

Building Smart LEGO
MINDSTORMS EV3 Robots

Leverage the LEGO MINDSTORMS EV3 platform to build
and program intelligent robots

Kyle Markland

BIRMINGHAM - MUMBAI

Building Smart LEGO MINDSTORMS EV3
Robots
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rahul Nair
Content Development Editor: Sharon Raj
Technical Editor: Komal Karne
Copy Editor: Safis Editing
Project Coordinator: Virginia Dias
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Tom Scaria
Production Coordinator: Aparna Bhagat

First published: April 2018

Production reference: 1020418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78847-156-5

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Foreword
Twenty years ago, the world was introduced to a bright yellow LEGO brick made of more
than just plastic. Powered by 6 AA batteries, the simple 3-input 3-output RCX was born.
With this brick, the LEGO Group launched LEGO MINDSTORMS, a new brand to combine
robotics with the iconic LEGO platform. Like millions of other children over the past two
decades, this combination of building and programming would launch my career.

The modern LEGO MINDSTORMS EV3 continues to inspire children. However, like any
new technology, getting started can be difficult. Kyle, or as I will forever know him,
Builderdude35, is a great friend, and cornerstone of the modern LEGO MINDSTORMS
community. For years, Kyle has introduced both children and adults to LEGO
MINDSTORMS via his YouTube channel. In this book, Kyle takes some of the outstanding
lessons and formulates tutorials to aid both the novice and advanced users, alike. From
introducing the use of real-world data through sensors to programming GPS-based
navigation, this book features a unique set of projects for any aspiring roboticist.

Besides providing a starting point with LEGO MINDSTORMS, Kyle showcases his own
discoveries in creating the iconic Timmyton and Grunt robots. Focusing on human-robot
interaction, these robots showcase how to make robotics inviting and provide character to
an otherwise predictable machine. This book is another example of Kyle sharing his
wisdom with the community and contributing to the rich LEGO MINDSTORMS legacy.
Like Builderdude35's YouTube channel, may this book help you to discover something
new, inspire others, and share in the MINDSTORMS magic!

Andy Milluzzi

LEGO MINDSTORMS Community Partner

Contributors

About the author
Kyle Markland is a young robotics enthusiast and aspiring engineer who is committed to
helping others learn about technology. His first introduction to robotics was when he joined
a FIRST LEGO League (FLL) team. In 2015, he started a weekly series of robotics tutorials
on his YouTube channel Builderdude35. The videos aims to teach viewers engineering
and programming concepts such as PID line following, dog gears, and pneumatics. In
recognition of his efforts in robotics education, LEGO MINDSTORMS officially named Kyle
a MINDSTORMS Community Partner (MCP) in August 2017.

I would like to thank my parents for their support and patience as I wrote this book, my
biggest project yet. I am deeply indebted to Marc-André Bazergui not only for serving as
my technical editor, but also for welcoming me into the online MINDSTORMS
community. Thank you to Sharon Raj, Komal Karne, Rahul Nair, and the rest of the
publication team for their hard work and for making my dream of becoming an author a
reality.

About the reviewer
Marc-André Bazergui has been with IBM for over 20 years. He is currently a technical
solution manager in the Power Systems team. His spare time is spent creating LEGO robots
and sharing his passion for MINDSTORMS with the world. He has been a member of the
MINDSTORMS Community Partner (MCP) program since 2009. This led him to be involved
with the development of the EV3 in 2011. Among his contributions are the design for the
EV3 robot, KRAZ3, one of the 12 bonus robots you can build with the LEGO
MINDSTORMS 31313 kit. You can find more about Marc-André's work online under the
pseudonym bazmarc.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Smart Robots 7
What makes a robot smart? 7
Examples of smart robots in the real world 8

Robotic vacuum cleaners 8
Autonomous cars 10

Where does the EV3 fit in? 11
What will we build and why? 12
Summary 13

Chapter 2: Security Tank – Object-Tracking Robot 14
Technical requirements 15
Mechanical design 16

Drivetrain 16
Turret 18

Firing projectiles 18
Ammo silos 21
Rotation 21

Spiked roller 23
Sensors 25

Programming 26
Setting up the program 26
Beacon check 27

Setting up the switch 27
Programming the false case 28
Change to tabbed view 29

Following the beacon 31
Proportional steering 31
Measuring distance to control speed 31
K values 32
Controlling the driving 33

Aiming the turret 33
Fire! 35

Using the compare switch 35
Program the switch cases 35

Keeping the beacon in sight 37
Set up the first switch (right side) 37
Program the return-to-center (right side) 39
Programming the left side 40

Putting it all together 42

Table of Contents

[ii]

Summary 43

Chapter 3: Omnilander – Ultimate All-Terrain Vehicle 44
Technical requirements 45
Mechanical design 46

Drivetrain – tank tracks reapplied 46
Climbing mechanism 47

Hook submechanism 49
Jack submechanism 51

Proximity sensors 53
Ultrasonic sensor 54
Infrared sensor 55

Programming 55
RC 55

Setting up the loop 56
Setting up the switch 56
Configuring the switch cases 58

Autonomous mode 65
Setting up the loop and switches 65
Programming the false case 66
Programming the true case 67
Programming the obstacle avoidance sequence 69
Programming the climbing sequence 70
Putting it all together 71

Summary 72

Chapter 4: Timmyton – Interactive Robotic Shark 74
Technical requirements 75
Mechanical design 76

Drivetrain 76
Cosmetics 77

Chassis 78
Pectoral fins 79
Jaws 80
Tail 81

Animating the jaws and tail 82
Chomping jaws 83
Wagging tail 83

Sensors 84
Infrared sensor 85
Color sensor 85

Programming 86
GUI 87

Creating the menu graphics 88
Programming the GUI 90

Operating modes 95
Remote control 95
Jaws 96

Table of Contents

[iii]

Hungry mode 99
Funky mode 103
Autonomous 105

Putting it all together 109
Summary 109

Chapter 5: Grunt – Quirky Bipedal Robot 111
Technical requirements 113
Mechanical design 113

Walking mechanism 113
Cosmetic design 116
Motorized functions 117

Mouth 117
Arms 118

Sensors 120
Infrared sensor 121
Color sensor 122
Touch sensor 122

Programming 123
Setting up a simple AI 123

Initial code 124
Nesting the switches 125

Programming the modes 130
Hungry mode 130
Handshake 134
Remote control 137
Tantrum 140
Handshake – alternative trigger 142
Null case 143

Putting it all together 144
Summary 145

Chapter 6: Falcon – Remote Control Race Car 146
Technical requirements 147
Mechanical design 148

Drivetrain 148
Drive motors 149
Gear ratios 150
Differential 150
Final drive ratio 152

Steering 152
Cosmetic design 154
Sensors 155

Infrared sensor 155
Rotation sensor 156

Programming 156
Control scheme 157

Table of Contents

[iv]

MyBlocks 157
Centering the steering 158
Saving code as a MyBlock 159
Steering left 161
Steering right 165
Returning the steering to center 166

Assembling the program 169
Accessing your MyBlocks 169
Getting started 170
Programming the cases 172

Putting it all together 178
Summary 179

Chapter 7: GPS Car – Autonomous EV3 Navigation 180
Technical requirements 181
Hardware 182

Dexter Industries dGPS 183
Basic principles of GPS navigation 184
Using the dGPS 185

HiTechnic compass 185
Using the compass 186

Modifying the Falcon 187
Software 189

Preparing the EV3 software 189
GPS test program 191

Sensor blocks 191
Text blocks 191
Display blocks 193
Wait block 197
Putting it all together 197

Autonomous navigation 197
Acquiring target coordinates 198
MyBlocks for car steering 198

Importing/exporting MyBlocks 199
Steering left and right 204

getAngle MyBlock 205
Program 206
Save as MyBlock and create parameters 215
Define parameter inputs/outputs within the code 219

Writing the program 222
Putting it all together 233

Summary 233

Other Books You May Enjoy 235

Index 238

Preface
Building Smart LEGO MINDSTORMS EV3 Robots explores six EV3 projects that range from a
low intermediate level to an advanced level. Each chapter uses examples to teach the
building and programming concepts applied in each project, then relating them to an
application in a real-world smart robot. Each chapter builds on the knowledge learned in
the previous chapter, which makes a structured progression that expands your library of
EV3 knowledge as you work your way up to the most advanced project in the final chapter.
By the time you finish the book, you will have achieved mastery of EV3 and will have
developed all of the skills necessary to make your own EV3 robots.

LEGO MINDSTORMS EV3 is a fantastic robotics platform for enthusiasts of all ages and
skill levels. Since its inception, MINDSTORMS has made robotics accessible for an entire
generation of hobbyists. EV3 is the third iteration of LEGO MINDSTORMS robotics, and it
has provided an introduction to robotics for many young enthusiasts. Robots are assembled
using the versatile LEGO Technic elements and are animated using motors. Sensors enable
the robots to respond to the environment. Finally, programs are written on a computer
using unique graphical software and downloaded to the EV3 intelligent brick to make the
robot come to life. EV3 has become a staple in classrooms, homes, and in the FIRST LEGO
League robotics competition as educators worldwide have recognized its educational value.
The EV3 has proven itself to be a tool for serious learning while delivering the fun of
playing with LEGO.

Who this book is for
This book is for anyone who is interested in getting started with robotics and wants to learn
building and programming concepts so that they can start making their own robots.
Readers should be familiar with the basics of using EV3 and its graphical programming
and have experience with the LEGO Technic building system.

Preface

[2]

What this book covers
Chapter 1, Introduction to Smart Robots, explains what qualities a robot must have in order
to be considered smart and discusses two examples of smart robots in the real world. Then,
it introduces the LEGO MINDSTORMS EV3 robotics platform and summarizes the six
projects included in this book.

Chapter 2, Security Tank – Object-Tracking Robot, explains how tank-style driving works;
introduces mechanisms such as gear ratios, turntables, cams, and EV3's infrared sensor;
explores the advantages of using proportional logic in a smart robot, and outlines how to
make a beacon following program that applies proportional logic.

Chapter 3, Omnilander – Ultimate All-Terrain Vehicle, reapplies tank tracks for a rugged off-
road application; introduces advanced mechanisms such as the worm gear, rack-and-pinion
gears, and clutches; describes how to make a remote control program for a tank-style robot;
and explains how to use proximity sensors to make an autonomous collision avoidance
program.

Chapter 4, Timmyton – Interactive Robotic Shark, covers the original one-kit-wonder's
compact mechanical design, its innovative custom GUI that incorporates several programs
into one, programming the color sensor, and the myriad of programming features that
make this robotic shark come to life.

Chapter 5, Grunt - Quirky Bipedal Robot, demonstrates a simple walking mechanism that can
be used in an EV3 project, shows how a robot's cosmetic design can develop its personality,
describes how nested switches can enable a robot to make decision making, and lists the
programming features that lend Grunt its rich interactive qualities.

Chapter 6, Falcon - Remote Control Race Car, explains how to build a drivetrain and steering
system that are modeled after those found in a real-world car, shows how to program car-
style steering that automatically returns to the center, describes how to create a remote
control program for a car-style robot, and introduces the basics of MyBlocks.

Chapter 7, GPS Car - Autonomous EV3 Navigation, introduces two navigation sensors (the
GPS receiver and the magnetic compass) and outlines the basic knowledge necessary for
using them. Then, it describes how to modify the Falcon to incorporate these sensors and
explains how to program the car to use the sensors to autonomously navigate to a pair of
GPS coordinates defined by the user.

Preface

[3]

To get the most out of this book
Install EV3 Home Edition (version 1.2.2 or newer) on your computer. The
software can be downloaded from https:/ ​/​www. ​lego. ​com/​en- ​us/ ​mindstorms/
downloads/ ​download- ​software.
Spend some time familiarizing yourself with EV3. It is graphical programming
software in which programs are written by connecting code blocks together. You
should know the names of the blocks and where to find each one of them in the
programming palette. You should also be comfortable with dragging and
dropping blocks to place them in your program, know how to change their
modes, and have a basic understanding of what individual blocks do.
Familiarize yourself with the EV3 brick and understand the basics of using it.
Know how to power it on and off, download programs from a computer via the
USB cable, navigate its menus to select a program to run, and replace the batteries
when necessary.
You should have experience of building with LEGO Technic. All of the robots in
this book are made using Technic elements.
You may choose to install LEGO Digital Designer (LDD) version 4.3 on your
computer. You can download the LDD software from https:/ ​/​www. ​lego. ​com/
en-​us/ ​ldd/ ​download. LDD is a LEGO CAD program that allows you to build and
view digital models of LEGO creations. It also allows you to generate building
instructions for a digital model. The LDD software will guide you when you
build the projects in this book. You can download the LDD files (.lxf) for each
project from http:/ ​/ ​builderdude35. ​com/ ​downloads- ​2/​ and open them using the
LDD software.
In addition to an EV3 retail set (31313), you will need additional LEGO Technic
elements for the projects included in this book. (The only exception is the
Timmyton, which can be made with the parts included in one EV3 retail set). You
can use LDD to generate a bill of materials, which will help you identify the
additional Technic elements you will need. Chapter 7, GPS Car – Autonomous
EV3 Navigation, also requires some third-party hardware from Dexter Industries
and HiTechnic.
Before you start programming, update the firmware on your EV3 brick to version
1.09H or newer. Perform the following steps to update your EV3 brick's
firmware:

Start EV3 Home Edition on your computer.1.
Turn on your EV3 brick and plug it into your computer using a USB2.
cable.
Open a new project in EV3.3.

https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
https://www.lego.com/en-us/ldd/download
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/
http://builderdude35.com/downloads-2/

Preface

[4]

Navigate to Tools | Firmware Update.4.
If version 1.09H is not already available, follow the steps to download5.
it from https:/ ​/ ​www. ​lego. ​com/ ​en- ​us/​mindstorms/ ​.
Select the firmware version 1.09H (or newer, if available), click6.
on Update Firmware, and wait for the update to complete. The EV3
brick will restart when the update is complete.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Building- ​Smart- ​LEGO- ​MINDSTORMS- ​EV3-​Robots. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
https://www.lego.com/en-us/mindstorms/
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​BuildingSmartLEGOMINDSTORMSEV3Robots_ ​ColorImages. ​pdf.

Robots in action
Visit the following link to check out the robots in action:

https:/​/​goo.​gl/​GB4sFr

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Set the target number of degrees to 600; this is how far the motor needs to rotate
to fire two projectiles."

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The mode on the switch block should be set to Motor Rotation | Compare | Degrees."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingSmartLEGOMINDSTORMSEV3Robots_ColorImages.pdf
https://goo.gl/GB4sFr
https://goo.gl/GB4sFr
https://goo.gl/GB4sFr
https://goo.gl/GB4sFr
https://goo.gl/GB4sFr
https://goo.gl/GB4sFr
https://goo.gl/GB4sFr
https://goo.gl/GB4sFr
https://goo.gl/GB4sFr

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction to Smart Robots

What are smart robots? At today's pace of technological innovation, the word smart is being
applied to all sorts of devices: smartphones, smart watches, smart televisions, and the list
goes on. The word is even in the title of this book! But what does it mean when we say that
a robot is smart? What do smart robots do, and how do they accomplish their task?

What makes a robot smart?
When we talk about smart robots, we are not necessarily referring to an advanced artificial
intelligence like those in a science fiction movie or a supercomputer that wins the Jeopardy
championship, although those are some very smart robots. The definition of a smart robot is
actually much broader and includes some devices you may not have originally considered
smart.

A smart robot is simply any device that uses sensors to measure some condition in its
environment, then decides what to do next based on a set of pre-programmed instructions.
They have some kind of computer or controller acting as their brain that processes the
sensor information and interprets these instructions. You can think of the software loaded
into the robot as the set of instructions that the smart robot follows. The software's
programming allows a smart robot to make an observation, then make a decision based on
this observation. Of course, a person must first build the robot and write the software, but
after that, a smart robot operates on its own without human intervention.

To put it more concisely, a smart robot is a machine that does all of the following things or
has all of the following features:

It is able to follow a series of pre-programmed instructions specified by the user
or engineer
It is able to makes an observation about the outside world

Introduction to Smart Robots Chapter 1

[8]

It has a central computer or other type of controller that interprets both the
instructions in the software and the data from the sensor
It is able to make a decision and react based on the observation, following the
instructions defined in the program
It is able to complete all of the preceding steps automatically, without human
intervention

The ability to make a decision on its own without help from a person is what makes a robot
smart. The more decisions a robot can make on its own, the smarter it is.

As you can see, this definition still includes the obvious examples of smart robots that we
discussed earlier, but it also includes some simpler devices. Using this definition, a robotic
vacuum cleaner is considered a smart robot!

Examples of smart robots in the real world
That definition may have seemed somewhat abstract, so let's put it into context with two
real-world examples. We will first discuss a simple smart robot—the robotic vacuum
cleaner—then talk about a much more sophisticated example—the autonomous car.

Robotic vacuum cleaners
These are some of the simpler smart robots that you are likely to encounter, but they are
nonetheless smart robots because they fulfill all of the points of our definition:

They follow a series of pre-programmed instructions: These machines come
with their vacuum-cleaning program pre-installed on their control unit. The
engineers who developed the product have already sorted out what the robot
needs to do during its routine to keep the floors clean. The software is installed
on each robot before it leaves the factory. After the customer purchases the robot,
all they have to do is charge it, then turn it on, and it gets right to work, following
the instructions that the engineers defined in the software.

They make an observation about the outside world: The vacuum robot has
some sensors that allow it to make observations about where it is in the room. On
the front of the robot, there is a bumper equipped with an impact sensor. When
the robot collides with the wall, the impact sensor is pressed, and the robot
knows it has reached the end of the room:

Introduction to Smart Robots Chapter 1

[9]

The user can also set up an invisible fence using infrared emitters that confine
the robot to one area. The robot is equipped with an infrared sensor that can
detect this fence and tell the robot that it has reached the end of the area to be
cleaned.

Infrared refers to a type of light that is invisible to humans. Robots can be
equipped with specialized sensors that detect infrared light. This makes
for a convenient way to set a barrier for a robot that will not obstruct a
human, as people cannot see or touch infrared light.

Finally, the robot's charging pad has an infrared beacon. When the job is
complete, the robot uses its infrared sensor to navigate back to the charging
pad to replenish its battery:

Introduction to Smart Robots Chapter 1

[10]

They have a central computer/controller that interprets instructions and sensor
data: The robotic vacuum has a central controller that runs the software set at the
factory and receives input form the robot's impact and infrared sensors. Though
this central controller is not necessarily a powerful supercomputer, it has the
ability to interpret the software and sensor measurements to decide what to do
next.

They make a decision and react based on the observation, following the
instructions defined in the program: The robot proceeds during its cleaning
routine as the software specifies. The sensors tell the robot when it needs to
change its course; if the impact sensor detects that the robot has collided with a
physical wall, or the infrared sensor detects an invisible wall, the robot knows
that it has come to the end of the area it is supposed to clean. It reacts by turning
and moving in a different direction. The robot decides to alter its course based on
the measurements from its sensors.

They complete all of these steps automatically: The robot does everything
without the help of a person; it cleans the floor while staying within the bounds
of its room and returns itself to its base to recharge when it is finished. The only
human assistance it needs is when the vacuum bag needs to be replaced.

Autonomous cars
Autonomous (also known as self-driving) cars are a much more sophisticated type of smart
robot, yet they still fulfill the criteria we defined earlier:

They follow a series of pre-programmed instructions: The engineers develop
advanced software that enables the car to drive itself. They program all of the
conditions necessary for driving so the car drives safely and follows the law, but
the car is also programmed to learn as it drives!

They make an observation about the outside world: Driving is a very complex
task, especially for a robot, so a self-driving car needs to take in a large volume of
information about its environment. A GPS receiver tells the vehicle where it is in
the world. In addition, it needs to keep an eye or eyes on the road to avoid
collision with objects, pedestrians, and other cars. An autonomous car may use an
assortment of ultrasonic sensors; LIDAR, which is a light-based radar; machine
vision; and more to monitor what is happening around it.

Introduction to Smart Robots Chapter 1

[11]

They have a central computer/controller that interprets instructions and sensor
data: An autonomous car has multiple computers that work together to processes
the sensor data, run the software, and manage the car's responses to the road.
Because there is a large amount of information to manage and reactions need to
be made within fractions of a second, these computers need to be very powerful.

They make a decision and react based on the observation, following the
instructions defined in the program: The GPS receiver tells the car what road it
is currently traveling on and where its destination is in relation to its current
position. The self-driving car reacts by making the proper turns to get to the
destination. The proximity and vision sensors help keep the car safe. If an object
is detected in the road, the vehicle either stops or maneuvers to avoid it. If the
car's vision system sees a stop sign or a red light, the vehicle makes the
appropriate stop. If the lane sensors detect that the car is nearing the edge of the
lane, the car responds by steering itself back into the center of the lane. If the
proximity sensors detect that the vehicle is too close to the car in front of it, the
self-driving car slows down to maintain a safe distance in-between itself and the
other vehicle. The sensors provide the car with the information it needs to
regulate its driving. The computers then decide what the best course of action is
based on the information. The result is an autonomous car that reaches its
destination safely.

They complete all of these steps automatically: A self-driving car follows all of
the rules of the road and reaches its destination without the need for any driver
input. After all, the purpose of such a vehicle is to be able to navigate on its own!
Because of the large volume of information it processes and the amount of
decisions it needs to make to complete its task, an autonomous car is a very smart
robot!

Where does the EV3 fit in?
In this book, we will be using the LEGO MINDSTORMS EV3 to make our own smart
robots. The EV3 is ideal for building smart robots at this level for several reasons:

It allows robotics enthusiasts of all skill levels to quickly prototype their own
robots.
It includes a suite of cool sensors that our robot can use to gather information
about its environment.

Introduction to Smart Robots Chapter 1

[12]

It has its own unique, intuitive programming language and development
environment that allow us to write programs to control our smart robot.
It includes motors and other hardware that enable it to interact with its
environment.
The EV3 intelligent brick acts as the brain of the robot. It runs the program,
processes information from the sensors, makes decisions, and controls the
motors.

The EV3 robotics platform is convenient, accessible, and includes everything that we need
to build our own smart robots.

What will we build and why?
This book will walk you through six different projects:

Security Tank, which uses an infrared sensor to follow a beacon and aim its
turret. This robot demonstrates the use of infrared technology for tracking a
beacon, as well using proportional logic for a smooth feedback system.
Omnilander, which can climb up steep slopes using its heavy-duty tank tracks.
Special hardware gives it the ability to scale vertical obstacles. This project
demonstrates the effectiveness of tracks for all-terrain navigation and shows
specialized mechanisms, such as worm gears, rack-and-pinion, and clutches in
action.
Timmyton, an interactive robotic shark that features a custom GUI that allows the
user to select multiple programs from within one main program. This project
demonstrates features that can be incorporated into a robot to create a fun
interactive experience. It also shows how computers use a GUI to allow the user
to navigate between different programs through a more user-friendly interface.
Grunt, a quirky bipedal robot with a mind of his own! This robot uses an array of
sensors to detect and react to nearby people. This project demonstrates how
nested programming switches can enable a robot to have smooth, lifelike decision
making and create a rich interactive experience. Special programming and careful
visual design give this whimsical creation a unique personality.
Falcon, a fast race car that is controlled using the infrared remote and receiver. It
showcases some of the mechanical concepts that are at work in real-world cars
and features an intelligent return-to-center steering program.

Introduction to Smart Robots Chapter 1

[13]

GPS car, which incorporates a GPS receiver and a digital magnetic compass. The
user can input coordinates, and this robot will navigate to the destination. This
project demonstrates the principles of GPS navigation and shows how GPS helps
an autonomous car in the real world get to where it needs to go.

Each of these EV3 robots is a small-scale smart machine that demonstrates concepts that are
applicable to a real-world smart robot. As you complete the projects, you will not only learn
about the robots themselves but also about how smart robots are built and programmed in
the real world. You will learn about the engineering concepts that work behind the scenes
to allow these robots to complete their tasks.

Summary
Let's quickly recap what we have learned in this chapter.

We learned that a smart robot is any robot that incorporates some level of intelligence in the
form of autonomous decision making. A smart robot uses sensors to make an observation
about the outside world, then makes a decision based on an observation according to its
programming.

We applied our definition of a smart robot to two real-world examples: a robotic vacuum
cleaner and an autonomous car. We discussed the ways in which both fulfill each of the
criteria for consideration as a smart robot.

We discussed why we will use the EV3 robotics platform for prototyping the smart robotic
projects in this book.

Finally, we listed the six projects that are included in this book. We talked about the cool
things each of these robots can do and how they help us understand smart robots in the real
world.

In the next chapter, we will dive into our first project, the Security Tank!

2
Security Tank – Object-

Tracking Robot
It is time to tackle our first project! In this chapter, we will build and program a small EV3
tank that uses infrared sensors to track and target a beacon. You can think of it as a
miniature model tank that you can use to keep your room safe from intruders!

The tank demonstrates how smart robots in the real world use infrared technology. We
briefly mentioned this technology in the first chapter. Infrared refers to a wavelength of
light that is invisible to the human eye. However, robots can incorporate sensors that can
detect infrared light. This makes infrared a convenient way to invisibly send messages to a
robot or allow a robot to see something that a human cannot see.

The EV3 remote control can serve as a beacon that continuously emits an infrared signal.
The tank we will be building in this chapter is equipped with two EV3 infrared sensors. The
sensors measure the heading and distance of the infrared beacon. Using this information,
the robot can aim its turret at the beacon but also steer itself to keep the beacon within its
line of sight.

The tank we build in this chapter also demonstrates some mechanical concepts often found
in smart robots. In addition to infrared beacon tracking, you will learn about caterpillar
tracks, turntables, cams, and gear reduction.

You can download the LDD file for this project at http:/ ​/​builderdude35.
com/​ on the Downloads page. This is a LEGO CAD file that is opened with
the LEGO Digital Designer program, which is a free download. When you
open the file with the program, you can view a 3D model of the project
and generate building instructions and a bill of materials.

http://builderdude35.com/
http://builderdude35.com/
http://builderdude35.com/
http://builderdude35.com/
http://builderdude35.com/
http://builderdude35.com/
http://builderdude35.com/

Security Tank – Object-Tracking Robot Chapter 2

[15]

Now, let's get to the project and make a tank:

Technical requirements
You must have EV3 Home Edition Software V1.2.2 or newer installed on your computer.
You may also install LEGO Digital Designer (LDD) V4.3 and download the LDD file for this
project to guide you in the building process.

The LDD file is available on the Downloads page of the the Builderdude35 website:

http:/​/​builderdude35. ​com/ ​download/ ​security- ​tank- ​ldd/ ​

http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/
http://builderdude35.com/download/security-tank-ldd/

Security Tank – Object-Tracking Robot Chapter 2

[16]

The LDD and EV3 files for this chapter are available on GitHub:

https:/​/​github.​com/ ​PacktPublishing/ ​Building- ​Smart- ​LEGO- ​MINDSTORMS- ​EV3- ​Robots/
tree/​master/​Chapter02

Check out this video to see the robot in action:

https:/​/​goo.​gl/​Ws526r

Mechanical design
First, we will be taking a look at each of the mechanisms that allow the Security Tank to do
its job.

Drivetrain
The drivetrain is the mechanical system that allows a robot to move. The drivetrain on the
Security Tank is actually quite simple. It uses caterpillar tracks, also known as tank treads.

Tank treads consist of a belt or a chain that runs across at least two wheels or pulleys. They
work in pairs, with one on each side of the vehicle. The treads essentially make two large,
continuous surfaces that the robot drives on. This provides a large contact area with the
ground and allows a tank to have maximum traction over all surfaces. Changing the power
split between the left and right tracks allows the robot to steer. This is what the term tank
steering refers to.

As you might have guessed, our Security Tank is equipped with two caterpillar tracks and
has tank-style steering. One EV3 large motor drives each of the tracks; the left EV3 large
motor is plugged into motor port B and drives the left caterpillar track, and the right EV3
large motor is plugged into port C and drives the right track.

There is no gearing between the EV3 motors and the tracks. Rather, the motors directly
drive their respective tracks. This makes for a compact, robust, simple drive system. The
downside is that the tank drives slowly. But this project is not about building a speed
machine; that is something we will cover later in this book.

https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter02
https://goo.gl/Ws526r
https://goo.gl/Ws526r
https://goo.gl/Ws526r
https://goo.gl/Ws526r
https://goo.gl/Ws526r
https://goo.gl/Ws526r
https://goo.gl/Ws526r
https://goo.gl/Ws526r
https://goo.gl/Ws526r

Security Tank – Object-Tracking Robot Chapter 2

[17]

When you take a look at the underside of the robot, you can see both of the drive motors,
each paired with a tank tread:

There are two more things you should notice: the first is that the EV3 brick is mounted on
the bottom of the robot, between the two drive motors, facing downward towards the
ground. The brick actually acts as a structural part of the chassis. Placing the EV3 brick here
helps to make the tank very compact. However, the downside is that it is not conveniently
located; the user will need to lift the robot to access the brick and switch the programs. This
is an example of a trade-off you may face when engineering your own robots, and you will
need to ask yourself which is more important for the specific robot you are building:
accomplishing a mechanical goal, or maintaining ease of use (ergonomics) for the user. For
this project, ease of use is sacrificed to make a neater, more compact robot.

The second thing that you may have noticed is that there is a small pulley attached to the
right drive motor. This pulley drives a rubber band that runs around the spiked roller in the
front of the tank. This system is set up so that when the tank drives, the spiked roller will
turn as well. This is an example of a clever way in which you can accomplish more than one
task with one motor!

Security Tank – Object-Tracking Robot Chapter 2

[18]

Turret
The turret consists of two small cannons mounted on top of the tank. The turret can swivel
back and forth to aim at the infrared beacon and fire LEGO spheres as projectiles. It is
powered by two EV3 medium motors:

Let's take a closer look at how each part of the turret works!

Firing projectiles
Two cannons on top of the tank fire LEGO spheres. They are made of the special LEGO
element that is specifically designed for this purpose. Both cannons are powered by the
same EV3 medium motor, which is plugged into port A.

Security Tank – Object-Tracking Robot Chapter 2

[19]

The motor splits its power to both cannons through a 90-degree gear connection. On either
side there is a cam mechanism. When the motor spins, the cams slide a rod back and forth
through the firing element. When the cam pushes the rod into the forward position, it ejects
a sphere from the firing element at high velocity. This is how the turret fires the spheres. The
motor continues to rotate the cam, and the rod slides back to make room for another sphere,
which reloads the cannon. By simply setting the motor to spin continuously in one
direction, each cannon can automatically fire a sphere, reload, then repeat the process:

The two cannons operate simultaneously, but their cams are staggered 180 degrees, which
causes them to alternate their firing. This is done for two reasons: the first is that this allows
the firing to be smoother because one cannon will reload while the other is firing. The
second reason is to balance the load on the motor. The motor needs to apply force to fire a
projectile, so opposing the cams evens out the load and makes it more manageable for the
motor.

Security Tank – Object-Tracking Robot Chapter 2

[20]

The gear ratio on the 90-degree connection is 1.67:1, meaning that it takes 1.67 turns of the
motor to cycle the cams once. Aside from slowing the rotation, this increases the torque that
the motor applies to the spheres and further decreases the load on the motor.

Gear ratios are essential to mechanical engineering and can alter the speed
and torque of a mechanism. Here, gear ratios are used to increase the
torque the motor can apply and helps the motor fire the projectiles. We
will explore gear ratios in more detail in the next chapter when we build
the Omnilander.

Here is the turret mechanism; the ammo silos have been removed to give us a clearer view:

Security Tank – Object-Tracking Robot Chapter 2

[21]

Ammo silos
Above each of the cannons sits a tall ammo silo that holds additional spheres. Each silo
holds up to seven spheres, for a total capacity of 14. The silos reload the cannons after they
have fired a projectile. They are gravity powered; after a sphere is launched, another one
drops down into the cannon to fill its place:

Though the ammo silos are a necessary part of the design, they are quite ugly. This is
another example of an engineering trade-off you may encounter when designing your own
smart robot—functionality versus cosmetic design. Sometimes it is difficult to make a
beautiful robot that also does exactly what you want it to do.

Rotation
The tank also needs to be able to aim at the beacon. The entire turret assembly is mounted
on a turntable, which allows it to rotate to the right and left. The turntable is powered by an
EV3 medium motor, which is plugged into port D:

Security Tank – Object-Tracking Robot Chapter 2

[22]

This motor is located in the back of the robot to the right side. It sends its power through a
90-degree gear connection, which is very similar to the one used with the cannons.
However, there is another set of gears in this mechanism: a 24-tooth gear drives the gear on
the turntable mechanism. The overall gear ratio between the motor and the turntable is
4.17:1, meaning the motor must make 4.17 rotations to get the turret to rotate a full 360
degrees. This is a much slower gear ratio than the one we saw on the cannon. Slowing
down the rotation of the turret makes its motion more accurate and easier to control:

Security Tank – Object-Tracking Robot Chapter 2

[23]

Spiked roller
This is an extra flourish added to the tank to improve its visual impact! This does not have a
specific mechanical function, but it makes the tank look awesome:

The large, spiked roller on the front of the tank adds to its menacing appearance. Earlier in
the chapter, we discussed how the roller is set up with a pulley and a rubber band that are
attached to one of the drive motors, which makes the roller spin when the tank drives.

The roller is a custom 3D-printed part. You can download the file for the roller where you
downloaded the LDD for the tank earlier:

Security Tank – Object-Tracking Robot Chapter 2

[24]

If you do not have the means necessary to 3D print this component, or you would rather
use only true LEGO elements in your project, you can replace the 3D-printed spiked roller
with another roller design that uses the large LEGO wheel hubs:

Security Tank – Object-Tracking Robot Chapter 2

[25]

The roller adds an extra dimension to the tank's design and contributes to the overall cool
factor. When you design your own smart robots, you should think about extra features to
add to your project that may not serve a functional purpose, but rather contribute to the
appearance of the robot. These types of additions show that you have gone the extra mile to
make your robot more impressive.

Sensors
The tank uses two EV3 infrared (IR) sensors to measure information about the beacon's
position:

The first IR sensor is fixed to the tank's chassis and is plugged into sensor port 1. This
sensor measures the beacon's heading and distance and adjusts the speed and steering of
the tank's driving.

The second IR sensor is plugged into port 2. This sensor is mounted to the turret; it rotates
along with the turret and follows the beacon. This sensor also measures the beacon's
heading, but, instead of controlling the tank's steering, it controls the angle of the turret.

Security Tank – Object-Tracking Robot Chapter 2

[26]

In the next section, you will learn more about each senor's specific responsibilities and how
to program each one to make a cohesive smart robot!

Programming
Now we need to write a program that makes this smart tank move. We will be using EV3-
G, the graphical programming language designed for the EV3.

Setting up the program
Before we start to write the program, we need to assign port numbers to both of the IR
sensors. The program makes use of both of the IR sensors on the robot. The IR sensor that is
mounted to the robot's chassis is plugged into port 1, so we will refer to this sensor as IR 1.
The sensor mounted to the turret is plugged into port 2, so we will refer to that sensor as IR
2. It is imperative to remember this because the program identifies these sensors using their
port numbers. We use the port numbers to tell the robot which sensor to check at any given
time.

Now that we have established the numbers we will use to identify the sensors, we can start
writing the program!

The first block we will add into our program is a loop block. By default, its condition will be
set to repeat infinitely. Since that is what we want, there is no need to change it! This will
serve as the master loop; the rest of the robot's programming will go inside this loop. It
makes the program repeat indefinitely until the user manually stops it using the button on
the EV3 brick:

Security Tank – Object-Tracking Robot Chapter 2

[27]

Beacon check
Before the robot starts to move, it needs to check to see that a beacon is present. We are
going to start programming inside of our master loop, and the first part of the program
inside of the loop will be a switch that checks to see if there is a nearby beacon. That way,
the robot will not try to find and follow a beacon if none are present.

Setting up the switch
At the heart of the beacon check-step is a switch block. The program reads IR 2 to see
whether a beacon is nearby. Then, based on the result, the robot will execute one of two
cases.

Drag out an IR sensor block and insert it inside of the loop. Set the sensor block's mode (in
the bottom-left corner of the block) to Measure | Beacon. The channel number of the beacon
that the program will look for is set to channel 1 by default. There is no need to change this
unless you want the program to work on a different channel. Whichever channel you
choose, make sure that the channel chosen in the program matches the channel selected on
the remote control.

Next, drag out a switch block and place it after the IR sensor block. By default, the switch
block will read a touch sensor and determine which case to execute based on that sensor's
current state. Change the switch's mode to logic. Now the switch will assign one case a
true value and the other a false value, and the input to the switch block will determine which
of the cases runs.

We will now connect the sensor block to the switch so that if there is a nearby beacon, the
sensor block returns a value of true and the switch executes its top true case. If there is no
beacon present, the block will return a false value and the switch will execute its bottom
false case. To do this, simply find the detected output of the sensor block (the last output on
the block) and drag a data wire from this output into the input of the logic switch.

Note that the data wire is a green/teal color. This indicates that this data
wire handles logic data, or values of true and false.

Security Tank – Object-Tracking Robot Chapter 2

[28]

When you finish each of these steps, your program should look like this:

Programming the false case
We can now write some programming inside of the switch. We will start with the false case
because it is simpler. This case will run if IR 2 does not see a beacon. If there is no nearby
beacon, we simply want the robot to stop and wait until one is present.

Add three motor blocks into the bottom case of the switch. Each of these will stop the
corresponding motor. The first block is a medium motor block. Set its mode to Off and set
its port to A. This will halt the medium motor in port A, which controls the firing of the
turret.

The second motor block will be a move tank block, which simultaneously controls the two
drive motors. Set the mode of this block to Off as well. This will stop the robot's driving if
no beacon is present. By default, the block controls the EV3 large motors in port B + C.
These ports are correct, so there is no need to change it.

Security Tank – Object-Tracking Robot Chapter 2

[29]

Add one more medium motor block with its mode set to Off. This time, be sure to set this
block to port D. This will stop the turret from pivoting if no beacon is present.

Change to tabbed view
In the top left corner of the switch block, there is a small button that toggles Tabbed View.
This compresses the switch slightly so that it only shows one case at a time, and you can
switch between the two cases using the tabs at the top of the switch. We will be writing a lot
of programming in the true case of the switch, so selecting tabbed view will streamline the
program a bit.

Tabbed view does not make any functional change to the program. It is
simply for the convenience of the programmer, as it makes the program
appear neater and makes it easier to navigate.

After selecting tabbed view, the switch will reconfigure itself and the code will look like
this:

Security Tank – Object-Tracking Robot Chapter 2

[30]

We have finished the false case of the switch! The robot will check IR 2 to see whether a
beacon is present. If there are no nearby beacons, the robot will halt all of its motors and
wait until one comes within sight. But what if there is a beacon present?

Use the tabs at the top of the switch to select the true case. It is now time to start
programming the true case:

Security Tank – Object-Tracking Robot Chapter 2

[31]

Following the beacon
The robot needs to steer itself while it follows the beacon. IR 1 will read the heading of the
nearby beacon, and the robot will use the heading value to adjust its steering to keep itself
on track with the beacon. IR 1 will also measure the distance to the beacon so that it can
slow down when the beacon gets closer.

Add another IR sensor block and set its mode to Measure | Beacon. This time, make sure
that the sensor port is set to 1. We will be using the first two outputs of this block:
heading and proximity.

Proportional steering
The EV3 infrared sensor measures a beacon heading value from -25 to +25. A heading
value of 0 indicates that the beacon is directly in front of the sensor. A positive value
indicates that the beacon is to the right of the sensor, and a negative value indicates that the
beacon is to the left. The magnitude of the heading value indicates how far the beacon is
from the center. For example, a heading value of 5 means that the beacon is slightly to the
right of the sensor, while a value of 23 would indicate that the beacon is far to the right of
the sensor. The program will use both direction and magnitude to adjust its steering. This is
called a proportional beacon follower, and it enables the robot to make smooth driving
adjustments.

Proportional logic refers to a feedback loop in which the correction made
by the system is proportional to the observed error. In our example, the
tank will make a sharper turn if the beacon is farther away from the center
of its vision. Here, proportional logic is applied to our beacon following
program. Later in this book, we will apply it in other ways.

Measuring distance to control speed
The EV3 IR sensor can also provide a rough distance estimate for the beacon by measuring
the strength of the signal it receives from the beacon. This can be accessed by using the
proximity output on the IR sensor block. This distance figure is not expressed in centimeters
or inches but rather serves as a relative distance figure. It is not perfectly accurate, either.
However, we can still make use of this by making the tank slow down when the beacon
gets near.

Security Tank – Object-Tracking Robot Chapter 2

[32]

K values
We could use the heading and distance values measured by IR 1 to directly control the
steering for the tank. However, this is not ideal. Instead, we need to multiply each of these
values in order to scale them so that the resulting corrections fit better with the possible
range of the hardware. The factor by which a measurement is multiplied is called a k value.

Most proportional feedback loops use a k value. In this part of the program, we will use
two: the first (k1) will multiply the measured beacon heading to control the magnitude of the
steering, and the other (k2) will multiply the measured distance to control the speed.

The optimal value for k1 is 5. The optimal value for k2 is 10. k2 is set so that for any distance
value greater than 10, the resulting power level of the drive motors will be greater than
100%. Not to worry, because the EV3 will simply run the motors at 100% power whenever it
sees a value that is larger. k2 is set this way because the tank should only slow down if the
beacon is very close; the tank will drive at full power to follow the beacon unless the
distance to the beacon is less than 10.

K values are arbitrary numbers, meaning they can be adjusted to suit the
wishes of the programmer or the constraints of the hardware. A
larger k value will mean the robot makes larger corrections relative to the
measured error; a smaller k value would mean the robot makes smaller
adjustments. Try experimenting with different k values to modify the
performance of the tank and see whether you prefer a different k than the
ones suggested here.

To incorporate these k values into the program, add a math block after the new sensor block
and set its mode to multiply. Drag a data wire from the heading output of the sensor block
and plug it into the input a of the math block. In the b input, enter a value of 5, the value we
set for k1.

These data wires are yellow, which indicates that the data type is
numerical. As the name implies, these data types deal with some kind of
number value.

Take out a second math block and set its mode to multiply as well. Place it after the first
multiplication block. Drag out a data wire from the proximity output of the IR sensor block
and plug it into the a input of the math block. Enter 10, the value we set for k2, into
the b input of the math block.

Security Tank – Object-Tracking Robot Chapter 2

[33]

Controlling the driving
We have set up the heading and proximity values with their respective k values. We can
now use these values to control the driving of the tank.

Add a move steering block after the second math block that you just placed. By default, it
will be set to control the drive motors in port B + C; this is correct, so we will not change
the port assignment. We will need to change the mode of the motor block to On.

Drag a data wire from result, the output of the first math block (the one with the value of k1)
and plug it into the steering input of the move steering block. Plug the result of the second
math block into the power input of the move steering block.

Now, the heading and proximity values measured by IR 1 can adjust the speed and steering
angle of the tank and enable it to follow the beacon! You have completed your proportional
beacon follower, and it should look something like this:

Aiming the turret
The robot will now use the second infrared sensor, IR 2, to aim the turret in the direction of
the beacon. We will use proportional logic to control the aiming of the turret, just as we did
for the driving. The heading value measured by IR 2 is multiplied by a k value and will set
the target power for motor D, the motor responsible for rotating the turret.

Security Tank – Object-Tracking Robot Chapter 2

[34]

We are going to start this new segment of programming directly after the proportional
beacon follower we just wrote. Make sure the new code blocks are still within the switch
block. Add a new infrared sensor block with its mode set to Measure | Beacon. This time,
the port should be set to 2.

Add a math block set to multiply after the new IR sensor block. As before, this block will
multiply the heading measurement from the IR sensor by a k value. The suggested k value
for the turret turntable is 1.6.

Although the k value for the turret (1.6) is smaller than the k value used
for steering (5), the turntable responds faster than the steering. It is
important to consider the mechanism attached to each motor when
considering k values. Despite having a smaller k value, the turntable
rotates faster because the hardware between it and the motor controlling it
makes it respond more quickly than the steering on the drive motors.

The medium motor in port D controls the swivel of the turntable, so the third block to add is
a medium motor block. Be sure to set the port to D and the mode to On.

Finally, plug the heading output from the sensor block into the a input of the math block.
Then, plug the result of the math block into the power input of the medium motor block:

Security Tank – Object-Tracking Robot Chapter 2

[35]

Now we have programmed the turret to swivel according to the heading value measured
by IR 2 using a proportional algorithm.

Fire!
When the turret locks on to the beacon, the robot will fire two projectiles. The medium
motor in port A controls the ball-launching mechanism. We will program the turret to fire
based on the heading reading provided by IR 2. If the heading value is zero, then the turret
is aimed directly at the beacon, and the robot can fire.

Using the compare switch
We will program a turret fire case directly after the aiming code we just wrote. Drag out a
switch block and set its mode to Infrared Sensor | Compare | Beacon Heading. This mode
allows us to set a desired beacon heading value. The EV3 will check the current sensor
reading and compare it to the value we set here. The compare switch block is great because
it combines three steps into a single block: it reads the sensor, compares its value to the
desired target, then decides which case to execute based on whether the sensor value
matches the target. In our specific example, if IR 2 measures a beacon heading of exactly
zero, the EV3 will run the true case. Otherwise, it will run the false case.

We will set zero as our desired heading value; enter 0 into the threshold value input of the
switch (the third input). We only want the turret to fire when the heading equals exactly
zero, so the next step is to change the compare type (the second input on the switch block) to
=. Finally, make sure that this switch block is using the sensor in port 2.

Program the switch cases
In the true case, we need to add the motor block to make the turret fire. We will add in a
medium motor block and select port A. Then, change the mode to On for Degrees. Set the
motor's power to 100%; the robot will need the full power of the motor to launch its
projectiles. Set the target number of degrees to 600; this is how far the motor needs to rotate
to fire two projectiles.

If you find that the tank occasionally fires only one ball instead of two, you
may need to increase the target number of degrees. This is because motor
A is not rotating far enough to fire two projectiles each time. Conversely, if
motor A rotates too far each time, you should decrease the target number
of degrees.

Security Tank – Object-Tracking Robot Chapter 2

[36]

What do we program in the false case? Well, nothing! We will leave this case empty because
if the turret is not squarely aimed at the beacon, it should not launch any projectiles. So, we
do not have to tell it to do anything!

Your completed fire case should look like this:

Security Tank – Object-Tracking Robot Chapter 2

[37]

Keeping the beacon in sight
For the tank to follow the beacon, it is imperative that the tank keeps it within the range of
its infrared sensor's sight at all times. Also, the turret on the tank can only rotate so far
before it runs into its mechanical limit.

The final part of the program allows the tank to keep the beacon in sight while also
preventing the turret from over-rotating. It will check to see if the turret has turned too far
from the center; if it has, the tank will make a sharp turn to center the beacon in its field of
view and reset the turret to a central position.

Set up the first switch (right side)
The program will check to see if the turret has swiveled too far away from the center. It will
make use of the compare switch yet again, this time comparing the number of degrees on
motor D to the threshold value that would indicate that it had rotated too far. The mode on
the switch block should be set to Motor Rotation | Compare | Degrees.

When the turret swivels to the right of center, the degree count on motor D will be positive.
When the turret swivels left, the degree count will be negative. Our robot will need to
individually check to see if the turret is too far in each direction, so it will first check to see
whether the turret is too far to the right. Therefore, this first switch will only be concerned
with the positive direction. We will soon program a second switch that checks in the
negative direction.

Set the compare type on the switch to > (type 2). The threshold value that we can say is too
far is 250 degrees. Enter 250 into the second input of the switch:

Security Tank – Object-Tracking Robot Chapter 2

[38]

Even though the maximum number of degrees we allow on motor D
is 250, this only translates to just under 90 degrees of rotation on the
turret. This is because of the gear reduction on the turret, which we
discussed earlier in this chapter. One degree of rotation on motor D results
in a fraction of a degree's worth of rotation on the turret.

This switch will check to see if motor D has rotated more than 250 degrees to the right of
center. If this ends up being true, then the tank will need to make an adjustment to its
steering and its turret. We will now program in the code that will make that adjustment.

Security Tank – Object-Tracking Robot Chapter 2

[39]

Program the return-to-center (right side)
If the turret has strayed too far to the right (motor D has > | 250 degrees), the tank will need
to make a sharp right turn to center the beacon within its line of sight again and center the
turret. We will add some programming in the true case of our new switch that will do just
that.

First, add a medium motor block and set it to turn motor D off. This case executes when the
turret starts to rotate too far, so we need to stop it to make sure it does not over-rotate.

Next, the tank will make its sharp right turn. We will use the move tank block, which allows
us to individually control the power of both drive motors (port B + C). Set its mode to On
for Seconds. Set the power of motor B, the left drive motor, to 75 percent. Set the power of
motor C, the right drive motor, to -75 percent. Powering the motors in opposite directions
allows the tank to make a quick spin turn. We want the tank to turn for 1.2 seconds, so
enter that as the target time value.

Directly after that, we can place another move tank block, this time with the mode set to
Off. This will halt the drive motors after the tank has made its turn.

The last part of this segment is some code that returns the turret to center. Add a loop block.
We will set a special exit case for this loop. Change the mode on the loop to Motor Rotation
| Compare | Degrees. This will work in a similar manner to the compare switches we
programmed earlier. We will set a target degree value and the motor will rotate until it
reaches this target. Change the compare type to < (type 4) and make the threshold value 3
degrees. Make sure the motor in port D is selected. Inside the loop, place a medium motor
block. Set the block to simply turn the motor On at -50 percent power. This loop will power
motor D in the negative direction until its degree value is less than three (which is very close
to the center):

It is good practice to set the target degree value to < 3 as opposed to = 0.
This is because the EV3 motor encoders (also known as degree counters)
have an error of about one degree; also, there are only so many times the
EV3 can check the degree value on motor D in one second. As a result of
these two factors, there is a very small possibility that the EV3 will miss
when the degree value is exactly equal to zero and the motor will never
stop. = | 0 is too specific of a case, so we program in < | 3 instead as a
safety net; it will never fail, and will still get the turret into the center
position.

Security Tank – Object-Tracking Robot Chapter 2

[40]

You can try experimenting with the target degree value to see how it
affects the accuracy of the centering. If you set it to a smaller number (1 or
2 degrees), will the turret return to center more accurately, or does this
make the turret rotate past center? Setting a larger target degree value (for
example, 5 degrees) will make the turret stop just before reaching the
center position. Give it a try!

Programming the left side
Now we need to tell the tank what to do if the turret has rotated too far to the left. The
programming is going to be very similar to what we did for the right side. As a matter of
fact, it is so similar that you may choose to copy the programming for the right side and
make the changes from there. Since the left is the negative side, we need to change the sign
on all degree and power values and flip the inequality signs.

Security Tank – Object-Tracking Robot Chapter 2

[41]

Navigate to the false case of the most recent switch we added and add yet another switch.
This one will be set up just like the last one: set the mode to Motor Rotation | Compare |
Degrees, and the port to D. The only difference is we need to flip the inequality and negate
the target value. So, change the compare type to < (type 4) and change the threshold value
to -250 degrees:

We will use the exact same blocks to program the return-to-center feature. Go through the
code and negate all of the power and degree values, then change the inequality sign in the
loop exit case from < (type 4) to > (type 2).

Negating all of the power and degree values and flipping the inequalities ensures that when
the turret is too far left, it will execute the mirror image of the actions it would execute if the
turret was too far to the right:

Security Tank – Object-Tracking Robot Chapter 2

[42]

What do we put in the false case of this switch? Nothing again! That is because if the EV3
checks the turret position, and it is both not too far to the right and not too far to the left, it
is within the acceptable range and we do not need to adjust it.

We have come to the end of our line of programming. When the EV3 gets to this point, it
will loop back to the end and start the process all over again, allowing the tank to
continuously follow the beacon.

Putting it all together
When you put all of the individual pieces together, the complete program will look like this:

Security Tank – Object-Tracking Robot Chapter 2

[43]

While the program may look large and confusing as a whole, remember that it becomes
more manageable when you focus on individual parts of it. Check the program by tracing
the path of the program flow through each block.

Congratulations! You have completed the program for the Security Tank! Now you can
track beacons and keep your valuables safe from intruders.

Summary
We covered a lot in this chapter! Let's recap what we learned.

The focus of this project was to demonstrate how smart robots use infrared technology.
Infrared is invisible to humans but can be detected by a robot's sensors, so it is a great
option for when you want to invisibly control a robot. The tank robot uses two EV3 IR
sensors to measure the position of an infrared beacon and follow it.

We also learned about some mechanical design concepts, that are applied to smart robots:
tank treads and tank steering, turntables and cams, and using a motor to perform more than
one function at a time. We briefly discussed gear ratios as they function in the tank; this is
something we will explore further in the next chapter. We also discussed the importance of
adding features that improve the visual impact of a smart robot.

We applied several different programming concepts such as using the heading and
proximity values measured by an IR sensor in a program, loops and exit cases, using
sensors to control logic (true/false) switches, proportional logic and k values, and
programming a motor to return to center. We also programmed a safety case to keep a
parameter within a desired range. In our Security Tank, we programmed some cases at the
end that would make a large adjustment to the tank's path if necessary to keep the beacon
in sight.

Finally, we learned about some decisions, or trade-offs, an engineer needs to consider when
designing a smart robot. In the security tank, we saw a trade-off between ergonomics and
making the robot smaller, as well as a trade-off between style and function. These are some
of the common trade-offs you may encounter when you build you own smart robot.

In the next chapter, we will build the Omnilander, an all-terrain tank that can climb vertical
obstacles. This project will apply tank tracks for a different purpose, and introduce
proximity sensors and infrared remote control.

3
Omnilander – Ultimate All-

Terrain Vehicle
Our second smart EV3 project is the Omnilander, a box-climbing robot. This is the ultimate
all-terrain vehicle. Its large tank tracks give it traction over a diverse range of surfaces and
allow it to drive up steep inclines. The Omnilander is also equipped with special hardware
that allows it to climb up some vertical obstacles!

The Omnilander demonstrates some features that are used by smart robots in real life. For
example, in this chapter, we will see how a smart robot can use advanced mechanisms such
as worm gears, rack-and-pinion, and clutches to accomplish a goal using only one motor.
We will review tank tracks and apply them for a slightly different purpose for this project.
In this chapter, we will also introduce proximity sensors, which measure the distance
between the sensor and an obstacle in a straight line. The Omnilander uses proximity
sensors to avoid collisions and make decisions about whether it can climb an obstacle it
encounters.

We will make two different programs for the Omnilander: the first is a Remote Control
(RC) program, which will serve as an introduction to programming RC. The second
program will be an autonomous program in which the Omnilander uses proximity sensors
to drive around and climb obstacles without human intervention. We already used the
EV3's infrared sensor for beacon tracking; in this chapter, we will take it two steps further
and learn how to use it as an infrared receiver for RC and a proximity sensor for detecting
obstacles. We will also use the EV3 IR beacon's functionality as a remote control.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[45]

Are you ready to build? Let's build the ultimate offroad machine:

Technical requirements
You must have EV3 Home Edition Software V1.2.2 or newer installed on your computer.
You may also install LEGO Digital Designer (LDD) V4.3 and download the LDD file for this
project to guide you in the building process.

The LDD file is available on the Downloads page of the the Builderdude35 website:

http:/​/​builderdude35. ​com/ ​download/ ​omnilander- ​ldd/ ​

The LDD and EV3 files for this chapter are available on GitHub:

https:/​/​github.​com/ ​PacktPublishing/ ​Building- ​Smart- ​LEGO- ​MINDSTORMS- ​EV3- ​Robots/
tree/​master/​Chapter03

http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
http://builderdude35.com/download/omnilander-ldd/
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter03

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[46]

Check out this video to see the robot in action:

https:/​/​goo.​gl/​PnrUKJ

Mechanical design
There are a lot of cool hardware features in this project. Let's discuss each one!

Drivetrain – tank tracks reapplied
Like the Security Tank we made in the last chapter, the Omnilander has two caterpillar
tracks with tank-style steering. Recall that a robot with a tank drivetrain steers by varying
the speed of the tracks on each side. In the Omnilander, one EV3 large motor powers each
track; the left drive motor is plugged into port B and the right drive motor is plugged into
port C.

The basic concept is the same for both robots, but the tracks themselves are different. While
the Security Tank uses the rubber band-like tracks, the tracks on the Omnilander are made
of the hard, grey plastic LEGO elements that clip together like a chain. Since the links are
made of plastic, the tracks do not have sufficient traction on their own. The red rubber
inserts are added to the tracks to increase traction. Flipping over the Omnilander gives us a
clear view of the tracks:

https://goo.gl/PnrUKJ
https://goo.gl/PnrUKJ
https://goo.gl/PnrUKJ
https://goo.gl/PnrUKJ
https://goo.gl/PnrUKJ
https://goo.gl/PnrUKJ
https://goo.gl/PnrUKJ
https://goo.gl/PnrUKJ
https://goo.gl/PnrUKJ

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[47]

Each of the Omnilander's tracks is guided by four sprockets. A sprocket is a gear-like wheel
that drives a chain. The four sprockets are arranged so that the track links form a
trapezoidal shape. The front of the track is steeply angled forward; this helps the
Omnilander climb vertical obstacles, which we will discuss in more detail in the next
section. The front top sprocket is the only one powered by the motor; the other three rotate
freely to guide the track as it rotates:

The Omnilander's large treads are rugged and provide plenty of traction, enabling it to
drive up steep slopes with ease. Now, we will add some hardware that will enable it to
climb vertical obstacles.

Climbing mechanism
The Omnilander is equipped with special hardware that allows it to climb up some vertical
obstacles, such as a small box. There are mechanisms in the front and back that lift the robot
up and onto the obstacle:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[48]

The entire climbing mechanism is powered by one EV3 medium motor, plugged into port A.
The motor routes its power through a long drive shaft that runs along the length of the
robot:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[49]

The drive shaft delivers the motor's power to the worm gear mechanism in the front of the
robot and the jack in the rear.

Hook submechanism
On the front of the robot is a hook-like mechanism that grabs onto the box and pulls the
robot up and onto the box. The mechanism is powered by a worm gear. A worm gear is a
special spiral-shaped gear that works in conjunction with a traditional spur (circular) gear:

A few of the worm gear's special properties make it ideal for this application:

A worm gear has a lot of mechanical reduction. Though the output is
significantly slower than the input, the torque is multiplied; this is referred to as a
mechanical advantage. The front hook mechanism needs to be strong enough to
lift the Omnilander off the ground and pull it forward onto the box, and the
worm gear provides a sufficient mechanical advantage to fulfill this requirement.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[50]

A worm gear has a one-way rotation—the input can rotate the output, but the
output cannot rotate the input. In the context of the Omnilander, this means that
the motor can move the front hook, but no amount of force applied to the front
hook can cause a rotation on the motor, which minimizes the mechanical stress
on the motor.
The worm gear mechanism redirects the motor's power 90 degrees. This makes
for a streamlined mechanism because it eliminates the need for an additional 90-
degree gear connection.

Because of the worm gear's one-way rotation, you cannot manually reset the climbing
mechanism by pushing on the front hook (or any other part of the mechanism, for that
matter). To manually reset the climbing mechanism, slide the 16-tooth gear connected to the
medium motor's output so that it no longer meshes with the other 16-tooth gear beneath it.
This will disengage the entire climbing mechanism from the motor. Then, you can move the
climbing mechanism by rotating the worm gear directly by hand. In practice, this technique
will look like this:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[51]

Ideally, the box that the Omnilander tries to climb should have a small lip on the edge to
allow the hook to latch onto it. If there is no lip on the box, you may choose to add small
rubber LEGO elements to the end of the hook to enable it to grip onto the box.

The worm gear is space-efficient and provides the hook with enough torque to lift the front
of the Omnilander off the ground. But what lifts the rear of the robot?

Jack submechanism
The rear of the robot is lifted off the ground by a large rack-and-pinion mechanism that acts
as a jack.

A rack gear is a long-toothed bar; think of it as a gear that has been unraveled with its teeth
rolled out in a flat, straight line. The input of a rack-and-pinion system is a rotary (spinning)
motion, which rotates the circular pinion gear. The pinion gear interfaces with the rack gear
and causes the rack gear to slide in a straight line; the motor's torque has been converted to
a linear motion. This linear motion lifts up the rear of the Omnilander. When the motor
turns, the rack extends downward and pushes the rear of the robot off the ground.

Any mechanical system that takes rotary motion as an input and converts
it to linear motion is called a linear actuator. Therefore, this rack-and-
pinion system is a linear actuator; the system converts the motor's
rotational torque into a straight-line motion.

At the bottom end of the rack is a sled with two small wheels; when the Omnilander lifts
itself off the ground, the sled allows the robot to slide forward as the front hook pulls it
forward towards the box:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[52]

Although the rack-and-pinion mechanism is the staple of the jack system, there are a few
other important components that allow the system to work smoothly. Before the motor's
torque reaches the rack-and-pinion, it is redirected through a 90-degree gear connection,
which has some mechanical reduction. The torque is then sent through a second set of
gears, which reduces the rotation further. The total gear ratio before reaching the rack-and-
pinion is 5:1. That means the motor must spin five full times to rotate the pinion gear once.

Although that may seem like a lot of reduction, it is still quite a bit less than the reduction
provided by the worm gear on the front of the robot. This means that the rack gear reaches
its mechanical limit sooner than the worm gear. This is a problem, because the entire
climbing mechanism is connected by one drive shaft; when the rack gear reaches its
mechanical limit, it will seize up the entire mechanism and prevent the robot from
completing its climb. To solve this issue, one of the aforementioned gears in the rear-jack
mechanism is replaced with a clutch gear; note the large, white gear in the gear train at the
back of the robot.

The clutch gear introduces just the right amount of slip into the system: it grips and
transfers power to the rack until it reaches its mechanical limit. At that point, the clutch gear
begins to slip, which allows the front hook to keep moving while keeping the jack
stationary. The clutch gear prevents the entire mechanism from locking up.

When the front hook and rear jack work together, the result is a smooth, cohesive climbing
action. The climbing mechanism as a whole is fairly complex with a lot of moving parts.
However, the complexity pays off because the mechanism automatically coordinates all of
the motions necessary for a successful climb. Therefore, we can consider the hardware to be
smart!

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[53]

Proximity sensors
The Omnilander is equipped with two sensors. The ultrasonic sensor (also known as the US
sensor) is plugged into port 1 and is located low in the front of the robot between the two
tracks. The infrared sensor (also known as the IR sensor) is located on the left side of the
robot, closer to the back of the robot than the US sensor:

The left and right sides refer to the perspective of a person standing
behind the robot, looking at the back. This way of identifying the left and
right sides is standard for robots and cars. When working on a project
with a teammate, always make sure that you are referring to the correct
side.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[54]

Ultrasonic sensor
The EV3's Ultrasonic (US) sensor is a proximity sensor, meaning that it measures the
distance between itself and an object. An ultrasonic sensor measures distance by emitting a
high-frequency sound that humans cannot hear. The US sensor then waits for the sound to
bounce off of the object and return to the sensor. Using the time it took for the sound to
travel away from and return to the sensor, the EV3 can estimate the distance between the
sensor and the obstacle. This makes for an accurate sensor that is not susceptible to light
interference. However, the surface of the object needs to be perpendicular to the sensor,
otherwise the sound may not return to the sensor and the distance cannot be estimated. The
US sensor is used in the Omnilander's autonomous program:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[55]

Infrared sensor
We introduced the IR sensor in the last chapter, where we discussed its ability to measure
the position of an infrared beacon. The Omnilander will use the IR sensor's two other
functions. In addition to tracking a beacon, the IR sensor can act as a proximity sensor to
measure distance (similar to the US sensor), and it can read the commands sent by the EV3
remote control. The Omnilander uses proximity sensor mode in its autonomous program
and receiver mode for the RC program.

Programming
Now, we will write some code that will bring our smart robot to life. We will make two
programs; the first is an RC program, and the second is an autonomous exploration
program.

RC
This program allows the user to control the Omnilander using the EV3 infrared remote. The
infrared sensor receives the commands sent by the remote. The robot is programmed to
respond to each of the remote commands. Using the remote, the user can drive the
Omnilander around and deploy the climbing mechanism to scale a vertical obstacle:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[56]

Although the user controls the robot, some of the robot's processes are still automated, so
this can still be considered a smart program.

This is a simple tank-control RC program, which can be adapted and used with any tank-
style robot. Later in this book, we will revisit RC when we make a more sophisticated
program for the Falcon race car.

Setting up the loop
All of the code for the Omnilander is contained within an infinite loop, which makes the
program repeat until the user presses the back button on the EV3 brick to exit the program
and return to the menu. Recall that we did the same thing with the Security Tank; most of
the programs we will make in this book will be contained within an infinite loop:

When you add the loop block into the program, it will be set to repeat infinitely by default.
This is exactly what we want, so there is no need to change any of the settings. We are ready
to move on!

Setting up the switch
When a button is pressed on the remote control, it sends a command. The infrared sensor
attached to the EV3 brick will receive this command and, using this information, the EV3
brick can determine which button or combination of buttons was pressed.

At the heart of the RC program is a switch. The switch uses the IR sensor to read the signals
sent by the infrared remote. Then, the switch chooses to execute one of its cases depending
on the combination of buttons that was pressed on the remote.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[57]

Add a switch block into your program. Make sure that it is placed within the loop. Then,
change the mode of the switch to Infrared Sensor | Measure | Remote. This puts the IR
sensor into receiver mode. The IR sensor on the Omnilander is in port 4, so the default port
setting on the switch is correct. Remember to match the channel on the remote to the
channel specified on the switch:

By default, the switch has two cases. With the switch set to Infrared Sensor | Measure |
Remote, we have the option to add more cases to the switch, which allows the robot to
respond to more button commands. We will need more cases for this specific RC program,
so press the Add Case button eight times for a total of 10 switch cases:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[58]

Configuring the switch cases
We have a switch with the correct number of cases, but we need to set up each case. For
each case, we will do two things: first, we need to define the combination of buttons that
will activate that case, then we will need to write the code that we want the EV3 to execute
when that case is active.

Though this RC program is fairly straightforward, this is where the program can become
monotonous and confusing. We have 10 cases to program, so writing this program will get
pretty repetitive. Not to worry though, because soon you will have a working RC program!

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[59]

The first case to set up is our default nothing case. This case will execute when none of the
remote buttons are pressed and it will stop all of the robot's motors. To define the button
combination, click on the tab at the top of the switch case and select button ID 0, no buttons
pressed. Because this is the default case (when nothing happens, the robot stops), click the
circle on the left side of that tab to assign this case as the default case; this is something that
we will only do for this case. Finally, program what you want the robot to do when no
remote buttons are pressed: add a move tank block into the case and simply set its mode to
Off. Your completed first case should look like this:

Then, we move on to our second case. This one will execute when only the top-left button is
pressed, and it will cause the Omnilander's left track to drive forward, resulting in a right
turn. Define the button combination using the tab at the top of this new case; we will need
button ID 1 here. Then, program the action that the robot will complete: add a move tank
block and set its mode to On. Set the power for each drive motor: enter a power value of
-100 for the left motor (port B) and a power value of 0 for the right motor (port C). This will
spin the left track forward at full power while the right track is stopped.

Why do we need to set a negative power for the Omnilander to drive forward? This has to
do with the drive motor's orientation within the robot chassis. In this specific robot, the
drive motors are upside down relative to their normal position, so the direction that the
motor spins is mirrored. If you recall when we programmed the Security Tank, we did not
have to negate the motor powers because the drive motors were in the more conventional
normal orientation.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[60]

For future reference, when programming the Omnilander's drive motors, remember that a
negative power will make the robot drive forward, and that positive power will make it
drive in reverse.

The completed second case should look like this:

Now, we are ready for our third case. This one will execute when only the bottom-left
button is pressed and cause the left track to drive in reverse, resulting in a reverse left turn.
Define the button combination (ID 2) and add a move tank block. Set the block's mode to
On, and set the power of the left drive motor to 100, and the power of the right side to 0:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[61]

Case four runs when only the top-right remote button is pressed and drives the right track
forward, causing the Omnilander to make a left turn. Select button ID 3 and add a move
tank block. Set its mode to On and set the power values to 0 (left) and -100 (right):

Case five runs when only the bottom-right button is pressed. This case drives the right track
in reverse, which makes the robot do a right turn in reverse. Select button ID 4 and set up
the move tank block with a left motor power value of 0 and a right power value of 100:

See how this type of programming can get repetitive and monotonous after a while? That is
because we need to tell the robot what to do for each possible combination of buttons that
we plan to use. At this point, we are halfway finished.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[62]

Now, we need to program the instructions for when two buttons are pressed
simultaneously. With tank-style steering, each track is controlled independently, so this is
how you get the robot to drive forward, reverse, or make a spin turn.

Our first two-button case executes when both top buttons are pressed. This will drive both
the left and right tracks forward to make the tank drive forward in a straight line. Select
button ID 5 and set up a move tank block with both drive motors set to a power of -100:

What if the left-front button is pressed at the same time as the bottom-right button? The
robot will drive its left tread forward while spinning its right tread in reverse. This will
cause it to do a clockwise spin turn. Select the button combination (ID 6) and add a move
tank block; set the left drive motor power to -100 and the right motor power to 100:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[63]

Now, we will program the mirror image: if the bottom-left button and the top-right button
are pressed simultaneously, the robot will do a counter-clockwise spin turn. Select button
ID 7 and set up the move tank block accordingly; the power values will also be a mirror
image, with the left motor power set to 100 and the right motor power set to -100:

If both bottom buttons are pressed, the Omnilander will drive in a straight line in reverse.
Select button ID 8 and program in a move tank block with both drive motors set to a power
level of 100:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[64]

The final case executes when the large toggle button at the top of the remote is pressed. This
will trigger the automated climbing sequence to get the Omnilander to climb over an
obstacle. The button ID for this case is 9.

This case will have three motor blocks. The first is a medium motor block, which deploys
the climbing mechanism and hoists the Omnilander over the obstacle. Set the medium
motor block to On for Rotations and make sure motor port A is selected. Then, set the
motor to spin at -100 power for 14 full rotations.

The second block in the sequence is a move tank block. This block drives the robot onto the
obstacle after it has lifted itself up. This block should be set to On for Seconds, with both
drive motors turning at -35 percent power for 1.4 seconds.

The final block is another medium motor block. This block simply retracts the climbing
mechanism to allow the Omnilander to drive away. So, this block will be the same as the
first (On for Rotations, 14 rotations), with the only difference being that the power is set to
 100 to get the motor to turn in the opposite direction:

Why is the programming for the climbing sequence so simple? It is because in this
robot, the difficult work is done by the hardware. The programming can be as simple as
turning motor A on for 14 rotations because more effort was put into designing a
sophisticated mechanical system that could coordinate many of the actions by itself.
Therefore, you can say that the hardware in this robot is pretty smart! Compare this to the
Security Tank, which had simpler hardware but more complex software. This is another
decision you may need to consider when making your own smart robot: whether to make
the hardware more sophisticated to simplify the software, or vice versa. You will make this
decision based on your available materials, the goal you are trying to accomplish, and your
own skills.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[65]

That is the completed RC program! Although it took a while to make, you can now control
the Omnilander with the remote control and explore its off-roading capabilities.

Autonomous mode
This program allows the Omnilander to operate without human intervention. The robot will
drive around autonomously and use its proximity sensors to avoid collisions. It will also
use its proximity sensors to estimate the height of a vertical obstacle and determine whether
it can climb over it. If it decides that the obstacle is low enough, the Omnilander will run its
automated climbing procedure to scale the obstacle.

Setting up the loop and switches
As with the RC program, the first step is to add an infinite loop into which the rest of the
code will be placed:

The EV3 will first check the status of the US sensor (port 1). Since this sensor is mounted
low, it will see almost all of the obstacles that the Omnilander will encounter. If the US
sensor sees an obstacle that is less than 20 centimeters away, the robot knows that a collision
is imminent and it must decide whether to climb or steer away.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[66]

To program this step, add a switch block and set its mode to Ultrasonic Sensor |
Compare | Distance Centimeters. Make sure that you select sensor port 1. Then, set the
threshold value; the EV3 should be looking for a distance value of less than 20 centimeters
(< | 20):

Programming the false case
We will program the false case for this switch first because it is very straightforward. This
case executes when the US sensor does not see an obstacle within 20 centimeters of its
current position. There are no nearby obstacles, so the Omnilander does not need to take
any action to avoid a collision. Therefore, the robot can simply continue driving forward.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[67]

In the false case of the US sensor switch, simply place a move tank block. Set its mode to
On and set the power level to -75 for both drive motors. This will keep the robot driving in
a straight line until the US sensor sees a nearby obstacle:

Programming the true case
What happens if the US sensor does detect an obstacle within 20 centimeters? This means
that a collision is imminent and the EV3 must make a decision: attempt to climb over the
obstacle or steer to avoid it.

The autonomous program decides which action to take based off of the reading on the IR
sensor, which is in the high position. If the IR sensor also detects the obstacle, the robot
knows the obstacle is too high to climb, and it must steer to avoid it. However, if the upper
sensor does not see the obstacle, the robot knows that the obstacle is low enough and it will
attempt to climb it:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[68]

We program this decision using another switch, this time using the IR sensor in port 4. The
switch's mode should be set to Infrared Sensor | Compare | Proximity. As you can likely
guess, this makes use of the IR sensor's proximity functionality (the Security Tank used the
beacon tracking function, and the RC program we just made uses its functionality as an
infrared receiver).

Verify that port 4 is selected. Then, set the threshold value to less than 35 centimeters (< |
35). This value is slightly larger than the US sensor's threshold value of 20 centimeters
because the IR sensor is mounted farther back on the robot than the US sensor.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[69]

When you finish setting up your IR sensor switch, it will look like this:

Programming the obstacle avoidance sequence
If both proximity sensors see the obstacle, the obstacle is too tall to climb and the
Omnilander will steer to avoid it and continue on in a new direction.

Add two move tank blocks to the true case of the IR sensor switch. Change the mode of the
first block to On for Seconds. Then, set the power levels of each of the drive motors: the left
motor should be set to a power of 0 percent, and the right motor should be set to 100
percent. Set the duration of the turn to 1.8 seconds. This makes the robot perform an
approximately 90-degree right turn in reverse. Finally, change the mode of the second move
tank block to Off. This will momentarily clear the power values assigned to each drive
motor:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[70]

At this point, if the proximity sensors no longer see an obstacle when the turn is complete,
the obstacle has been avoided successfully and the Omnilander will continue driving in this
new direction. If the path is still not clear, the robot will repeat the turn until the proximity
sensors no longer detect an obstacle.

The 90-degree turn is simple but not necessarily the most elegant solution. You may choose
to change the style of turn to make obstacle avoidance smoother. You can even try adding
additional sensors to make a more sophisticated obstacle avoidance sequence.

Programming the climbing sequence
If the IR sensor does not see the obstacle, then the obstacle is low enough that the
Omnilander can attempt to climb it. The climbing sequence will be programmed into the
false case of the IR sensor switch.

The climbing sequence will be similar to the one we made for the RC program. The first
block is a move tank block set to On for Seconds, and it will power both drive motors
forward at -35 percent power for 1.8 seconds. This block allows the robot to close the 20-
centimeter gap between it and the obstacle it just detected.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[71]

Now, the robot is in position to climb the obstacle. The remainder of the climbing sequence
is identical to the one we made for the RC program. A medium motor block rotates the
motor in port A for 14 rotations at -100 percent power to deploy the climbing mechanism
and pull the Omnilander up and onto the obstacle. The move tank block drives the tracks
forward at -35 percent power for 1.4 seconds to move the robot completely onto the
obstacle. Finally, the last medium motor block runs the motor in port A at 100 percent
power for 14 rotations to retract the climbing equipment:

After that, the program repeats; the EV3 reads its sensors again to determine which of the
conditions to run.

Putting it all together
When all of the pieces are put into place, the complete autonomous program looks like this:

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[72]

Now you have completed two programs for the Omnilander! You are ready to traverse
some extreme terrain!

Summary
That was a lot of information, so let's summarize the key ideas.

For the first time, we saw how well-designed hardware can coordinate a complex action on
its own and decrease the complexity of the software; we can consider this hardware to be
smart. We also expanded our knowledge of mechanisms. We revisited tank treads and used
a sturdier construction with more traction that was more suitable for the Omnilander's off-
road application. We learned about how worm gears are a convenient way to obtain a
mechanical advantage and one-way rotation within a compact footprint. We created our
first application for the rack-and-pinion mechanism, a type of linear actuator; we will use
rack-and-pinion for a different application later in this book when we build the Falcon race
car. Lastly, we saw how a clutch gear can introduce some slip to prevent a gear train from
jamming up.

We used the IR sensor again, but this time we used two different functionalities of the
sensor: we used the sensor as a receiver for a remote control and as a proximity sensor. We
also introduced the US sensor, a very accurate type of proximity sensor.

Omnilander – Ultimate All-Terrain Vehicle Chapter 3

[73]

We reviewed some of the programming techniques we learned in the last chapter and built
on our knowledge with some new techniques. We programmed a pair of proximity sensors
and used them together in the program to help the robot make some decisions about how to
react to its environment. We programmed an infrared receiver and made our first tank-style
RC program, which we will expand upon when we make the Falcon race car. We revisited
feedback loops and reapplied our knowledge of switches to use them for new sensors.

Finally, we learned about another important decision that you may need to make when you
make your own smart robot: whether to make the hardware more complex to simplify the
software, or vice versa. This is a decision you will make based on your engineering goals,
your available materials, and your own personal skill set.

In the next chapter, we will be looking at the engineering at work behind one of the original
EV3 one-kit wonders, the famous Timmyton!

4
Timmyton – Interactive Robotic

Shark
Next, we will be building the Timmyton, an interactive robotic shark that features a myriad
of cool functions and has a unique personality. This robot has become a popular
MINDSTORMS icon because it can be built using only the parts from one EV3 retail set
(31313), making it accessible to young robotics enthusiasts. It was among the first robots to
feature a custom GUI, which streamlines five different operating modes within one
program.

In this chapter, we will take a look at how the Timmyton manages to have so many
mechanical features and such a compact footprint. We will examine each of the simple
machines that work together to animate the Timmyton.

The Timmyton's sophisticated programming makes it a great example of a smart robot. We
will program the Timmyton's custom GUI, which will give you the knowledge you need to
make a GUI for your own smart robot. GUI's have other applications within the world of
LEGO robotics, including FIRST LEGO League. Then, we will program the Timmyton's
operating modes. We will revisit some previously learned concepts, such as beacon
tracking, remote control, and tank steering, but also introduce some new concepts, such as
the color sensor. Perhaps most importantly, we will discuss how different elements of the
programming contribute to the Timmyton's unique personality.

Timmyton – Interactive Robotic Shark Chapter 4

[75]

What are we waiting for? It is time to make this iconic EV3 smart robot:

Technical requirements
You must have EV3 Home Edition Software V1.2.2 or newer installed on your computer.
You may also install LEGO Digital Designer (LDD) V4.3 and download the LDD file for this
project to guide you in the building process.

The LDD file is available on the Downloads page of the the Builderdude35 website:

http:/​/​builderdude35. ​com/ ​download/ ​timmyton- ​ldd/ ​

The LDD and EV3 files for this chapter are available on GitHub:

https:/​/​github.​com/ ​PacktPublishing/ ​Building- ​Smart- ​LEGO- ​MINDSTORMS- ​EV3- ​Robots/
tree/​master/​Chapter04

Check out this video to see the robot in action:

https:/​/​goo.​gl/​zfLcf8

http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
http://builderdude35.com/download/timmyton-ldd/
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter04
https://goo.gl/zfLcf8
https://goo.gl/zfLcf8
https://goo.gl/zfLcf8
https://goo.gl/zfLcf8
https://goo.gl/zfLcf8
https://goo.gl/zfLcf8
https://goo.gl/zfLcf8
https://goo.gl/zfLcf8
https://goo.gl/zfLcf8

Timmyton – Interactive Robotic Shark Chapter 4

[76]

Mechanical design
We will start by dissecting the physical components that make this one-kit wonder tick.

Drivetrain
Like the Omnilander and the Security Tank, the Timmyton uses tank-style steering to drive
around. However, one glaringly obvious difference should jump out at you—the Timmyton
does not have tank tracks! How can it have tank-style steering without having tank tracks?

Even though there are no tank tracks, the drivetrain is still classified as tank-style because
the Timmyton steers by varying the power sent to each side. In place of tank tracks, the
Timmyton has wheels. One wheel is directly connected to each EV3 large drive motor. The
ports for the drive motors follow the typical EV3 convention: the left drive motor is plugged
into port B, and the right drive motor is in port C. The two drive wheels are tucked tightly
together within the chassis so that they do not disrupt the Timmyton's shark-like
appearance:

Timmyton – Interactive Robotic Shark Chapter 4

[77]

The robot needs a third point on which it can distribute its weight. Near the rear of the
robot is a caster wheel. A caster wheel is a small wheel mounted on a vertical axle so that it
can swivel in any direction. A caster wheel was chosen for the Timmyton because it can
pivot in any direction, meaning it will follow the front two wheels wherever they steer,
ensuring maneuverability in every direction. Caster wheels are the go-to choice whenever
an engineer needs a floating wheel that will support the machine's weight without
hindering mobility:

Cosmetics
When designing the Timmyton, considerable effort was put into designing its exterior.
Visual impact is imperative for the Timmyton, more so than either of the other robots we
have made so far. If you are building a shark-like robot, you need to make sure that it looks
the part! Several aspects of the Timmyton were designed with a purely cosmetic purpose so
that the robot is instantly recognizable as a shark.

Timmyton – Interactive Robotic Shark Chapter 4

[78]

Chassis
The Timmyton's chassis was carefully designed to have a fish-like silhouette. At the center
is a rectangular frame that houses the EV3 brick and all three of the motors. A snout-like
sub-frame protrudes from the front of the core chassis. In the back, a triangle-shaped frame
tapers the chassis down into the tail to complete the sleek, hydrodynamic profile:

Timmyton – Interactive Robotic Shark Chapter 4

[79]

Pectoral fins
What would a shark be without its fins? On either side of the chassis, a fin protrudes from
the Timmyton's profile. The fins are made from the short, curved EV3 panels placed on an
angle beam. The fins' secondary purpose is to hide the drive wheels:

Timmyton – Interactive Robotic Shark Chapter 4

[80]

Jaws
One of the first things that come to mind when you hear the word shark is a pair of powerful
jaws filled with sharp teeth. Thankfully, the Timmyton has this covered! Its huge jaw opens
wide, ready to chomp on some LEGO bricks. The white tooth-like elements included in the
EV3 set serve as the Timmyton's teeth:

Timmyton – Interactive Robotic Shark Chapter 4

[81]

Tail
A slender tail made of the long red blade elements included in the EV3 set completes the
visual package:

Now that the decorative jaws and tail are in place, we need to get them to move! That will
add an extra dimension to the Timmyton's visual impact, make it more interactive, and
enhance the overall wow factor.

Timmyton – Interactive Robotic Shark Chapter 4

[82]

Animating the jaws and tail
The Timmyton's jaws and tail are motorized by the same EV3 medium motor, which is
plugged into port A. The medium motor is situated between the two drive motors.

A special gearbox splits the medium motor's power so it can simultaneously power the jaws
in the front and the tail in the rear. A bevel gear directly attached to the medium motor's
output meshes with two gear trains; it meshes with another bevel gear through a 90-degree
connection to transfer power to the jaws, as well as a set of gears located above it, which
transfer power to the tail.

Bevel gears are a special type of gear; they have a conventional circular
shape like spur gears, but the corners of their teeth are cut at an angle. This
allows them to form 90-degree connections with one another while still
being able to form conventional parallel gear meshes like spur gears can.
The Timmyton takes advantage of the bevel gear's ability to form both
types of connections; this is how the Timmyton splits the power from one
motor within a compact footprint.

The gearbox is visible on the underside of the robot near the mouth:

Timmyton – Interactive Robotic Shark Chapter 4

[83]

Chomping jaws
The 90-degree bevel gear connection increases the motor's rotation speed by a ratio of 1:1.67,
increasing the speed of the jaw. A pair of 24-tooth spur gears transfers the power higher. A
five-stud beam links the lower jaw to the top spur gear. The beam is connected off-center on
the gear, giving the gear a cam-like effect, causing the beam to reciprocate. As a result, the
jaws continuously cycle up and down when the medium motor spins:

Wagging tail
A long driveshaft that runs nearly the entire length of the robot transfers the motor's power
rearward to animate the tail. The motor's power is redirected through a 90-degree
connection and slightly reduced by a ratio of 1.67:1. This is coincidentally the inverse of the
gear ratio used to transfer power to the jaws, which means that the tail cycles slower than
the mouth.

After the power is redirected to 90 degrees, a cam mechanism produces a reciprocating
motion through the connected rod. The rod connects to the tail, causing it to continuously
cycle left and right as the motor spins. Sounds familiar, right? This is similar to the cam
mechanism used to cycle the jaws.

Timmyton – Interactive Robotic Shark Chapter 4

[84]

The cam mechanism that animates the tail is located at the rear of the robot:

The best part about using cams to move the jaws and tail is that both will cycle continuously
as the motor spins. So, all you have to do is set the motor to run continuously at a desired
speed and the mechanisms do the rest!

Sensors
The Timmyton incorporates two sensors into its design—an infrared sensor and a color
sensor. The program makes full use of each of these sensors' functions to create a rich
interactive experience.

Timmyton – Interactive Robotic Shark Chapter 4

[85]

Infrared sensor
An EV3 infrared sensor (port 4) is located in the Timmyton's nose, giving it a clear line of
sight to any obstacle or an infrared remote. We have already used the IR sensor extensively,
so this will all be a review. The Timmyton's program makes use of all three of the IR
sensor's functions: proximity sensor, receiver, and beacon tracker:

Color sensor
The color sensor, plugged into port 3, is located in the Timmyton's mouth. The color sensor
is used in Hungry mode, when the sensor gives the robot a sense of taste. You can feed the
Timmyton LEGO bricks, and it will react differently to each flavor block you feed it. When a
LEGO brick is placed in the Timmyton's mouth, the color sensor will recognize the color of
the brick. Each color represents a different flavor, and the Timmyton will react differently to
each one.

Timmyton – Interactive Robotic Shark Chapter 4

[86]

In the next section, we will program Hungry mode, among other interactive features:

Programming
The Timmyton's program is very complex, more so than anything we have made so far.
That is because it is essentially five programs rolled into one, plus the programming for the
GUI. Don't fret, though! There will be plenty of new concepts, but at the same time, a good
chunk of the programming will be reviewed from the previous few chapters. We will walk
through this step by step in a neat, orderly fashion.

Now, it is time to program some interactive features and bring the Timmyton to life.

Timmyton – Interactive Robotic Shark Chapter 4

[87]

GUI
When the user starts the Timmyton's program, he or she will be greeted by this screen on
the EV3 display:

Timmyton – Interactive Robotic Shark Chapter 4

[88]

This is the Timmyton's graphical user interface, or GUI, which allows the user to select one
of five operating modes within the same program. After selecting an operating mode, the
user can exit and return to this menu screen to select a new operating mode. Pressing the
back button on the EV3 brick at any time will exit the whole program and return the EV3
back to its home screen.

The Timmyton's custom GUI is among the robot's most innovative features. It streamlines
all of the robot's programs into one user-friendly package. This added ease of use enhances
the Timmyton's fun factor and has helped contribute to its popularity.

A GUI has additional applications within the realm of LEGO robotics—many FIRST LEGO
League (FLL) teams have decided to use custom GUI's and/or program sequencers to make
changing programs quicker and easier, saving precious time on the competition field. In the
real world, a GUI is used to ease interaction between people and machines. The Windows
operating system is a real-world example of a GUI; it makes using a computer easier and
more accessible by presenting the computer's features, functions, and programs in a way
that is easier for people who are not computer experts to understand.

Now, let's program the GUI! Keep in mind that while we are making this one for the
Timmyton, you can follow these same steps to make a different one for your own smart
robot.

Creating the menu graphics
We will use the EV3 programming environment's built-in Image Editor to make the menu
graphics. In the top-left corner, click on Tools | Image Editor to pull it up. In the Image
Editor, you can draw, write text, import and modify images, and save them to use them in
your program.

Timmyton – Interactive Robotic Shark Chapter 4

[89]

The home screen for the Timmyton was created by importing an image of the EV3 brick
buttons, cleaning it up a bit, then typing the names of the corresponding operating modes
onto each button:

The number 5.7 after the Timmyton's name on the menu graphic indicates
that the current version of the Timmyton is 5.7. It took many revisions to
refine the Timmyton to the polished state it is in now. As a matter of fact,
all of the robots featured in this book have been revised at least once from
their original designs. Keep this in mind when you build your own smart
robot. It is very rare that an engineer gets a project perfect on the first try,
so do not be afraid to experiment and continue modifying your design!

Timmyton – Interactive Robotic Shark Chapter 4

[90]

You will also need to make a graphic for each of the operating modes so the user knows
which one is active. There is no need for anything fancy here; you can simply type the name
of the operating mode on the screen. Here is the display for Funky mode for reference:

Programming the GUI
We will start the program the same way we have started every program so far: with an
infinite loop that encloses the rest of the program.

Timmyton – Interactive Robotic Shark Chapter 4

[91]

Then, add in some code to start making the GUI. These first few blocks are for initialization.
The blocks, in order, do the following—clear the EV3 display, print the custom menu to the
display, stop all of the motors, then set the brick LED to blink green. The Timmyton makes
extensive use of the brick LED to add an extra dimension to the user-robot interaction:

After the initialization code, insert a switch block. Change its mode to Brick Buttons |
Measure | Brick Buttons. Make sure that you activate tabbed view; otherwise, the program
will become too cumbersome and confusing.

This switch is very important because all of the programming for the operating modes will
go inside. Each mode is a case within the switch, and when a brick button is pressed, the
switch will activate the corresponding operating mode:

Timmyton – Interactive Robotic Shark Chapter 4

[92]

Next, set up the cases. There are two by default, so add four more for a total of six. Assign
each brick button to its own case. Finally, set the blank case (not buttons pressed) as the
default case:

Timmyton – Interactive Robotic Shark Chapter 4

[93]

Each case needs to have some of the same basic programming within it—a display reset
block, a block to print the name of the operating mode to the display, and finally a loop
block.

The loop block must be named Mode Loop. You can name a loop by clicking on the tab at
the top and typing the name in. This is the first time that we have needed to name a loop; it
is imperative that we do this because we will refer to this loop from another part of the code
when we program the loop interrupt:

Now, time for something totally new: dragging out another start block! Place it beneath the
line of code blocks we were just working on. We are making a second task, a small piece of
code that will run simultaneously in parallel with the main task. Add an infinite loop to this
new branch. Within the loop, add a wait block, set its mode to Brick Buttons | Compare |
Brick Buttons, select the center brick button as the one to monitor (button ID 2), and set the
state to 2. The wait is set up so that the program will proceed when the center brick button
is pressed and released. Finally, add a loop interrupt block directly after the wait. Select
Mode Loop, the loop we just set up, by clicking the top-right corner of the loop interrupt
block.

This short second branch is very important. It ensures that when the center brick button is
pressed, Mode Loop is interrupted, allowing the EV3 to exit whichever operating mode is
active and return to the menu so the user can select a new operating mode:

Timmyton – Interactive Robotic Shark Chapter 4

[94]

The completed GUI looks like this. Keep in mind that you can adapt this for any smart
robot:

It is now time to fill that switch with code to make some fun operating modes!

Timmyton – Interactive Robotic Shark Chapter 4

[95]

Operating modes
We will start with the default blank case. If no brick buttons are pressed, no mode is active
and the robot is idle. So, leave this case empty:

Remote control
Our first operating mode will be a review from the last chapter. Remote Control (RC) mode
works exactly as the name implies; you can use the EV3 remote to control the Timmyton.

Within the Mode Loop, place the switch block and fill in the cases to make the RC mode.
Note that the switch is in tabbed view mode to save space. We already covered
programming tank-style RC in detail in the last chapter; since the RC programming for the
Timmyton is largely the same, you can refer to the previous chapter for full instructions on
how to program this. The only difference you will notice is that since the Timmyton's drive
motors are placed in the conventional orientation, you do not need to negate the input
power values; positive power will make the Timmyton drive forward:

Timmyton – Interactive Robotic Shark Chapter 4

[96]

We will program the Timmyton to do something different when the top toggle button is
pressed. Add a medium motor block (port A, On, power 100 percent) and a brick LED
block. When the button is pressed, it will toggle the Timmyton's motorized jaws and tail
and turn the brick LED red. Fit for a fearsome shark! (Recall from earlier in the chapter that
the jaws and tail are designed so that continuous rotation of motor A will cause the two to
continuously cycle.) The completed final case looks like this:

Jaws
Here is a fun operating mode, inspired by the famous movie of the same name. In this
mode, the Timmyton will frantically move its jaws and tail, hunting down the infrared
beacon while playing the infamous music! This is a beacon-seeking program, very similar to
the one we made for the Security Tank.

Timmyton – Interactive Robotic Shark Chapter 4

[97]

Navigate over to the switch tab that has the right brick button highlighted. As usual, add
the display reset and display print blocks at the beginning. Then, add a medium motor
block (port A, On, 100 percent power). This motor block keeps the jaws and tail moving
continuously while the operating mode is active:

Now, it is time for something new: drag out two loops and place one under the other. Name
both loops Mode Loop. Split the programming's flow so that it branches off to both loops.
Drag the program's flow cable to create a new branch by clicking on the small tab on the
right edge of the last block in the original branch, and drag the cable over to the first block
in the new branch:

Timmyton – Interactive Robotic Shark Chapter 4

[98]

Program the beacon follower inside the top loop. You can follow the same steps we used to
make the beacon follower for the Security Tank (refer back to Chapter 2, Security Tank –
Object-Tracking Robot, for detailed instructions). Here, the beacon follower first checks for
the presence of a nearby beacon using an IR sensor block and a logic switch.

If a beacon is present, the true case will activate and the robot will follow the beacon. The IR
sensor will measure the beacon's heading and proximity and use them to adjust the robot's
steering and power, respectively. The k value for the heading/steering control is -2, and
the k value for the proximity/power control is 4.

As you read through the Mechanical design section of this chapter, you may
have noticed that the IR sensor is placed upside down. This was done to
make mounting the sensor more convenient. We compensate for this in the
program by making the k value for the Timmyton's heading/steering
adjustment negative.

If no beacon is detected, the false case activates, which simply halts the drive motors and
turns the brick LED orange:

What about that second loop that we made? We will use it to run a second, smaller segment
of code in parallel to the beacon tracking. This loop makes the Timmyton play a version of
the ominous Jaws theme as it tracks the beacon. Place two sound blocks inside of the lower
loop and set them both to Play Note. The first sound block will play a C4 (lowest note) for a
duration of 0.25 seconds, and the second block will play a C#4 (half a step higher) for 0.3
seconds. This will repeat indefinitely while the Jaws mode is active, adding to the ominous
mood while the Timmyton tracks its prey.

Timmyton – Interactive Robotic Shark Chapter 4

[99]

We also need to set the exit case for the lower loop to Brick Buttons | Compare. Set the
middle brick button (button ID 2) as the target button, and select action 2, pressed and
released. This is a redundant addition because of the loop exit branch we made when we set
up the GUI earlier, but since Jaws mode has two branches running in parallel, the
redundancy acts as a fail safe, adding an extra layer of security and ensuring the program
runs smoothly without errors:

Hungry mode
Select the switch tab with the top brick button highlighted; it is time to program Hungry
mode! In this mode, you can feed the Timmyton LEGO bricks. The color sensor in the mouth
will recognize the color of the blocks, and the robot will react differently to each one.

You may notice that the switch block has expanded quite a bit. It will
continue to expand as we add more programming. It will still be very
large if you open up an empty switch case because it stretches to meet the
size of the case with the largest program chunk and remains that size for
all of the other cases.

Start by adding the typical blocks, plus a medium motor block (port A, On for Rotations,
total of three rotations), placed directly before Mode Loop:

Timmyton – Interactive Robotic Shark Chapter 4

[100]

Set up a color sensor switch (port 3, Color Sensor | Measure | Color). Add four additional
cases and assign each one to one of the following colors: no color, blue, green, yellow, red,
and white. Set the no color case to the default case. This executes when no color blocks are
detected by the color sensor. Leave this case empty:

Timmyton – Interactive Robotic Shark Chapter 4

[101]

Now, we need to go through the rest of the switch cases and program the reaction that the
Timmyton will have when it encounters each block. You have quite a bit of freedom to
program the reactions, so get creative here! You can choose which color bricks the
Timmyton likes to eat, which it will not eat, or think outside of the box! Each reaction starts
with the Timmyton playing a sniffing sound and saying the color of the block. If the block is
one of the preferred colors, the EV3 LED will light up green. If it is one of the colors the
Timmyton dislikes, the brick LED will light up orange.

For reference, sample reactions are included here:

Blue: One of the accepted colors. The Timmyton will say okey-dokey and chew on
it for a second (running the jaws and tail while playing the crunching sound file):

Green: One of the colors the Timmyton dislikes. The robot will exclaim Boo!, then
turn away quickly to reject the food:

Yellow: The second preferred color. The Timmyton will say fantastic and chew on
it for a few seconds (very similar to its reaction to the blue block):

Timmyton – Interactive Robotic Shark Chapter 4

[102]

Red: This will make the shark-like robot aggressive! The brick LED will light up
red and the Timmyton will growl. Then, the shark will charge ahead at full speed
for three seconds with its jaws and tail moving furiously:

White: This one causes the Timmyton to have an allergic reaction! The robot will
exclaim uh oh and sneeze while twitching:

What kinds of creative reactions will you come up with?

Timmyton – Interactive Robotic Shark Chapter 4

[103]

Funky mode
In this mode, the Timmyton will play a simple dance tune while moving back and forth and
flashing the brick LED in a multicolor pattern. Navigate to the switch tab with the bottom
brick button highlighted. Then, set up this mode with the usual two display blocks, plus a
wait with the duration set to 1 second, a medium motor block (port A, On, 100 percent
power), and Mode Loop:

The programming for the dancing, music, and lights goes inside of Mode Loop. Fairly
straightforward, right? Here is the program that gets the Timmyton to play and dance along
to a simple waltz tune:

Timmyton – Interactive Robotic Shark Chapter 4

[104]

Yikes! The program itself is not too difficult, but because you need to program every
individual note in the song and every corresponding action, this section of code ends up
becoming very cumbersome. Note that there are four rows; the program flow moves from
left to right across a row, and when the program flow comes to the end of a row, it
proceeds to the beginning of the next row underneath. This saves space and makes the code
section easier to read.

If you so choose, you can try this simpler alternative instead:

Timmyton – Interactive Robotic Shark Chapter 4

[105]

Autonomous
During autonomous mode, the Timmyton will roam around randomly until it encounters
an object, then charge, stopping and turning around at the last second. This mode will be
similar to the one we made for the Omnilander, but we will introduce some new concepts.
Navigate over to the switch tab with the center brick button highlighted to program this
final operating mode. Start filling in the switch case with the usual initialization blocks, plus
a one second wait directly before Mode Loop:

Within Mode Loop, add a switch (port 4, Infrared Sensor | Compare | Proximity,
threshold value < | 35). This uses the IR sensor in the Timmyton's nose to check for nearby
obstacles.

Timmyton – Interactive Robotic Shark Chapter 4

[106]

Then, program the false case. This executes when there are no obstacles nearby. The
Timmyton will drive around randomly. First, the brick LED turns green. Then, to get a
wandering effect when the Timmyton drives, we will add two random number blocks
(from the math section). Set the minimum value to 1 and the maximum value to 100 for
both of them. Add a move tank block after the random number blocks (On, On for
Seconds, duration of 1 second). Then, plug the output of each random number block into
one of the power inputs on the move tank block. This code will generate a random power
value for each drive wheel and drive at these power levels for 1 second. Assuming that no
obstacle comes into view, two new power values will be randomly generated, and the
process repeats, giving the Timmyton's driving a wandering quality. When this code is
finished, it looks like this:

Timmyton – Interactive Robotic Shark Chapter 4

[107]

Now, we will program the true case, which executes when an object is present. The brick
LED will turn red and the Timmyton will aggressively charge the obstacle with its
chomping jaws and furious tail; program a medium motor block (port A, On, 100 percent
power) and a move tank block (port B + C, On, both motors at 100 percent power). After
that, place an infrared sensor switch (port 4, Infrared Sensor | Compare | Proximity,
threshold value ≤ | 8). This switch checks to see if the Timmyton has moved closer to the
object (if not, then it is no longer on track to collide with it):

The true case of this switch executes when the Timmyton is very close to the object. The
robot will stop its forward progress; drag out a medium motor block and a move tank
block, setting both to the Off state. Two move tank blocks will follow, which will get the
Timmyton to reverse, turn around, and continue in a new direction. The first block should
be set to On for Seconds with both drive motors set to -75 percent power for a duration of
1 second. The second block should be set to On for Degrees with the left drive motor set to
75 percent power and the right motor set to -75 percent power for a duration of 1 second.
After this, the Timmyton will continue in a new direction:

Timmyton – Interactive Robotic Shark Chapter 4

[108]

The false case of the switch executes if the Timmyton loses sight of the object while charging
it. Inside the false case, place yet another IR sensor switch block (port 4, Infrared Sensor |
Compare | Proximity, threshold value ≥ | 37). In the true case of this switch, insert a move
tank block and a medium motor block, both set to Off:

And for the false case? Just leave it blank, which tells the Timmyton to continue charging:

Timmyton – Interactive Robotic Shark Chapter 4

[109]

Putting it all together
Here is the completed program for the Timmyton. Jaws Mode is shown in the mode switch.
Note that in this image, the music loop at the bottom-most branch of the Jaws mode
program has been compressed into a MyBlock. We will learn about MyBlocks in Chapter 6,
Falcon – Remote Control Race Car:

Give yourself a pat on the back, because you have just completed a very sophisticated EV3
program. Now, you can enjoy the fruits of your labor and show your new creation to your
friends and family.

Summary
Wow, we learned a lot in this chapter! Let's review what we covered.

We started by introducing some cool new building techniques, such as creating a unique
exterior design, using caster wheels for maximum mobility, and taking advantage of the
bevel gear's ability to make both parallel and 90-degree gear meshes. Then, we revisited
some of the engineering principles that we learned in earlier chapters, such as tank-style
steering (this time with wheels) and cam-and-rod mechanisms.

We also expanded our knowledge of EV3 programming. We learned how to make a custom
GUI, then incorporated the color sensor and the random number generator block for the
first time. We reapplied beacon following, tank-style remote control, and obstacle
detection/avoidance. Throughout the programming process, we saw some examples of how
creative programming can give a robot its own unique personality!

Timmyton – Interactive Robotic Shark Chapter 4

[110]

Finally, we learned that a project may need multiple revisions before it is polished enough
to be considered finished. In the case of the Timmyton, it took many revisions over the
course of a few years to arrive at the completed robot. Keep this in mind when you are
building your own smart robot; do not be discouraged if you need to redesign it!

By now, your library of EV3 knowledge is starting to become very deep. In the next chapter,
we will be making another interactive robot, but taking things in a whole new direction. It
is time to make Grunt, our first bipedal robot!

5
Grunt – Quirky Bipedal Robot

We have made three robots so far. By now, your library of robotics knowledge is becoming
fairly deep. Now, it is time to try something more ambitious. Meet Grunt, an interactive
robot that walks on two legs and has his own quirky personality! Grunt is a fictional alien
character from a distant planet, with arms and legs like a human's, but with a dinosaur-like
head and mouth.

When we build Grunt, we will be taking the mechanical design in a completely new
direction. All of the robots we have made so far have used a tank-style drivetrain with
either tracks or wheels to move around. Grunt does not rely on wheels to carry him around!
Instead, he has a simple walking mechanism that allows him to shuffle around on two feet.

Like the Timmyton from the previous chapter, Grunt has several different operating modes
that use his motors and sensors to create a fun interactive experience. The programming
gives him a whimsical personality. However, when we program Grunt, we will be
introducing a completely new technique. Where the Timmyton used a menu system to
allow the user to select the different modes, Grunt's programming will streamline all of the
modes into a simple AI-like program, so that the proper mode automatically activates based
on a sensor state. All of the sensors continuously monitor the environment for a change that
would prompt a specific operating mode to start. This type of program makes for an
extremely smooth robot that is more lifelike than the Timmyton. Pretty smart, right?

Grunt – Quirky Bipedal Robot Chapter 5

[112]

Let's make a walking robot biped:

Grunt – Quirky Bipedal Robot Chapter 5

[113]

Technical requirements
You must have EV3 Home Edition Software V1.2.2 or newer installed on your computer.
You may also install LEGO Digital Designer (LDD) V4.3 and download the LDD file for this
project to guide you in the building process.

The LDD file is available on the Downloads page of the the Builderdude35 website:

http:/​/​builderdude35. ​com/ ​download/ ​grunt- ​ldd/ ​

The LDD and EV3 files for this chapter are available on GitHub:

https:/​/​github.​com/ ​PacktPublishing/ ​Building- ​Smart- ​LEGO- ​MINDSTORMS- ​EV3- ​Robots/
tree/​master/​Chapter05

Check out this video to see the robot in action:

https:/​/​goo.​gl/​basaqB

Mechanical design
There are a lot of interesting techniques used in Grunt's design. We will take a glance at
each one.

Walking mechanism
What makes Grunt stand out from all of the other projects in this book is that he does not
use wheels or tank tracks to move around. Instead, he has a simple walking mechanism that
allows him to move around on two legs.

http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
http://builderdude35.com/download/grunt-ldd/
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter05
https://goo.gl/basaqB
https://goo.gl/basaqB
https://goo.gl/basaqB
https://goo.gl/basaqB
https://goo.gl/basaqB
https://goo.gl/basaqB
https://goo.gl/basaqB
https://goo.gl/basaqB
https://goo.gl/basaqB

Grunt – Quirky Bipedal Robot Chapter 5

[114]

Two EV3 large motors power the legs, one for each leg (ports B and C). Each motor directly
drives a large 36-tooth bevel gear, which serves two purposes—it acts as a cam onto which
one point of the leg is attached, and it transfers the motor's power through a 12-tooth gear
to a second 36-tooth bevel gear, which acts as the second point on which the leg is attached.
When the motor runs, the entire leg moves in a circular stepping motion. The two legs can
move independently of one another:

Grunt – Quirky Bipedal Robot Chapter 5

[115]

Because these legs need to support the weight of the whole robot, each leg is reinforced
using another beam, which attaches directly to the motor's red hub on the inside; it serves
as the third attachment point for each leg, making for a robust mechanism:

The system comes together to allow Grunt to shuffle around. This type of walking is very
slow and does not offer the much control, but considering that we made it with only two
motors and a simple cam mechanism, the walking is acceptable. Making a smoother, more
efficient walking mechanism requires many more motors and much more mechanical
complexity. The shuffle-walk is sufficient for Grunt.

Grunt – Quirky Bipedal Robot Chapter 5

[116]

Cosmetic design
Grunt is another example of a robot whose visual appearance is very important to the robot
as a whole. Grunt is a fictional creature from outer space, so appearance is a huge part of
the robot's personality. Here are some features that help Grunt look the part:

First, Grunt has an alligator-shaped head, complete with a motorized mouth filled with
sharp teeth. On either side of his head there is a bright blue eye, made using the round,
translucent blue element found in the EV3 Expansion Set and a round black element.

Grunt stands upright and has an arm on either side of his torso, which gives him a human-
like posture. The arms themselves are styled and detailed and even include three-fingered
hands. The EV3 brick is located in the center of Grunt's torso, making it easily accessible.

Finally, the wide, sturdy legs end in flat feet that are complete with toes!

All of these design features come together to make a handsome robot that looks like a
quirky alien creature:

Grunt – Quirky Bipedal Robot Chapter 5

[117]

Motorized functions
In addition to the two motors used for walking, Grunt includes two EV3 medium motors to
animate a couple of other motorized features.

Mouth
An EV3 medium motor located in the back of Grunt's head (port D) opens and closes the
mouth. The motor turns a cam-and-rod mechanism that is attached to the lower jaw. When
the cam rotates forward, the rod pushes on the top of the lower jaw and the mouth opens;
when the cam rotates in reverse, the rod pulls the mouth shut. Unlike the cams we used in
our previous projects, this cam does not have continuous motion. Instead, it rotates 45
degrees to toggle the mouth between the open and closed positions:

Grunt – Quirky Bipedal Robot Chapter 5

[118]

Arms
A second medium motor (port A) is located in the right side of Grunt's torso. This motor
raises and lowers Grunt's arms. The motor is positioned vertically and sends its power to
the right arm through a 90-degree gear connection that has a 3:1 gear ratio. The right arm is
always mechanically fixed to this motor through this gear set:

Grunt – Quirky Bipedal Robot Chapter 5

[119]

This same motor powers the left arm as well. However, the left arm is not mechanically
locked into the motor. Instead, a small clutch separates the half-shafts connected to each
arm. The clutch is set up so that as the motor starts to move the right arm up, the left arm is
disconnected and does not move. Once the right arm has moved halfway up, the clutch
locks and the motor moves both the left and right arms.

If that was a little bit confusing, think of it this way: the right arm starts raising first and,
when the right arm reaches the halfway point, the left arm starts to move up too.

The clutch was engineered into Grunt's arms because handshake mode requires that only
the right arm moves, but other modes need both arms to move. Handshake mode does not
need the arm to move up past the halfway point, but the other modes raise both arms all the
way up. So, the clutch is a mechanical feature that satisfies both of these conditions without
needing to use an independent motor for each arm:

Grunt – Quirky Bipedal Robot Chapter 5

[120]

A close-up LDD screenshot of the clutch gives us a clearer picture of how it works:

Some of the bricks are color-coded as a visual aid. The input (right) and output (left) are two
separate axles that are not directly linked. The input is fixed to the motor, so it always
rotates with the motor. The yellow block in-between the two plates is attached to the input
shaft and rotates as the motor rotates. The green ball-shaped pin is attached to the output
shaft. As the motor rotates the input shaft, the output shaft stays stationary until the yellow
block rotates around and makes contact with the green pin. The yellow block pushes on the
green pin as it continues to rotate, causing the output shaft to turn with the input shaft; the
clutch is now locked and transfers the motor's rotation to the output shaft.

Since the clutch allows one motor to do the work of two and stays within the available
materials (does not make the project exceed the EV3's limit of four motors), we can say that
Grunt is equipped with some smart hardware!

Sensors
To create a smooth, interactive experience, Grunt makes use of three sensors that constantly
monitor the environment to tell the robot which mode should be active: an infrared sensor,
a color sensor, or a touch sensor.

Grunt – Quirky Bipedal Robot Chapter 5

[121]

Infrared sensor
Grunt's infrared sensor (port 4) is located on the left side of his torso and tucked away so
that it does not alter his overall profile. The infrared sensor is primarily used as a proximity
sensor to detect when a person comes near to trigger Grunt's greeting:

Grunt – Quirky Bipedal Robot Chapter 5

[122]

Color sensor
The color sensor (port 3) is located in Grunt's mouth. Like the Timmyton, when a LEGO
block is placed in Grunt's mouth, the color sensor reads the color and Grunt reacts
according to the color of the block:

Touch sensor
This is a new sensor! The EV3 touch sensor is the simplest of all of the sensors. It has a
button on the front and the sensor returns either one of two states: true if the button on the
front of the sensor is pressed, or false if it is not pressed. This type of true/false logic is
known as boolean logic.

Grunt – Quirky Bipedal Robot Chapter 5

[123]

Grunt's touch sensor is plugged into sensor port 1 and is located in his right arm. His right
hand, which is made of red LEGO elements, is directly in front of the touch sensor. The
hand is designed so that when Grunt's hand is squeezed, it presses the button on the front
of the touch sensor, and the sensor returns a true value. A rubber band makes the hand
open up again when the person lets go, and the sensor returns a false value. This feature is
primarily used for Grunt's interactive handshake function:

Now, we will find out how to program these sensors and hardware to make a cohesive,
interactive robot!

Programming
Like the Timmyton, Grunt features one large program that incorporates all of his interactive
features. However, where the Timmyton required the user to switch modes using a custom
GUI, Grunt has a more sophisticated program that constantly monitors every sensor and
automatically activates the corresponding mode. This allows Grunt to seamlessly transition
between operating modes without user intervention, making him seem more lifelike. Let's
find out how to make this special interactive program!

Setting up a simple AI
Because Grunt makes decisions autonomously and mimics an intelligent creature, we can
consider his programming to be an example of a simple AI. This means that Grunt is the
smartest robot we have made so far!

Grunt – Quirky Bipedal Robot Chapter 5

[124]

Recall from the last chapter that the Timmyton's program consisted of one main switch that
activated an operating mode based on the brick button that was pressed. Grunt's method is
more sophisticated. In order to imitate autonomous decision making, Grunt's programming
relies on a series of nested switches. Each switch monitors a different sensor. If the sensor
detects that a pre-defined parameter is met, then the corresponding mode will activate; if
not, then the program continues down the line and checks the next sensor. If all of the
switches return false, Grunt idles and the sensors are checked again.

In the context of programming, nesting a switch refers to the practice of
placing a switch within another switch. This is an efficient way to create a
complex control system. Nesting many times will create a multi-tiered
decision-making process for a robot. In Grunt's program, several switches
are nested, with each checking a different parameter on one of the three
sensors.

Now that we know about nesting, we can proceed to set up the framework for Grunt's
decision-making program.

Initial code
Let's set up the first bits of code. Since Grunt will make use of the EV3 display to show
information about the program's status, the first block to add is a reset for the EV3 display.
Then, add a loop block, and set it to repeat infinitely. As with all of the other programs we
have made so far, all further programming will be placed within the main loop.

We have two more blocks to place. Inside the loop, add a display block that prints No Mode
to the EV3 display, which indicates that Grunt is idling. Then, add a block that changes the
brick LEDs to green. Grunt will make use of the brick LEDs throughout the program to
enhance the interactive experience, as well as indicate the status of the robot:

Grunt – Quirky Bipedal Robot Chapter 5

[125]

Nesting the switches
The first switch will check the status of the color sensor, which is used to activate hungry
mode. Add a switch block and set it to Color Sensor | Compare | Color and verify that
port 3 is selected. Then, define the set of colors as [1; 2; 3; 4; 5; 6; 7;]. This is every
color that the EV3 color sensor can detect (black, blue, green, yellow, red, white, and brown,
respectively). This means that whenever a LEGO brick of any color is placed into Grunt's
mouth, the switch returns true and hungry mode automatically activates. Note that no color
(ID 0) is excluded. That is because if no color is detected, the switch will return false and the
program will check the next sensor:

The code for the operating mode that corresponds with that sensor goes in the true case of
each switch. We will leave the true cases alone for now; we are setting up the skeleton for
the AI first. In the next section, we will return and fill in the switches with code for the
operating modes.

Grunt – Quirky Bipedal Robot Chapter 5

[126]

In the false case, we will place another switch, which checks the next sensor; this is where
the nesting starts. The second switch should be set to Infrared Sensor | Compare |
Proximity, the threshold value will be less than or equal to 30, and the sensor port will be 4.
This switch uses the IR to check if there is a person nearby; if so, then handshake mode
activates. If not, then the program checks the next sensor.

Your first nested switch will look like this:

Grunt – Quirky Bipedal Robot Chapter 5

[127]

The next nested switch will also check the IR sensor, but this time the IR sensor is in
infrared receiver mode. This switch activates RC mode, Grunt's remote control feature. The
switch should be set up as follows: Infrared Sensor | Compare | Remote, port 4, remote
channel 1. The set of remote button ID's should be: [1; 2; 3; 4; 5; 6; 7; 8; 9;].
This is similar to what we did for the color sensor switch; we chose almost all of the button
IDs so that RC mode activates when almost any button combination is pressed on the
remote. Note that we have not included ID 10 and 11; these are reserved because they are
used to exit RC mode. We will use them later:

Grunt – Quirky Bipedal Robot Chapter 5

[128]

Now, place another switch within the false case of the previous one. This one monitors the
state of the middle button on the EV3 brick and activates Grunt's Tantrum mode. The
switch should be set to: Brick Buttons | Measure. (Note that this is the only switch that is in
measure mode as opposed to compare mode.) Select button ID 2 (center button) for the top
case, and button ID 0 (no button) for the bottom case. Then, set the bottom case as the
default case. The completed switch for the brick buttons will look like this:

Grunt – Quirky Bipedal Robot Chapter 5

[129]

Finally, we have just one more switch left to nest! This switch monitors the touch sensor
and provides an alternative way to activate handshake mode, in which the user initiates the
handshake. Set the switch to Touch Sensor | Compare | State, select State 1 (sensor
pressed), and select port 1. This is the first time we have programmed the touch sensor, but,
as you can see, it is a very straightforward sensor. When the sensor is pressed, the switch
returns true and handshake mode activates; if the sensor is not pressed, the switch returns
false:

We have finished nesting the switches, which provides us with the generic skeleton for an
AI program. If you make a smart robot that has a tiered decision-making process, you can
adapt this code and add, subtract, and edit the switches and their assigned sensors.

Grunt – Quirky Bipedal Robot Chapter 5

[130]

The order in which Grunt's program checks the sensors was chosen because it minimizes
the chance that the switches will interfere with one another and cause the program to fail.
Make sure that you consider this when you adapt this code for your own smart robot.

Programming the modes
Now that we have the program's decision-making logic complete, we can start to fill in the
switches with code for the operating modes.

Hungry mode
This mode is a review of the Hungry mode we programmed for the Timmyton in the last
chapter, as it is fairly similar. The code for this mode will go inside the true case of the color
sensor switch.

The first few blocks will initialize the operating mode. Add a display block that prints
Hungry Mode to the EV3 screen, a brick LED block that shuts the LED's off, and a switch
(Color Sensor | Measure | Color, port 3). After the switch, place a move tank block that
turns motors B and C off:

Grunt – Quirky Bipedal Robot Chapter 5

[131]

But wait, what is that blue block after the display block? That is a comment. What does it
do? Nothing! That's right. Comments are a way for a programmer to leave notes within a
program and they do not affect the way that the robot executes the code. Comments are
extremely useful because they can store information about what the program is doing at
that point. Here, a comment is used as a label to indicate that this is the section of the
program that controls Hungry mode. Using comments is not only a good programming
habit, but it becomes increasingly important as the program becomes more complex. In a
text-based programming language such as C, Python, or Java, a comment can even be used
to temporarily remove a section of code, which makes them a great tool for debugging!

Use comments throughout your code; they will not only make your
program easier to navigate, but will also help someone who is not familiar
with your code understand it more easily. Commenting code is a practice
used by the most successful professional programmers, so start getting
into the habit of adding them today!

Now, we should set up that switch. Add a few more cases and assign each case to a color
that you want Grunt to react to. Make sure that you also include a null case that executes
when no color is detected and make it the default case:

Inside each of the switch cases, we will program Grunt's reaction to the assigned color. You
have a lot of freedom to program some creative reactions to the different color blocks the
user may feed him.

Here are some sample reactions Grunt can respond with when fed a certain color. Each time
he is fed a block, the brick LED lights up to indicate whether he likes the food, he says the
color of the block, and he reacts.

Grunt – Quirky Bipedal Robot Chapter 5

[132]

If he is fed a blue block (a type of food he likes), the brick LED will turn green and Grunt
will express his approval by saying the color name and saying Mmmm, then make a
crunching sound while he chews on it for a few seconds. The loop block moves his jaws to
simulate a chewing effect. Then, he opens his mouth to let the block drop out in anticipation
for the next block of food and closes his mouth:

Note that Hungry mode uses some custom sound files, which were made
using the Sound Editor within the EV3 programming environment. The
Sound Editor is found in the Tools menu. Using the Sound Editor is fairly
straightforward; it allows you to record, import, and edit sounds, then
save them for use in your project.

Red is another type of food that Grunt enjoys eating. If presented with a red block, he will
exclaim Yum!, and react in a similar manner:

Grunt does not like yellow blocks! If he is fed one, the brick LED's will light up orange, and
he will express his disapproval by spitting the block out:

Grunt – Quirky Bipedal Robot Chapter 5

[133]

Grunt also dislikes green foods and will reject them in a similar fashion:

A brown block elicits the most interesting reaction! The brick LEDs will light up red, and
Grunt will groan with an Ugh. Then, he will go berserk: he will throw both arms into the air,
open his mouth, and aggressively shuffle around:

Grunt – Quirky Bipedal Robot Chapter 5

[134]

Finally, we have the null case, which tells Grunt to do nothing when no block is present in
his mouth. It is somewhat redundant, but it acts as a fail-safe that keeps the program
running smoothly:

Handshake
If Grunt's IR sensor detects a nearby person, he will greet the person by extending his arm
and offering a handshake. He will hold his arm out for three seconds. If the person accepts
the offer, the touch sensor in Grunt's hand will detect that the person is squeezing his hand,
and he will shake his or her hand. If the three seconds expire and the person has not shaken
Grunt's hand, he will put it back down. This is another example of a novel interactive
feature that lends Grunt a rich interactive experience.

The first step in programming the handshake sequence is to add the usual initialization
code: a display block that prints Handshake to the EV3 screen and a block that changes the
brick LEDs to orange. You may also wish to incorporate a comment to label the
programming sequence for later reference:

Grunt – Quirky Bipedal Robot Chapter 5

[135]

The next step is to add a medium motor block (On for Degrees, -100 percent power, 150
degrees, port A), which makes Grunt raise his arm halfway to offer a handshake (this is
where the clutch mechanism we mentioned earlier comes in handy). Then, Grunt will
introduce himself by playing a custom sound file. After that, place a loop and set it to repeat
for three seconds; name this loop Handshake. The loop makes Grunt wait three seconds for
the person to return his greeting:

Grunt – Quirky Bipedal Robot Chapter 5

[136]

Now, we will program inside the loop. Add a switch block (Touch Sensor | Compare |
State, state 1, port 1) and activate tabbed view. This switch checks to see if Grunt's hand is
currently being squeezed. If so, he will finish the handshake. In the true case of the switch,
place a block that turns the brick LED's green to affirm that the handshake has been
accepted.

Then, add another loop, and set it to repeat for five counts. Place two medium motor blocks
within the new loop. The first motor block should be set to On for Degrees, 65 percent
power, 75 degrees, port A; the second should be set to On for Degrees, -65 percent power,
75 degrees, port A. When the loop executes, Grunt will move his right arm up and down
several times to make a handshaking motion.

Immediately after the loop (but still within the true case of the touch sensor switch), place a
loop interrupt block and program it to interrupt the handshake loop. Once Grunt has
completed the handshake, this block will end Grunt's three second wait:

There is no programming in the false case of the touch sensor switch; if the touch sensor
does not detect that Grunt's hand is being squeezed, he will simply continue to wait.

Grunt – Quirky Bipedal Robot Chapter 5

[137]

The last block in the handshake sequence returns Grunt's arm back to its resting position.
This is accomplished using a medium motor block (On for Degrees, 50 percent power, 150
degrees, port A):

Remote control
As the name implies, this mode allows the user to control Grunt using an EV3 remote. The
programming for this mode goes within the true case of the second IR sensor switch.

Grunt – Quirky Bipedal Robot Chapter 5

[138]

Start by adding a display block that prints RC Mode to the EV3 brick's screen. Adding a
comment as a label would be helpful. Then, add a loop block. Set the exit case for the loop
to: Infrared Sensor | Compare| Remote, channel 1, port 4. Then, select button IDs 10 and
11. These are the button combinations that we reserved earlier; they are being used to exit
the remote control loop. Finally, be sure to name the loop RC:

Place a switch inside the RCloop. The switch should be set to: Infrared Sensor | Measure |
Remote, channel 1, port 4. Then, add additional cases and assign each to a different button
combination that you would like to use to control Grunt. Make sure that you do not use
either button ID 10 or 11, as these are reserved for exiting the loop. Make the null case (no
buttons pressed) the default case and place a move tank block within it that will stop the
walking motors:

Grunt – Quirky Bipedal Robot Chapter 5

[139]

Then, you can start filling in each case with programming that controls Grunt's legs
according to the button combination on the remote. Individually explaining how to
program each case would take too long, but there are some guidelines you can follow: 85
percent is the optimal power level for stepping, and a negative power makes Grunt step
forward. For the best walking motion, use a move tank block that moves each leg
individually for one full rotation.

For example, here is the code to make Grunt's left leg step forward to make him shuffle a
right turn:

This is how you would program him to walk forward; note that each leg moves
individually for one rotation:

Grunt – Quirky Bipedal Robot Chapter 5

[140]

You may wish to use the top button to activate Grunt's Tantrum sequence. We will cover
how to program this in the next section. Since the top button is a toggle switch, you need to
add a loop interrupt block at the end of the code in this case and set the block to end the RC
loop. This will prevent the sequence from repeating itself:

Tantrum
If the center button on the EV3 brick is pressed, Grunt will throw up his arms, stomp
around, and roar in a fit of rage. The Tantrum sequence will be programmed within the true
case of the brick button switch. We start with the usual setup code, a Display block and a
Brick LED block:

Grunt – Quirky Bipedal Robot Chapter 5

[141]

Next, Grunt will throw his arms above his head. Add a medium motor block (On for
Degrees, -100 percent power, 350 degrees, port A). A second medium motor block (On for
Degrees, -75 percent power, 45 degrees, port D) will open his mouth. A sound block will
play a custom sound file and make him emit a mighty roar:

Then, drag out a loop block; set it to repeat for five counts and name it Angry. Place two
move tank blocks within the loop. The first move tank block should be set to On for
Rotations, motor B: -85 percent power, motor C: 0 percent power, 1 rotation. The second
will be set the same way as the first, but with the left/right power levels split (On for
Rotations, motor B: 0 percent power, motor C: -85 percent power, 1 rotation). This bit of
code will make Grunt stomp around for a few seconds:

Grunt – Quirky Bipedal Robot Chapter 5

[142]

After Grunt has finished his fit of rage, he calms down and returns to his resting position.
Each of the motors resets to its original position. The first medium motor block (On for
Degrees, 75 percent power, 45 degrees, port D) returns his mouth to the closed position,
while the second medium motor block (On for Degrees, 100 percent power, 350 degrees,
port A) brings his arms back to his sides. Finally, a move tank block (Off) halts the two leg
motors, bringing him to a stop:

Handshake – alternative trigger
The final switch in the sequence is the touch sensor switch. It is an alternative way to trigger
the handshake sequence. This feature allows the user to initiate the handshake, to which
Grunt will respond by running the handshake sequence:

Grunt – Quirky Bipedal Robot Chapter 5

[143]

The programming in this switch is the same exact handshake sequence we made earlier.
Refer back to that section for more detailed instructions on how to program it:

Null case
The null case is the false case of the touch sensor switch (the final switch in the sequence).
This case executes if none of the sensors have detected any of the desired parameters. No
modes have activated, so Grunt simply stands idle, checks the sensors again, and waits
until one of the parameters is met:

Grunt – Quirky Bipedal Robot Chapter 5

[144]

Putting it all together
There you have it, Grunt's completed program! Looking at the program as a whole shows
how all of the nested switches interact with each other. It also gives us a clearer idea of the
scale of this program:

While this program is very complex for an EV3 robot, it is a very rewarding program to
make because it offers a rich interactive experience and is a great example of how real-
world smart robots use nested switches to make complex decisions. The program itself is an
example of a very simple AI! The sophisticated decision-making and pre-programmed
reactions come together to create a cohesive, lifelike robot with a quirky personality.

Grunt – Quirky Bipedal Robot Chapter 5

[145]

Summary
We just completed our most complex EV3 robot so far! Let's review what we have learned.

Being a bipedal robot, Grunt was our first departure from tank-style locomotion. We made
a robot that walks instead of drives and learned about the simple walking mechanism that
allows Grunt to shuffle about. Next, we discussed some of the aspects of the exterior design
that help develop Grunt's character and give him the appearance of an alien creature from a
distant planet. We revisited cams and gear ratios, then introduced a completely new
mechanism, a clutch-like locking axle; Grunt's mechanical design demonstrates the
usefulness of this mechanism for creating two different motions, one delayed behind the
other, using only one motor. This is a great concept to have in your toolkit when you design
your own smart robot.

We made our most sophisticated program yet, a simple AI that continuously reads all of its
sensors and seamlessly switches to the proper operating mode to give Grunt a lifelike
appearance and simulate intelligent behavior. We learned about nesting, the practice of
placing a switch inside of a switch, and discussed the advantages of adding comments to
our code. We introduced a new sensor, the touch sensor. Finally, we saw how creative
programming features (such as custom sounds, LED lights, interactive motors, and so on)
can come together to give a robot a fun personality!

Grunt is the smartest robot we have made yet! In the next chapter, we will learn about some
smart hardware and how a robot can have intelligence, even in a remote control program,
when we make the Falcon race car.

6
Falcon – Remote Control Race

Car
So far, we have made a few robots that used tank-style steering, and one walking bipedal
robot. In this chapter, we will be doing something completely new: we are going to build
the Falcon, a remote control car! The steering method for the Falcon, conveniently referred
to as car steering, is different from anything we have seen so far. We will also learn about
the car-style drivetrain and relate it to the mechanisms used by cars in the real world. We
will specifically look at how the Falcon's drivetrain gives it the speed and agility of a race
car.

It may seem strange to include a remote control car in a book about smart robots. A smart
robot must, by definition, make decisions about the environment and react accordingly. So,
if a human controls the robot with a remote, how can this robot be considered smart? You
will soon see that programming for the car-style steering used in the Falcon is quite
intelligent. The steering must constantly monitor its own position using the rotation sensor,
and automatically return to center. Even though the user gives the Falcon a command, the
EV3 must coordinate a few different actions and monitor the status of the sensors to
successfully carry out the command. Additionally, the Falcon uses some special smart
hardware that enables it to steer like a car. Because of its intelligent hardware and software,
the Falcon can still be considered smart, even though a human controls it with a remote.

Falcon – Remote Control Race Car Chapter 6

[147]

We will now take a look at how this sleek speed machine works:

Technical requirements
You must have EV3 Home Edition Software V1.2.2 or newer installed on your computer.
You may also install LEGO Digital Designer (LDD) V4.3 and download the LDD file for this
project to guide you in the building process.

The LDD file is available on the Downloads page of the the Builderdude35 website:

http:/​/​builderdude35. ​com/ ​download/ ​falcon- ​ldd/ ​

The LDD and EV3 files for this chapter are available on GitHub:

https:/​/​github.​com/ ​PacktPublishing/ ​Building- ​Smart- ​LEGO- ​MINDSTORMS- ​EV3- ​Robots/
tree/​master/​Chapter06

http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
http://builderdude35.com/download/falcon-ldd/
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter06

Falcon – Remote Control Race Car Chapter 6

[148]

Check out this video to see the robot in action:

https:/​/​goo.​gl/​9FL3HL

Mechanical design
The Falcon features a unique mechanical design that is similar to the designs used by some
cars in the real world. This smart hardware makes the Falcon's driving fast and smooth.

The drivetrain and steering in the Falcon are completely different from anything that we
have discussed in this book thus far. In the previous chapters, we made robots that used
tank-style driving, where two EV3 large motors powered the robot. In these systems, each
large motor was dedicated to the wheels or tracks on one side of the robot. This system used
direct drive, meaning that the drive motor was directly connected to the wheel/track
without any gears or other mechanisms in between. The robot steered by varying the power
split between the two motors.

The Falcon changes all of this. In fact, the only similarity that the Falcon's drivetrain shares
with those previous robots is that it is powered by two EV3 large motors. In the Falcon, or
any car-style drive system, power and steering are separate functions. This means that the
drive motors are used to propel the robot forward while a separate motor steers the car's
front wheels. This is different from tank-style steering, in which the drive motors handle
both power and steering simultaneously.

Because the driving and steering mechanisms in the Falcon are independent of one another,
we will discuss them in separate sections. We will also examine the visual design and the
sensors used.

Drivetrain
The Falcon's drivetrain uses quite a few moving parts, and is a simplified version of the
system that you may find in a real car. The Falcon's drivetrain is classified as rear-wheel
drive (RWD) because the power to propel the car is transferred to the ground through the
rear wheels. This is the simplest setup because the rear wheels are dedicated to driving and
the front wheels are dedicated to steering. Front-wheel drive and all-wheel drive systems
are commonly used in real-world cars as well, but require more complex drive systems.

https://goo.gl/9FL3HL
https://goo.gl/9FL3HL
https://goo.gl/9FL3HL
https://goo.gl/9FL3HL
https://goo.gl/9FL3HL
https://goo.gl/9FL3HL
https://goo.gl/9FL3HL
https://goo.gl/9FL3HL
https://goo.gl/9FL3HL

Falcon – Remote Control Race Car Chapter 6

[149]

Drive motors
The most logical way to understand the Falcon's drivetrain is to walk through it in the same
order that the torque is transferred from the motors to the wheels. The two EV3 large
motors (ports B and C) located in the rear of the car provide the power to propel the Falcon.
They are hard-coupled, meaning that they are fixed together with a solid axle and always
rotate with the same speed and direction.

The two drive motors and most of the drivetrain are visible after removing the EV3 brick:

Falcon – Remote Control Race Car Chapter 6

[150]

Gear ratios
The two drive motors transfer their power through a 90-degree gear set that has a 1:3 gear
ratio. In previous chapters, we used gear ratios to give the motors a mechanical advantage
and multiply their torque at the expense of speed. Now, we are doing the opposite; the
Falcon uses this gear set to multiply the drive motors' output RPM by a factor of three,
while sacrificing torque. This gear setup was chosen because it allows the Falcon to reach a
higher top speed. We can do this at the expense of torque because the two EV3 large motors
supply enough torque to drive the car, even with the taller gear ratio.

The 90-degree gear set redirects the motors' torque through a short axle that runs
lengthwise. This short driveshaft in turn transfers the torque to the rear axle.

In the context of a car, an axle that runs in the direction of the car's length
(front/rear axis) is referred to as longitudinal. An axle that runs in the
direction of the car's width (left/right) axis is referred to as latitudinal or
transverse.

Differential
There is another 90-degree gear connection on the rear axle, which transfers the torque from
the short longitudinal driveshaft to the latitudinal rear axle. However, this is not an
ordinary gear connection; this is a special type of mechanism called a differential:

Falcon – Remote Control Race Car Chapter 6

[151]

What does a differential do? First, it is important to understand one of the fundamental
issues of the car-style drive system. When a car steers, it makes a wide, arcing turn, in
which the outside wheels travel more distance than the inside wheels. Therefore, the
outside wheels must drive faster to compensate for the increased distance they travel. If the
drive wheels are connected by a solid axle, the engine will supply both wheels with the
same amount of torque at all times. This means that both drive wheels will always rotate at
the same speed, which is an issue because the car will resist turning.

The differential solves this problem by allowing the two drive wheels to spin at different
speeds while the motors power them. A pinion gear (in this case, the sand-colored 20-tooth
bevel gear) transfers power to the large ring gear on the grey differential housing. This type
of 90-degree setup is called a ring-and-pinion gear set.

There are three small sand-colored conical gears inside the differential housing. Each of the
rear wheels is connected to its own half of the rear axle; the two halves are semi-
independent of one another, but linked together through the gear mesh between these three
gears. The right conical gear is directly connected to the right half of the rear axle, the left
conical gear is connected to the left half, and the center conical gear is mounted directly on
the differential housing. The center gear is able to rotate freely while moving with the
differential housing, which is what allows the differential to change the rotation speed of
each half of the rear axle to meet the speeds necessary to make the turn.

There are different types of differentials. The type used here is called an open differential
because it allows the two halves of the axle to rotate and change speed freely. This is the
simplest type of differential, but the disadvantage is that if one wheel gets stuck or lifts off
the ground, the torque will always take the path of least resistance and the car will become
stranded. A limited-slip differential solves this issue, but is more complicated. Because the
Falcon typically keeps all of its wheels planted firmly on the ground at all times, an open
differential is sufficient.

The differential is an excellent piece of smart hardware that is used in real-world cars
because it adds a passive intelligence to the drivetrain by varying the torque sent to each
wheel to allow for smooth turning. After the differential, the torque makes it to each of the
rear wheels through their respective halves of the rear axle, allowing the Falcon to drive.

Falcon – Remote Control Race Car Chapter 6

[152]

Final drive ratio
The final drive ratio of a drivetrain describes the overall gear ratio of the entire drivetrain
from the first input to the final output. In the context of the Falcon, it describes the overall
gear ratio between the drive motors and the rear wheels. The final drive ratio is useful
because while there may be many different gear sets with varying ratios within one
drivetrain, it gives us a, big picture, look at the mechanism as a whole.

To calculate the final drive ratio, simply multiply the gear ratio of each individual gear set
together. In the Falcon, there are two gear sets that change the rotation speed. The first is the
90-degree set that comes directly from the drive motors, with a ratio of 1:3. The second is
the ring-and-pinion gear set on the differential. The 20-tooth pinion drives the 28-tooth ring
to make a gear ratio of 1.4:1, which can also be expressed in decimal form as 0.714.
Multiplying 3 by 0.714 yields the Falcon's final drive ratio of 1:2.142. This ratio indicates that
for each time the drive motors complete one rotation, the rear wheels rotate 2.142 times.

Steering
The Falcon uses a steering mechanism that is similar to the mechanism used in real world
cars. Steering is accomplished using a steering rack that pivots the front wheels to the right
or left. One EV3 medium motor (port A) controls the steering:

Falcon – Remote Control Race Car Chapter 6

[153]

A rack-and-pinion mechanism is used to steer the Falcon's front wheels. This also happens
to be the most common method of steering used in real-world cars. We first introduced
rack-and-pinion when we made the Omnilander. Recall that it uses a circular gear (the
pinion) to slide a long toothed bar (the rack) from side to side. A rack-and-pinion
mechanism is a type of linear actuator because it converts rotary motion to linear motion. In
the Falcon, this linear motion is used to push or pull the lever on which each of the front
axles is attached, causing the front wheels to pivot in one direction to steer the car.

The rack-and-pinion steering mechanism is visible when the medium motor and some
cosmetic panels are removed:

Later in the chapter, we will discuss the programming that coordinates this steering
mechanism to make smooth, car-like steering that returns to center.

Falcon – Remote Control Race Car Chapter 6

[154]

Cosmetic design
Like the Timmyton and Grunt, visual appearance was an important design consideration
when building the Falcon. Elements of the Falcon's exterior design work together to give the
car a sleek appearance and hint at its capacity for speed, even before it moves.

The front of the car is covered with flat panels to give the car a smooth profile. The wheels
are housed within wide fenders to give the Falcon the appearance of a true race car:

Special consideration was also given to the rear of the vehicle, where red stripes run down
either side from the roof, and wrap around the back at the spoiler. Wide fenders frame the
rear wheels, and the stylish rear bumper boasts an aggressive-looking diffuser.

Falcon – Remote Control Race Car Chapter 6

[155]

Finally, the EV3 brick is positioned atop the car in a way that allows for easy access while
staying within the car's sporty profile:

Sensors
The Falcon uses two sensors to coordinate its driving, the infrared sensor and the rotation
sensor.

Infrared sensor
The infrared sensor (port 4) is located in the back of the vehicle, streamlined into the design
of the rear bumper. It functions as an infrared receiver for the commands sent from the EV3
remote.

Falcon – Remote Control Race Car Chapter 6

[156]

Rotation sensor
This second sensor is not an external sensor like the IR sensor. Rather, it is located inside the
EV3 motor. The Falcon makes extensive use of the rotation sensor (also referred to as an
encoder) built into the medium motor that is used for steering (port A). The encoder
provides information about the motor's current position in degrees, which the Falcon's
program uses to coordinate the steering and facilitate its return-to-center feature. In short,
the built-in encoder provides the steering with enough intelligence and makes the Falcon
easier to drive.

Programming
Although the Falcon is remotely controlled by the user via a remote control, its RC program
is quite intelligent because it coordinates the complex actions and decision making behind
the scenes, resulting in a smooth and user-friendly program.

Falcon – Remote Control Race Car Chapter 6

[157]

Control scheme
We should establish what each of the buttons on the EV3 remote will do. Earlier, we said
that the driving and steering functions are independent of one another. We will program
the controls accordingly: the left (red) side of the controller will control the driving, where
up is forward and down is reverse; the right (blue) side will control the steering, where the
up button will steer the Falcon's wheels to the right and the down button will steer them
left:

MyBlocks
The EV3 programming environment has a useful feature called the MyBlock editor. It
allows you to save a chunk of EV3 code as a single block, so that you can use that sequence
of code multiple times in a program or in other programs without having to rewrite
it. Creating a MyBlock in EV3-G is analogous to defining a function in a text-based
programming language.

We will create four MyBlocks for the Falcon's program; each executes a different aspect of
the car steering. We use MyBlocks because these are fairly complex sequences of code and
they appear multiple times throughout the RC program. Most of the Falcon's programming
will be contained within these four MyBlocks. Creating MyBlocks for these important
functions saves time and reduces the risk of making errors because we will only have to
write each one once, and also makes the finished program easier to read.

Falcon – Remote Control Race Car Chapter 6

[158]

Centering the steering
The first MyBlock we will make runs once at the very beginning of the program. It centers
the Falcon's steering mechanism so that driving is easier for the user. It also resets the
rotation sensor after it centers the wheels, which is important because it defines the center
as the zero position, from which all of the later steering commands will be based.

Start programming just as you normally would; we do not have to worry about making the
MyBlock until we are finished with the chunk of code that we want to save.

To start programming the steering centering MyBlock, drag out a loop block and set its exit
case to Motor Rotation | Compare | Current Power. Set the threshold to < | 20 and make
sure port A is selected. Within the loop, place a medium motor block (On, 25 percent
power) and a wait block set to wait for 0.2 seconds.

This section of code turns the steering motor slowly in the positive direction. The loop block
uses the built-in rotation sensor to check for a motor stall. The motor starts out at 25%
power and, if the power drops below 20%, the program knows that the motor has stalled.
The short wait block ensures that the motor has a chance to start moving and reach the
target speed before the program starts looking for a motor stall:

Falcon – Remote Control Race Car Chapter 6

[159]

After that, place a medium motor block (On for Degrees, -75 percent power, 105 degrees,
port A) followed by a motor rotation block (Reset, port A). The completed centering code
looks like this:

What is going on here? This code works by turning the steering mechanism in one direction
until it cannot turn any more. At this point, the stall is detected, and the program rotates the
motor back in the opposite direction for 105 degrees—the amount of rotation necessary to
bring the steering back to the center position. Finally, it resets the rotation sensor on
motor A, making the center position the new zero position. This is a convenient method
because the program will automatically bring the wheels into the center position no matter
what position they started in. This block makes the program more precise and user-friendly.

Saving code as a MyBlock
The chunk of code we made is the first of the four intelligent MyBlocks that make the
Falcon's programming smart. Now that we have the code written out, follow these steps to
save it as a MyBlock:

Click and drag your cursor to select all of the code that you wish to include in the1.
MyBlock. The code that is successfully selected will be highlighted in blue. Do
not include the Start block in your selection.
In the top-right corner of the screen, navigate to Tools | My Block Builder.2.
Using the My Block Builder wizard, set up your new MyBlock by naming it and3.
selecting an icon. There are many icons to choose from, so choose an icon that
represents what your new MyBlock does.
When you are satisfied, click Finish in the bottom-right corner of the wizard:4.

Falcon – Remote Control Race Car Chapter 6

[160]

The MyBlock that we are making now should be called steerCenter. The MyBlock wizard
also allows you to set up parameters; these are input and output values for your MyBlock.
Since none of the MyBlocks we will make for the Falcon use parameters, you can ignore this
for now, but it may prove to be useful in your later projects. We will extensively use the
parameter feature in the next chapter.

After you click Finish, your code looks like this:

Falcon – Remote Control Race Car Chapter 6

[161]

Congratulations! You have successfully saved your first MyBlock. The EV3 will execute all
of the code contained within this MyBlock wherever you have placed it in the program. The
MyBlock acts as a placeholder for all of the code we just wrote. If you need to edit a
MyBlock, double click on it and it will expand to show all of the code contained inside.

All of the MyBlocks that you save will be stored under the teal programming tab at the
bottom of the screen. You may now drag out your new MyBlock to use it anywhere in your
program:

Steering left
The next MyBlock is fairly straightforward. It rotates the front wheels into the left position
so that the Falcon will make a left turn.

Before the robot does anything, it needs to check the current position of the front wheels.
Since cases in the full program can execute continuously for periods of time (for example,
holding down the steering button on the remote to make a turn), the program needs to
verify that the front wheels are not already in the left position. This makes sure that, after
the wheels move into the left position, they stop and stay there. Otherwise, the steering will
continue to turn left until it runs into a mechanical limit and locks up.

First, add a motor rotation block (Measure | Degrees, port A) and plug its output into the
first input of a compare block. Set the compare state to less than (<) and change the
comparison value (second input) to 45. Take the result from the compare block and plug it
into the input of a switch set to logic. The switch is set to tabbed view to save space:

Falcon – Remote Control Race Car Chapter 6

[162]

The true case of the switch executes if the degree value on the steering motor is less than 45,
meaning the steering is not yet in the left position. Within the true case of the switch, we
will add some code to move the wheels into the left position. Add a loop and set its exit case
to Motor Rotation | Compare | Degrees. Set the threshold value to greater than or equal to
(>=) 45 degrees and ensure that port A is selected. Within the loop, simply place a medium
motor block (On, 100 percent power, port A):

Falcon – Remote Control Race Car Chapter 6

[163]

The number 45 means that the steering motor turns 45 degrees from
center to make the Falcon's front wheels rotate. This value is adjustable.
Increasing this value would cause the Falcon to make sharper turns, while
decreasing it would cause it to make smoother turns. Experiment with
different values to see what you like best. When you change the values,
make sure that you change it in both of the places that it appears in the
MyBlock, as well as both the left and right MyBlocks.

The false case of the switch executes when the degree value of motor A is equal to 45
degrees, which would indicate that the wheels are already in the left position, so no further
action is required. Simply place a medium motor block that turns motor A Off:

Falcon – Remote Control Race Car Chapter 6

[164]

This is the completed code for the steerleft MyBlock. Save it using the MyBlock wizard
following the steps outlined before, and name it steerLeft:

Falcon – Remote Control Race Car Chapter 6

[165]

Steering right
Since we just completed the code for the steerLeft MyBlock, writing the code for the
MyBlock that will steer the Falcon to the right will be easy because the programming is
largely the same. You can make the steerRight MyBlock by following the same steps you
used to make the steerLeft MyBlock. The only difference is that where the motor powers
and threshold values were positive, they must now become negative and all of the
inequality signs must be flipped:

Do not forget to add a medium motor block to shut motor A off in the false case of the
switch:

Finally, save the MyBlock as steerRight using the MyBlock builder.

Falcon – Remote Control Race Car Chapter 6

[166]

Returning the steering to center
The final MyBlock is crucial to the car steering program. This MyBlock returns the steering
mechanism to the center position regardless of what position it is currently in. This
automatic return-to-center is a signature feature of the Falcon's programming.

This MyBlock starts by checking the position of the steering motor A. To be more specific, it
actually first checks to see if the motor is in the left position; if this check returns false, then it
checks to see if the motor is in the right position. If this returns false too, then the steering is
already centered and no action is necessary.

The MyBlock first checks to see if the wheels are turned to the left (positive direction) by
testing whether or not the degree value on motor A is greater than positive three (+3)
degrees. The programming for this check looks like this:

Setting the comparison value to 3 sets up a tolerance in the program,
meaning that the MyBlock is satisfied when it brings the steering motor
within three degrees in either direction of the center. You may wish to
experiment with different tolerance levels; a smaller value would increase
the precision of the steering, but could make it too sensitive. If you decide
to change the tolerance, make sure that you change this value everywhere
it appears.

Falcon – Remote Control Race Car Chapter 6

[167]

If this check returns true, the wheels are currently steered left (positive direction), so the
motor must rotate in the negative direction to bring the wheels back to the center. Within
the true case of the switch, set up a loop (Motor Rotation | Compare | Degrees, < | 3, port
A) and a medium motor block (On, -50 percent power, port A) such that it turns the steering
motor to the right until it is within three degrees of the center:

If the false case of the switch executes, then the steering is not in the left position. The
program will now use a similar procedure to check if the steering is in the right position. It
measures the degree position using the motor encoder, checks to see if it is less than -3
degrees, and executes the corresponding case of a logic switch:

Falcon – Remote Control Race Car Chapter 6

[168]

If this check returns true, then the wheels are currently steered right (negative direction),
and the steering motor must turn in the positive direction to bring the wheels back to the
center. Set up the loop (Motor Rotation | Compare | Degrees, > | -3, port A) and the
medium motor block (On, 50 percent power, port A) in a similar manner to the way you set
them up before. Since everything is in the opposite direction, you must negate all number
values and flip the inequality sign:

Falcon – Remote Control Race Car Chapter 6

[169]

If this second switch returns false, then the steering is in the center and does not need to be
adjusted. Simply shut the motor Off:

Finally, use the MyBlock Builder to save this section of code as a MyBlock called
steerReCenter.

Assembling the program
We have finished making all of the MyBlocks; the bulk of the program is complete. Now,
we can drop these blocks into the full program to make a fully-functional RC car.

Accessing your MyBlocks
The four MyBlocks that we have created can be found in your programming palate under
the teal tab. They are ready to be added into your program wherever you need them:

Falcon – Remote Control Race Car Chapter 6

[170]

Getting started
Open up a new, blank program within your current project. This is where we will put the
MyBlocks together to make the full RC program.

Start by adding your steerCenter MyBlock at the immediate start of the program.
Centering and resetting the steering is the first thing the Falcon will do when the program
starts. The MyBlock will be followed by a loop that repeats indefinitely:

Falcon – Remote Control Race Car Chapter 6

[171]

Place a switch within the loop. Change the switch's setting to Infrared Sensor | Measure |
Remote, port 4, channel 1. Then, assign button ID 0 to the first case; select this as the default
case by clicking on the circle on the button ID's tab (if this circle is not already filled). Assign
button ID 1 to the second case. Press the Add Case button seven times to add additional
cases:

Falcon – Remote Control Race Car Chapter 6

[172]

Programming the cases
The rest of the programming is straightforward, albeit monotonous. The difficult part of the
programming is complete, but we still need to assign and program a case for every possible
remote button combination (at least, the combinations we plan to use).

In the first case, no buttons are pressed (button ID 0), so the Falcon should halt and center
its steering. Recall that this is the default case, so the Falcon's preferred action is to idle if no
remote buttons are pressed. Add the steerReCenter MyBlock and a move steering block
(Off, ports B and C):

Falcon – Remote Control Race Car Chapter 6

[173]

In the second case (button ID 1), the robot is driving forward in a straight line. Add the
steerReCenter MyBlock and a move steering block (On, Steering: 0, 100 percent power,
port B and C):

The two EV3 large motors in ports B and C must always move in the same
direction with the same speed. We use a move steering block because it
only has one power input, which speeds up the programming because we
only need to enter one power value. Make sure that the steering value is
always zero for this project; this will ensure that both drive motors turn in
unison.

Falcon – Remote Control Race Car Chapter 6

[174]

In the next case (button ID 2), the Falcon drives in a straight line in reverse. Add
steerReCenter and a move steering block set to -100 percent power:

If the top-right button is pressed (button ID 3), the Falcon's wheels will steer right without
driving. Insert a steerRight MyBlock and a move steering block set to Off:

Falcon – Remote Control Race Car Chapter 6

[175]

Similarly, if only the bottom-right button is pressed (button ID 4), then the Falcon will steer
its front wheels to the left without driving. Add the steerLeft block before a move
steering block that shuts the drive motors off:

Note that the steerRight and steerLeft MyBlocks use the same icon,
and the full name is not displayed on the block. This can get confusing
quickly. To avoid confusion, pay close attention to the name of the
MyBlock you are placing. Hovering your cursor over the MyBlock will
display its name. You may also choose different icons for the MyBlocks to
further clarify the difference.

Now, we need to program the four double button cases. The first executes when both top
buttons are pressed (button ID 5) and causes the Falcon to steer right while driving forward.
Place a steerRight block and a move steering block set to 100 percent power:

Falcon – Remote Control Race Car Chapter 6

[176]

The second double button case executes when the top-left and bottom-right buttons are
pressed in conjunction (button ID 6). This makes the Falcon turn left while driving forward.
Add the steerLeft block and a move steering block set to 100 percent power:

Falcon – Remote Control Race Car Chapter 6

[177]

The penultimate case activates when the bottom-left and top-right buttons are pressed
together (button ID 7). When this happens, the Falcon will steer right while driving in
reverse. Add a steerRight block and a move steering block set to -100 percent power:

Finally, when both bottom buttons are pressed (button ID 8), the Falcon will steer left while
driving in reverse. Insert a steerLeft MyBlock and a move steering block set to -100
percent power:

Falcon – Remote Control Race Car Chapter 6

[178]

Putting it all together
The completed program looks like this:

Falcon – Remote Control Race Car Chapter 6

[179]

It looks fairly simple, right? That is because the most complex parts of the program are
contained within the MyBlocks. Here, you can see that the MyBlocks make the program
more readable. All of the smart programming used to control the steering resides within
these MyBlocks.

Awesome! You now have a fully functional remote control race car!

Summary
In this chapter, we took our project in a completely new direction and broke away from
tank-style driving to make a purpose-built speed machine. While building the Falcon, we
learned about some of the mechanical components used to make a car-style drivetrain, such
as the differential. We reapplied the rack-and-pinion mechanism to use it for steering. We
discussed how each of the mechanical features in the Falcon relates to the design of cars in
the real world.

We extensively used the rotation sensor built into the EV3 motors to coordinate an
intelligent steering system. We also learned how to make MyBlocks and saw the advantages
they bring when they are used in a program. We applied knowledge acquired in previous
chapters to make a car-style remote control program. Finally, we resolved the paradox of a
smart remote control car: even though the user controls the Falcon, its programming
automatically coordinates a lot of complex decisions and actions behind the scenes.

In the next chapter, we will ditch the remote control altogether and program the Falcon to
use a GPS receiver and a compass to navigate autonomously.

7
GPS Car – Autonomous EV3

Navigation
We are ready to make our final smart robot, the GPS Car! This smart vehicle is equipped
with a GPS receiver and a digital magnetic compass, and its smart software allows the car to
navigate to a pair of coordinates defined by the user. Yes, you can choose a location and the
GPS Car will drive there! The GPS Car boasts sophisticated navigation sensors and
advanced programming, which makes it the smartest robot in this book.

The GPS Car is based on the Falcon race car that we built in the previous chapter. We will
convert the Falcon from remote control to autonomous by adding the navigation sensors
and writing two new programs. The hardware will remain largely the same, which allows
us to focus on writing our most sophisticated programs yet.

In this chapter, we will start by making some minor physical modifications to the Falcon
and adding the new sensors. We will also cover some of the basic knowledge required to
use the GPS and compass. Then, we will transition into the software and discuss how to
prepare the EV3 in order to use third-party hardware. Finally, we will write two programs:
the first is a simple GPS test program, which will help us get accustomed to using the GPS
before we write the second program, an autonomous navigation program.

This project is especially relevant in the present day as many companies are currently
prototyping autonomous cars for everyday use. The GPS Car that we will make in this
chapter is far simpler, but it uses some navigation concepts that are employed in real-world
autonomous cars. Therefore, this project is a stepping stone to understanding the
technology used by full-scale self-driving cars.

This is the first (and only) project in this book that requires non-LEGO elements. The GPS
receiver and compass are manufactured for use with the EV3 by third-party manufacturers
Dexter Industries and HiTechnic, respectively. We will learn more about these sensors in
the following sections.

GPS Car – Autonomous EV3 Navigation Chapter 7

[181]

The time is ripe for us to dive in and make our smartest robot yet:

Technical requirements
You must have EV3 Home Edition Software V1.2.2 or newer installed on your computer.
You may also install LEGO Digital Designer (LDD) V4.3 and download the LDD file for this
project to guide you in the building process.

The LDD file is available on the Downloads page of the Builderdude35 website:

http:/​/​builderdude35. ​com/ ​download/ ​gps- ​car- ​ldd/​

http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/
http://builderdude35.com/download/gps-car-ldd/

GPS Car – Autonomous EV3 Navigation Chapter 7

[182]

The LDD and EV3 files for this chapter are available on GitHub:

https:/​/​github.​com/ ​PacktPublishing/ ​Building- ​Smart- ​LEGO- ​MINDSTORMS- ​EV3- ​Robots/
tree/​master/​Chapter07

Check out this video to see the robot in action:

https:/​/​goo.​gl/​gCAZQ9

Hardware
We will use the Falcon as the base robot and do some modifications that will enable it to
navigate autonomously. Make sure that you have read the previous chapter and that you
are familiar with how the Falcon's hardware works before you proceed.

We will be adding two navigation sensors to the Falcon: a Dexter Industries dGPS and a
HiTechnic compass sensor. We will take a look at how each of these sensors works and how
they will enable the Falcon to navigate autonomously:

https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://github.com/PacktPublishing/Building-Smart-LEGO-MINDSTORMS-EV3-Robots/tree/master/Chapter07
https://goo.gl/gCAZQ9
https://goo.gl/gCAZQ9
https://goo.gl/gCAZQ9
https://goo.gl/gCAZQ9
https://goo.gl/gCAZQ9
https://goo.gl/gCAZQ9
https://goo.gl/gCAZQ9
https://goo.gl/gCAZQ9
https://goo.gl/gCAZQ9

GPS Car – Autonomous EV3 Navigation Chapter 7

[183]

Dexter Industries dGPS
This is a simple GPS chip that connects to the satellites that orbit the Earth to give us an
estimate of where the EV3 is in the world. The dGPS provides information such as UTC
(time), latitude, longitude, heading, velocity, and satellite link status. We will only need the
first three when we write the programs for this project.

On one side of the board is the GPS antenna and the signal LED. The other side is where the
battery and sensor plug are mounted. When mounting the dGPS on a robot, the antenna
should face up so that it has a clearer view of the sky. We will discuss mounting the sensor
in more detail shortly. Here, the dGPS is shown with the battery side facing up (plus some
extra Technic pins used for mounting, which we will discuss soon):

GPS Car – Autonomous EV3 Navigation Chapter 7

[184]

Basic principles of GPS navigation
In order to use the dGPS, it is imperative that we understand the basics of GPS navigation.

The two components of a GPS coordinate are latitude and longitude. Together, these two
numbers allow a GPS receiver to pinpoint its exact position on Earth. Mapping systems
such as Google Maps use a decimal-degree format to represent latitude and longitude,
meaning these values are in the form dd.mmmmmm. The dGPS provides latitude and
longitude information in an integer decimal-degree format, which means it always
expresses position figures as an integer, or whole number, in the form ddmmmmmm. You can
think of it as a decimal-degree format where the decimal point has been removed. For
example, a hypothetical latitude value in decimal-degree format could be 40.948162
degrees; the dGPS would report this latitude as 40948162 .

The sign of the latitude and longitude values indicate which hemisphere the GPS receiver is
located in. A positive latitude indicates that the GPS is in the northern hemisphere, and a
negative latitude indicates a location in the southern hemisphere; the greater the magnitude
of the latitude value, the farther the GPS is from the equator. A positive longitude value
indicates that the GPS is in the eastern hemisphere, and a negative longitude indicates a
location in the western hemisphere; the magnitude of the longitude value indicates the
distance from the prime meridian.

In an open field, a GPS receiver can pinpoint its location to within 1–3 meters.
Environmental obstructions such as trees or buildings block the GPS receiver's line of sight
to the sky and cause the signal sent by the satellite to bounce before it reaches the GPS
receiver. This causes the GPS's accuracy to decrease. To obtain the best accuracy, use the
dGPS in an environment with few obstructions. Because there is always some amount of
error inherent in determining GPS position, the coordinates provided by a GPS receiver are
considered estimates.

GPS Car – Autonomous EV3 Navigation Chapter 7

[185]

Using the dGPS
The dGPS has an LED that lights up in a solid color when it has connected to four satellites,
the minimum number of connections required to estimate a position. The dGPS will only
provide new position information while it has a satellite connection. If the connection is
lost, the LED will turn off.

When powering the EV3 brick on, the LED on the dGPS will flash to indicate that it is
receiving power and has started looking for satellites to connect to. The time it takes for the
dGPS to acquire a connection with four satellites varies depending on the environment the
dGPS is in. Nearby trees and buildings block the dGPS's line of sight and increase the time
it takes to acquire a satellite link.

When the dGPS is powered on for the first time, it can take up to ten
minutes for it to acquire its first satellite signal. This is because the dGPS
needs to create an almanac of all of the available satellite connections.
Signal acquisition will be faster for each successive startup.

While there is a valid satellite link, the dGPS will update with new position information
once every second. When writing a program that includes the dGPS, a 1-second wait should
be programmed after each time the EV3 reads data from the sensor.

HiTechnic compass
This sensor is a digital magnetic compass that measures the Earth's magnetic field to find
the position of the Earth's magnetic poles. This sensor outputs a value from 0 to 359
degrees, which indicates the sensor's current absolute heading (the angle that the sensor
faces) based off of magnetic north. A heading value of 0 degrees means that the sensor is
facing due north; 90 degrees indicates that the sensor is facing east, 180 degrees is south,
and 270 degrees is west:

GPS Car – Autonomous EV3 Navigation Chapter 7

[186]

The sensor also has a relative heading feature, which allows the user to set a target heading.
The target heading becomes the new zero position. Relative heading values range from
-179 to +180 degrees; a positive relative heading value indicates that the robot must turn
right (clockwise) to reach the target direction, and a negative relative heading value means
that the robot must turn left (counterclockwise). A relative heading value of zero indicates
that the robot is perfectly on track with the target and does not need to adjust its trajectory.
The GPS Car will rely on the relative heading feature in its navigation program.

Using the compass
Although the compass is simpler to use than the dGPS, there is still one important rule to
follow when incorporating the compass into an EV3 robot. The compass is designed to
measure the Earth's magnetic field, but the electronic and metal components in a robot can
create their own local magnetic fields or distort the field that the compass is trying to
measure. To minimize interference, the compass should be mounted on the robot so that it
is at least ten centimeters away from the robot's EV3 brick, motors, batteries, or other
sensors. In the following section, we will describe a specific mount for the GPS Car.

For more information about these sensors, visit their respective
manufacturers' websites. The dGPS is manufactured by Dexter Industries,
and the compass is manufactured by HiTechnic.

GPS Car – Autonomous EV3 Navigation Chapter 7

[187]

Modifying the Falcon
Now, we will make a few changes to the Falcon to accommodate these new sensors.

Add a Technic beam that runs the width of the vehicle and sits a few centimeters above the
EV3 brick. Mount the dGPS on this beam and ensure that the antenna side of the chip faces
skyward. The best way to mount the dGPS to Technic elements is using a Technic
crossblock and two of the blue cross-to-friction pegs, as shown in the following image; this
method ensures that the dGPS is securely mounted and minimizes mechanical stress on the
fragile GPS board. You may choose to place it slightly off-center so that it does not obstruct
access to the EV3 brick. Plug the dGPS into sensor port 1:

GPS Car – Autonomous EV3 Navigation Chapter 7

[188]

Next, build a long stalk on one side of the robot that reaches at least ten centimeters above
the EV3 brick; this is where we will mount the compass. Placing the compass atop a tall
tower increases the distance between it and other electronic components, which minimizes
the electromagnetic interference that the other electronics will impart on the compass.
Finally, reinforce the compass tower with some Technic axles and rods so that the tower
will not wobble under the compass's weight. Plug the compass into port 2:

With these modifications completed, we are ready to start working on the GPS Car's
software.

GPS Car – Autonomous EV3 Navigation Chapter 7

[189]

Software
We will write two programs for the GPS Car. The first program is a simple GPS test
program, and the second is the autonomous navigation program. Before we start
programming, we will need to prepare the EV3 software for use with the third-party
hardware.

Preparing the EV3 software
The dGPS and compass require specific software for them to be used with the EV3. Both
sensors have their own programming block, which allows you to program the third-party
sensor like you would program a standard EV3 sensor. Thankfully, the software is available
for download for free from the manufacturers' websites. All we need to do is follow a few
steps to download the third-party software and import it into the EV3 programming
environment.

The steps for installing the Dexter Industries and HiTechnic software are the same, so we
will start with the Dexter Industries software. All of Dexter Industries' software is available
on their GitHub repositories. We will need the software from their EV3 repository, which
you can access here: https:/ ​/ ​github. ​com/ ​DexterInd/ ​EV3_ ​Dexter_ ​Industries_ ​Sensors.

After you have found the repository, follow these steps to import the Dexter Industries
software into your EV3 programming environment:

Download the Dexter Industries repository from GitHub. After the download1.
finishes, extract the files and save them to a destination on your computer.
Start the EV3 software and open to a new project. Navigate to the toolbar and2.
select Tools | Block Import and Export Wizard.
Click the Browse button in the wizard. Navigate to the destination where you3.
saved the software you extracted earlier. Open the folder containing the Dexter
Industries firmware; select the file named Dexter.ev3b and click OK.
The Block Import and Export wizard will now show that the Dexter.ev3b file is4.
selected and is ready to be imported. Click the Import button at the bottom-right
corner of the wizard:

https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors
https://github.com/DexterInd/EV3_Dexter_Industries_Sensors

GPS Car – Autonomous EV3 Navigation Chapter 7

[190]

You will receive a message that indicates whether the import was completed5.
successfully. If so, then the final step is to restart the EV3 software so the changes
can take effect. The next time you start the software and open a project, the
Dexter Industries blocks will appear in the sensor block palate.

The programming blocks for all of the Dexter Industries blocks are included in the file that
we imported. We will only need the dGPS block, so you can ignore the rest of the blocks for
this project.

We will follow the same steps to import the HiTechnic programming blocks into the EV3
software. The download can be found at http:/ ​/​www. ​hitechnic. ​com/ ​file. ​php?​f= ​841-
HiTechnicEV3Blocks. ​zip and the name of the file we need to download is 841-
HiTechnicEV3Blocks.zip. Each of the HiTechnic sensor blocks is separate, so when you
select the file to import in step 3, choose HTCompass.ev3b to import the software for the
compass sensor.

After you finish importing the programming blocks, you sensor palate will expand to
include the new third-party blocks you added. These blocks are ready for use, which means
that we can start writing our programs.

http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip
http://www.hitechnic.com/file.php?f=841-HiTechnicEV3Blocks.zip

GPS Car – Autonomous EV3 Navigation Chapter 7

[191]

GPS test program
We will now make a simple GPS test program. This will give us experience with using the
dGPS before we write the complex navigation program. The test program reads the current
time, latitude, and longitude from the dGPS and prints it to the EV3 display.

Sensor blocks
First, place three dGPS sensor blocks inside an infinite loop. Each dGPS block reads a
different piece of information from the sensor. The first one reads the UTC time, the second
one reads the current latitude, and the third one reads the current longitude. You can set the
block to read the desired information by clicking on the bottom-left corner of the block and
selecting the proper mode:

Text blocks
Next, place three text blocks after the sensor blocks; these are found under the red data
operations tab in the programming palate:

GPS Car – Autonomous EV3 Navigation Chapter 7

[192]

These blocks allow us to print the sensor data next to a static label on the EV3 screen. For
example, in our program, we will print the word UTC: followed by the UTC value read
from the dGPS on one line on the EV3 screen. Each of the three text blocks pairs with one of
the dGPS sensor blocks to merge the sensor's value with the label so it can be printed to the
EV3 screen.

We can now set up the labels. They correspond to the data being printed on the EV3 screen,
so we will have one label that says UTC:, one that says Lat:, and one for Lon:. Type the
labels into the first input of each text block. When finished, they look like this:

GPS Car – Autonomous EV3 Navigation Chapter 7

[193]

With the labels in place, we can start matching the sensor data to each text block. The first
sensor block reads the UTC from the dGPS. Plug the data wire from this sensor block into
the second input of the text block that you set up with the UTC: label:

Repeat this process for the remaining two block pairs; the dGPS block that reads latitude
should be paired to the text block with the Lat: label, and the block that reads longitude
should be paired to the text block with the Lon: label.

When all of the sensor blocks and text blocks are correctly paired, the program looks like
this:

Display blocks
The next step is to add the display blocks that print the merged text to the EV3 screen. Start
by placing a display block directly after the text blocks:

GPS Car – Autonomous EV3 Navigation Chapter 7

[194]

By default, the display block is set to print an image to the EV3 screen. Click on the bottom-
left corner of the display block to change its mode to Text | Grid:

GPS Car – Autonomous EV3 Navigation Chapter 7

[195]

The block changes to reflect the new mode. However, there is still more setup to do. We
must change the text that the block will print to the EV3 display. By default, the block will
print the text typed into the top-right corner of the block. Click on the white space in the
top-right corner of the block and select Wired. The block will change again, this time to
include a data wire input. Now, the block will print the text it receives from the attached
data wire:

Add two more text blocks and follow the same steps to set them up:

Now that all three display blocks are in place, we can set the font size and assign each string
of text to a line on the EV3 display.

The last input on the display block controls the font size. Change this to 0, the smallest font
size available, on all of the blocks.

GPS Car – Autonomous EV3 Navigation Chapter 7

[196]

We also need to assign each text block to a separate line so they do not overwrite each other.
The fourth input of the display block assigns the text to a row on the EV3 screen. Set the
first display block to print on line 1 (this is actually the second line, because the EV3 starts
counting lines at zero). Assign the second block to line 3 and the third to line 5.

The final step in setting up the display blocks is very important, yet easily overlooked. The
second input on the display block contains a true/false value that controls whether that
block will erase the EV3 display before printing its text. This should be set to true for the
first block, but false for the second and third blocks. This is so that each time the program
loops around, it erases the old information from the EV3 display, but the second and third
blocks do not erase the new information printed by the block before them.

When the setup for the display blocks is complete, they look like this:

Now, take the data wire from each text block and plug it into the text input of one of the
display blocks. UTC should go to the first display block, latitude should go to the second,
and longitude should go to the third:

GPS Car – Autonomous EV3 Navigation Chapter 7

[197]

Wait block
Recall that the dGPS updates with new information once per second. To prevent the
program from sampling the dGPS too quickly, add a wait block (set for one second) at the
end:

Putting it all together
The completed GPS test program looks like this:

You can use this program to test your dGPS and gather some sample coordinates. We have
also gained some experience with programming the dGPS, which will guide us through
writing the navigation code.

Autonomous navigation
This program allows you to type in a pair of GPS coordinates and the car will use the dGPS
and compass to drive there. The program is quite sophisticated compared to all of the
programs we have made so far, so hang on!

GPS Car – Autonomous EV3 Navigation Chapter 7

[198]

Acquiring target coordinates
You may use the GPS test program to find some target GPS coordinates for the car to
navigate to. You may also use Google Maps; click on a location on the map and that
location's latitude and longitude will be displayed in decimal-degree format. For example,
here are the coordinates for the Washington Monument:

After you have acquired a pair of target coordinates, you may proceed with the
programming.

MyBlocks for car steering
The navigation program relies on MyBlocks to do the bulk of the work. We will make five
MyBlocks in total. We will start with the four car-steering MyBlocks because they are a
review from the last chapter.

GPS Car – Autonomous EV3 Navigation Chapter 7

[199]

Importing/exporting MyBlocks
The first MyBlock we need is steerCenter; we created this MyBlock in the last chapter.
Fortunately, we can use the EV3 software's MyBlock import/export feature to save some
time and avoid rewriting the MyBlock. This tool allows you to export a MyBlock from one
EV3 project to a destination on your computer, then import the MyBlock into another EV3
project. This will allow us to copy the MyBlocks we wrote for the Falcon and use them for
the GPS Car.

Follow these steps to copy a MyBlock from one EV3 project file to use it in another project:

Open the project that contains the MyBlock you wish to reuse. For this chapter,1.
we are copying the steerCenter MyBlock from the Falcon project, so open the
Falcon's EV3 project file. Locate the Project Properties icon near the top left
corner of the screen:

Click on the icon to open the Project Properties menu. This menu allows you to2.
import and export programs, images, sounds, MyBlocks, and variables to and
from the EV3 project file. Locate the My Blocks tab and click on it:

GPS Car – Autonomous EV3 Navigation Chapter 7

[200]

The menu displays the four MyBlocks that we created for the Falcon. Click on the3.
desired MyBlock, steerCenter, to select it. Then, click the Export button near
the bottom of the menu:

GPS Car – Autonomous EV3 Navigation Chapter 7

[201]

Name your MyBlock and save it to a destination on your computer:4.

Now that the MyBlock has been exported from the Falcon project and saved on to5.
the computer, we must import it into the GPS Car project. Open the GPS Car
project, navigate to its Project Properties menu, click on the My Blocks tab, and
click on the Import button near the bottom of the menu:

GPS Car – Autonomous EV3 Navigation Chapter 7

[202]

Open the destination your saved the MyBlock to earlier. Then, select and open6.
the MyBlock:

The new MyBlock is now displayed in the menu for the GPS Car project,7.
indicating that it was successfully imported and is ready for use:

GPS Car – Autonomous EV3 Navigation Chapter 7

[203]

Exit the Project Properties menu by clicking on the tab of one of the project's8.
programs. Just as if we had written the MyBlock directly into the project, the new
MyBlock is now available in the programming palate:

If you drag the newly imported MyBlock into a program and double click it, it will expand
to show the code within. You can see that the import was successful because you can
recognize the code from the previous chapter:

We will also directly borrow the steerReCenter MyBlock from the Falcon project. Follow
the preceding steps to import this block into the GPS Car project too:

GPS Car – Autonomous EV3 Navigation Chapter 7

[204]

Steering left and right
We must also make MyBlocks for steering the wheels left and right. We cannot directly
borrow these from the previous project; while the steering MyBlocks we made for the
Falcon project are very precise, we cannot use them because the navigation program starts
to become too complex for them to work. Instead, we will opt for a simpler alternative: a
simple switch block that checks the current position of the steering motor. If the motor is
less than 45 degrees from the center, the program rotates the motor 45 degrees. Here is the
simplified steerLeft MyBlock:

GPS Car – Autonomous EV3 Navigation Chapter 7

[205]

And here is the simple steerRight MyBlock, which is a mirror image of steerLeft:

You can change the magnitude of the steering corrections by changing the target value from
45 degrees to your desired number of degrees.

Unfortunately, these steering MyBlocks are somewhat clumsy, but they will suffice. Because
the program as a whole stretches the limits of the EV3 brick's capabilities, we need to use
these simple steering blocks.

getAngle MyBlock
This is the fifth MyBlock used in the navigation program. With this MyBlock, you can plug
in the current position (latitude/longitude) and the target position, and it will calculate the
angle at which that the robot needs to drive to in order to reach the destination; in short, it
tells the robot what direction to drive in. As we make this block, we will learn about
variables and parameters. We will also incorporate some advanced math.

GPS Car – Autonomous EV3 Navigation Chapter 7

[206]

Program
To start, drag out a math block (set to subtract) and a variable block. Both are found under
the red data operations tab of the programming palate:

A variable is a placeholder for a value. They have two operations: write,
which changes the value stored in the variable, and read, which retrieves
the stored value. This means that variables are a convenient way to save a
value in one part of a program to use it in another part of the code. In the
EV3 software, variables can store three types of data: numeric, logic, and
text.

A variable must be defined before we can use it in the program. The first step is to choose
the data type. By default, variables in the EV3 software are set to numeric. Luckily, that is
what we need, so we do not have to change it. Next, we must give it a name. Click on the
white space in the top-right corner of the block and select Add Variable. A window appears
into which you can type the name of the new variable:

GPS Car – Autonomous EV3 Navigation Chapter 7

[207]

The name of this specific value is latDiff, which is shorthand for latitude difference. Our
MyBlock calculates the difference between the destination latitude and the current latitude
and stores it in this variable.

Now that the first variable is in place, we can continue with the programming. The data
wire output from the first math block will get plugged into the input of latDiff, meaning
that the result from the subtraction operation will be stored in that variable. That same data
wire will get plugged into a compare block, which checks to see if the resulting value is
equal to zero. The result from the compare block will control a switch (set to logic). In the
true case of the switch, place another variable block with its mode set to Write |
Numeric and choose latDiff again. Enter a value of 1 into the input of the block. Leave
the false case of the switch empty. The start of the getAngle code looks like this:

What is going on here? The segment of code that we just wrote will subtract the current
latitude (read from the dGPS) from the destination latitude and store the difference in the
latDiff variable. Then, the code checks to see if the difference equals zero. If so, then the
program reassigns a value of 1 to the latDiff variable; this is a necessary step
because latDiff will be the denominator of a division operation, and dividing by zero will
cause an error.

You may also be wondering about the inputs of that subtraction block. We will revisit them
later when we turn this code into a MyBlock because we will set up some parameters,
which allow us to plug in the destination latitude and GPS latitude as inputs.

GPS Car – Autonomous EV3 Navigation Chapter 7

[208]

The program also needs to find the difference between the destination longitude and
current longitude. Set up another subtraction math block that saves its result to a new
variable called longDiff. We do not need the extra step that checks for a zero value
because longDiff will be the numerator of the division operation. Again, ignore the input
of the math block for now because we will define some parameters later:

In the EV3 software, the dGPS reports all latitude and longitude values as positive numbers.
This is problematic if the car is in the western or southern hemisphere; if this is the case,
add another math block that multiplies the current GPS value by -1. The setup will look
like this (we will discuss how to configure the parameters in this case later). Here is the
modified code that adjusts longitude if the receiver is in the western hemisphere:

Now that latDiff and longDiff have been calculated and stored, we can use them in our
program to calculate an angle. We will use some trigonometry concepts to calculate the
angle. Imagine that latDiff and longDiff are the legs (the two shortest sides) of a right
triangle. We can divide the difference in longitude by the difference in latitude and take the
inverse tangent to calculate an angle in degrees.

GPS Car – Autonomous EV3 Navigation Chapter 7

[209]

Take out two variable blocks, one for latDiff and one for longDiff, but set them to
 Read | Numeric mode to retrieve the data stored in them. Then, add a math block and set
it to Advanced mode:

The advanced math block allows us to access more complex operations and perform
multiple operations within one block. When you click on the white space in the top-right
corner, you will be able to type in the desired operation. To calculate the angle, we will need
to divide longDiff by latDiff and then take the inverse tangent. So, type in atan(a/b).
The variables a and b correspond to the math block's inputs (c and d will not be used in this
project):

GPS Car – Autonomous EV3 Navigation Chapter 7

[210]

Insert the value of longDiff to the a input of the advanced math block, and assign
latDiff to input b. Create a new numeric variable named angle into which the result of
the advanced math block will be stored:

The code now calculates an angle, which can tell the car which way to turn. However, we
are not finished yet. The sign of latDiff and longDiff indicate direction; however, a
negative in either latDiff or longDiff will make the whole fraction negative and throw
off the angle calculation. Additionally, if both latDiff and longDiff are negative, the
math block will return the same angle value as if both were positive, despite the fact that
negatives on both values indicates that the car must drive in the opposite direction! We
need to add some cases that check the sign of latDiff and longDiff and make
adjustments to the angle value we calculated.

First, check to see if the denominator is negative. Read latDiff, use a compare block to
check if the value is less than zero, and use the result to control a logic switch:

GPS Car – Autonomous EV3 Navigation Chapter 7

[211]

If this test returns true, also check longDiff for a negative value. In the true case of the
switch you just placed, program some code that tests to see if the value of longDiff is less
than zero; programming the code for this check is very similar to the one we just made:

If both checks return true, then both the numerator (longDiff) and denominator (latDiff)
are negative. We must subtract 180 degrees from the calculated angle value to compensate.
In the true case of the second switch, program some code that reads the value stored in the
angle variable, subtract 180, then write it to the angle variable again to save it as the new
value:

GPS Car – Autonomous EV3 Navigation Chapter 7

[212]

If the first check returns true, but the second check returns false, then only the denominator
is negative. We will need to add 180 degrees to the value stored in the angle variable:

GPS Car – Autonomous EV3 Navigation Chapter 7

[213]

If the first check returns false, then the denominator is positive. However, we still need to
check the sign of the numerator. Add another check that evaluates the sign of longDiff:

If the numerator is negative, then we will need to add 360 degrees to the angle value:

If both checks return false, then the numerator and denominator were both positive and no
adjustment is necessary. Leave the final false case empty.

GPS Car – Autonomous EV3 Navigation Chapter 7

[214]

The final bit of code reads the angle value after the necessary adjustments have been made.
It uses a round block to round the calculated angle to the nearest whole number. The result
of the round block is the final angle output of the MyBlock. We will set up a parameter to
capture this output soon:

Here is the completed EV3 code for calculating the angle. We will now save the code in a
MyBlock:

GPS Car – Autonomous EV3 Navigation Chapter 7

[215]

Save as MyBlock and create parameters
Select all of the code (excluding the start block), open the My Block Builder, and name the
MyBlock getAngle. Now, we will start setting up the parameters; click the button to create
a total of five parameters:

GPS Car – Autonomous EV3 Navigation Chapter 7

[216]

Click on the Parameter Setup tab to configure each parameter. By default, the parameters
are set to a numeric input. The first four parameters of the getAngle block are numeric
inputs, so we can leave them in their default settings. All we need to do for these first four is
name them. The names of the four inputs in order are curLat (current latitude),
curLong (current longitude), destLat (destination latitude), and destLong (destination
longitude):

GPS Car – Autonomous EV3 Navigation Chapter 7

[217]

The final parameter is called angle, and it is the numeric output of the MyBlock. After
naming it, make sure that Output and Number are selected:

GPS Car – Autonomous EV3 Navigation Chapter 7

[218]

Then, click on the Parameter Icons tab. Here, you can select icons for each parameter. For
example, you may choose to use letters a through d for the four numeric inputs and an
angle icon for the output:

After you have selected the icons, click Finish to close the wizard and save the code as a
MyBlock.

GPS Car – Autonomous EV3 Navigation Chapter 7

[219]

Define parameter inputs/outputs within the code
We are not finished yet! You will return to a screen showing your code, but now a grey
block with four outputs will appear before the code. This is the final step of the parameter
setup; you will use these data wires to tell the EV3 software where each of the inputs go in
your code:

Recall that earlier we left the input of the subtraction blocks empty. Now, we will fill the
empty inputs with the parameter data wires! The first math block calculates the difference
in latitude. The subtraction order is destination position minus current position, so insert
parameter a (curLat) as the second input of the math block, and insert parameter
c (destLat) as the first input of the math block:

GPS Car – Autonomous EV3 Navigation Chapter 7

[220]

We will follow the same steps for the math block that calculates the longitude difference.
Again, the subtraction order is destination position minus current position, so insert
parameter b (curLong) as the second input of the math block and parameter d (destLong)
as the math block's first input. When correctly configured, the input parameters should be
wired like so:

Earlier in this section, we discussed that you may need to add an extra math block that
multiplies the position by -1. Remember that this extra step is only necessary for the
latitude if you are located in the southern hemisphere and/or the longitude if you are in the
western hemisphere. If you need this extra block, plug the parameter that holds the GPS
reading into the multiplication block first. In this example, we added the multiplier to the
longitude values, so parameter b gets multiplied by -1 before it is fed into the subtraction
block. When this is put into place, the code will look like this:

GPS Car – Autonomous EV3 Navigation Chapter 7

[221]

If you scroll to the end of your code, you will find another grey block, this time with an
input. This is where you will inset the final output value so that it can be captured as the
angle output parameter. Simply plug the data wire from the round block into the input of
this grey block:

Parameter setup is now complete and the getAngle MyBlock is finished! When you add
the MyBlock to a program, you will see the four inputs and a single output. When you
hover your cursor over a parameter, its name will be displayed; keep this in mind, as it will
help you avoid confusion:

GPS Car – Autonomous EV3 Navigation Chapter 7

[222]

Writing the program
Now that all five of the MyBlocks are finished, it is time to put them together to make the
navigation program:

The first thing we need to do is define some variables. Create a new logic variable (set the
mode to Write | Logic) and name it exit. Set its starting value to false. This variable's value
changes to true when the GPS Car reaches its destination; this stops the navigation loop and
ends the program:

GPS Car – Autonomous EV3 Navigation Chapter 7

[223]

We need two more numeric variables named destLat and destLong. You will use these
variables to set the destination coordinates. After these three variables, insert the
steerCenter MyBlock so the GPS Car calibrates its steering mechanism before navigating.
Lastly, add a loop. Later, we will change the loop's exit case so that the program exits when
the exit variable's value changes to true:

Refer back to the example coordinates for the Washington Monument that we acquired
earlier. Its latitude is 38.889479 degrees, and its longitude is -77.035250 degrees. The latitude
value will be entered into destLat as 38889479 and the longitude value will be entered
into destLong as -77035250. When the values are entered into the variables, the EV3
software puts them into scientific notation and rounds the last digit. So, the coordinates
become 3.888948e+07 for destLat and -7.703525e+07 for destLong:

GPS Car – Autonomous EV3 Navigation Chapter 7

[224]

The first piece of code that we will place inside the loop is a move steering block
(On, steering = 0, power = 75 percent). This turns on the drive motors so the GPS Car
continuously powers forward while it navigates:

Next, we need to read our GPS position data. Insert two dGPS sensor blocks; set one to
measure latitude and the second to measure longitude. Then, add two variable blocks with
their modes set to Read | Numeric to retrieve the values stored in destLat and detLong:

GPS Car – Autonomous EV3 Navigation Chapter 7

[225]

Add the getAngle MyBlock to the program and assign the sensor block outputs and
variable values to the corresponding input on getAngle. The dGPS sensor block that reads
latitude should plug into input A on getAngle; the dGPS block that reads longitude should
plug into input B. The value of destLat should be assigned to input C and destLong
should be assigned to input D. Using these input data, getAngle calculates an angle
heading value, which indicates the direction that the GPS Car must turn to drive towards its
destination; the getAngle output parameter, angle, stores the result of the MyBlock's
calculations:

Now, it is time to put that heading value to use! Add a HiTechnic compass sensor block and
change its mode to Measure | Absolute Heading. The programming block will reconfigure
to include an input parameter; this input is used to set the target heading:

GPS Car – Autonomous EV3 Navigation Chapter 7

[226]

Plug the output of getAngle into the target input on the compass block. This sets the
heading angle calculated using the GPS data as the compass's target heading. The compass
will return a relative heading angle based on the target heading. Create a new numeric
variable named compassRelHead and use it to store the compass's relative heading:

Earlier in the chapter, we established that the sign of the relative heading returned by the
compass indicates the direction that the car must turn to reach its destination. If the relative
heading is positive (greater than zero), the GPS Car must turn right; if the heading is
negative (less than zero), the GPS Car must turn left. If the relative heading equals zero, no
adjustment is required.

The program will first check to see if the relative heading is positive. This will require the
usual programming with a compare block, which checks to see if the value is greater than
zero, and a logic switch:

GPS Car – Autonomous EV3 Navigation Chapter 7

[227]

If the compare block returns true, the GPS Car must turn right to remain on course to the
destination. Add the steerRight MyBlock to the true case of the switch:

If the compare block returns a false value, then the program will check to see if the relative
heading is negative. In the false case of the switch, set up a variable that reads the value of
compassRelHead, checks to see if it is less than zero using a compare block, and returns its
value to control a nested logic switch:

GPS Car – Autonomous EV3 Navigation Chapter 7

[228]

Place the steerLeft MyBlock in the true case of the most recent switch. The false case
executes if the relative heading is equal to zero; place the steerReCenter MyBlock here:

GPS Car – Autonomous EV3 Navigation Chapter 7

[229]

To prevent the EV3 from oversampling the dGPS, insert a wait block that will pause the
program for a duration of one second after the switches:

Only one more section of the program remains! The last piece of code compares the
destination programmed by the user to the current GPS position and stops the program
when it determines that the destination has been reached. It reads the values stored in
latDiff and longDiff (recall that these values are calculated as an intermediate step
within the getAngle MyBlock) and checks to see if they are within a certain range. This
works because latDiff and longDiff are the distances to the destination in one
dimension each. If both latDiff and longDiff are small, this indicates that the car is close
enough, so the car stops and the program ends.

All variables defined in the EV3 software have a global scope. This means
that they can be written to or read from any place in the program or even
in a different program as long as they are from the same EV3 project file.
The downside is that you must take careful consideration when naming
variables; give every variable in the EV3 project file a unique name so that
they do not interfere with each other.

GPS Car – Autonomous EV3 Navigation Chapter 7

[230]

The code will check the value of latDiff first. It reads the stored value and inserts it as the
test value of a range block. The range block compares the test value to a predefined
condition and returns a true or false value to indicate whether the test value meets the
condition. Set the mode of the range block to Inside and set the lower and upper bounds to
-10 and 10, respectively. In practice, this means that a true value will be the result if the
car's current latitude is within roughly one meter in either direction of the destination
latitude. The logic result of the range block will control a logic switch. You may set the
switch to tabbed view because we will only write code in its true case. The code for the first
half of the destination check looks like this:

It is important that the code checks that the car is within range of the
destination as opposed to checking to see if the current and destination
coordinates match exactly. This is because the EV3 software rounds up the
last digit of destination coordinates. Additionally, due of the inherent
errors associated with GPS navigation, it is not reasonable to expect the car
to reach the exact destination coordinates, which specify a location to a
tenth of a meter. You can try adjusting the bounds of the range block;
making the bounds wider will make the destination check less precise, but
the car will find the destination more easily.

GPS Car – Autonomous EV3 Navigation Chapter 7

[231]

The second half of the destination check reads the value stored in longDiff, but otherwise,
the code is the same. The second half of the check returns a true value if the car's current
longitude is within one meter in either direction of the destination. The two halves of the
destination check are nested as so:

If both of these checks return true, then the car is close enough to the destination and the
EV3 can exit the navigation loop. Add a variable block (mode set to Write | Logic) that
changes the value of the exit variable to true:

GPS Car – Autonomous EV3 Navigation Chapter 7

[232]

Change the exit case on the main loop to Logic. A loop in this mode will stop repeating
when it receives a true value. Directly before the loop's exit case, add a variable block (mode
set to Read | Logic) that reads the value stored in the exit variable. Plug the data wire
from the variable block into the input of the loop block. This exit case occurs so that the
navigation program repeats until the destination check changes the value of exit to true,
causing the program to end:

Finally, place two blocks outside the main loop: a move steering block (Off) and
steerReCenter. When the car reaches its destination, it will stop and return its steering
mechanism to the center position:

GPS Car – Autonomous EV3 Navigation Chapter 7

[233]

Putting it all together
When finished, the navigation program looks like this:

If you have made it this far and completed the program, celebrate a job well done! This was
a difficult program to make, but you can hold your head high with the knowledge that you
have completed a very smart piece of code!

Brainstorm some ways in which you can expand on the GPS car to make it smarter. For
example, you can incorporate proximity sensors that allow the GPS Car to avoid collisions
with obstacles.

Summary
We covered many new topics as we made our smartest robot yet.

We introduced two navigation sensors used by self-driving cars in the real world: the GPS
receiver and the magnetic compass. We discussed how they work and learned about the
basic principles behind using these sensors.

Before we started programming, we learned how to import third-party software into the
EV3 software to allow us to use these sensors with the EV3. We wrote a simple program to
test the GPS and get a feel for using the sensor. Then, we wrote a more sophisticated
navigation program in which the EV3 used its GPS and compass to navigate to a pair of
coordinates defined by the user. While programming, we expanded our knowledge of
MyBlocks by introducing parameters, which allow you to program input and output for the
MyBlock.

GPS Car – Autonomous EV3 Navigation Chapter 7

[234]

Congratulations! You have completed the final smart robot project. You are now ready to
start building your own EV3 smart robots, as the principles that you learned while you built
these six projects are now part of your engineering knowledge. You also have an
understanding of the principles at work in a few real-world smart robots. I hope that this
book has motivated you to start experimenting with more smart technology and inspired
you to make something great!

Until next time, cheers!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

ESP8266 Robotics Projects
Pradeeka Seneviratne

ISBN: 978-1-78847-461-0

Build a basic robot with the original ESP8266, Arduino UNO, and a motor driver
board.
Make a Mini Round Robot with ESP8266 HUZZAH
Modify your Mini Round Robot by integrating encoders with motors
Use the Zumo chassis kit to build a line-following robot by connecting line
sensors
Control your Romi Robot with Wiimote
Build a Mini Robot Rover chassis with a gripper and control it through Wi-Fi
Make a robot that can take pictures

https://www.packtpub.com/hardware-and-creative/esp8266-robotics-projects

Other Books You May Enjoy

[236]

Mastering ROS for Robotics Programming - Second Edition
Lentin Joseph, Jonathan Cacace

ISBN: 978-1-78847-895-3

Create a robot model with a seven-DOF robotic arm and a differential wheeled
mobile robot
Work with Gazebo and V-REP robotic simulator
Implement autonomous navigation in differential drive robots using SLAM and
AMCL packages
Explore the ROS Pluginlib, ROS nodelets, and Gazebo plugins
Interface I/O boards such as Arduino, robot sensors, and high-end actuators
Simulate and motion plan an ABB and universal arm using ROS Industrial
Explore the latest version of the ROS framework
Work with the motion planning of a seven-DOF arm using MoveIt!

https://www.packtpub.com/hardware-and-creative/mastering-ros-robotics-programming-second-edition

Other Books You May Enjoy

[237]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
autonomous cars 10, 11
autonomous mode, Omnilander
 about 65
 climbing sequence, programming 70
 false case, programming 66
 loop, setting up 65
 obstacle avoidance sequence, programming 69
 switches, setting up 65
 true case, programming 67

C
climbing mechanism 47
control scheme 157
cosmetic design 116, 154

D
Dexter Industries dGPS
 about 183
 GPS navigation, principles 184
 using 185
display blocks, GPS Car 193, 196
drivetrain
 about 16, 76
 differential 150
 drive motors 149
 final driver ratio 152
 gear ratios 150
 tank tracks reapplying 46

F
Falcon
 about 12, 146
 cases, programming 172, 176
 control scheme 157

 cosmetic design 154
 drivetrain 148
 implementing 178
 mechanical design 148
 modifying 187
 MyBlocks 157
 MyBlocks, accessing 169
 MyBlocks, implementing 170
 program, assembling 169
 programming 156
 sensors 155
 steering 152
 technical requisites 147
FIRST LEGO League (FLL) 88

G
GPS Car
 about 13, 180
 autonomous navigation 197
 Dexter Industries dGPS 183
 display blocks 193, 196
 EV3 software, preparing 189
 Falcon, modifying 187
 getAngle MyBlock 205, 207, 212
 hardware requisites 182
 HiTechnic compass 185
 implementing 197, 233
 MyBlock, saving as 215
 MyBlocks, exporting 199, 202
 MyBlocks, for car steering 198
 MyBlocks, importing 199, 202
 parameters input/output, defining within code

219, 220, 221
 parameters, creating 215
 program, writing 222, 225, 227, 229, 232
 references 181

[239]

 sensor blocks 191
 software requisites 189
 steering 204
 target coordinates, acquiring 198
 technical requisites 181
 test program 191
 text blocks 191
 wait block 197
Grunt
 about 12, 111
 cosmetic design 116
 handshake 134, 136
 handshake trigger 142
 hungry mode 130, 134
 implementing 144
 mechanical design 113
 modes, programming 130
 motorized functions 117
 null case 143
 programming 123
 references 113
 remote control 137, 140
 sensors 120
 simple AI, setting up 123
 tantrum 140, 142
 technical requisites 113
 walking mechanism 113

H
HiTechnic compass
 about 185
 using 186
hook submechanism 49
hungry mode, Timmyton
 blue 101
 green 101
 red 102
 white 102
 yellow 101

I
infrared (IR) sensors 25

J
Jack submechanism 51
jaws and tail, Timmyton
 animating 82
 jaws, chomping 83
 tail, wagging 83

L
LEGO MINDSTORMS EV3
 using 11

M
motorized functions, Grunt
 about 117
 arms 118, 120
 mouth 117
MyBlocks 157
MyBlocks, Falcon
 accessing 169
 code, saving as 159
 steering left 161, 164
 steering right 165
 steering to center, returning 166, 169
 steering, centering 158

O
Omnilander
 about 12
 autonomous mode 65
 climbing mechanism 47
 drivetrain 46
 hook submechanism 49
 implementing 71
 jack submechanism 51
 loop, setting up 56
 mechanical design 46
 programming 55
 proximity sensors 53
 RC 55
 switch cases, configuring 58, 62, 64
 switch, setting up 56
 technical requisites 45
operating modes, Timmyton

[240]

 about 95
 autonomous 105, 108
 funky mode 103, 104
 hungry mode 99, 101
 jaws 96, 99
 remote control 95

P
proximity sensors, Omnilander
 about 53
 infrared sensor 55
 ultrasonic sensor 54

R
rear-wheel drive (RWD) 148
Remote Control (RC) 44, 95

S
Security Tank
 about 12
 beacon, checking 27
 beacon, following 31
 beacon, keeping in sight 37
 compare switch, using 35
 distance, measuring to control speed 31
 drivetrain 16
 driving controls 33
 false case, programming 28
 implementing 42
 K values 32
 left side, programming 40
 mechanical design 16
 program, setting up 26
 programming 26
 projectiles, firing 35
 proportional steering 31
 return-to-center, programming 39
 sensors 25
 spiked roller 23
 switch cases, programming 35
 switch, setting up 27, 37
 Tabbed view, selecting 29
 technical requisites 15
 turret 18

 turret, aiming 33
sensor blocks, GPS Car 191
sensors, Falcon
 infrared sensor 155
 rotation sensor 156
sensors, Grunt
 about 120
 color sensor 122
 infrared sensor 121
 touch sensor 122
sensors, Security Tank 25
sensors, Timmyton
 color sensor 85
 infrared sensor 85
simple AI
 initial code 124
 setting up 123
 switches, nesting 125, 129
smart robots
 autonomous cars 10, 11
 creating 7
 examples 8
 robotic vacuum cleaners 8, 10
spiked roller 23
steering 152

T
tank steering 16
tank treads 16
text blocks, GPS Car 191
Timmyton
 about 12, 74
 chassis 78
 cosmetics 77
 drivetrain 76
 GUI 87
 GUI, programming 90, 93
 implementing 109
 jaws 80
 jaws and tail, animating 82
 mechanical design 76
 menu graphics, creating 88
 operating modes 95
 pectoral fins 79
 programming 86

 references 75
 sensors 84
 tail 81
 technical requisites 75
turret
 about 18
 aiming 33
 ammo silos 21
 projectiles, firing 18

 rotation 21

U
Ultrasonic (US) sensor 54

W
wait block, GPS Car 197
walking mechanism 113

	Cover

	Copyright and Credits
	Packt Upsell
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Smart Robots
	What makes a robot smart?
	Examples of smart robots in the real world
	Robotic vacuum cleaners
	Autonomous cars

	Where does the EV3 fit in?
	What will we build and why?
	Summary

	Chapter 2: Security Tank – Object-Tracking Robot
	Technical requirements
	Mechanical design
	Drivetrain
	Turret
	Firing projectiles
	Ammo silos
	Rotation

	Spiked roller
	Sensors

	Programming
	Setting up the program
	Beacon check
	Setting up the switch
	Programming the false case
	Change to tabbed view

	Following the beacon
	Proportional steering
	Measuring distance to control speed
	K values
	Controlling the driving

	Aiming the turret
	Fire!
	Using the compare switch
	Program the switch cases

	Keeping the beacon in sight
	Set up the first switch (right side)
	Program the return-to-center (right side)
	Programming the left side

	Putting it all together

	Summary

	Chapter 3: Omnilander – Ultimate All-Terrain Vehicle
	Technical requirements
	Mechanical design
	Drivetrain – tank tracks reapplied
	Climbing mechanism
	Hook submechanism
	Jack submechanism

	Proximity sensors
	Ultrasonic sensor
	Infrared sensor

	Programming
	RC
	Setting up the loop
	Setting up the switch
	Configuring the switch cases

	Autonomous mode
	Setting up the loop and switches
	Programming the false case
	Programming the true case
	Programming the obstacle avoidance sequence
	Programming the climbing sequence
	Putting it all together

	Summary

	Chapter 4: Timmyton – Interactive Robotic Shark
	Technical requirements
	Mechanical design
	Drivetrain
	Cosmetics
	Chassis
	Pectoral fins
	Jaws
	Tail

	Animating the jaws and tail
	Chomping jaws
	Wagging tail

	Sensors
	Infrared sensor
	Color sensor

	Programming
	GUI
	Creating the menu graphics
	Programming the GUI

	Operating modes
	Remote control
	Jaws
	Hungry mode
	Funky mode
	Autonomous

	Putting it all together

	Summary

	Chapter 5: Grunt – Quirky Bipedal Robot
	Technical requirements
	Mechanical design
	Walking mechanism
	Cosmetic design
	Motorized functions
	Mouth
	Arms

	Sensors
	Infrared sensor
	Color sensor
	Touch sensor

	Programming
	Setting up a simple AI
	Initial code
	Nesting the switches

	Programming the modes
	Hungry mode
	Handshake
	Remote control
	Tantrum
	Handshake – alternative trigger
	Null case

	Putting it all together

	Summary

	Chapter 6: Falcon – Remote Control Race Car
	Technical requirements
	Mechanical design
	Drivetrain
	Drive motors
	Gear ratios
	Differential
	Final drive ratio

	Steering
	Cosmetic design
	Sensors
	Infrared sensor
	Rotation sensor

	Programming
	Control scheme
	MyBlocks
	Centering the steering
	Saving code as a MyBlock
	Steering left
	Steering right
	Returning the steering to center

	Assembling the program
	Accessing your MyBlocks
	Getting started
	Programming the cases

	Putting it all together

	Summary

	Chapter 7: GPS Car – Autonomous EV3 Navigation
	Technical requirements
	Hardware
	Dexter Industries dGPS
	Basic principles of GPS navigation
	Using the dGPS

	HiTechnic compass
	Using the compass

	Modifying the Falcon

	Software
	Preparing the EV3 software
	GPS test program
	Sensor blocks
	Text blocks
	Display blocks
	Wait block
	Putting it all together

	Autonomous navigation
	Acquiring target coordinates
	MyBlocks for car steering
	Importing/exporting MyBlocks
	Steering left and right

	getAngle MyBlock
	Program
	Save as MyBlock and create parameters
	Define parameter inputs/outputs within the code

	Writing the program
	Putting it all together

	Summary

	Other Books You May Enjoy
	Index

