource
to draw upon for drawing. The Draw.io software has a nice library of diagram elements.
The most important aspect of a diagram is to convey the information—what is in your head
as you explore an idea must be expressed in a way that makes sense to you six months
later, or your team if you build a robot with a team.

Sometimes, building simple behaviors gives you a library to use for more complicated and
interesting ones, like our straight-line drive behavior was a building block to start on the
driving in a square behavior.

You can now program the robot, but be prepared to go around a few planning,
implementing, testing, and learning loops. Do not be disheartened by testing failures as
these are the best opportunities to learn. The most learning is done in planning and
determining test failures. If it all works first time, it's far less likely to stick with you. Each
behavior in this book took multiple attempts to get right, and tuning them is a trial and
eITor process.

Letting the world know

Your robot is now being built. You are bound to have questions about how to proceed and
problems to be solved — perhaps you've already encountered them before building. This is
the right time to get online and start linking with the robotics communities.

[419]

Planning Your Next Robot Project - Putting It All Together Chapter 17

Use Twitter and Stack overflow to ask questions, or even answer questions from other
robot builders. Use YouTube to share your creation, or the story of your build, and to see
other people's builds. You do not need to wait until you have a perfect polished product,
share the steps you've taken, the frustrations you have encountered, and even the failures
you've learned from—these make for some of the best stories, and as you fill find with
others, can be just the right motivation for someone else to keep on persisting with difficult
builds.

Use a combination of YouTube, Instructables, and blogs online to practice new skills, or,
better yet, get to a nearby Makerspace, Coder Dojo, or Raspberry Jam to practice new skills
with others who are also making and learning.

Being a robot builder will make you always a student, there is always more to learn in the
subject, not least because it is still an area of much research. There are people pushing the
boundaries of human knowledge in robotics, and you can push the boundaries of your own
skills and knowledge, while becoming a mentor and helper to extend the boundaries of
what others can do. Perhaps you will come up with kits, modules, and code to lower
barriers to entry, and you may also find new novel ways to use robotics or build a sensor
that pushes the boundaries of human knowledge. Whichever way it is, engaging with the
robot community is exciting, refreshing, and keeps you hunting for new stuff to try.

Testing your robot in lab conditions is okay, but the most rigorous testing happens outside,
at competitions and demonstrations. You will shake out new bugs, find new problems to
solve in these cases, as well as create a network of robot-building friends and peers.
Robotics has a stereotype of being a very solitary hobby or profession, but this need not be
the case as there are plenty of people making something, so go make with them.

Building with a team can be very rewarding and challenging. It will allow you to create
more ambitious builds than going alone. Getting involved in any of the communities,
especially local ones, will probably represent your best chance of finding team members.

Summary

You've now seen throughout this book how to build and program your first robot. You've
seen where to find out more and how to extend your knowledge. In this final chapter,
we've summarized what you've learned, and suggested how to use this to plan, build, and
program your next robot, as well as taking it on tour and being a member of the robotics
community.

You have reached the end of this book (other than the Appendix), but I hope this is just the
start of your robotics journey.

[420]

Appendix

Here you will find any extra information to help build your robot, or deal with some
problems that can crop up. It also has information on converting the robot code to run on
Python 3.

Finding parts

The parts in this book have been chosen because they are available in many locations and,
where possible, on the most common websites. You may have to try variations of the search
terms to find a part similar to the ones used — do cross-reference pictures to ensure the part
is the right type before ordering it.

The following is a starting point for searching for these (and other robot parts):

e Amazon: Most countries have a local Amazon, and many parts can be found
there.

¢ Alibaba/AliExpress: There are worldwide outlets for this, with electronics parts
from China easily available.

¢ eBay: eBay has many components and maker modules, although they can take
some time to arrive, and you need to read and check carefully what you are
ordering. Make sure you know that it will work, how much postage will be, and
when it should arrive.

e Mouser & Digikey: Major global electronics stockists. They occasionally have
maker modules of the type we've used in this book, but more often have plain
components.

¢ To find local retailers, look for stockists of Raspberry Pi, Arduino, Pimoroni,
Sparkfun, and Adafruit parts.

¢ As a last resort, you can look to import these yourself directly from the
aforementioned brands.

Appendix

Converting this code to Python 3

The code in this book is written in Python 2 and OpenCV 2.4.9. At the time of writing, these
were the defaults on Raspbian and provided the path of least resistance for getting the
reader up and running with building behaviors on the robot. OpenCV for Python 3 was a
many-hour compilation, although since the majority of the chapters were proofed, Piwheels
provides a less painful path to getting that working. This is with the exception of the
Mycroft section, for which Python 3 on the MyCroft assistant is the default and the path of
least resistance.

However, all the code on the robot can be adapted for Python 3, and has been tested with it.
The OpenCV parts do change a little, too.

Code could be backported and made polyglot, but it was felt that explaining this polyglot
code along with the behavior would obscure the code and make it harder to explain. So, I
have made sure it is in this Appendix; Python 3 is not being ignored, and when it is the
path of least resistance default, perhaps a further edition of the book with Python 3 as the
default would be likely.

The Python 3 code will be added to a Python 3 branch on the GitHub repository for this
book.

The rest of this section shows the major changes needed.

Integer division

In Python 2, using the single slash (/) division operator results in integers even if the result
is non integer, by rounding them. In Python 3, this is not the case. Since we are talking
about hardware, most hardware is being sent bytes of data that must be in integer form. So,
in places where we were relying on that integer division the code could be made explicit
with the double slash (/ /) operator, or better yet converting values to integers

with int (<some result>) where thatis needed.

Using int (<some result>) around an operation is compatible with both Python 2 and
Python 3.

[422]

Appendix

Print function

In Python 2, print is a keyword. It is used without parentheses, and introducing these will
lead to Python treating the parameters as a type of list (a tuple) and printing it like a list
(the way repr () behaves).

In Python 3, print has been made a function. The parameters will work the same way, but
must be wrapped in parentheses. Those that are already in parenthesis will now chain
together the parts of the list.

In the GitHub repository, I've added this: from __ future__ import print_function,
which means that the converted Python 3 code is multi-language and will work in Python 2
as well.

In the book code, print is mostly used for setup and debug. The print function actually
makes for more readable code, in that the \ line continuation character is not needed to put
many items in a print. It also allows print to be used as a callback, although I don't think
this is made use of this in the book.

Input/raw input

In one behavior, we test the servo motors and calibrate them by typing in angles. This is
done using the raw_input () Python 2 built-in.

In Python 2, the raw_input () built-in exists because an older form, input (), actually
executed code typed in, and is considered a bit of a security risk. It's strongly discouraged
in Python 2.

In Python 3, the input () built-in function now does what raw_input () did, and
the raw_input () symbol no longer exists. So, code needs to change to use that.

Python 2 compatibility
There is a Python library that can be installed with pip, called futures. In its features, you

canuse from builtins import input.

This will work in Python 2 and Python 3, making both treat input () the way Python 3
does, for making multi-language code.

[423]

Appendix

Ranges have become generators

When we setup LEDs in chapter 9, Programming RGB Strips in Python, we pass ranges to
the LED setting functions, and we reuse these ranges multiple times to set the same bunch
of LEDs. For an example of this, look at the line-following behavior with LED debug in
Chapter 9, Programming RGB Strips in Python.

In Python 2, the range () function creates a list. This is a list spanning all the numbers in
the range, which you can loop over multiple times without affecting the content. For
example, range (5) will create the [0, 1, 2, 3, 4] list.

In Python 3 the range () function creates generators. These are lists waiting to happen. We
used generators in the chapter on visual processing to get frames from a camera as they
came. However, in this context, if we store that range, then loop through it, it will be
exhausted, so couldn't be used multiple times. However, we actually want to use it multiple
times, so we want to create a list.

This is relatively easy, even in a way that works in both languages. Creating a 1ist
with range as its source of items is the main strategy:

>>> range (5)

range (0, 5) # this is a generator, it's not a list yet.
>>> list (range (5))
[0, 1, 2, 3, 4] # this is now actually a list

OpenCV versions

Closely related to using Python 3 is using a more recent version of OpenCV. This may
perform better but, at the time of writing, it is quite long-winded to install for Python 2.7. It
installs easily in Python 3 by using a PiWheel (prebuilt packages for Python on the
Raspberry Pi).

I'll assume that pip3 is the Python 3 pip installer:
$ sudo pip3 install picameral[array] numpy opencv-python

Following this, only one OpenCV function appears to have changed enough to require our
code to change.

[424]

Appendix

Find contours

In OpenCV 2.4.9 this function has the signature (arrangement of parameters and return
values) of:

contours, hierarchy = cv.findContours (image, mode, method[, contours][,
hierarchy[, offset]]]).

We copy the image because this function will modify the image with outlines as it finds the
contours in it.

In OpenCV 3, findContours now has a different return value:

image, contours, hierarchy = cv.findContours (image, mode, method][,

contours|[, hierarchy[, offset]]]).

The original image is not altered. An additional image (which can be ignored if you don't
want it: Python will dispose of it) is returned, which has the same changes the old OpenCV
version would have made.

With this changed, the code should now function well with OpenCV 3.

Power smoothing capacitor

When less-than-fresh batteries are used, power drawn for the wheel motors can cause the
servo motor to droop. While this may make for cute-looking behavior as though it's
shaking its head when reversing away from things or changing direction, it's not ideal and
means there are voltage drops as the motors pull lots of current. This is especially
noticeable if you have used alkaline batteries, that are not able to deliver as much current as
LiPo batteries can.

A capacitor is a component used to store power, almost like a battery. Using a large
capacitor between a ground pin and voltage pin on the servo motor pins can prevent this
voltage drop. I recommend a minimum for 470 uF, if not bigger, using an electrolytic
capacitor.

[425]

Appendix

The pattern is to use a jumper wire from the servo V-pin to the breadboard. At the
breadboard, wire this into an empty column. Then place the capacitor on the empty
column, with the leg painted with the "-" signs in one of the available ground rails. The
following screenshot shows how to do this:

The 5V/Vin Pin On The RGB LED Strip

LN L] L] LI L
/. L] L] L] L]
® & & 8 & & & 2 2 0 0 0 8 e e 00
e & & & & & 5 8 5 0 8 0 0 s 0 00
® & & & & & & & & 0 & s 0 s 0 00
e & & 8 & & 2 & 0 8 0 0 0 0 0 00
e & & & & & & & & 0 & & 0 0 0 b0
e & & & & & 5 & & & & 5 0 & 0 b 0
s & & & & & & 0 2 0 0 0 s 00
e 8 o 8 8 8 0 0 0 0 0 0 08 8 0 00
® & & & & & & & & 0 8 & 0 s 0 0
e & & 8 & & 2 0 0 0 0 0 0 0000
e & o 0 0 L] e o o e o o L]
e & & & L] e & o e o o L]

AV Pin On The Servo Header

‘Wiring in a capacitor

A capacitor smooths things by storing up some power, and then whenever there is a
shortfall, it will discharge this power, topping things up a little. The larger the capacitor
value, the higher the capacity it has to make up for a drop. Capacitors rate in Farads, with
the scientific suffixes denoting the scale of the number. So 470 uF or 470 microfarads is

470 x 10~°, This is a reasonably large capacitor. The servo drop caused by voltage drop off
should now be far less pronounced.

[426]

Assessments

Chapter 1, Introduction to Robotics

¢ What element of a robot is used to monitor its environment?
e Sensors

What type of robot element do motors represent?
e Qutputs

What are the three elements of a robotic system?
e Sensors, outputs, and controller

e Or electronics, mechanical parts, and code

Where have robots been operating the longest in regular usage?
e Inindustry

Why are wheels used more often than legs?
e They are more stable, simpler, and less can go wrong.

What is the principle connecting output, input, and control in a loop?
¢ Feedback

Why might a household washing machine be considered more robotic than a UK
Robot Wars entry?
¢ A washing machine uses sensors and feedback with code for
autonomous behavior. Robot Wars competitors are entirely
manually driven.

Chapter 2, Exploring Robot Building Blocks
- Code and Electronics

e What is an I/O pin?
¢ A pin you can connect inputs and outputs to on a controller — an
input/output pin
e What tools do you need to make a block diagram?
e A pen and paper

Assessments

What are the drawbacks of the laser ranging sensor versus the ultrasonic distance
sensor?
¢ The laser ranging sensor is sensitive to light conditions and more
expensive.

What type of system is a microphone?
e A sensor or an input

What kind of I/O pin is correct for measuring a varying resistance?
¢ An analog pin

What type of I/O pin would be suitable for detecting an on/off signal?
e A digital pin

Chapter 3, Introducing the Raspberry Pi -
Starting with Raspbian

e What is the name of the software we will be using on our Raspberry Pi?
¢ Raspbian (it is a Linux distribution and an operating system)

e What did we use to make the SD card?
e The Etcher spftware

e What is the CSI connector on the Raspberry Pi for?
e The Pi Camera module

e Which versions of the Raspberry Pi are recommended for use in this book?
e 3, 3B+, and possibly future versions

Chapter 4, Preparing a Raspberry Pi for a
Robot - Headless by Default

e What are the major items you would not leave attached to a headless computer?
¢ You would not leave a screen and a keyboard attached.

e If you gave your robot the hostname awesomegiantrobot, what address would
you use to reach it in PuTTY?
e awesomegiantrobot.local

e Why is it advisable to expand the filesystem on your Raspberry Pi?
¢ So that the whole of the SD card is used. The image from Raspbian
starts off using only a tiny fraction of the available space.

[428]

Assessments

¢ How do you properly shut down the Raspberry Pi?
e Type sudo shutdown -h now and wait for the lights to stop
flashing, then remove power.

Chapter 5, Backing Up the Code with Git and
SD Card Copies

For what reasons would you use source control?
¢ To keep your code for later

¢ To go back in history
e To try ideas

What would you use branching for?
e To try out ideas

¢ To go back to a working branch

Why keep SD card copies?
¢ So you can restore the whole system, including configuration

What reasons are there for editing files on another computer and uploading them
to the Raspberry Pi?
¢ You can choose your own editor

¢ You now have a copy of code in more than one place

Chapter 6, Building Robot Basics - Wheels,
Power, and Wiring

e Why is it a good idea when using multiple Raspberry Pi "hats" or bonnets to look
at their pin use?
e Hats may use the same I/O pins for different purposes, making
them incompatible.

e Why have we chosen to power the Pi separately from the motors?
e To avoid brown outs, resets caused by noise or voltage drops from
the motors

[429]

Assessments

e What are the consequences of too small a motor controller?
e It will overheat, causing it damage or to shut down.

e Why do I recommend test fitting before buying any parts?
¢ To ensure the parts will fit together on the chosen chassis

Chapter 7, Drive and Turn - Moving Motors
with Python

e Why do we use the atexit.register mechanism?
¢ To register a stop function, so the robot's motors will stop when
the code stops, even if there is an error

e How can we correct a motor going the wrong way?
e We can swap the two motor-lead connections for that motor at the
screw terminals.

e What are the main advantages of a common interface for a Robot object?
¢ We can build new behaviors on top of the object without writing
setup and translation code repeatedly.
e We can move our behaviors onto other motor controllers by
wrapping them in the same interface.

¢ How must the motors move (left and right) to make this robot turn?
¢ To turn, one motor must be going at a different speed from the
other.

¢ To spin, one motor should be going in the opposite direction from
the other.

Chapter 8, Programming Line-Following
Sensors Using Python

e What can happen if the test track is too shiny or not dark enough?
e The robot will fail to detect the track and may drive straight over it
or jitter as it partially detects it.

e What are the other names for GND or G pin?
¢ Ground, "-", negative, and "-ve"

[430]

Assessments

e Why would strong sunlight interfere with this sensor?
e Sunlight can flood the sensor with IR light, drowning out the
sensors' own beam.

¢ In event-driven programming, such as we've used in this chapter, what do you
call the section of code that will be called when an event is triggered?
e Code triggered by an event is known as a handler.

Chapter 9, Programming RGB Strips in
Python

¢ When soldering, do you heat the pad, the pin, or the solder?
* You heat the pad and pin first, so the solder melts and flows into
them.

e Why do you not connect the LED strip directly to the Raspberry Pi?
e The LED strip requires 5V and the Pi is running 3.3V. At best, it
will communicate poorly; at worst, it could damage the Pi. Use the
logic-level shifter.

e Why are we using fractions of the number of LEDs in the LED class for our
ranges?
e The number of LEDs in different strips and configurations can
change, for example, the LED Shim has 24 LEDs. This means one
behavior will work with different LED setups.

e What is the difference between a HSV color with a saturation of 0 and a
saturation at the full range?
¢ At saturation 0, the color will be gray or have nearly no color. At
the full range, the color will be very vivid.

Chapter 10, Using Python to Control Servo
Motors

e What does the acronym PWM stand for?
¢ Pulse Width Modulation: the means of controlling a device by
varying the size (or width in time) of pulses sent to the device

[431]

Assessments

e In terms of the Servo motor's internal mechanism, from what components is the
error calculated?
¢ The difference between the actual current position of the motor
and the requested position of the motor

e What is a servo "horn"?
¢ A small collar with arms to attach to a servo motor spindle to
convert its output into motion

e What could result from a servo being impeded when trying to reach a requested
position?
e It can lead to overheating and damage to the servo motor.

Chapter 11, Programming Distance Sensors
with Python

e What might interfere with a light-based distance sensor?
e Sunlight, florescent lighting, and other light based sensors — such
timing sensors used on tracks

¢ Why do we divide our speed of sound number by 2?
¢ Because the sound pulse has travelled from our robot to the object
and then back — twice the distance

e Why in the more complicated behavior has a variable delay been introduced?
¢ To ensure the robot drives back for some time and doesn't jitter

e Why could the robot still reverse into things?
e There are no rear sensors and the robot is not moving accurately
enough to construct a map.

Chapter 12, Programming Encoders with
Python

e What are the edge types we are counting with our encoder code?
e Rising and falling edge types, when signal goes up and goes
down

e Why should we not drive motors at 100% for these control systems?
¢ Because there will then be no unused capacity for adjustments:
there would be clipping

[432]

Assessments

What are some factors that encoders on the wheels/motors like this not account
for?

e Slipping/skidding

e Variations in the wheels themselves

Chapter 13, Robot Vision - Using a Pi
Camera and OpenCV

We used the HSV color system when tracking colored objects. Why would the
RGB color system not work for this?

e When tracking color, the ranges used to filter are looking for a
range of hues; for example, greens or reds. Tracking this in relation
to the green and blue elements on RGB colors is tricky and perhaps
not really viable.

PID controllers (or PI control) were used for both behaviors. On the color track
behavior we added an anti-windup measure, what would happen without this
limit?
¢ The integral sum would grow too high, which can cause the robot
to overshoot if the response takes time.

When performing computer vision, we use a low resolution for the images. What
are some of the reasons for choosing a low resolution?
e Less data to move around the system keeps the web app
responsive
e Faster processing times for the visual processing operations
¢ Reduces noise to the visual processing algorithms, otherwise
additional filters (for example, a Gaussian blur) may have to be
introduced

Why do we use Queues to send data between the processes in our system?
¢ Having multiple processes accessing the same data at the same
time can lead to unpredictable problems.

¢ The Python Multiprocess Queue structure is designed to be a safe
way to send data between processes.

What step is needed between using color filters to make a masked image and
generating enclosing circles for the remaining blobs?
e We generate "contours", outlines around the "blobs" of color found
in the image. These give lists of coordinates for each shape found.

[433]

Assessments

Chapter 14, Voice Communication with a
Robot Using Mycroft

e Why would the user define multiple variations for each vocabulary part?
e When you talk, you naturally use synonyms: different ways to say
the same thing. Without expressing those in the vocabulary file,
Mycroft is not able to pick them up.

Similarly, why would they do this for the dialogs?
e To make Mycroft's responses seem more natural, as it will
randomly pick synonymous phrases from the dialog

Why did we wrap our intent with a try/catch?
¢ So we can ensure that Mycroft speaks to us if it fails to contact the
robot, and logs the problem somewhere

What is the significance of the en-us string in the vocab/dialog file structures?
e This is a language code. Mycroft will be allowing other language
codes so it can be customized to many languages.

How did we make the Pi start the pulseaudio system when it boots?
* We used systemd with service, targeted to start before the
multiuser level.

Chapter 15, Programming a Gamepad on
Raspberry Pi with Python

e What is a "static" file?
e A static file is a file served by a webserver that is not generated or
changed, but just delivered as is to the browser. This is perfect for
JS, CSS files, or library files.

[434]

Assessments

e What does the path: prefix mean for a section of a Flask route?
e This can be used to denote that the route section matches a string
that may contain slash / separator characters, to put into a
variable, like the following example:

@app.route ('/control/<path:control_name>")
def control (control_name) :

What is the unit vw in CSS, and why do we use it?
e vw is an abbreviation for viewport width. It specifies things as a
percentage of viewport width. It is used so things can scale in
proportion to size of the screen we are looking at them with.

e How do you get events when a screen is touched in JavaScript?
* You pass a function or method to $ (<target
selector>) .on('touchmove', <function or method>).You
probably need to .bind the method.

What do the .button and #video selectors mean for CSS/jQuery?
e .button selects objects with class="button".

¢ #video selects an object with id="video™".

In the systemd service file, what does the After=network.target statement
intend?
¢ The service described will only be started after the network target
is reached, that is, networking is up and running on the Raspberry
Pi.

[435]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Artificial
Intelligence
for Robotic

Artificial Intelligence for Robotics
Francis X. Govers

ISBN: 978-1-78883-544-2

Get started with robotics and artificial intelligence
Apply simulation techniques to give your robot an artificial personality

Understand object recognition using neural networks and supervised learning
techniques

Pick up objects using genetic algorithms for manipulation

Teach your robot to listen using NLP via an expert system

Use machine learning and computer vision to teach your robot how to avoid
obstacles

Understand path planning, decision trees, and search algorithms in order to
enhance your robot

https://india.packtpub.com/in/hardware-and-creative/artificial-intelligence-robotics

Other Books You May Enjoy

Python
Robotics

Python Robotics Projects
Prof. Diwakar Vaish

ISBN: 978-1-78883-292-2

e Get to know the basics of robotics and its functions

Walk through Interface components with microcontrollers

Integrate robotics with the IoT environment

Build projects using machine learning

Implement path planning and vision processing
Interface your robots with Bluetooth

[437]

https://india.packtpub.com/in/hardware-and-creative/python-robotics-projects

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[438]

Index

3 wheels 87, 88
o CnC 403
3D printing 403 code structure
3D soldering 403 planning 34
A code, for testing motors
about 119
AA battery holder libraries, preparing 119
mounting 110 motor hat, finding 120, 121
absolute positioning 377 motors move, testing of motors 121
actuator 25 working 123, 124
advanced robots 9 code
Armbot bad configuration 74
building 20 broken/lost 73
displaying, for full headless 386
B Coder Dojo
batteries URL 401
adding 109 color systems, line follower robot
Baxter 16 about 189
behavior code, colored objects converting 190
about 320, 323, 324 hue 189
template 320 saturation 190
block diagram value 190
creating 416 colored objects
Bonjour For Windows behavior code 320
reference 57 behavior code, executing 326, 327
breadboard chasing 316, 317
wiring 225, 227 enhancing 329
information gathering 317, 318
C PID controller, enhancing 319
chassis kit red objects 318
. troubleshooting 328
conclusion 89 s
competitive robots 18
cost 89 mponents
motors 87, 88 co Iapnonin 13
selecting 85 P 9 e
o computer vision
simplicity 89
size 86 books 408

wheel count 86, 87 information gathering 408

online courses 409
social media 409
control message queue 368
controller modules 32
controller
design 364, 365
overview 364, 365
selecting 363
controllers 29, 31
CSS selector 377

D

dd command
cloning 82, 83
design skills
2D design, for diagrams 403
2D design, for illustration 403
3D CAD 403
about 403
dialog 342
display frame queue 368
distance sensor object
creating 234
distance sensors
wiring 224
distance traveled
detecting, in Python 269
encoders, adding to Robot object 271
millimeters 274
simple counting 269, 271
Draw.io
URL 403

E

educational robots 18
electronics principles 406
electronics skills

about 406

custom circuits 407

soldering, learning 407
EmfCamp

URL 401
encoders

about 258

attaching, to robot 262

[440]

direction and speed, encoding 260

preparing 264

Raspberry Pi, lifting up 263

types 258

using 258, 261

wiring, to Raspberry Pi 265,267, 268
Etcher

card, flashing 48

download link 48

obtaining 48

used, for writing SD card 49

F

falling edge 260

fiddle factors 163

flask 249

Full Function Stepper Motor Hat 93

G

General Purpose Input Output (GPIO) 29
Git
about 77
reference 77
GPIO Zero 155
ground, voltage, and signal (GVS) 200

H

Haar cascades
about 329
behavior, planning 332
behavior, using 337
code, for face tracking 333, 335, 336
objects, finding in image 329
troubleshooting 337
used, for detecting faces 329

hall sensors 142

hand skills 405

hand tools 405

handler 158

headless system 52, 53

hertz 199

high voltage 174

hobby robotics 18

household robots 14, 15

hue 189

image feed 367
image
features 331, 332
integral image 330
objects, finding 329
impressive robots 9
integral image 330
integral windup 319
intents 342
IO pins 29, 30

J

Jinja2 template system 251

K

Kismet 18

L

level shifting 224
light sensors
versus ultrasonic sensors 219
light strip technologies
attaching, to Raspberry Pi 172
comparing 169, 171
RGB values 172
used, for debugging line follower robot 187
line follower robot
debugging, light strip technologies used 187
LEDs 187
LEDs, adding 190
line sensors
attaching, to Raspberry Pi 142
attaching, to robot 142
construction plan 144
length, obtaining 145
optical line sensors 143
parts, used 144
sensor modules, mounting 146
wiring 147, 148, 151
line-following behavior
code, creating 162, 164
extraideas 166
sensors, adding to Robot object 160

troubleshooting 165
writing 159
linear actuators 26
Linux
backups, creating of SD card 81
logic level 173
low voltage 174

Mac
backups, creating of SD card 82
machine learning
extending 410
Robot Operating System (ROS) 411
machine skills 404
machine tools 404
Maker Faires
URL 401
Makerspaces 400
Mars rover robots 11, 12
menu
modes compatibility, creating with Flask
behaviors 386
styling 389
template, creating into buttons 389
upgrading 386
video services, loading 386
motor controller
conclusion 93
connectors 93
integration level 90
pin usage 91
selecting 90
size 91
soldering 92
motors
about 25
connecting, to Raspberry Pi 114, 115
troubleshooting chart 122
types 25, 26

Multicast Domain Name System (MDNS) 56

Mycroft, intent
code 359
dialog files 357
executing 360

[441]

file, requisites 356

file, settings 355

skill folder 357

vocabulary 359

vocabulary files, creating 356
Mycroft

about 341

base installation 347

connecting, to talk on sound card 348

installing, on Raspberry Pi 347
intent, adding 359
intent, building 353

skills, programming for robot functions 351

troubleshooting 351, 358
using 350

N

NumPy 303

O

objects
finding, in image 329
obstacle avoid behaviors
about 239, 242
creating 238
sophisticated object avoidance 242
odometry 258
Online robot building communities
about 397
technical questions 400
YouTube channels 399
OpenCV
about 302
app, building with tools 303

camera server app, overview 303, 304

CameraStream object 304, 305, 306

image server main app 307, 308, 309

libraries, installing 302
Pi Camera software, setting up 302

picture, obtaining from Pi camera 302

settingup 301
template, building 306, 307

visual processing, with behaviors 309, 310

OpenSCAD
URL 403

[442]

optical line sensors 142
optical sensors 142, 220

P

pan code
creating 210
pan mechanism
adding 203, 204
attaching, to robot 209
PCB 403
PI Controller
combined behavior, creating 284
constants, setting 283
distance, driving 282
unit conversions, refactoring into EncoderCounter
class 282
PID controller
about 277
enhancing 319
settings, tuning 327, 328
Piwars 19
power bank
mounting 110
pre-shared key (PSK) 55
process image 303
Pulse Width Modulation (PWM) 30, 197
PuTTY
reference 59
used, for connecting to Raspberry Pi 59

R

race condition 160
Raspberry Jams
URL 401
Raspberry Pi 3B+ 42
Raspberry Pi Camera
camera, attaching to pan mechanism 296, 297,
299
camera, attaching to tilt mechanism 296, 297,
299
camera, wiring 300, 301
settingup 295, 296
Raspberry Pi forums
reference 59
Raspberry Pi Hats 45

Raspberry Pi
Apple macOS 56
batteries, wiringup 116
behavior, writing 370
code, creating for sliders 380, 383
connectivity 42
driving 367
enhancing 395
executing 385
finding, on network 56
fitting 108
functionalities 41
headers on, soldering 174
headless access 52, 54
headless, making 54
image app core, enhancing 368
inaccessible 58, 59
independent power 118
initiating 391
LED strip, attaching to robot 176
LED strip, wiring 177, 179
light strip technologies, attaching 172
lights, adding to menu server 391
Linux 57
logic levels 173
makeshift switch 116
Microsoft Windows 56, 57
motors, connectingto 114, 115
motors, wiringup 116
networking 42
physical, installation 345
power 41
power switch, adding 179
preparing, for controller 367

Raspbian, installing for voice assistant 345

rebooting 66, 68, 69

recommended Raspberry Pi version 42

reconnecting 66, 68, 69
renaming 63, 64

respeaker software, installing 346
securing 65

setup, testing 57

shutting down 70

software, updating 69

sound input, adding 343

[443]

sound output, adding 343

speed 41

stylesheet 376, 379

SystemD, used for initiating robot 392
template 373, 376

used, for installing Mycroft 347

wires, connecting 117
wpa_supplicant.conf file 55, 56

Raspbian

about 46
configuring 61

rising edge 260
robot arms 16
robot base

completing 111

robot behaviors

executing 252, 254

menu modes, selecting 245
modes, managing 246
template 251

robot builders

about 400

Coder Dojo 401
competitions 402
Maker Faires 401
Makerspaces 400
Raspberry Jams 401

robot code

keeping, on PC 74
uploading 75

robot display code object

creating 180, 182
LEDs, adding 184
LEDs, testing 185
troubleshooting 186

robot object

about 129

Robot object

class, extracting 272

robot object

code 131,132,133,134
creating 130, 131

Robot object

device, adding 273
encoders, adding 271

Robot Operating System (ROS)
about 411

URL 411

robots, in home

household robots 14, 15
washing machine 12, 13, 14
robots, in industry

robot arms 16

warehouse robots 17

robots

about 8

as physical system 23

base, assembling 100, 101, 102
basis 9

building 419

cables, bringingup 107

castor wheel, adding 106

code, planning 418

components 24

concepts 276

drive_arc function 290

driving 276

ideas, viewing 292

Mars rover robots 11, 12

metal motor brackets 104
motors, assembling 102

parts, selecting 417

planning 35, 36, 37

plastic motor brackets 103
powering 94, 95, 96

Python PID Control object, creating 278
Raspberry Pi connections, using 42, 43, 44

script, writing to follow predetermined path 136,

137,138,139
similarities, with humans/animals 10, 11
steering 124, 128,129
straight line code 279
test fitting 96, 97, 98, 99
troubleshooting 281
visualizing 414
wheel movement, creating 286, 287, 290
wheels, assembling 102
wheels, fitting 106

[444]

S

saturation 190

Science Technology Engineering and Mathematics

(STEM) 402
script
obstacles, avoiding 234
SD card corruption 73
SD card
backups, making 79
flashing, in Etcher 48
preparing 46
writing, Etcher used 49
Secure File Transfer Protocol (SFTP) 74
sensor
about 25
adding, to robot class 237
types 27, 28, 29
sensors
calibrating 156
testcode 157
testing 155
troubleshooting 159
servo horn 199
servo motors
about 195, 196
calibrating 203
input positions, sending 197
positioning 199
testcode 201
SFTP tool FileZilla
reference 75
shutdown menu 395
skills
about 342
for building 404
for shaping 404
Skittlebot 19
slider updates 368
slug 247
solenoid 27
SSH
used, for connecting to Raspberry Pi 59
status indicators
displays 27

lights 27
sounds 27
steerable wheels 125,126
steering systems 128
steering
fixed wheels 127
steerable wheels 125, 126
types 125
sudo 70

T

tachometers (tachos) 258
test track
painting 153
tilt code
behavior, creating 213
creating 210
executing 215
servo object, adding to robot class 212
servo object, creating 210
troubleshooting 215
tilt mechanism
adding 203
attaching, to robot 209
kit, building 205, 206
trimpot 156
two sensors
using 221

U

ultrasonic distance sensor
reading 229, 231

ultrasonic sensor
attaching 222
distance sensors, wiring 224
reading 222
securing, to robot 223

troubleshooting 233
ultrasonic sensors 220
USB power bank 109
utterance 342

\"

value 190
visual processing
controllable behavior 313, 314
image server, executing 315
template 315
web app core 310, 311, 312, 313
with behaviors 309, 310
vocabulary 343
voice assistant
about 341
dialog 342
intent 342
noise 343
power 343
size and physical location 343
skills 342
speech to text 341
utterance 342
vocabulary 343
wake word 341
voltage 225

w

wake word 341

warehouse robots 16

washing machine 12, 14

webservice 249

Win32Disklmager
reference 79

Windows
backups, creating of SD card 80
backups, making of SD card 80, 81

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Robotics
	What does robot mean?
	Advanced and impressive robots
	Robots that look like humans and animals
	The Mars rovers

	Robots in the home
	The washing machine
	Other household robots

	Robots in industry
	Robot arms
	Warehouse robots

	Competitive, educational, and hobby robots
	Summary
	Questions
	Further reading

	Chapter 2: Exploring Robot Building Blocks - Code and Electronics
	Technical requirements
	What is inside a robot?
	Types of motors, sensors, and actuators
	Motors and actuators
	Status indicators – displays, lights, and sounds
	Types of sensors

	Controllers and IO
	IO pins
	Controllers

	Planning components and code structure
	Planning our robot
	Summary
	Questions
	Further reading

	Chapter 3: Introducing the Raspberry Pi - Starting with Raspbian
	Technical requirements
	What can the Raspberry Pi do?
	Speed and power
	Connectivity and networking
	The recommended Raspberry Pi version

	What connections will we use?
	Raspberry Pi Hats

	What is Raspbian?
	Preparing an SD card
	Flashing the card in Etcher
	Getting Etcher
	Using Etcher to write to the card

	Summary
	Questions
	Further reading

	Chapter 4: Preparing a Raspberry Pi for a Robot - Headless by Default
	Technical requirements
	What does headless mean and why?
	Setting up wireless on the Raspberry Pi and enabling SSH
	The wpa_supplicant.conf file

	Finding your Pi on the network
	Apple macOS
	Microsoft Windows
	Linux
	Testing the setup
	What if you cannot reach the Raspberry Pi?

	Using PuTTY or SSH to connect to your Raspberry Pi
	Configuring Raspbian
	Renaming your Pi
	Securing your Pi (a little bit)
	Reboot and reconnect
	Updating the software on your Raspberry Pi
	What is sudo?
	Shutting down your Raspberry Pi

	Summary
	Questions
	Further reading

	Chapter 5: Backing Up the Code with Git and SD Card Copies
	Technical requirements
	How code can be broken or lost
	SD card data loss and corruption
	Bad changes to the code or configuration
	Combinations

	Strategy 1 - keep the code on the PC and upload it
	Strategy 2 – using Git to go back in time
	Strategy 3 – making SD card backups
	Windows
	Mac and Linux
	Linux
	Mac
	Cloning with DD

	Summary
	Questions
	Further reading

	Chapter 6: Building Robot Basics - Wheels, Power, and Wiring
	Technical requirements
	Choosing a chassis kit
	Size
	Wheel count
	Wheels and motors
	Simplicity
	Cost
	Conclusion

	Choosing a motor controller
	Integration level
	Pin usage
	Size
	Soldering
	Connectors
	Conclusion

	Powering the robot
	Test fitting the robot
	Assembling the base
	Assembling the base, motors, and wheels
	Plastic motor brackets
	Metal motor brackets
	Adding the castor wheel
	Putting the wheels on
	Bringing the cables up

	Fitting the Raspberry Pi
	Adding the batteries
	The USB power bank
	Mounting the AA battery holder

	The completed robot base

	Summary
	Questions
	Further reading

	Chapter 7: Drive and Turn - Moving Motors with Python
	Technical requirements
	Connecting the motors to the Raspberry Pi
	Wiring in
	Independent power

	Writing code to test your motors
	Preparing libraries
	Test – finding the motor hat
	Test – the motors move
	Troubleshooting
	How does this code work?

	Steering a robot
	Types of steering
	Steerable wheels
	Fixed wheels
	Other steering systems
	Steering the robot we are building

	The robot object – code for our experiments to talk to the robot
	Why make this object?
	What will we put in the robot object?

	Write a script to follow a predetermined path
	Summary
	Questions
	Further reading

	Chapter 8: Programming Line-Following Sensors Using Python
	Technical requirements
	Attaching line sensors to the robot and Raspberry Pi
	What are optical line sensors?
	What other new parts will we use?
	Construction plan
	Getting the correct length
	Mounting sensor modules
	Wiring the sensor in

	Painting the test track
	Writing the code – testing the sensors
	Calibrating the sensors
	Test code
	Troubleshooting

	Writing the line-following behavior
	Adding the sensors to the Robot object
	Creating the line-following behavior code
	More troubleshooting
	Extra ideas

	Summary
	Questions
	Further reading

	Chapter 9: Programming RGB Strips in Python
	Technical requirements
	Comparing light strip technologies
	RGB values

	Attaching the light strip to the Raspberry Pi
	Logic levels
	Soldering headers on
	Attaching the LED strip to the robot
	Wiring the LED strip
	Adding a power switch

	Making a robot display code object
	Adding LEDs to the robot object
	Testing the LEDs
	Troubleshooting

	Using the light strip for debugging the line follower robot
	Line follower basic LEDs
	Color systems
	Hue
	Saturation
	Value
	Converting these

	Adding a rainbow

	Summary
	Questions
	Further reading

	Chapter 10: Using Python to Control Servo Motors
	Technical requirements
	What are servo motors?
	What is in a servo?
	Sending input positions to a servo motor

	Positioning a servo
	Code for turning a servo
	Calibrating your servos

	Adding a pan and tilt mechanism
	Building the kit
	Attaching the pan and tilt to the robot

	Creating pan and tilt code
	Making a servo object
	Adding the servo to the robot class
	Creating a behavior
	Running it
	Troubleshooting

	Summary
	Questions
	Further reading

	Chapter 11: Programming Distance Sensors with Python
	Technical requirements
	Choosing light versus ultrasonic sensors
	Optical sensors
	Ultrasonic sensors
	Why use two sensors?

	Attaching and reading an ultrasonic sensor
	Securing the sensors to the robot
	Wiring the distance sensors
	Voltages and level shifting
	Wiring the breadboard

	Reading an ultrasonic distance sensor
	Troubleshooting

	Avoiding walls – a script to avoid obstacles
	Making our distance sensor object
	Adding the sensor to the robot class
	Making the obstacle avoid behaviors
	First attempt at obstacle avoidance
	More sophisticated object avoidance

	Menu modes – choosing your robot's behavior
	Managing robot modes
	The web service
	The template
	Running it

	Summary
	Questions
	Further reading

	Chapter 12: Programming Encoders with Python
	Technical requirements
	What are encoders?
	Use of encoders
	Types of encoders
	Encoding direction and speed
	The encoders we will be using

	Attaching encoders to the robot
	Lifting up the Raspberry Pi
	Preparing the encoders
	Wiring the encoders to Pi

	Detecting the distance traveled in Python
	Simple counting
	Adding encoders to the Robot object
	Extracting the class
	Adding the device to the Robot object

	Turning ticks into millimeters

	Driving in a straight line
	Concepts for correction
	Creating a Python PID Control object
	Straight line code
	Troubleshooting this behavior

	Driving a specific distance
	Refactoring unit conversions into the EncoderCounter class
	Setting the constants
	Creating the combined behavior

	Making a specific turn
	The drive_arc function
	Further ideas

	Summary
	Questions
	Further reading

	Chapter 13: Robot Vision - Using a Pi Camera and OpenCV
	Technical requirements
	Setting up the Raspberry Pi Camera
	Attaching the camera to the pan and tilt mechanism
	Wiring in the camera

	Setting up OpenCV
	Setting up the Pi Camera software
	Getting a picture from the Pi
	Installing libraries
	Building our first app with these tools
	OpenCV camera server app overview
	The CameraStream object
	Building a template
	The image server main app

	Visual processing with behaviors
	Web app core
	Controllable behaviors
	The template
	Running the image server

	Colors, masking, and filtering – chasing colored objects
	Getting information about an object
	Caveat about red objects

	Enhancing the PID controller
	The behavior code
	The template
	The behavior

	Running the behavior
	Tuning the PID controller settings

	Troubleshooting
	Enhancements that you could make

	Detecting faces with Haar cascades
	Finding objects in an image
	Integral images
	Basic features

	Planning our behavior
	The code for face tracking
	Using this behavior
	Troubleshooting

	Summary
	Questions
	Further reading

	Chapter 14: Voice Communication with a Robot Using Mycroft
	Technical requirements
	Introducing Mycroft
	Speech to text
	Wake words
	Utterances
	Intent
	Skills
	Dialog
	Vocabulary

	Adding sound input and output to the Raspberry Pi
	Physical installation
	Installing Raspbian for the voice assist Pi
	Installing the Respeaker software

	Installing Mycroft on the Raspberry Pi
	Base installation
	Getting Mycroft to talk to the sound card
	Starting to use Mycroft
	Troubleshooting

	Programming Mycroft skills for the robot functions
	Building the intent
	The settings file
	The requirements file
	Creating the vocabulary files
	Dialog files
	Current skill folder

	Troubleshooting
	Adding another intent
	Vocabulary
	Code
	Running with the new intent

	Summary
	Questions
	Further reading

	Chapter 15: Programming a Gamepad on Raspberry Pi with Python
	Technical requirements
	When speech control won't work - why we need to drive
	Choosing a controller
	Design and overview

	Preparing the Raspberry Pi for our controller and driving with it
	Enhancing the image app core
	Writing the behavior
	The template (web page)
	The stylesheet
	Creating the code for the sliders
	Running this

	Upgrading the menu and displaying code for full headless
	Making menu modes compatible with Flask behaviors
	Loading video services
	Styling the menu
	Making the menu template into buttons

	Making it start when the Pi starts
	Adding lights to the menu server
	Using systemd to automatically start the robot
	Enhancement Ideas

	Summary
	Questions
	Further reading

	Chapter 16: Taking Your Robot Programming Skills Further
	Online robot building communities – forums and social media
	YouTube channels to get to know
	Technical questions – where to get help

	Meeting robot builders – competitions, makerspaces, and meetups
	Makerspaces
	Maker Faires, Raspberry Jams, and Dojos
	Competitions

	Suggestions for further skills – 3D printing, soldering, PCB, and CnC
	Design skills
	2D design for illustration and diagrams
	3D CAD

	Skills for shaping and building
	Machine skills and tools
	Hand skills and tools

	Electronics skills
	Electronics principles
	Taking soldering further
	Custom circuits

	Finding more information on computer vision
	Books
	Online courses
	Social media

	Extending into machine Learning
	Robot Operating System

	Summary
	Further reading

	Chapter 17: Planning Your Next Robot Project - Putting It All Together
	Technical requirements
	Visualizing your next robot
	Making a block diagram
	Choosing the parts
	Planning the code for the robot
	Letting the world know
	Summary

	Appendix
	Assessments
	Other Books You May Enjoy
	Index
	Humble bundle_Ad_CDP.pdf
	Table of Contents
	Humble Bundle
	Index

