

MQTT Essentials - A
Lightweight IoT Protocol

The preferred IoT publish-subscribe lightweight messaging
protocol

 Gastón C. Hillar

BIRMINGHAM - MUMBAI

MQTT Essentials - A Lightweight IoT
Protocol
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2017

Production reference: 1050417

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78728-781-5

www.packtpub.com

http://www.packtpub.com

Credits

Author

Gastón C. Hillar

Copy Editor

Muktikant Garimella

Reviewer

Ben Howes

Project Coordinator

Ulhas Kambali

Commissioning Editor

Smeet Thakkar

Proofreader

Safis Editing

Acquisition Editor

Reshma Raman

Indexer

Aishwarya Gangawane

Content Development Editor

Vikas Tiwari

Graphics

Abhinash Sahu

Technical Editor

Jijo Maliyekal

Production Coordinator

Arvindkumar Gupta

About the Author
Gastón C. Hillar is Italian and has been working with computers since he was eight. He
began programming with the legendary Texas TI-99/4A and Commodore 64 home
computers in the early 80s. He has a bachelor's degree in computer science (graduated with
honors), and an MBA (graduated with an outstanding thesis). At present, Gastón is an
independent IT consultant and freelance author who is always looking for new adventures
around the world.

He has been a senior contributing editor at Dr. Dobb’s and has written more than a hundred
articles on software development topics. Gastón was also a former Microsoft MVP in
technical computing. He has received the prestigious Intel® Black Belt Software Developer
award eight times.

He is a guest blogger at Intel® Software Network (h t t p ://s o f t w a r e . i n t e l . c o m). You can
reach him at gastonhillar@hotmail.com and follow him on Twitter at h t t p ://t w i t t e r .

c o m /g a s t o n h i l l a r . Gastón’s blog is h t t p ://c s h a r p m u l t i c o r e . b l o g s p o t . c o m .

He lives with his wife, Vanesa, and his two sons, Kevin and Brandon.

http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://software.intel.com
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://twitter.com/gastonhillar
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com
http://csharpmulticore.blogspot.com

Acknowledgment
At the time of writing this book, I was fortunate to work with an excellent team at Packt
Publishing, whose contributions vastly improved the presentation of this book. Reshma
Raman allowed me to provide her ideas for a book dedicated to MQTT, and I jumped into
the exciting project of teaching the features of one of the most important protocols for IoT
projects with examples in many different programming languages. Vikas Tiwari helped me
realize my vision for this book and provided many sensible suggestions regarding the text,
the format, and the flow. The reader will notice his great work. It’s been great working with
Reshma and Vikas in another project and I can’t wait to work with them again. I would like
to thank my technical reviewers and proofreaders for their thorough reviews and insightful
comments. I was able to incorporate some of the knowledge and wisdom they have gained
in their many years in the software development industry. This book was possible because
they gave valuable feedback.

The entire process of writing a book requires a huge number of lonely hours. I wouldn’t be
able to write an entire book without dedicating some time to play soccer against my sons,
Kevin and Brandon, and my nephew, Nicolas. Of course, I never won a match. However, I
did score a few goals.

About the Reviewer
Ben Howes is the founder and lead consultant at Zoetrope Ltd, a specialist IoT consultancy
and product development firm in the UK. Ben has been creating connected hardware for
over 10 years and has worked across projects spanning from start-ups to multinational
deployments.

I’d like to thank Richard Webb, my co-founder, for starting Zoetrope with me.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1787287815.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815
https://www.amazon.com/dp/1787287815

To my sons, Kevin and Brandon, and my wife, Vanesa

Table of Contents
Preface 1

Chapter 1: Lightweight Messaging with MQTT 3.1.1 and Mosquitto 8

Understanding convenient scenarios for the MQTT protocol 8
Working with the publish-subscribe pattern 11
Working with message filtering 13
Understanding the MQTT puzzle -- clients, servers, and connections 16
Installing a Mosquitto broker on Ubuntu Linux 21
Installing a Mosquitto broker on macOS 25
Installing a Mosquitto broker on Windows 26
Subscribing to topics 29
Publishing messages 34
Unsubscribing from topics 38
Working with best practices when creating topics 41
Understanding wildcards 43
Learning about the different Quality of Service levels 45
Working with at least once delivery 47
Working with exactly once delivery 50
Test your knowledge 55
Summary 56

Chapter 2: Securing an MQTT Mosquitto Server 57

Securing a Mosquitto server 57
Generating a private certificate authority to use TLS with Mosquitto 60
Creating a certificate for the Mosquitto server 65
Configuring TLS transport security in Mosquitto 69
Testing the MQTT TLS configuration with MQTT.fx 72
Testing the MQTT TLS configuration with MQTT-spy 74
Creating a certificate for each MQTT client 76
Configuring TLS client certificate authentication in Mosquitto 80
Testing the MQTT TLS client authentication with MQTT.fx 82
Testing the MQTT TLS configuration with MQTT-spy 84
Forcing the TLS protocol version 86
Test your knowledge 87
Summary 88

[ii]

Chapter 3: Controlling a Drone with Python 89

Understanding the requirements to control a drone with MQTT 89
Defining the topics and commands 90
Installing paho-mqtt for Python 92
Connecting the client to the MQTT server with Python 93
Understanding callbacks 96
Subscribing to topics with Python 97
Creating a class to represent a drone 100
Receiving messages with Python 104
Processing commands with Python 112
Sending messages with Python 119
Working with the network loop with Python 122
Test your knowledge 129
Summary 130

Chapter 4: Interacting with Sensors in Java 131

Understanding the requirements 131
Defining the topics and commands 133
Installing the Eclipse Paho Java Client 134
Creating a security helper class to establish a TLS secured connection 137
Configuring a TLS secured connection in Java 145
Working with asynchronous notifications and callbacks in Java 150
Subscribing to topics and understanding notification events in Java 154
Processing commands that interact with sensors in Java 156
Working with last will and testament in Java 162
Publishing messages with commands to target sensors 169
Test your knowledge 174
Summary 175

Chapter 5: Controlling Home Automation in JavaScript 176

Understanding the requirements 177
Defining the topics and commands to control home automation 178
Enabling WebSockets for a Mosquitto server 179
Testing WebSockets with the Eclipse Paho client JavaScript utility 180
Understanding the Eclipse Paho JavaScript asynchronous client 183
Creating an HTML 5 web page to control LEDs 184
Publishing messages to target remote devices in JavaScript 186
Processing the received messages in JavaScript 190
Working with WebSockets to connect to the MQTT server 192
Subscribing to topics in JavaScript 194

[iii]

Processing commands that interact with LEDs in Node.js 195
Running the home automation web application 199
Debugging asynchronous code with Chrome Developer Tools (CDT) in
JavaScript 205
Securing MQTT over WebSockets with TLS 207
Test your knowledge 210
Summary 211

Chapter 6: Interacting with Actuators in Swift 212

Understanding the requirements 212
Defining topics and commands 214
Enabling connections without TLS for a Mosquitto server 215
Installing the CocoaMQTT client library to create a new iOS app 216
Building the UI for the iOS app that will control an actuator 224
Understanding the CocoaMQTT client in Swift 3 232
Connecting to the MQTT server and subscribing to topics in Swift 235
Publishing messages to target actuators in Swift 239
Processing commands that interact with actuators in Node.js 241
Running the iOS app that controls an actuator with MQTT 245
Debugging events in Swift 247
Test your knowledge 249
Summary 250

Appendix: Exersise Answers 251

Chapter 1, Lightweight Messaging with MQTT 3.1.1 and Mosquitto 251
Chapter 2, Securing an MQTT Mosquitto Server 252
Chapter 3, Controlling a Drone with Python 252
Chapter 4, Interacting with Sensors in Java 252
Chapter 5, Controlling Home Automation in JavaScript 252
Chapter 6, Interacting with Actuators in Swift 253

Index 254

Preface
MQTT is the preferred IoT publish-subscribe lightweight messaging protocol. If you
develop IoT, web applications, mobile apps, or a combination of these solutions, you must
learn how MQTT and its lightweight messaging system work. Of course, it is extremely
important to take security into account when working with this protocol.
Most of the times, when you work with IoT solutions, you won’t be using a single
programming language. Instead, you will use a combination of different programming
languages and code running on different IoT boards that might use diverse operating
systems. MQTT has its own specific vocabulary and different working modes. Learning
MQTT is challenging because it includes too many abstract concepts that require real-life
examples to be easy to understand.
This book will allow you to dive deep into the latest version of the MQTT protocol: 3.1.1.
You will learn to work with Mosquitto MQTT server, command-line tools, and GUI tools to
allow you to understand how everything works with MQTT and the possibilities that this
protocol provides for your projects. You will learn security best practices and you will use
them for a Mosquitto MQTT server.
This book will provide you with examples in the following programming languages,
which are extremely popular in IoT, web applications, and mobile apps: Python, Java,
HTML 5, JavaScript, Node.js, and Swift 3. You will control a drone, interact with sensors,
control home automation, and interact with actuators by exchanging MQTT messages with
the different programming languages and client libraries.
You will be able to run the examples on a wide range of modern IoT boards, such as
Raspberry Pi 3, Raspberry Pi 2 Model B, Raspberry Pi Zero, Intel Joule, Intel Edison, and
Intel Galileo Gen 2. However, any other board that supports the programming languages
explained in the book will be able to run the samples.

What this book covers
Chapter 1, Lightweight Messaging with MQTT 3.1.1 and Mosquitto, starts our journey towards
understanding the MQTT protocol. You will learn convenient scenarios for this protocol,
the details of the publish-subscribe pattern, and message filtering. You will learn basic
concepts related to MQTT and understand the different components: clients, brokers or
servers, and connections. You will learn to install a Mosquitto broker or server on Linux,
macOS, and Windows. You will learn best practices related to topics and single-level and
multilevel wildcards. We will study in detail the different Quality of Service levels
supported by MQTT and when it is convenient to use each of them. We will analyze their
advantages and disadvantages.

Preface

[2]

Chapter 2, Securing an MQTT Mosquitto Server, covers generating a private certificate
authority, a server certificate, and client certificates to enable TLS transport security and
TLS client authentication with Mosquitto. Communications between the MQTT clients and
the MQTT server will be encrypted. We will work with OpenSSL to generate the digital
certificates. We will test the MQTT TLS configuration with MQTT.fx, MQTT-spy, and the
Mosquitto command-line utilities. We will force Mosquitto to use only a specific TLS
version. This way, we will understand how to encrypt communications between the MQTT
clients and the Mosquitto MQTT server.

Chapter 3, Controling a Drone with Python, analyzes the requirements for controlling a drone
with MQTT messages. We will define the topics that we will use and the commands that
will be part of the messages’ payloads to control a drone. Then, we will work with the Paho
Python Client to write Python code that connects an MQTT client to the MQTT server. We
will understand the methods we need to call for the Paho Python Client and their
parameters. We will analyze how callbacks work and we will be able to publish messages to
topics, subscribe to topic filters, and receive and process messages. We will write code that
processes commands for a drone with Python. The code will be able to run on different IoT
platforms, including Intel Joule boards and Raspberry Pi 3, and also on any computer that is
capable of executing Python 2.7.x or Python 3.x. We will work with the network loop for the
MQTT client in Python. We will work with a GUI utility, command-line-based utilities, and,
finally, with Python code to control the drone and display the feedback provided by the
drone.

Chapter 4, Interacting with Sensors in Java, analyzes the requirements for controlling sensors
wired to different IoT boards with MQTT messages and Java code. We will define the topics
that we will use and the commands that will be part of the messages’ payloads to control
sensors. We will take advantage of the last will and testament feature of MQTT with Java.
We will work with the Eclipse Paho Java Client to write Java code that will connect a non-
blocking (asynchronous) MQTT client to the MQTT server. We will create a security helper
class to establish a TLS secured connection, and we will work with asynchronous
notifications and callbacks in Java. We will subscribe to topics, understand how notification
events work, and we will write code that processes commands that interact with sensors.
Finally, we will work with a GUI utility to interact with our Java application through MQTT
messages. We will be able to turn on and turn off the sensors and retrieve data from them.

Preface

[3]

Chapter 5, Controlling Home Automation in JavaScript, analyzes the requirements to control
LEDs wired to different IoT boards with MQTT messages over WebSockets. We will define
the topics that we will use and the commands that will be part of the message’s payloads to
set the colors for LEDs. Then, we will create an HTML 5 web page combined with
JavaScript and the Eclipse Paho JavaScript asynchronous client to control LEDs. We will
write code to publish messages to target remote devices in JavaScript and we will be able to
process received messages to provide feedback to the user. We will work with MQTT.js to
write a Node.js script to process commands that simulate the interaction with LEDs on
different IoT boards. We will be able to run the home automation web application and
understand how all the pieces work together by exchanging MQTT over WebSockets
messages. Finally, we will understand the necessary steps to work with MQTT over
WebSockets with TLS.

Chapter 6, Interacting with Actuators in Swift, analyzes the requirements for controlling
actuators wired to different IoT boards with MQTT messages. We will define the topics that
we will use and the commands that will be part of the message’s payloads to turn on and
turn off motors. Then, we will create an iOS app with Xcode and Swift 3, combined with the
CocoaMQTT client, to control a motor. We will write code to publish messages to target
remote devices in Swift 3 and we will be able to process received messages to provide
feedback to the user. We will work with MQTT.js to write a Node.js script to process
commands that simulate the interaction with motors on the different IoT boards. We will be
able to run the iOS app and the Node.js script and understand how all the pieces work
together by exchanging MQTT messages.

What you need for this book
You will need any computer or device capable of running Python 3.x or greater, Chrome
56.x or greater, JDK 8 or greater, and Node.js 6.7.x or greater.

In order to work with Mosquitto 1.4.11 or greater, you will need a computer with any of the
operating systems supported by this version of Mosquitto. The list is available at h t t p s ://m

o s q u i t t o . o r g /d o w n l o a d /.

In order to work with Xcode 8.x, you will need a Mac computer capable of running OS X
10.11.5 or later, with 8 GB RAM.

https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/
https://mosquitto.org/download/

Preface

[4]

Who this book is for
This book is a great resource for developers who want to learn more about the MQTT
protocol to apply it to their individual IoT projects. Prior knowledge of working with IoT
devices is essential.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If a client
specifies and empty value as the ClientId."

A block of code is set as follows:

 # Replace localhost with the IP for the Mosquitto
 # or other MQTT server
 mqtt_server_host = "localhost"
 mqtt_server_port = 8883
 mqtt_keepalive = 60

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 <div id="led-2">

 Select color for LED #2

Any command-line input or output is written as follows:

sudo apt-get update

Preface

[5]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M Q T T - E s s e n t i a l s - A - L i g h t w e i g h t - I o T - P r o t o c o l . We also have other code
bundles from our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t

P u b l i s h i n g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /M Q T T E s s e n t i a l s A L i g h t w e i g h t I o T P r o t o c o l _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/MQTT-Essentials-A-Lightweight-IoT-Protocol
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MQTTEssentialsALightweightIoTProtocol_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[7]

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Lightweight Messaging with
MQTT 3.1.1 and Mosquitto

In this chapter, we will start our journey towards the usage of the preferred IoT publish-
subscribe lightweight messaging protocol in diverse IoT solutions combined with mobile
apps and web applications. We will learn how MQTT and its lightweight messaging system
work. We will learn MQTT basics, the specific vocabulary for MQTT, and its working
modes. We will use different utilities and diagrams to understand the most important
concepts related to MQTT. We will:

Understand convenient scenarios for the MQTT protocol
Work with the publish-subscribe pattern
Work with message filtering
Learn basic concepts related to MQTT
Understand the MQTT puzzle: clients, servers or brokers, and connections
Install a Mosquitto MQTT server on Linux, macOS, or Windows
Publish messages
Subscribe to topics
Unsubscribe from topics
Work with best practices when creating topics
Understand wildcards
Learn about the different Quality of Service levels
Work with at least once delivery
Work with exactly once delivery

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[9]

Understanding convenient scenarios for the
MQTT protocol
Imagine that we have dozens of different devices that must exchange data between them.
These devices have to request data to other devices and the devices that receive the requests
must respond with the demanded data. The devices that requested the data must process
the data received from the devices that responded with the demanded data.

The devices are Internet of Things (IoT) boards that have dozens of sensors wired to them.
We have the following IoT boards with different processing powers: Raspberry Pi 3,
Raspberry Pi Model B, Intel Edison, and Intel Joule 570x. Each of these boards has to be able
to send and receive data. In addition, we want many mobile devices to be able to send and
receive data, some of them running iOS and others Android. We have to work with many
programming languages.

We want to send and receive data in near real time through the Internet and we might face
some network problems, that is, our wireless networks are somewhat unreliable and we
have some high-latency environments. Some devices have low power, many of them are
powered by batteries and their resources are scarce. In addition, we must be careful with
the network bandwidth usage because some of the devices use metered connections.

A metered connection is a network connection in which we have a limited
amount of data usage per month. If we go over this amount of data, we get
billed extra charges.

We can use HTTP requests and build a publish-subscribe model to exchange data between
different devices. However, there is a protocol that has been specifically designed to be
lighter than the HTTP 1.1 protocol and work better when unreliable networks are involved
and connectivity is intermittent. The MQ Telemetry Transport (MQTT) is better suited for
this scenario in which many devices have to exchange data between themselves in near real
time through the Internet and we need to consume the least possible network bandwidth.

The MQTT protocol is a Machine-to-Machine (M2M) and IoT connectivity protocol. MQTT
is a lightweight messaging protocol that works with a broker-based publish-subscribe
mechanism and runs on top of Transmission Control Protocol / Internet Protocol (TCP/IP).

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[10]

The following diagram shows the MQTT protocol on top of the TCP/IP stack:

The most popular versions of MQTT are 3.1 and 3.1.1. In this book, we will
work with MQTT 3.1.1. Whenever we reference MQTT, we are talking
about MQTT 3.1.1, that is, the newest version of the protocol. The MQTT
3.1.1 specification has been standardised by the OASIS consortium. In
addition, MQTT 3.1.1 became an ISO standard (ISO/IEC 20922) in 2016.

MQTT is lighter than the HTTP 1.1 protocol, and therefore, it is a very interesting option
whenever we have to send and receive data in near real time with a publish-subscribe
model and we require the lowest possible footprint. MQTT is very popular in IoT, M2M,
and embedded projects, but it is also gaining presence in web applications and mobile apps
that require assured messaging and an efficient message distribution. As a summary,
MQTT is suitable for the following application domains in which data exchange is required:

Asset tracking and management
Automotive telematics
Chemical detection
Environment and traffic monitoring
Field force automation
Fire and gas testing
Home automation
In-Vehicle Infotainment (IVI)
Medical
Messaging
Point of Sale (POS) kiosks
Railway
Radio-Frequency Identification (RFID)
Supervisory Control and Data Acquisition (SCADA)
Slot machines

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[11]

As a summary, MQTT was designed to be suitable to support the following typical
challenges in IoT, M2M, embedded, and mobile applications:

Be lightweight to make it possible to transmit high volumes of data without huge
overheads
Distribute minimal packets of data in huge volumes
Support an event-oriented paradigm with asynchronous bidirectional low latency
push delivery of messages
Easily emit data from one client to many clients
Make it possible to listen for events whenever they happen (event-oriented
architecture)
Support always-connected and sometimes-connected models
Publish information over unreliable networks and provide reliable deliveries
over fragile connections
Work very well with battery-powered devices or require low power consumption
Provide responsiveness to make it possible to achieve near real-time delivery of
information
Offer security and privacy for all the data
Be able to provide the necessary scalability to distribute data to hundreds of
thousands of clients

Working with the publish-subscribe pattern
Before we dive deep into MQTT, we must understand the publish-subscribe pattern, also
known as the pub-sub pattern. In the publish-subscribe pattern, a client that publishes a
message is decoupled from the other client or clients that receive the message. The clients
don't know about the existence of the other clients. A client can publish messages of a
specific type and only the clients that are interested in specific types of messages will
receive the published messages.

The publish-subscribe pattern requires a broker, also known as server. All the clients
establish a connection with the broker. The client that sends a message through the broker is
known as the publisher. The broker filters the incoming messages and distributes them to
the clients that are interested in the type of received messages. The clients that register to
the broker as interested in specific types of messages are known as subscribers. Hence, both
publishers and subscribers establish a connection with the broker.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[12]

It is easy to understand how things work with a simple diagram. The following diagram
shows one publisher and two subscribers connected to a broker:

A Raspberry Pi 3 board with an altitude sensor wired to it is a publisher that establishes a
connection with the broker. An iOS smartphone and an Android tablet are two subscribers
that establish a connection with the broker.

The iOS smartphone indicates to the broker that it wants to subscribe to all the messages
that belong to the sensor1/altitude topic. The Android tablet indicates the same to the
broker. Hence, both the iOS smartphone and the Android tablet are subscribed to the
sensor1/altitude topic.

A topic is a named logical channel and it is also referred to as a channel or
subject. The broker will send publishers only the messages published to
topics to which they are subscribed.

The Raspberry Pi 3 board publishes a message with 100 feet as the payload and
sensor1/altitude as the topic. The board, that is, the publisher, sends the publish request to
the broker.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[13]

The data for a message is known as payload. A message includes the topic
to which it belongs and the payload.

The broker distributes the message to the two clients that are subscribed to the
sensor1/altitude topic: the iOS smartphone and the Android tablet.

Publishers and subscribers are decoupled in space because they don't know each other.
Publishers and subscribers don't have to run at the same time. The publisher can publish a
message and the subscriber can receive it later. In addition, the publish operation isn't
synchronized with the receive operation. A publisher requests the broker to publish a
message and the different clients that have subscribed to the appropriate topic can receive
the message at different times. The publisher can send messages as an asynchronous
operation to avoid being blocked until the clients receive the messages. However, it is also
possible to send a message to the broker as a synchronous operation with the broker and to
continue the execution only after the operation was successful. In most cases, we will want
to take advantage of asynchronous operations.

A publisher that requires sending a message to hundreds of clients can do it with a single
publish operation to a broker. The broker is responsible for sending the published message
to all the clients that have subscribed to the appropriate topic. Because publishers and
subscribers are decoupled, the publisher doesn't know whether there is any subscriber that
is going to listen to the messages it is going to send. Hence, sometimes it is necessary to
make the subscriber become a publisher too and to publish a message indicating that it has
received and processed a message. The specific requirements depend on the kind of
solution we are building. MQTT offers many features that make our lives easier in many of
the scenarios we have been analyzing.

Working with message filtering
The broker has to make sure that subscribers only receive the messages they are interested
in. It is possible to filter messages based on different criteria in a publish-subscribe pattern.
We will focus on analyzing topic-based filtering, also known as subject-based filtering.

Consider that each message belongs to a topic. When a publisher requests the broker to
publish a message, it must specify both the topic and the message. The broker receives the
message and delivers it to all the subscribers that have subscribed to the topic to which the
message belongs.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[14]

The broker doesn't need to check the payload for the message to deliver it to the
corresponding subscribers; it just needs to check the topic for each message that has arrived
and needs to be filtered before publishing it to the corresponding subscribers.

A subscriber can subscribe to more than one topic. In this case, the broker has to make sure
that the subscriber receives the messages that belong to all the topics to which it has
subscribed. It is easy to understand how things work with another simple diagram. The
following diagram shows two future publishers that haven't published any messages yet, a
broker and two subscribers connected to the broker:

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[15]

A Raspberry Pi 3 board with an altitude sensor wired to it and an Intel Edison board with a
temperature sensor wired to it will be two publishers. An iOS smartphone and an Android
tablet are two subscribers that establish a connection to the broker.

The iOS smartphone indicates to the broker that it wants to subscribe to all the messages
that belong to the sensor1/altitude topic. The Android tablet indicates to the broker that it
wants to subscribe to all the messages that belong to any of the following two topics:
sensor1/altitude and sensor42/temperature. Hence, the Android tablet is subscribed to two
topics while the iOS smartphone is subscribed to just one topic.

The following diagram shows what happens after the two publishers connect and publish
messages to different topics through the broker:

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[16]

The Raspberry Pi 3 board publishes a message with 120 feet as the payload and
sensor1/altitude as the topic. The board, that is, the publisher, sends the publish request to
the broker. The broker distributes the message to the two clients that are subscribed to the
sensor1/altitude topic: the iOS smartphone and the Android tablet.

The Intel Edison board publishes a message with 75 F as the payload and
sensor42/temperature as the topic. The board, that is, the publisher, sends the publish
request to the broker. The broker distributes the message to the only client that is
subscribed to the sensor42/temperature topic: the Android Tablet. Thus, the Android tablet
receives two messages.

Understanding the MQTT puzzle -- clients,
servers, and connections
The MQTT broker is known as MQTT server in MQTT 3.1.1, and therefore, we will refer to
it as the server. However, we must take into account that the documentation for MQTT
servers, tools and client libraries can use the old MQTT broker name to refer to the server.

The MQTT server uses the previously explained topic-based filtering to filter and distribute
messages to the appropriate subscribers. There are many MQTT server implementations
that provide additional message filtering features by providing custom plug-ins. However,
we will focus on the features that are part of the MQTT requirements.

As previously explained, in MQTT the publishers and the subscribers are completely
decoupled. Publishers and subscribers are MQTT clients that only establish a connection
with the MQTT server. An MQTT client can be both a publisher and a subscriber at the
same time, that is, the client can publish messages to specific topics and also receive
messages that belong to the topics to which the client has subscribed to.

There are MQTT client libraries available for the most popular programming languages and
platforms. One of the most important things that we must consider when we select the
MQTT client library is the list of MQTT features that they support and the ones that we
need for our solution. Sometimes, we can choose between many libraries for a specific
programming language and platform and some of them might not implement all the
features. We will use many libraries for diverse programming languages and platforms
throughout the book and we will learn how to evaluate whether a library is suitable or not
for our needs. Specifically, we will work with Python, Java, JavaScript and Swift.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[17]

Any device that has a TCP/IP stack and is capable of using an MQTT library can become an
MQTT client, that is, a publisher, a subscriber or both a publisher and a subscriber. The
MQTT library makes it possible for the device to talk MQTT on top of TCP/IP and to
interact with specific types of MQTT servers. For example, any of the following can become
an MQTT client: an Arduino board, a Raspberry Pi 3 board, an Intel Joule board, an iPhone,
an iPad, a laptop running Windows, a server running Linux, a Macbook running macOS,
and Android tablet, among other devices.

There are many MQTT servers available for the most popular platforms, including Linux,
Windows and macOS. Many of them are servers that can work as MQTT servers among
other features. An MQTT server might implement only a subset of the MQTT capabilities
and might have specific limitations. Hence, it is very important to check all the capabilities
we will require in our solution before selecting an MQTT server. As happens with other
middleware, we have open source versions, free versions and paid versions. Thus, we also
have to make sure we select the appropriate MQTT server based on our budget and our
specific needs.

Throughout this book, we will work with the Eclipse Mosquitto MQTT server (h t t p ://w w w .

m o s q u i t t o . o r g). Mosquitto is an open source MQTT server with an EPL/EDL license that is
compatible with MQTT versions 3.1 and 3.1.1. We can take advantage of everything we
learn with any other MQTT server such as Erlang MQTT Broker (EMQ), also known as
EMQTT (h t t p ://w w w . e m q t t . i o), and HiveMQ (h t t p ://h i v e m q . c o m), among others. In
addition, we might use our knowledge to work with a cloud-based MQTT server such as
CloudMQTT (h t t p ://w w w . c l o u d m q t t . c o m).

The MQTT server is the central hub of the publish/subscribe model we previously analyzed.
The MQTT server is responsible of the authentication and authorization of the MQTT
clients that will be able to become publishers and/or subscribers after they are authenticated
and authorized. So, the first thing that an MQTT client must do is to establish a connection
with the MQTT server.

In order to establish a connection, the MQTT client must send a CONNECT control packet
to the MQTT server with a payload that must include all the necessary information to
initiate the connection and proceed with the authentication and authorization. The MQTT
server will check the CONNECT packet, perform authentication and authorization and
send a response to the client with a CONNACK control packet that we will analyze in
detail after understanding the CONNECT control packet. In case the MQTT client sends an
invalid CONNECT control packet, the server will automatically close the connection.

http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.mosquitto.org
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://www.emqtt.io
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://hivemq.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com
http://www.cloudmqtt.com

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[18]

The following diagram shows the interaction between an MQTT client and an MQTT server
to establish a connection.

After a successful connection has been established between an MQTT
client and an MQTT server, the server will keep the connection open until
the client loses the connection or sends a DISCONNECT control packet to
the server to close the connection.

The CONNECT control packet must include values for the following fields in the payload
and bits for a special flags byte that is included in the control packet. We want to
understand the meaning of these fields and flags because we will be able to specify their
values when we work with MQTT tools and MQTT client libraries.

ClientId: The client identifier, also known as Client ID, is a string that identifies
each MQTT client that connects to an MQTT server. Each client that connects to
the MQTT server must have a unique ClientId and the server uses it to identify
the state that it holds related to the MQTT session between the client and the
server. If a client specifies an empty value as the ClientId, the MQTT server
must generate a unique ClientId to identify the client. However, this behavior
depends on the value specified for the CleanSession field.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[19]

CleanSession: The clean session flag is a boolean value that specifies what
happens after an MQTT client disconnects from the MQTT server and then
reconnects. If CleanSession is set to 1 or true, the client indicates to the MQTT
server that the session will only last as long as the network connection is alive.
After the MQTT client disconnects from the MQTT server, any information
related to the session is discarded. A new connection from the same MQTT client
to the MQTT server will not use the data from the previous session and will be a
new clean session. If CleanSession is set to 0 or false, we will work with a
persistent session. In this case, the MQTT server stores all the subscriptions for
the MQTT client and when the MQTT client disconnects, the MQTT server stores
all the messages that arrive with specific quality of service levels that match the
subscriptions that the MQTT client had at the time the disconnection occurred.
This way, when the same MQTT client establishes a new connection with the
MQTT server, the MQTT client will have the same subscriptions and will receive
all the messages that it couldn't receive when it lost the connection. We will dive
deep on the quality of service level for the messages and their relationship with
the clean session flag or the persistent session option later.

When the clean session flag is set to 0 or false, the client indicates to the
server that is wants a persistent session. We just have to remember a clean
session is the opposite of a persistent session.

UserName: If the client wants to specify a user name to request authentication
and authorization from the MQTT server, it must set the UserName flag to 1 or
true and specify a value for the UserName field.
password: If the client wants to specify a password to request authentication and
authorization from the MQTT server, it must set the Password flag to 1 or true
and specify a value for the Password field.

We will dedicate the entire next chapter to MQTT security, and therefore,
we just mention the fields and the flags that are included in the CONNECT
control packtet.

ProtocolLevel: The protocol level value indicates the MQTT protocol version
that the MQTT client requests the MQTT server to use. Remember we will always
work with MQTT version 3.1.1.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[20]

KeepAlive: KeepAlive is a time interval expressed in seconds. If the value for
keep alive is not equal to 0, the MQTT client commits to send control packets to
the server within the time specified for KeepAlive. If the MQTT client doesn't
have to send any control packet, it must send a PINGREQ control packet to the
MQTT server, that is, a ping request to tell the MQTT server that the client
connection is alive. The MQTT server responds to the PINGREQ control packet
with a PINGRESP response to the MQTT client, that is, a ping response to tell the
MQTT client that the connection with the MQTT server is alive. The connection is
closed when there is an absence of any of these control packets. If the value for
keep alive is 0, the keep alive mechanism is turned off.
Will, WillQoS, WillRetain, WillTopic and WillMessage: These flags and
fields allow the MQTT client to take advantage of the last will and testament
feature of MQTT. If the MQTT client sets the Will flag to 1 or true, it specifies
that it wants the MQTT server to store a last will message associated with the
session. The WillQoS flag specifies the desired quality of service for the last
WillMessage and the WillRetain flag indicates whether this messsage must be
retained when it is published or not. If the MQTT client sets the Will flag to 1 or
true, it must specify the topic for the WillMessage and the message in the
WillTopic and WillMessage fields. If the MQTT client is disconnected or loses
the connection with the MQTT server, the MQTT server will publish the message
specified in the WillMessage field to the topic indicated in the WillTopic field
with the chosen quality of service. We will analyze this feature in detail later.

The MQTT server will process a valid CONNECT control packet and it will respond with a
CONNACK control packet. This control packet will include values for the following flags
included in the header. We want to understand the meaning of these flags because we will
be able to retreive their values when we work with MQTT tools and MQTT client libraries.

SessionPresent: If the MQTT server received a connection request with the
CleanSession flag set to 1 or true, the value for the SessionPresent flag will
be 0 or false because no stored session will be reused. If the CleanSession flag
was set to 0 or false in the connection request, the MQTT server will work with
a persistent session and the value for the SessionPresent flag will be 1 or true
if the server had a persistent session for the client from a previous connection and
retrieves it. Otherwise, SessionPresent will be 0 or false. The MQTT client that
wanted to work with a persistent session can use the value of this flag to
determine whether it has to request subscription to the desired topics or whether
the subscriptions have been restored from the persisted session.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[21]

ReturnCode: If the authorization and authentication passed and the connection
was successfully established, the value for ReturnCode will be 0. Otherwise, the
return code will be different than 0 and the network connection between the
client and the server will be closed. The following table shows the possible values
for ReturnCode with their meaning.

ReturnCode
value

Description

0 The connection was accepted

1 The connection was refused because the MQTT server doesn't support the
MQTT protocol version requested by the MQTT client in the CONNECT
control packet

2 The connection was refused because the ClientId (client identifier)
specified has been rejected

3 The connection was refused because the network connection was established
but the MQTT service isn't available

4 The connection was refused because the user name or password values are
malformed

5 The connection was refused because authorization failed

Installing a Mosquitto broker on Ubuntu
Linux
Now, we will learn the necessary steps to install a Mosquitto broker, also known as
Mosquitto MQTT server on the most popular operating systems: Linux, macOS and
Windows. First, we will start with Linux; specifically, we will work with Ubuntu Linux. In
case you want to work with a different Linux distribution, you can find details about the
installation procedure in the Mosquitto downloads section:
http://mosquitto.org/download.

Follow these steps to install a Mosquitto broker on Ubuntu Linux. Take into account that
you will require root privileges:

Open a Terminal window and run the following command to add the Mosquitto1.
repository:

 sudo apt-add-repository ppa:mosquitto-dev/mosquitto-ppa

http://mosquitto.org/download
http://mosquitto.org/download

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[22]

After you enter the password, you will see an output similar to the next lines (the
temporary file names will be different).

 gpg: keyring `/tmp/tmpj3a50p1p/secring.gpg' created
 gpg: keyring `/tmp/tmpj3a50p1p/pubring.gpg' created
 gpg: requesting key 262C4500 from hkp server keyserver.ubuntu.com
 gpg: /tmp/tmpj3a50p1p/trustdb.gpg: trustdb created
 gpg: key 262C4500: public key "Launchpad mosquitto" imported
 gpg: Total number processed: 1
 gpg: imported: 1 (RSA: 1)
 OK

Run the following command to update the packages with the recently added2.
Mosquitto repository.

 sudo apt-get update

You will see an output similar to the next lines.

 Get:1 http://ppa.launchpad.net/mosquitto-dev/mosquitto-ppa/
 ubuntu xenial InRelease [23,8 kB]
 Hit:2 http://security.ubuntu.com/ubuntu xenial-security InRelease
 Hit:3 http://ar.archive.ubuntu.com/ubuntu xenial InRelease
 Hit:4 http://ar.archive.ubuntu.com/ubuntu xenial-updates InRelease
 Get:5 http://ppa.launchpad.net/mosquitto-dev/
 mosquitto-ppa/ubuntu xenial/main amd64 Packages [2.048 B]
 Hit:6 http://ar.archive.ubuntu.com/ubuntu xenial-backports InRelease
 Get:7 http://ppa.launchpad.net/mosquitto-dev/
 mosquitto-ppa/ubuntu xenial/main i386 Packages [2.048 B]
 Get:8 http://ppa.launchpad.net/mosquitto-dev/mosquitto-ppa/
 ubuntu xenial/main Translation-en [1.292 B]
 Fetched 29,2 kB in 1s (21,5 kB/s)
 Reading package lists... Done

Now, run the following command to install the package for the Mosquitto server.3.

 sudo apt-get install mosquitto

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[23]

You will see an output similar to the next lines. Enter Y and press Enter to answer
the question and complete the installation process.

 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 The following additional packages will be installed:
 libev4 libuv1 libwebsockets7
 The following NEW packages will be installed:
 libev4 libuv1 libwebsockets7 mosquitto
 0 upgraded, 4 newly installed, 0 to remove and 299 not upgraded.
 8 not fully installed or removed.
 Need to get 274 kB of archives.
 After this operation, 714 kB of additional disk space will be used.
 Do you want to continue? [Y/n]

The last lines should include a line that says Setting up mosquitto, as shown
in the following lines:

 Setting up mosquitto (1.4.10-0mosquitto3) ...
 Processing triggers for libc-bin (2.23-0ubuntu3) ...
 Processing triggers for systemd (229-4ubuntu7) ...
 Processing triggers for ureadahead (0.100.0-19) ...

Run the following command to install the Mosquitto client packages that will4.
allow us to run commands to publish messages to topics and subscribe to topic
filters.

 sudo apt-get install mosquitto-clients

You will see an output similar to the next lines. Enter Y and press Enter to answer
the question and complete the installation process.

 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 The following additional packages will be installed:
 libc-ares2 libmosquitto1
 The following NEW packages will be installed:
 libc-ares2 libmosquitto1 mosquitto-clients
 0 upgraded, 3 newly installed, 0 to remove and 299 not upgraded.
 Need to get 138 kB of archives.
 After this operation, 332 kB of additional disk space will be used.
 Do you want to continue? [Y/n]

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[24]

The last lines should include a line that says Setting up mosquitto-clients,
as shown in the following lines:

 Setting up libmosquitto1:amd64 (1.4.10-0mosquitto3) ...
 Setting up mosquitto-clients (1.4.10-0mosquitto3) ...
 Processing triggers for libc-bin (2.23-0ubuntu3) ...

Run the following command to check the status for the mosquitto service that5.
was recently installed.

 sudo service mosquitto status

The first lines of the output should be similar to the following lines with an
active (running) status displayed. The details after CGroup indicate the
command-line that started the service. The -c option followed by
/etc/mosquitto/mosquitto.conf specifies that Mosquitto is using this
configuration file.

 mosquitto.service - LSB: mosquitto MQTT v3.1 message broker
 Loaded: loaded (/etc/init.d/mosquitto; bad;
 vendor preset: enabled)
 Active: active (running)
 Docs: man:systemd-sysv-generator(8)
 CGroup: /system.slice/mosquitto.service
 └─17560 /usr/sbin/mosquitto -c
 /etc/mosquitto/mosquitto.conf

You can also run the following command to check whether the Mosquitto MQTT
server is listening at the default port: 1883.

 netstat -an | grep 1883

The following lines show the results of the previous command that indicate the
Mosquitto MQTT server has opened an IPv4 and an IPv6 listen socket on port
1883:

 tcp 0 0 0.0.0.0:1883 0.0.0.0:* LISTEN
 tcp6 0 0 :::1883 :::* LISTEN

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[25]

Installing a Mosquitto broker on macOS
Follow these steps to install a Mosquitto broker on macOS (known as OS X before version
Sierra):

In case you don't have Homebrew installed, open a Terminal window and run1.
the command indicated in the Homebrew homepage, http://brew.sh, to install
this popular package manager for macOS. The following command will do the
job. However, it is convenient to check the Homebrew homepage and check all
the detailed instructions that are always updated with the newest versions of
macOS that become available. In case you already have Homebrew installed,
move to the next step.

 /usr/bin/ruby -e "$(curl -fsSL
 https://raw.githubusercontent.com/Homebrew
 /install/master/install)"

Open a Terminal window and run the following command to request Homebrew2.
to install Mosquitto:

 brew install mosquitto

The following lines show the last messages shown in the Terminal that indicate3.
that Homebrew has installed Mosquitto and the instructions to start the MQTT
server.

 ==> Installing mosquitto
 ==> Downloading https://homebrew.bintray.com/bottles/mosquitto-
 1.4.10.el_capitan.bottle.tar.gz
 ## 100.0%
 ==> Pouring mosquitto-1.4.10.el_capitan.bottle.tar.gz
 ==> Caveats
 mosquitto has been installed with a default configuration file.
 You can make changes to the configuration by editing:
 /usr/local/etc/mosquitto/mosquitto.conf

 To have launchd start mosquitto now and restart at login:
 brew services start mosquitto
 Or, if you don't want/need a background service you can just run:
 mosquitto -c /usr/local/etc/mosquitto/mosquitto.conf
 ==> Summary
 /usr/local/Cellar/mosquitto/1.4.10: 32 files, 618.3K

http://brew.sh

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[26]

After the Mosquitto installation has been completed, run the following command4.
in a new Terminal window to launch Mosquitto with the default configuration
file. The -c option followed by /usr/local/etc/mosquitto/mosquitto.conf
specifies that we want to use this configuration file.

 /usr/local/sbin/mosquitto -c /usr/local/etc/mosquitto/mosquitto.conf

The following is the output after you run the previous command:

 Gastons-MacBook-Pro:~ gaston$ /usr/local/sbin/mosquitto -c
 /usr/local/etc/mosquitto/mosquitto.conf
 1482518967: mosquitto version 1.4.10
 (build date 2016-08-31 20:09:41+0100) starting
 1482518967: Config loaded from
 /usr/local/etc/mosquitto/mosquitto.conf.
 1482518967: Opening ipv4 listen socket on port 1883.
 1482518967: Opening ipv6 listen socket on port 1883.

The last lines indicate the Mosquitto MQTT server has opened an IPv4 and an IPv6 listen
socket on port 1883. Leave the Terminal window opened because we need Mosquitto
running on the local computer to work with the next examples.

Installing a Mosquitto broker on Windows
Follow these steps to install a Mosquitto broker on Windows. Take into account that you
will require Windows Vista or higher (Windows 7, 8, 8.1, 10 or greater).

Download the executable file listed under Binary Installation and Windows that1.
provides the native build in the Mosquitto downloads web page:
http://mosquitto.org/download. For Moquitto 1.4.10, the file name is
mosquito-1.4.10-install-win32.exe. You must click or tap on the file name
and you will be redirected to the Eclipse repository with many mirror options,
including a default recommendation, from which you can download the
executable file.
Run the previously downloaded executable file and the Mosquitto Setup Wizard2.
will display its Welcome dialog box. Click Next > to continue. The setup wizard
will display the dependencies that you must install: OpenSSL and pthreads. The
dialog box will display the links that you can use to download and run installers
for these two requirements.

http://mosquitto.org/download

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[27]

If you don't have Win32 OpenSSL v1.0.2j Light installed on Windows, go to the3.
Win32 OpenSSL web page: http://slproweb.com/products/Win32OpenSSL.html
and download theWin32 OpenSSL v1.0.2k Light file listed in a table under
Download Win32 OpenSSL. Do not download the Win64 version because you
will need the Win32 version to make it possible for Mosquitto to have its
dependencies. If you already have Win32 OpenSSL v1.0.2k Light installed,
advance to step number 7. For Win32 OpenSSL v1.0.2k Light, the file name is
Win32OpenSSL_Light-1_0_2j.exe. Run the downloaded executable file and
OpenSSL Light (32-bit) will display its Welcome dialog box. Click Next > to
continue.
The setup wizard will display the License Agreement. Read it, select I Accept the4.
agreement and click Next >. Select the folder in which you want to install
OpenSSL Light (32-bit) in case you don't want to use the default folder.
Remember the folder you specify because you will need to copy a few DLL files
from this folder later. The default folder is C:OpenSSL-Win32.
Click Next > to continue, specify a different Start Menu folder if necessary and5.
click Next >. Select The OpenSSL binaries (/bin) directory as the desired option
to Copy OpenSSL DLLs to. This way, the installation will copy the DLLs to a bin
sub-folder within the previously specified folder, by default, C:OpenSSL-
Win32bin.
Click Next > to continue. Review the selected installation options and click Install6.
to complete the installation for OpenSSL Light (32-bit). Finally, consider a
donation to the Win32 OpenSSL project and click Finish to exit setup.
Go to the following address in your web browser:7.
ftp://sources.redhat.com/pub/pthreads-win32/dll-latest/dll/x86. The
browser will display many files for this FTP directory. Right click on
pthreadVC2.dll and save the file in your Downloads folder. You will have to
copy this DLL to the Mosquitto installation folder later.
Now, go back to the Mosquitto Setup window and click Next > to continue. By8.
default, Mosquitto will install the files and the Mosquitto Service. Use the default
components installation options and click Next > to continue.
Select the folder in which you want to install Mosquitto in case you don't want to9.
use the default folder. Remember the folder you specify because you will need to
copy a few DLL files to this folder later. The default folder is C:Program Files
(x86)mosquitto. Click Install to complete the installation. Once the installation
has completed click Finish to close the Mosquitto Setup Wizard.
Open a File Explorer window and go to the bin sub-folder within the folder in10.
which you installed OpenSSL Light (32-bit), by default, C:OpenSSL-Win32bin.

http://slproweb.com/products/Win32OpenSSL.html
ftp://sources.redhat.com/pub/pthreads-win32/dll-latest/dll/x86

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[28]

Copy the following two DLLs: libeay32.dll and ssleay32.dll. Now, go to11.
the folder in which you installed Mosquitto and paste these two DLLs. By
default, the Mosquitto installation folder is C:Program Files
(x86)mosquitto. You will need to provide administrator permission to paste
the DLLs in the default folder.
Open a File Explorer window and go to your Downloads folder. Copy the12.
pthreads DLL you downloaded in one of the previous steps: pthreadVC2.dll.
Now, go to the folder in which you installed Mosquitto and paste this DLL. You
will need to provide administrator permission to paste the DLL in the default
Mosquitto installation folder.
Now that all the dependencies are included in the Mosquitto installation folder, it13.
is necessary to run the installation again to make the Mosquitto Setup configure
the Windows service. Run the previously downloaded Mosquitto installation
executable again. For Moquitto 1.4.10, the file name is mosquito-1.4.10-
install-win32.exe. Make sure you specify the same installation folder as the
folder in which you copied the DLLs and that the Service component is
activated. Click Next > many times and click Install to complete the configuration
for the Windows service. Once the installation has completed click Finish to close
the Mosquitto Setup Wizard.
Open the Services application in Windows and search for the service whose name14.
is Mosquitto Broker. Right click on the service name and select Start. The Status
will change to Running. By default, the service is configured to have its Startup
Type set to Automatic. If you don't want to automatically start the Mosquitto
Broker service, change the Startup Type to Manual. You will have to repeat the
step you just did to manually start the service before working with Mosquitto on
the Windows computer.

Open a Command Prompt window and run the following command to check whether the
Mosquitto MQTT server is listening at the default port: 1883.

netstat -an | findstr 1883

The following lines show the results of the previous command that indicate the Mosquitto
MQTT server has opened an IPv4 and an IPv6 listen socket on port 1883:

TCP 0.0.0.0:1883 0.0.0.0:0 LISTENING
TCP [::]:1883 [::]:0 LISTENING

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[29]

Subscribing to topics
A drone is an IoT device that interacts with many sensors and actuators, including digital
electronic speed controllers linked to engines, propellers and servomotors. A drone is also
known as an Unnamed Aerial Vehicle (UAV). Let's imagine that we have to monitor many
drones. Specifically, we have to display their altitude and the speed for each of their
servomotors. Not all of the drones have the same number of engines, propellers and
servomotors. We have to monitor quadcopters (4 propellers), hexacopters (6 propellers) and
octocopters (8 propellers).

Each drone will publish its altitude every two seconds to the following topic:
sensors/dronename/altitude, where dronename must be replaced by the name
assigned to each drone. For example, the drone named drone01 will publish its altitude
values to the sensors/drone01/altitude topic and the drone named drone20 will use
the sensors/drone20/altitude topic.

In addition, each drone will publish the speed for each of its rotors every two seconds to the
following topic: sensors/dronename/speed/rotor/rotornumber, where dronename
must be replaced by the name assigned to each drone and rotornumber must be replaced
by the rotor number for which the speed is going to be published. For example, the drone
named drone01 will publish its speed values for its rotor number 1 to the
sensors/drone01/speed/rotor/1 topic.

We will use the mosquitto_sub command-line utility included in Mosquitto to generate a
simple MQTT client that subscribes to a topic and print all the messages it receives. Open a
Terminal in macOS or Linux, or a Command Prompt in Windows, go to the directory in
which Mosquitto is installed and run the following command:

mosquitto_sub -V mqttv311 -t sensors/drone01/altitude -d

The previous command will create an MQTT client that will establish a connection with the
local MQTT server and then will make the client subscribe to the topic specified after the -t
option: sensors/drone01/altitude. We specify the version of the MQTT protocol that
we want to use when the client establishes the connection with -V mqttv311. This way, we
indicate the MQTT server that we want to use MQTT version 3.1.1. We specify the -d
option to enable debug messages that will allow us to understand what happens under the
hoods. We will analyze additional options for the connection and the subscription later.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[30]

The Terminal or Command Prompt window will display debug messages similar to the
following lines. Take into account that the generated ClientId will be different from the
one shown after Client: mosqpub/5449-Gastons-Ma.

Client mosqsub/5449-Gastons-Ma sending CONNECT
Client mosqsub/5449-Gastons-Ma received CONNACK
Client mosqsub/5449-Gastons-Ma sending SUBSCRIBE (Mid: 1, Topic:
sensors/drone01/altitude, QoS: 0)
Client mosqsub/5449-Gastons-Ma received SUBACK
Subscribed (mid: 1): 0

The Terminal or Command Prompt window will display the messages published to the
topic to which we subscribed as they arrive from the MQTT server to the MQTT client.
Keep the window opened. You will see that that the client sends PINGREQ packets to the
MQTT server and receives PINQRESP packets from the MQTT server. The following lines
show examples of the messages displayed for these packets:

Client mosqsub/5449-Gastons-Ma sending PINGREQ
Client mosqsub/5449-Gastons-Ma received PINGRESP

MQTT.fx is a GUI utility implemented with JavaFX that is available for Windows, Linux
and macOS. This tool allows us to connect with an MQTT server, subscribe to topic filters,
see the received messages and publish messages to topics. You can download the
appropriate version for your operating system from the downloads section of the main web
page for this utility: http://www.mqttfx.org.

Now, we will use the MQTT.fx GUI utility to generate another MQTT client that subscribes
to the same topic, sensors/drone01/altitude, and displays all the messages it receives.
Follow the next steps:

Launch MQTT.fx, select local mosquitto in the dropdown located at the upper-1.
left corner and click on the configuration icon at the right-hand side of this
dropdown and at the left-hand side of the Connect button. MQTT.fx will display
the Edit Connection Profiles dialog box with different options for the connection
profile named local mosquitto. We analyzed many of these options when we
learned about the data that the MQTT client sends to the MQTT server to
establish a connection.

http://www.mqttfx.org

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[31]

Make sure the General button is pressed and deactivate the MQTT Version Use2.
Default checkbox. Make sure 3.1.1 is selected in the dropdown below MQTT
Version. This way, we indicate to the MQTT server that we want to use MQTT
version 3.1.1. Notice that the Client ID textbox specifies MQTT_FX_Client. This
is the ClientId value that MQTT.fx will send to the MQTT server (Mosquitto) in
the CONNECT control packet. The following screenshot shows the dialog box with
the selected options:

Click OK and then click on the Connect button. MQTT.fx will establish a3.
connection with the local Mosquitto server. Notice that the Connect button is
disabled and the Disconnect button is enabled because the client is connected to
the MQTT server.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[32]

Click Subscribe and enter sensors/drone01/altitude in the dropdown at the4.
left-hand side of the Subscribe button. Then, click theSubscribe button. MQTT.fx
will display a new panel at the left-hand side with the topic to which we have
subscribed, as shown in the next screenshot.

In case you don't want to work with the MQTT.fx utility, you can run another
mosquitto_sub command to generate another MQTT client that subscribes to the topic
and print all the messages it receives. You just need to open another Terminal in macOS or
Linux, or another Command Prompt in Windows, go to the directory in which Mosquitto is
installed and run the following command again. In this case, it isn't necessary to specify the
-d option.

mosquitto_sub -V mqttv311 -t sensors/drone01/altitude

Now, we have two MQTT clients subscribed to the same topic:
sensors/drone01/altitude. Now, we will understand what happens under the hoods
when a client subscribes to a topic.

The MQTT client sends a SUBSCRIBE packet to the MQTT server with a packet identifier
(PacketId) in the header and one or more pairs of a topic filter and the desired quality of
service level in the payload.

The quality of service is known as QoS.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[33]

Hence, a single SUBSCRIBE packet can request the MQTT server to subscribe a client to
many topics. The SUBSCRIBE packet must include at least one topic filter and QoS pair to
comply with the protocol.

In the two cases in which we requested a subscription, we used a specific topic name as the
value for the topic filter, and therefore, we request the MQTT server to subscribe to a single
topic. We will learn about the usage of wildcards in topic filters later.

We used the default options, and therefore, the quality of service requested is the default
level of 0. We will dive deep on the QoS levels later. Now, we will stay focused on the
simplest subscription cases. If the QoS level is equal to 0, the value for the PacketId field
will be 0. In case the QoS level is equal to 1 or 2, the packet identifier will have a number
value to identify the packet and make it possible to identify the responses related to this
packet.

The MQTT server will process a valid SUBSCRIBE packet and it will respond with a SUBACK
packet that indicates the subscribe acknowledgement and confirms the receipt and
processing of the SUBSCRIBE packet. The SUBACK packet will include the same packet
identifier (PacketId) in the header that was received in the SUBSCRIBE packet. The
SUBACK packet will include one return code for each pair of a topic filter and the desired
QoS level received in the SUBSCRIBE packet. The number of return codes will match the
number of topic filters included in the SUBSCRIBE packet. The following table shows the
possible values for these return codes. The first three return codes indicate a successful
subscription and each value specifies the maximum QoS that can be delivered based on the
requested QoS and the MQTT server possibilities to grant it.

ReturnCode value Description

0 Successfully subscrib with a maxium QoS of 0

1 Successfully subscrib with a maxium QoS of 1

2 Successfully subscrib with a maxium QoS of 2

128 Failed to subscribe

If the subscription was successful, the MQTT server will start sending every published
message that matches the topic filters specified in the subscription to the MQTT client with
the QoS specified in the return code.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[34]

The following diagram shows the interaction between an MQTT client and an MQTT server
to subscribe to one or many topic filters.

Publishing messages
We will use the mosquitto_pub command-line utility included in Mosquitto to generate a
simple MQTT client that publishes a message to a topic. Open a Terminal in macOS or
Linux, or a Command Prompt in Windows, go to the directory in which Mosquitto is
installed and run the following command:

mosquitto_pub -V mqttv311 -t sensors/drone01/altitude -m "10 f" -d

The previous command will create an MQTT client that will establish a connection with the
local MQTT server and then will make the client publish a message to the topic specified
after the -t option: sensors/drone01/altitude. We specify the payload for the message
after the -m option: "10 f". We specify the version of the MQTT protocol that we want to
use when the client establishes the connection with -V mqttv311. This way, we indicate
the MQTT server that we want to use MQTT version 3.1.1. We specify the -d option to
enable debug messages that will allow us to understand what happens under the hoods.
We will analyze additional options for the connection and the publication later.

The Terminal or Command Prompt window will display debug messages similar to the
following lines. Take into account that the generated ClientId will be different from the
one shown after Client:mosqpub/5303-Gastons-Ma. After publishing the message, the
client disconnects.

Client mosqpub/5308-Gastons-Ma sending CONNECT
Client mosqpub/5308-Gastons-Ma received CONNACK
Client mosqpub/5308-Gastons-Ma sending PUBLISH (d0, q0, r0, m1,
'drones/altitude', ... (5 bytes))
Client mosqpub/5308-Gastons-Ma sending DISCONNECT

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[35]

Now, we will use the MQTT.fx GUI utility to generate another MQTT client that publishes
another message to the same topic, sensors/drone01/altitude. Follow the next steps:

Go to the MQTT.fx window in which you established a connection and1.
subscribed to a topic.
Click Publish and enter sensors/drone01/altitude in the dropdown at the2.
left-hand side of the Publish button.
Enter the following text in the textbox below the Publish button: 20 f, as shown3.
in the following screenshot:

Then, click the Publish button. MQTT.fx will publish the entered text to the4.
specified topic.

In case you don't want to work with the MQTT.fx utility, you can run another
mosquitto_pub command to generate another MQTT client that publishes a message to
the topic. You just need to open another Terminal in macOS or Linux, or another Command
Prompt in Windows, go to the directory in which Mosquitto is installed and run the
following command.

mosquitto_pub -V mqttv311 -t sensors/drone01/altitude -m "20 f"

Now, go back to the Terminal or Command Prompt window in which you executed the
mosquitto_sub command and subscribed to the sensors/drone01/atitude topic. You
will see lines similar to the following ones:

Client mosqsub/5532-Gastons-Ma received PUBLISH (d0, q0, r0, m0,
'sensors/drone01/altitude', ... (4 bytes))
10 f
Client mosqsub/5532-Gastons-Ma received PUBLISH (d0, q0, r0, m0,
'sensors/drone01/altitude', ... (4 bytes))
20 f

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[36]

If we clean up the debug messages that start with the Client prefix, we will see just the
next two lines. These lines show the payloads for the two messages that we received as a
result of our subscription to the sensors/drone01/altitude topic.

10 f
20 f

Go to the MQTT.fx window and click Subscribe. You will see 2 at the right-hand side of the
title for the topic filter used to subscribe in the panel located at the left-hand side of the
window. MQTT.fx is telling you that you have received two messages in the
sensors/drone01/altitude topic. Click on this panel and MQTT.fx will display all the
received messages at the right-hand side of the panel. MQTT.fx will display a number at the
right-hand side of each message to specify the message number since we started the
subscription to the topic filter. Click on each message and MQTT.fx will display the QoS
level for the message (0), the date and time that it was received and the payload for the
message in the default plain string format. The following picture shows the payload for the
second message that has been received by the subscriber generated by MQTT.fx.

We created two publishers and each of them published a message to the same topic:
sensors/drone01/altitude. The two subscribers for this topic received both messages.
Now, we will understand what happens under the hoods when a client publishes a message
to a topic.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[37]

The MQTT client that has already established a connection sends a PUBLISH packet to the
MQTT server with a header that includes the following fields and flags. We want to
understand the meaning of these fields and flags because we will be able to specify some of
their values when we work with MQTT tools and MQTT client libraries.

PacketId: If the QoS level is equal to 0, the value for this field will be 0 or it
won't be present. In case the QoS level is equal to 1 or 2, the packet identifier will
have a number value to identify the packet and make it possible to identify the
responses related to this packet.
Dup: If the QoS level is equal to 0, the value for this field will be 0. In case the QoS
level is equal to 1 or 2, the MQTT client library or the MQTT server can resend a
message that was previously published by the client when the subscribers haven't
ackowledged the first message. Whenever there is an attempt to resend a
message that has already been published, the value for the Dup flag must be 1 or
true.
QoS: Specifies the QoS level for the message. We will dive deep on the quality of
service level for the messages and their relationship with many other flags later.
So far, we have been working with QoS level 0.
Retain:If the value for this flag is set to 1 or true, the MQTT server will store
the message with its specified QoS level. Whenever new MQTT clients
subscribers to a topic filter that matches the topic for the stored or retained
message, the last stored message for this topic will be sent to the new subscriber.
If the value for this flag is set to 0 or false, the MQTT server won't store the
message and won't replace a retained message with the same topic in case there is
one message retained for this topic.
TopicName: A string with the topic name to which the message must be
published. Topic names have a hierarchy structure where slashes (/) are used as
delimiters. In our examples, the value for TopicName was
"sensors/drone01/altitude". We will analyze best practices for topic names
later.

The payload contains the actual message that the MQTT client wants the
MQTT server to publish. MQTT is data agnostic, and therefore, we can
send any binary data and we don't have restrictions such as those imposed
by JSON or XML. Of course, we can use these or others to organize the
payloads if we wish. In our examples, we sent a string that included a
number that represented the altitude followed by a space and an "f" that
indicates the unit of measure is feet.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[38]

The MQTT server will read a valid PUBLISH packet and it will respond with a packet only
for QoS levels greater than 0. In case the QoS level is 0, the MQTT will not respond. The
MQTT server will determine all the subscribers whose subscribed topic matches the topic
name specified for the message and the server will publish the message to these clients.

The following diagram shows the interaction between an MQTT client and an MQTT server
to publish a message with a QoS level of 0.

The other QoS levels have a different flow with additional interaction between the
publisher and the MQTT server and increased overheads that we will analyze later.

Unsubscribing from topics
Whenever we don't want a subscriber to receive more messages whose destination topic
name matches one or more topic filters, the subscriber can send a request to unsubscribe to
a list of topic filters to the MQTT server. Obviously, unsubscribing from topic filters is the
opposite operation of subscribing to topic filters. We will use the MQTT.fx GUI utility to
unsubscribe the MQTT client from the sensors/drone01/altitude topic. Follow the next
steps:

Go to the MQTT.fx window in which you established a connection and1.
subscribed to a topic.
Click Subscribe.2.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[39]

Click on the panel that displays the sensors/drone01/altitudetopic name at3.
the left-hand side of the window. Then, click on the Unsubscribe button located
in this panel. The following screenshot shows this button.

MQTT.fx will unsubscribe the client from the sensors/drone01/altitude4.
topic, and therefore, the client won't receive any new message published to the
sensors/drone01/altitude topic.

Now, we will use the MQTT.fx GUI utility to use the MQTT client to publish another
message to the sensors/drone01/altitude topic. Follow the next steps:

Go to the MQTT.fx window in which you established a connection and1.
subscribed to a topic.
Click Publish and enter sensors/drone01/altitude in the dropdown at the2.
left-hand side of the Publish button.
Then, click the Publish button. MQTT.fx will publish the entered text to the3.
specified topic.
Enter the following text in the textbox below the Publish button: 30 f, as shown4.
in the following screenshot:

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[40]

In case you don't want to work with the MQTT.fx utility, you can run a mosquitto_pub
command to generate another MQTT client that publishes a message to the topic. You just
need to open another Terminal in macOS or Linux, or another Command Prompt in
Windows, go to the directory in which Mosquitto is installed and run the following
command.

mosquitto_pub -V mqttv311 -t sensors/drone01/altitude -m "30 f"

Now, go back to the MQTT.fx window and click Subscribe. The client has unsubscribed
from the sensors/drone01/altitude topic before we published a new message to this
topic, and therefore, this published message isn't displayed.

Go back to the Terminal or Command Prompt window in which you executed the
mosquitto_sub command and subscribed to the sensors/drone01/atitude topic. You
will see lines similar to the following ones:

Client mosqsub/5532-Gastons-Ma received PUBLISH (d0, q0, r0, m0,
'sensors/drone01/altitude', ... (4 bytes))
30 f

This client is still subscribed to the sensors/drone01/altitude topic, and therefore, it
received the message with the payload of "30 f".

The MQTT client sends an UNSUBSCRIBE packet to the MQTT server with a packet
identifier (PacketId) in the header and one or more topic filters in the payload. The main
difference with a SUBSCRIBE packet is that it isn't necessary to include the QoS level for
each topic filter because the MQTT client just wants to unsubscribe.

After an MQTT client unsubscribes from one or more topic filters, the
MQTTserver still keeps the connection opened and the subscriptions to the
topic filters that don't match the topic filters specified in the
UNSUBSCRIBE packet payload will continue working.

Hence, a single UNSUBSCRIBE packet can request the MQTT server to unsubscribe a client
from many topics. The UNSUBSCRIBE packet must include at least one topic filter in the
payload to comply with the protocol.

In the previous example in which we requested the MQTT server to unsubscribe, we used a
specific topic name as the value for the topic filter, and therefore, we requested the MQTT
server to unsubscribe from a single topic. As previously mentioned, we will learn about the
usage of wildcards in topic filters later.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[41]

The packet identifier will have a number value to identify the packet and make it possible
to identify the response related to this UNSUBSCRIBE packet. The MQTT server will process
a valid UNSUBSCRIBE packet and it will respond with an UNSUBACK packet that indicates
the unsubscribe acknowledgement and confirms the receipt and processing of the
UNSUBSCRIBE packet. The UNSUBACK packet will include the same packet identifier
(PacketId) in the header that was received in the UNSUBSCRIBE packet.

The MQTT will remove any topic filter that matches exactly any of the specified topic filters
in the UNSUBSCRIBE packet's payload for the specific client that sent the packet. The topic
filter match must be exact to be deleted. After the MQTT server deletes a topic filter from
the subscription list for the client, the server stops adding new messages to be published to
the client. Only messages that have already started delivery to the client with QoS levels of
1 or 2 will be published to the client. In addition, the server might publish existing messages
that have been buffered for their distribution to the subscriber.

The following diagram shows the interaction between an MQTT client and an MQTT server
to unsubscribe from one or many topic filters.

Working with best practices when creating
topics
We already know that MQTT allows us to publish messages on topics. A publisher always
has to to specify the topic name to which a message will be published. The easiest way to
understand topic names in MQTT is to think about them like paths in a file system.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[42]

If we have to save dozens of files that have information about different types of sensors for
a diverse number of drones, we can create a hierarchy of directories or folders to organize
all the files that we will save. We can create a directory named sensors, then one sub-
directory for each drone, such as drone01, and finally a sub-directory with the sensor
name, such as altitude. The path in macOS or Linux will be
sensors/drone01/altitude because these operating systems use a forward slash (/) as
a delimiter. In Windows, the path will be sensorsdronealtitude because this operating
system uses a backslash () as a delimiter.

Then, we will save the files that have information about the altitude sensor for the drone
named drone01 in the created path. Instead of saving files in a path, we can think about
publishing a message to a path and use the same mechanism we use to organize files in
paths to arrange messages in topics.

Instead of directories or folders, a topic has topic levels, specifically, a hierarchy of topic
levels and the slashes (/) are used as delimiters, that is, topic level separators. If we use
sensors/drone01/altitude as the topic name, sensors is the first topic level, drone01
is the second topic level and altitude is the third topic level.

Topic names are case-sensitive, and therefore,
sensors/drone01/altitude is different from
sensors/Drone01/altitude, Sensors/drone01/altitude and
Sensors/Drone01/Altitude. In fact, the four strings will be considered
as four individual topic names. We must make sure we select a casing
scheme for the topic names and we use it for all the topic names and topic
filters.

We can use any UTF-8 character in topic names with the exception of the two wildcard
characters that we will analyze later: the plus sign (+) and hash (#). Hence, we must avoid +
and # in the topic names. However, it is a good practice to restrict the character set to avoid
unexpected problems with client libraries. For example, we can avoid accents and
characters that are not common in English as we do whenever we build URLs. It is possible
to use these characters but be sure that you can face issues when using them.

We should avoid creating topics starting with the dollar sign ($) because many MQTT
servers publish statistics data, related to the servers, in topics that start with $. Specifically,
the first topic level is $SYS.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[43]

We must maintain consistency when sending messages to different topic names as we do
when we save files in different paths. For example, if we want to publish the altitude for a
drone named drone20, we will use sensors/drone20/altitude. We must use the same
topic levels that we used for the same goal for drone01 and just change the drone name
from drone01 to drone20. It would be a really bad practice to use a topic with a different
structure or inconsistent casing, such as altitude/sensors/drone20 or
Sensors/Drone20/Altitude. We have to take into account that we can subscribe to
multiple topics by using topic filters, and therefore, it is very important to create topic
names accordingly.

Understanding wildcards
When we analyzed the subscription operation, we learn that an MQTT client can subscribe
to one or more topic filters. In case we specify a topic name as a topic filter, we will only
subscribe to a single topic. We can take advantage of the following two wildcards to create
topic filters that subscribe to all the topics that match the filter:

Plus sign (+): It is a single level wildcard that matches any name for a specific
topic level. We can use this wildcard instead of specifying a name for any topic
level in the topic filter.
Hash (#): It is a multi level wildcard that we can use only at the end of the topic
filter, as the last level and matches any topic whose first levels are the same as the
topic levels specified at the left-hand side of the # symbol.

For example, in case we want to receive all the messages related to the altitudes for all the
drones, we can use the + single level wildcard instead of a specific drone name. We can use
the following topic filter: sensors/+/altitude.

If we publish messages to the following topics, the subscriber that used the
sensors/+/altitude topic filter will receive all of them:

sensors/drone01/altitude

sensors/drone02/altitude

sensors/superdrone01/altitude

sensors/thegreatestdrone/altitude

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[44]

The subscriber to the sensors/+/altitude topic filter won't receive messages sent to any
of the following topics, because they won't match the topic filter.

sensors/drone01/speed/rotor/1

sensors/superdrone01/speed/rotor/2

sensors/superdrone01/remainingbattery

In case we want to receive all the messages related to all the sensors for the drone named
drone01, we can use the # multi level wildcard after the drone name and the slash (/). We
can use the following topic filter: sensors/drone01/#.

If we publish messages to the following topics, the subscriber that used the
sensors/drone01/# topic filter will receive all of them:

sensors/drone01/altitude

sensors/drone01/speed/rotor/1

sensors/drone01/speed/rotor/2

sensors/drone01/speed/rotor/3

sensors/drone01/speed/rotor/4

sensors/drone01/remainingbattery

We used a multi level wildcard, and therefore, no matter the additional topic levels after
sensors/drone01/, we will receive all of them.

The subscriber to the sensors/drone01/# topic filter won't receive messages sent to any
of the following topics, because they won't match the topic filter. None of the following has
sensors/drone01/ as a prefix, and therefore, they don't match the topic filter.

sensors/drone02/altitude

sensors/superdrone01/altitude

sensors/thegreatestdrone/altitude

sensors/drone02/speed/rotor/1

sensors/superdrone02/speed/rotor/2

sensors/superdrone02/remainingbattery

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[45]

Obviously, we must be careful when we use any wildcard because we might be subscribing
to a huge number of topics with a single topic filter. We have to avoid subscribing to topics
aren't of interest to the client to avoid wasting unnecessary bandwidth and the broker
server resources.

We will use these wildcards in subscriptions later to analyze how different QoS levels work
with MQTT.

Learning about the different Quality of
Service levels
Now that we understand how the connection, subscription and publication works in
combination with topic names and the topic filters with wildcards, we can dive deep on the
QoS levels. So far, we have analyzed how both the subscription and publication worked
with a QoS level equal to 0. Now, we will understand what this number means and how
things work when we use the other available QoS levels for the publication and the
subscription.

Remember that publication involves publishing from the MQTT client to
the MQTT server and then from the server to the subscribed client.It is
very important to understand that we can publish with a QoS level and
subscribe with another QoS level. Hence, there is a QoS level for the
publish process between the publisher and the MQTT server and another
QoS level for the publish process between the MQTT server and the
subscriber. We will use sender and receiver to identify the parties
involved in a message delivery for the different QoS levels. In the publish
process between the publisher and the MQTT server, the publisher will be
the sender and the MQTT server the receiver. In the publish process
between the MQTT server and the subscriber, the sender will be the
MQTT server and the receiver will be the subscriber.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[46]

Based on the QoS level, we have differences in the meaning of a successfully delivered
message in the MQTT protocol between the involved parties. The QoS level is the
agreement between a sender and a receiver of a message about the guarantees of actually
delivering the message. These warranties might include the number of times that a message
might arrive and the possibility or not of duplicates. MQTT supports the following three
possible QoS levels:

0, At most once delivery: This QoS level offers the same warranty as the
underlying TCP protocol. The message is not acknowledged by the receiver or
destination. The sender just sends the message to the destination and nothing else
happens. The sender neither stores nor schedules new deliveries for any
messages that might fail to reach the destination. The key advantage of this QoS
level is that it has the lowest possible overhead, compared to the other QoS levels.
1, At least once delivery: This QoS level adds a confirmation requirement to the
destination that has to receive the message. This way, QoS level 1 provides a
warranty that the message will be delivered at least once to the subscriber. One of
the key disadvantages of this QoS level is that it might generate duplicates, that
is, the same message might be sent more than once to the same destination. The
sender stores the message until it receives an acknowledgement from the
subscriber. In case the sender doesn't receive the acknowledgement within a
specific time, the sender will publish the message again to the receiver. The final
receiver must have the necessary logic to detect duplicates in case they shouldn't
be processed twice.
2, Exactly once delivery: This QoS level provides a warranty that the message is
delivered only once to the destination. QoS level 2 has the highest overhead,
compared to the other QoS levels. This QoS level requires two flows between the
sender and the receiver. A message published with QoS level 2 is considered
successfully delivered after the sender is sure that it has been successfully
received once by the destination.

Sometimes, we just want messages to be delivered with the least possible bandwidth usage,
we have a very reliable network and it doesn't matter if for some reason a few messages are
lost. In these cases, QoS level 0 is the appropriate choice.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[47]

In other cases, the messages are extremely important because they represent commands to
control an IoT device, the network is unreliable and we must make sure that the message
reaches the destination. In addition, a duplicate command might generate a big problem
because we don't want the IoT device to process a specific command twice. In these cases,
QoS level 2 is going to be the appropriate choice.

If a publisher works with a QoS level higher than the QoS level specified
by the subscriber, the MQTT server will have to downgrade the QoS level
to the lowest level that the specific subscriber is using when it publishes
the message from the MQTT server to this subscriber. For example, if we
use QoS level 2 to publish a message from the publisher to the MQTT
server but one subscriber has requested QoS level 1 when making the
subscription, the publication from the MQTT server to this subscriber will
use QoS level 1.

Working with at least once delivery
First, we will use wildcards to subscribe to a topic filter with QoS level 1 and then we will
publish one message to a topic name that will match the topic filter with QoS level 1. This
way, we will analyze how both publishing and subscription work with QoS level 1.

We will use the mosquitto_sub command-line utility included in Mosquitto to generate a
simple MQTT client that subscribes to a topic filter with QoS level 1and prints all the
messages it receives. Open a Terminal in macOS or Linux, or a Command Prompt in
Windows, go to the directory in which Mosquitto is installed and run the following
command:

mosquitto_sub -V mqttv311 -t sensors/+/altitude -q1 -d

The previous command will create an MQTT client that will establish a connection with the
local MQTT server and then will make the client subscribe to the topic filter specified after
the -t option: sensors/+/altitude. We specify that we want to use QoS level 1 to
subscribe to the topic filter with the -q 1 option. We specify the -d option to enable debug
messages that will allow us to understand what happens under the hoods and the
differences with publishing a message with QoS level 0.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[48]

The Terminal or Command Prompt window will display debug messages similar to the
following lines. Take into account that the generated ClientId will be different from the
one shown after Client mosqsub/1795-Gastons-Ma. Notice that QoS: 1 indicates that
the subscription is done with QoS level 1.

Client mosqsub/1795-Gastons-Ma sending CONNECT
Client mosqsub/1795-Gastons-Ma received CONNACK
Client mosqsub/1795-Gastons-Ma sending SUBSCRIBE (Mid: 1, Topic:
sensors/+/altitude, QoS: 1)
Client mosqsub/1795-Gastons-Ma received SUBACK
Subscribed (mid: 1): 1

We will use the mosquitto_pub command-line utility included in Mosquitto to generate a
simple MQTT client that publishes a message to a topic with QoS level 1 instead of the QoS
level 0 that we used when we published messages before. Open a Terminal in macOS or
Linux, or a Command Prompt in Windows, go to the directory in which Mosquitto is
installed and run the following command:

mosquitto_pub -V mqttv311 -t sensors/drone02/altitude -m "65 f" -q 1 -d

The previous command will create an MQTT client that will establish a connection with the
local MQTT server and then will make the client publish a message to the topic specified
after the -t option: sensors/drone02/altitude. We specify the payload for the message
after the -m option:"65 f". We specify that we want to use QoS level 1 to publish the
message with the -q 1 option. We specify the -d option to enable debug messages that will
allow us to understand what happens under the hoods and the differences with publishing
a message with QoS level 0.

The Terminal or Command Prompt window will display debug messages similar to the
following lines. Take into account that the generated ClientId will be different from the
one shown after Client: mosqpub/1516-Gastons-Ma. After publishing the message, the
client disconnects.

Client mosqpub/1516-Gastons-Ma sending CONNECT
Client mosqpub/1516-Gastons-Ma received CONNACK
Client mosqpub/1516-Gastons-Ma sending PUBLISH (d0, q1, r0, m1,
'sensors/drone02/altitude', ... (4 bytes))
Client mosqpub/1516-Gastons-Ma received PUBACK (Mid: 1)
Client mosqpub/1516-Gastons-Ma sending DISCONNECT

The previous lines show that the generated MQTT client sends a PUBLISH packet to the
MQTT server and then receives a PUBACK package from the server.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[49]

Now, go back to the Terminal or Command Prompt window in which you executed the
mosquitto_sub command and subscribed to the sensors/+/atitude topic filter. You
will see lines similar to the following ones:

Client mosqsub/1795-Gastons-Ma received PUBLISH (d0, q1, r0, m1,
'sensors/drone02/altitude', ... (4 bytes))
Client mosqsub/1795-Gastons-Ma sending PUBACK (Mid: 1)
65 f

The previous lines show that the generated MQTT client, that is, the subscriber, received a
PUBLISH packet from the MQTT server and then sent a PUBACK package to the server to
acknowledge the message. If we clean up the debug messages that start with the Client
prefix, we will see just the last line that shows the payloads for the message that we
received as a result of our subscription to the sensors/+/altitude topic filter: 65 f.

The MQTT client that has already established a connection, that is, the publisher, sends a
PUBLISH packet to the MQTT server with the header we have already described, QoS set to
1, and including a PacketId numeric value that will be unique for this client. At this time,
the publisher will consider the PUBLISH packet identified with the PacketId as an
unacknowledged PUBLISH packet.

The MQTT server reads a valid PUBLISH packet and it will respond to the publisher with a
PUBACK packet with the same PacketId value that has been used for the PUBLISH packet.
Once the publisher receives the PUBACK packet, it discards the message and the MQTT
server is responsible of publishing it to the appropriate subscribers.

The following diagram shows the interaction between a publisher and an MQTT server to
publish a message with a QoS level of 1.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[50]

The MQTT server can start publishing messages to the appropriate subscribers before it
sends the PUBACK packet to the publisher. Hence, when the publisher receives the PUBACK
packet from the MQTT server, it doesn't mean that all the subscribers have received the
message. It is very important to understand the meaning of this PUBACK packet.

For each subscriber to which the message has to be published, the MQTT server will send a
PUBLISH packet and the subscriber must acknowledge the reception of the message by
sending a PUBACK packet to the MQTT server. The following diagram shows the interaction
between an MQTT server and the subscribers when a message is published with a QoS level
of 1.

If the application is able to tolerate duplicates and we have to make sure that the messages
arrive at least once to the subscribers, QoS level 1 is an excellent choice. In case there is no
way to handle duplicates, we have to use QoS level 2.

Working with exactly once delivery
First, we will use wildcards to subscribe to a topic filter with QoS level 2 and then we will
publish one messages to a topic that will match the topic filter with QoS level 2. This way,
we will analyze how both publishing and subscription work with QoS level 2.

We will use the mosquitto_sub command-line utility included in Mosquitto to generate a
simple MQTT client that subscribes to a topic filter with QoS level 1 and prints all the
messages it receives. Open a Terminal in macOS or Linux, or a Command Prompt in
Windows, go to the directory in which Mosquitto is installed and run the following
command:

mosquitto_sub -V mqttv311 -t sensors/drone03/# -q 2 -d

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[51]

The previous command will create an MQTT client that will establish a connection with the
local MQTT server and then will make the client subscribe to the topic filter specified after
the -t option: sensors/drone03/#. We specify that we want to use QoS level 1 to
subscribe to the topic filter with the -q 2 option. We specify the -d option to enable debug
messages that will allow us to understand what happens under the hoods and the
differences with publishing a message with QoS levels 0 and 1.

The Terminal or Command Prompt window will display debug messages similar to the
following lines. Take into account that the generated ClientId will be different from the
one shown after Client mosqsub/1795-Gastons-Ma. Notice that QoS: 2 indicates that
the subscription is done with QoS level 2.

Client mosqsub/2017-Gastons-Ma sending CONNECT
Client mosqsub/2017-Gastons-Ma received CONNACK
Client mosqsub/2017-Gastons-Ma sending SUBSCRIBE (Mid: 1, Topic:
sensors/drone03/#, QoS: 2)
Client mosqsub/2017-Gastons-Ma received SUBACK
Subscribed (mid: 1): 2

We will use the mosquitto_pub command-line utility included in Mosquitto to generate a
simple MQTT client that publishes a message to a topic with QoS level 2 instead of the QoS
levels 0 and 1 that we used when we published messages before. Open a Terminal in
macOS or Linux, or a Command Prompt in Windows, go to the directory in which
Mosquitto is installed and run the following command:

mosquitto_pub -V mqttv311 -t sensors/drone03/speed/rotor/1 -m "362 f" -q 2
-d

The previous command will create an MQTT client that will establish a connection with the
local MQTT server and then will make the client publish a message to the topic specified
after the -t option: sensors/drone03/speed/rotor/1. We specify the payload for the
message after the -m option: "362 f". We specify that we want to use QoS level 2 to
publish the message with the -q 2 option. We specify the -d option to enable debug
messages that will allow us to understand what happens under the hoods and the
differences with publishing a message with QoS levels 0 and 1.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[52]

The Terminal or Command Prompt window will display debug messages similar to the
following lines. Take into account that the generated ClientId will be different from the
one shown after Client: mosqpub/2026-Gastons-Ma. After publishing the message, the
client disconnects.

Client mosqpub/2026-Gastons-Ma sending CONNECT
Client mosqpub/2026-Gastons-Ma received CONNACK
Client mosqpub/2026-Gastons-Ma sending PUBLISH (d0, q2, r0, m1,
'sensors/drone03/speed/rotor/1', ... (5 bytes))
Client mosqpub/2026-Gastons-Ma received PUBREC (Mid: 1)
Client mosqpub/2026-Gastons-Ma sending PUBREL (Mid: 1)
Client mosqpub/2026-Gastons-Ma received PUBCOMP (Mid: 1)
Client mosqpub/2026-Gastons-Ma sending DISCONNECT

The previous lines show that the generated MQTT client, that is, the publisher, had the
following packet exchanges with the MQTT server:

The publisher sent a PUBLISH packet to the MQTT server.1.
The publisher received a PUBREC packet from the MQTT server.2.
The publisher sent a PUBREL packet to the MQTT server.3.
The publisher received a PUBCOMP packet from the MQTT server.4.

Now, go back to the Terminal or Command Prompt window in which you executed the
mosquitto_sub command and subscribed to the sensors/drone03/# topic filter. You
will see lines similar to the following ones:

Client mosqsub/2017-Gastons-Ma received PUBLISH (d0, q2, r0, m1,
'sensors/drone03/speed/rotor/1', ... (5 bytes))
Client mosqsub/2017-Gastons-Ma sending PUBREC (Mid: 1)
Client mosqsub/2017-Gastons-Ma received PUBREL (Mid: 1)
362 f
Client mosqsub/2017-Gastons-Ma sending PUBCOMP (Mid: 1)

The previous lines show that the generated MQTT client, that is, the subscriber, had the
following packet exchanges with the MQTT server:

The subscriber received a PUBLISH packet from the MQTT server.1.
The subscriber sent a PUBREC packet to the MQTT server.2.
The subscriber received a PUBREL packet from the MQTT server.3.
The subscriber sends a PUBCOMP packet to the MQTT server after it successfully4.
received the message with the payload.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[53]

If we clean up the debug messages that start with the Client prefix, we will see just the last
line that shows the payloads for the message that we received as a result of our subscription
to the sensors/drone03/# topic filter: 362 f.

The MQTT client that has already established a connection, that is, the publisher sends a
PUBLISH packet to the MQTT server with the header we have already described, QoS set to
2, and including a PacketId numeric value that will be unique for this client. At this time,
the publisher will consider the PUBLISH packet identified with the PacketId as an
unacknowledged PUBLISH packet.

The MQTT server reads a valid PUBLISH packet and it will respond to the publisher with a
PUBREC packet with the same PacketId value that has been used for the PUBLISH packet.
The PUBREC packet indicates the MQTT server accepted the ownership of the message.
Once the publisher receives the PUBREC packet, it discards the message and it will store the
PacketId related to the message and the PUBREC packet.

The publisher sends a PUBREL packet to the MQTT server as a response to the received
PUBREC packet. This PUBREL packet will be considered unacknowledged until it receives the
PUBCOMP packet related to the PacketId from the MQTT server. Finally, the MQTT server
sends a PUBCOMP packet with the PacketId to the publisher and at this point, both the
publisher and the MQTT server are sure that the message has been successfully delivered.

The following diagram shows the interaction between a publisher and an MQTT server to
publish a message with a QoS level of 2.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[54]

For each subscriber with QoS level 2 to which the message has to be published, the MQTT
server will send a PUBLISH packet and the same packet exchange that we have analyzed
between the publisher and the MQTT server will happen between the MQTT server and the
subscriber. However, in this case, the MQTT server is the one that acts as a publisher and
starts the flow. The following diagram shows the interaction between an MQTT server and
the subscribers when a message is published with a QoS level of 2.

If the application isn't able to tolerate duplicates and we have to make sure that the
messages arrive only once to the subscribers, QoS level 2 is the appropriate choice.
However, magic comes with a price: we must take into account that QoS level 2 has the
highest overhead, compared to the other QoS levels.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[55]

Test your knowledge
MQTT runs on top of:1.

The MQIP protocol.1.
The TCP/IP protocol.2.
The IoT protocol.3.

The data for an MQTT message is known as:2.
Payload.1.
Packet.2.
Upload.3.

In MQTT version 3.1.1, the broker is named:3.
MQTT agent.1.
MQTT client.2.
MQTT server.3.

QoS level 0 for MQTT means:4.
Exactly once delivery1.
At most once delivery2.
At least once delivery3.

QoS level 1 for MQTT means:5.
Exactly once delivery1.
At most once delivery2.
At least once delivery3.

QoS level 2 for MQTT means:6.
Exactly once delivery1.
At most once delivery2.
At least once delivery3.

Lightweight Messaging with MQTT 3.1.1 and Mosquitto

[56]

Summary
In this chapter, we started our journey toward understanding the MQTT protocol. We
understood convenient scenarios for this protocol, the details of the publish/subscribe
pattern and message filtering. We learned basic concepts related to MQTT and understood
the different components: clients, brokers and connections.

We learned to install a Mosquitto broker or server on Linux, macOS and Windows. We used
the default configuration to learn how everything works under the hoods while using
Mosquitto. This way, it will be easier for us to use the client libraries in different
programming languages to publish MQTT messages and subscribe to MQTT topic filters.

We learned best practices related to topics, single level and multi level wildcards. We
studied in detail the different Quality of Service levels supported by MQTT and when it is
convenient to use each of them. We analyzed their advantages and disadvantages.

Now that we understood how the MQTT basics work, we will learn how to secure an
MQTT server and to follow best practices related to security, which is what we are going to
discuss in the next chapter.

2
Securing an MQTT Mosquitto

Server
In this chapter, we will secure a Mosquitto server. We will work with digital certificates to
encrypt all the data sent between the MQTT clients and the server. To secure the server, we
will:

Generate a private certificate authority to use TLS with Mosquitto
Create a certificate for the Mosquitto server
Configure TLS transport security in Mosquitto
Test the MQTT TLS configuration with MQTT.fx
Test the MQTT TLS configuration with MQTT-spy
Create a certificate for each MQTT client
Configure TLS client certificate authentication in Mosquitto
Test the MQTT TLS client authentication with MQTT.fx
Test the MQTT TLS configuration with MQTT-spy
Force the TLS protocol version

Securing a Mosquitto server
Security for IoT, mobile, and web applications is an extremely important topic that deserves
entire books dedicated to it. Each solution has its own security requirements, and it is very
important to consider all of them when developing each component of the solution.

Securing an MQTT Mosquitto Server

[58]

If we use MQTT to publish values that are neither confidential nor critical for other
applications, our only concern may be to keep control over the maximum number of
subscribers to topics to make sure that the messages are always available. This way, we can
avoid the failure of MQTT in delivering messages to a huge number of subscribers.

However, most of the times, we won't be working on a solution that can share the data with
the entire world without limitations and doesn't need to care about data confidentiality and
integrity in addition to data availability. Imagine that we are working on a solution that
includes a mobile app that allows users to control a huge drone. If the drone flies the wrong
way, we can do harm to real people. We cannot allow any unknown publisher to be able to
send messages to the topics that allow us to control the drone. We have to make sure that
the right person is controlling the drone and that the commands sent as part of the
messages cannot be altered by an intruder in the middle of the road.

The different levels of security come at a price, that is, there is always an
additional overhead. Hence, we should always keep a balance to avoid
overheads that can make the entire solution unfeasible and unusable.
Whenever we add more security, we will require additional bandwidth
and we will add a processing overhead to the clients and the server. We
have to take into account that some cryptographic algorithms that work
without problems in modern smartphones aren't suitable for IoT boards
with a constrained processing power. Sometimes, the security
requirements can force us to use specific hardware, such as more powerful
IoT boards. We definitely have to consider security before purchasing all
the hardware for our solution.

Another important thing that we must take into account is that many security levels require
maintenance tasks, which might be unfeasible in certain cases or extremely difficult to
achieve in other cases. For example, if we decide to use a certificate for each device that will
become a client of the MQTT server, we will have to generate and distribute a certificate for
each device. We have to access the filesystem for the device to copy new files to it. In case
we have to invalidate a certificate, it would be necessary to provide a new certificate to the
affected device. Consider a situation in which all the devices are distributed in different
locations, which are difficult to access; we must have a mechanism to remotely access the
device and be able to provide it with the new certificate. This task would also require
security because we don't want anybody else to access the device's filesystem. Thus, things
can become extremely complex once we start analyzing all the security requirements and
the possible and necessary maintenance tasks.

Securing an MQTT Mosquitto Server

[59]

Each MQTT server or broker implementation can provide specific security features. We will
work with some of the features provided by Mosquitto out of the box. Specific security
requirements might make us decide to work with a specific MQTT server or broker
implementation.

When we work with Mosquitto, we can implement security in the following levels:

Network: We can use a Virtual Private Network (VPN) to extend a private
network across the Internet.
Transport: MQTT uses TCP as the transport protocol, and therefore, by default,
the communications aren't encrypted. Transport Layer Security (TLS) is usually
referred to as TLS/SSL, because Secure Socket Layers (SSL) is its predecessor. We
can use TLS to secure and encrypt communications between the MQTT clients
and the MQTT server. The usage of TLS with MQTT is sometimes referred to as
MQTTS. TLS allows us to provide both privacy and data integrity. We can use
TLS client certificates to provide authentication.
Application: At this level, we can take advantage of the features included in
MQTT to provide application-level authentication and authorization. We can
use ClientId (Client Identifier) to identify each client and combine it with user
name and password authentication. We can add additional security mechanisms
at this level. For example, we can encrypt the message payload and/or add
integrity checks to ensure data integrity. However, the topic would still be
unencrypted, and therefore, TLS is the only way of making sure that everything
is encrypted. We can work with plugins to provide more complex authentication
and authorization mechanisms. We can grant or deny permissions to each user to
control which topics they can subscribe to and which topics they can publish
messages to.

The most popular MQTT implementations provide support for TLS.
However, make sure that you check the features before selecting the
appropriate MQTT server for your solution.

We won't cover all the security topics because it would require one or more entire books
dedicated to these topics. Instead, we will focus on the most common features used in
transport-level security first, and then, we will move to application-level security. The usage
of VPNs is out of the scope of this book. However, you must consider their usage based on
your specific needs. We will use Mosquitto for our examples, but you can follow many
similar procedures for any other MQTT server you decide to use. Everything we will learn
will be useful for any other MQTT server that provides support for the same security
features that we will use with Mosquitto.

Securing an MQTT Mosquitto Server

[60]

Generating a private certificate authority to
use TLS with Mosquitto
So far, we have been working with a Mosquitto server with its default configuration that
listens on port 1883 and uses TCP as the transport protocol. The data sent between each
MQTT client and server isn't encrypted. There are no restrictions to subscribers or
publishers. If we open the firewall ports and redirect the ports in the router, any MQTT
client that has our IP can publish to any topic and can subscribe to any topic.

In our examples in the previous chapter, we didn't make any changes in our configurations
to allow incoming connections to port 1883, and therefore, we didn't open our Mosquitto
server to the Internet.

We want to use TLS with MQTT and Mosquitto. This way, we will make sure that we can
trust the MQTT server because we have confidence that it is who it says; our data will be
private because it will be encrypted, and it will have integrity because it won't be altered in
the middle of the road. In case you have experience with the HTTP protocol, we will make
the same shift we do when we move from using HTTP to HTTPS.

Websites purchase certificates from major certificate authorities. In case we want to use a
purchased certificate for the server, we don't need to generate our own certificates. In fact, it
is the most convenient option when we have an MQTT server made public.

We will use the free OpenSSL utility to generate the necessary certificates for the server to
enable TLS with Mosquitto. OpenSSL is already installed in macOS and most modern Linux
distributions. In Windows, we already installed OpenSSL as one of the prerequisites for
Mosquitto. The usage of the OpenSSL utility deserves an entire book, and therefore, we will
just focus on generating the certificate we need with the most common options. In case you
have any specific security needs, make sure that you dive deep into the necessary options to
achieve the goals with OpenSSL.

Specifically, we will generate an X.509 digital certificate that uses the X.509 Public Key
Infrastructure (PKI) standard. This digital certificate allows us to confirm that a specific
public key belongs to the subject included within the certificate. There is an identity that
issues the certificate and its details are also included in the certificate.

The digital certificate is valid only within a specific period, and therefore, we must take into
account that a digital certificate will expire some day and we will have to provide a new
certificate to replace the expired one. There are specific data requirements for the certificate
based on the specific X.509 version that we use. According to the version and to the options
we use to generate the certificates, we may need to provide specific data.

Securing an MQTT Mosquitto Server

[61]

We will be running commands to generate different X.509 digital certificates and we will
provide all the necessary details that will be included in the certificate. We will understand
all the data that the certificate will have when we create them.

We will create our own private certificate authority, also known as CA. We will create a
root certificate and then we will generate the server key.

Check the directory or folder in which you have installed OpenSSL. In
macOS, OpenSSL is installed in /usr/bin/openssl. However, it is an old
version and it is necessary to install a newer version before running the
commands. It is possible to install the new version with the homebrew
package manager. In Windows, the OpenSSL version we have installed as
a prerequisite has the openssl.exe executable file in the default
C:OpenSSL-Win32bin folder. Use the full path to OpenSSL in each of the
next commands that start with openssl.

Create a new directory named certificates and change the necessary permissions for
this directory to make sure that only you can access its contents.

Open the Terminal in macOS or Linux, or the Command Prompt in Windows, and go to the
previously created directory, certificates. Run the following command to create a 2,048-
bit root key and save it in the ca.key file:

openssl genrsa -out ca.key 2048

The following lines show a sample output generated by the previous command:

Generating RSA private key, 2048 bit long modulus
...
...
..............+++
......+++
e is 65537 (0x10001)

The previous command will generate the private root key in the ca.key file. Make sure that
you keep this file private because anybody who has this file will be able to generate
certificates. It is also possible to password-protect this file by using other options with
openssl. However, as previously explained, we will follow the necessary steps to use TLS,
and you can explore additional options related to OpenSSL and certificates.

Securing an MQTT Mosquitto Server

[62]

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the
following command to self-sign the root certificate. The next command uses the previously
created 2,048-bit private key saved in the ca.key file and generates a ca.crt file with the
self-signed X.509 digital certificate. The command makes the self-signed certificate valid for
3,650 days. The value is specified after the -days option:

openssl req -x509 -new -nodes -key ca.key -sha256 -days 3650 -out ca.crt

In this case, we specified the -sha256 option to use SHA-256 hash
functions. If we want increased security, we can use the -sha512 instead
of -sha256 in all the cases in which we are using -sha256. This way, we
will use SHA-512 hash functions. However, we must take into account
that SHA-512 might not be appropriate for certain power-constrained IoT
devices.

After you enter the previous command, OpenSSL asks information that will be incorporated
in the certificate. You have to enter the information and press Enter. In case you don't want
to enter specific information, just enter a dot (.) and press Enter. It is possible to pass all the
values as arguments for the openssl command, but it makes it a bit difficult to understand
what we are doing. In fact, it is also possible to use fewer calls to the openssl command to
perform the previous tasks. However, we will run a few more steps to understand what we
are doing.

The following lines show the sample output and the questions with sample answers.
Remember that we are generating our private certificate authority:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CALIFORNIA
Locality Name (eg, city) []:SAN FRANCISCO
Organization Name (eg, company) [Internet Widgits Pty Ltd]:CERTIFICATE
AUTHORITY
Organizational Unit Name (eg, section) []:.
Common Name (e.g. server FQDN or YOUR name) []:CERTIFICATE AUTHORITY
Email Address []:certificate@example.com

Securing an MQTT Mosquitto Server

[63]

Run the following command to display the data and details for the generated certificate
authority certificate file:

openssl x509 -in ca.crt -noout -text

The following lines show the sample output, which displays details about the signature
algorithm, the issuer, the validity, the subject, the extensions, and the constraints:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 ff:db:b4:d7:fa:30:00:bf
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=CALIFORNIA, L=SAN FRANCISCO, O=CERTIFICATE
AUTHORITY, CN=CERTIFICATE AUTHORITY/emailAddress=certificate@example.com
 Validity
 Not Before: Jan 17 22:10:24 2017 GMT
 Not After : Jan 15 22:10:24 2027 GMT
 Subject: C=US, ST=CALIFORNIA, L=SAN FRANCISCO, O=CERTIFICATE
AUTHORITY, CN=CERTIFICATE AUTHORITY/emailAddress=certificate@example.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)
 Modulus (2048 bit):
 00:db:92:26:c1:fc:60:83:f1:c1:01:5e:46:e8:27:
 a8:e1:6e:08:02:65:05:ac:3e:d9:ad:22:8e:73:88:
 3e:bf:16:b7:56:d7:44:87:e6:59:95:91:63:40:6a:
 7c:fc:4f:db:48:b2:eb:d0:ca:ef:2d:6a:16:b9:31:
 fc:8e:ce:e9:9b:e8:d7:1c:16:81:17:b8:93:c2:e2:
 7c:14:0e:aa:4d:c4:75:38:4e:80:50:47:6d:fa:52:
 c6:0c:98:2f:93:af:da:36:67:60:34:79:80:7e:cd:
 03:da:c8:23:3d:e0:74:96:37:3c:0f:1d:fd:eb:e9:
 b9:d2:4b:00:e8:a4:d9:f6:e1:d2:51:e7:e5:74:29:
 dc:3d:68:84:93:47:7a:cf:6e:92:e3:10:db:73:95:
 7c:d4:c7:54:b0:10:bd:5c:0f:1e:0a:c1:bd:d9:25:
 d8:0d:d2:c2:30:92:90:6c:2d:4c:59:17:e0:d9:06:
 7d:c2:2a:b7:80:b8:cf:09:7b:23:e9:ed:8e:75:78:
 b7:8f:9e:87:17:a6:17:2d:c0:68:86:0d:97:5e:ab:
 5f:8d:d2:66:a7:11:0e:89:51:9c:9e:be:22:3f:f2:
 bd:ca:03:c5:da:5d:d0:09:20:9b:55:60:23:6b:3c:
 67:de:99:8a:ef:0a:62:7f:92:8d:88:c9:01:70:b8:
 3d:eb
 Exponent: 65537 (0x10001)

Securing an MQTT Mosquitto Server

[64]

 X509v3 extensions:
 X509v3 Subject Key Identifier:
 60:E5:C6:17:15:F8:2B:54:B2:DA:33:25:61:D4:4B:E3:DC:D9:70:6B
 X509v3 Authority Key Identifier:
keyid:60:E5:C6:17:15:F8:2B:54:B2:DA:33:25:61:D4:4B:E3:DC:D9:70:6B
 DirName:/C=US/ST=CALIFORNIA/L=SAN FRANCISCO/O=CERTIFICATE
AUTHORITY/CN=CERTIFICATE AUTHORITY/emailAddress=certificate@example.com
 serial:FF:DB:B4:D7:FA:30:00:BF

 X509v3 Basic Constraints:
 CA:TRUE
 Signature Algorithm: sha256WithRSAEncryption
 b8:b5:dc:71:b4:7f:66:f4:c0:d2:8f:0a:87:63:4f:b3:74:b0:
 37:dd:5a:20:10:01:1c:91:ba:fa:71:47:b7:ad:ec:37:69:c1:
 31:79:58:70:89:f2:d4:67:b3:a6:64:e2:75:0d:48:d1:fc:df:
 67:3d:e7:cc:fa:9c:6d:65:ef:39:b2:74:76:11:4b:b5:23:3f:
 b3:cb:af:7a:eb:33:d0:4c:da:ed:1e:40:4b:33:7b:ed:25:ba:
 9a:5a:d9:45:36:54:b7:25:b2:96:37:32:be:b1:f5:fa:1b:0f:
 e4:29:7a:bd:c5:78:da:cc:ff:f0:3b:16:71:13:b0:ee:6c:04:
 79:b0:33:56:c6:ac:28:d7:0b:7e:0e:ca:f0:7d:56:0f:59:e8:
 5a:f9:49:66:1b:b8:7e:a1:31:07:ed:f6:0c:ec:9a:1e:82:73:
 26:c5:2b:a9:c5:44:ef:b3:a4:7d:98:23:3e:f0:5b:ba:af:b6:
 bf:0c:c8:be:75:c9:a6:07:2e:4d:47:2d:71:80:fc:fd:42:e2:
 18:0d:4d:65:7e:6f:27:42:65:79:83:f9:74:11:c6:70:32:6f:
 d9:98:5c:54:e5:eb:b6:68:7b:93:25:56:ef:11:d4:2f:61:d1:
 43:4f:b9:69:1c:2d:d2:e0:99:e5:12:be:20:c1:54:fe:b8:ea:
 c9:f0:27:d9

After running the previous commands, we will have the following two files in the
certificates directory:

ca.key: Certificate authority key
ca.crt: Certificate authority certificate file

The certificate authority certificate file is in a Privacy Enhanced Mail
(PEM) format. We must remember this format because some MQTT
utilities will require us to specify whether the certificate is in the PEM
format or not. A wrong value in this option won't make the MQTT client
establish a connection with an MQTT server that uses a certificate in PEM
format.

Securing an MQTT Mosquitto Server

[65]

Creating a certificate for the Mosquitto
server
Now that we have a private certificate authority, we can create the certificate for the
Mosquitto server, that is, a certificate for the computer that will run the MQTT server.

First, we must generate a new private key that will be different from the private key we
generated for our own private certificate authority.

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the
following command to create a 2,048-bit key and save it in the server.key file:

openssl genrsa -out server.key 2048

The following lines show a sample output generated by the previous command:

Generating RSA private key, 2048 bit long modulus
...
...
..............+++
......+++
e is 65537 (0x10001)

The previous command will generate the private key in the server.key file. Go back to the
Terminal in macOS or Linux, or the Command Prompt in Windows. Run the following
command to generate a certificate signing request, also known as CSR. The next command
uses the previously created 2,048-bit private key saved in the server.key file and
generates a server.csr file:

openssl req -new -key server.key -out server.csr

After you enter the previous command, OpenSSL asks for information that will be
incorporated in the certificate. You have to enter the information and press Enter. In case
you don't want to enter specific information, just enter a dot (.) and press Enter. In this case,
the most important value is Common Name. Enter the IPv4 or IPv6 address for the computer
that is running the Mosquitto server in this field.

Securing an MQTT Mosquitto Server

[66]

The following lines show the sample output and the questions with sample answers. Do not
forget to enter the appropriate value for Common Name:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CALIFORNIA
Locality Name (eg, city) []:PALO ALTO
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MQTT SERVER
Organizational Unit Name (eg, section) []:MQTT
Common Name (e.g. server FQDN or YOUR name) []:192.168.1.101
Email Address []:mqttserver@example.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:.
An optional company name []:Mosquitto

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the
following command to sign the previously created certificate signing request, that is, the
server.csr file. The next command also uses the self-signed X.509 digital certificate for
the certificate authority and its private key that we generated before: the ca.crt and
ca.key files. The command generates a server.crt file with the signed X.509 digital
certificate for the Mosquitto server. The command makes the signed certificate valid for
3,650 days. The value is specified after the -days option:

openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key -CAcreateserial -
out server.crt -days 3650 -sha256

Securing an MQTT Mosquitto Server

[67]

As we did when we created the self-signed X.509 digital certificate for the
certificate authority, we also specify the -sha256 option to use SHA-256
hash functions for the Mosquitto server certificate. You can use the -
sha512 option instead of -sha256 in case you want to use SHA-512 hash
functions for increased security.

The following lines show a sample output generated by the previous command. The values
shown after the subject will be different in your configuration because you entered your
own values when you generated the certificate signing request that was saved in the
server.csr file:

Signature ok
subject=/C=US/ST=CALIFORNIA/L=PALO ALTO/O=MQTT
SERVER/OU=MQTT/CN=192.168.1.101/emailAddress=mqttserver@example.com
Getting CA Private Key

Run the following command to display the data and details for the generated server
certificate file:

openssl x509 -in server.crt -noout -text

The following lines show the sample output that displays details about the signature
algorithm, the issuer, the validity, the subject, and the signature algorithms:

Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 87:f1:cb:ae:43:c3:17:ee
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=CALIFORNIA, L=SAN FRANCISCO, O=CERTIFICATE
AUTHORITY, CN=CERTIFICATE AUTHORITY/emailAddress=certificate@example.com
 Validity
 Not Before: Jan 18 14:29:48 2017 GMT
 Not After : Jan 16 14:29:48 2027 GMT
 Subject: C=US, ST=CALIFORNIA, L=PALO ALTO, O=MQTT SERVER, OU=MQTT,
CN=192.168.1.101/emailAddress=mqttserver@example.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)

Securing an MQTT Mosquitto Server

[68]

 Modulus (2048 bit):
 00:df:f6:e3:92:27:44:c0:93:56:70:e1:ec:97:c0:
 fc:24:df:73:a1:4b:d9:a5:d9:30:0c:63:06:8b:4c:
 69:91:42:fc:41:a1:ba:13:b9:8b:0d:b1:89:80:48:
 20:b7:61:c0:4b:be:92:66:c8:a5:f4:67:b3:7e:05:
 ed:59:1c:1e:a1:6f:db:3b:1b:16:c8:cd:93:d7:c8:
 28:0d:20:73:12:9e:1d:ad:30:af:97:a7:4e:be:1b:
 90:48:d6:8c:d4:04:1a:3f:a1:2e:4a:dc:b2:d8:32:
 f1:c9:83:8a:d7:15:a1:da:58:69:38:f3:0b:50:b0:
 f6:42:c2:8d:c3:32:4a:20:e7:f6:3d:f2:59:70:d9:
 da:13:59:aa:4f:1a:83:e8:e4:9a:82:ca:db:81:89:
 4b:06:48:94:c2:8a:10:0b:7d:c8:d7:2e:c4:25:54:
 60:b3:13:77:f2:99:dc:1c:26:d5:99:d2:24:57:3e:
 6e:80:c5:e7:49:30:2a:01:d4:b0:19:ef:48:ec:f5:
 0f:8b:af:52:f6:0c:6e:91:2d:d8:e5:5b:49:cc:9a:
 79:d7:13:1e:b2:c2:5b:d2:3c:b7:71:f3:f6:9c:50:
 25:97:da:0c:7a:24:4a:7e:0a:6a:02:5f:ba:2d:b3:
 5d:0b:e6:e2:d7:0c:7d:31:c3:28:68:3c:02:31:0d:
 8d:33
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha256WithRSAEncryption
 72:3b:9b:e7:c0:17:66:a2:3b:52:b6:12:74:e5:1d:21:fd:fc:
 b3:09:9c:b1:f2:97:15:5e:44:0e:3f:ee:c3:e4:61:00:4f:16:
 99:58:19:72:3c:3d:54:df:f8:2c:6c:51:2c:7f:50:f7:4b:24:
 2e:cc:2f:f6:ee:43:97:b0:d5:05:a9:89:18:ac:18:26:28:45:
 3c:0f:6e:ae:54:6a:1f:da:71:34:2e:01:79:5b:3b:14:f0:cd:
 70:11:4c:4d:e5:36:89:e0:b2:2f:64:b5:44:05:65:94:35:a4:
 0f:21:e8:ff:07:27:89:e6:02:cf:f7:51:68:2c:e0:c2:c2:0c:
 dd:26:56:70:bc:26:64:ab:7e:cc:c0:0c:0b:bf:da:91:22:05:
 71:41:af:af:c7:47:7a:cb:cd:cd:f3:49:bb:bb:ca:52:f5:56:
 d3:75:33:c6:9f:fb:a8:35:87:3e:d5:13:37:b4:c5:d4:19:64:
 ab:f2:5d:b7:06:d8:c8:54:95:cd:f2:02:74:d7:49:62:55:73:
 b3:80:78:85:c2:6b:aa:68:96:95:4c:c4:3c:3e:20:ed:4a:8f:
 84:34:51:28:99:01:d1:4d:21:4d:8f:97:7a:47:8c:b0:8e:4a:
 59:f6:21:44:da:af:54:84:b9:ce:95:b9:21:35:14:a6:45:2f:
 e5:bc:37:84

Securing an MQTT Mosquitto Server

[69]

After running the previous commands, we will have the following three files in the
certificates directory:

server.key: Server key
server.csr: Server certificate signing request
server.crt: Server certificate file

The server certificate file is in PEM format, as happened with the
certificate authority certificate file.

Configuring TLS transport security in
Mosquitto
Now, we will configure Mosquitto to use TLS transport security and work with encrypted
communications with different clients. Note that we haven't generated certificates for the
clients, and therefore, we won't use client certificates for authentication. This way, any client
that has the ca.crt file will be able to establish a communication with the Mosquitto
server.

Go to the Mosquitto installation directory and create a new subdirectory named
certificates. In Windows, you will need administrator privileges to access the default
installation folder.

Copy the following files from the certificates directory, in which we have saved the
certificate authority certificate and the server certificate, to the certificates subdirectory
we recently created within the Mosquitto installation directory:

ca.crt

server.crt

server.key

In case you are running the Mosquitto server in a Terminal window in macOS or Linux,
press Ctrl+C to stop it. In Windows, stop the appropriate service. If you are running the
Mosquitto server in Linux, run the following command to stop the service:

sudo service mosquitto stop

Securing an MQTT Mosquitto Server

[70]

Go to the Mosquitto installation directory and open the mosquitto.conf configuration
file. By default, all the lines for this file are commented, that is, they start with a hash sign
(#). The default value for each setting is indicated and commented. This way, we easily
know all the default values. The settings are organized in different sections.

It is a good practice to make a backup copy of the exiting
mosquitto.conf configuration file before making changes to it.
Whenever we make changes to mosquitto.conf it is a good idea to be
able to easily roll back to the previous configuration if something goes
wrong.

In macOS or Linux, add the following lines at the end of the configuration file and make
sure you replace /usr/local/etc/mosquitto/certificates with the full path to the
certificates directory we created within the Mosquitto installation folder:

MQTT over TLS
listener 8883
cafile /usr/local/etc/mosquitto/certificates/ca.crt
certfile /usr/local/etc/mosquitto/certificates/server.crt
keyfile /usr/local/etc/mosquitto/certificates/server.key

In Windows, add the following lines at the end of the configuration file and make sure you
replace C:Program Files (x86)mosquittocertificates with the full path to the
certificates directory we created within the Mosquitto installation folder:

MQTT over TLS
listener 8883
cafile C:Program Files (x86)mosquittocertificatesca.crt
certfile C:Program Files (x86)mosquittocertificatesserver.crt
keyfile C:Program Files (x86)mosquittocertificatesserver.key

We specified the 8883 value for the listener option to make Mosquitto listen for
incoming network connections on port 8883. This port is the default port number for MQTT
with TLS.

The cafile option specifies the full path for the file that provides a PEM-encoded
certificate authority certificate file: ca.crt.

The certfile option specifies the full path for the file that provides a PEM-encoded server
certificate: server.crt.

Finally, the keyfile option specifies the full path for the file that provides a PEM-encoded
server keyfile: server.key.

Securing an MQTT Mosquitto Server

[71]

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again
with the same mechanism we learned for Linux, macOS, and Windows in the previous
chapter. The Mosquitto server will be listening on port 8883 instead of 1883.

We will use the mosquitto_sub command-line utility included in Mosquitto to try to
generate a simple MQTT client that subscribes to a topic and prints all the messages it
receives. We will use the default configuration that will try to establish a communication
with the Mosquitto server by using the default 1883 port without a certificate authority
certificate specified. Open the Terminal in macOS or Linux, or the Command Prompt in
Windows, go to the directory in which Mosquitto is installed, and run the following
command:

mosquitto_sub -V mqttv311 -t sensors/drone01/altitude -d

The mosquitto_sub utility will display the following error. The Mosquitto server is not
accepting connection on port 1883 anymore:

Error: Connection refused

Run the following command that uses the -p option followed by the port number that we
want to use: 8883. This way, we will try to connect to port 8883 instead of the default 1883
port:

mosquitto_sub -V mqttv311 -p 8883 -t sensors/drone01/altitude -d

The mosquitto_sub utility will display debug messages indicating that it is sending the
CONNECT packet to the MQTT server. However, the connection will never be established
because Mosquitto will display the following error. The Mosquitto server is not
accepting connection on port 1883 anymore. Press Ctrl+C to stop the utility trying
to connect.

The following command specifies the certificate authority certificate file after the --cafile
option in addition to indicating that we want to use port 8883. You just have to replace
ca.crt with the full path to the ca.crt file you created in the certificates directory.
For example, it might be C:certificatesca.crt in Windows
or /Users/gaston/certificates/ca.crt in macOS or Linux. The mosquitto_sub
utility will create an MQTT subscriber that will establish an encrypted connection with
Mosquitto:

mosquitto_sub -V mqttv311 -p 8883 --cafile ca.crt-t
sensors/drone01/altitude-d

Securing an MQTT Mosquitto Server

[72]

With a similar syntax, we will use the mosquitto_pub command-line utility included in
Mosquitto to generate a simple MQTT client that publishes a message to a topic with an
encrypted connection. Open the Terminal in macOS or Linux, or the Command Prompt in
Windows, go to the directory in which Mosquitto is installed, and run the following
command:

mosquitto_pub -V mqttv311 -p 8883 --cafile ca.crt -t
sensors/drone01/altitude -m "150 f" -d

Remember to replace ca.crt with the full path to the ca.crt file you
created in the certificates directory.

Testing the MQTT TLS configuration with
MQTT.fx
Now, we will use the MQTT.fx GUI utility to generate another MQTT client that uses an
encrypted connection to publish messages to the same topic,
sensors/drone01/altitude. We have to make changes to the connection options to
enable TLS and specify the certificate authority certificate file. Follow the next steps:

Launch MQTT.fx, select local mosquitto in the dropdown located on the upper-1.
left corner, and click on the configuration icon on the right-hand side of this
dropdown and on the left-hand side of the Connect button. MQTT.fx will display
the Edit Connection Profiles dialog box with different options for the connection
profile named local mosquitto.
Change the value specified in Broker Port from 1883 to 8883.2.
Press the SSL/TLS button.3.
Activate the Enable SSL/TLS checkbox.4.
Activate the CA certificate file radio button.5.

Securing an MQTT Mosquitto Server

[73]

Enter or select the full path to the ca.crt file that you created in the6.
certificates folder in the CA Certificate File textbox and click OK. The
following screenshot shows the dialog box with the selected options:

Click on the Connect button. MQTT.fx will establish an encrypted connection7.
with the local Mosquitto server. Notice that the Connect button is disabled and
the Disconnect button is enabled because the client is connected to the Mosquitto
server.
Click Subscribe and enter sensors/drone01/altitude in the dropdown8.
on the left-hand side of the Subscribe button. Then, click the Subscribe button.
MQTT.fx will display a new panel on the left-hand side with the topic to which
we have subscribed.
Click Publish and enter sensors/drone01/altitude in the dropdown on the9.
left-hand side of the Publish button.
Enter the following text in the textbox below the Publish button: 400 f.10.

Securing an MQTT Mosquitto Server

[74]

Then, click the Publish button. MQTT.fx will publish the entered text to the11.
specified topic.
Click Subscribe and you will see the published message.12.

With the configuration changes we have made to the Mosquitto server, any client that has
the certificate authority certificate file, that is, the ca.crt file we generated, will be able to
establish a connection with Mosquitto, subscribe, and publish to topics. The data sent
between the MQTT clients and the MQTT server is encrypted. In this configuration, we
don't require the MQTT clients to provide certificates for authentication.

Testing the MQTT TLS configuration with
MQTT-spy
There is another very popular utility to generate MQTT clients that can subscribe to topics
and publish to topics: MQTT-spy. This utility is open source and can run on any computer
that has Java 8 or a higher version installed on it. You can find more information about
MQTT-spy at http://kamilfb.github.io/mqtt-spy. The options to establish a connection
with an MQTT server with a certificate authority certificate file are similar to the ones we
analyzed for MQTT.fx. However, in case you also want to work with this utility, it is
convenient to analyze them in detail.

Now, we will use the MQTT-spy GUI utility to generate another MQTT client that uses an
encrypted connection to publish messages to the same topic, that
is, sensors/drone01/altitude. Follow the next steps:

Launch MQTT-spy.1.
Select Connections | New connection. The Connection list dialog box will2.
appear.
Click on the Connectivity tab and select MQTT 3.1.1 in the Protocol version3.
dropdown. We want to work with MQTT version 3.1.1.
Click on the Security tab and on the TLS tab below the User auth. tab.4.
Select CA certificate in the TLS/SSL mode dropdown.5.
Select TLSv1.2 in the Protocol dropdown.6.

http://kamilfb.github.io/mqtt-spy

Securing an MQTT Mosquitto Server

[75]

Enter or select the full path to the ca.crt file that you created in the7.
certificates folder and click Open connnection. The following screenshot
shows the dialog box with the selected options:

MQTT-spy will close the dialog box and will display a new tab with a green8.
background and the connection name that appears highlighted and selected
on the left-hand side in the Connection list dialog. Make sure you click on the tab
for the new connection.
Enter sensors/drone01/altitude in the Topic dropdown.9.
Enter the following text in the Data textbox: 540 f. The following screenshot10.
shows the tab for the new connection and the data entered in the different
controls:

Securing an MQTT Mosquitto Server

[76]

Click the Publish button. MQTT-spy will publish the entered text to the specified11.
topic, and you will be able to see the message in both the MQTT.fx subscriber and
the mosquitto-sub subscriber.

Creating a certificate for each MQTT client
Now, we want to require each MQTT client to provide a valid certificate to establish a
connection with the MQTT server. This way, only the clients that have a valid certificate
will be able to publish or subscribe to topics. We will use the previously created private
certificate authority to create client certificates for authentication.

We will generate a sample certificate for our local computer that will act as a client. We can
follow the same procedure to generate additional certificates for additional devices that we
want to be able to connect to the Mosquitto server. We just need to use a different name for
the file and use a different device name in the corresponding option.

We must use the same certificate authority certificate that we used to
generate the server certificate to generate the client certificates.

First, we must generate a new private key that will be different from the private keys we
generated for our own private certificate authority and for the server certificate.

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the
following command to create a 2,048-bit key and save it in the device001.key file. To
repeat this procedure for other devices, replace device001 with any other name that
identifies the device that will use the certificate. Do this in all the following commands that
use device001 for different file names and values:

openssl genrsa -out device001.key 2048

The following lines show a sample output generated by the previous command:

Generating RSA private key, 2048 bit long modulus
...
...
..............+++
......+++
e is 65537 (0x10001)

Securing an MQTT Mosquitto Server

[77]

The previous command will generate the private key in the device001.key file. Go back to
the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the following
command to generate a certificate signing request, also known as CSR. The next command
uses the previously created 2,048-bit private key saved in the device001.key file and
generates a device001.csr file:

openssl req -new -key device001.key -out device001.csr

After you enter the previous command, OpenSSL asks for information that will be
incorporated in the certificate. You have to enter the information and press Enter. In case
you don't want to enter specific information, just enter a dot (.) and press Enter. In this case,
the most important value is Common Name. Enter the device name in this field:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CALIFORNIA
Locality Name (eg, city) []:SAN JOSE
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MQTT CLIENT 001
Organizational Unit Name (eg, section) []:MQTT CLIENT 001
Common Name (e.g. server FQDN or YOUR name) []:MQTT CLIENT 001
Email Address []:mqttclient001@example.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:.
An optional company name []:.

Go to the Terminal in macOS or Linux, or the Command Prompt in Windows. Run the
following command to sign the previously created certificate signing request, that is, the
client001.csr file. The next command also uses the self-signed X.509 digital certificate
for the certificate authority and its private key that we generated before: the ca.crt and
ca.key files. The command generates a client001.crt file with the signed X.509 digital
certificate for the MQTT client. The command makes the signed certificate valid for 3,650
days. The value is specified after the -days option. The -addTrust clientAuth option
indicates that we want to use the certificate to authenticate a client:

openssl x509 -req -in device001.csr -CA ca.crt -CAkey ca.key -
CAcreateserial -out device001.crt -days 3650 -sha256 -addtrust clientAuth

Securing an MQTT Mosquitto Server

[78]

The following lines show a sample output generated by the previous command. The values
shown after the subject will be different in your configuration because you entered your
own values when you generated the certificate signing request that was saved in the
device001.csr file:

Signature ok
subject=/C=US/ST=CALIFORNIA/L=SAN JOSE/O=MQTT CLIENT 001/OU=MQTT CLIENT
001/CN=MQTT CLIENT 001/emailAddress=mqttclient001@example.com
Getting CA Private Key

Run the following command to display the data and details for the generated server
certificate file:

openssl x509 -in device001.crt -noout -text

The following lines show the sample output that displays details about the signature
algorithm, the issuer, the validity, the subject, and the signature algorithms:

Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 87:f1:cb:ae:43:c3:17:ef
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=CALIFORNIA, L=SAN FRANCISCO, O=CERTIFICATE
AUTHORITY, CN=CERTIFICATE AUTHORITY/emailAddress=certificate@example.com
 Validity
 Not Before: Jan 18 22:51:42 2017 GMT
 Not After : Jan 16 22:51:42 2027 GMT
 Subject: C=US, ST=CALIFORNIA, L=SAN JOSE, O=MQTT CLIENT 001,
OU=MQTT CLIENT 001, CN=MQTT CLIENT
001/emailAddress=mqttclient001@example.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)

Securing an MQTT Mosquitto Server

[79]

 Modulus (2048 bit):
 00:a2:f0:b8:70:c6:9f:de:a0:42:27:fe:5c:86:2d:
 73:a5:ae:1c:78:6c:bf:07:fe:bb:cc:a4:69:1d:3c:
 10:01:ef:4d:2c:85:43:57:4d:a2:5a:1c:ea:8f:1d:
 c2:73:4e:d8:27:31:78:9d:02:12:a9:2d:1b:2c:63:
 fc:9f:41:94:06:f6:7d:9b:4b:8f:58:cb:bf:b6:ea:
 1d:e5:e2:fd:18:64:9a:f6:0e:ba:f0:7a:ba:52:c0:
 01:78:42:74:43:67:97:f4:db:80:a8:8b:e7:c0:c4:
 e7:ce:e4:ba:f8:7e:17:4f:e0:28:9d:93:ad:37:74:
 61:1b:fc:db:42:d1:36:31:11:47:9b:23:4f:37:d8:
 54:e6:30:b7:f7:14:68:b7:e1:b3:43:43:f2:53:55:
 e6:ee:bf:d0:61:15:d3:7e:d1:de:88:1a:00:1b:b3:
 09:bd:0f:ea:f8:d6:15:3b:8f:df:2c:3f:d1:ec:fa:
 3d:20:28:bb:82:ed:b2:3f:b7:db:c6:fb:99:16:70:
 9a:2e:1c:3c:71:fd:ac:f0:ed:f1:ea:93:e6:2b:27:
 88:91:bb:32:1a:bf:90:31:bb:52:1f:22:60:9b:3a:
 16:d3:02:98:97:8e:b1:49:1c:c8:d7:0f:61:24:bf:
 b1:ae:8c:fe:7d:99:6c:f4:d2:83:5e:63:77:4f:b4:
 e7:db
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha256WithRSAEncryption
 3c:85:23:6a:a5:cb:eb:94:59:58:53:fe:d0:c4:26:75:76:9f:
 fd:82:4b:5d:31:6a:a7:ba:08:75:96:f4:15:bf:e3:e2:7c:91:
 bf:50:19:e9:aa:76:99:13:fe:85:6d:22:67:96:68:b6:f0:86:
 06:cc:76:3c:79:4a:bc:1e:32:76:09:2e:82:93:b7:68:9c:1b:
 23:85:2c:ce:d2:39:d6:d3:c3:9c:d6:bc:38:25:bb:3c:55:53:
 a7:2f:58:d3:4d:9a:4c:86:78:7b:0f:6d:ea:8b:b3:0e:5c:2a:
 59:86:8e:1f:29:07:10:e8:37:ae:69:7e:b0:1f:a7:b9:08:e0:
 6e:aa:f9:a6:96:e0:e9:e4:4e:98:dc:a7:05:a1:ea:90:34:c9:
 4a:4d:7f:91:73:7a:22:24:91:82:37:d8:f4:a8:2a:1b:bb:b2:
 38:d5:27:ae:65:c5:e0:10:12:07:68:ca:ed:e9:27:1b:49:9b:
 39:81:bf:f2:6b:eb:b2:09:eb:1f:3b:de:dd:93:81:6f:c2:5a:
 4e:cd:b4:cd:05:fe:17:71:fb:fe:28:ba:55:4d:e4:91:64:fe:
 d6:57:61:81:d7:78:ae:9c:65:26:3c:6e:bb:9e:76:10:cd:94:
 44:92:1d:2d:e3:ff:57:fd:ab:24:b5:3c:cc:a8:76:0f:15:b3:
 79:31:1f:ef

After running the previous commands, we will have the following three new files in the
certificates directory:

device001.key: Client key
device001.csr: Client certificate signing request
device001.crt: Client certificate file

Securing an MQTT Mosquitto Server

[80]

The client certificate file is in the PEM format, as happened with the
authority certificate file and the server certificate file.

We will have to provide the following three files to any device that we want to be able to
connect to the Mosquitto server:

ca.crt

device001.crt

device001.key

Never provide additional files to the devices that have to establish a
connection with the MQTT server. You don't want the devices to be able to
generate additional certificates. You just want them to authenticate with a
valid certificate.

The openssl utility allows us to provide values for many of the options with additional
command-line options. Hence, it is possible to automate many of the previous steps to
make it easier to generate multiple device certificates.

Configuring TLS client certificate
authentication in Mosquitto
Now, we will configure Mosquitto to use TLS client certificate authentication. This way, any
client will require the ca.crt file and a client certificate to establish a communication with
the Mosquitto server.

In case you are running the Mosquitto server in a Terminal window in macOS or Linux,
press Ctrl+C to stop it. In Windows, stop the appropriate service.

Go to the Mosquitto installation directory and open the mosquitto.conf configuration
file.

Securing an MQTT Mosquitto Server

[81]

In macOS, Linux. or Windows, add the following lines at the end of the configuration file:

require_certificate true

We specified the true value for the require_certificate option to make Mosquitto
require a valid client certificate for any client that requests a connection to Mosquitto.

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again.
We will use the mosquitto_sub command-line utility included in Mosquitto to generate a
simple MQTT client that subscribes to a topic filter and prints all the messages it receives.
The following command specifies the certificate authority certificate file, the client
certificate, and the client key. You have to replace ca.crt, device001.crt, and
device001.key with the full path to these files created in the certificates directory.
However, it is a better idea to copy these files to a new directory as if we were working with
the files that will only be available to the device that wants to establish a connection with
Mosquitto. The mosquitto_sub utility will create an MQTT subscriber that will establish
an encrypted connection with Mosquitto and will provide the client certificate and client
key to perform authentication.

mosquitto_sub -V mqttv311 -p 8883 --cafile ca.crt --cert device001.crt --
key device001.key-t sensors/+/altitude -d

With a similar syntax, we will use the mosquitto_pub command-line utility included in
Mosquitto to generate a simple MQTT client that publishes a message to a topic that will
match the previously specified topic filter, with an encrypted connection and client
authentication. Open the Terminal in macOS or Linux, or a Command Prompt in Windows,
go to the directory in which Mosquitto is installed, and run the following command.
Remember to replace ca.crt, device001.crt, and device001.key with the full path to
these files created in the certificates directory:

mosquitto_pub -V mqttv311 -p 8883 --cafile ca.crt --cert device001.crt --
key device001.key-t sensors/drone12/altitude -m "1350 f" -d

Sometimes, it is necessary to invalidate a client certificate. Mosquitto
allows us to specify a PEM-encoded certificate revocation list file. We have
to specify the path to this file as a value for the crlfile option in the
Mosquitto configuration file.

Securing an MQTT Mosquitto Server

[82]

Testing the MQTT TLS client authentication
with MQTT.fx
Now, we will use the MQTT.fx GUI utility to generate another MQTT client that uses an
encrypted connection and TLS client authentication to publish messages to a topic that
matches the topic filter we used for the subscription, sensors/drone25/altitude. We
have to make changes to the connection options we used when we enabled TLS and specify
the client certificate and client key files. Follow the next steps:

Launch MQTT.fx, select local mosquitto in the dropdown located on the upper-1.
left corner, and click on the configuration icon on the right-hand side of this
dropdown and on the left-hand side of the Connect button. MQTT.fx will display
the Edit Connection Profiles dialog box with different options for the connection
profile named local mosquitto.
Make sure the value specified in Broker Port is 8883.2.
Press the SSL/TLS button.3.
Make sure the Enable SSL/TLS checkbox is activated.4.
Activate the Self signed certificates radio button.5.
Enter or select the full path to the ca.crt file that you created in the6.
certificates folder in the CA File textbox.
Enter or select the full path to the device001.crt file that you created in the7.
certificates folder in the Client Certificate File textbox.
Enter or select the full path to the device001.key file that you created in the8.
certificates folder in the Client Key File textbox.

Securing an MQTT Mosquitto Server

[83]

Make sure that the PEM Formatted checkbox is activated. The following9.
screenshot shows the dialog box with the selected options and sample values for
the different textboxes:

Click OK. Then, click on the Connect button. MQTT.fx will establish an10.
encrypted connection with the local Mosquitto server by using the certificate and
key files we have specified. Note that the Connect button is disabled and the
Disconnect button is enabled because the client is connected to the Mosquitto
server.
Click Subscribe and enter sensors/+/altitude in the dropdown on the left-11.
hand side of the Subscribe button. Then, click the Subscribe button. MQTT.fx
will display a new panel on the left-hand side with the topic filter to which we
have subscribed.

Securing an MQTT Mosquitto Server

[84]

Click Publish and enter sensors/drone40/altitude in the dropdown on the12.
left-hand side of the Publish button.
Enter the following text in the textbox below the Publish button: 1235 f.13.
Then, click the Publish button. MQTT.fx will publish the entered text to the14.
specified topic.
Click Subscribe and you will see the published message.15.

Testing the MQTT TLS configuration with
MQTT-spy
Now, we will use the MQTT-spy GUI utility to generate another MQTT client that uses an
encrypted connection to publish messages to another topic that will match the
sensors/+/altitude topic filter, sensors/drone500/altitude. Follow the next steps:

Launch MQTT-spy.1.
Select Connections | New connection or Connections | Manage connections in2.
case you were already running MQTT-spy or have saved previous settings. The
Connection list dialog box will appear.
Click on the Connectivity tab and make sure MQTT 3.1.1 is selected in the3.
Protocol version dropdown.
Click on the Security tab and on the TLS tab below the User auth. tab.4.
Select CA certificate& client certificate/key in the TLS/SSL mode dropdown.5.
Select TLSv1.2 in the Protocol dropdown.6.
Enter or select the full path to the ca.crt file that you created in the7.
certificates folder in the CA certificate file textbox.
Enter or select the full path to the device001.crt file that you created in the8.
certificates folder in the Client certificate file textbox.
Enter or select the full path to the device001.key file that you created in the9.
certificates folder in the Clientkey file textbox.

Securing an MQTT Mosquitto Server

[85]

Activate the Client key in PEM format checkbox. Finally, click Open10.
connnection or Close and re-open existing connection. The following screenshot
shows the dialog box with the selected options and sample values for the
textboxes:

MQTT-spy will close the dialog box and will display a new tab with a green11.
background and the connection name, which appears highlighted and selected
on the left-hand side in the Connection list dialog. Make sure you click on the tab
for the new connection.
Enter sensors/drone500/altitude in the Topic dropdown.12.
Enter the following text in the Data textbox: 1777 f.13.
Click the Publish button. MQTT-spy will publish the entered text to the specified14.
topic, and you will be able to see the message in both the MQTT.fx subscriber and
the mosquitto-sub subscriber.

As happens with any security configuration, a checkbox that isn't
activated based on the previous instructions won't allow the MQTT client
to establish a connection with Mosquitto. It is very important to remember
that the certificates use the PEM format.

Securing an MQTT Mosquitto Server

[86]

Forcing the TLS protocol version
It is a good practice to use the highest possible TLS protocol version. By default, Mosquitto
accepts TLS 1.0, 1.1, and 1.2. If all the clients are capable of working with the highest TLS
protocol version supported by Mosquitto, we should force Mosquitto to use only the
highest version. This way, we make sure that we won't be vulnerable to attacks to the
previous TLS versions.

Now, we will make the necessary changes in the configuration file to force the usage of TLS
1.2. In case you are running the Mosquitto server in a Terminal window in macOS or Linux,
press Ctrl+C to stop it. In Windows, stop the appropriate service.

Go to the Mosquitto installation directory and open the mosquitto.conf configuration
file.

In macOS, Linux, or Windows, add the following lines at the end of the configuration file:

 tls_version tlsv1.2

We specified the tlsv1.2 value for the tls_version option to make Mosquitto work only
with TLS 1.2. Any client that uses an earlier TLS version won't be able to establish a
connection with the Mosquitto server.

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again.
We specified the TLS version when we configured the connection in both the MQTT.fx and
MQTT-spy GUI utilities, and we specified TLS 1.2 as the desired TLS version for the client.
We must use the --tls-version tlsv1.2 option for the mosquitto_sub and
mosquitto_pub command-line utilities.

Open the Terminal in macOS or Linux, or the Command Prompt in Windows, go to the
directory in which Mosquitto is installed, and run the following command. Remember to
use the full paths for the ca.crt, device.001 and device.key files:

mosquitto_pub --tls-version tlsv1.2-V mqttv311 -p 8883 --cafile ca.crt -t
sensors/drone01/altitude -m "2532 f" -d

The previous command specified the usage of TLS 1.2, and therefore, the MQTT client
could establish a connection with the Mosquitto server and publish the message. If we
specify a different TLS version, the mosquitto_pub command won't be able to connect
with the Mosquitto server.

Securing an MQTT Mosquitto Server

[87]

Test your knowledge
Which of the following can we use to secure and encrypt communications1.
between the MQTT clients and the MQTT server?

TLS.1.
TCP.2.
HTTPS.3.

Which is the default port number for MQTT over TLS?2.
1883.1.
9883.2.
8883.3.

If we specify true as the value for the require_certificate option of the3.
Mosquitto configuration file:

Clients that want to connect to the MQTT server will require a client1.
certificate.
Clients that want to connect to the MQTT server won't require a client2.
certificate.
Clients that want to connect to the MQTT server can provide an3.
optional client certificate.

Which of the following utilities allows us to generate an X.509 digital certificate?4.
OpenX509.1.
OpenSSL.2.
TLS4You.3.

When we use MQTT over TLS:5.
There is just a small bandwidth overhead but no processing overhead1.
at all compared with MQTT over TCP without TLS.
There are both bandwidth and processing overheads compared2.
with MQTT over TCP without TLS.
There is no overhead compared with MQTT over TCP without TLS.3.

Securing an MQTT Mosquitto Server

[88]

Summary
In this chapter, we generated a private certificate authority, a server certificate, and client
certificates to enable TLS transport security and TLS client authentication with Mosquitto.
Communications between the MQTT clients and the MQTT server are encrypted.

We worked with OpenSSL to generate the digital certificates. We tested the MQTT TLS
configuration with MQTT.fx, MQTT-spy, and the Mosquitto command-line utilities. We
forced Mosquitto to use only a specific TLS version.

There are many other security topics related to MQTT servers and Mosquitto. We will work
with some of them in the forthcoming chapters, in which we will develop applications that
will use MQTT in different programming languages.

Now that you have understood how to encrypt communications between the MQTT clients
and the Mosquitto server, we will control a drone with Python and MQTT, which is what
we are going to discuss in the next chapter.

3
Controlling a Drone with Python

In this chapter, we will write Python code to control a drone with MQTT messages. We will
write code that will be able to run on different popular IoT platforms. We will:

Understand the requirements to control a drone with MQTT
Define the topics and commands to control a drone
Install paho-mqtt for Python
Connect the client to the MQTT server with Python
Understand callbacks
Subscribe to topics with Python
Create a class to represent a drone
Receive messages with Python
Process commands with Python
Work with the network loop with Python
Send messages with Python

Understanding the requirements to control a
drone with MQTT
In the previous chapters, we learned how MQTT works in detail. We understood how to
establish a connection between an MQTT client and an MQTT server. You learned what
happens when we subscribe to topic filters and when a publisher sends messages to specific
topics. We installed and secured a Mosquitto server.

Controlling a Drone with Python

[90]

Now, we will use Python as our main programming language to generate MQTT clients
that will act as publishers and subscribers. We will connect a Python MQTT client to the
MQTT server and we will process commands to control a drone with MQTT messages.

We will use TLS encryption and TLS authentication because we don't want any MQTT
client to be able to send commands to our drone. We want our Python code to run on many
platforms because we will use the same code base to control drones that use the following
IoT boards:

Raspberry Pi 3
Raspberry Pi 2 Model B
Intel Edison
Intel Galileo Gen 2
Intel Joule 570x
Intel Joule 550x

Depending on the platform, each drone is going to provide additional features because
some boards are more powerful compared with other boards. However, we will focus on
the basic features to keep our example simple and to stay concentrated on MQTT. Then, we
will be able to use this project as a baseline for other solutions that require us to run code on
an IoT board that runs Python code, has to connect to an MQTT server, and has to process
commands.

The code that runs on the boards that power the drones must be able to process commands
received in messages in a specific topic. We will use JSON strings in the payloads.

A client application also written in Python must be able to control one or more drones. We
will also write the client application in Python and it will publish MQTT messages with
JSON strings to the topic for each drone. The client application must display the results of
executing each command. Each drone must publish a message to a specific topic whenever
a command is successfully executed.

Defining the topics and commands
We will use the following topic name to publish the commands for a drone:
commands/dronename, where dronename must be replaced with a unique name assigned
to a drone. For example, if we assign drone01 as the name for a drone that is powered by
an Intel Joule 570x board, we will have to publish commands to the commands/drone01
topic and the code that runs on this board will subscribe to this topic to receive messages
with commands and react to them.

Controlling a Drone with Python

[91]

We will use the following topic name to make the drones publish details about the
successfully executed commands: processedcommands/dronename, where dronename
must be replaced with a unique name assigned to a drone. For example, if we assign
dronepi03 as the name for a drone that is powered by a Raspberry Pi 3 board, the client
that wants to receive information about successfully processed commands has to subscribe
to the processedcommands/dronepi03 topic.

The commands will be sent in a JSON string with a key-value pair. The key must be equal
to COMMAND and the value must specify any of the following valid commands. When the
command requires additional parameters, the parameter name must be included in the next
key and the value for this parameter in the value for this key.

TAKE_OFF: Take off the drone.
LAND: Land the drone.
LAND_IN_SAFE_PLACE: Land the drone in a safe place that is configured for the
drone.
MOVE_UP: Make the drone move up.
MOVE_DOWN: Make the drone move down.
MOVE_FORWARD: Make the drone move forward.
MOVE_BACK: Make the drone move back.
MOVE_LEFT: Make the drone move left.
MOVE_RIGHT: Make the drone move right.
ROTATE_RIGHT: Make the drone rotate to the right. We must specify the degrees
we want the drone to rotate right in the value for the DEGREES key.
ROTATE_LEFT: Make the drone rotate to the left. We must specify the degrees we
want the drone to rotate left in the value for the DEGREES key.
SET_MAX_ALTITUDE. Set the maximum altitude that we allow for the drone. We
must specify the desired maximum altitude in feet in the value for the FEET key.
SET_MIN_ALTITUDE. Set the minimum altitude that we allow for the drone. We
must specify the desired minimum altitude in feet in the value for the FEET key.

The following line shows an example of the payload for the command that takes off the
drone:

 {"COMMAND": "TAKE_OFF"}

Controlling a Drone with Python

[92]

The following line shows an example of the payload for the command that sets the
maximum altitude for the drone to 20 feet:

 {"COMMAND": "SET_MAX_ALTITUDE", "FEET": 20}

We have all the necessary details to start coding with Python.

Installing paho-mqtt for Python
The Eclipse Paho project provides an open source client implementation of MQTT. The
project includes a Python client, also known as the Paho Python Client or Eclipse Paho
MQTT Python client library. This Python client has been contributed from the Mosquitto
project and was originally known as the Mosquitto Python Client.

The following is the web page for the Eclipse Paho project:
h t t p ://w w w . e c l i p s e . o r g /p a h o .

The following is the web page for the Eclipse Paho MQTT Python client library version 1.2,
that is, the paho-mqtt module version 1.2:
https://pypi.python.org/pypi/paho-mqtt/1.2.

We can use paho-mqtt in many modern IoT boards that support either
Python 2.7.x or Python 3.x. For example, we can install paho-mqtt on
Raspberry Pi boards, such as Raspberry Pi 3, and on Intel IoT boards, such
as the Intel Joule, Intel Edison, and Intel Galileo. We just need to make
sure that pip is installed to make it easier to install paho-mqtt. You can
use your development computer to run the examples or any of the
mentioned boards. You will need Python 2.7.x or Python 3.x installed on
your development computer.

It is good practice to create a Python virtual environment and activate it before installing
packages. This way, you can isolate the environment in which you are developing the
sample application. To keep the example simple, we won't include all the instructions to
create virtual environments in Python. However, in case you want to work with a virtual
environment, make sure that you activate it before moving forward with the next steps.

In case you are going to work with an IoT board to run the example, make sure that you run
all the commands in the SSH terminal or the Terminal window that runs on the board. In
case you use your development computer, run the commands on a Terminal in macOS or
Linux, or a Command Prompt in Windows. Make sure that you have activated your virtual
environment in case you decided to work with one.

http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
http://www.eclipse.org/paho
https://pypi.python.org/pypi/paho-mqtt/1.2

Controlling a Drone with Python

[93]

Now, we will use the pip installer to install paho-mqtt 1.2. We just need to run the
following command in the SSH terminal or the local terminal window we are using with
the board, or in the computer we are using to install the package:

pip install paho-mqtt

In case you are working with Intel boards, take into account that you must
install pip before running the previous commands. On Raspberry Pi 3
boards, pip is already installed. If you are using your computer, the
Python installation usually includes pip.

In case you have Python installed in the default folder in Windows and you aren't working
with a Python virtual environment, you will have to run the previous command in an
Administrator Command Prompt.

In case you aren't working with a Python virtual environment in Raspbian (Raspberry Pi
default operating system), you will have to run the following command:

sudo pip install paho-mqtt

The last lines for the output will indicate that the paho-mqtt package has been successfully
installed. The output will be similar to the next lines but not exactly the same because it will
vary based on the platform in which you are running the command:

Collecting paho-mqtt
Downloading paho-mqtt-1.2.tar.gz (41kB)
100% |################################| 45kB 147kB/s
Installing collected packages: paho-mqtt
Running setup.py install for paho-mqtt
Successfully installed paho-mqtt-1.2

Connecting the client to the MQTT server
with Python
First, we will use paho_mqtt to create an MQTT client that connects to the Mosquitto
MQTT server. We will write a few lines of Python code to establish a secured connection
and subscribe to a topic.

Controlling a Drone with Python

[94]

In the previous chapter, we secured our Mosquitto server, and therefore, we will use the
digital certificates we had created to authenticate the client. Most of the time, we will work
with an MQTT server that uses TLS, and therefore, it is a good idea to learn how to establish
a connection with TLS and TLS authentication. It is easier to establish an unsecured
connection with an MQTT server, but it won't be the most common scenario we will face
when developing applications that work with MQTT.

First, we need to copy the following files we had created in the previous chapter to a
directory in the computer or device we will use to run a Python script. We saved the files in
a directory called certificates. Create a python_certificates directory in the
computer or board you are going to use as the MQTT client for this example. Copy the
following three files to this new directory:

ca.crt: Certificate authority certificate file
device001.crt: Client certificate file
device001.key: Client key

The following lines show a sample code that establishes a connection with an MQTT server,
subscribes to the test/drone01 topic filter, and prints all the messages received in the
subscribed topic filter. You have to replace the value, /Users/gaston/certificates, in
the certificates_path string with the path to the python_certificates directory you
created. In addition, replace the value for mqtt_server_host with the IP address for the
Mosquitto server or any other MQTT server you might decide to use. The code file for the
sample is included in the mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_01.py file:

 import paho.mqtt.client as mqtt
 import os.path

 # Replace /Users/gaston/certificates with the path
 # in which you saved the certificate authoritity file,
 # the client certificate file and the client key
 certificates_path = "/Users/gaston/certificates"
 ca_certificate = os.path.join(certificates_path, "ca.crt")
 client_certificate = os.path.join(certificates_path, "device001.crt")
 # Replace localhost with the IP for the Mosquitto
 # or other MQTT server
 mqtt_server_host = "localhost"
 mqtt_server_port = 8883
 mqtt_keepalive = 60

 def on_connect(client, userdata, rc):
 print("Connect result: {}".format(mqtt.connack_string(rc)))

Controlling a Drone with Python

[95]

 client.subscribe("test/drone01")

 def on_subscribe(client, userdata, mid, granted_qos):
 print("Subscribed with QoS: {}".format(granted_qos[0]))

 def on_message(client, userdata, msg):
 payload_string = msg.payload.decode('utf-8')
 print("Topic: {}. Payload: {}".format(
 msg.topic,
 payload_string))

 if __name__ == "__main__":
 client = mqtt.Client(protocol=mqtt.MQTTv311)
 client.on_connect = on_connect
 client.on_subscribe = on_subscribe
 client.on_message = on_message
 client.tls_set(ca_certs = ca_certificate,
 certfile=client_certificate,
 keyfile=client_key)
 client.connect_async(host=mqtt_server_host,
 port=mqtt_server_port,
 keepalive=mqtt_keepalive)
 client.loop_forever()

The previous code uses the recently installed paho-mqtt module to establish an encrypted
connection with the MQTT server, subscribe to the test/drone01 topic filter, and run the
code when we receive messages in the topic. We will use this code to understand the basics
of paho-mqtt.

The first line imports paho.mqtt.client as mqtt. This way, whenever we use the mqtt
alias, we will be referencing paho.mqtt.client. Then, the code declares the
certificates_path variable initialized with a string, that is, with the path in which you
saved the certificate authority file, the client certificate file, and the client key. The code
declares the following string variables with the full path to the certificate and key files we
need to configure TLS and TLS client authentication: ca_certificate,
client_certificate, and client_key. The call to os.path.join makes it easy to join
the path specified in the certificates_path variable with the file name and generate the
full path. The os.path.join function works for any platform, and therefore, we don't have
to worry about whether to use a slash (/) or a backslash () to join the path with the file
name. Sometimes, we can develop and test in Windows and then run the code on an IoT
board that can use different Unix flavors. The usage of os.path.join makes our job easier
in these scenarios in which we switch between different platforms.

Controlling a Drone with Python

[96]

The mqtt_server_host, mqtt_server_port and mqtt_keepalive variables specify the
IP address for the MQTT server (the Mosquitto server), the port that we want to use (8883)
and the number of seconds for the keep alive option. It is very important to replace
localhost with the IP address for the MQTT server. We specify 8883 for
mqtt_server_port because we use TLS and this is the default port for MQTT over TLS, as
we learned in the previous chapter.

Understanding callbacks
When we declare a function, we pass this function as an argument to another function or
method, or we assign this function to an attribute, and then some code calls this function at
some time; this mechanism is known as callback. The name callback is used because the
code calls back a function at some time.

The code declares three functions that we will specify as callbacks:

on_connect: This function will be called when the MQTT client receives a
CONNACK response from the MQTT server, that is, when a connection has been
successfully established with the MQTT server.
on_subscribe: This function will be called when the MQTT client receives a
SUBACK response from the MQTT server, that is, when a subscription has been
successfully completed.
on_message: This function will be called when the MQTT client receives a
PUBLISH message from the MQTT server. Whenever the MQTT server publishes
a message, based on the subscriptions for the client, this function will be called.

The code for the main block creates an instance of the mqtt.Client class
(paho.mqtt.client.Client) that represents an MQTT client and that we will use to
communicate with an MQTT broker. If we use the default parameters, we would work with
MQTT version 3.1. We want to work with MQTT version 3.1.1, and therefore, we specified
mqtt.MQTTv311 as the value for the protocol argument.

Then, the code assigns the on_connect function to the client.on_connect attribute, the
on_message function to the client.on_message attribute, and the on_subscribe
function to the client.on_subscribe attribute.

Controlling a Drone with Python

[97]

The call to the client.tls_set method configures encryption and authentication options.
It is very important to call this method before running the client.connect method. We
specify the full string paths to the certificate authority certificate file, the client certificate,
and the client key in the ca_certs, certfile and keyfile arguments. The ca_certs
argument name is a bit confusing, but we just need to specify the string path to the
certificate authority certificate file, not multiple certificates.

Finally, the main block calls the client.connect_async method and specifies the values
for the host, port, and keepalive arguments. This way, the code asks the MQTT client to
establish a connection to the specified MQTT server.

The connect_async method runs with an asynchronous execution, and therefore, it is a
non-blocking call. The equivalent method with a synchronous execution is the connect
method. After a connection has been successfully established with the MQTT server, the
specified callback in the client.on_connect attribute will be executed, that is, the
on_connect function. This function receives the mqtt.Client instance that established
the connection with the MQTT server in the client argument.

If you want to establish a connection with an MQTT server that isn't using
TLS, you don't need to call the client.tls_set method and use the
appropriate port; by default, it will be 1883.

Subscribing to topics with Python
The code calls the client.subscribe method with "test/drone01" as an argument to
subscribe to this specific single topic and the qos argument set to 2 to request a QoS level of
2.

In this case, we will only subscribe to one topic. However, it is very
important to know that we are not limited to subscribe to a single topic
filter; we may subscribe to many topic filters with a single call to the
subscribe method.

Controlling a Drone with Python

[98]

After the MQTT server confirms the successful subscription to the specified topic filter, the
specified callback in the client.on_subscribe attribute will be executed, that is, the
on_subscribe function. This function receives a list of integers in the granted_qos
argument that provides the QoS level that the MQTT server has granted for each of the
topic filter subscription requests. The code in the on_subscribe function displays the QoS
level granted by the MQTT server for the topic filter we specified.

Whenever there is a new message received that matches the topic filter to which we have
subscribed, the specified callback in the client.on_messsage attribute will be executed,
that is, the on_message function. This function receives the mqtt.Client instance that
established the connection with the MQTT server in the client argument and an
mqtt.MQTTMessage instance in the msg argument. The mqtt.MQTTMessage class describes
an incoming message.

In this case, whenever the on_message function is executed, the value in msg.topic will
always match "test/drone01" because we just subscribed to a single topic and no other
topic name will match the topic filter. However, if we had subscribed to a topic filter or
many topic filters with which more than one topic may match, it would be always necessary
to check the topic in which the message was sent and in which we are receiving the
message.

The code in the on_message function prints the topic for the message that has been
received, msg.topic, and the string representation of the payload for the message, that is,
the msg.payload attribute decoded to an UTF-8 string and saved in the payload_string
variable.

Finally, the main block calls the client.loop_forever method that calls the loop method
for us in an infinite blocking loop. At this point, we only want to run the MQTT client loop
in our program. We will receive the messages whose topic matches the topic to which we
have subscribed.

Make sure that the Mosquitto server or any other MQTT server you might want to use for
this example is running. Then, execute the following line to start the example in any
computer or device that you want to use as the MQTT client. Note that you might need to
use python3 instead of python, based on your configuration:

python mqtt_essentials_example03_01.py

Controlling a Drone with Python

[99]

In case you see a traceback with SSLError similar to the following lines, it means that the
MQTT server hostname or IP doesn't match the value specified for the Common Name
attribute when you generated the server certificate file named server.crt. Make sure that
you check the IP address for the MQTT server (Mosquitto server) and generate the server
certificate file and key again with the appropriate IP address specified for Common Name, as
explained in the previous chapter, in case you are working with the self-signed certificates
we generated in the previous chapter:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Library/Python/2.7/site-packages/paho/mqtt/client.py", line 612,
in connect
 return self.reconnect()
 File "/Library/Python/2.7/site-packages/paho/mqtt/client.py", line 751,
in reconnect
 self._tls_match_hostname()
 File "/Library/Python/2.7/site-packages/paho/mqtt/client.py", line 2331,
in _tls_match_hostname
 raise ssl.SSLError('Certificate subject does not match remote
hostname.')

Now, follow these steps to use the MQTT.fx GUI utility to publish two messages to the
test/drone01 topic:

Launch MQTT.fx and establish a connection with the MQTT server by following1.
the steps you learned in the previous chapter.
Click Publish and enter test/drone01 in the dropdown on the left-hand side of2.
the Publish button.
Click QoS 2 on the right-hand side of the Publish button.3.
Enter the following text in the textbox below the Publish button: {"COMMAND":4.
"TAKE_OFF"}. Then, click the Publish button. MQTT.fx will publish the entered
text to the specified topic.
Enter the following text in the textbox below the Publish button: {"COMMAND":5.
"LAND"}. Then, click the Publish button. MQTT.fx will publish the entered text
to the specified topic.

Controlling a Drone with Python

[100]

In case you don't want to work with the MQTT.fx utility, you can run two mosquitto_pub
commands to generate MQTT clients that publish messages to the topic. You just need to
open another Terminal in macOS or Linux, or another Command Prompt in Windows, go to
the directory in which Mosquitto is installed, and run the following commands. In this case,
it isn't necessary to specify the -d option. Replace localhost with the IP for the MQTT
server. Remember to replace ca.crt, device001.crt, and device001.key with the full
path to these files created in the certificates directory:

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key-t test/drone01 -m '{"COMMAND":
"TAKE_OFF"}' -q 2 --tls-version tlsv1.2-d
mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key-t test/drone01 -m '{"COMMAND": "LAND"}' -
q 2 --tls-version tlsv1.2-d

Go to the device and window in which you executed the Python script. You will see the
following output:

Connect result: Connection Accepted.
Subscribed with QoS: 2
Topic: test/drone01. Payload: {"COMMAND": "TAKE_OFF"}
Topic: test/drone01. Payload: {"COMMAND": "LAND"}

The Python program successfully established a secured and encrypted connection with the
MQTT server and became a subscriber to the test/drone01 topic with a granted QoS level
of 2. The program displayed the two messages it has received in the test/drone01 topic.

Press Ctrl+C to stop the execution of the program. The generated MQTT client will close the
connection with the MQTT server.

Creating a class to represent a drone
Now, we will write Python code that will run on the different IoT boards. Remember to
copy the files we have created in the previous chapter to a directory in the computer or
device that will represent the board that controls a drone and that we will use to run a
Python script. We saved the files in a directory called certificates. Create a
python_certificates directory in the computer or board you are going to use as the
MQTT client for this example. Copy the following three files to this new directory:

ca.crt: Certificate authority certificate file
device001.crt: Client certificate file
device001.key: Client key

Controlling a Drone with Python

[101]

We will create the following two classes:

Drone: This class will represent a drone and provides methods that will be called
whenever a command has to be processed. In order to keep the example simple,
our methods will just print the actions that the drone executes after each method
is called to the console output. A real-life class that represents a drone would
interact with the actuators, sensors, and the other different components of the
drone, whenever each method is called.
DroneCommandProcessor: This class will represent a command processor that
will establish a connection with an MQTT server, subscribe to a topic in which
the MQTT client will receive messages with commands, analyze the incoming
messages, and delegate the execution of the commands to an associated instance
of the Drone class. The DroneCommandProcessor class will declare many static
methods that we will specify as the callbacks for the MQTT client.

The following lines declare many variables with the values that identify each of the
supported commands for the drone. In addition, the code declares many variables with the
key string we will use to specify a command and the key we will use to specify a
successfully processed command. All these variables are defined with all letters uppercase
because we will use them as constants. Save the code in a file named commands.py. The
code file for the sample is included in the mqtt_essentials_gaston_hillar_03 folder,
in the command.py file:

 # Key strings
 COMMAND_KEY = "COMMAND"
 SUCCESFULLY_PROCESSED_COMMAND_KEY = "SUCCESSFULLY_PROCESSED_COMMAND"
 # Command strings
 rCMD_TAKE_OFF = "TAKE_OFF"
 CMD_LAND = "LAND"
 CMD_LAND_IN_SAFE_PLACE = "LAND_IN_SAFE_PLACE"
 CMD_MOVE_UP = "MOVE_UP"
 CMD_MOVE_DOWN = "MOVE_DOWN"
 CMD_MOVE_FORWARD = "MOVE_FORWARD"
 CMD_MOVE_BACK = "MOVE_BACK"
 CMD_MOVE_LEFT = "MOVE_LEFT"
 CMD_MOVE_RIGHT = "MOVE_RIGHT"
 CMD_ROTATE_RIGHT = "ROTATE_RIGHT"
 CMD_ROTATE_LEFT = "ROTATE_LEFT"
 CMD_SET_MAX_ALTITUDE = "SET_MAX_ALTITUDE"
 CMD_SET_MIN_ALTITUDE = "SET_MIN_ALTITUDE"
 KEY_DEGREES = "DEGREES"
 KEY_FEET = "FEET"

Controlling a Drone with Python

[102]

The following lines declare the necessary imports and the same variables we used in the
previous example to establish the connection with the MQTT server. You have to replace
the value /Users/gaston/certificates in the certificates_path string with the
path to the python_certificates directory you created. In addition, replace the value for
the mqtt_server_host with the IP address for the Mosquitto server or other MQTT server
you might decide to use. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_02.py file:

 from command import *
 import paho.mqtt.client as mqtt
 import os.path
 import time
 import json

 # Replace /Users/gaston/certificates with the path
 # in which you saved the certificate authoritity file,
 # the client certificate file and the client key
 certificates_path = "/Users/gaston/certificates"
 ca_certificate = os.path.join(certificates_path, "ca.crt")
 client_certificate = os.path.join(certificates_path, "device001.crt")
 # Replace localhost with the IP for the Mosquitto
 # or other MQTT server
 mqtt_server_host = "localhost"
 mqtt_server_port = 8883
 mqtt_keepalive = 60

The COMMAND_KEY variable defines the key string that defines what the code will
understand as the command. Whenever we receive a message that includes the specified
key string, we know that the value associated with this key in the dictionary will indicate
the command that the message wants the code running in the board to be processed. The
MQTT client won't receive messages as dictionaries, and therefore, it is necessary to convert
them from strings to dictionaries when they are not just a string.

The SUCCESSFULLY_PROCESSED_COMMAND_KEY variable defines the key string that defines
what the code will use as a successfully processed command key in a response message
published to the appropriate topic. Whenever we publish a message that includes the
specified key string, we know that the value associated to this key in the dictionary will
indicate the command that the board has successfully processed.

Controlling a Drone with Python

[103]

The following lines declare the Drone class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_02.py file:

 class Drone:
 def __init__(self, name):
 self.name = name
 self.min_altitude = 0
 self.max_altitude = 30

 def print_with_name_prefix(self, message):
 print("{}: {}".format(self.name, message))

 def take_off(self):
 self.print_with_name_prefix("Taking off")

 def land(self):
 self.print_with_name_prefix("Landing")

 def land_in_safe_place(self):
 self.print_with_name_prefix("Landing in a safe place")

 def move_up(self):
 self.print_with_name_prefix("Moving up")

 def move_down(self):
 self.print_with_name_prefix("Moving down")

 def move_forward(self):
 self.print_with_name_prefix("Moving forward")

 def move_back(self):
 self.print_with_name_prefix("Moving back")

 def move_left(self):
 self.print_with_name_prefix("Moving left")

 def move_right(self):
 self.print_with_name_prefix("Moving right")

 def rotate_right(self, degrees):
 self.print_with_name_prefix
 ("Rotating right {} degrees".format(degrees))

Controlling a Drone with Python

[104]

 def rotate_left(self, degrees):
 self.print_with_name_prefix
 ("Rotating left {} degrees".format(degrees))

 def set_max_altitude(self, feet):
 self.max_altitude = feet
 self.print_with_name_prefix
 ("Setting maximum altitude to {} feet".format(feet))

 def set_min_altitude(self, feet):
 self.min_altitude = feet
 self.print_with_name_prefix
 ("Setting minimum altitude to {} feet".format(feet))

We have to specify the drone's name in the name required argument. The constructor, that
is, the __init__ method, saves the received name in an attribute with the same name.
Then, the constructor sets the initial values for two attributes: min_altitude and
max_altitude.

The Drone class declares the print_with_name_prefix method, which receives a
message in the message argument and prints it with the value saved in the name attribute
as a prefix. The other methods defined in this class call the print_with_name_prefix
method to print messages indicating the actions that the drone is doing with the drone's
name as a prefix.

Receiving messages with Python
We will use the recently installed paho-mqtt module to subscribe to a specific topic and
run code when we receive messages in the topic. We will create a
DroneCommandProcessor class to represent a command processor associated to an
instance of the previously coded Drone class, configure the MQTT client, the subscription to
the client, and declare the code for the callbacks that are going to be executed when certain
events are fired.

Controlling a Drone with Python

[105]

We will split the code for the DroneCommandProcessor class in many code snippets to
make it easier to understand each code section. The following lines declare the
DroneCommandProcessor class and its constructor, that is, the __init__ method. The
code file for the sample is included in the mqtt_essentials_gaston_hillar_03 folder,
in the mqtt_essentials_example03_02.py file:

 class DroneCommandProcessor:
 commands_topic = ""
 processed_commands_topic = ""
 active_instance = None

 def __init__(self, name, drone):
 self.name = name
 self.drone = drone
 DroneCommandProcessor.commands_topic =
 "commands/{}".format(self.name)
 DroneCommandProcessor.processed_commands_topic =
 "processedcommands/{}".format(self.name)
 self.client = mqtt.Client(protocol=mqtt.MQTTv311)
 DroneCommandProcessor.active_instance = self
 self.client.on_connect = DroneCommandProcessor.on_connect
 self.client.on_message = DroneCommandProcessor.on_message
 self.client.tls_set(ca_certs = ca_certificate,
 certfile=client_certificate,
 keyfile=client_key)
 self.client.connect(host=mqtt_server_host,
 port=mqtt_server_port,
 keepalive=mqtt_keepalive)

We have to specify a name for the command processor and the Drone instance that the
command processor will control in the name and drone required arguments. The
constructor, that is, the __init__ method, saves the received name and drone in
attributes with the same names. Then, the constructor sets the values for the
commands_topic and processed_commands_topic class attributes. The constructor uses
the received name to determine the topic name for the commands and for the successfully
processed commands, based on the specifications we discussed earlier. The MQTT client
will receive messages in the topic name saved in the command_topic class attribute and
will publish messages to the topic name saved in the processed_commands_topic class
attribute.

Controlling a Drone with Python

[106]

Then, the constructor creates an instance of the mqtt.Client class
(paho.mqtt.client.Client) that represents an MQTT client and that we will use to
communicate with an MQTT broker and save it to the client attribute (self.client). As
it happened in our previous example, we want to work with MQTT version 3.11, and
therefore, we specified mqtt.MQTTv311 as the value for the protocol argument.

The code also saves a reference to this instance in the active_instance class attribute
because we have to access the instance in the static methods that the constructor will specify
as callbacks for the different events that the MQTT client fires. We want to have all the
methods related to the drone command processor in the DroneCommandProcessor class.

Then, the code assigns the on_connect static method
(DroneCommandProcessor.on_connect) to the self.client.on_connect attribute
and the on_message static method (DroneCommandProcessor.on_message) to the
self.client.on_message attribute. Static methods do not receive either self of cls as
the first argument, and therefore, we can use them as callbacks with the required number of
arguments.

The call to the self.client.tls_set method configures encryption and authentication
options. Finally, the constructor calls the client.connect method and specifies the values
for the host, port, and keepalive arguments. This way, the code asks the MQTT client to
establish a connection to the specified MQTT server. Remember that the connect method
runs with a synchronous execution, and therefore, it is a blocking call.

The following lines declare the on_connect static method that is part of the
DroneCommandProcessor class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_02.py file:

 @staticmethod
 def on_connect(client, userdata, flags, rc):
 print("Connected to the MQTT server")
 client.subscribe(
 DroneCommandProcessor.commands_topic,
 qos=2)
 client.publish(
 topic=DroneCommandProcessor.processed_commands_topic,
 payload="{} is listening to messages".format
 (DroneCommandProcessor.active_instance.name))

Controlling a Drone with Python

[107]

After a connection has been successfully established with the MQTT server, the specified
callback in the self.client.on_connect attribute will be executed, that is, the
on_connect static method (marked with the @staticmethod decorator). This static
method receives the mqtt.Client instance, which established the connection with the
MQTT server in the client argument. The code calls the client.subscribe method with
DroneCommandProcessor.commands_topic as an argument to subscribe to the topic
specified in the commands_topic class attribute and specifies a QoS level of 2 for the
subscription.

Finally, the code in the on_connect static method calls the client.publish method with
DroneCommandProcessor.processed_commands_topic as the topic argument and a
message string in the payload argument. This way, we publish a string message that
specifies that the drone is listening to messages in the topic related to successfully processed
commands. The message starts with the drone name.

The following lines declare the on_message static method that is part of the
DroneCommandProcessor class. In this case, the code uses a chain of if and elif
statements to make it easier to understand the flow. However, a lookup table and a
dictionary would provide an improved version. The code file for the sample is included in
the mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_02.py file:

 @staticmethod
 def on_message(client, userdata, msg):
 payload_string = msg.payload.decode('utf-8')
 if msg.topic == DroneCommandProcessor.commands_topic:
 print("I've received the following message:
 {0}".format(payload_string))
 try:
 message_dictionary = json.loads(payload_string)
 if COMMAND_KEY in message_dictionary:
 command = message_dictionary[COMMAND_KEY]
 drone = DroneCommandProcessor.active_instance.drone
 is_command_processed = False
 if command == CMD_TAKE_OFF:
 drone.take_off()
 is_command_processed = True
 elif command == CMD_LAND:
 drone.land()
 is_command_processed = True
 elif command == CMD_LAND_IN_SAFE_PLACE:
 drone.land_in_safe_place()
 is_command_processed = True

Controlling a Drone with Python

[108]

 elif command == CMD_MOVE_UP:
 drone.move_up()
 is_command_processed = True
 elif command == CMD_MOVE_DOWN:
 drone.move_down()
 is_command_processed = True
 elif command == CMD_MOVE_FORWARD:
 drone.move_forward()
 is_command_processed = True
 elif command == CMD_MOVE_BACK:
 drone.move_back()
 is_command_processed = True
 elif command == CMD_MOVE_LEFT:
 drone.move_left()
 is_command_processed = True
 elif command == CMD_MOVE_RIGHT:
 drone.move_right()
 is_command_processed = True
 elif command == CMD_ROTATE_RIGHT:
 degrees = message_dictionary[KEY_DEGREES]
 drone.rotate_right(degrees)
 is_command_processed = True
 elif command == CMD_ROTATE_LEFT:
 degrees = message_dictionary[KEY_DEGREES]
 drone.rotate_left(degrees)
 is_command_processed = True
 elif command == CMD_SET_MAX_ALTITUDE:
 feet = message_dictionary[KEY_FEET]
 drone.set_max_altitude(feet)
 is_command_processed = True
 elif command == CMD_SET_MIN_ALTITUDE:
 feet = message_dictionary[KEY_FEET]
 drone.set_min_altitude(feet)
 is_command_processed = True
 if is_command_processed:
 DroneCommandProcessor.active_instance.
 publish_response_message(
 message_dictionary)
 else:
 print("The message includes an unknown command.")
 except ValueError:
 # msg is not a dictionary
 # No JSON object could be decoded
 print("The message doesn't include a valid command.")

Controlling a Drone with Python

[109]

Whenever there is a new message received in the topic saved in the commands_topic class
attribute to which we have subscribed, the specified callback in the
self.client.on_messsage attribute will be executed, that is, the on_message static
method (marked with the @staticmethod decorator). This static method receives the
mqtt.Client instance that established the connection with the MQTT broker in the
client argument and an mqtt.MQTTMessage instance in the msg argument. The
mqtt.MQTTMessage class describes an incoming message. First, the static method checks
whether the msg.topic attribute, which indicates the topic in which the message has been
received, matches the value in the commands_topic class attribute. In this case, whenever
the on_message method is executed, the value in msg.topic will always match the value
in the topic class attribute because we just subscribed to one topic. However, if we
subscribe to more than one topic, it is always necessary to check in which topic the message
was sent and in which one we are receiving the message. Hence, we included the code to
give a clear idea of how to check the topic for the received message.

The code prints the string representation of the payload for the message that has been
received, that is, the msg.payload attribute decoded to an UTF-8 string and saved in the
payload_string variable. Then, the code assigns the result of the json.loads function to
deserialize payload_string to a Python object and assigns the results to the
message_dictionary local variable. In case the contents of payload_string are not
JSON, a ValueError exception will be captured; the code will print a message indicating
that the message doesn't include a valid command and no more code will be executed in the
static method. In case the contents of payload_string are JSON, we will have a dictionary
in the message_dictionary local variable.

Then, the code checks whether the value saved in the COMMAND_KEY string is included in
the message_dictionary dictionary. If the expression evaluates to True, it means that the
JSON message converted to a dictionary includes a command that we have to process.
However, before we can process the command, we have to check which is the command,
and therefore, it is necessary to retrieve the value associated with the key equivalent to the
value saved in the COMMAND_KEY string. The code is capable of running specific code when
the value is any of the commands that we received as requirements.

Controlling a Drone with Python

[110]

The code uses the active_instance class attribute that has a reference to the active
DroneCommandProcessor instance to call the necessary methods for either drone, based
on the command that has to be processed. We had to declare the callbacks as static methods,
and therefore, we use this class attribute to access the active instance. Once the command
has been successfully processed, the code sets the is_command_processed flag to True.
Finally, the code checks the value of this flag, and if it is equal to True, the code calls the
publish_response_message for the DroneCommandProcessor instance saved in the
active_instance class attribute.

Of course, in a real-life example, we should add more validations. The
previous code is simplified to allow us to keep our focus on MQTT.

The following lines declare the publish_response_message method that is a part of the
DroneCommandProcessor class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_02.py file:

 def publish_response_message(self, message):
 response_message = json.dumps({
 SUCCESFULLY_PROCESSED_COMMAND_KEY:
 message[COMMAND_KEY]})
 result = self.client.publish(
 topic=self.__class__.processed_commands_topic,
 payload=response_message)
 return result

The publish_response_message method receives the message dictionary that has been
received with the command in the message argument. The method calls the json.dumps
function to serialize a dictionary to a JSON formatted string with the response message that
indicates that the command has been successfully processed. Finally, the code calls the
client.publish method with the processed_commands_topic variable as the topic
argument and the JSON formatted string (response_message) in the payload argument.

Controlling a Drone with Python

[111]

In this case, we are not evaluating the response received from the publish
method. In addition, we are using the default value for the qos argument
that specifies the desired quality of service. Hence, we will publish this
message with a QoS level equal to 0. In more advanced scenarios, we
should add code to check the results of the method and add code to the
on_publish callback that is fired when a message is successfully
published, as we did in our previous example. In this case, we use QoS
level 2 for the messages that we receive with the commands.

The following lines declare the process_commands method, which is a part of the
DroneCommandProcessor class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_02.py file:

 def process_commands(self):
 self.client.loop()

The process_commands method calls the loop method for the MQTT client and ensures
that communication with the MQTT server is carried out. Think about the call to the loop
method as synchronizing your mailbox. Any pending messages to be published in the
outgoing box will be sent and any incoming messages will arrive to the inbox and the
events that we have previously analyzed will be fired. This way, the drone command
processor will receive messages and process commands.

Finally, the following lines declare the main block of code. The code file for the sample is
included in the mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_02.py file:

 if __name__ == "__main__":
 drone = Drone("drone01")
 drone_command_processor = DroneCommandProcessor("drone01", drone)
 while True:
 # Process messages and the commands every 1 second
 drone_command_processor.process_commands()
 time.sleep(1)

The __main__ method creates an instance of the Drone class named drone with
"drone01" as the value for the name argument. The next line creates an instance of the
DroneCommandProcessor class named drone_command_processor with "drone01"and
the previously created Drone instance, drone, as the values for the name and drone
arguments. This way, drone_command_processor will delegate the execution of the
commands to the instance methods in drone.

Controlling a Drone with Python

[112]

The constructor for the DroneCommandProcessor class will subscribe to the
commands/drone01 topic in the MQTT server, and therefore, we must publish messages to
this topic in order to send the commands that the code will process. In addition, the
constructor will publish a message to the processedcommands/drone01 topic. Whenever
a command is successfully processed, new messages will be published to the
processedcommands/drone01 topic. Hence, we must subscribe to this topic to check the
commands that the drone has executed.

The while loop calls the drone_command_processor.process_commands method and
sleeps for one second. The process_commands method calls the loop method for the
MQTT client to ensure that communication with the MQTT server is carried out.

There is also a threaded interface that we can run by calling the
loop_start method for the MQTT client. This way, we can avoid
multiple calls to the loop method. However, we call the loop method to
make it easier to debug the code and understand how everything works
under the hood.

Processing commands with Python
Now, we want to make a drone process the following commands:

 {"COMMAND": "SET_MAX_ALTITUDE", "FEET": 20}
 {"COMMAND": "SET_MIN_ALTITUDE", "FEET": 10}
 {"COMMAND": "TAKE_OFF"}
 {"COMMAND": "MOVE_UP"}
 {"COMMAND": "ROTATE_RIGHT", "DEGREES": 90}
 {"COMMAND": "MOVE_RIGHT"}
 {"COMMAND": "LAND"}

Make sure the Mosquitto server or any other MQTT server you might want to use for this
example is running.

Launch MQTT.fx and follow all the steps explained in the previous chapter to configure a
connection with TLS and TLS authentication. Then, click on the Connect button.

Click Subscribe and enter processed_commands/drone01 in the dropdown on the left-
hand side of the Subscribe button. Then, click the Subscribe button. MQTT.fx will display
a new panel on the left-hand side with the topic filter to which we have subscribed with a
QoS level of 0.

Controlling a Drone with Python

[113]

Then, execute the following line to start the example in any computer or device that you
want to use as the MQTT client:

python mqtt_essentials_example03_02.py

Keep the code running in your local computer or in the IoT board you have chosen to use
for this example.

Go back to MQTT.fx and you will see that a message has arrived to the
processedcommands/drone01 topic with the following payload: drone01 is
listening to messages. The following screenshot shows the received message in
MQTT.fx:

In MQTT.fx, click Publish and enter commands/drone01 in the dropdown on the left-hand
side of the Publish button. Click QoS 2 because we want to use a QoS level of 2.

Enter the following text in the textbox below the Publish button: {"COMMAND":
"SET_MAX_ALTITUDE", "FEET": 20}.

Then, click the Publish button. MQTT.fx will publish the entered text to the specified topic
with a QoS level of 2.

Controlling a Drone with Python

[114]

Go to the window in which you can see the output generated by the Python code. In case
you are running the code in an IoT board, you might be using an SSH Terminal. In case you
are running the code on your local computer, go to the Terminal or Command Prompt,
based on the operating system you are using. You will see the following output:

Connected to the MQTT server
I've received the following message: {"COMMAND": "SET_MAX_ALTITUDE",
"FEET": 20}
drone01: Setting maximum altitude to 20 feet

The code has received the message with the command, the Drone instance executed the
set_max_altitude method with 20 as an argument, and the output displays the results of
executing this code.

Go back to MQTT.fx, click Subscribe, and you will see a new message has arrived to the
processedcommands/drone01 topic with the following payload:
{"SUCCESSFULLY_PROCESSED_COMMAND": "SET_MAX_ALTITUDE"}. The following
screenshot shows the received message in MQTT.fx:

Controlling a Drone with Python

[115]

Now, repeat the following procedure for each of the commands listed below. Remove the
existing text and enter the text for the JSON string in the textbox below the Publish button
and then click the Publish button. MQTT.fx will publish the entered text to the specified
topic with a QoS level of 2:

{"COMMAND": "SET_MIN_ALTITUDE", "FEET": 10}

{"COMMAND": "TAKE_OFF"}

{"COMMAND": "MOVE_UP"}

{"COMMAND": "ROTATE_RIGHT", "DEGREES": 90}

{"COMMAND": "MOVE_RIGHT"}

{"COMMAND": "LAND"}

Go to the window in which you can see the output generated by the Python code. You will
see the following output, which indicates that all the commands have been received and
processed:

Connected to the MQTT server
I've received the following message: {"COMMAND": "SET_MAX_ALTITUDE",
"FEET": 20}
drone01: Setting maximum altitude to 20 feet
I've received the following message: {"COMMAND": "SET_MIN_ALTITUDE",
"FEET": 10}
drone01: Setting minimum altitude to 10 feet
I've received the following message: {"COMMAND": "TAKE_OFF"}
drone01: Taking off
I've received the following message: {"COMMAND": "MOVE_UP"}
drone01: Moving up
I've received the following message: {"COMMAND": "ROTATE_RIGHT", "DEGREES":
90}
drone01: Rotating right 90 degrees
I've received the following message: {"COMMAND": "MOVE_RIGHT"}
drone01: Moving right
I've received the following message: {"COMMAND": "LAND"}
drone01: Landing

Controlling a Drone with Python

[116]

Go back to MQTT.fx, click Subscribe, and you will see a total of eight messages that have
arrived to the processedcommands/drone01 topic. You can easily check the contents of
the payload for each of the received messages by clicking on the panel that represents each
of them on the right-hand side of the window. The following screenshot shows the last
received message in MQTT.fx:

MQTT.fx allows us to write scripts in JavaScript that make it easy to
automate publishing multiple messages to topics.

Controlling a Drone with Python

[117]

Now, we will use the Mosquitto command-line utilities to subscribe to the
processedcommands/drone01 topic and publish many JSON strings with the commands
to the commands/drone01 topic. This time, we will publish the following commands:

 {"COMMAND": "SET_MAX_ALTITUDE", "FEET": 100}
 {"COMMAND": "SET_MIN_ALTITUDE", "FEET": 20}
 {"COMMAND": "TAKE_OFF"}
 {"COMMAND": "MOVE_UP"}
 {"COMMAND": "MOVE_RIGHT"}
 {"COMMAND": "MOVE_RIGHT"}
 {"COMMAND": "MOVE_LEFT"}
 {"COMMAND": "MOVE_LEFT"}
 {"COMMAND": "LAND"}

Open another Terminal in macOS or Linux, or another Command Prompt in Windows, go
to the directory in which Mosquitto is installed, and run the following command. Replace
localhost with the IP for the MQTT server. Remember to replace ca.crt,
device001.crt, and device001.key with the full path to these files created in the
certificates directory. Leave the command running and it will display all the messages
received in the processedcommands/drone01 topic:

mosquitto_sub -V mqttv311 -p 8883 --cafile ca.crt --cert device001.crt --
key device001.key-t processedcommands/drone01 --tls-version tlsv1.2

Open another Terminal in macOS or Linux, or another Command Prompt in Windows, go
to the directory in which Mosquitto is installed, and run the following commands to publish
messages with commands to the commands/drone01 topic with a QoS level of 2. Make the
replacements previously explained for the mosquitto_sub command:

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version
tlsv1.2 -m '{"COMMAND": "SET_MAX_ALTITUDE", "FEET": 100}'

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version
tlsv1.2 -m '{"COMMAND": "SET_MIN_ALTITUDE", "FEET": 20}'

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version
tlsv1.2 -m '{"COMMAND": "TAKE_OFF"}'

Controlling a Drone with Python

[118]

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version
tlsv1.2 -m '{"COMMAND": "MOVE_UP"}'

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version
tlsv1.2 -m '{"COMMAND": "MOVE_RIGHT"}'

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version
tlsv1.2 -m '{"COMMAND": "MOVE_RIGHT"}'

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version
tlsv1.2 -m '{"COMMAND": "MOVE_LEFT"}'

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version
tlsv1.2 -m '{"COMMAND": "MOVE_LEFT"}'

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key -t commands/drone01 -q 2 --tls-version
tlsv1.2 -m '{"COMMAND": "LAND"}'

After you run the previous commands, the DroneCommandProcessor class will receive
these commands and process them. After a few seconds, you will see the following output
in the window that is executing the mosquitto_sub utility:

drone01 is listening to messages
{"SUCCESSFULLY_PROCESSED_COMMAND": "SET_MAX_ALTITUDE"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "SET_MIN_ALTITUDE"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "TAKE_OFF"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "MOVE_UP"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "MOVE_RIGHT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "MOVE_RIGHT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "MOVE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "MOVE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "LAND"}

Controlling a Drone with Python

[119]

Go to the window in which you can see the output generated by the Python code. You will
see the following output, which indicates that all the commands have been received and
processed:

I've received the following message: {"COMMAND": "SET_MAX_ALTITUDE",
"FEET": 100}
drone01: Setting maximum altitude to 100 feet
I've received the following message: {"COMMAND": "SET_MIN_ALTITUDE",
"FEET": 20}
drone01: Setting minimum altitude to 20 feet
I've received the following message: {"COMMAND": "TAKE_OFF"}
drone01: Taking off
I've received the following message: {"COMMAND": "MOVE_UP"}
drone01: Moving up
I've received the following message: {"COMMAND": "MOVE_RIGHT"}
drone01: Moving right
I've received the following message: {"COMMAND": "MOVE_RIGHT"}
drone01: Moving right
I've received the following message: {"COMMAND": "MOVE_LEFT"}
drone01: Moving left
I've received the following message: {"COMMAND": "MOVE_LEFT"}
drone01: Moving left
I've received the following message: {"COMMAND": "LAND"}
drone01: Landing

Sending messages with Python
We are coding in Python, and therefore, it makes sense to write code in Python to publish
the commands to control each drone and check the results of the execution of these
commands. Of course, GUI utilities such as MQTT.fx and the Mosquitto command-line
utilities are extremely useful. However, after we know that things are working as we
expect, we can write the necessary code to perform tests in the same programming
language we are using to run the code on the IoT board.

Controlling a Drone with Python

[120]

We already wrote Python code that established a connection with the MQTT server,
subscribed to a topic, and printed the received messages. Now, we are going to code a
Python client that will publish messages to the commands/drone01 topic and will subscribe
to the processedcommands/drone01 topic. We will code both a publisher and a
subscriber. This way, we will be able to design applications that can talk to IoT devices with
MQTT messages, with Python as the programming language for the client applications.
Specifically, the applications will be able to communicate through an MQTT server with
Python code in all the publisher and subscriber devices.

We can run the Python client on any other computer or IoT board that is capable of
executing Python 2.7.x or Python 3.x.

We will create many functions that we will assign as the callbacks to the events in the
MQTT client. In addition, we will declare variables, a helper class, and a helper function to
make it easy to publish a message with a command and the required values for the
command. The following lines show the code that defines the variables, the helper class,
and the functions. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_03.py file:

 from command import *
 import paho.mqtt.client as mqtt
 import os.path
 import time
 import json

 # Replace /Users/gaston/certificates with the path
 # in which you saved the certificate authoritity file,
 # the client certificate file and the client key
 certificates_path = "/Users/gaston/certificates"
 ca_certificate = os.path.join(certificates_path, "ca.crt")
 client_certificate = os.path.join(certificates_path, "device001.crt")
 client_key = os.path.join(certificates_path, "device001.key")
 mqtt_server_host = "localhost"
 mqtt_server_port = 8883
 mqtt_keepalive = 60

 drone_name = "drone01"
 commands_topic = "commands/{}".format(drone_name)
 processed_commands_topic = "processedcommands/{}".format(drone_name)

Controlling a Drone with Python

[121]

 class LoopControl:
 is_last_command_processed = False

 def on_connect(client, userdata, rc):
 print("Connect result: {}".format(mqtt.connack_string(rc)))
 client.subscribe(processed_commands_topic)

 def on_message(client, userdata, msg):
 if msg.topic == processed_commands_topic:
 payload_string = msg.payload.decode('utf-8')
 print(payload_string)
 if payload_string.count(CMD_LAND_IN_SAFE_PLACE) > 0:
 LoopControl.is_last_command_processed = True

 def on_subscribe(client, userdata, mid, granted_qos):
 print("Subscribed with QoS: {}".format(granted_qos[0]))

 def publish_command(client, command_name, key="", value=""):
 if key:
 command_message = json.dumps({
 COMMAND_KEY: command_name,
 key: value})
 else:
 command_message = json.dumps({
 COMMAND_KEY: command_name})
 result = client.publish(topic=commands_topic,
 payload=command_message, qos=2)
 return result

The code declares the same variables we used in the previous examples for the certificates
path and files, and the configuration for the MQTT server. Then, the code declares the
drone_name variable that saves a string with "drone01" and that we can easily replace
with the name of the drone that we want to control. Our main goal is to build and publish
command messages to the topic specified in the commands_topic variable. We will
subscribe to the topic specified in the processed_commands_topic variable.

The LoopControl class declares a class attribute named is_last_command_processed,
initialized to False. We will use this class attribute as a flag to control the network loop.

Controlling a Drone with Python

[122]

The on_connect function is the callback that will be executed once a successful connection
has been established with the MQTT server. The code calls the subscribe method for the
MQTT client received in the client argument to subscribe to the topic name saved in the
processed_commands_topic with a QoS level of 0.

The on_message function will be executed every time a new message arrives to the topic to
which we have subscribed. The function just prints the raw string with the payload of the
received message. If the string representation of the payload includes the string saved in the
CMD_LAND_IN_SAFE_PLACE constant, we assume that the last command was successfully
executed and the code sets the LoopControl.is_last_command_processed to True.

The on_subscribe function will be called when the subscription has been successfully
completed.

The publish_command function receives the MQTT client, the command name, the key,
and the value that provides the necessary information to execute the command in the
client, command_name, key, and value required arguments. The function creates a
dictionary and saves the results of serializing the dictionary to a JSON formatted string in
the command_message local variable. The COMMAND_KEY constant is the first key for the
dictionary, and command_name receives as an argument the value that composes the first
key-value pair. Then, the code calls the client.publish method to publish the
command_message JSON formatted string to the topic name saved in the commands_topic
variable with a QoS level of 2.

Working with the network loop with Python
Now, we will use the previously coded functions to write a __main__ method that
publishes many commands included in MQTT messages that the code controlling the drone
will process. The following lines show the code for the __main__ method, that is, the main
block of code. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_03 folder, in the
mqtt_essentials_example03_03.py file:

 if __name__ == "__main__":
 client = mqtt.Client(protocol=mqtt.MQTTv311)
 client.on_connect = on_connect
 client.on_subscribe = on_subscribe
 client.on_message = on_message

Controlling a Drone with Python

[123]

 client.tls_set(ca_certs = ca_certificate,
 certfile=client_certificate,
 keyfile=client_key)
 client.connect(host=mqtt_server_host,
 port=mqtt_server_port,
 keepalive=mqtt_keepalive)
 publish_command(client, CMD_TAKE_OFF)
 publish_command(client, CMD_MOVE_UP)
 publish_command(client, CMD_ROTATE_LEFT, KEY_DEGREES, 90)
 publish_command(client, CMD_ROTATE_LEFT, KEY_DEGREES, 45)
 publish_command(client, CMD_ROTATE_LEFT, KEY_DEGREES, 45)
 publish_command(client, CMD_LAND_IN_SAFE_PLACE)
 while LoopControl.is_last_command_processed == False:
 client.loop()
 time.sleep(1)
 client.disconnect()
 client.loop()

The first lines of the code are similar to the first example. After calling the client.connect
method, the code calls the publish_command command many times to build and publish
the messages with the commands.

The while loop calls the client.loop method to ensure that communication with the
MQTT server is carried out, and then it sleeps for one second. After the last command is
processed, the LoopControl.is_last_command_processed class variable is set to False
and the while loop ends it execution. When this happens, the code calls the
client.disconnect method and client.loop to make sure that the disconnect request
is processed.

In this case, we don't want the loop to run forever because we have a specific goal of
processing a set of commands, and then, we close the connection with the MQTT server.

Make sure that the code that controls drone01 is running. Then, execute the following line
to start the Python client example in any computer or device that you want to use as the
MQTT client:

python mqtt_essentials_example03_03.py

Controlling a Drone with Python

[124]

Go to the device and window in which you executed the previous Python script. You will
see the following output. The Python code will show all the messages received in the
processed_commands_topic. In this case, the program will end its execution after the
drone indicates that it has successfully processed the LAND_IN_SAFE_PLACE command:

Connect result: Connection Accepted.
Subscribed with QoS: 0
{"SUCCESSFULLY_PROCESSED_COMMAND": "TAKE_OFF"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "MOVE_UP"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "ROTATE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "ROTATE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "ROTATE_LEFT"}
{"SUCCESSFULLY_PROCESSED_COMMAND": "LAND_IN_SAFE_PLACE"}

Go to the device and window in which you executed the Python script that controlled the
drone, that is, mqtt_essentials_example_03_02.py. You will see the following output:

I've received the following message: {"COMMAND": "TAKE_OFF"}
drone01: Taking off
I've received the following message: {"COMMAND": "MOVE_UP"}
drone01: Moving up
I've received the following message: {"DEGREES": 90, "COMMAND":
"ROTATE_LEFT"}
drone01: Rotating left 90 degrees
I've received the following message: {"DEGREES": 45, "COMMAND":
"ROTATE_LEFT"}
drone01: Rotating left 45 degrees
I've received the following message: {"DEGREES": 45, "COMMAND":
"ROTATE_LEFT"}
drone01: Rotating left 45 degrees
I've received the following message: {"COMMAND": "LAND_IN_SAFE_PLACE"}
drone01: Landing in a safe place

Controlling a Drone with Python

[125]

The following screenshot shows two Terminal windows running on a computer with
macOS. The Terminal on the right-hand side is displaying the debug messages for a
Mosquitto server that runs on the computer. The Terminal on the left-hand side displays the
results of running the code for the Python client that published the commands to the drone,
that is, mqtt_essentials_example_03_03.py:

Controlling a Drone with Python

[126]

The next screenshot shows a Terminal window running on the Raspbian operating system
on a Raspberry Pi 3 board. The Raspberry Pi 3 is running the Python code that controls the
drone, that is, mqtt_essentials_example_03_02.py:

The next picture shows the Raspberry Pi 3 board that is running the code whose output was
shown in the previous screenshot. A computer is running the Mosquitto server:

Controlling a Drone with Python

[127]

The following screenshot shows three Terminal windows running on a computer with
macOS. The Terminal in the upper-left corner displays an SSH terminal that is running the
Python code controlling the drone on an Intel Joule 570x board. That is, the board is running
mqtt_essentials_example_03_02.py. The Terminal in the lower-left corner displays the
results of running the code for the Python client that published the commands to the drone,
that is, mqtt_essentials_example_03_03.py. The Terminal on the right-hand side
displays the debug messages for a Mosquitto server that is running on the computer:

Controlling a Drone with Python

[128]

The next picture shows the Intel Joule 570x board that runs the code whose output was
shown in the previous screenshot. Remember that the Mosquitto server is running on a
computer:

Controlling a Drone with Python

[129]

Test your knowledge
Which of the following Python modules is the Paho Python Client?1.

paho-mqtt.1.
paho-client-pip.2.
paho-python-client.3.

To establish a connection with an MQTT server that uses TLS, which method do2.
you have to call for the paho.mqtt.client.Client instance before calling
connect?

connect_with_tls.1.
tls_set.2.
configure_tls.3.

After the paho.mqtt.client.Client instance establishes a connection with the3.
MQTT server, the callback assigned to which of the following attributes will be
called?

on_connection.1.
on_connect.2.
connect_callback.3.

After the paho.mqtt.client.Client instance receives a message from one of4.
the topic filters to which it has subscribed, the callback assigned to which of the
following attributes will be called?

on_message_arrived.1.
on_message.2.
message_arrived_callback.3.

Which of the following methods of a paho.mqtt.client.Client instance calls5.
the loop method for us in an infinite blocking loop?

infinite_loop.1.
loop_while_true.2.
loop_forever.3.

Controlling a Drone with Python

[130]

Summary
In this chapter, we analyzed the requirements for controlling a drone with MQTT messages.
We defined the topics that we will use and the commands that will be part of the messages'
payloads to control a drone. Then, we worked with the Paho Python Client to write Python
code that connected an MQTT client to the MQTT server.

We understood the methods we needed to call for the Paho Python Client and their
parameters. We analyzed how callback worked and we were able to publish messages to
topics, subscribe to topic filters, and receive and process messages.

We wrote code that processed commands for a drone with Python. The code is able to run
on different IoT platforms, including Intel Joule boards and Raspberry Pi 3, and also on any
computer that is capable of executing Python 2.7.x or Python 3.x. We worked with the
network loop for the MQTT client in Python. We worked with a GUI utility, command-line
based utilities, and, finally, with Python code to control the drone and display the feedback
provided by the drone.

Now that we understand how to use Python to work with MQTT, we will use this protocol
to interact with sensors by using the Java programming language, which is what we are
going to discuss in the next chapter.

4
Interacting with Sensors in Java

In this chapter, we will write Java code to control sensors with MQTT messages. We will
write code that will be able to run on different popular IoT platforms. We will:

Understand the requirements to control sensors with MQTT
Define the topics and commands to control sensors
Install the Eclipse Paho Java Client
Create a security helper class to establish a TLS secured connection
Configure a TLS secured connection in Java
Work with asynchronous notifications and callbacks in Java
Subscribe to topics and understand notification events in Java
Process commands that interact with sensors in Java
Work with last will and testament in Java
Publish messages with commands to target sensors

Understanding the requirements
In the previous chapters, we learned how MQTT works in detail. We understood how to
establish a connection between an MQTT client and an MQTT server. We learned what
happened when we subscribed to topic filters and when a publisher sent messages to
specific topics. We installed and secured a Mosquitto server. Then, we controlled a drone
with Python.

Interacting with Sensors in Java

[132]

Now, we will use Java as our main programming language to generate MQTT clients that
will act as publishers and subscribers. We will connect a Java MQTT client to the MQTT
server and we will process simple commands to control sensors with MQTT messages.We
will use TLS encryption and TLS authentication because we don't want any MQTT client to
be able to send commands to sensors wired to IoT boards. We want our Java code to run on
many platforms because we will use the same code base to control sensors that use the
following IoT boards:

Raspberry Pi 3
Raspberry Pi 2 Model B
Intel Edison
Intel Galileo Gen 2
Intel Joule 570x
Intel Joule 550x

Each platform will work with different kinds of sensors. However, we will focus on the
basic features to keep our example simple and to stay concentrated on MQTT. Then, we will
be able to use this project as a baseline for other solutions that require us to run code on an
IoT board that runs Java code, has to connect to an MQTT server, and has to process
commands.

The code that runs on the boards that have sensors wired to them must be able to process
commands received in messages in a specific topic. We will use strings with short
commands in plain English in the payloads.

A client application also written in Java must be able to control one or more sensors. We
will also write the client application in Java and it will publish MQTT messages with strings
to the topic for each drone. The client application must display the results of executing each
command. Each IoT board must publish a message to a specific topic whenever a command
was successfully executed.

Interacting with Sensors in Java

[133]

Defining the topics and commands
We will use the following topic name to publish the commands for the sensors wired to an
IoT board: commands/boards/boardname/sensors/sensorname, where boardname
must be replaced with a unique name assigned to a board and sensorname must be
replaced with a unique name assigned to a sensor. For example, if we assign location001
as the name for an Intel Joule 550x board and we assign earthhumidity as the name for a
humidity sensor wired to this board, we will have to publish commands to the
commands/boards/location001/sensors/earthhumidity topic and the code that runs
on this board will subscribe to this topic to receive messages with commands and react to
them. In fact, the board can subscribe to commands/boards/location001/sensors/+ to
receive messages with commands for all the sensors wired to the board named
location001.

We will use the following topic name to make the boards publish data retrieved from the
sensors: data/boards/boardname/sensors/sensorname, where boardname must be
replaced with a unique name assigned to a board and sensorname must be replaced with a
unique name assigned to a sensor. For example, if we assign location300 as the name for
a Raspberry Pi 3 board, and we assign sunlight as the name for a sunlight sensor wired to
this board, the client that wants to receive data retrieved from this sensor has to subscribe to
the data/boards/location300/sensors/sunlight/+ topic because the sensors will
provide data in different subtopics. Another option for the client is to subscribe
to data/boards/location300/sensors/# to subscribe to all the sensors and
their different subtopics. For example, the sunlight sensor will provide the following data:

 Visible light: The visible light will be published to the
data/boards/location300/sensors/sunlight/visiblelight topic
Infrared light: The infrared light will be published to the
data/boards/location300/sensors/sunlight/ir topic
Ultraviolet index: The ultraviolet light will be published to the
data/boards/location300/sensors/sunlight/uv topic

The commands will be sent as strings in plain English. We will have just two valid
commands:

TURN ON: Turn on the sensor and make the board start transmitting the data
retrieved from this sensor every 1 second to the appropriate topic
TURN OFF: Turn off the sensor and make the board stop transmitting the data
retrieved from this sensor

Interacting with Sensors in Java

[134]

The following line shows an example of the payload for the command that turns on a
sensor:

TURN ON

The following line shows an example of the payload for the visible light value retrieved
from a sunlight sensor:

250 lm

We will use the following topic name to make the boards publish their status:
status/boards/boardname, where boardname must be replaced with a unique name
assigned to a board. For example, if we assign location005 as the name for an Intel
Edison board, we will have to subscribe to the status/boards/location005 topic and
the code that runs on this board will publish its status to this topic. When the board
subscribes to the appropriate topics to listen to messages with commands, it will publish a
message with the payload, ONLINE, to this topic. This message will be published as a
retained message with a QoS level of 2. We will take advantage of the last will and
testament feature to publish a message with the payload, OFFLINE, to this topic whenever
the connection between the MQTT client running on the board and the MQTT server is lost
or the application stops its execution. We analyzed the last will and testament feature in
Chapter 1, Lightweight Messaging with MQTT 3.1.1 and Mosquitto.

We have all the necessary details to start coding with Java. First, we will develop a simple
Java application that subscribes to a topic and displays the received messages. Then, we will
create the Java application that can control sensors based on the previously explained
requirements.

Installing the Eclipse Paho Java Client
The Eclipse Paho project provides an open source client implementation of MQTT. The
project includes a Java client, also known as the Paho Java Client or Eclipse Paho Java client.

The following is the web page for the Eclipse Paho project:
http://www.eclipse.org/paho

http://www.eclipse.org/paho
http://www.eclipse.org/paho

Interacting with Sensors in Java

[135]

The following is the web page for the Eclipse Paho Java client:
https://eclipse.org/paho/clients/java

We can use the Eclipse Paho Java client in many modern IoT boards that
support Java. For example, we can install and use this client on Raspberry
Pi boards, such as Raspberry Pi 3, and on Intel IoT boards, such as the Intel
Joule, Intel Edison, and Intel Galileo. We just need to make sure that Java
is installed. You can use your development computer to run the examples
or any of the mentioned boards. You will need Java 8 or a later version
installed on your development computer.

This Java client provides both a blocking (synchronous) and a non-blocking (asynchronous)
API. The blocking API is a wrapper of the non-blocking API that makes all the necessary
things to make the code wait until each method has a result. We will work with the non-
blocking (asynchronous) API because it is the one that we will use most of the times. This
API is more complex than the blocking API due to the asynchronous execution of its
methods and the need to work with callbacks. However, once you learn the non-blocking
API, you can easily switch to the blocking API in case you need to use it.

The most complex task with this API is to establish a secure connection with an MQTT
server. The Paho Java Client uses standard Java TLS/SSL mechanisms, and therefore, we
will use the Bouncy Castle libraries. You can read more information about these libraries at
h t t p ://w w w . b o u n c y c a s t l e . o r g .

To use the Paho Java Client in combination with the Bouncy Castle libraries, we can start a
Maven project in our favorite IDE and add the following lines to the pom.xml file. We must
add the lines before </project>. In case you don't want to work with Maven, you can
check the documentation for the Paho Java Client and the Bouncy Castle libraries to
download the appropriate versions and use them in your projects. The following XML
shows the new lines that you must add to the pom.xml file. The code file for the sample is
included in the mqtt_essentials_gaston_hillar_04 folder, in the Java01 folder:

 <repositories>
 <repository>
 <id>Eclipse Paho Repo</id>
 <url>https://repo.eclipse.org/content/
 repositories/paho-releases/</url>
 </repository>
 </repositories>

https://eclipse.org/paho/clients/java
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org
http://www.bouncycastle.org

Interacting with Sensors in Java

[136]

 <dependencies>
 <dependency>
 <groupId>org.eclipse.paho</groupId>
 <artifactId>org.eclipse.paho.client.mqttv3</artifactId>
 <version>1.1.0</version>
 </dependency>
 <dependency>
 <groupId>org.bouncycastle</groupId>
 <artifactId>bcmail-jdk15on</artifactId>
 <version>1.56</version>
 </dependency>
 <dependency>
 <groupId>org.bouncycastle</groupId>
 <artifactId>bcpkix-jdk15on</artifactId>
 <version>1.56</version>
 </dependency>
 <dependency>
 <groupId>org.bouncycastle</groupId>
 <artifactId>bcprov-jdk15on</artifactId>
 <version>1.56</version>
 </dependency>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.9</version>
 </dependency>
 </dependencies>

The sample has been tested with the version numbers specified in the
previous lines that are included in the pom.xml file. The code works with
Java 8 and Java 9.

After you make the previous changes in the pom.xml file, the following .jar files will be
added to the Maven dependencies for the Maven project:

org.eclipse.paho.client.mqttv301.1.0.jar

bcmail-jdk15on-1.56.jar

bcpkix-jdk15on-1.56.jar

bcprov-jdk15on-1.56.jar

commons-codec-1.9.jar

Interacting with Sensors in Java

[137]

Creating a security helper class to establish
a TLS secured connection
Now, we will create a new security helper class named SecurityHelper, which will
provide many static methods that we will use to make it easy to establish a TLS secured
connection with an MQTT server. We will use the recently added dependencies for the
Bouncy Castle libraries to load the certificates and key files.

The public static CreateSocketFactory method will receive the file names for the
certificate authority certificate, the client certificate, and the client key. The method will load
all these files, generate the appropriate instances from them, and return an instance of
java.net.ssl.SSLSocketFactory.

It is very important to avoid being confused by the old SSL name. We will
be working with TLS version 1.2, but Java has the old
java.net.ssl.SSLSocketFactory that has been upgraded to work
with the latest TLS versions (but it didn't change its name from SSL to TLS
to keep compatibility with the previous versions).

The SecurityHelper class will provide the following private static methods that will
make it easier to understand the code in the public static createSocketFactory method:

getKeyFactoryInstance: This returns a java.key.KeyFactory instance that
converts public/private keys of the RSA algorithm.
createX509CertificateFromFile: This method receives a certificate file
name, loads its contents, generates an instance of
java.security.cert.X509Certificate from this file, and returns the created
instance. Other methods will call the createX509CertificateFromFile
method to generate an X509Certificate instance from a certificate authority
certificate file or from a client certificate file.
createPrivateKeyFromPemFile: This method receives a key file name in the
PEM format, loads its contents, generates an instance of
java.Security.PrivateKey from this file, and returns the created instance.
This method will allow us to create a PrivateKey instance from the client key
file.

Interacting with Sensors in Java

[138]

createKeyManagerFactory: This method receives a client certificate file name,
a client key file name, and a client key password, and calls the previously
explained createX509CertificateFromFile and
createPrivateKeyFromPemFile methods to generate the X509Certificate
and PrivateKey instances. Then, the method uses these instances to specify the
certificate and key for an instance of the java.security.KeyStore instance
and uses it to create and return an instance of the
java.net.ssl.KeyManagerFactory class.
createTrustManagerFactory: This method receives a certificate authority
certificate file name and calls the previously explained
createX509CertificateFromFile method to generate an X509Certificate
instance. Then, the method uses this instance to specify the certificate authority
certificate for an instance of the java.security.KeyStore instance and uses it
to create and return an instance of the java.net.ssl.TrustManagerFactory
class.

We will split the code for the SecurityHelper class into many code snippets to make it
easier to understand each code section. The following lines declare all the necessary
imports. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the
Java01/src/SecurityHelper.java file:

 import java.io.File;
 import java.io.FileInputStream;
 import java.io.FileReader;
 import java.io.IOException;
 import java.io.InputStream;

 import java.security.KeyFactory;
 import java.security.KeyStore;
 import java.security.KeyStoreException;
 import java.security.NoSuchAlgorithmException;
 import java.security.PrivateKey;
 import java.security.SecureRandom;
 import java.security.Security;
 import java.security.UnrecoverableKeyException;
 import java.security.cert.Certificate;
 import java.security.cert.CertificateException;
 import java.security.cert.CertificateFactory;
 import java.security.cert.X509Certificate;
 import java.security.spec.InvalidKeySpecException;
 import java.security.spec.PKCS8EncodedKeySpec;

Interacting with Sensors in Java

[139]

 import javax.net.ssl.KeyManager;
 import javax.net.ssl.KeyManagerFactory;
 import javax.net.ssl.SSLContext;
 import javax.net.ssl.SSLSocketFactory;
 import javax.net.ssl.TrustManager;
 import javax.net.ssl.TrustManagerFactory;

 import org.bouncycastle.jce.provider.BouncyCastleProvider;
 import org.bouncycastle.util.io.pem.PemObject;
 import org.bouncycastle.util.io.pem.PemReader;

The following lines start the declaration of the SecurityHelper class. The code declares
the TLS_VERSION string constant with "TLSv1.2" as its value. We will work with TLS
version 1.2 and we will use this constant when it is necessary to specify the desired version
of TLS/SSL in the code. The code also declares the following three methods:
getKeyFactoryInstance, createX509CertificateFromFile, and
createPrivateKeyFromPemFile methods. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the
Java01/src/SecurityHelper.java file:

 public class SecurityHelper {
 private final static String TLS_VERSION = "TLSv1.2";

 private static
 KeyFactory getKeyFactoryInstance() throws NoSuchAlgorithmException {
 return KeyFactory.getInstance("RSA");
 }

 private static X509Certificate createX509CertificateFromFile(
 final String certificateFileName) throws IOException,
 CertificateException
 {
 final File file = new java.io.File(certificateFileName);
 if (!file.isFile()) {
 throw new IOException(
 String.format("The certificate file %s
 doesn't exist.", certificateFileName));
 }

Interacting with Sensors in Java

[140]

 final CertificateFactory certificateFactoryX509 =
 CertificateFactory.getInstance("X.509");
 final InputStream inputStream = new FileInputStream(file);
 final X509Certificate certificate = (X509Certificate)
 certificateFactoryX509.generateCertificate(inputStream);
 inputStream.close();

 return certificate;
 }

 private static PrivateKey createPrivateKeyFromPemFile
 (final String keyFileName) throws IOException,
 InvalidKeySpecException, NoSuchAlgorithmException
 {
 final PemReader pemReader =
 new PemReader(new FileReader(keyFileName));
 final PemObject pemObject = pemReader.readPemObject();
 final byte[] pemContent = pemObject.getContent();
 pemReader.close();
 final PKCS8EncodedKeySpec encodedKeySpec =
 new PKCS8EncodedKeySpec(pemContent);
 final KeyFactory keyFactory = getKeyFactoryInstance();
 final PrivateKey privateKey =
 keyFactory.generatePrivate(encodedKeySpec);
 return privateKey;
 }

The createX509CertificateFromFile method receives the certificate file name in the
certificateFileName argument. First, the code creates a new java.io.File instance
with the received certificate file name as an argument. If the file exists, the next line calls the
CertificateFactory.getInstance method with "X.509" as an argument to generate a
certificate factory object that implements the X.509 certificate type and saves its reference in
the certificateFactoryX509 variable. Then, the code calls the generateCertificate
method with the file input stream to generate and return an X509Certificate instance
from the received certificate file name.

Interacting with Sensors in Java

[141]

The createPrivateKeyFromPemFile method receives the key file name in the
keyFileName argument. First, the code creates a new Bouncy Castle PemReader instance to
load the key file specified in the keyFileName argument with this reader capable of
loading the PEM format. The code generates a byte array with the PEM content and saves
it in the pemContent variable. The next line passes pemContent as an argument to create a
new instance of the PKCS8EncodedKeySpec class and saves it in the encodedKeySpec
variable. Then, the code calls the getKeyFactoryInstance static method defined in the
same class that provides a java.key.KeyFactoryinstance that allows the code to convert
public/private keys of the RSA algorithm, and saves the instance in the keyFactory
variable. The call to the keyFactory.generatePrivate method with encodedKeySpec
as an argument generates a private key object from the provided key specification. Finally,
the code returns this generated private key object.

The following lines declare the createKeyManagerFactory and
createTrustManagerFactory methods within the SecurityHelper class. The code file
for the sample is included in the mqtt_essentials_gaston_hillar_04 folder, in the
Java01/src/SecurityHelper.java file:

 private static KeyManagerFactory createKeyManagerFactory(
 final String clientCertificateFileName,
 final String clientKeyFileName, final String clientKeyPassword)
 throws InvalidKeySpecException, NoSuchAlgorithmException,
 KeyStoreException, IOException, CertificateException,
 UnrecoverableKeyException
 {
 final X509Certificate clientCertificate =
 createX509CertificateFromFile(clientCertificateFileName);
 final PrivateKey privateKey =
 createPrivateKeyFromPemFile(clientKeyFileName);
 final KeyStore keyStore =
 KeyStore.getInstance(KeyStore.getDefaultType());
 keyStore.load(null, null);
 keyStore.setCertificateEntry("certificate", clientCertificate);
 keyStore.setKeyEntry("private-key", privateKey,
 clientKeyPassword.toCharArray(),
 new Certificate[] { clientCertificate });
 final KeyManagerFactory keyManagerFactory =
 KeyManagerFactory.getInstance(
 KeyManagerFactory.getDefaultAlgorithm());
 keyManagerFactory.init(keyStore,
 clientKeyPassword.toCharArray());

 return keyManagerFactory;
 }

Interacting with Sensors in Java

[142]

 private static TrustManagerFactory createTrustManagerFactory(
 final String caCertificateFileName)
 throws CertificateException, NoSuchAlgorithmException, IOException,
 KeyStoreException
 {
 final X509Certificate caCertificate = (X509Certificate)
 createX509CertificateFromFile(caCertificateFileName);
 final KeyStore keyStore =
 KeyStore.getInstance(KeyStore.getDefaultType());
 keyStore.load(null, null);
 keyStore.setCertificateEntry("ca-certificate", caCertificate);
 final TrustManagerFactory trustManagerFactory =
 TrustManagerFactory.getInstance
 (TrustManagerFactory.getDefaultAlgorithm());
 trustManagerFactory.init(keyStore);

 return trustManagerFactory;
 }

The createKeyManagerFactory method receives the client certificate file name in the
clientCertificateFileName argument, the client key file name in the
clientKeyFileName argument, and the password for the client key in the
clientKeyPassword argument. First, the code calls the previously explained
createX509CertificateFromFile method with clientCertificateFileName as an
argument to load the client certificate, generate the X509Certificate instance, and save
its reference in the clientCertificate variable.

The next line calls the previously explained createPrivateKeyFromPemFile method
with clientKeyFileName as an argument to load the private client key with PEM format,
generate the PrivateKey instance, and save its reference in the privateKey variable.

Then, the code creates an instance of the KeyStore class named keyStore, whose goal is
to provide storage facility for cryptographic keys and certificates. The call to the
keyStore.setCertificateEntry method assigns the trusted certificate saved in the
clientCertificate variable to the "certificate" alias. The call to the
keyStore.setKeyEntry method assigns the key saved in the privateKey variable to the
"private-key" alias, sets its association with the certificate saved in
clientCertificate, and protects it with the password received in the
clientKeyPassword argument.

Interacting with Sensors in Java

[143]

Finally, the code creates an instance of the KeyManagerFactory class and then calls its
init method with keyStore and clientKeyPassword converted to a char array as the
arguments to provide the KeyStore instance and the password to the key manager factory.
The code returns the created and initialized key manager factory.

The createTrustManagerFactory method receives the certificate authority certificate file
name in the caCertificateFileName argument. First, the code calls the previously
explained createX509CertificateFromFile method with caCertificateFileName as
an argument to load the certificate authority certificate, generate the X509Certificate
instance, and save its reference in the caCertificate variable.

The next line creates an instance of the KeyStore class named keyStore, whose goal is to
provide storage facility for cryptographic keys and certificates. The call to the
keyStore.setCertificateEntry method assigns the trusted certificate authority
certificate saved in the caCertificate variable to the "ca-certificate" alias.

Finally, the code creates an instance of the TrustManagerFactory class and then calls its
init method with keyStore as an argument to provide the KeyStore instance and to the
trust manager factory. The code returns the created and initialized trust manager factory.

The following lines complete the declaration of the SecurityHelper class and declare the
public static createSocketFactory method. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the
Java01/src/SecurityHelper.java file:

 public static SSLSocketFactory createSocketFactory(
 final String caCertificateFileName,
 final String clientCertificateFileName,
 final String clientKeyFileName) throws Exception
 {
 final String clientKeyPassword = "";
 try {
 Security.addProvider(new BouncyCastleProvider());
 final KeyManager[] keyManagers =
 createKeyManagerFactory(clientCertificateFileName,
 clientKeyFileName, clientKeyPassword).getKeyManagers();
 final TrustManager[] trustManagers =
 createTrustManagerFactory(caCertificateFileName)
 .getTrustManagers();

Interacting with Sensors in Java

[144]

 final SSLContext context = SSLContext.getInstance(TLS_VERSION);

 context.init(keyManagers, trustManagers, new SecureRandom());

 return context.getSocketFactory();
 }
 catch (Exception e)
 {
 throw new Exception(
 "I cannot create the TLS socket factory.", e);
 }
 }
 }

The createSocketFactory method receives the certificate authority certificate file name
in the caCertificateFileName argument, the client certificate file name in the
clientCertificateFileName argument, and the client key file name in the
clientKeyFileName argument. The method declares the clientKeyPassword string with
an empty string as its value because we haven't used a password for the client key. In case
you want to use a password, you can add the password as an argument to this helper
method. Then, the code calls the Security.addProvider method with a new
BouncyCastleProvider instance as an argument to add this instance to the security
providers.

The next line calls the previously explained createKeyManagerFactory method with the
appropriate arguments to generate the KeyManager instance. The result is chained with a
call to the getKeyManagers method to include this instance in the new keyManagers array
of KeyManager.

The next line calls the previously explained createTrustManagerFactory method with
the appropriate argument to generate the TrustManager instance. The result is chained
with a call to the getTrustManagers method to include this instance in the new
trustManagers array of TrustManager.

Then, the code creates the TLS socket factory for the desired TLS version, that is, TLS
version 1.2. Remember that we create an SSLContext instance named context but we are
working with TLS. The call to context.init with keyManagers, trustManagers, and a
new java.security.SecureRandom.SecureRandom instance initializes the TLS socket
factory with the previously generated key manager and trust manager. Finally, the code
returns the result of calling the context.getSocketFactory method to return an
SSLSocketFactory instance.

Interacting with Sensors in Java

[145]

Configuring a TLS secured connection in
Java
First, we will use the asynchronous API provided by the Paho Java client to create an MQTT
asynchronous client that connects to the Mosquitto MQTT server. We will write a few lines
of Java code to establish a secured connection, subscribe to a topic, and display the payload
for the messages received in this topic. The synchronous API provided by the Paho Java
client is simpler to use, but in most cases, we will want to use the non-blocking
asynchronous API. Hence, we will focus on the asynchronous API.

In Chapter 2, Securing an MQTT Mosquitto Server, we have secured our Mosquitto server,
and therefore, we will use the digital certificates we have created to authenticate the client.
Most of the times, we will work with an MQTT server that uses TLS, and therefore, it is a
good idea to learn how to establish a connection with TLS and TLS authentication. It is
easier to establish an unsecured connection with an MQTT server, but it won't be the most
common scenario we will face when developing applications that work with MQTT.

First, we need to copy the following files we have created in Chapter 2, Securing an MQTT
Mosquitto Server, to a directory in the computer or device we will use to run the Java
application. We saved the files in a directory called certificates. Create a
java_certificates directory in the computer or board you are going to use as the MQTT
client for this example. Copy the following three files to this new directory:

ca.crt: Certificate authority certificate file
device001.crt: Client certificate file
device001.key: Client key

Now, we will create the main class named Main that uses the asynchronous API of the Paho
Java Client and the previously coded SecurityHelper class to establish an encrypted
connection with an MQTT server. Then, the class subscribes to the
commands/lights/led01 topic filter and prints all the messages received in the
subscribed topic filter.

Interacting with Sensors in Java

[146]

We will split the code for the Main class into many code snippets to make it easier to
understand each code section. The following lines declare all the necessary imports. The
code file for the sample is included in the mqtt_essentials_gaston_hillar_04 folder,
in the Java01/src/Main.java file:

 import javax.net.ssl.SSLSocketFactory;

 import org.eclipse.paho.client.mqttv3.IMqttActionListener;
 import org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;
 import org.eclipse.paho.client.mqttv3.IMqttToken;
 import org.eclipse.paho.client.mqttv3.MqttAsyncClient;
 import org.eclipse.paho.client.mqttv3.MqttConnectOptions;
 import org.eclipse.paho.client.mqttv3.MqttException;
 import org.eclipse.paho.client.mqttv3.MqttMessage;
 import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

The following lines start the declaration of the Main class and show the first lines of the
static main method. You have to replace the value for the mqttServerHost with the IP
address for the Mosquitto server or any other MQTT server you might decide to use. The
code file for the sample is included in the mqtt_essentials_gaston_hillar_04 folder,
in the Java01/src/Main.java file:

 public class Main {
 public static void main(String[] args) {
 try {
 final MqttConnectOptions mqttConnectOptions =
 new MqttConnectOptions();
 mqttConnectOptions.setMqttVersion(
 MqttConnectOptions.MQTT_VERSION_3_1_1);
 mqttConnectOptions.setKeepAliveInterval(
 MqttConnectOptions.KEEP_ALIVE_INTERVAL_DEFAULT);
 MemoryPersistence memoryPersistence = new MemoryPersistence();

 // Replace localhost with the IP for the Mosquitto
 // or other MQTT server
 final String mqttServerHost = "localhost";

 final int mqttServerPort = 8883;
 final String mqttServerURI = String.format(
 "ssl://%s:%d",
 mqttServerHost,
 mqttServerPort);

Interacting with Sensors in Java

[147]

 // In case you don't need security:
 // final int mqttServerPort = 8883;
 // final String mqttServerURI = String.format(
 // "ftp://%s:%d",
 // mqttServerHost,
 // mqttServerPort);

 // We can specify our own client id
 // instead of calling the generateClientId method
 final String mqttClientId = MqttAsyncClient.generateClientId();
 MqttAsyncClient mqttAsyncClient = new MqttAsyncClient(
 mqttServerURI,
 mqttClientId,
 memoryPersistence);
 final String topic_for_led01 = "commands/lights/led01";

First, the code creates an instance of the
org.eclipse.paho.client.mqttv3.MqttConnectOptions class named
mqttConnectOptions that stores the values for the different options we can configure
when we want to connect with an MQTT server. If we used the default parameters, we
would work with MQTT version 3.1. We want to work with MQTT version 3.1.1, and
therefore, we specify MqttConnectOptions.MQTT_VERSION_3_1_1 as an argument for
mqttConnectOption.setMqttVersion.

We want to work with MQTT version 3.1.1 interval configuration option. However, we
wrote code to call the mqttConnectOptions.setKeepAliveInterval method to make it
easy to work with other values in case we need to. We just need to change the value sent as
an argument to this method.

You can call other methods that start with the set prefix for
mqttConnectOptions to set the values for other configuration options,
such as specifying a user name and a password for authentication. In this
case, we are just working with TLS client authentication.

The next line creates an instance of the
org.eclipse.paho.client.mqttv3.persist.MemoryPersistence class named
memoryPersistence. The Paho Java Client provides a pluggable persistence mechanism
that makes it possible for the client to store the messages. In this case, we will work with a
QoS level of 0, and we will use memory persistence for the messages to keep the code
simpler. However, we will move to a QoS level of 2 later, and we will explore and configure
other pluggable persistence options that will be suitable for this QoS level. All the pluggable
persistence mechanisms are classes that implement the MqttClientPersistence
interface.

Interacting with Sensors in Java

[148]

Then, the code declares the values for the variables that specify the MQTT server host name
or IP, mqttServerHost, the MQTT server port, mqttServerPort, and the MQTT server
URI, mqttServerURI, built with the values of the other two variables. The next line calls
the MqttAsyncClient.generateClientId method to generate a unique client ID and
save it in the mqttClientId variable. We might also decide to specify our own client ID
instead of calling this method.

The next line creates an instance of the
org.eclipse.paho.client.mqttv3.MqttAsyncClient class named mqttAsyncClient
with the MQTT server URI, the previously generated client ID, and the memory persistence
option as the arguments. This instance will be the entry point for our MQTT asynchronous
client.

Finally, the last line declares the topic_for_led01 variable with
"commands/lights/led01" as its value. We will subscribe to this topic.

The following lines continue the declaration of the public static main method. You have to
replace the value, /Users/gaston/certificates, in the certificatesPath string with
the path to the java_certificates directory you created. The code file for the sample is
included in the mqtt_essentials_gaston_hillar_04 folder, in the
Java01/src/Main.java file:

 // Replace /Users/gaston/certificates with the path
 // in which you saved the certificate authority file,
 // the client certificate file and the client key
 final String certificatesPath = "/Users/gaston/certificates";
 final String caCertificateFileName =
 String.join(java.io.File.separator, certificatesPath, "ca.crt");
 final String clientCertificateFileName =
 String.join(java.io.File.separator, certificatesPath,
 "device001.crt");
 final String clientKeyFileName =
 String.join(java.io.File.separator,
 certificatesPath, "device001.key");
 // In case you don't need security,
 // you don't need to create an SSLSocketFactory instance
 SSLSocketFactory socketFactory;

Interacting with Sensors in Java

[149]

 try {
 socketFactory = SecurityHelper.createSocketFactory(
 caCertificateFileName,
 clientCertificateFileName,
 clientKeyFileName);
 } catch (Exception e1) {
 e1.printStackTrace();
 return;
 }
 // In case you don't need security, you don't have to call
 // the setSocketFactory method
 mqttConnectOptions.setSocketFactory(socketFactory);

The code declares the certificatesPath variable initialized with a string with the path in
which you saved the certificate authority file, the client certificate file, and the client key.
The code declares the following string variables with the full path to the certificate and key
files we need to configure TLS and TLS client authentication: caCertificateFileName,
clientCertificateFileName, and clientKey. The call to String.join with
java.io.File.separator as the first argument makes it easy to join the path specified in
the certificatesPath variable with each filename and to generate the full path. The
java.io.File.separator string provides the appropriate name separator in the
platform, and therefore, we don't have to worry about whether to use a slash (/) or a
backslash () to join the path with the file name. Whenever we work with IoT related
projects, sometimes, we can develop and test in Windows and then run the code on an IoT
board that can use different Unix flavors. In other cases, we can develop on macOS or Linux
and then run the code in a board that uses Windows IoT Core. The usage of
java.io.File.separator makes our job easier in these scenarios, in which we switch
between different platforms.

Then, the code calls the previously analyzed SecurityHelper.createSocketFactory
method with the variables that hold the full path to the certificate and key files as
arguments. This way, the code generates the SSLSocketFactory instance and saves its
reference in the socketFactory variable. Finally, the next line calls the
mqttConnectOptions.setSocketFactory method with socketFactory as an argument
to specify the socket factory we want to use for the connection with the MQTT server.

Interacting with Sensors in Java

[150]

Working with asynchronous notifications
and callbacks in Java
The following lines continue the declaration of the public static main method. The code file
for the sample is included in the mqtt_essentials_gaston_hillar_04 folder, in the
Java01/src/Main.java file:

 mqttAsyncClient.setCallback(new MqttCallback() {
 @Override
 public void connectionLost(Throwable cause) {
 cause.printStackTrace();
 }

 @Override
 public void deliveryComplete(IMqttDeliveryToken token) {
 }

 @Override
 public void messageArrived(String topic, MqttMessage message)
 throws Exception {
 if (!topic.equals(topic_for_led01)) {
 return;
 }
 String messageText =
 new String(message.getPayload(), "UTF-8");
 System.out.println(
 String.format("Topic: %s. Payload: %s",
 topic,
 messageText));
 }
 });

Interacting with Sensors in Java

[151]

The code calls the mqttAsyncClient.setCallback method with an anonymous subclass
of the MqttCallback class as an argument. The setCallback method requires an
argument of the org.eclipse.paho.client.mqttv3.MqttCallback type. The
anonymous class that implements the MqttCallback interface provides implementations
for the following three methods required by the interface:

connectionLost: When the MQTT client loses the connection, this method will
be executed.
messageArrived: When a message has arrived from the MQTT server, this
method will be executed. It is very important to understand that in the QoS levels
that require an acknowledgement to the MQTT server, the MQTT server won't
send this acknowledgement until the messageArrived method completes its
execution. The method receives the topic for the message that has arrived in the
topic argument of type String. In addition, the method receives an instance of
the org.eclipse.paho.client.mqttv3.MqttMessage class in the message
argument that encapsulates all the data related to the arrived message.
deliveryComplete: When the delivery for a message has been completed and
all the acknowledgements required by the QoS level have been received, this
method will be executed. The method receives an instance of a class that
implements the org.eclipse.paho.client.mqttv3.ImqttDeliveryToken
interface in the token argument. We will discuss tokens later.

We must call the setCallback method before we establish the connection
with the MQTT server. In this case, we pass an anonymous class as an
argument to the setCallback method because we want all the code to be
included within the main method. In other cases, we can create a class that
implements the required interface and pass an instance of this class as an
argument to the setCallback method.

In this case, the code just prints the stack trace for the cause that made the MQTT client lose
the connection. We don't execute any code when the delivery for a message has been
completed.

The messageArrived method checks whether the topic for the received message matches
the value saved in the topic_for_led01 variable. In case they match, the next line creates
a new String with the byte array returned by the message.getPayload method and
UTF-8 as the encoding, and saves it in the messageText variable. Finally, the code prints
the topic and the payload for the message.

Interacting with Sensors in Java

[152]

The following lines end the public static main method and the Main class. The code file for
the sample is included in the mqtt_essentials_gaston_hillar_04 folder, in the
Java01/src/Main.java file:

 // In this case, we don't use the token
 IMqttToken mqttConnectToken = mqttAsyncClient.connect(
 mqttConnectOptions,
 null,
 new IMqttActionListener() {
 @Override
 public void onSuccess(IMqttToken asyncActionToken) {
 System.out.println(
 String.format(
 "Successfully connected"));
 try {
 // In this case, we don't use the token
 IMqttToken subscribeToken = mqttAsyncClient.subscribe(
 topic_for_led01,
 0,
 null,
 new IMqttActionListener() {
 @Override
 public void onSuccess(IMqttToken asyncActionToken) {
 System.out.println(
 String.format(
 "Subscribed to the %s topic with QoS: %d",
 topic_for_led01,
 asyncActionToken.getGrantedQos()[0]));
 }
 @Override
 public void onFailure(IMqttToken asyncActionToken,
 Throwable exception) {
 exception.printStackTrace();
 }
 });
 } catch (MqttException e) {
 e.printStackTrace();
 }
 }

Interacting with Sensors in Java

[153]

 @Override
 public void onFailure(IMqttToken asyncActionToken,
 Throwable exception) {
 exception.printStackTrace();
 }
 });
 } catch (MqttException e) {
 e.printStackTrace();
 }
 }
 }

The code calls the mqttAsyncClient.connect method with mqttConnectOptions and
an anonymous class that implements the IMqttActionListener interface as the value for
the callback argument. The connect method requires the callback argument of the
org.eclipse.paho.client.mqttv3.IMqttActionListener type. The anonymous class
provides implementations for the following two methods required by the
IMqttActionListener interface:

onSuccess: When the MQTT client has successfully completed the action, this
method will be executed. The method receives an instance of a class that
implements the org.eclipse.paho.client.mqttv3.ImqttToken interface in
the asyncActionToken argument. We can compare this instance with the
IMqttToken returned by the method that starts the asynchronous action to use
the same code to check for the successful execution of many asynchronous
actions. In this case, the onSuccess method will be executed when the
connection has been successfully established with the MQTT server.
onFailure: When an asynchronous operation requested to the MQTT client fails,
this method will be executed. As happens in the onSuccess method, the
onFailure method also receives an asyncActionToken argument with the
IMqttToken instance, which identifies the asynchronous operation that has
failed.

Interacting with Sensors in Java

[154]

Subscribing to topics and understanding
notification events in Java
The onSuccess method prints a message indicating that the client has successfully connected
with the MQTT server and then calls the mqttAsyncClient.subscribe method with
topic_for_led01 as the argument that specifies the topic filter to subscribe to 0 for the
argument that specifies the desired QoS level, null for the userContext argument, and
another anonymous class that implements the IMqttActionListener interface as the
value for the callback argument. As happened with the connect method, the subscribe
method requires the callback argument of the
org.eclipse.paho.client.mqttv3.IMqttActionListener type. The anonymous class
provides implementations for the previously explained two methods required by the
IMqttActionListener interface: onSuccess and onFailure.

The code in the onSuccess method prints a message indicating that the client has
subscribed to the topic filter and the granted QoS level. The
asyncActionToken.getGrantedQoS() method returns an array of int that provides the
QoS level that the MQTT server has granted for each of the topic filter subscription
requests.

In this case, we pass an anonymous class as an argument to both the
connect and subscribe methods because we want all the code to be
included within the main method. In other cases, we can create a class that
implements the required interface. It is also possible to take advantage of
the tokens to use the same code base to process successful and failed
executions for different asynchronous operations with the same code base.
The token indicates the specific asynchronous operation that has fired the
method. In the sample code we have written, we didn't check the tokens
because we used a specific anonymous class for each asynchronous
operation.

Interacting with Sensors in Java

[155]

Make sure the Mosquitto server or any other MQTT server you might want to use for this
example is running. Use your favorite Java IDE to run the example on any computer, or
build a .jar file with all the dependencies included and launch it on any computer or
device that you want to use as the MQTT client, with a command similar to the following
line. In case you don't run the example on the same computer on which you are running the
MQTT server, remember to change the value for the mqttServerHost string in the main
method of the Main class. You must also copy the certificate files and the .jar file to the
device. The next line uses Sensors01-0.0.1-SNAPSHOT.jar as the jar file for the previous
example:

java -jarSensors01-0.0.1-SNAPSHOT.jar

In case you see a stack trace with a javax.net.ssl.SSLHandshakeException exception
as a result, make sure you check that the MQTT server hostname or IP matches the value
specified for the Common Name attribute when you generated the server certificate file
named server.crt. Make sure that you check the IP address for the MQTT server
(Mosquitto server) and generate the server certificate file and key again with the
appropriate IP address specified for Common Name, as explained in Chapter 2, Securing an
MQTT Mosquitto Server, in case you are working with the self-signed certificates we
generated in the aforementioned chapter.

Now, follow these steps to use the MQTT.fx GUI utility to publish two messages to the
commands/lights/led01 topic:

Launch MQTT.fx and establish a connection with the MQTT server by following1.
the steps we learned in Chapter 2, Securing an MQTT Mosquitto Server.
Click Publish and enter commands/lights/led01 in the dropdown on the left-2.
hand side of the Publish button.
Click QoS 0 on the right-hand side of the Publish button.3.
Enter the following text in the textbox below the Publish button: TURN ON. Then,4.
click the Publish button. MQTT.fx will publish the entered text to the specified
topic.
Enter the following text in the textbox below the Publish button: TURN OFF.5.
Then, click the Publish button. MQTT.fx will publish the entered text to the
specified topic.

Interacting with Sensors in Java

[156]

In case you don't want to work with the MQTT.fx utility, you can run two mosquitto_pub
commands to generate MQTT clients that publish messages to the topic. You just need to
open another Terminal in macOS or Linux, or another Command Prompt in Windows, go to
the directory in which Mosquitto is installed, and run the following commands. Replace
localhost with the IP for the MQTT server. Remember to replace ca.crt,
device001.crt, and device001.key with the full path to these files created in the
java_certificates directory:

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key-t test/drone01 -m 'TURN ON' -q 0--tls-
version tlsv1.2 -d

mosquitto_pub -h localhost -V mqttv311 -p 8883 --cafile ca.crt --cert
device001.crt --key device001.key-t test/drone01 -m 'TURN OFF' -q 0--tls-
version tlsv1.2 -d

Go to the device and window in which you executed the Java application. You will see the
following output:

Successfully connected
Subscribed to the commands/lights/led01 topic with QoS: 0
Topic: commands/lights/led01. Payload: TURN ON
Topic: commands/lights/led01. Payload: TURN OFF

The Java application successfully established a secure and encrypted connection with the
MQTT server and became a subscriber to the commands/lights/led01 topic with a
granted QoS level of 0. The program displayed the two messages it has received in the
commands/lights/led01 topic.

Press Ctrl+C to stop the execution of the program or use the appropriate command in case
you are running the Java application in your favorite IDE. The generated MQTT client will
close the connection with the MQTT server.

Processing commands that interact with
sensors in Java
Now that you have understood how to work with the Paho Java Client, its non-blocking
API, and its callbacks, we can develop the Java application that will process the commands
that interact with sensors, based on the previously explained requirements.

Interacting with Sensors in Java

[157]

We can start another Maven project in our favorite IDE and make the same edits to the
pom.xml file that we did in our previous example to use the Paho Java Client with the
Bouncy Castle libraries. In addition, we must include the previously coded
SecurityHelper class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the Java02 folder.

Now, we will create a new class named SensorsManager that implements the previously
analyzed MqttCallback interface, specifically the
org.eclipse.paho.client.mqttv3.MqttCallback interface. The class will process the
messages that the MQTT client receives, provide many methods that will process the
commands included in these messages, and simulate the retrieval of values from two
sensors.

The SensorsManager class will provide the following methods:

publishMessage: This method publishes the payload specified as a string to the
indicated topic with a QoS level and a retained flag value. The method uses an
UTF-8 encoding to transform the string into a bytes array, uses the asynchronous
client to publish the message, and passes the received IMqttActionListener
instance as the callback for events related to the publication of the message. We
will use this method to make it easier to publish messages to different topics with
diverse QoS levels.
publishProcessedCommandMessage: This method publishes a message to the
appropriate topic, indicating that a command has been successfully processed.
The method ends up calling the previously explained publishMessage method
to publish the message.
messageArrived: When a message has arrived from the MQTT server, this
method will be executed. This method processes the TURN ON and TURN OFF
commands, and based on these commands and the topics in which the
commands were received, the code changes the value of the flags that determine
whether the sensors must publish data every 1 second or not.
loop: This method checks the Boolean values for the flags that determine
whether the sensors must publish data every 1 second or not. In order to keep the
example simple, the code generates pseudo-random values to simulate that it is
retrieving data from the sensors and, based on the values of the flags, publishes
messages with the data for the sensors in the different topics that we described
when we analyzed the requirements for the application.

Interacting with Sensors in Java

[158]

We will split the code for the SensorsManager class into many code snippets to make it
easier to understand each code section. The following lines declare all the necessary
imports. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the
Java02/src/SensorsManager.java file:

 package com.packt.mqttessentials.Sensors02;

 import org.eclipse.paho.client.mqttv3.IMqttActionListener;
 import org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;
 import org.eclipse.paho.client.mqttv3.MqttAsyncClient;
 import org.eclipse.paho.client.mqttv3.MqttCallback;
 import org.eclipse.paho.client.mqttv3.MqttException;
 import org.eclipse.paho.client.mqttv3.MqttMessage;

 import java.io.UnsupportedEncodingException;
 import java.util.concurrent.ThreadLocalRandom;

The following lines start the declaration of the SensorsManager class. The code declares
the many string constants, private fields, and the two volatile Boolean flags that indicate
whether the sunlight sensor is turned on and whether the earth humidity sensor is turned
on: isSunlightSensorTurnedOn and isEarthHumiditySensorTurnedOn. The code also
declares the constructor for this class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the
Java01/src/SensorsManager.java file:

 public class SensorsManager implements MqttCallback {
 private static final String SENSOR_EARTH_HUMIDITY = "earthhumidity";
 private static final String SENSOR_SUNLIGHT = "sunlight";
 private static final String TOPIC_SEPARATOR = "/";
 private final String boardCommandsTopic;
 private final String boardDataBaseTopic;
 private final String encoding;
 private final MqttAsyncClient asyncClient;
 private final String earthHumidityTopic;
 private final String visibleLightTopic;
 private final String infraredLightTopic;
 private final String ultraVioletIndexTopic;
 private volatile boolean isSunlightSensorTurnedOn = false;
 private volatile boolean isEarthHumiditySensorTurnedOn = false;

 public SensorsManager(final MqttAsyncClient asyncClient,
 final String boardCommandsTopic, final String boardDataBaseTopic,
 final String encoding) {
 this.boardCommandsTopic = boardCommandsTopic;
 this.boardDataBaseTopic = boardDataBaseTopic;

Interacting with Sensors in Java

[159]

 this.encoding = encoding;
 this.asyncClient = asyncClient;
 // Build and save the topic names that we will use to
 // publish the data from the sensors
 this.earthHumidityTopic =
 this.boardDataBaseTopic.concat(SENSOR_EARTH_HUMIDITY);
 final String sunlightDataBaseTopic =
 boardDataBaseTopic.concat(SENSOR_SUNLIGHT);
 this.visibleLightTopic = String.join(TOPIC_SEPARATOR,
 sunlightDataBaseTopic, "visiblelight");
 this.infraredLightTopic = String.join(TOPIC_SEPARATOR,
 sunlightDataBaseTopic, "ir");
 this.ultraVioletIndexTopic = String.join(TOPIC_SEPARATOR,
 sunlightDataBaseTopic, "uv");
 }

The constructor receives the asynchronous client (asyncClient), the topic that we will use
for the commands (boardCommandsTopic), the prefix for the topic that we will use to
publish the data for the sensors (boardDataBaseTopic), and the encoding we are using for
strings in the payload (encoding). The constructor saves all these received arguments in
fields with the same names. Then, the constructor builds and saves the topic names that we
will use to publish the data from the sensors.

The following lines declare the publishMessage and
publishProcessedCommandMessage methods within the SensorsManager class. The
code file for the sample is included in the mqtt_essentials_gaston_hillar_04 folder,
in the Java02/src/SensorsManager.java file:

 public IMqttDeliveryToken publishMessage(final String topic,
 final String textForMessage, IMqttActionListener actionListener,
 final int qos, final boolean retained) {
 byte[] bytesForPayload;
 try {
 bytesForPayload = textForMessage.getBytes(this.encoding);
 return asyncClient.publish(topic, bytesForPayload, qos,
 retained, null, actionListener);
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 return null;
 } catch (MqttException e) {
 e.printStackTrace();
 return null;
 }
 }

Interacting with Sensors in Java

[160]

 public void publishProcessedCommandMessage(final String sensorName,
 final String command) {
 final String topic = String.format("%s/%s", boardCommandsTopic,
 sensorName);
 final String textForMessage = String.format(
 "%s successfully processed command: %s", sensorName, command);
 publishMessage(topic, textForMessage, null, 0, false);
 }

The following lines declare the three methods required by the MqttCallback interface
within the SensorsManager class: connectionLost, deliveryComplete and
messageArrived. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the
Java02/src/SensorsManager.java file:

 @Override
 public void connectionLost(Throwable cause) {
 cause.printStackTrace();
 }

 @Override
 public void deliveryComplete(IMqttDeliveryToken token) {
 }

 @Override
 public void messageArrived(String topic, MqttMessage message) throws
 Exception {
 String messageText = new String(message.getPayload(), encoding);
 System.out.println(
 String.format("Topic: %s. Payload: %s",
 topic,
 messageText));
 // A message has arrived from the MQTT broker
 // The MQTT broker doesn't send back
 // an acknowledgment to the server until
 // this method returns cleanly
 if (!topic.startsWith(boardCommandsTopic)) {
 // The topic for the arrived message doesn't start with boardTopic
 return;
 }
 final boolean isTurnOnMessage = messageText.equals("TURN ON");
 final boolean isTurnOffMessage = messageText.equals("TURN OFF");
 boolean isInvalidCommand = false;
 boolean isInvalidTopic = false;
 // Extract the sensor name from the topic
 String sensorName = topic.replaceFirst
 (boardCommandsTopic, "").replaceFirst(TOPIC_SEPARATOR, "");

Interacting with Sensors in Java

[161]

 switch (sensorName) {
 case SENSOR_SUNLIGHT:
 if (isTurnOnMessage) {
 isSunlightSensorTurnedOn = true;
 } else if (isTurnOffMessage) {
 isSunlightSensorTurnedOn = false;
 } else {
 isInvalidCommand = true;
 }
 break;
 case SENSOR_EARTH_HUMIDITY:
 if (isTurnOnMessage) {
 isEarthHumiditySensorTurnedOn = true;
 } else if (isTurnOffMessage) {
 isEarthHumiditySensorTurnedOn = false;
 } else {
 isInvalidCommand = true;
 }
 break;
 default:
 isInvalidTopic = true;
 }
 if (!isInvalidCommand && !isInvalidTopic) {
 publishProcessedCommandMessage(sensorName, messageText);
 }
 }

The following lines declare the loop method and finish the declaration of the
SensorsManager class. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_04 folder, in the
Java02/src/SensorsManager.java file:

 public void loop() {
 if (isEarthHumiditySensorTurnedOn) {
 // Retrieve the humidity level from the sensor
 // In this case, we just generate a random number
 final int humidityLevel =
 ThreadLocalRandom.current().nextInt(1, 101);
 // Publish the message to the appropriate topic
 publishMessage(earthHumidityTopic,
 String.format("%d %%", humidityLevel), null, 0, false);
 }

Interacting with Sensors in Java

[162]

 if (isSunlightSensorTurnedOn) {
 // Retrieve the visible light level from the sensor
 // In this case, we just generate a random number
 final int visibleLight =
 ThreadLocalRandom.current().nextInt(201, 301);
 // Publish the message to the appropriate topic
 publishMessage(visibleLightTopic,
 String.format("%d lm", visibleLight), null, 0, false);

 // Retrieve the infrared light level from the sensor
 // In this case, we just generate a random number
 final int infraredLight =
 ThreadLocalRandom.current().nextInt(251, 281);
 // Publish the message to the appropriate topic
 publishMessage(infraredLightTopic,
 String.format("%d lm", infraredLight), null, 0, false);

 // Retrieve the ultraviolet (UV) index from the sensor
 // In this case, we just generate a random number
 final int ultraVioletIndex =
 ThreadLocalRandom.current().nextInt(0, 16);
 // Publish the message to the appropriate topic
 publishMessage(ultraVioletIndexTopic,
 String.format("%d UV Index", ultraVioletIndex), null, 0, false);
 }
 }
 }

Working with last will and testament in Java
Now, we will take advantage of the last will and testament feature. We will create the main
class named Main that uses the asynchronous API of the Paho Java Client, the previously
coded SecurityHelper class to establish an encrypted connection with an MQTT server,
and the SensorsManager class to process the received messages with commands. The code
will configure a message to be sent as the last will when the connection is lost. In addition,
the Main class will call the loop method for a SensorsManager instance to publish
messages with data retrieved from the sensors when they are turned on with the
appropriate commands.

Interacting with Sensors in Java

[163]

We will split the code for the Main class into many code snippets to make it easier to
understand each code section. The following lines declare all the necessary imports. The
code file for the sample is included in the mqtt_essentials_gaston_hillar_04 folder,
in the Java02/src/Main.java file:

 package com.packt.mqttessentials.Sensors02;

 import java.io.UnsupportedEncodingException;

 import javax.net.ssl.SSLSocketFactory;

 import org.eclipse.paho.client.mqttv3.IMqttActionListener;
 import org.eclipse.paho.client.mqttv3.IMqttToken;
 import org.eclipse.paho.client.mqttv3.MqttAsyncClient;
 import org.eclipse.paho.client.mqttv3.MqttConnectOptions;
 import org.eclipse.paho.client.mqttv3.MqttException;
 import org.eclipse.paho.client.mqttv3.persist.
 MqttDefaultFilePersistence;

The following lines start the declaration of the Main class and show the first lines of the
static main method. You have to replace the value for the mqttServerHost with the IP
address for the Mosquitto server or any other MQTT server you might decide to use. The
code file for the sample is included in the mqtt_essentials_gaston_hillar_04 folder,
in the Java02/src/Main.java file:

 public class Main {
 private final static String BOARD_NAME = "location001";
 private final static String ENCODING_FOR_PAYLOAD = "UTF-8";

 public static void main(String[] args) {
 final String boardCommandsTopic =
 String.format("commands/boards/%s", BOARD_NAME);
 final String boardDataBaseTopic =
 String.format("data/boards/%s/", BOARD_NAME);
 final String boardStatusTopic =
 String.format("status/boards/%s", BOARD_NAME);
 final String commandsTopicFilter =
 String.format("%s/+", boardCommandsTopic);

 try {
 final MqttConnectOptions mqttConnectOptions =
 new MqttConnectOptions();
 mqttConnectOptions.setMqttVersion(
 MqttConnectOptions.MQTT_VERSION_3_1_1);
 mqttConnectOptions.setKeepAliveInterval(
 MqttConnectOptions.KEEP_ALIVE_INTERVAL_DEFAULT);

Interacting with Sensors in Java

[164]

 // Last will message configuration
 final String lastWillMessageText = "OFFLINE";
 byte[] bytesForPayload;
 try {
 bytesForPayload =
 lastWillMessageText.getBytes(ENCODING_FOR_PAYLOAD);
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 return;
 }
 mqttConnectOptions.setWill(boardStatusTopic, bytesForPayload,
 2, true);

 MqttDefaultFilePersistence filePersistence =
 new MqttDefaultFilePersistence();

 // Replace localhost with the IP for the Mosquitto server
 // or other MQTT server
 final String mqttServerHost = "localhost";

 final int mqttServerPort = 8883;
 final String mqttServerURI = String.format(
 "ssl://%s:%d",
 mqttServerHost,
 mqttServerPort);
 // In case you don't need security:
 // final int mqttServerPort = 8883;
 // final String mqttServerURI = String.format(
 // "ftp://%s:%d",
 // mqttServerHost,
 // mqttServerPort);

 // We can specify our own client id
 // instead of calling the generateClientId method
 //final String mqttClientId = MqttAsyncClient.generateClientId();
 final String mqttClientId = BOARD_NAME;
 MqttAsyncClient mqttAsyncClient = new MqttAsyncClient(
 mqttServerURI,
 mqttClientId,
 filePersistence);

Interacting with Sensors in Java

[165]

First, the code builds many strings with the topics that we will use to subscribe and publish
messages. Then, the code creates an instance of the
org.eclipse.paho.client.mqttv3.MqttConnectOptions class named
mqttConnectOptions, which stores the values for the different options we can configure
when we want to connect with an MQTT broker. If we used the default parameters, we
would work with MQTT version 3.1. We want to work with MQTT version 3.1.1, and
therefore, we specify MqttConnectOptions.MQTT_VERSION_3_1_1 as an argument for
mqttConnectOption.setMqttVersion.

Then, the code configures the last will message by calling the
mqttConnectOptions.setWill method with the topic, the bytes for the payload, the QoS
level set to 2, and true as the value for the retained flag. This way, if the client connection is
interrupted or the Java application stops running, the configured last will message will be
sent to the specified topic indicating that the board is offline.

The next line creates an instance of the
org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence class
named filePersistence. In this case, we want to use file persistence to store the
messages because we will publish some messages with a QoS level of 2. We use the default
directory for the file that persists the messages. You can explore the different configurations
based on your needs.

Then, the code declares the values for the variables that specify the MQTT server host name
or IP, mqttServerHost, the MQTT server port, mqttServerPort, and the MQTT server
URI, mqttServerURI, built with the values of the other two variables. The next line sets the
board name as the value for the mqttClientId variable. This way, we specify a fixed value
for our client ID.

The next line creates an instance of the
org.eclipse.paho.client.mqttv3.MqttAsyncClient class named mqttAsyncClient
with the MQTT server URI, the previously specified client ID, and the file persistence
option as the arguments. This instance will be the entry point for our MQTT asynchronous
client.

Interacting with Sensors in Java

[166]

The following lines continue the declaration of the public static main method. You have to
replace the value, /Users/gaston/certificates, in the certificatesPath string with
the path to the java_certificates directory you created. The code file for the sample is
included in the mqtt_essentials_gaston_hillar_04 folder, in the
Java02/src/Main.java file:

 // Replace /Users/gaston/certificates with the path
 // in which you saved the certificate authority file,
 // the client certificate file and the client key
 final String certificatesPath = "/Users/gaston/certificates";
 final String caCertificateFileName =
 String.join(java.io.File.separator, certificatesPath, "ca.crt");
 final String clientCertificateFileName =
 String.join(java.io.File.separator,
 certificatesPath, "device001.crt");
 final String clientKeyFileName =
 String.join(java.io.File.separator,
 certificatesPath, "device001.key");
 // In case you don't need security,
 // you don't need to create an SSLSocketFactory instance
 SSLSocketFactory socketFactory;
 try {
 socketFactory = SecurityHelper.createSocketFactory(
 caCertificateFileName,
 clientCertificateFileName,
 clientKeyFileName);
 } catch (Exception e1) {
 e1.printStackTrace();
 return;
 }
 // In case you don't need security, you don't have to call
 // the setSocketFactory method
 mqttConnectOptions.setSocketFactory(socketFactory);

 SensorsManager sensorsManager =
 new SensorsManager(mqttAsyncClient,
 boardCommandsTopic, boardDataBaseTopic, ENCODING_FOR_PAYLOAD);
 mqttAsyncClient.setCallback(sensorsManager);

The first lines of code are similar to the code we analyzed in the previous example. The last
lines create an instance of the SensorsManager class named sensorsManager and then
call the mqttAsyncClient.setCallback method with this instance as an argument.

Interacting with Sensors in Java

[167]

The following lines end the public static main method and the Main class. The code file for
the sample is included in the mqtt_essentials_gaston_hillar_04 folder, in the
Java02/src/Main.java file:

 // In this case, we don't use the token
 IMqttToken mqttConnectToken = mqttAsyncClient.connect(
 mqttConnectOptions,
 null,
 new IMqttActionListener() {
 @Override
 public void onSuccess(IMqttToken asyncActionToken) {
 System.out.println(
 String.format(
 "Successfully connected"));
 try {
 // In this case, we don't use the token
 IMqttToken subscribeToken = mqttAsyncClient.subscribe(
 commandsTopicFilter,
 2,
 null,
 new IMqttActionListener() {
 @Override
 public void onSuccess(IMqttToken asyncActionToken) {
 System.out.println(
 String.format(
 "Subscribed to the %s topic with QoS: %d",
 asyncActionToken.getTopics()[0],
 asyncActionToken.getGrantedQos()[0]));
 // Publish a retained message indicating
 // the board is online
 sensorsManager.publishMessage(boardStatusTopic,
 "ONLINE", null, 2, true);
 }
 @Override
 public void onFailure(IMqttToken asyncActionToken,
 Throwable exception) {
 exception.printStackTrace();
 }
 });
 } catch (MqttException e) {
 e.printStackTrace();
 }
 }

Interacting with Sensors in Java

[168]

 @Override
 public void onFailure(IMqttToken asyncActionToken,
 Throwable exception) {
 // This method is fired when an operation failed
 exception.printStackTrace();
 }
 });
 while (true) {
 sensorsManager.loop();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.err.format(
 "Sleep interruption: %s",
 e.toString());
 }
 }
 } catch (MqttException e) {
 e.printStackTrace();
 }
 }
 }

The code calls the mqttAsyncClient.connect method with mqttConnectOptions and
an anonymous class that implements the IMqttActionListener interface as the value for
the callback argument. The connect method requires the callback argument of the
org.eclipse.paho.client.mqttv3.IMqttActionListener type. The anonymous class
provides implementations for the following two methods required by the
IMqttActionListener interface: onSuccess and onFailure.

The onSuccess method prints a message indicating that the client has successfully
connected with the MQTT server and then calls the mqttAsyncClient.subscribe
method with commandsTopicFilter as the argument, which specifies the topic filter to
subscribe to, 2 for the argument that specifies the desired QoS level, null for the
userContext argument, and another anonymous class that implements the
IMqttActionListener interface as the value for the callback argument. The anonymous
class provides implementations for the previously explained two methods required by the
IMqttActionListener interface: onSuccess and onFailure.

Interacting with Sensors in Java

[169]

The code in the onSuccess method prints a message indicating that the client has
subscribed to the topic filter and the granted QoS level. Then, the code calls the
sensorsManager.publish method to publish a retained message, indicating that the
board is online with a QoS level of 2.

After the code calls the mqttAsyncClient.connect method, the method runs a while
loop forever. The loop calls the sensorsManager.loop method to check the values for the
flags that determine whether the method must publish the values for the different sensors
to the appropriate topics or not. Then, the loop calls the Thread.sleep method to make the
thread sleep for 1 second.

Publishing messages with commands to
target sensors
Make sure the Mosquitto server or any other MQTT server you might want to use for this
example is running. Use your favorite Java IDE to run the example in any computer or
build a .jar file with all the dependencies included and launch it in any computer or
device that you want to use as the MQTT client with a command similar to the following
line. In case you don't run the example in the same computer in which you are running the
MQTT server, remember to change the value for the mqttServerHost string in the main
method of the Main class. You must also copy the certificate files and the .jar file to the
device. The next line uses Sensors02-0.0.1-SNAPSHOT.jar as the JAR file for the
previous example:

java -jar Sensors02-0.0.1-SNAPSHOT.jar

Interacting with Sensors in Java

[170]

Now, follow these steps to use the MQTT.fx GUI utility to subscribe to many topics and
publish messages with commands to two topics to control the sensors.

Launch MQTT.fx and establish a connection with the MQTT server by following1.
the steps you learned in Chapter 2, Securing an MQTT Mosquitto Server.
Click Subscribe, click QoS 2,and enter status/boards/location001 in the2.
dropdown on the left-hand side of the Subscribe button. Then, click the
Subscribe button. MQTT.fx will display a new panel on the left-hand side with
the topic filter to which we have subscribed with QoS level 2 and a message with
ONLINE as a payload. We subscribed after the code that published this message
was executed. However, the message appears in our subscription because it was
published with the retained flag set to true. The following screenshot shows the
message displayed in MQTT.fx after we subscribe to the topic:

Enter data/boards/location001/# in the dropdown on the left-hand side of3.
the Subscribe button. Then, click QoS 0 and the Subscribe button. MQTT.fx will
display a new panel on the left-hand side with the topic filter to which we have
subscribed with QoS level 0. No messages will appear that match this topic filter
because the Java application has the two sensors turned off and they aren't
publishing data.

Interacting with Sensors in Java

[171]

Click Publish and enter commands/boards/location001/sunlight in the4.
dropdown on the left-hand side of the Publish button.
Click QoS 2 on the right-hand side of the Publish button.5.
Enter the following text in the textbox below the Publish button: TURN ON. Then,6.
click the Publish button. MQTT.fx will publish the entered text to the specified
topic. This way, the Java application will turn on the sunlight sensor and it will
start publishing data to the data/boards/location001/sunlight/uv,
data/boards/location001/sunlight/visiblelight, and
data/boards/location001/sunlight/ir topics.
Enter commands/boards/location001/earthhumidity in the dropdown on7.
the left-hand side of the Publish button.
Enter the following text in the textbox below the Publish button: TURN ON. Then,8.
click the Publish button. MQTT.fx will publish the entered text to the specified
topic. This way, the Java application will turn on the sunlight sensor and it will
start publishing data to the data/boards/location001/earthhumidity topic.
Click Subscribe and you will see many messages that match the9.
data/boards/location001/# topic filter. The following screenshot shows
many of the messages received that match the topic filter after we turned on the
sensors through commands in messages:

Interacting with Sensors in Java

[172]

Click Publish and enter commands/boards/location001/sunlight in the10.
dropdown on the left-hand side of the Publish button.
Enter the following text in the textbox below the Publish button: TURN OFF.11.
Then, click the Publish button. MQTT.fx will publish the entered text to the
specified topic. This way, the Java application will turn off the sunlight sensor
and it will stop publishing data to the
data/boards/location001/sunlight/uv,
data/boards/location001/sunlight/visiblelight, and
data/boards/location001/sunlight/ir topics.
Click Subscribe and you will see that only the messages for the12.
data/boards/location001/earthhumidity topic are arriving and matching
the data/boards/location001/# topic filter. The following screenshot shows
many of the messages received that match the topic filter after we turned off the
sunlight sensor through a command in a message:

Interacting with Sensors in Java

[173]

Go to the device and the window in which you executed the Java application. You will see
the following output:

Successfully connected
Subscribed to the commands/boards/location001/+ topic with QoS: 2
Topic: commands/boards/location001/sunlight. Payload: TURN ON
Topic: commands/boards/location001/sunlight. Payload: sunlight successfully
processed command: TURN ON
Topic: commands/boards/location001/earthhumidity. Payload: TURN ON
Topic: commands/boards/location001/earthhumidity. Payload: earthhumidity
successfully processed command: TURN ON
Topic: commands/boards/location001/sunlight. Payload: TURN OFF
Topic: commands/boards/location001/sunlight. Payload: sunlight successfully
processed command: TURN OFF

Press Ctrl+C to stop the execution of the program or use the appropriate command in case
you are running the Java application in your favorite IDE. The generated MQTT client will
close the connection with the MQTT server and the configured last will message will be sent
to the status/boards/location001 topic.

Go back to MQTT.fx and click Subscribe. You will see that a message with OFFLINE as the
payload has arrived to the status/boards/location001 topic. The following screenshot
shows the configured last will message that has arrived in MQTT.fx:

Interacting with Sensors in Java

[174]

Test your knowledge
The Eclipse Paho Java Client provides:1.

Only a blocking (synchronous) API.1.
Only a non-blocking (asynchronous) API.2.
Both a blocking (synchronous) and a non-blocking (asynchronous) API.3.

In the Paho Java API, an instance of MqttAsyncClient represents:2.
The synchronous MQTT client.1.
The asynchronous MQTT client.2.
The asynchronous MQTT message.3.

After the MqttAsyncClient instance establishes a connection with the MQTT3.
server, which of the following methods declared in the IMqttActionListener
interface will be called?

onSuccess.1.
connectCallback.2.
onConnect.3.

After the MqttAsyncClient instance receives a message from one of the topic4.
filters to which it has subscribed, which of the following methods declared in the
MqttCallback interface will be called?

onSuccess.1.
onMessage.2.
messageArrived.3.

Which of the following methods of an MqttConnectOptions instance allows5.
you to set a last will message?

setLastWillMessage.1.
setLastWill.2.
setWill.3.

Interacting with Sensors in Java

[175]

Summary
In this chapter, we analyzed the requirements to control sensors wired to different IoT
boards with MQTT messages. We defined the topics that we would use and the commands
that would be part of the messages' payloads to control sensors. We decided to take
advantage of the last will and testament feature of MQTT. Then, we worked with the
Eclipse Paho Java Client to write Java code that connected a non-blocking (asynchronous)
MQTT client to the MQTT server.

We created a security helper class to establish a TLS secured connection and we worked
with asynchronous notifications and callbacks in Java. We subscribed to topics, understood
how notification events worked, and we wrote code that processed commands that
interacted with sensors.

Finally, we worked with a GUI utility to interact with our Java application through MQTT
messages. We were able to turn the sensors on and off and retrieve data from them.

Now that we have understood how to use Java to work with MQTT, we will use MQTT
over WebSockets to control home automation with an HTML 5 web page, JavaScript, and
Node.js, which is what we are going to discuss in the next chapter.

5
Controlling Home Automation in

JavaScript
In this chapter, we will write JavaScript code to control home automation with MQTT
messages. We will write code that will be able to run on web browsers. In addition, we will
use Node.js to write code that runs on IoT boards, receives MQTT messages and controls
devices wired to the boards. We will:

Understand the requirements to control home automation with MQTT and
WebSockets
Define the topics and commands to control home automation
Enable WebSockets for a Mosquitto server
Understand the Eclipse Paho JavaScript asynchronous client
Create an HTML 5 web page to control LEDs
Publish messages to target remote devices in JavaScript
Process the received messages in JavaScript
Work with WebSockets to connect to the MQTT server
Subscribe to topics in JavaScript
Process commands that interact with LEDs in Node.js
Run the home automation web application
Debug the home automation web application
Secure MQTT over WebSockets with TLS

Controlling Home Automation in JavaScript

[177]

Understanding the requirements
Now, we want to be able to control home automation in any web browser. Hence, we have
to be able to send and receive MQTT messages in these web browsers. There are no W3C
standards for implementing MQTT support in web browsers. No major web browser has
implemented direct MQTT support. Luckily, MQTT over WebSockets makes it possible for
us to encapsulate MQTT messages on WebSockets and use any modern web browser that
supports WebSockets as a client for an MQTT server that also provides support for
WebSockets.

Mosquitto provides support for MQTT over WebSockets. However, we
must enable this support by making changes in the configuration file. In
case you don't want to work with Mosquitto, you must make sure that the
MQTT server you use provides support for MQTT over WebSockets to
work with this example.

First, we will create a web page with HTML 5 and JavaScript code to generate an MQTT
client that will act as a publisher and subscriber. We will connect a JavaScript MQTT client
to the MQTT server via WebSockets, and we will generate commands to control lights with
MQTT messages.

These commands will allow us to change the colors of many lights wired to different IoT
boards that will run JavaScript Node.js code to subscribe to topics and process the messages
with the commands. In this case, we will connect a Node.js MQTT client to the MQTT
server via WebSockets, and we will process the received commands. We want our
JavaScript code to run on many platforms because we will use the same code base to change
the colors of lights that use the following IoT boards. It is possible to install and run Node.js
in all of these boards:

Raspberry Pi 3
Intel Edison
Intel Joule 570x
Intel Joule 550x

Each platform will work with different kinds of lights and other elements that we will
control as part of our home automation solution. However, we will focus on the basic
features that will allow us to change the colors of LEDs (Light Emitting Diodes) to keep
our example simple and to stay concentrated on MQTT over WebSockets. Then, we will be
able to use this project as a baseline for other solutions that require us to run code on an IoT
board that runs JavaScript Node.js code, has to connect to an MQTT server via WebSockets,
and process commands.

Controlling Home Automation in JavaScript

[178]

The code that runs on the boards that have LEDs wired to them must be able to process
commands received in messages in a specific topic. We will use JSON strings in the
payloads.

The client application, that is, the web page, must allow us to select the desired color for
different LEDs that might be connected to different boards. The client application doesn't
need to know the board to which each LED is wired. The JavaScript code in the web page
will publish MQTT messages with JSON strings to the topic for each LED. The client
application must display the results of executing each command. Each IoT board must
publish a message to a specific topic whenever a command is successfully executed.

Defining the topics and commands to
control home automation
We will use the following topic name to publish the commands for an LED:
home/control/leds/lednumber, where lednumber must be replaced with a unique
numeric ID assigned to an LED wired to a board. For example, if we assign 1 as the ID for
an LED that is wired to an Intel Joule 570x board, we will have to publish commands to the
home/control/leds/1 topic and the code that runs on this board will subscribe to this
topic to receive messages with commands and react to them.

Note that the topic name doesn't include details about the board and just focuses on the ID
assigned to the LED. This is a specific requirement because it is necessary to make it
possible to change the board to which the LEDs are wired without requiring edits in the
client code. The client code doesn't have to know anything about the boards. Hence, the
code that runs on the IoT boards must subscribe to all the topics for the different LEDs that
they have wired. Of course, everything we have learned so far about MQTT, that is, topics
and filters, will provide you with many ideas on how to organize the topics. In this case, we
are just using one possible solution that is definitely not the best one but will allow us to
learn how MQTT works over WebSockets. The solution has been chosen for simplicity
rather than scalability.

We will use the following topic name to make the IoT boards publish details about the
successfully executed commands: home/results/leds/lednumber, where lednumber
must be replaced with a unique numeric ID assigned to an LED wired to the board. For
example, if we assign 5 as the ID for an LED that is wired to a Raspberry Pi 3 board, the
client that wants to receive information about successfully processed commands has to
subscribe to the home/results/leds/5 topic.

Controlling Home Automation in JavaScript

[179]

The commands will be sent in a JSON string with a key-value pair. Our example will
support just one command that allows us to set the color for an LED. The key will always be
"Color" and the value will be the desired RGB (short for Red Green Blue) color as a
hexadecimal string.

The following line shows an example of the payload for a command that makes an LED
display the red color:

 {"Color": "FF0000"}

The following line shows an example of the payload for a command that makes an LED
display the blue color:

 {"Color": "0000FF"}

We have all the necessary details to start coding with HTML 5, JavaScript, and Node.js.

Enabling WebSockets for a Mosquitto server
Now, we will configure Mosquitto to work with WebSockets. First, we will work with
WebSockets without TLS, and therefore, the communications between the client and
Mosquitto through WebSockets will be unsecure. This way, any client that knows the host
name and port will be able to establish a communication with the Mosquitto server.

In case you are running the Mosquitto server in a Terminal window in macOS or Linux,
press Ctrl+C to stop it. In Windows, stop the appropriate service.

Go to the Mosquitto installation directory and open the mosquitto.conf configuration
file. In Chapter 2, Securing an MQTT Mosquitto Server, we learned that it is a good practice
to make a backup copy of the existing mosquitto.conf configuration file before making
changes to it. This way, we can easily roll back to the previous configuration if something
goes wrong.

In macOS, Linux, or Windows, add the following lines at the end of the configuration file:

 listener 9001 0.0.0.0
 protocol websockets

Controlling Home Automation in JavaScript

[180]

We specified the 9001 value for the listener option to make Mosquitto listen for
incoming network connections on port 9001. This port is a very common port number for
MQTT over WebSockets.

The protocol option is the next line after we defined the new listener and specified
websockets as the desired protocol to use on port 9001. This way, we enable Mosquitto's
support for MQTT over WebSockets on port 9001.

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again
with the same mechanism we learned for Linux, macOS, and Windows in Chapter 1,
Lightweight Messaging with MQTT 3.1.1 and Mosquitto. The Mosquitto server will add
WebSockets support on port 9001 to the previously configured listener that will still work
with MQTT with TLS on port 8883. It is very important to understand that the certificates
we configured for the listener that work on port 8883 do not apply to the WebSockets
listener on port 9001. Each listener has its own TLS configuration. In this case, we aren't
using TLS for WebSockets on port 9001.

Testing WebSockets with the Eclipse Paho
client JavaScript utility
We will use the Eclipse Paho client JavaScript utility to generate a simple MQTT over
WebSockets client on a web browser. We will make this client subscribe to a topic and print
all the messages it receives. Follow the next steps:

Open a web browser in the same computer in which you are running the1.
Mosquitto server and navigate to
http://www.eclipse.org/paho/clients/js/utility.
Enter localhost in Host.2.
 Enter 9001 in Port.3.
Make sure /ws is specified in Path.4.

http://www.eclipse.org/paho/clients/js/utility
http://www.eclipse.org/paho/clients/js/utility

Controlling Home Automation in JavaScript

[181]

Make sure the TLS checkbox is unchecked. The following screenshot shows the5.
web page with the appropriate values for the connection options:

Click Connect. The web page will display Connected to: localhost:9001/ws as,6.
followed by the Client ID that was automatically generated.
Go to the Subscribe panel. Enter home/control/leds/1 in Topic, below7.
Subscribe.
Select 2 in the QoS dropdown below Subscribe. The following screenshot shows8.
the Subscribe panel with the appropriate values for the subscription options:

Click the Subscribe button.9.
Go to the Publish Message panel. Enter home/control/leds/1 in Topic, below10.
Publish Message.
Select 2 in the QoS dropdown below Publish Message.11.

Controlling Home Automation in JavaScript

[182]

Enter the following text in the Message textbox below Publish Message:12.
{"Color": "FFA0A0"}.
The following screenshot shows the Publish Message panel with the appropriate13.
values for the message publication options:

Click the Publish button. The web page will use MQTT over WebSockets to14.
publish the message. The web page is a subscriber to the topic to which we
published the message, and therefore, we will see the message displayed in the
Last Messages panel at the bottom of the page. The following screenshot shows
the Last Messages panel with the message that has arrived and matched the
subscription's topic filter we specified:

With the configuration changes we have made to the Mosquitto server, any client that uses
MQTT over WebSockets will be able to establish a connection with Mosquitto, and
subscribe and publish to topics. Remember that with the configuration we are using, the
data sent between the MQTT over WebSocket clients and the MQTT server isn't encrypted.

Controlling Home Automation in JavaScript

[183]

Understanding the Eclipse Paho JavaScript
asynchronous client
In Chapter 4, Interacting with Sensors in Java, you learned that the Eclipse Paho project
provides an open source client implementation of MQTT, and you worked with its Java
client. The project also includes a JavaScript client, also known as the Paho JavaScript client
or Eclipse Paho JavaScript client. The web page for the Eclipse Paho project is
http://www.eclipse.org/paho. The web page for the Eclipse Paho JavaScript client is
http://eclipse.org/paho/clients/js. This JavaScript client provides only a non-blocking
(asynchronous) API.

The previous web page uses the Eclipse Paho JavaScript client to allow us to subscribe to
topic filters and publish messages to topics. Now, we will use the same JavaScript client in a
new web page.

In this case, you will download the plain library. Take into account that
you can also consume the plain library and the minified library from
cdnjs.com, as explained in the previously mentioned web page for this
library.

The JavaScript client exposes a single object name in the global namespace. The global
Paho.MQTT module has a single public function named client. This function returns a
Paho.MQTT.client object based on the specified connection details.

The Paho JavaScript API is composed of the following two main objects:

Paho.MQTT.Client: This object represents the asynchronous MQTT over
WebSockets client and allows us to specify the callbacks that notify the
application when specific events occur, such as a new message arriving and a
connection being established with the MQTT server.
Paho.MQTT.Message: This object encapsulates an MQTT message with its topic
and its payload. It is very important to understand that the Paho JavaScript API
uses the destination name to refer to the topic for a message.

http://www.eclipse.org/paho
http://eclipse.org/paho/clients/js

Controlling Home Automation in JavaScript

[184]

Creating an HTML 5 web page to control
LEDs
First, we will create a new HTML 5 file called home_automation.html. The web page will
also use a pure JavaScript color picker: JSColor. The main web page for JSColor is
http://jscolor.com. The following lines show the code for the single web page for our
web application. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_05 folder, in the home_automation.html file:

 <html>
 <head>
 <script src="paho.javascript-1.0.2/mqttws31.js"></script>
 <script src="jscolor-2.0.4/jscolor.js"></script>
 <script src="home_automation.js"></script>
 <title>MQTT over WebSockets Sample</title>
 </head>

 <body>
 <div id="status">Not connected with MQTT Server</div>
 <div id="led-1">

 Select color for LED #1

 <input class="jscolor"
 onchange="APP.HomeAutomation.Manager.updateLed(
 1, this.jscolor)" value="FFFFFF">
 <svg height="100" width="100">
 <circle id="status-circle-led-1" cx="50" cy="50"
 r="40" stroke="black" stroke-width="3" fill="#FFFFFF" />
 </svg>
 <div id="status-message-led-1">
 </div>
 </div>

http://jscolor.com/

Controlling Home Automation in JavaScript

[185]

 <div id="led-2">

 Select color for LED #2

 <input class="jscolor"
 onchange="APP.HomeAutomation.Manager.updateLed(
 2, this.jscolor)" value="FFFFFF">
 <svg height="100" width="100">
 <circle id="status-circle-led-2" cx="50" cy="50"
 r="40" stroke="black" stroke-width="3" fill="#FFFFFF" />
 </svg>
 <div id="status-message-led-2">
 </div>
 </div>

 <div id="led-3">

 Select color for LED #3

 <input class="jscolor"
 onchange="APP.HomeAutomation.Manager.updateLed(
 3, this.jscolor)" value="FFFFFF">
 <svg height="100" width="100">
 <circle id="status-circle-led-3" cx="50" cy="50"
 r="40" stroke="black" stroke-width="3" fill="#FFFFFF" />
 </svg>
 <div id="status-message-led-3">
 </div>
 </div>
 </body>
 </html>
 <script>
 document.addEventListener("DOMContentLoaded", function(event) {
 APP.HomeAutomation.Manager.connect();
 });
 </script>

The first lines load the following three scripts:

mqttws31.js: This is the Paho JavaScript client script file
jscolor.js: This is the JSColor script file
home_automation.js: This is a script file that we will create later and that will
declare the APP.HomeAutomation.Manager object

Controlling Home Automation in JavaScript

[186]

The body section declares a div element whose id is status and will change its text when
a connection is successfully established with the MQTT server.

Then, the code declares three div elements with almost the same code: led-1, led-2, and
led-3. Each div element represents an LED. In this case, we repeated the code and we just
replaced the LED number in the different parts of the code. However, in a real-life
application, you will work with a framework that will allow you to use templates to
generate these pieces of code where just one identifier changes. We want to keep things
simple and use HTML 5 and JavaScript without any additional templates or frameworks.

Each div that represents an LED declares an input element with the jscolor class that
will display the JSColor pure JavaScript color picker. When the user clicks or taps on this
input element, a color picker will be displayed, and a click on a tap or a color will fire the
code specified for onchange. The following line shows the code that runs for the first LED:

 APP.HomeAutomation.Manager.updateLed(1, this.jscolor)

The line calls the APP.HomeAutomation.Manager.updateLed function with the LED
identifier as an argument (1) and a string with the selected color from the color picker
(this.jscolor).

In addition, the div that represents an LED declares an SVG circle whose id is status-
circle-led-, followed by the LED identifier. Whenever the IoT board successfully
updates the color for the LED and publishes a status message, the web page will receive this
message and update the fill color for the circle with the color the user has chosen.

Finally, the div that represents an LED declares a div element whose id is status-
message-led-, followed by the LED identifier. The web page will change its text
indicating the color that has been set for the LED in the IoT board.

The script element at the end of the code uses pure JavaScript to call the
APP.HomeAutomation.Manager.connect function once the page DOM (short for
Document Object Model) is ready for the JavaScript code to execute. In case you are
working with jQuery, you can call this function within a $(document).ready block.
However, we want to keep the example with pure JavaScript.

In order to keep the example simple and focused on the code, we don't
create a CSS file with styles for the different elements and/or classes
declared in the HTML 5 file.

Controlling Home Automation in JavaScript

[187]

Publishing messages to target remote
devices in JavaScript
Now, we will create a new JavaScript file named home_automation.js that will provide
an APP.HomeAutomation.Manager object with many strings, objects, and functions that
we will use to make it easy to establish a connection with MQTT over WebSockets. The
functions will work with the Paho JavaScript client.

We will split the code for the home_automation.js file in many code snippets to make it
easier for us to understand each code section. The following lines start the declaration of the
APP.HomeAutomation.Manager object. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_05 folder, in the home_automation.js file:

 var APP = APP || {};
 APP.HomeAutomation = APP.HomeAutomation || {};
 APP.HomeAutomation.Manager = {
 ledCommandBaseTopic: "home/leds/",
 ledResultBaseTopic: "home/results/leds/",

 // Replace with the host name for the MQTT Server
 host: "localhost",
 // Replace with the port number for MQTT over WebSockets the
 // MQTT Server
 port: 9001,
 clientId: "home-web-" + clientId: "home-web-" +
 Math.random().toString(16).substr(2, 8),

 mqttConnectOptions: {
 timeout: 3,
 // I want to use MQTT Version 3.1.1
 mqttVersion: 4,
 mqttVersionExplicit: true,
 // For TLS security, you just need to set useSSL to True
 // and install the necessary certificates
 // useSSL: true,
 useSSL: false,
 cleanSession: true
 },

Controlling Home Automation in JavaScript

[188]

The previous code declares many variables that we will use within the functions declared in
the APP.HomeAutomation.Manager object. The mqttConnectOptions object specifies
values for the different options that we will use to establish a connection with the MQTT
Server. We will pass this object as an argument when we ask the Paho JavaScript client to
connect with the MQTT server. We specify the necessary values to work with MQTT
version 3.1.1, use a clean session, and work with an unsecured connection.

The following lines declare the updateLed, onConnectionLost, onMessageArrived, and
onMessageDelivered functions within the APP.HomeAutomation.Manager object and
createTrustManagerFactory. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_05 folder, in the home_automation.js file:

 updateLed: function(ledId, jscolor) {
 console.log('I will send ' + jscolor + ' to LED #' +
 ledId);
 var payload = {
 "Color": jscolor.toString()
 };

 payloadString = JSON.stringify(payload);
 message = new Paho.MQTT.Message(payloadString);
 message.destinationName = this.ledCommandBaseTopic + ledId;
 message.qos = 0;

 this.client.send(message);
 },

 onConnectionLost: function(responseObject) {
 if (responseObject.errorCode !== 0)
 console.log("onConnectionLost: " +
 responseObject.errorMessage);
 },

 onMessageArrived: function(message) {
 console.log("Message arrived for topic: " +
 message.destinationName +
 ", with the following payload: " +
 message.payloadString);
 if
 (!message.destinationName.startsWith
 (APP.HomeAutomation.Manager.ledResultBaseTopic)
)
 {
 return;
 }

Controlling Home Automation in JavaScript

[189]

 var ledNumber = message.destinationName.replace(
 APP.HomeAutomation.Manager.ledResultBaseTopic, "");
 var payload = JSON.parse(message.payloadString);
 if (ledNumber && payload.Color) {
 // Update the status for the LED that has successfully
 // changed its color
 var statusLedDiv = document.getElementById(
 "status-message-led-" + ledNumber);
 // statusLedDiv.style.backgroundColor = "#" +
 // payload.Color;
 statusLedDiv.textContent = "LED's color set to #" +
 payload.Color;
 var statusLedCircle = document.getElementById(
 "status-circle-led-" + ledNumber);
 statusLedCircle.style.fill = "#" + payload.Color;
 },

 onMessageDelivered: function(message) {
 },

The updateLed function receives the LED ID and the RGB color as a hexadecimal string in
the ledId and jscolor arguments. The code prints a message to the console log indicating
that it will send the color received in jscolor to the LED identifier received in the ledId
argument. Then, the code creates a new object named payload with "Color" as the key
and the result of jscolor.toString() as the value. The next line calls the
JSON.stringify function with payload as an argument to generate the JSON string
representation of the object and to save it in the payloadString variable.

Then, the code creates a new Paho.MQTT.Message instance named message with
payloadString as an argument. Then, the code sets the value of the
message.destinationName attribute to this.ledCommandBaseTopic, concatenated
with the value received in the ledId argument. The destinationName attribute for a
Paho.MQTT.Message instance specifies the topic to which a message has to be published.

The default value for the QoS level for a message is 0. However, the next line sets the value
for the message.qos attribute to 0 to make it easy to change it if we want to work with
other QoS levels.

Controlling Home Automation in JavaScript

[190]

The connect function that we will analyze later creates a Paho.MQTT.Client instance and
saves it in this.client. Finally, the updateLed function calls the this.client.send
function with the message as an argument to publish the MQTT message. The function runs
with an asynchronous execution, and after the message is successfully delivered, the
Paho.MQTT.Client instance will execute the callback function assigned to the
client.onMessageDelivered attribute in the connect function. Remember that a
delivered message has a different meaning according to the QoS level that we use to publish
a message.

The onConnectionLost function receives a responseObject object as an argument. This
function prints a message to the console log with the value of the
responseObject.errorMessage attribute when the responseObject.errorCode
attribute is not equal to 0.

Processing the received messages in
JavaScript
The onMessageArrived function receives a Paho.MQTT.Message instance in the message
argument. The code prints a message to the console log indicating that a message has
arrived with the destination topic and the payload string included in the
message.destinationName and message.payloadString attributes.

Then, the code checks whether message.destionationName starts with
APP.HomeAutomation.Manager.ledResultBaseTopic to make sure that the message's
destination topic is the one defined for the results of the commands related to LEDs.

In this case, the code only subscribes to the topic filters that we defined for
publishing messages with the results of the commands related to LEDs.
However, we include this code to understand how we should check the
message.destinationName value when we subscribe to multiple topics
that have different goals.

Controlling Home Automation in JavaScript

[191]

Then, the code retrieves the LED ID from the message's topic and saves it in the ledNumber
variable. The code removes APP.HomeAutomation.Manager.ledResultBaseTopic from
message.destinationName to retrieve the LED ID. For example, if the value for
message.destinationName is "home/results/leds/1", the code replaces
"home/results/leds/" with an empty string and the resulting string, "1", is the LED ID.

The next line calls JSON.parse with message.payloadString as an argument to parse
the message's payload string and create an object from the received JSON string. The line
saves the resulting object in the payload variable. In this case, we don't validate the content
of message.payloadString to make sure that it is a valid JSON in order to keep the
example simple.

Then, the code checks whether ledNumber and payload.Color have values. If they have
values, the function uses pure JavaScript to update the status message and the circle's fill
color for the LED that has successfully changed its color. The code retrieves the element
whose ID is equal to "status-message-led" concatenated with ledNumber and saves it
in the statusLedDiv variable. The next line changes the value of the
statusLedDiv.textContent attribute to indicate that the LED's color has been set to the
color indicated in payload.Color. This way, the user will know that the color that he
selected in the corresponding color picker in the web application has been set to the LED.

Finally, the code retrieves the element whose ID is equal to "status-circle-led"
concatenated with ledNumber and saves it in the statusLedCircle variable. The next line
assigns "#" concatenated with payload.Color to the statusLedCircle.style.fill
attribute to use the same color that has been set to the LED as the fill color for the circle that
represents the LED in the web application.

The onMessageDelivered function receives a Paho.MQTT.Message instance in the
message argument. In this case, the function has an empty body because we don't want to
run code when a message has been successfully delivered.

Controlling Home Automation in JavaScript

[192]

Working with WebSockets to connect to the
MQTT server
The following lines declare the onConnectSuccess and connect functions within the
APP.HomeAutomation.Manager object. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_05 folder, in the home_automation.js file:

 onConnectSuccess: function(invocationContext) {
 // Update the status text
 document.getElementById("status").textContent =
 "Connected with the MQTT Server";
 // Now, subscribe to home/results/leds/1,
 // home/results/leds/2 and
 // home/results/leds/3
 var client = invocationContext.invocationContext.client;
 for (var i = 1; i < 4; i++) {
 client.subscribe("home/results/leds/" + i);
 }
 },

 connect: function() {
 this.client = new Paho.MQTT.Client(this.host, this.port,
 this.clientId);
 this.client.onConnectionLost = this.onConnectionLost;
 this.client.onMessageArrived = this.onMessageArrived;
 this.client.onMessageDelivered = this.onMessageDelivered;
 // I want to receive the client in the onSuccess and
 // onFailure callbacks
 // Hence, I save a reference to this.client in
 // invocationContext
 this.mqttConnectOptions.invocationContext = {
 client: this.client
 };
 this.mqttConnectOptions.onSuccess = this.onConnectSuccess;
 this.mqttConnectOptions.onFailure = function (message) {
 console.log("Connection has failed: " + message);
 }
 this.client.connect(this.mqttConnectOptions);
 }
 };

Controlling Home Automation in JavaScript

[193]

The connect function creates a new instance of Paho.MQTT.Client with this.host,
this.port, and this.clientId as the arguments that specify the host, the port number,
and the MQTT client ID. The code saves this new instance in the this.client attribute. It
is very important to understand that creating an instance of Paho.MQTT.Client doesn't
establish a connection with the MQTT server. The Paho.MQTT.Client instance saved in
this.client represents an MQTT over the WebSockets client, and we will use it to
communicate with an MQTT server.

When we declare a function, we pass this function as an argument to another function or
method, or we assign this function to an attribute and then some code calls this function at
some time. This mechanism is known as callback. The name callback is used because the
code calls back a function at some time.

The previous code snippets declared three functions that we will specify as callbacks:

onConnectSuccess: This function will be called when the MQTT client receives
a CONNACK response from the MQTT server, that is, when a connection has been
successfully established with the MQTT server.
onConectionLost: This function will be called when the MQTT client has lost
connection with the MQTT server.
onMessageArrived: This function will be called when the MQTT client receives
a PUBLISH message from the MQTT server. Whenever the MQTT server
publishes a message based on the subscriptions for the client, this function will be
called.
onMessageDelivered: This function will be called when the MQTT client
successfully delivers a message.

Then, the code sets the values for the following attributes that specify the callbacks that we
want to be executed when certain events occur: onConnectionLost, onMessageArrived,
and onMessageDelivered. We want to receive this.client in the onSuccess and
onFailure callbacks, and therefore, the code creates an object with this.client as the
value for the client attribute and assigns this object to the
this.mqttConnectOptions.invocationContext attribute. We will use
this.mqttConnectOptions as an argument for the this.client.connect method and
the value specified for the invocationContext attribute will be sent as an argument
whenever the client calls the callbacks specified for onSuccess and onFailure.

Controlling Home Automation in JavaScript

[194]

The next two lines set the values for the onSuccess and onFailure attributes for
this.mqttConnectOptions. Finally, the code calls the this.client.connect function
with this.mqttConnectOptions as an argument. This way, the code asks the MQTT over
the WebSockets client to establish a connection with the MQTT server specified in
this.mqttConnectOptions.

The connect function runs with an asynchronous execution, and
therefore, it is a non-blocking call.

Subscribing to topics in JavaScript
After a connection has been successfully established with the MQTT server, the specified
callback in the this.mqttConnectOptions.onSuccess attribute will be executed, that is,
the onConnectSuccess function. This function receives an invocationContext object as
an argument. The code can access the object we assigned to
this.mqttConnectOptions.invocationContext in
invocationContext.invocationContext. Thus, the code can retrieve the instance of
Paho.MQTT.Client, which established the connection with the MQTT server in the
invocationContext.invocationContext.client attribute.

First, the onSuccess function updates the status text to indicate that the client is connected
with the MQTT server. Then, the code saves Paho.MQTT.Client, which established the
connection in the client variable. Finally, a for loop calls the client.subscribe method
three times to subscribe to the following topics: home/results/leds/1,
home/results/leds/2, and home/results/leds/3.

The Paho JavaScript client allows us to subscribe to a single topic filter at a
time, and therefore, we have to make three calls to client.subscribe
with the desired topic filter as an argument.

In this case, we don't specify any subscribe options because we will work with the default
QoS level of 0, and we don't want to specify any callbacks for the success or failure of the
subscription. However, we must take into account that it is possible to specify an object
with additional subscription options as a second argument to the subscribe function.

Controlling Home Automation in JavaScript

[195]

Processing commands that interact with
LEDs in Node.js
Now that we have coded the web application that will allow the user to change the colors of
the three LEDs, we will write the Node.js code that will control the LEDs wired to the IoT
board. We can run the Node.js code in any computer or IoT board capable of running
Node.js version 6.9.x or higher.

For this example, we have specified in the requirements that the LEDs would be wired to
the following IoT boards: Intel Edison, Intel Joule 550x, Intel Joule 570x, and Raspberry Pi 3
boards. All of these boards can have Node.js installed and run the sample code. However,
we can also run the code on many other IoT boards.

MQTT.js is an open source library that allows us to work with MQTT over WebSockets and
direct MQTT with Node.js. The library is very easy to use and will allow us to process the
received messages and publish the results by writing just a few lines of code. The web page
for the MQTT.js library is http://www.npmjs.com.

Make sure you have Node.js installed in the computer or IoT board you will use to run this
example. Then, run the following command to install MQTT.js. Note that the code is tested
with MQTT.js 2.3.1. Based on your Node.js installation directory in macOS or Ubuntu
Linux, you might need to run the next command with sudo as a prefix, that is, you might
need to run sudo npm install mqtt. In Windows, you might need to run the next
command in a Command Prompt executed as an Administrator:

npm install mqtt

You will see an output similar to the following lines. However, the results might be
different based on the modules that you may have already installed:

mqtt@2.3.1 node_modules/mqtt
├── inherits@2.0.3
├── reinterval@1.1.0
├── xtend@4.0.1
├── minimist@1.2.0
├── split2@2.1.1 (through2@2.0.3)
├── concat-stream@1.6.0 (typedarray@0.0.6)
├── commist@1.0.0 (leven@1.0.2)
├── readable-stream@2.2.2 (buffer-shims@1.0.0, util-deprecate@1.0.2,
string_decoder@0.10.31, process-nextick-args@1.0.7, isarray@1.0.0, core-
util-is@1.0.2)

http://www.npmjs.com

Controlling Home Automation in JavaScript

[196]

├── mqtt-packet@5.2.1 (bl@1.2.0, process-nextick-args@1.0.7)
├── end-of-stream@1.1.0 (once@1.3.3)
├── pump@1.0.2 (once@1.4.0)
├── websocket-stream@3.3.3 (through2@2.0.3, ws@1.1.2, duplexify@3.5.0)
└── help-me@1.0.1 (callback-stream@1.1.0, through2@2.0.3, glob-
stream@5.3.5)

Now, we will create a new Node.js JavaScript file named leds_control.js. The code file
for the sample is included in the mqtt_essentials_gaston_hillar_05 folder, in the
leds_control.js file:

 var mqtt = require("mqtt")

 // Replace with the host name for the MQTT Server
 var host = "localhost"
 // Replace with the port number for MQTT over WebSockets the
 // MQTT Server
 var port = 9001
 // If we want to work with TLS, we must use the next line
 // because we must use wss:// instead of ws://
 //var client = mqtt.connect("wss://" + host + ":" + port)
 var client = mqtt.connect("ws://" + host + ":" + port)

 var ledCommandBaseTopic = "home/leds/"
 var ledResultBaseTopic = "home/results/leds/"

 client.on("connect", function () {
 console.log("I'm connected to the MQTT server")
 var topicFilters = Array()
 for (i = 1; i < 4; i++) {
 topicFilters.push(ledCommandBaseTopic + i)
 }
 client.subscribe(topicFilters)
 })

 client.on('message', function (topic, message) {
 // message is Buffer
 var payloadString = message.toString()
 console.log("Message arrived for topic: " + topic +
 ", with the following payload: " + payloadString)
 if (!topic.startsWith(ledCommandBaseTopic)) {
 return;
 }

Controlling Home Automation in JavaScript

[197]

 var ledNumber = topic.replace(ledCommandBaseTopic, "")
 var payload = JSON.parse(payloadString)
 if (ledNumber && payload.Color) {
 console.log("I've changed LED #" + ledNumber + " to " +
 payload.Color)
 }
 var resultMessagePayload = {
 "Color": payload.Color
 }
 resultMessagePayloadString = JSON.stringify(resultMessagePayload)

 client.publish(ledResultBaseTopic + ledNumber,
 resultMessagePayloadString)
 })

First, the code requires mqtt and saves the object in the mqtt variable. Then, the code
declares the host and port variables with the host name for the MQTT server and the port
number for MQTT over WebSockets. Then, the code calls the mqtt.connect function with
ws://, followed by the host value, a colon (:), and the port number. If we want to connect
to localhost on port 9001, the value for this argument will be ws://localhost:9001. We
specify ws as the protocol name because we want MQTT.js to create a WebSockets over
MQTT connection. The results of this function are assigned to the client variable.

Then, the code specifies the callback function assigned to the connect event. This function
will be called after the client successfully establishes a connection with the MQTT server.

After the MQTT over WebSockets client establishes a connection with the
MQTT server, client.connected will evaluate to true.

The function creates a topicFilters array with all the topics to which the client wants to
subscribe to in order to control the three LEDs. Then, the code calls the client.subscribe
function with topicFilters as an argument to subscribe to the following three topics with
a single subscription request: home/leds/1, home/leds/2, and home/leds/3. In this case,
we use the default options for the subscription because we will work with the default QoS
level of 0.

Controlling Home Automation in JavaScript

[198]

Then, the code specifies the callback function assigned to the message event. This function
will be called whenever the client receives a message from the MQTT server. The function
receives the following two arguments:

topic: This specifies the topic for the received message
message: This is the buffer for the received message's payload

The function saves the results of calling message.toString to the payloadString
variable. It is necessary to call toString for message because the received message
argument is a buffer, and we want to work with the received message's payload as a string.

The code prints a message to the console log indicating that a message has arrived with the
destination topic and the payload string included in the topic argument and the
payloadString variable.

Then, the code checks whether topic starts with ledCommandBaseTopic to make sure that
the message's destination topic is the one defined for the commands related to LEDs.

In this case, the code only subscribes to the topic filters that we defined for
publishing messages with the commands related to LEDs. However, we
include this code to understand how we should check the topic value
when we subscribe to multiple topics that have different goals with
MQTT.js.

Then, the code retrieves the LED ID from the message's topic and saves it in the ledNumber
variable. The code removes ledCommandBaseTopic from topic to retrieve the LED ID. For
example, if the value for topic is "home/results/leds/3" the code replaces
"home/results/leds/" with an empty string and the resulting string, "3", is the LED ID
assigned to ledNumber.

The next line calls JSON.parse with payloadString as an argument to parse the
message's payload string and create an object from the received JSON string. The line saves
the resulting object in the payload variable. In this case, we don't validate the content of
payloadString to make sure that it is a valid JSON in order to keep the example simple.

Then, the code checks whether ledNumber and payload.Color have values. In case they
have values, the function prints a message on the console log indicating that it has changed
the LED number indicated by the ledNumber variable to the color specified in the
payload.Color attribute. In this case, a real-life application would interact with another
Node.js library to change the color for an LED wired to the board. However, we want to
stay focused on MQTT over WebSockets.

Controlling Home Automation in JavaScript

[199]

Then, the code creates a new object named resultMessagePayload with "Color" as the
key and payload.Color as the value. The next line calls the JSON.stringify function
with resultMessagePayload as an argument to generate the JSON string representation
of the object and save it in the resultMessagePayloadString variable.

Finally, the code calls the client.publish function with ledResultBaseTopic
concatenated with ledNumber and resultMessagePayloadString as the topic and
payload arguments. This way, the code requests the MQTT over WebSockets client to
publish a message to the appropriate topic with the results of the execution of the
command. In this case, the results indicate the color that has been set to the LED.

Running the home automation web
application
Make sure the Mosquitto server or any other MQTT server you might want to use for this
example is running. If you aren't working with Mosquitto, make sure you have enabled
support for MQTT over WebSockets. Then, execute the following line to start the Node.js
example in any computer or device that you want to use as the MQTT client that will
process the commands received to control the three LEDs:

node leds_control.js

The Node.js script will establish a connection with the MQTT server, subscribe to the topics
to which the web application will publish the commands for the three LEDs, and display
the following message:

I'm connected to the MQTT server

Controlling Home Automation in JavaScript

[200]

Leave the Node.js script running on the computer or device in which you executed it. Use
another computer or device to open a web browser and open the home_automation.html
web page. The web page will display the following message at the top Connected with the
MQTT Server after the JavaScript code has established a successful connection with the
MQTT Server. The web page will display three textboxes with FFFFFF as the initial value
for the color and a white background. Whenever we click or tap on these textboxes, we will
be able to select a new color for the specific LED. The three circles on the right-hand side of
each color picker will be updated to display the color that has been set to the specific LED
after the Node.js script processes the received commands based on the selection made in the
color picker. The following screenshot shows the initial render for the web page:

It is convenient to open the Developer Console for the web browser to see
the messages that the JavaScript code will print on the console. This way,
you will understand what happens under the hood.

Controlling Home Automation in JavaScript

[201]

Click or tap on the textbox on the right-hand side of Select color for LED #1. The web page
will display a color picker, as shown in the following screenshot:

Click or tap on a specific color. The background color for the textbox will change to the
selected color and the hexadecimal string that represents the RGB color will be displayed as
the text.

Go to the window in which you are checking the results of the Node.js script, and you will
see messages similar to the following. The value for the Color key will be different based
on your selection in the color picker.

Message arrived for topic: home/leds/2, with the following payload:
{"Color":"ffff00"}
I've changed LED #2 to ff0000
Message arrived for topic: home/leds/3, with the following payload:
{"Color":"00ff00"}
I've changed LED #3 to ff0000

The Node.js script has received a message in the home/leds/1 topic with a JSON string as
the payload, which requests the color for LED #1 to be set to ff0000 (255 for red, 0 for green,
and 0 for blue). The script processes the command and changes LED #1 to the specified
color.

Controlling Home Automation in JavaScript

[202]

Now, go to the web browser where you left the home_automation.html web page. The
JavaScript code will receive the message published by the Node.js script to the
home/results/leds/1 topic, and it will update the status message for LED #1 and the
related circle's background color. The following screenshot shows the web page that filled
the circle for LED #1 with the selected red color:

The following screenshot shows the messages displayed in the JavaScript Developer
Console for the Chrome browser rendering the web page:

Controlling Home Automation in JavaScript

[203]

Now, use the color pickers for LED #2 and LED #3 to select two different colors for these
LEDs. First, the textbox for the color pickers will change their background colors and then
the status messages and the circles will change, as was the case when we selected a different
color for LED #1. The following screenshot shows the three LEDs with new colors and their
circles updated as a result of the exchange of MQTT messages over WebSockets. We are
able to control many LEDs through a web page:

The following screenshot shows the messages displayed in the JavaScript Developer
Console for the Chrome browser rendering the web page:

Controlling Home Automation in JavaScript

[204]

Go to the window in which you are checking the results of the Node.js script and you will
see additional messages similar to the following. The value for the Color key will be
different based on your selections in the color pickers.

Go to the window in which you are checking the results of the Node.js script and you will
see messages similar to the following. The value for the Color key will be different based on
your selection in the color picker:

Message arrived for topic: home/leds/1, with the following payload:
{"Color":"ff0000"}
I've changed LED #1 to ff0000

The following screenshot shows two Terminal windows and Google Chrome running on a
computer with macOS. The Terminal on the upper-left corner is displaying an SSH terminal
that is running the Node.js script controlling the LEDs on an Intel Joule 570x board. That is,
the board is running leds_control.js. The window on the lower-left corner is rendering
the web page. The Terminal on the right-hand side is displaying the debug messages for a
Mosquitto server that is running on the computer:

Controlling Home Automation in JavaScript

[205]

The next screenshot shows a Terminal window running on the Raspbian operating system
on a Raspberry Pi 3 board. The Raspberry Pi 3 is running the Node.js script that controls the
LEDs, that is, leds_control.js:

Debugging asynchronous code with Chrome
Developer Tools (CDT) in JavaScript
Any modern web browser allows us to easily debug JavaScript code. Now, we will use
Chrome Developer Tools (CDT) to debug the asynchronous JavaScript code that runs in
our web application. You can perform the same tasks with other browsers; you will just
need to follow different steps.

Make sure that you are using Chrome to render the home_automation.html web page. In
Chrome, select the Chrome menu located on the upper-right corner of the window and then
select More Tools | Developer Tools. Chrome will display a window or a panel with the
developer tools. The tools can be undocked into a separate window, docked to the bottom
of the main window, or docked to the right of the main window.

Controlling Home Automation in JavaScript

[206]

Click on the Sources tab, navigate to home_automation.js, and click on this JavaScript file.
The source code for the JavaScript file will be displayed.

You can easily establish breakpoints by clicking on the line numbers. Click on the line
number for the first line of code within the onMessageArrived function. Specifically, click
on the following line of code:

 console.log("Message arrived for topic: " + message.destinationName
 + ", with the following payload: " + message.payloadString);

Now, go to the web browser window where you left the home_automation.html web
page. Use the color picker for LED #1 to select a different color for this LED. After you select
a new color, the Node.js script will send a message with the color that has been set to the
LED, the onMessageArrived function will be called, and the debugger will hit the
breakpoint we have set. The following screenshot shows the debugger hitting the
breakpoint:

Controlling Home Automation in JavaScript

[207]

You can use the Scope panel on the right-hand side of the debugger to check the values for
the different local variables. For example, you can inspect the message argument. You can
press F10 to step over the next function call and check the messages printed with
console.log calls on the Console tab. Press F8 to resume script execution until any other
breakpoint is hit.

The usage of the debugger makes it easier to understand when the callbacks are executed
and takes advantage of the interactive Console to dive deep into all the fields and
properties of the different objects that the Paho JavaScript API provides.

Securing MQTT over WebSockets with TLS
So far, we have been working with MQTT over WebSockets without TLS. We can change
the configuration and make simple edits to the code to work with MQTT over WebSockets
with TLS and enable encrypted communications.

In Chapter 2, Securing an MQTT Mosquitto Server, we secured our Mosquitto server, and
therefore, we can use the digital certificates we have created. However, it is very important
to know that self-signed certificates require more steps to be installed as trusted certificates
in the different operating systems that run the diverse web browsers that can use MQTT
over WebSockets.

In this chapter, we saved the following files in a directory called certificates. We will
use these file names as a baseline for a sample configuration.

ca.crt: Certificate authority certificate file
device001.crt: Client certificate file
device001.key: Client key

Controlling Home Automation in JavaScript

[208]

In order to work with WebSockets over TLS and enable encrypted communications, it is
necessary to follow the next steps:

Configure the MQTT server to use WebSockets over TLS. In Mosquitto, it is1.
necessary to specify the values for cafile, certfile, and keyfile settings in
the Mosquitto configuration file after the definition of the listener with the
WebSockets protocol. Then, it will be necessary to restart the MQTT server.
Add the certificate authority certificate file (ca.crt) as a trusted certificate to the2.
operating system or web browser. In macOS, it is necessary to add the certificate
authority certificate file to Keychain Access to be able to use it. In addition, it is
necessary to follow all the steps to make the web browser trust the certificate
authority certificate file when we work with self-signed certificates. It is necessary
to follow the required procedure for any computer or device that will establish a
connection with the MQTT server, including the IoT boards.
Set the value for the useSSL attribute to true in the connection options object we3.
pass as an argument to the connect function in the Paho JavaScript client. In the
previous code example, you must replace useSSL: false with useSSL: true
in the code that declares the mqttConnectOptions object.
When you use the Eclipse Paho client JavaScript utility, you must specify /wss in4.
Path instead of /ws. In addition, you must make sure the TLS checkbox is
activated.
Replace ws with wss in the string that you pass as an argument for MQTT.js in5.
Node.js. In the previous example, you must replace var client =
mqtt.connect("ws://" + host + ":" + port) with var client =
mqtt.connect("wss://" + host + ":" + port).

In macOS, Linux, or Windows, we add the following lines at the end of the
mosquitto.conf configuration file.

 listener 9001 0.0.0.0
 protocol websockets

Controlling Home Automation in JavaScript

[209]

In order to make MQTT over WebSockets use TLS, we must add many lines after the
previous lines. It is very important that the lines are placed after the previous lines. In
Chapter 2, Securing an MQTT Mosquitto Server, you learned that it is a good practice to
make a backup copy of the exiting mosquitto.conf configuration file before making
changes to it. This way, we can easily roll back to the previous configuration if something
goes wrong.

In macOS or Linux, we must add the following lines at the end of the configuration file and
make sure that we replace /usr/local/etc/mosquitto/certificates with the full
path to the certificates directory we created within the Mosquitto installation folder:

 cafile /usr/local/etc/mosquitto/certificates/ca.crt
 certfile /usr/local/etc/mosquitto/certificates/server.crt
 keyfile /usr/local/etc/mosquitto/certificates/server.key

In Windows, add the following lines at the end of the configuration file and make sure that
you replace C:Program Files (x86)mosquittocertificates with the full path to the
certificates directory we created within the Mosquitto installation folder:

 cafile C:Program Files (x86)mosquittocertificatesca.crt
 certfile C:Program Files (x86)mosquittocertificatesserver.crt
 keyfile C:Program Files (x86)mosquittocertificatesserver.key

The cafile option specifies the full path for the file that provides a PEM-encoded
certificate authority certificate file: ca.crt.

The certfile option specifies the full path for the file that provides a PEM-encoded server
certificate: server.crt.

Finally, the keyfile option specifies the full path for the file that provides a PEM-encoded
server keyfile: server.key.

After you make all the changes, the application will be working with MQTT over
WebSockets with TLS, and only the web browsers and operating systems that use the
certificate authority certificate file will be able to establish a communication with the
Mosquitto server.

Controlling Home Automation in JavaScript

[210]

Test your knowledge
The Eclipse Paho JavaScript client provides:1.

Only a non-blocking (asynchronous) API.1.
Only a blocking (synchronous) API.2.
Both a blocking (synchronous) and a non-blocking (asynchronous) API.3.

In the Paho JavaScript API, the Paho.MQTT.Client object represents:2.
The synchronous MQTT over WebSockets client.1.
The asynchronous MQTT over WebSockets client.2.
The asynchronous MQTT over TCP client (no WebSockets).3.

After the Paho.MQTT.Client instance establishes a connection with the MQTT3.
server, the callback assigned to which of the following attributes of the
connectOptions object passed as an argument to the connect function will be
called?

connectCallback.1.
onSuccess.2.
onConnect.3.

After the Paho.MQTT.Client instance receives a message from one of the topic4.
filters to which it has subscribed, the callback assigned to which of the following
attributes of the connectOptions object passed as an argument to the connect
function will be called?

onMessageReceived.1.
messageReceivedCallback.2.
onMessageArrived.3.

MQTT.js is an open source library that allows us to work with:5.
Both MQTT over WebSockets and direct MQTT with Node.js.1.
Only MQTT over WebSockets with Node.js.2.
Only direct MQTT with Node.js.3.

Controlling Home Automation in JavaScript

[211]

Summary
In this chapter, we analyzed the requirements for controlling LEDs wired to different IoT
boards with MQTT messages over WebSockets. We defined the topics that we would use
and the commands that would be part of the message's payloads to set the colors for the
LEDs.

Then, we created an HTML 5 web page combined with JavaScript and the Eclipse Paho
JavaScript asynchronous client to control LEDs. We wrote code to publish messages to
target remote devices in JavaScript, and we were able to process the received messages to
provide feedback to the user.

We worked with MQTT.js to write a Node.js script to process the commands that simulated
the interaction with LEDs on different IoT boards. We were able to run the home
automation web application and understand how all the pieces worked together by
exchanging MQTT over WebSockets messages. We debugged JavaScript asynchronous code
with Chrome Developer Tools to understand the code that the Paho JavaScript client
executes when a new message arrives. Finally, we understood the necessary steps to work
with MQTT over WebSockets with TLS.

Now that we have understood how to use JavaScript and Node.js to work with MQTT over
WebSockets, we will use this protocol to interact with actuators by using the Swift
programming language, which is what we are going to discuss in the next chapter.

6
Interacting with Actuators in

Swift
In this chapter, we will write an iOS app in Swift 3 to control actuators with MQTT
messages. In addition, we will use Node.js to write code that runs on IoT boards, receives
MQTT messages, and controls motors wired to the boards. We will:

Understand the requirements to interact with actuators in Swift
Define the topics and commands to control actuators
Install the CocoaMQTT client library
Understand the CocoaMQTT client in Swift 3
Connect to the MQTT server and subscribe to topics in Swift
Publish messages to target actuators in Swift
Process commands that interact with actuators in Node.js
Run the iOS app that controls an actuator with MQTT
Run the home automation web application
Debug events in Swift

Understanding the requirements
In the previous chapters, you learned how MQTT works in detail. We understood how to
establish a connection between an MQTT client and an MQTT server. You learned what
happens when you subscribe to topic filters and when a publisher sends messages to
specific topics. In this chapter, we will use MQTT over TCP again, and we won't use MQTT
over WebSockets.

Interacting with Actuators in Swift

[213]

Now, we will use Swift, specifically Swift 3, as our main programming language to generate
MQTT clients that will act as publishers and subscribers. We will connect an iOS app as an
MQTT client to the MQTT server, and we will process simple commands to control
actuators with MQTT messages and display status messages received from the boards that
control the actuators.

In this case, we want to create a simple iOS app that we will use at home, and therefore, we
won't be working with TLS at all. Then, we will code a Node.js script that will run on the
boards that have actuators wired to them. In the previous chapter, we worked with the
MQTT.js open source library to use MQTT over WebSockets. However, this library also
allows us to work with direct MQTT with Node.js. Hence, we will use this library again to
work with MQTT over TCP instead of MQTT over WebSockets. The library is very easy to
use and will allow us to process the received messages and publish the results by writing
just a few lines of code. The following is the web page for the MQTT.js library:
https://www.npmjs.com/package/mqtt. In the previous chapter you learned how to install
this library.

We can code to run on many platforms because we will use the same code base to control
sensors that use the following IoT boards:

Raspberry Pi 3
Raspberry Pi 2 Model B
Intel Edison
Intel Galileo Gen 2
Intel Joule 570x
Intel Joule 550x

Each platform will work with different kinds of actuators. However, we will focus on the
basic features to keep our example simple and to stay focused on MQTT. Then, we will be
able to use this project as a baseline for other solutions that require us to run code on an IoT
board that runs a Node.js script to use MQTT over TCP, has to connect to an MQTT server,
and has to process commands.

The code that runs on boards with actuators wired to them must be able to process
commands received in messages in a specific topic. We will use strings with short
commands in plain English in the payloads.

We will write a client iOS app in Swift to control one actuator and display the results of
turning the actuator on or off. Each IoT board must publish a message to a specific topic
whenever a command is successfully executed.

https://www.npmjs.com/package/mqtt

Interacting with Actuators in Swift

[214]

Defining topics and commands
We will use commands/boards/boardname/actuators/actuatorname as the topic
name to publish the commands for the actuators wired to an IoT board, where boardname
must be replaced with a unique name assigned to a board and actuatorname must be
replaced with a unique name assigned to an actuator. For example, if we assign
inteledison01 as the name for an Intel Edison board and motor01 as the name for a
motor controlled with this board, we will have to publish the commands to the
commands/boards/inteledison01/actuators/motor01 topic, and the code that runs
on this board will subscribe to this topic to receive messages with commands and react to
them. In fact, the board can subscribe to
commands/boards/inteledison01/actuators/+ to receive messages with commands
for all the actuators wired to the board named inteledison01.

The commands will be sent as strings in plain English. We will have just two valid
commands:

TURN ON: Turn on the actuator
TURN OFF: Turn off the actuator

The following line shows an example of the payload for the command that turns on an
actuator:

 TURN ON

We will use status/boards/boardname as the topic name to make the boards publish the
results of the execution of the received commands, where boardname must be replaced
with a unique name assigned to a board. For example, if we assign raspberrypi301 as the
name for a Raspberry Pi 3 board, the iOS client app will have to subscribe to the
status/boards/raspberrypi301 topic and the Node.js script that runs on this board will
publish, to this topic, the results of the execution of each command.

When an actuator is turned on, the board must publish a message string indicating the
actuator name followed by a message that says that the actuator has been turned on. When
an actuator is turned off, the board must publish a message string indicating the actuator
name followed by a message that says that the actuator has been turned off.

We have all the necessary details to start coding with Swift and then with Node.js. First, we
will develop a simple iOS app that can control an actuator, based on the previously
explained requirements. Then, we will write a Node.js script that will run on a board and
will process the commands generated in the iOS app.

Interacting with Actuators in Swift

[215]

Enabling connections without TLS for a
Mosquitto server
Now, we will configure Mosquitto to allow us to establish unsecured connections on port
1883, as it is possible with the default configuration. Take into account that this
configuration is not recommended in a production environment and we just make it to
work with a simpler configuration in an example that is only going to be executed on our
LAN.

In case you are running the Mosquitto server in a Terminal window in macOS or Linux,
press Ctrl+C to stop it. In Windows, stop the appropriate service. If you are running the
Mosquitto server as a service in Linux, run the following command to stop the service:

sudo service mosquitto stop

Go to the Mosquitto installation directory and open the mosquitto.conf configuration
file. In Chapter 2, Securing an MQTT Mosquitto Server, you learned that it is good practice to
make a backup copy of the existing mosquitto.conf configuration file before making
changes to it. This way, we can easily roll back to the previous configuration if something
goes wrong.

In macOS, Linux, or Windows, add the following lines at the end of the configuration file:

 listener 1883
 protocol mqtt

We specified the 1883 value for the listener option to make Mosquitto listen for
incoming network connections on port 1883. This port is the default one for MQTT without
TLS.

The protocol option is the next line, after we defined the new listener, and specifies MQTT
as the desired protocol to use on port 1883. This way, we enable Mosquitto's support for
MQTT over TCP on port 1883 while we still have MQTT over WebSockets on port 9001
and MQTT with TLS on port 8883. Again, we don't want this configuration in a production
environment and we are only using it in our LAN.

Interacting with Actuators in Swift

[216]

Save the changes to the mosquitto.conf configuration file and launch Mosquitto again
with the same mechanism that you learned for Linux, macOS, and Windows in Chapter 1,
Lightweight Messaging with MQTT 3.1.1 and Mosquitto. The Mosquitto server will add MQTT
without TLS support on port 1883 to the previously configured listeners that will still work
with MQTT with TLS on port 8883 and with MQTT over WebSockets on port 9001. It is
very important to understand that the certificates we configured for the listener that work
on port 8883 and the certificates that work on port 9001 do not apply to the MQTT listener
on port 1883. Each listener has its own TLS configuration. In this case, we aren't using TLS
for MQTT on port 1883.

Installing the CocoaMQTT client library to
create a new iOS app
The CocoaMQTT client library is an open source MQTT version 3.1.1 client library for iOS
and macOS, which is written in Swift 3. This client library provides a non-blocking
(asynchronous) API. The GitHub page for this client library is
https://github.com/emqtt/CocoaMQTT.

You can use the CocoaMQTT client library to develop iOS and macOS
apps with Swift 3. You will need a Mac computer and Xcode 8 or greater
to run the example.

The easiest way to create a new Xcode project that uses this API is to use the CocoaPods
dependency manager for Swift. In case you don't work with CocoaPods, you can easily
install it following the detailed instructions included on its main web page, that is,
https://cocoapods.org.

Once you have CocoaPods installed in macOS, you are ready to create a simple iOS app,
based on the Single View Application template with Xcode.

https://github.com/emqtt/CocoaMQTT
https://cocoapods.org

Interacting with Actuators in Swift

[217]

Navigate to File | New | Project... in Xcode. Click iOS at the top of the Choose a template
for your new project dialog box. Select Single View Application and click on Next, as
shown in the following screenshot:

Interacting with Actuators in Swift

[218]

Enter ControlActuators in Product Name, select Swift in language, and select Universal
in Devices, as shown in the next screenshot. This way, we will create an app that can run on
iPad, iPod, and iPhone devices. Then, click on Next:

Interacting with Actuators in Swift

[219]

Select the desired folder in which you want to create the new project folder, make sure that
Don't add to any project or workspace is selected in the Add to drop-down list if this
option is shown in the dialog box, and click on Create. Xcode will create the new project
and all the related files. The following screenshot shows the project navigator located on the
left-hand side of the Xcode window:

Now, let's take a look at the initial code for the two Swift source files included in the
ControlActuators module:

AppDelegate.swift: This declares the AppDelegate class, and it is the entry
point to our application
ViewController.swift: This declares the ViewController class

Interacting with Actuators in Swift

[220]

The following lines show the initial code for the AppDelegate.swift source file that
declares the AppDelegate class without the comments that the template includes in each
method:

 import UIKit

 @UIApplicationMain
 class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 return true
 }

 func applicationWillResignActive(_ application: UIApplication)
 {
 }

 func applicationDidEnterBackground(_ application:
 UIApplication) {
 }

 func applicationWillEnterForeground(_ application:
 UIApplication) {
 }

 func applicationDidBecomeActive(_ application: UIApplication) {
 }

 func applicationWillTerminate(_ application: UIApplication) {
 }
 }

Interacting with Actuators in Swift

[221]

The @UIApplicationMain attribute included at the top of the declaration of the
AppDelegate class indicates that the class is designated as the delegate of the shared
UIApplication object in any iOS app. The AppDelegate class is a subclass of the
UIResponder class and conforms to the UIApplicationDelegate protocol. The class
declares a window stored property of the UIWindow type optional (UIWindow?) and six
instance methods. All the methods receive an application argument of the
UIApplication type, which is another subclass of UIResponder. The application
argument will always be the same instance of UIApplication that represents the current
iOS app, that is, our app. The application method receives a second argument named
launchOptions, which provides a dictionary with keys indicating the reason that your app
was launched for. This method is the only one that has code and just returns true.

By default, Swift 3 externalizes the first parameter. All the methods that
receive an application argument of the UIApplication type in the
previous code suppress the externalization of the argument label for the
first parameter by adding an underscore (_) followed by a space before the
parameter label (application) in each method's declaration. This way,
the code generates methods that we can call without specifying the
argument label for the first parameter, that is, with the default behavior
that the previous Swift versions used. The CocoaMQTT library follows the
same approach and adds an underscore (_) followed by a space before the
first parameter labels in each method's declaration. It is very important to
know this because CocoaMQTT is written in Swift 3 and you might think
it uses the default behavior for Swift 3.

The following lines show the initial code for the ViewController.swift source file that
declares the ViewController class without the comments that the template includes in
each method:

 import UIKit

 class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
 }

Interacting with Actuators in Swift

[222]

The ViewController class is a subclass of the UIViewController class and overrides two
parameterless instance methods: viewDidLoad and didReceiveMemoryWarning. Both
methods include a line of code that calls the method with the same name in its superclass.

It is important to take into account that the UIViewController class, that is, the superclass
for ViewController is a subclass of the UIResponder class and conforms to the following
protocols: NSCoding, UIAppearanceContainer, UITraitEnvironment,
UIContentContainer, and UIFocusEnvironment.

Now, close the project we just created in Xcode, and quit Xcode.

Open a Terminal window and go to the folder in which the
ControlActuators.xcodeproj file was created. Run the following command to ask
CocoaPods to generate a Podfile file for the current directory. We will modify this file
later to specify the dependencies for our project and finally install them with CocoaPods:

pod init

After you run the previous command, CocoaPods will create a file named Podfile. Use
your favorite editor to add the following highlighted lines to this file and save the changes:

 # Uncomment the next line to define a global platform for your
 # project
 platform :ios, '9.0'

 target 'ControlActuators' do
 # Comment the next line if you're not using Swift and don't want
 # to use dynamic frameworks
 use_frameworks!

 # Pods for ControlActuators
 pod 'CocoaMQTT', '~>1.0.11'

 target 'ControlActuatorsTests' do
 inherit! :search_paths
 # Pods for testing
 end

 end

Interacting with Actuators in Swift

[223]

Run the following command to install the project dependencies according to the previously
modified Podfile file. We specified that our project requires CocoaMQTT version 1.0.11 or
greater. The following command will install all the required dependencies for CocoaMQTT
and then it will install this library:

pod install

After CocoaPods downloads and installs all the necessary dependencies, you will see
output similar to the following lines:

Analyzing dependencies
Downloading dependencies
Installing CocoaAsyncSocket (7.5.1)
Installing CocoaMQTT (1.0.11)
Installing MSWeakTimer (1.1.0)
Generating Pods project
Integrating client project

[!] Please close any current Xcode sessions and use
`ControlActuators.xcworkspace` for this project from now on.
Sending stats
Pod installation complete! There is 1 dependency from the Podfile and 3
total pods installed.

After the dependencies are installed, CocoaPods will generate a new workspace for the
ControlActuators project named ControlActuators.xcworkspace. Always open this
workspace instead of the project.

Interacting with Actuators in Swift

[224]

Now, launch Xcode and open the ControlActuators.xcworkspace workspace. The
following screenshot shows the project navigator located on the left-hand side of the Xcode
window. Notice that the workspace has two projects: ControlActuators and Pods. The
Pods project includes the CocoaMQTT library and its dependencies. You can easily check
the source code for the different files that compose the CocoaMQTT library. The following
screenshot shows the project navigator located on the left-hand side of the Xcode window
with the two projects:

Interacting with Actuators in Swift

[225]

Building the UI for the iOS app that will
control an actuator
Click on Main.storyboard in the Project Navigator on the left-hand side of the Xcode
window. The editor will switch to a design view that displays how the view will look. Click
on View Controller under View Controller Scene. Make sure that you see the Utilities
pane on the right-hand side and check the values for Identity Inspector. In order to do so,
select View | Utilities | Show Identity Inspector or press Command + Option + 3. The value
for Class will be ViewController under Custom Class, as shown in the following
screenshot:

The previously introduced ViewController class is the custom class associated with the
View Controller tab in the main storyboard for the iOS app. We will add code to this class
later.

Now, we want to add and connect a simple UI element that will allow us to easily turn on
and turn off a motor, specifically, a UISwitch instance. A switch displays an element that
shows the Boolean state of a value. We can tap the control to toggle the value.

Interacting with Actuators in Swift

[226]

Make sure that the Object Library tab is visible in Library View, which Xcode displays in
the bottom half of the Utilities pane on the right-hand side. You just need to click on the
Show the Object Library button at the top of the bottom half. Click on the Filter textbox
located at the bottom and type Switch. Object Library will display all the objects that
contain Switch, and the only one is Switch, as shown in the following screenshot:

Interacting with Actuators in Swift

[227]

Drag Switch from the previously shown list to the rectangle that defines the view in the
preview. Align the new element to the right-hand side. This way, we will have a Switch
component on the view in the main storyboard, as shown in the following screenshot. Note
that the class is UISwitch:

We added a Switch component on the view. Now, we have to expose the component to
make it accessible through code in the previously analyzed ViewController class.

Navigate to View | Assistant Editor | Show Assistant Editor in the Xcode menu or simply
click on the button with two intersecting circles in the upper-right corner (the second
button). Xcode will display the source code for the ViewController class on the right-
hand side of the view preview for the main storyboard.

Interacting with Actuators in Swift

[228]

Press the Ctrl key and hold it while you drag the recently added Switch component from
the view to the blank line after the ViewController class declaration. Xcode will display a
line and a tooltip with the following legend at the position to which you are dragging the
mouse: Insert Outlet, Action, or Outlet Collection. Release the Ctrl key, and Xcode will
display a pop-up dialog box asking us for a name for the new property and IBOutlet that
it will create. Enter motorSwitch in the Name textbox, make sure that UISwitch is selected
in the Type dropdown, and then click on Connect:

After we click on the Connect button, the following highlighted line will appear within the
ViewController class body. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder:

 class ViewController: UIViewController {

 @IBOutlet weak var motorSwitch: UISwitch!

The new line uses the @IBOutlet decorator to indicate the outlet connection. The line
declares a motorSwitch stored property as a weak reference to an implicitly unwrapped
optional UISwitch. The weak keyword indicates Swift to use a weak reference, which
allows the possibility of the object that the property points at to become nil and avoids
retain cycles.

The exclamation mark (!) after the UISwitch class name indicates that Xcode wants Swift
to treat motorSwitch as an implicitly unwrapped optional UISwitch. This way, the option
will be automatically unwrapped whenever the property is used. However, if it points to
nil, it will trigger a runtime error.

Interacting with Actuators in Swift

[229]

You will notice there are two small circles on the left-hand side of the new line of code. If
you let the cursor hover over this small icon, Xcode will highlight the Switch component in
the view connected to this property. If you click on the icon, Xcode will display a tooltip
with the story board name, Main.storyboard, and the related component, Motor Switch, as
shown in the following screenshot:

We can easily interact with the Switch component through the recently added
motorSwitch property in our ViewController class.

Now, we want to add and connect another simple UI element that will allow us to easily
display the status message we will receive from the board after we turn on or turn off the
motor with the previously added switch. We will add a Label instance. A label displays a
variably sized amount of static text. Of course, we are creating a very simple UI to stay
focused on MQTT. You will be able to use this example as a baseline and generate a better
user experience, combining a great UI with MQTT messages.

Click on Main.storyboard in the Project Navigator on the left-hand side of the Xcode
window. The editor will switch to a design view that displays how the view will look. Click
on View Controller under View Controller Scene. Make sure that you see the Utilities
pane on the right-hand side and check the values for Identity Inspector.

Interacting with Actuators in Swift

[230]

Make sure that the Object Library tab is visible in Library View. You just need to click on
the Show the Object Library button at the top of the bottom half. Click on the Filter textbox
located at the bottom and type Label. Object Library will display all the objects that
contain Label, and the only one is Label.

Drag Label from the list to the rectangle that defines the view in the preview. Align the new
element to the left-hand side and below the previously added switch. This way, we will
have a Label component on the view in the main storyboard. Note that the class is
UILabel. Extend the width for the label to reach the right-hand side of the view, as shown
in the next screenshot. We want to make sure that the label is capable of displaying the
messages we receive from the boards that process the commands, without truncating the
text:

We added a Label component on the view. Now, we have to expose the component to make
it accessible through code in the previously analyzed ViewController class.

Navigate to View | Assistant Editor | Show Assistant Editor in the Xcode menu or simply
click on the button with two intersecting circles in the upper-right corner (the second
button). Xcode will display the source code for the ViewController class on the right-
hand side of the view preview for the main storyboard.

Interacting with Actuators in Swift

[231]

Press the Ctrl key and hold it while you drag the recently added Label component from the
view to the blank line after the ViewController class declaration. Xcode will display a line
and a tooltip with the following legend at the position to which you are dragging the
mouse: Insert Outlet, Action, or Outlet Collection. Release the Ctrl key, and Xcode will
display a pop-up dialog box asking us for a name for the new property and IBOutlet that
it will create. Enter statusLabel in the Name textbox, make sure UILabel is selected in the
Type dropdown, and then click on Connect:

After we click on the Connect button, the following highlighted line will appear within the
ViewController class body. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder:

 class ViewController: UIViewController {
 @IBOutlet weak var statusLabel: UILabel!
 @IBOutlet weak var motorSwitch: UISwitch!

The new line uses the @IBOutlet decorator to indicate the outlet connection. The line
declares a statusLabel stored property as a weak reference to an implicitly unwrapped
optional UILabel.

We can easily interact with the Label component through the recently added statusLabel
property in our ViewController class.

Interacting with Actuators in Swift

[232]

Understanding the CocoaMQTT client in
Swift 3
The CocoaMQTT client is very easy to use. First, it is necessary to import CocoaMQTT, create
an instance of the CocoaMQTT class, specify the MQTT connection configuration values, and
indicate an instance of a class that conforms to the CocoaMQTTDelegate protocol. We can
call the methods for the created CocoaMQTT instance to subscribe to topics and publish
messages.

Let's take a look at the code that declares the CocoaMQTTDelegate protocol:

 @objc public protocol CocoaMQTTDelegate {
 func mqtt(_ mqtt: CocoaMQTT, didConnect host: String,
 port: Int)
 func mqtt(_ mqtt: CocoaMQTT,
 didConnectAck ack: CocoaMQTTConnAck)
 func mqtt(_ mqtt: CocoaMQTT,
 didPublishMessage message: CocoaMQTTMessage,
 id: UInt16)
 func mqtt(_ mqtt: CocoaMQTT,
 didPublishAck id: UInt16)
 func mqtt(_ mqtt: CocoaMQTT,
 didReceiveMessage message: CocoaMQTTMessage,
 id: UInt16)
 func mqtt(_ mqtt: CocoaMQTT,
 didSubscribeTopic topic: String)
 func mqtt(_ mqtt: CocoaMQTT,
 didUnsubscribeTopic topic: String)
 func mqttDidPing(_ mqtt: CocoaMQTT)
 func mqttDidReceivePong(_ mqtt: CocoaMQTT)
 func mqttDidDisconnect(_ mqtt: CocoaMQTT,
 withError err: Error?)
 @objc optional func mqtt(_ mqtt: CocoaMQTT,
 didReceive trust: SecTrust,
 completionHandler: @escaping (Bool) -> Void)
 }

Interacting with Actuators in Swift

[233]

To make a class conform to the CocoaMQTTDelegate protocol, we must code many
methods named mqtt that receive different arguments. The code we define in these
methods with the same name will be executed when certain events related to the MQTT
client occur. The usage of the same name might be confusing when we start working, but
we can easily understand when each method will be executed by checking the external
name of the second argument. The following list explains when each of the methods is
executed based on the external name of the second argument. The first argument, named
mqtt, is the CocoaMQTT instance that represents the MQTT client, and we can use it to call
the available methods for the client:

didConnect: The mqtt method that includes this argument will be executed
after the client has established a connection with the MQTT server. The method
receives the host and the port for the MQTT server in the host and port
arguments.
didConnectAck: The mqtt method that includes this argument will be executed
after the connection with the MQTT server has been acknowledged. The method
receives the results of the connection acknowledgment in the ack argument of
the CocoaMQTTConnAck enum type. If ack is equal to
CocoaMQTTConnAck.accept, it means that the connection has been successfully
accepted by the MQTT server. It is convenient to subscribe to the necessary topic
filters by writing the appropriate code in this method. This way, whenever a
connection has been accepted, the client will always subscribe to the appropriate
topic filters.
didPublishMessage: The mqtt method that includes this argument will be
executed after a message has been published to a topic. The message argument is
an instance of the CocoaMQTTMessage class. We can use the message.topic
and message.string properties to access the topic and the string representation
of the payload for the published message. The id argument provides the ID for
the message that we can use to track the publish acknowledgement event for the
message.
didPublishAck: The mqtt method that includes this argument will be executed
after the client receives the publish acknowledgement from the MQTT server for
the message whose ID is specified in the id argument.

Interacting with Actuators in Swift

[234]

didReceiveMessage: The mqtt method that includes this argument will be
executed after a message that matches one of the topic filters to which the client
has subscribed to has been received. The message argument is an instance of the
CocoaMQTTMessage class. We can use the message.topic and
message.string properties to access the topic and the string representation of
the payload for the received message. The id argument provides the ID for the
message.
didSubscribeTopic: The mqtt method that includes this argument will be
executed after the client has subscribed to the topic filter specified in the topic
argument.
didUnsubscribeTopic: The mqtt method that includes this argument will be
executed after the client has unsubscribed from the topic filter specified in the
topic argument.

In addition, to make a class conform to the CocoaMQTTDelegate protocol, we must code
the following three methods:

mqttDidPing: This method is executed after the MQTT client has sent the
PINGREQ control packet to the MQTT server.
mqttDidReceivePong: This method is executed after the MQTT server has sent
the PINGRESP response to the MQTT client.
mqttDidDisconnect: This method is executed after the MQTT client disconnects
from the MQTT server. The err argument is an optional instance that conforms
to the Error protocol and specifies the details of the error that generated the
disconnection.

Interacting with Actuators in Swift

[235]

Connecting to the MQTT server and
subscribing to topics in Swift
Now, we will add code to the ViewController class to make it conform to the
CocoaMQTTDelegate protocol. In addition, we will add code to configure the MQTT client
and establish a connection with the MQTT server. We will split the code for the
ViewController class into many code snippets to make it easier to understand each code
section. The following lines specify all the necessary imports, start the ViewController
class declaration, and create many static type properties, the mqttClient property, and the
configureMQTTAndConnect method. The following lines show the code for the
ViewController class defined in the ViewController.swift file. The code file for the
sample is included in the mqtt_essentials_gaston_hillar_06/ControlActuators
folder:

 import UIKit
 import CocoaMQTT
 class ViewController: UIViewController, CocoaMQTTDelegate {
 @IBOutlet weak var statusLabel: UILabel!
 @IBOutlet weak var motorSwitch: UISwitch!
 static let motor01CommandTopic =
 "commands/boards/inteledison01/actuators/motor01"
 static let motor01StatusTopic =
 "status/boards/inteledison01"
 static let turnOnCommand = "TURN ON"
 static let turnOffCommand = "TURN OFF"

 var mqttClient: CocoaMQTT!

 func configureMQTTAndConnect() {
 let clientID = "iOSMotorControl-" +
 String(ProcessInfo().processIdentifier)
 // Replace with the host name for the MQTT Server
 let host = "localhost"
 // Replace with the port number for MQTT
 // over TCP (without TLS)
 let port = UInt16(1883)
 mqttClient = CocoaMQTT(clientID: clientID,
 host: host, port: port)
 mqttClient.username = ""
 mqttClient.password = ""
 mqttClient.keepAlive = 60
 mqttClient.delegate = self
 mqttClient.connect()
 }

Interacting with Actuators in Swift

[236]

The configureMQTTAndConnect method generates a client ID for the MQTT client and
saves it in the clientID constant. The next lines define the host and port constants and
create an instance of the CocoaMQTT class named mqttClient with clientID, host, and
port as the values for the arguments that have the same names. Then, the code sets the
values for the username, password, keepAlive, and delegate properties. The code
specifies self as the value for the mqttClient.delegate property to specify that we want
to use the current instance as the delegate that conforms to the CocoaMQTTDelegate
protocol. Finally, the code calls the mqttClient.connect method to make the MQTT
client establish a connection with the MQTT server.

The following lines show the changes in the viewDidLoad method and declare two
methods that are required to make the ViewController class conform to the
CocoaMQTTDelegate protocol. The following lines show the code for the ViewController
class defined in the ViewController.swift file. The code file for the sample is included
in the mqtt_essentials_gaston_hillar_06/ControlActuators folder:

 override func viewDidLoad() {
 super.viewDidLoad()
 configureMQTTAndConnect()
 }

 func mqtt(_ mqtt: CocoaMQTT, didConnect host: String,
 port: Int) {
 // Connection established with the MQTT Server
 print("Connected with MQTT Server (host):(port)")
 }

 func mqtt(_ mqtt: CocoaMQTT,
 didConnectAck ack: CocoaMQTTConnAck) {
 // Connection acknowledged
 print("Connection acknowledged (ack),
 rawValue: (ack.rawValue)")
 if ack == .accept {
 // Subscribe to the motor01StatusTopic
 // topic with QoS 0
 mqtt.subscribe(type(of: self).motor01StatusTopic,
 qos: CocoaMQTTQOS.qos0)
 }
 }

The viewDidLoad method calls the previously explained configureMQTTAndConnect
method after it calls the super.viewDidLoad method. This way, after the view is loaded,
the app will configure the MQTT client and establish a connection with the MQTT server.

Interacting with Actuators in Swift

[237]

The code in the mqtt method with didConnect as the external name of the second
argument prints a message to the debug output, indicating that the MQTT client is
connected with the MQTT server with the host and port received as arguments.

The code in the mqtt method with didConnectAck as the external name of the second
argument prints a message to the debug output, indicating that the connection has been
acknowledged with the value received in the ack argument. If the value for the ack
argument is equal to CocoaMQTTConnAck.accept, it means that the connection was
accepted by the MQTT server and we can subscribe to the desired topic filters. If this
happens, the code calls the mqtt.subscribe method with the motor01StatusTopic type
property as the value for the topic argument and CocoaMQTTQOS.qos0 as the value for
the qos argument. This way, the code requests the MQTT client to subscribe to the desired
topic with a QoS level of 0.

The following lines declare the remaining methods that are required to make the
ViewController class conform to the CocoaMQTTDelegate protocol and end the
declaration of the class. The following lines show the code for the ViewController class
defined in the ViewController.swift file. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder:

 func mqtt(_ mqtt: CocoaMQTT,
 didPublishMessage message: CocoaMQTTMessage,
 id: UInt16) {
 print("Message published to topic (message.topic)
 with payload (message.string!)")
 }

 func mqtt(_ mqtt: CocoaMQTT, didPublishAck id: UInt16) {
 print("Publish acknowledged with id: (id)")
 }

 func mqtt(_ mqtt: CocoaMQTT,
 didReceiveMessage message: CocoaMQTTMessage,
 id: UInt16) {
 print("Message received in topic (message.topic)
 with payload (message.string!)")
 if (message.topic == type(of: self).motor01StatusTopic)
 {
 statusLabel.text = "(message.string!)"
 }
 }

Interacting with Actuators in Swift

[238]

 func mqtt(_ mqtt: CocoaMQTT,
 didSubscribeTopic topic: String)
 {
 print("Subscribed to (topic)")
 }

 func mqtt(_ mqtt: CocoaMQTT,
 didUnsubscribeTopic topic: String)
 {
 print("Unsubscribed from (topic)")
 }

 func mqttDidPing(_ mqtt: CocoaMQTT) {
 }

 func mqttDidReceivePong(_ mqtt: CocoaMQTT) {
 }

 func mqttDidDisconnect(_ mqtt: CocoaMQTT,
 withError err: Error?)
 {
 print("Disconnected from the MQTT Server")
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
 }

Most of the methods just print a message to the debug output and some of them are
declared with empty code because we don't want to pay attention to those specific events.
The code in the mqtt method with didReceiveMessage as the external name of the second
argument prints a message to the debug output indicating that the MQTT client has
received a message in a topic with the string representation of the payload. Then, the code
checks whether the value of the message.topic property matches the value of the
motor01StatusTopic type property. If these values match, the code sets the
statusLabel.text property to the string representation of the payload of the received
message. This way, whenever the app receives a status update from the board, the app
updates the text displayed in the statusLabel label.

Interacting with Actuators in Swift

[239]

Publishing messages to target actuators in
Swift
Whenever the user changes the value for the motorSwitch switch, we want to send a
message to request the board to turn on or turn off the motor.

Click on Main.storyboard in the Project Navigator on the left-hand side of the Xcode
window. The editor will switch to a design view that displays how the view will look. Click
on View Controller under View Controller Scene, then click on View, and finally on
Motor Switch.

Navigate to View | Assistant Editor | Show Assistant Editor in the Xcode menu or simply
click on the button with two intersecting circles in the upper-right corner (the second
button). Xcode will display the source code for the ViewController class on the right-
hand side of the view preview for the main storyboard.

Right-click on Motor Switch and Xcode will display a popup that includes the sent events
and the associated actions for this component, as shown in the next screenshot:

Interacting with Actuators in Swift

[240]

Click and drag the circle on the right-hand side of Value Changed from the previously
shown popup to the blank line after the ViewController class declaration. Xcode will
display a line and a tooltip with the following legend at the position to which you are
dragging the mouse: Insert Action. Release the mouse button, and Xcode will display a
pop-up dialog box asking us for a name for the new method and IBAction that it will
create. Enter motorSwitchChanged in the Name textbox, make sure that UISwitch is
selected in the Type dropdown, and then click on Connect. The following screenshot shows
the values specified in the pop-up dialog:

After we click on the Connect button, the following highlighted line will appear within the
ViewController class body. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder:

 class ViewController: UIViewController {
 @IBAction func motorSwitchChanged(_ sender: UISwitch) {
 }

The new line uses the @IBAction decorator to indicate the action connection. The line
declares a motorSwitchChanged method that receives the UISwitch instance whose value
has changed in the sender argument.

Interacting with Actuators in Swift

[241]

Now, we will add code to the recently added motorSwitchChanged method to send a
message to request the board to turn on or turn off the motor, based on the new value that
the component has in the isOn property. The following lines show the new code for the
method. The code file for the sample is included in the
mqtt_essentials_gaston_hillar_06/ControlActuators folder:

 @IBAction func motorSwitchChanged(_ sender: UISwitch) {
 let messagePayload = sender.isOn ?
 type(of: self).turnOnCommand :
 type(of: self).turnOffCommand
 mqttClient.publish(type(of: self).motor01CommandTopic,
 withString: messagePayload, qos: CocoaMQTTQOS.qos0,
 retained: false, dup: false)
 }

First, the code declares a messagePayload constant that is assigned the value of the
turnOnCommand type property if the value of sender.isOn is true. Otherwise, the
constant is assigned the value of the turnOffCommand type property. Then, the code calls
the mqttClient.publish method with the motor01CommandTopic type property as the
value for the topic argument, the messagePayload constant as the value for the
withString argument that specified the desired payload for the messages, and
CocoaMTTQOS.qos0 as the value for the qos argument. The other arguments are Boolean
values set to false. This way, we publish a message with the appropriate command, based
on the selected value for the switch. Whenever the user changes the value for the switch, the
code in this method will be executed and a message will be sent to the board that controls
the motor.

Processing commands that interact with
actuators in Node.js
Now that we have coded the iOS app that will allow the user to turn on and turn off a
motor, we will write the Node.js code that will control the motor wired to the IoT board. We
can run Node.js and the code in any computer or IoT board capable of running Node.js
version 6.9.x or higher.

For this example, we specified in the requirements that the motors would be wired to the
following IoT boards: Raspberry Pi 3, Raspberry Pi 2 Model B, Intel Edison, Intel Galileo
Gen 2, Intel Joule 570x, and Intel Joule 550x. All of these boards can have Node.js installed
and run the sample code. However, we can also run the code on many other IoT boards or
even on our development computer.

Interacting with Actuators in Swift

[242]

In this example, we will use the MQTT.js open source library to work with direct MQTT
with Node.js. Make sure you have Node.js installed in the computer or IoT board you will
use to run this example. If you haven't worked with the example in the previous chapter,
run the following command to install MQTT.js. Notice that the code is tested with MQTT.js
2.3.1:

npm install mqtt

Now, we will create a new Node.js JavaScript file named actuators_control.js. The
code file for the sample is included in the mqtt_essentials_gaston_hillar_06 folder,
in the actuators_control.js file:

 var mqtt = require("mqtt")

 // Replace with the host name for the MQTT Server
 var host = "localhost"
 // Replace with the port number for MQTT
 // over TCP (without TLS)
 var port = 1883
 var client = mqtt.connect("mqtt://" + host + ":" + port)

 var boardName = "inteledison01"
 var actuatorCommandBaseTopic = "commands/boards/" +
 boardName + "/actuators/"
 var actuatorResultTopic = "status/boards/" + boardName
 var turnOnCommand = "TURN ON"
 var turnOffCommand = "TURN OFF"

 client.on("connect", function () {
 console.log("I'm connected to the MQTT server")
 client.subscribe(actuatorCommandBaseTopic + "+")
 })

 client.on('message', function (topic, message) {
 // message is Buffer
 var payloadString = message.toString()
 console.log("Message arrived for topic: " + topic +
 ", with the following payload: " + payloadString)
 if (!topic.startsWith(actuatorCommandBaseTopic)) {
 return;
 }

Interacting with Actuators in Swift

[243]

 var actuatorName = topic.replace(actuatorCommandBaseTopic,
 "")
 if (actuatorName) {
 var resultMessagePayloadString = ""
 if (payloadString === turnOnCommand) {
 console.log("I've turned ON " + actuatorName)
 var resultMessagePayloadString = actuatorName +
 " has been turned on"
 } else if (payloadString === turnOffCommand) {
 console.log("I've turned OFF " + actuatorName)
 var resultMessagePayloadString = actuatorName +
 " has been turned off"
 }
 if (resultMessagePayloadString) {
 client.publish(actuatorResultTopic,
 resultMessagePayloadString)
 }
 }
 })

First, the code requires mqtt and saves the object in the mqtt variable. Then, the code
declares the host and port variables with the host name for the MQTT server and the port
number for direct MQTT. Then, the code calls the mqtt.connect function with mqtt://
followed by the host value, a colon (:), and the port number. In case we want to connect to
localhost on port 1883, the value for this argument will be mqtt://localhost:1883. We
specify mqtt as the protocol name because we want MQTT.js to create a direct MQTT
connection. The results of this function are assigned to the client variable.

Then, the code specifies the callback function assigned to the connect event. This function
will be called after the client successfully establishes a connection with the MQTT server.

After the MQTT client establishes a connection with the MQTT server,
client.connected will evaluate to true.

The function calls the client.subscribe function with the result of concatenating "+" to
actuatorCommandBaseTopic as an argument to subscribe to the
commands/boards/actuators/+ topic filer. In this case, we use the default options for the
subscription because we will work with the default QoS level of 0.

Interacting with Actuators in Swift

[244]

Then, the code specifies the callback function assigned to the message event. This function
will be called whenever the client receives a message from the MQTT server. The function
receives the following two arguments:

topic: This specifies the topic for the received message
message: This is the buffer for the received message's payload

The function saves the results of calling message.toString to the payloadString
variable. It is necessary to call toString for message because the received message
argument is a buffer and we want to work with the received message's payload as a string.

The code prints a message to the console log, indicating that a message has arrived with the
destination topic and the payload string included in the topic argument and the
payloadString variable.

Then, the code checks whether topic starts with actuatorCommandBaseTopic to make
sure that the message's destination topic is the one defined for the commands related to
actuators.

In this case, the code only subscribes to the topic filter we defined for
publishing messages with the commands related to actuators. However,
we include this code to understand how we should check the topic value
when we subscribe to multiple topics that have different goals with
MQTT.js.

Then, the code retrieves the actuator name from the message's topic and saves it in the
actuatorName variable. The code removes actuatorCommandBaseTopic from topic to
retrieve the actuator's name. For example, if the value for topic is
"commands/boards/inteledison01/motor01", the code replaces
"commands/boards/inteledison01/" with an empty string and the resulting string,
"motor01", is the actuator's name assigned to the actuatorName variable.

Then, the code checks whether actuatorName has a value. In case it has a value, the
function checks whether the command included in the message's payload string saved in
the payloadString variable matches either "TURN ON" or "TURN OFF". If
payloadString matches any of these values, the code will print a message to the console
indicating it has performed the requested operation on the retrieved actuator's name. In
addition, the code will save a message to be published in the
resultMessagePayloadString variable.

Interacting with Actuators in Swift

[245]

Finally, the code calls the client.publish function with actuatorResultTopic and
resultMessagePayloadString as the topic and payload arguments. This way, the code
requests the MQTT client to publish a message to the appropriate topic with the results of
the execution of the command. In this case, the results indicate what happened with a
specific actuator.

Running the iOS app that controls an
actuator with MQTT
Make sure the Mosquitto server or any other MQTT server you might want to use for this
example is running. In case you aren't working with Mosquitto, make sure you have
enabled support for direct MQTT without TLS. Then, execute the following line to start the
Node.js example in any computer or device that you want to use as the MQTT client that
will process the commands received to control the motor:

node actuators_control.js

The Node.js script will establish a connection with the MQTT server, subscribe to the topics
to which the web application will publish the commands for the three LEDs, and display
the following message:

I'm connected to the MQTT server

Leave the Node.js script running on the computer or device in which you executed it. Now,
go to Xcode and run the ControlActuators app that we previously coded in the simulator
or in a compatible iOS device.

Click or tap the switch to turn the motor on.

Go to the window in which you are checking the results of the Node.js script and you will
see messages similar to the following:

Message arrived for topic: commands/boards/inteledison01/actuators/motor01,
with the following payload: TURN ON
I've turned ON motor01

The Node.js script has received a message in the
commands/boards/inteledison01/actuators/motor01 topic with a string as a
payload that requests the motor named motor01 to be turned on. The script processes the
command and publishes a status message.

Interacting with Actuators in Swift

[246]

Now, go to the simulator or the iOS device in which you are running the iOS app. The
MQTT client created by this app will receive the message published by the Node.js script to
the status/boards/inteledison01 topic and will update the status message with
motor01 has been turned on. The following screenshot shows the app that changed the
status message after the motor was turned on:

You will see the following messages in the Xcode output panel:

Message published to topic commands/boards/inteledison01/actuators/motor01
with payload TURN ON
Message received in topic status/boards/inteledison01 with payload motor01
has been turned on

Go to the app and click or tap the switch again to turn the motor off.

Go to the window in which you are checking the results of the Node.js script, and you will
see messages similar to the following:

Message arrived for topic: commands/boards/inteledison01/actuators/motor01,
with the following payload: TURN OFF
I've turned OFF motor01

The Node.js script has received a message in the
commands/boards/inteledison01/actuators/motor01 topic with a string as a
payload that requests the motor named motor01 to be turned off. The script processes the
command and publishes a status message.

Interacting with Actuators in Swift

[247]

Now, go to the simulator or the iOS device in which you are running the iOS app. The
MQTT client created by this app will receive the message published by the Node.js script to
the status/boards/inteledison01 topic and will update the status message with
motor01 has been turned off. The following screenshot shows the app that changed the
status message after the motor was turned off:

You will see the following messages in the Xcode output panel:

Message published to topic commands/boards/inteledison01/actuators/motor01
with payload TURN OFF
Message received in topic status/boards/inteledison01 with payload motor01
has been turned off

Debugging events in Swift
Now, we will take advantage of Xcode's debugging features to understand how methods
are called when events occur.

Leave the application running on the simulator or the iOS device.

Open the source code for ViewController.swift.

Click on the left margin of the following line of code to establish a breakpoint at the first
line of code in the mqtt method with didReceiveMessage as the external name of the
second argument:

 print("Message received in topic (message.topic) with payload
 (message.string!)")

Interacting with Actuators in Swift

[248]

Now, go to the iOS app and click or tap on the switch to turn on the motor again. After you
change the value for the switch, the Node.js script will send a message with the new status
for the motor and the mqtt method with didReceiveMessage as the external name of the
second argument will be called. The Xcode debugger will hit the breakpoint we have set.
The following screenshot shows the debugger hitting the breakpoint:

You can use all the features included in the debugger to check the values for the different
arguments received in the method and the local variables. For example, you can inspect the
message argument to understand all the data that the CocoaMQTTMessage instance
encapsulates.

The usage of the debugger will make it easier to understand when the different methods are
executed, and you have a better understanding of the CocoaMQTT client. However, it is
very important to take into account that the MQTT server will disconnect the client if you
pause the code longer than the value specified for the timeout.

Interacting with Actuators in Swift

[249]

Test your knowledge
The CocoaMQTT client library is written in:1.

Objective-C.1.
Swift 2.2.
Swift 3.3.

In the CocoaMQTT client library, a CocoaMQTT instance represents:2.
The synchronous MQTT over WebSockets client.1.
The asynchronous MQTT over WebSockets client.2.
The asynchronous MQTT over TCP client (no WebSockets).3.

Which of the following methods does the CocoaMQTT client call after a message3.
is received from the MQTT server?

func mqtt(_ mqtt: CocoaMQTT, didReceiveMessage message:1.
CocoaMQTTMessage, id: UInt16) {.
func didReceiveMessage(_ mqtt: CocoaMQTT, message:2.
CocoaMQTTMessage, id: UInt16) {.
func mqtt(didReceiveMessage message: CocoaMQTTMessage,3.
id: UInt16) {.

Which of the following properties of a CocoaMQTTMessage instance provides the4.
string representation of the message's payload?

Payload.1.
payloadString.2.
String.3.

Which of the following properties of a CocoaMQTTMessage instance provides the5.
message's destination topic?

topic.1.
topicString.2.
String.3.

Interacting with Actuators in Swift

[250]

Summary
In this chapter, we analyzed the requirements to control actuators wired to different IoT
boards with MQTT messages. We defined the topics we would use and the commands that
would be a part of the message's payloads to turn the motors on and off.

Then, we created an iOS app with Xcode and Swift 3, combined with the CocoaMQTT
client, to control a motor. We wrote code to publish messages to target remote devices in
Swift 3, and we were able to process the received messages to provide feedback to the user.

We worked with MQTT.js to write a Node.js script to process commands that simulated the
interaction with motors on different IoT boards. We were able to run the iOS app and the
Node.js script and understand how all the pieces worked together by exchanging MQTT
messages.

We understood how MQTT works in detail and we worked with direct MQTT and MQTT
over WebSockets. We worked with unsecured and secured communications. We worked
with this protocol in Python, Java, JavaScript, Node.js, and Swift. We were able to create
code capable of running in the most popular and powerful IoT boards. We could combine
scripts, applications, web applications, and iOS apps with code that controls sensors and
actuators on IoT boards. You are now ready to use MQTT in all kinds of projects in the most
popular programming languages.

Exersise Answers

Chapter 1, Lightweight Messaging with
MQTT 3.1.1 and Mosquitto
Questions Answers

Q1 2

Q2 1

Q3 3

Q4 2

Q5 3

Q6 1

Exersise Answers

[252]

Chapter 2, Securing an MQTT Mosquitto
Server
Questions Answers

Q1 1

Q2 3

Q3 1

Q4 2

Q5 2

Chapter 3, Controlling a Drone with Python
Questions Answers

Q1 1

Q2 2

Q3 2

Q4 2

Q5 3

Chapter 4, Interacting with Sensors in Java
Questions Answers

Q1 3

Q2 2

Q3 1

Q4 3

Q5 3

Exersise Answers

[253]

Chapter 5, Controlling Home Automation in
JavaScript
Questions Answers

Q1 1

Q2 2

Q3 2

Q4 3

Q5 1

Chapter 6, Interacting with Actuators in Swift
Questions Answers

Q1 3

Q2 3

Q3 1

Q4 3

Q5 1

Index

A
actuators
 commands, defining 214
 commands, processing in Node.js 241
 connecting, to MQTT server 235
 controlling, with iOS app execution 245
 messages, publishing 239
 requisites, for interacting in Swift 212
 subscribing, to topics 235
 topics, defining 214
asynchronous code
 debugging, with Chrome Developer Tools (CDT)

205, 207
asynchronous notifications
 working, with 150, 153

B
Bouncy Castle libraries
 URL 135
broker 11

C
callback
 about 96, 97, 193
 onConectionLost function 193
 onConnectSuccess function 193
 onMessageArrived function 193
 onMessageDelivered function 193
 working, with 150, 153
certificate
 creating, for each MQTT client 76, 77, 78, 79,

80

 creating, for Mosquitto server 65, 66, 67, 69
Chrome Developer Tools (CDT)
 asynchronous code, debugging in JavaScript

205, 207

class
 creating, to represent drone 100, 101, 102, 103,

104

 Drone class 101
 DroneCommandProcessor class 101
CloudMQTT
 URL 17
CocoaMQTT client library
 installing, to create iOS app 216, 224
CocoaMQTT client
 using, in Swift 3 232
CocoaPods
 URL 216
commands
 processing, with Python 112, 113, 114, 115,

116, 117, 118, 119
CONNECT control packet
 about 18, 19, 20, 21
 CleanSession 19
 ClientId 18
 KeepAlive 20
 password 19
 ProtocolLevel 19
 UserName 19
 Will 20
 WillMessage 20
 WillQoS 20
 WillRetain 20
 WillTopic 20
ControlActuators module
 AppDelegate.swift 219
 ViewController.swift 219

D
DISCONNECT control packet 18
drone
 commands, defining 90, 92

[255]

 controlling, with MQTT requisites 89
 representing, class created 100, 101, 102, 103,

104

 topics, defining 90, 92

E
Eclipse Mosquitto MQTT server
 URL 17
Eclipse Paho client JavaScript utility
 URL 180
 WebSockets, testing 180, 181, 182
Eclipse Paho Java Client
 installing 134, 135, 136
 reference link 92
 URL 134, 135
Eclipse Paho JavaScript asynchronous client 183
Eclipse Paho JavaScript client
 URL 183
Eclipse Paho
 URL 183
Erlang MQTT Broker (EMQ)
 URL 17

H
HiveMQ
 URL 17
home automation web application
 executing 199, 201, 202, 203, 204, 205
home automation, controlling
 commands, defining 178
 received messages, processing in JavaScript

190, 191
 requisites 177
 topics, defining 178
 topics, subscribing in JavaScript 194
Homebrew
 URL 25
HTML 5 web page
 creating, for LEDs 184, 186

I
IMqttActionListener interface
 onFailure 153
 onSuccess 153
In-Vehicle Infotainment (IVI) 11

Internet of Things (IoT) 9
iOS apps
 creating, with CocoaMQTT client library

installation 216, 224, 231
 executing, that controls actuator 245
 UI, building to control actuator 225

J
Java
 asynchronous notifications, working with 150,

153

 callbacks, working with 150, 153
 commands, processing that interact with sensors

156, 157, 158, 160
 last will, working with 162, 163, 165, 166, 167,

168, 169
 notification events 154, 155, 156
 testament, working with 162, 163, 165, 166,

167, 168, 169
 TLS secured connection, configuring 145, 146,

147, 148, 149
JavaScript
 asynchronous code, debugging with Chrome

Developer Tools (CDT) 205, 207
 messages, publishing to target remote devices

187, 188, 190
 received messages, processing 190, 191
 topics, subscribing 194
JSColor
 URL 184

L
last will
 working, with 162, 163, 165, 166, 167, 168,

169

Light Emitting Diodes (LEDs)
 about 177
 commands, processing in Node.js 195, 197, 199
 controlling, with HTML 5 web page 184, 186

M
Machine-to-Machine (M2M) 9
macOS
 Mosquitto broker, installing 25, 26
message filtering

[256]

 working with 13, 14, 15, 16
messages
 publishing, to target remote devices in JavaScript

187, 188, 190
 receiving, with Python 104, 105, 106, 107, 109,

110, 111, 112
 sending, with Python 119, 120, 121, 122
Mosquitto broker
 installing 21, 22, 23, 24
 installing, on macOS 25, 26
 installing, on Windows 26, 27, 28
 URL 21, 26
Mosquitto server
 certificate, creating 65, 66, 67, 69
 connections, enabling without TLS 215
 private certificate authority, generating for TLS

60, 61, 62, 63, 64
 securing 57, 58, 59
 security, at application level 59
 security, at network level 59
 security, at transport level 59
 TLS client certificate authentication, configuring

80, 81
 TLS transport security, configuring 69, 70, 71,

72

 WebSockets, enabling 179
MQ Telemetry Transport (MQTT)
 about 9
 drone, controlling requisites 89
 scenarios 9, 10
 securing, over WebSockets with TLS 207, 209
MQTT client
 about 16, 17, 18, 19, 20, 21
 best practices, for creating topics 41, 42, 43
 certificate, creating 76, 77, 78, 79, 80
 connecting, to MQTT server with Python 93, 94,

96

 messages, publishing 34, 36, 37, 38
 subscribing, to topics 29, 30, 31, 32, 33, 34
 unsubscribing, from topics 38, 39, 41
MQTT connection
 with CONNECT control packet 16, 17, 18
MQTT server
 about 16, 17, 18, 19, 20, 21
 client, connecting with Python 93, 94, 96

 WebSockets, connecting 192, 194
MQTT TLS client authentication
 testing, with MQTT.fx 82, 83, 84
MQTT TLS configuration
 testing, with MQTT-spy 74, 75, 76, 84, 85
 testing, with MQTT.fx 72, 73, 74
MQTT-spy
 MQTT TLS configuration, testing 74, 75, 76, 84,

85

 URL 74
MQTT.fx
 MQTT TLS client authentication, testing 82, 83,

84

 URL 30
 used, for testing MQTT TLS configuration 72, 73,

74

MQTT.js library
 about 195
 URL 195, 213
MqttCallback class
 connectionLost 151
 deliveryComplete 151
 messageArrived 151

N
network loop
 Python, working with 122, 123, 124, 125, 126,

128

Node.js
 commands, processing that interact with

actuators 241
 commands, processing that interacts with LEDs

195, 197, 199

P
Paho JavaScript API
 Paho.MQTT.Client object 183
 Paho.MQTT.Message object 183
paho-mqtt
 installing, for Python 92, 93
 reference link 92
payload 13
Point of Sale (POS) kiosks 11
Privacy Enhanced Mail (PEM) 64
private certificate authority

[257]

 generating, for TLS with Mosquitto 60, 61, 62,
63, 64

Public Key Infrastructure (PKI) 60
PUBLISH packet
 Dup 37
 PacketId 37
 QoS 37
 Retain 37
 TopicName 37
publish-subscribe pattern
 working with 11, 12
publisher 11
Python
 client, connecting to MQTT server 93, 94, 96
 commands, processing 112, 113, 114, 115,

116, 117, 118, 119
 messages, receiving 104, 105, 106, 107, 109,

110, 111, 112
 messages, sending 119, 120, 121, 122
 network loop, working with 122, 123, 124, 125,

126, 128
 paho-mqtt, installing 92, 93
 topics, subscribing to 97, 98, 99, 100

Q
Quality of Service levels
 about 45, 46, 47
 at least once delivery 46
 at least once delivery, working with 47, 48, 49,

50

 at most once delivery 46
 exactly once delivery 46
 exactly once delivery, working with 50, 51, 52,

53, 54

R
Radio-Frequency Identification (RFID) 11

S
Secure Socket Layers (SSL) 59
SecurityHelper class
 createKeyManagerFactory 138
 createPrivateKeyFromPemFile 137
 createTrustManagerFactory 138
 createX509CertificateFromFile 137

 creating, to establish TLS secured connection
137, 138, 139, 140, 141, 142

 getKeyFactoryInstance 137
sensor controllers
 commands, defining 133, 134
 messages, publishing with commands 169, 170,

171, 173
 subscribing, to topics 154, 155, 156
 topics, defining 133, 134
sensor1/altitude topic 12, 15, 16
sensor42/temperature 15, 16
SensorsManager class
 loop 157
 messageArrived 157
 publishMessage 157
 publishProcessedCommandMessage 157
server 11
subscribers 11
sunlight sensor
 infrared light 133
 ultraviolet index 133
 visible light 133
Supervisory Control and Data Acquisition (SCADA)

11

Swift
 actuators, subscribing to topics 235
 events, debugging 247
 requisites, for actuators interaction 212

T
target remote devices
 messages, publishing in JavaScript 187, 188,

190

testament
 working, with 162, 163, 165, 166, 167, 168,

169

TLS client certificate authentication
 configuring, in Mosquitto 80, 81
TLS protocol version
 forcing 86
TLS secured connection
 configuring, in Java 145, 146, 147, 148, 149
 establishing, to create security helper class 137,

138, 139, 140, 141, 142
TLS transport security

 configuring, in Mosquitto 69, 70, 71, 72
topic-based filtering 13
Transmission Control Protocol / Internet Protocol

(TCP/IP) 9
Transport Layer Security (TLS)
 about 59
 MQTT, securing over WebSockets 207, 209
 private certificate authority, generating with

Mosquitto 60, 61, 62, 63, 64

U
Ubuntu Linux
 installing 21, 22, 23, 24
Unnamed Aerial Vehicle (UAV) 29

V
Virtual Private Network (VPN) 59

W
WebSockets
 connecting, to MQTT server 192, 194
 enabling, for Mosquitto server 179
 MQTT, securing with TLS 207, 209
 testing, with Eclipse Paho client JavaScript utility

180, 181, 182
wildcards
 about 43, 44, 45
 hash 43
 plus sign 43
Win32 OpenSSL
 reference 27
 URL 27
Windows
 Mosquitto broker, installing 26, 27, 28

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Lightweight Messaging with MQTT 3.1.1 and Mosquitto
	Understanding convenient scenarios for the MQTT protocol
	Working with the publish-subscribe pattern
	Working with message filtering
	Understanding the MQTT puzzle -- clients, servers, and connections
	Installing a Mosquitto broker on Ubuntu Linux
	Installing a Mosquitto broker on macOS
	Installing a Mosquitto broker on Windows
	Subscribing to topics
	Publishing messages
	Unsubscribing from topics
	Working with best practices when creating topics
	Understanding wildcards
	Learning about the different Quality of Service levels
	Working with at least once delivery
	Working with exactly once delivery
	Test your knowledge
	Summary

	Chapter 2: Securing an MQTT Mosquitto Server
	Securing a Mosquitto server
	Generating a private certificate authority to use TLS with Mosquitto
	Creating a certificate for the Mosquitto server
	Configuring TLS transport security in Mosquitto
	Testing the MQTT TLS configuration with MQTT.fx
	Testing the MQTT TLS configuration with MQTT-spy
	Creating a certificate for each MQTT client
	Configuring TLS client certificate authentication in Mosquitto
	Testing the MQTT TLS client authentication with MQTT.fx
	Testing the MQTT TLS configuration with MQTT-spy
	Forcing the TLS protocol version
	Test your knowledge
	Summary

	Chapter 3: Controlling a Drone with Python
	Understanding the requirements to control a drone with MQTT
	Defining the topics and commands
	Installing paho-mqtt for Python
	Connecting the client to the MQTT server with Python
	Understanding callbacks
	Subscribing to topics with Python
	Creating a class to represent a drone
	Receiving messages with Python
	Processing commands with Python
	Sending messages with Python
	Working with the network loop with Python
	Test your knowledge
	Summary

	Chapter 4: Interacting with Sensors in Java
	Understanding the requirements
	Defining the topics and commands
	Installing the Eclipse Paho Java Client
	Creating a security helper class to establish a TLS secured connection
	Configuring a TLS secured connection in Java
	Working with asynchronous notifications and callbacks in Java
	Subscribing to topics and understanding notification events in Java
	Processing commands that interact with sensors in Java
	Working with last will and testament in Java
	Publishing messages with commands to target sensors
	Test your knowledge
	Summary

	Chapter 5: Controlling Home Automation in JavaScript
	Understanding the requirements
	Defining the topics and commands to control home automation
	Enabling WebSockets for a Mosquitto server
	Testing WebSockets with the Eclipse Paho client JavaScript utility
	Understanding the Eclipse Paho JavaScript asynchronous client
	Creating an HTML 5 web page to control LEDs
	Publishing messages to target remote devices in JavaScript
	Processing the received messages in JavaScript
	Working with WebSockets to connect to the MQTT server
	Subscribing to topics in JavaScript
	Processing commands that interact with LEDs in Node.js
	Running the home automation web application
	Debugging asynchronous code with Chrome Developer Tools (CDT) in JavaScript
	Securing MQTT over WebSockets with TLS
	Test your knowledge
	Summary

	Chapter 6: Interacting with Actuators in Swift
	Understanding the requirements
	Defining topics and commands
	Enabling connections without TLS for a Mosquitto server
	Installing the CocoaMQTT client library to create a new iOS app
	Building the UI for the iOS app that will control an actuator
	Understanding the CocoaMQTT client in Swift 3
	Connecting to the MQTT server and subscribing to topics in Swift
	Publishing messages to target actuators in Swift
	Processing commands that interact with actuators in Node.js
	Running the iOS app that controls an actuator with MQTT
	Debugging events in Swift
	Test your knowledge
	Summary

	Appendix: Exersise Answers
	Chapter 1, Lightweight Messaging with MQTT 3.1.1 and Mosquitto
	Chapter 2, Securing an MQTT Mosquitto Server
	Chapter 3, Controlling a Drone with Python
	Chapter 4, Interacting with Sensors in Java
	Chapter 5, Controlling Home Automation in JavaScript
	Chapter 6, Interacting with Actuators in Swift

	Index
	Humble bundle_Ad_CDP.pdf
	Table of Contents
	Humble Bundle
	Index

