

Mastering Internet of Things

Design and create your own IoT applications using
Raspberry Pi 3

Peter Waher

BIRMINGHAM - MUMBAI

Mastering Internet of Things
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Namrata Patil
Content Development Editor: Trusha Shriyan
Technical Editor: Naveenkumar Jain
Copy Editor: Laxmi Subramanian and Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Jisha Chirayil
Production Coordinator: Nilesh Mohite

First published: March 2018

Production reference: 1230318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-748-3

www.packtpub.com

http://www.packtpub.com

Today. while writing this, it has passed 11 months to the day since the work on this book began.
A lot of time and effort has been dedicated to creating this book and its contents. If this book

helps you, the reader, gain insights into the world of Internet of Things and the future Smart
City, or Smart Society, this effort has been well spent. I would like to dedicate this book to the

loving memory of my little brother, Viktor, who unfortunately passed away last year, only
thirty-seven years old, leaving behind his wife and children. It was a difficult time for the entire

family, and in many regards, it still is. This book wouldn’t have been completed without the
help, support, and understanding of my father, Jüri, who has dedicated a lot of time and effort to

his grandchildren; and my wife, Katya; and daughters, Maria-Lorena and Ella-Pauline.
Without their support and understanding, it wouldn’t have been possible to dedicate all the late
nights and weekends to this book. I would also like to thank the editors at Packt, who have had

patience with all the many missed deadlines.

–Peter Waher

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Peter Waher is the founder of Little Sister®—a standards-based distributed social
network—based on the principles of edge computing, privacy, and information ownership
for humans and machines. Currently, he advises companies on topics such as privacy, the
IoT, and Smart Cities. He has worked for 24 years with computers and device
communication, including low-level development in assembler for resource-constrained
devices to high-level system design and architecture. His award-winning applications have
attracted global attention; he has also spoken at prestigious events.

About the reviewer
Pankaj Ganguly is currently working as an IoT architect with Wipro. Previously, he served
Persistent for 12 years. He architected and delivered many IoT solutions using diverse
technologies and cloud platforms.
He is an AWS certified solution architect and a ToGAF 9 certified enterprise architect
who has published seven research papers in international conferences and journals. He also
reviewed many journal and conference papers. He taught at NIT as a visiting faculty, and
has been a part of the academic committee and external evaluators of many NITs in India.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Preparing Our First Raspberry Pi Project 11
Getting what you need 11

Downloading the IoT Dashboard 12
Installing Windows 10 on your Raspberry Pi 13

Starting your Raspberry Pi 16
Connecting to your Raspberry Pi 16
Downloading the Arduino IDE 18

Installing Firmata on your Arduino board 18
Testing your Arduino board 19
Choosing a development environment 21
Using the IoT Gateway project and libraries 22

Creating your first project 22
Adding NuGet packages 23
Aggregating capabilities 24
Initializing the application 24
Communicating with the Arduino 25
Testing the app 27
Deploying the app 27

Summary 30

Chapter 2: Creating a Sensor to Measure Ambient Light 31
Preparing our project 31

Initializing the inventory library 32
Initializing the persistence library 32

Sampling raw sensor data 33
Performing basic error correction 34

Canceling noise 35
Removing random spikes 36

Converting to a physical quantity 38
Illustrating measurement results 38

Table of Contents

[ii]

Calculating basic statistics 40
Defining data persistence 40
Storing measured data 42
Removing old data 43
Summary 43

Chapter 3: Creating an Actuator for Controlling Illumination 44
Preparing our project 44
Defining control parameters 45
Understanding relays 46
Connecting our lamp 47
Connecting an LED 47
Controlling output 48

Persisting control parameter states 49
Logging important control events 50

Using Raspberry Pi GPIO pins directly 50
Checking whether GPIO is available 50
Initializing the GPIO output pin 51
Setting the GPIO pin output 52

Summary 52

Chapter 4: Publishing Information Using MQTT 53
Introducing the MQTT protocol 53

Understanding the Publish/Subscribe pattern 54
Preparing our project 55

Selecting an MQTT broker 56
Creating a Device ID 56
Connecting to the broker 57
Monitoring connection events 58
Recovering from lost connections 58

Publishing sensor data 59
Choosing relevant values 60
Choosing a quality of service 60
Publishing the light field 61

Checking encrypted communication 62
Adding MQTT support to the actuator 64

Table of Contents

[iii]

Subscribing to topics 65
Handling incoming commands 65

Testing MQTT 67
Security considerations 68

Managing authentication 68
Managing privacy 69
Managing interoperability 69
Managing authorization 70

Summary 71

Chapter 5: Publishing Data Using HTTP 72
Introducing the HTTP protocol 72

Locating a resource 73
Understanding the Request/Response pattern 75
Handling sessions 76
Limiting connectivity 76
Choosing a connection direction 77
Understanding methods 78
Updating resources 79
Interacting with resources 79
Encoding content 80
Applying headers 81
Optimizing requests 82
Sending content 83
Understanding status codes 83
Using encryption 85
Validating certificates 87
Redefining the web 88

Preparing our project 90
Creating an HTTP server 90

Adding dynamic synchronous resources 91
Choosing representation 92
Returning an XMLresponse 93
Adding a schema reference 94
Adding momentary values 94
Returning an image response 95

Table of Contents

[iv]

Explicitly encoding your content 96
Adding dynamic asynchronous resources 97

Decoding content 97
Performing control action 98

Summary 99

Chapter 6: Creating Web Pages for Your Devices 100
Adding file-based resources to your projects 100

Converting Markdown to HTML in real time 102
Adding simple Markdown content to the sensor project 103
Calling our sensor API from JavaScript 104
Adding simple Markdown content to the actuator project 106
Calling our actuator API from JavaScript 106
Adding default redirections 107

Plotting graphs 108
Reading historical values from the database 108
Plotting historical values 109
Displaying the plot 110
Generalizing the page 111

Creating a menu system 112
Creating the master document 112
Referencing the menu 113

Authenticating users 114
Adding a login page 115
Creating our user 117
Creating a very simple user database 117
Posting login form 118
Parsing the form 119
Redirecting the user 119
Authenticating the user 120

Protecting our web services 121
Getting a session token 121
Validating tokens 123
Using tokens in JavaScript 123

Summary 124

Chapter 7: Communicating More Efficiently Using CoAP 125

Table of Contents

[v]

Introducing CoAP 126
Using UDP 127
Efficiently distributing data 128
Understanding the Observe pattern 129
Securing CoAP communication 130
Understanding DTLS sessions 131
Encoding content 134

Adding CoAP to our devices 134
Creating a CoAP endpoint 135
Publishing interval-based observable data 136
Publishing event-based observable data 137
Choosing the desired representation 138
Returning CoAP content 138
Adding a control resource to our actuator 140
Responding to change requests 140
Adding output triggers 142

Testing your devices 142
Discovering the contents of your device 142
Controlling your device 144

Securing your devices 145
Limitations of CoAP 146

Summary 147

Chapter 8: Interoperability 148
Understanding the benefits of interoperability 149

The benefits of application-layer standards 149
Understanding coupling 150

Achieving interoperability using CoAP 151
Discovering resources using CoRE 151
Understanding the LWM2M object model 152
Understanding the LWM2M infrastructure 153
Understanding LWM2M server operations 154
Using IPSO Smart Objects 155

Adding LWM2M to our devices 156
Creating an LWM2M client 156
Performing the bootstrap procedure 157

Table of Contents

[vi]

Registering with the LWM2M servers 158
Following the progress 159
Defining Smart Objects 160

Creating the digital input object class 161
Creating the digital input object instance class 161
Defining trigger intervals for observable resources 162
Notifying subscribers manually 163
Instantiating the digital input object 163
Creating the digital output object instance class 164
Setting remotely updated output values 165

Testing your LWM2M device 166
Configuring the bootstrap server 166
Configuring the LWM2M server 168
Interacting with your devices 168

Summary 169

Chapter 9: Social Interaction with Your Devices Using XMPP 170
Introducing XMPP 171

Using XML 171
Understanding the value of brokers 171

Providing global scalability 172
Extending server functionality 173
Authenticating clients 173

Understanding XMPP addresses 174
Using trust-based communication to secure the network 175
Understanding XMPP communication patterns 176
Understanding stanzas 176
Extending XMPP 178
Selecting a client library 179
Selecting a broker 179

Adding XMPP to our devices 180
Connecting to our broker 181

Getting persisted credentials 182
Preparing the connection for first-time use 182
Connecting to the server 183
Following the connection process 184
Registering a new account 184

Table of Contents

[vii]

Maintaining the connection 185
Managing the roster 186

Making sensor data available over XMPP 187
Understanding the conceptual model 188
Creating an XMPP sensor server 189
Returning momentary values 190
Returning historical values 191
Returning writable values 192
Triggering events 192

Publishing control parameters 193
Understanding the conceptual model 193
Creating an XMPP control server 195

Adding a chat interface 196
Creating an XMPP chat server 196

Testing your devices 197
Testing the human interface 197
Testing the machine interface 198

For further study 199
Summary 200

Chapter 10: The Controller 201
Discovering things on the internet 201

Introducing Thing Registry 202
Propagating information 202
Claiming ownership of things 203
Transferring the conceptual identity to the owner 204
Using thing registries in XMPP 206

Registering our devices 206
Looping through available components 207
Finding the thing registry 208
Creating a Thing Registry client 208
Defining the conceptual identity of the thing 209
Adding existing location information 209
Collecting location information 210
Registering the device 212
Updating a registration 213

Creating a controller 214

Table of Contents

[viii]

Identifying things 214
Finding friends in the roster 215
Limiting the search domain 216
Performing the search 217
Picking suitable devices 217
Making new friends 218
Reacting to roster events 219
Adding a friend 219
Losing a friend 220
Reacting to revoked presence subscriptions 221
Reacting to presence changes 221
Interacting with devices 222
Subscribing to sensor data events 223
Reacting to sensor data events 224
Collecting relevant sensor data 225
Calculating control output 226
Performing control action 227
Recovering from stale states 228
Re-subscribing to sensor data 228
Invalidating existing friendships 229
Reconfiguring the controller 230
Decommissioning of devices 230

Summary 231

Chapter 11: Product Life Cycle 232
Defining ownership of data 233

Choosing who should own the data 233
Understanding ownership of physical objects 234
Defining ownership of information 235

Understanding provisioning 236
Using a Thing Registry to register ownership 237
Provisioning of a claimed thing 239
Ending ownership 241

Adding provisioning support to our devices 241
Searching for a provisioning server 241
Creating a provisioning client 242

Table of Contents

[ix]

Adding provisioning support 243
Registration of device 243
Transmitting the conceptual identity 244
Reacting to claims 244
Updating the registration of our device 245
Reacting to being disowned 246

Managing the owner side 247
Deciding what to do 247
Managing owned devices 248

Using tokens for identification 249
Testing provisioning 250

Provisioning your devices 250
Claiming a device 252
Adding rules 253

Summary 254

Chapter 12: Concentrators and Bridges 256
Introducing concentrators 257

Understanding concentrators in XMPP 257
Modeling a Programmable Logic Controller 258
Bridging protocols 259
Integrating backend systems 261

Referencing embedded nodes 262
Referencing embedded sensor nodes 263
Supporting embedded sensor nodes 263
Referencing embedded actuator nodes 264
Supporting embedded actuator nodes 264
Using embedded nodes in Thing Registries 264
Using embedded nodes in provisioning 265

Managing a concentrator 266
Interfacing a concentrator 267
Building a concentrator 267
Defining data sources 268
Defining embedded nodes 268
Redirecting node requests 269

Implementing a concentrator 270

Table of Contents

[x]

Instantiating the concentrator 270
Defining the data source 271
Providing basic access control 272
Publishing our nodes 272
Defining our embedded sensor node 273

Defining basic properties 273
Defining the node topology 274
Providing displayable parameters 275
Providing status feedback 276
Performing readout of a sensor 276

Defining our embedded actuator node 277
Defining control parameters for embedded nodes 277

Registering our embedded nodes 278
Trying your concentrator 279

Adding provisioning support to the concentrator 280
Summary 281

Chapter 13: Using an Internet of Things Service Platform 282
Understanding the IoT Gateway project 283
Running the IoT Gateway 283

Running the console version 284
Running the gateway as a Windows service 286
Running the gateway as an app 287

Configuring the IoT Gateway 287
Configuring the XMPP interface 288
Securing the password 289
Setting basic properties of the gateway 289
Providing a certificate 291

Providing web content 291
Publishing network folders 293
Using Markdown 293
Using metadata for Search Engine Optimization 293
Providing menus using the Master/Detail model 294
Customizing the user experience 296
Adding security headers 296
Authorizing user privileges 297
Customizing content using server-side script 298

Table of Contents

[xi]

Using pre-processed script 298
Interacting with .NET code from script 299
Testing script 299

Customizing code visualization 301
Visualizing Graphviz graphs 301

Customizing multimedia presentation 302
Pushing information to web clients 303

Monitoring performance 304
Monitoring event logs 304
Monitoring communication sniffers 304

Developing services for the IoT Gateway 305
Creating a service module 305
Understanding the basic architecture 305
Creating a manifest file 307
Installing your service 307
Testing and debugging your service 308
Deploying your service to an embedded device 308
Extending communication capabilities 309
Interfacing things 309

Using the Metering Topology data source 310
Controlling node hierarchy 312
Editing node properties 312
Interacting with your things 313
Managing your things 315

Packaging your service 317
Creating an installer 317

Summary 318

Chapter 14: IoT Harmonization 319
Envisioning the Smart City 319

Deriving some immediate consequences 320
Avoiding the lure of the dark side 322
Understanding the driving forces 323
Dividing responsibilities 324

Proposing a solution 325
Developing standards 325
Using abstractions 326

Table of Contents

[xii]

Choosing XMPP 327
Defining economic feedback models 327
Defining new roles 328

Summary 328

Chapter 15: Security for the Internet of Things 329
Understanding the risks 329
Getting to a bad place 331
Understanding the root causes 331
Looking at alternative options 332
Getting to a better place 333
Mastering data protection technologies 334

Skimming the basics of encryption 335
Protecting data integrity 336
Understanding key sizes 337
Using certificates 337
Avoiding self-signed certificates 339
Avoiding creating a Certificate Authority 340
Using tokens to transport claims 341
Enforcing ubiquitous encryption 341
Creating checklists 342
Updating your firmware 343
Distributing your risks 343
Avoiding leaking data unintentionally 344

Summary 345

Chapter 16: Privacy 346
Defining privacy 346

Understanding the importance 347
Understanding what it means 347
Being informed 348

Introducing the GDPR 348
Balancing rights 349
Measuring proportionality 350
Defining personal data 351
Anonymizing data 352
Defining processing 352

Table of Contents

[xiii]

Doing as little as possible 352
Informing the data subjects 353
Finding your legal grounds 354
Avoiding certain topics 355
Distributing responsibilities 356
Avoiding sanctions 357
Assisting controllers and processors 358
Protecting personal data 358
Giving individual rights 359

Solving the puzzle 359
Summary 360

Other Books You May Enjoy 361

Index 364

Preface
Hello and welcome to Mastering Internet of Things. This book will guide you through the
very fascinating subject of Internet of Things, and the emerging concept of Smart Cities. If
you’re a novice to the subject, don’t worry, you’ll be introduced to it. You are assumed to
know the basic principles of software development. Standard components such as
Raspberry Pi, Arduino, and related peripherals will be used throughout the book. There is
no need for knowledge of electronics, even though an understanding of the basic
underlying principles will help. The book will guide you through many of the different
problems each developer needs to face and master, using several practical projects. We’ve
chosen to use C# in all the examples. It’s a modern language that will allow us to reuse code
efficiently between PCs, embedded devices, smart phones, and tablets. You can choose
between using free or commercial development tools. By the end, you’ll be an adept in the
field, having mastered many of the fundamentals of Internet of Things and will be ready to
join us in the effort in creating the next generation of Smart Cities and Smart Societies.

Defining the Internet of Things
The successful study of any subject begins with using good definitions. Without clear
definitions, the boundaries become fuzzy and immediate consequences and implications
become unclear. The term Internet of Things started as a visionary statement, a buzz word,
rather than a definition. While the term has enjoyed exceptional media coverage, the
visionary statement has been interpreted differently by different people.

The term is normally considered to be coined by Kevin Ashton in 1999 when he described a
future where things such as barcode readers would be directly connected to the internet,
without the interference of humans. Humans were likened to bad, slow, and error prone
routers. While “things” had already been connected to the internet way before this
statement, the term had not been coined yet. The utility sector, for instance, had long used
connected meters to retrieve meting data automatically. This was first done using modems
and the phone network already in the late 70s and 80s. When ISPs began providing internet
access locally, switching to the internet became a way to reduce costs, since local phone calls
could be used instead of long distance calls. Even the internet itself is a network of things.
Computers and servers are naturally things that are connected. But here, thing has come to
mean non-computer-thing, even though the thing must have a small computer inside, to be
able to connect...confusing…

Preface

[2]

So, to avoid any further confusion, let’s provide a clear definition of what the Internet of
Things is.

The Internet of Things is what you get when you connect things that are
not operated by humans to the internet.

This definition has four clear areas of study that we will introduce in this book:

How to connect things; this is the study of communication protocols.1.
The study of things; this includes concepts such as sensors, actuators, controllers,2.
concentrators, bridges, and so on.
Things are considered not operated by humans; do differentiate them from3.
normal computers. This requires them to make their own decisions and act alone.
This leads to the study of decision support, artificial intelligence, and so on.
Being connected to the internet means the things become neighbors with all the4.
world's criminals, hackers, and curious teenagers at once. Since things are
supposedly not operated by humans, and work possibly for years unsupervised,
the study of security becomes acute. IoT inherits all security issues related to
building information systems on the internet.

While the Internet of Things has seen a lot of development in the first two areas mentioned
previously, the last two are underdeveloped and often omitted. This has lead people such
as James Clapper, former Director of National Intelligence in the USA, to state that America’s
Greatest Threat is the Internet of Things (http:// www.popsci. com/ clapper- americas-
greatest-threat- is- internet- things).

http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things
http://www.popsci.com/clapper-americas-greatest-threat-is-internet-things

Preface

[3]

Competing terminology
As different companies and organizations strive to get attention, it’s not surprising to find a
myriad of similar buzz words being used, each one highlighting different aspects of the
same underlying problem, or to boast of one’s supposedly exceptional understanding of the
subject. Web of Things (WoT), for instance, concerns itself with web-based technologies for
the Internet of Things, such as the HTTP and Web Services. It forms a clear subset of the
Internet of Things (IoT). A Connected Device is often used as a selling point. It normally
refers to the internet connectivity of the device, and then falls under IoT or WoT. As an
extension, the Connected Home, Connected Car, and so on, are specializations of this trend.
Perhaps as an attempt to boast, Internet of Everything (IoE) was coined. But how do you
connect something that is not a thing? Can you connect an emotion or a smell, without a
thing in between doing the sensing? How do you connect space or water? How about
abstract things, such as happiness, how do you connect that? Clearly, IoE comprises the
same items and technologies as Internet of Things, but with a more bombastic title. The
same can be said about Internet of People and Things. This term tries to include human
interaction into the equation. But humans and their processes are already implicitly
included in the original term “Internet”; it needs no further introduction. But there exists
terminology that have clear differences in meaning, that are worth mentioning. Machine-to-
Machine (M2M) communication relates to communication between machines, including
devices and things. It doesn’t presuppose the use of the IP protocol, and the internet. Many
different types of protocols and technologies can be used in M2M solutions, including the IP
protocol. But solutions are typically sealed or closed. The internet, if used, is used as a
carrier of signals and not a platform for interoperability. Cyber-Physical Systems (CPS) is
like M2M in the sense that it doesn’t presuppose the use of the IP-protocol. In CPS,
however, it’s the interaction between algorithms running on machines with the physical
environment that is of interest.

Envisioning the Smart City
For our purposes, since we aim at being able to build smart interoperable cities and
societies, the term Internet of Things fits best. Taking the full definition of IoT given earlier,
we could even say that we try to build an Internet for Things, by providing the necessary
infrastructure for things to be able to make good decisions during their connected life-times.
But what is a Smart City, or a Smart Society?

Preface

[4]

In a Smart City, or a Smart Society, you have:

Ubiquitous access to interoperable sensors and things
Ubiquitous access to data and information from society’s authorities

Access to smart services in all niches of society

When you’ve completed reading this book, you’ll know how to accomplish this goal.

What this book covers
Chapter 1, Preparing Our First Raspberry Pi Project, introduces you to development for
Raspberry Pi. You’ll get an introduction to the Raspberry Pi and peripherals and how to
prepare, start, and administer your device. You’ll learn how to develop, compile, run,
deploy, and test your application on your device.

Chapter 2, Creating a Sensor to Measure Ambient Light, shows you how to create a basic
sensor firmware application for your device. This includes sampling, error correction,
management of physical quantities, basic statistics, and data persistence.

Chapter 3, Creating an Actuator for Controlling Illumination, focuses on how to create a basic
actuator firmware application. You’ll learn how to define control parameters, use relays to
control equipment, persist control states, and log important control events.

Chapter 4, Publishing Information Using MQTT, presents a simple way to publish your
information on the internet. It introduces you to the MQTT protocol, the Publish/Subscribe
communication pattern, how to connect to a broker, publish information, and subscribe to
information. You’ll learn to test and troubleshoot your communication and consider basic
security issues.

Chapter 5, Publishing Data Using HTTP, introduces you to the HTTP protocol and the
Request/Response communication pattern. This includes locating resources on the internet
and basic protocol semantics. You’ll also learn how to publish machine-readable web
service interfaces and the fundamentals of encryption.

Chapter 6, Creating Web Pages for Your Devices, continues by focusing on human interfaces
for your devices, and how they can be used to monitor and interact with them. You’ll learn
how to publish file-based content how to use Markdown to publish human-readable web
content, how to interact with backend web services from JavaScript. You will also learn how
to perform basic authentication using login pages and Java Web Tokens (JWT).

Preface

[5]

Chapter 7, Communicating More Efficiently Using CoAP, shows you how to create interfaces
for resource-constrained devices. You’ll get an introduction to the CoAP protocol, how
security is performed, how content is encoded, how data is published, and how to respond
to control actions. You’ll be introduced to a new Communication Pattern, the Event
Subscription, and the Observe pattern. You’ll learn how to test your CoAP-enabled devices
and how to secure them using encryption.

Chapter 8, Interoperability, introduces the concept of application-level interoperability and
how standardized technologies can help us in our work. You’ll be introduced to
Constrained RESTful Environments (CoRE), the Light-weight Machine-to-Machine
(LWM2M) enabler , and a standardized object model for the management of devices based
on CoAP and CoRE. IPSO Smart Objects, a set of standardized object interfaces for sensors
and actuators, will also be presented.

Chapter 9, Social Interaction with Your Devices Using XMPP, begins a series of chapters
introducing a more advanced paradigm of communication with devices that will allow us
to do much more interesting things with them in a more secure and interoperable, yet
flexible manner. This chapter introduces the XMPP protocol and the basics of XMPP
extensions. It introduces a trust-based model for communication and security in a social
context. The chapter shows how the Request/Response, Event Subscription, and
Publish/Subscribe patterns can be used in XMPP. It also shows how to build human-to-
machine chat interfaces.

Chapter 10, The Controller, introduces a new type of device, the controller. It presents a way
to register and discover things on the internet using Thing Registries. It will subscribe to
data from sensors it finds and accepts and send control operation commands to appropriate
actuators it finds and accepts.

Chapter 11, Product Life Cycle, highlights that managing devices in an IoT infrastructure is
more complicated than just installing devices, finding them, and starting to communicate
with them. You need to manage the devices over their entire life cycle. You also need to
consider operating costs, without compromising on the security and integrity of the data
and people involved. This chapter introduces a method of provisioning that takes all these
aspects into account. It defines the concept of ownership of data, and how owners can claim
their devices. It presents a decision support extension to XMPP that helps devices determine
who can be their friends and who can do what with them, based on the wishes of their
owners.

Preface

[6]

Chapter 12, Concentrators and Bridges, presents a method to encapsulate virtual devices
inside one communicating entity called a concentrator seamlessly, as if they were
standalone devices on the network. The same technique used to model embedded devices
can be used to bridge between protocol islands, either using the same or different types of
communication protocols, or to integrate backend systems into the network. You’ll learn to
create a concentrator embedding both your sensor and actuator functionality into one single
physical device. You’ll also learn how you can interact with these embedded devices and
how they can be provisioned just as if they were standalone devices.

Chapter 13, Using an Internet of Things Service Platform, shows how an IoT Service Platform
can help you with many of the repetitive tasks required to create a successful IoT
application. It introduces the IoT Gateway project, its architecture and hardware abstraction
layer, security infrastructure, and its management interfaces. You’ll learn how to create
services running on the IoT Gateway, how to use its databases for persistence, how to
interface things, and use its hosting environment.

Chapter 14, IoT Harmonization, introduces a standardization effort to harmonize the wide
range of technologies used in the field of Internet of Things, with the goal of creating an
infrastructure for the Smart City. It reviews the vision of a Smart City and identifies the
main driving forces and requirements for reaching the vision. The chapter gives an
overview of the required new standards and new business roles.

Chapter 15, Security for the Internet of Things, motivates the reader to add security for the
Internet of Things from the beginning, integrating it into the fabric of the design and
architecture, and not adding it later, as an add-on, in case it is needed. It provides a general
introduction to the problem, reviews common attack surfaces, and presents some common
counter measures.

Chapter 16, Privacy, introduces privacy, and why it matters. It presents new modern
privacy legislation, and how technology presented in this book can be used to protect the
privacy.

What you need for this book
Apart from a computer running Windows, Linux, or Mac OS, you will need three
Raspberry Pi 2 model B credit-card-sized computers or later, with 16 GB SD cards
containing the Windows 10 IoT operating system installed. The first chapter lists the
components used to build the circuits used in the examples presented in the book as well as
the applications needed to build the projects. The source code for all the projects presented
in this book is available for download from GitHub at https:/ / github. com/ PeterWaher/
MIoT.

https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT

Preface

[7]

Who this book is for
This book is for students, developers, or electronics engineers who want an introduction to
the Internet of Things, or for professionals who want to deepen their understanding and
explore the possibilities of different technologies for the Internet of Things and the Smart
City. With only a rudimentary understanding of electronics (high school level), Raspberry
Pi or similar credit-card-sized computers, and some programming experience using
managed code such as C# or Java or object-oriented languages such as C++, you will be
taught to develop state-of-the-art solutions for the Internet of Things in an instant.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, path
names, dummy URLs, and user input are shown as follows: "Make sure the
serialCommunication device capability is added."

A block of code is set as follows:

<Capabilities>
 <Capability Name="internetClient" />
 <DeviceCapability Name="serialcommunication">
 <Device Id="any">
 <Function Type="name:serialPort" />
 </Device>
 </DeviceCapability>
</Capabilities>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<Capabilities>
 <Capability Name="internetClient" />
 <DeviceCapability Name="serialcommunication">
 <Device Id="any">
 <Function Type="name:serialPort" />
 </Device>
 </DeviceCapability>
</Capabilities>

Preface

[8]

Any command-line input or output is written as follows:

$ sudo apt-get udpate
$ sudo apt-get upgrade
$ sudo apt-get install mono-complete

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Clicking the Next
button moves you to the next screen."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[9]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http:/ /www.packtpub. com/ sites/ default/ files/
downloads/MasteringInternetOfThings_ ColorImages. pdf.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/Mastering- Internet- of- Things. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringInternetOfThings_ColorImages.pdf
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/Mastering-Internet-of-Things
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[10]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http:// www.packtpub. com/ submit- errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https:/ /www. packtpub. com/ books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Preparing Our First Raspberry

Pi Project
In this chapter, we'll start getting our hands dirty and create our first Raspberry Pi project.
You are surely eager to get started. This chapter covers:

An introduction to the Raspberry Pi and peripherals
How to install Windows 10 on your device
How to start and administer your device
How to create a simple C# project for Raspberry Pi
How to download and run your application on your device
How to debug your application remotely on your device

Getting what you need
For the purposes of this chapter, you will need the following:

A Raspberry Pi 2 or 3 (you'll need three in total, throughout the book)
A micro SD memory card (16 GB or greater) for each Raspberry Pi
A shielded box, to avoid electrostatic damage to your device
A laptop or PC running Windows 10, where you can insert the memory card
An Ethernet network cable, if you use Raspberry Pi 2 or lack Wi-Fi
An internet connection

Preparing Our First Raspberry Pi Project Chapter 1

[12]

The Raspberry Pi 2 or 3 will allow us to run .NET applications and control peripherals using
digital input and output easily. It's also a great platform for creating connected distributed
services. One of its weaknesses, however, is its lack of simple out-of-the-box analog
interfaces. To do analog input and output, you must connect additional chips or equipment
using either synchronous or asynchronous serial communication interfaces that converts
analog signals to digital ones. To simplify this task, you can also use an Arduino board that
you connect to the Raspberry Pi via USB. This has the added benefit of allowing you to use
a wide range of standard Arduino peripherals and devices in your Raspberry Pi projects.
So, you need to add to your list:

Arduino shield for Raspberry Pi B+/2B/3B
Short serial USB cable to connect the Arduino board to the Raspberry Pi
Analog Arduino-compatible light sensor
Digital motion detection PIR sensor
Digital relay module

Most of the above equipment (and more) can be obtained in so-called Starter Kits. Such
starter kits make for great fun, since they often include a wide variety of sensors and
actuators for you to play with. For examples, refer
to https://www.dfrobot.com/category-173.html.

You can use the Arduino Uno board as well. The advantage of the
Arduino shield for Raspberry Pi is that it mounts easier on top of the
Raspberry Pi.

Downloading the IoT Dashboard
Installing Windows 10 on a Raspberry Pi is both free and very easy. Microsoft has
developed a tool for this purpose: the IoT Dashboard. Apart from allowing you to
download and install Windows 10 on your devices, it also helps you manage your devices
in the network. It's a very handy tool, and does not require you to learn any command-line
syntax:

Download and install the IoT Dashboard from the following link:
https://developer.microsoft.com/en-us/windows/iot/docs/iotdashbo
ard

https://www.dfrobot.com/category-173.html
https://www.dfrobot.com/category-173.html
https://developer.microsoft.com/en-us/windows/iot/docs/iotdashboard
https://developer.microsoft.com/en-us/windows/iot/docs/iotdashboard

Preparing Our First Raspberry Pi Project Chapter 1

[13]

The IoT Dashboard is a Windows 10 app. Once running, you can choose to right-click on its
icon and select Pin to taskbar, so that you can find it easier later.

If you don't want to use Windows 10, and want to use Linux instead, you can do so with the
following modifications:

You can use the Raspbian operating system instead. It's based on Debian. Follow
the following instructions on how to download and install it:
https://www.raspberrypi.org/documentation/installation/installing-imag
es/.

Instead of compiling your project as a .NET Core application, compile it as a
standard .NET Framework application instead.
Run the application using Mono. You can follow the following instructions on
how to accomplish this:
http://www.raspberry-sharp.org/eric-bezine/2012/10/mono-framework/inst
alling-mono-raspberry-pi/.

You can run .NET Core on Linux as well. For more information, see:
https://github.com/dotnet/core/blob/master/samples/RaspberryPiIn
structions.md

Installing Windows 10 on your Raspberry Pi
When you've installed and run the IoT Dashboard, a window appears:

Select Set up a new device in the left-hand menu. This will open a simple form.1.
Select your device (Raspberry Pi 2 & 3) and the OS you want to download and
install (Windows 10 IoT Core).

https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/
http://www.raspberry-sharp.org/eric-bezine/2012/10/mono-framework/installing-mono-raspberry-pi/
http://www.raspberry-sharp.org/eric-bezine/2012/10/mono-framework/installing-mono-raspberry-pi/
https://github.com/dotnet/core/blob/master/samples/RaspberryPiInstructions.md
https://github.com/dotnet/core/blob/master/samples/RaspberryPiInstructions.md

Preparing Our First Raspberry Pi Project Chapter 1

[14]

Also, insert the memory card into the computer and select the Drive letter it is2.
assigned to. Other relevant information you need to provide include the Device
name and an Administrator password:

Setting up a new device

Preparing Our First Raspberry Pi Project Chapter 1

[15]

Remember the password!

If you have access to Wi-Fi (2.4 GHz), and are programming a device with access3.
to Wi-Fi, make sure the correct Wi-Fi Network Connection is also assigned:

Configuring Wi-Fi connectivity

Finally, accept the license agreement, and press the Download and install4.
button:

Installing Windows 10

You need to confirm you really want to format the memory card, and install Windows 10
on it. All previous data on the card will be lost. The IoT Dashboard then goes on to
download the operating system and preparing the memory chip for you, including
configuring the device, according to the settings you provided. This process includes
performing some command-line tasks, so you will see a terminal window appear
temporarily.

Preparing Our First Raspberry Pi Project Chapter 1

[16]

Starting your Raspberry Pi
When the card is ready, an Explorer window might appear, and the IoT Desktop window
gives you instructions to remove the card and insert it into your device. Do so, and make
sure you connect your device correctly. Then power it on. Meanwhile, go to the My Devices
view in the IoT Dashboard. It might take a short while to boot the device up the first time.
Don't worry, after first-time initialization, your Raspberry Pi, with Windows 10, should
appear. This process can take from a couple of minutes to a quarter of an hour, depending
on the memory card used:

Device ready for use

Connecting to your Raspberry Pi
When the device appears in your list of devices, right-click on it, and select Open in Device
Portal. Your browser should open and prompt you to login. The username is
Administrator. Enter the password you provided when you prepared your memory chip.

The Device Portal is a very handy and powerful web portal for your device. In it you can:

Configure basic device settings (you should update your time zone at this point).
Update your password.
Remotely view what's on the screen. This will come in handy, especially for
devices that are not connected to monitors. Press the Capture Screenshot button
to try this out.
Control installed apps.
Access files.
View processes and system performance.
Access a command prompt.
Access debugging tools.
Control system devices.

Preparing Our First Raspberry Pi Project Chapter 1

[17]

Manage network connectivity.
Update Windows (make sure you have the latest version by clicking on the
Check for updates button):

Windows 10 start screen

Preparing Our First Raspberry Pi Project Chapter 1

[18]

Since the Device Portal is so powerful and only protected by a simple
username and password, of which the username is known beforehand,
you need to take extra care by protecting it from outside access. Always
keep your devices protected by firewalls. Don't allow anybody on the
outside to connect to your devices, unless you have full control of what
happens, and can make appropriate security decisions.

We will present methods in this book, allowing you to develop IoT
applications that will allow outside access in a simple way, but not
through connecting to the device directly. This is much more secure. Using
these techniques avoids risking the device needlessly.

Downloading the Arduino IDE
In projects where you want to use the Arduino in conjunction with the Raspberry Pi, you
typically use an Arduino board that is mounted on top of the Raspberry Pi. This board also
needs to be prepared. You do this using the Arduino IDE software, which can be
downloaded from this link: https://www.arduino.cc/en/Main/Software. There are setup
applications for Windows, Linux, and MAC.

Installing Firmata on your Arduino board
To access analog sensors on a Raspberry Pi, you need to add circuitry supporting serial
communication to your board since it's not supported by default. One way is to use I2C or
SPI circuits with analog to digital converters. Another way, which we explore in this book,
is to use an Arduino board. The Arduino is a programmable chip, and, as such, you can
program your own firmware with your own serial protocol inside. A simpler method, is to
use the well-used and battle-tested Firmata protocol. Software for this already exists, and is
available in the Arduino IDE directly. Libraries for Firmata exist in many languages.

To install Firmata on your Arduino board, simply follow the following procedure:

Connect your Arduino board to your PC using a short USB cable.1.
Load the Firmata application into the IDE. This is done by selecting File, then2.
Examples, Firmata and Standard Firmata from the menu in the Arduino IDE.
Specify the serial port you connected the Arduino board to. This is done under3.
Tools and Port in the Arduino IDE.

https://www.arduino.cc/en/Main/Software

Preparing Our First Raspberry Pi Project Chapter 1

[19]

Next you need to specify the type of Arduino you're using. If using an Arduino4.
Starter Kit, the name should be listed in the specification. You select the board
under Tools and Board in the Arduino IDE.
Finally, you upload the firmware to the Arduino board. You do this by clicking5.
on the Upload button, formed as an arrow.

If unsure about what type of Arduino you've connected, try the Tools and
Get Board Info command.

Your Arduino board is now prepared with the Firmata firmware. You can close the
Arduino IDE. You will not use it any more in this book.

Testing your Arduino board
Without disconnecting your Arduino board from your PC, you can test that it works as it
should. Since the Firmata protocol is well known, there exist a lot of applications on varying
operating systems, that can read sensors and control devices connected to the Arduino.
Since we demonstrate Windows 10 in this book, you can use the Windows Remote
Arduino Experience App for this purpose. It can be downloaded at
https://www.microsoft.com/sv-se/store/p/windows-remote-arduino-experience/9nblg

gh2041m.

To test this software, we also need to connect some devices to it for testing. Let's connect
our light sensor, PIR sensor, and relay module to it to see if we can access them. Make sure
to connect ground, power and signal correctly. Also make sure to differentiate between
digital pins and analog pins on your Arduino board. For the purposes of our example, I
connected the PIR sensor to digital pin 8, and the relay to digital pin 9. The light
sensor was connected to the analog pin A0.

https://www.microsoft.com/sv-se/store/p/windows-remote-arduino-experience/9nblggh2041m
https://www.microsoft.com/sv-se/store/p/windows-remote-arduino-experience/9nblggh2041m

Preparing Our First Raspberry Pi Project Chapter 1

[20]

In my Starter Kit, ground (GND or -) is always black, power (3.3V, 5V or +)
is always red. Analog pins are colored blue, while digital are colored
green.

While digital pins 0 and 1 can be used on some Arduino boards for
general purpose input and output, other boards use them for serial
communication only. That's why we've selected pins 8 and 9 instead of 0
and 1.

Also, consider using an antistatic wrist strap to protect your hardware
from electrostatic discharges.

When opening the Windows Remote Arduino Experience App, you must first choose how
the app will communicate with your Arduino board. Since it's connected to a USB port,
select USB in the Connection box, and select a communication speed of 57600 baud. Next,
the app makes a search, and a list of devices will be presented. The Arduino board should
appear. Select it and click the Connect button.

You should now be able to interact with the hardware you connected. First go to the Analog
tab. Set the A0 pin to Input, and then watch how the value changes as you cover or
illuminate the sensor accordingly:

Analog peripherals

Preparing Our First Raspberry Pi Project Chapter 1

[21]

Similarly, on the Digital tab, set the 8 pin to Input. Move your hand in front of the PIR
sensor to activate it, and watch how the value jumps to a high voltage level. Set the 9 pin to
Output and control it by setting the value correspondingly. You should hear the relay
clicking as it changes position:

Digital peripherals

Now that you know your Arduino is programmed correctly, and that values are reported as
they should be over the USB serial cable, you're ready to start programming.

Choosing a development environment
You're now ready to start actual coding. The first step is to choose a development
environment. Since this book focuses on C# and .NET, including .NET Core 2, an obvious
choice is to use Visual Studio. But it's not your only option.

For .NET Core development, you can also choose to use Roslyn, which, apart from being
open source, can also be run directly on Windows 10 IoT Core, including the version we use
on the Raspberry Pi. For more information about Roslyn, see
https://msdn.microsoft.com/magazine/mt808499.

https://msdn.microsoft.com/magazine/mt808499

Preparing Our First Raspberry Pi Project Chapter 1

[22]

Another option, is to use Xamarin Studio. It's a development tool focusing on cross
platform development using C#. With Xamarin you can develop applications for IoT
devices, smart phones and tablets, as well as PCs using the same code base. It runs on both
Windows and MAC. The community-edition is free. For more information, see
https://www.xamarin.com/studio.

Since Microsoft acquired Xamarin, its cross-platform capabilities are also available in Visual
Studio. A free version also exists. And Visual Studio can be run on MACs. The examples
published in this book have been developed using Visual Studio 2017. For more
information, see https://www.visualstudio.com/.

Using the IoT Gateway project and libraries
The projects presented in this book are all available on GitHub at
https://github.com/PeterWaher/MIoT. To simplify development and prototyping, these
projects use several libraries. These are available as downloadable and updateable packages
(NuGets), most of which are open source, available on GitHub in the IoT Gateway
repository at https:/ /github. com/ PeterWaher/ IoTGateway. The IoT Gateway repository is
available free for personal or academic use, or for security analysis. Commercial use
requires a commercial license. The repository includes communication libraries, an
encrypted object database, event logging infrastructure, application hosting, web server,
content management, scripting, runtime-tools, and so on. Things that are good to have, to
prototype real-world embedded IoT applications easily and quickly.

Creating your first project
Let's begin. Since our Raspberry Pi now runs Windows 10 IoT Core, .NET Core applications
will run on it, including Universal Windows Platform (UWP) applications. From a blank
solution, let's create our first Raspberry Pi application. Choose Add and New Project. In the
Visual C# category, select Blank App (Universal Windows). Let's call our project
FirstApp. Visual Studio will ask us for target and minimum platform versions. Check the
screenshot and make sure the version you select is lower than the version installed on your
Raspberry Pi.

In our case, the Raspberry Pi runs Build 15063. This is the March 2017
release. So, we accept Build 14393 (July 2016) as the target version and
Build 10586 (November 2015) as the minimum version. If you want to
target the Windows 10 Fall Creators Update, which supports .NET Core 2,
you should select Build 16299 for both.

https://www.xamarin.com/studio
https://www.visualstudio.com/
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway
https://github.com/PeterWaher/IoTGateway

Preparing Our First Raspberry Pi Project Chapter 1

[23]

In the Solution Explorer, we should now see the files of our new UWP project:

New project

Adding NuGet packages
We proceed by adding functionality to our app from downloadable packages, or NuGets.
From the References node, right-click and select Manage NuGet Packages. First, go to the
Updates tab and make sure the packages that you already have are updated. Next, go to the
Browse tab, type Firmata in the search box, and press Enter. You should see the Windows-
Remote-Arduino package. Make sure to install it in your project. In the same way, search
for the Waher.Events package and install it.

Preparing Our First Raspberry Pi Project Chapter 1

[24]

Aggregating capabilities
Since we're going to communicate with our Arduino using a USB serial port, we must make
a declaration in the Package.appxmanifest file stating this. If we don't do this, the
runtime environment will not allow the app to do it. Since this option is not available in the
GUI by default, you need to edit the file using the XML editor. Make sure the
serialCommunication device capability is added, as follows:

<Capabilities>
 <Capability Name="internetClient" />
 <DeviceCapability Name="serialcommunication">
 <Device Id="any">
 <Function Type="name:serialPort" />
 </Device>
 </DeviceCapability>
</Capabilities>

Initializing the application
Before we do any communication with the Arduino, we need to initialize the application.
We do this by finding the OnLaunched method in the App.xml.cs file. After the
Window.Current.Activate() call, we make a call to our Init() method where we set
up the application.

 Window.Current.Activate();
 Task.Run((Action)this.Init);

We execute our initialization method from the thread pool, instead of the
standard thread. This is done by calling Task.Run(), defined in the
System.Threading.Tasks namespace. The reason for this is that we
want to avoid locking the standard thread. Later, there will be a lot of
asynchronous calls made during initialization. To avoid problems, we
should execute all these from the thread pool, instead of from the standard
thread.

We'll make the method asynchronous:

private async void Init()
{
 try
 {
 Log.Informational("Starting application.");
 ...

Preparing Our First Raspberry Pi Project Chapter 1

[25]

 }
 catch (Exception ex)
 {
 Log.Emergency(ex);
 MessageDialog Dialog =
new MessageDialog(ex.Message, "Error");
 await Dialog.ShowAsync();
} IoT Desktop
}

The static Log class is available in the Waher.Events namespace, belonging to the NuGet
we included earlier. (MessageDialog is available in Windows.UI.Popups, which might be
a new namespace if you're not familiar with UWP.)

Communicating with the Arduino
The Arduino is accessed using Firmata. To do that, we use the
Windows.Devices.Enumeration, Microsoft.Maker.RemoteWiring, and
Microsoft.Maker.Serial namespaces, available in the Windows-Remote-Arduino
NuGet. We begin by enumerating all the devices it finds:

DeviceInformationCollection Devices =
 await UsbSerial.listAvailableDevicesAsync();
foreach (DeviceInformationDeviceInfo in Devices)
{

If our Arduino device is found, we will have to connect to it using USB:

if (DeviceInfo.IsEnabled&&DeviceInfo.Name.StartsWith("Arduino"))
{
 Log.Informational("Connecting to " + DeviceInfo.Name);

 this.arduinoUsb = new UsbSerial(DeviceInfo);
 this.arduinoUsb.ConnectionEstablished += () =>
 Log.Informational("USB connection established.");

Attach a remote device to the USB port class:

this.arduino = new RemoteDevice(this.arduinoUsb);

We need to initialize our hardware, when the remote device is ready:

this.arduino.DeviceReady += () =>
{
 Log.Informational("Device ready.");

Preparing Our First Raspberry Pi Project Chapter 1

[26]

 this.arduino.pinMode(13, PinMode.OUTPUT); // Onboard LED.
 this.arduino.digitalWrite(13, PinState.HIGH);

 this.arduino.pinMode(8, PinMode.INPUT); // PIR sensor.
 MainPage.Instance.DigitalPinUpdated(8,
 this.arduino.digitalRead(8));
 this.arduino.pinMode(9, PinMode.OUTPUT); // Relay.
 this.arduino.digitalWrite(9, 0); // Relay set to 0

 this.arduino.pinMode("A0", PinMode.ANALOG); // Light sensor.
 MainPage.Instance.AnalogPinUpdated("A0",
 this.arduino.analogRead("A0"));
};

Important: the analog input must be set to PinMode.ANALOG, not
PinMode.INPUT. The latter is for digital pins. If used for analog pins, the
Arduino board and Firmata firmware may become unpredictable.

Our inputs are then reported automatically by the Firmata firmware. All we need to do to
read the corresponding values is to assign the appropriate event handlers. In our case, we
forward the values to our main page, for display:

this.arduino.AnalogPinUpdated += (pin, value) =>
{
 MainPage.Instance.AnalogPinUpdated(pin, value);
};

this.arduino.DigitalPinUpdated += (pin, value) =>
{
 MainPage.Instance.DigitalPinUpdated(pin, value);
};

Communication is now set up. If you want, you can trap communication errors, by
providing event handlers for the ConnectionFailed and ConnectionLost events. All we
need to do now is to initiate communication. We do this with a simple call:

this.arduinoUsb.begin(57600, SerialConfig.SERIAL_8N1);

Preparing Our First Raspberry Pi Project Chapter 1

[27]

Testing the app
Make sure the Arduino is still connected to your PC via USB. If you run the application now
(by pressing F5), it will communicate with the Arduino, and display any values read to the
event log. In the GitHub project, I've added a couple of GUI components to our main
window, that display the most recently read pin values on it. It also displays any event
messages logged. We leave the relay for later chapters.

For a more generic example, see the Waher.Service.GPIO project at
https://github.com/PeterWaher/IoTGateway/tree/master/Services/Wa

her.Service.GPIO. This project allows the user to read and control all pins
on the Arduino, as well as the GPIO pins available on the Raspberry Pi
directly.

Deploying the app
You are now ready to test the app on the Raspberry Pi. You now need to disconnect the
Arduino board from your PC, and install it on top of the Raspberry Pi. The power of the
Raspberry Pi should be turned off when doing this. Also make sure the serial cable is
connected to one of the USB ports of the Raspberry Pi. Begin by switching the target
platform, from Local Machine to Remote Machine, and from x86 to ARM:

Run on a remote machine with an ARM processor

https://github.com/PeterWaher/IoTGateway/tree/master/Services/Waher.Service.GPIO
https://github.com/PeterWaher/IoTGateway/tree/master/Services/Waher.Service.GPIO

Preparing Our First Raspberry Pi Project Chapter 1

[28]

Your Raspberry Pi should appear automatically in the following dialog. You should check
the address with the IoT Dashboard used earlier, to make sure you're selecting the correct
machine:

Select your Raspberry Pi

Preparing Our First Raspberry Pi Project Chapter 1

[29]

You can now run or debug your app directly on the Raspberry Pi, using your local PC. The
first deployment might take a while, since the target system needs to be properly prepared.
Subsequent deployments will be much faster. Open the Device Portal from the IoT
Dashboard, and take a Screenshot, to see the results. You can also go to the Apps Manager
in the Device Portal, and configure the app to be started automatically at startup:

App running on the Raspberry Pi

Preparing Our First Raspberry Pi Project Chapter 1

[30]

Summary
In this chapter, you've been given an introduction on how to develop apps for the
Raspberry Pi using C#. You've learned how to prepare the hardware and how to use the IoT
Dashboard to install and configure Windows 10 IoT on the device. You've used the Device
Portal to control the applications running on it. You've learned how to extend the
functionality of the Raspberry Pi by using Arduino boards. You've configured these with
Firmata using the Arduino IDE. You've learned how to create a Universal Windows
Platform application to run on the Raspberry Pi, and how to use NuGet packages to add
existing software components to your application. You also successfully tested and
deployed your application. In the next chapter, you will learn the basics of creating a
working sensor.

There are many excellent blog posts on the internet that provide tutorials
concerning C# development on the Raspberry Pi. One example of such an
article is https://msdn.microsoft.com/magazine/mt808503.

https://msdn.microsoft.com/magazine/mt808503

2
Creating a Sensor to Measure

Ambient Light
In the previous chapter, you learned how to create a Universal Windows Platform
application and execute it on the Raspberry Pi. You also learned how to do basic I/O with
your Arduino board and connected peripherals.

In this chapter, we'll focus more on how to build a real sensor firmware, and prepare it for
use in the Internet of Things. The chapter covers:

Sampling
Error correction
Physical quantities
Basic statistics
Data persistence

Preparing our project
Following the same steps as outlined in the previous chapter, we will create a new
Universal Windows Platform application project. This time, we call it Sensor. We can use
the same hardware setup as in the previous chapter, even though we will only use the light
sensor and motion detector (PIR sensor) in this project. We will also add the latest version
of a new NuGet package, the Waher.Persistence.FilesLW package. This package will
help us with data persistence. It takes our objects and stores them in a local object database.
We can later load the objects back into the memory and search for them. This is all done by
analyzing the metadata available in the class definitions, so there's no need to do any
database programming. Go ahead and install the package in your new project.

Creating a Sensor to Measure Ambient Light Chapter 2

[32]

The Waher.Persistence.Files package contains similar functionality,
but it performs data encryption and dynamic code compilation of object
serializes as well. These features require .NET standard v1.5, which is not
compatible with the Universal Windows Platform in its current state. That
is why we use the Light Weight version of the same library, which only
requires .NET standard 1.3. The Universal Windows Platform supports
.NET Standard up to 1.4. For more information, visit
https://docs.microsoft.com/en-us/dotnet/articles/standard/librar

y#net-platforms-support.

Initializing the inventory library
The next step is to initialize the libraries we have just included in the project. The
persistence library includes an inventory library (Waher.Runtime.Inventory) that helps
with dynamic type-related tasks, as well as keeping track of available types, interfaces and
which ones have implemented which interfaces in the runtime environment. This
functionality is used by the object database defined in the persistence libraries. The object
database figures out how to store, load, search for, and create objects, using only their class
definitions appended with a minimum of metadata in the form of attributes. So, one of the
first things we need to do during startup is to tell the inventory environment which
assemblies it and, by extension, the persistence library can use. We do this as follows:

Log.Informational("Starting application.");
Types.Initialize(
 typeof(FilesProvider).GetTypeInfo().Assembly,
 typeof(App).GetTypeInfo().Assembly);

Here, Types is a static class defined in the Waher.Runtime.Inventory namespace. We
initialize it by providing an array of assemblies it can use. In our case, we include the
assembly of the persistence library, as well as the assembly of our own application.

Initializing the persistence library
We then go on to initialize our persistence library. It is accessed through the static
Database class, defined in the Waher.Persistence namespace. Initialization is performed
by registering one object database provider. This database provider will then be used for
all object database transactions. In our case, we register our local files object database
provider, FilesProvider, defined in the Waher.Persistence.Files namespace:

Database.Register(new FilesProvider(

https://docs.microsoft.com/en-us/dotnet/articles/standard/library#net-platforms-support
https://docs.microsoft.com/en-us/dotnet/articles/standard/library#net-platforms-support

Creating a Sensor to Measure Ambient Light Chapter 2

[33]

 Windows.Storage.ApplicationData.Current.LocalFolder.Path +
 Path.DirectorySeparatorChar + "Data",
 "Default", 8192, 1000, 8192, Encoding.UTF8, 10000));

The first parameter defines a folder where database files will be stored. In our case, we store
database files in the Data subfolder of the application local data folder. Objects are divided
into collections. Collections are stored in separate files and indexed differently, for
performance reasons. Collections are defined using attributes in the class definition. Classes
lacing a collection definition are assigned the default collection, which is specified in the
second argument.

Objects are then stored in B-tree ordered files. Such files are divided into blocks into which
objects are crammed. For performance reasons, the block size, defined in the third
argument, should be correlated to the sector size of the underlying storage medium, which
is typically a power of two. This minimizes the number of reads and writes necessary. In
our example, we've chosen 8,192 bytes as a suitable block size. The fourth argument defines
the number of blocks the provider can cache in the memory. Caching improves
performance, but requires more internal memory. In our case, we're satisfied with a
relatively modest cache of 1,000 blocks (about 8 MB).

Binary Large Objects (BLOBs), that is, objects that cannot efficiently be stored in a block,
are stored separately in BLOB files. These are binary files consisting of doubly linked
blocks. The fifth parameter controls the block size of BLOB files. The sixth parameter
controls the character encoding to use when serializing strings. The seventh, and last
parameter, is the maximum time the provider will wait, in milliseconds, to get access to the
underlying database when an operation is to be performed.

Sampling raw sensor data
After the database provider has been successfully registered, the persistence layer is ready
to be used. We now continue with the first step in acquiring the sensor data: sampling.
Sampling is normally done using a short regular time interval. Since we use the Arduino,
we get values as they change. While such values can be an excellent source for event-based
algorithms, they are difficult to use in certain kinds of statistical calculations and error-
correction algorithms. To set up the regular sampling of values, we begin by creating a
Timer object from the System.Threading namespace, after the successful initialization of
the Arduino:

this.sampleTimer = new Timer(this.SampleValues,
 null, 1000 - DateTime.Now.Millisecond, 1000);

Creating a Sensor to Measure Ambient Light Chapter 2

[34]

This timer will call the SampleValues method every thousand milliseconds, starting the
next second. The second parameter allows us to send a state object to the timer callback
method. We will not use this, so we let it be null. We then sample the values, as follows:

privateasync void SampleValues(object State)
{
 try
 {
 ushort A0 = this.arduino.analogRead("A0");
 PinState D8= this.arduino.digitalRead(8);
 ...
 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }
}

We define the method as asynchronous at this point, even though we still haven't used any
asynchronous calls. We will do so, later in this chapter. Since the method does not return a
Task object, exceptions are not propagated to the caller. This means that they must be
caught inside the method to avoid unhandled exceptions closing the application.

Performing basic error correction
Values we sample may include different types of errors, some of which we can eliminate in
the code to various degrees. There are systematic errors and random errors. Systematic
errors are most often caused by the way we've constructed our device, how we sample, how
the circuit is designed, how the sensors are situated, how they interact with the physical
medium and our underlying mathematical model, or how we convert the sampled value
into a physical quantity. Reducing systematic errors requires a deeper analysis that goes
beyond the scope of this book.

Random errors are errors that are induced stochastically and are often unbiased. They can
be induced due to a lack of resolution or precision, by background noise, or through
random events in the physical world. While background noise and the lack of resolution or
precision in our electronics create a noise in the measured input, random events in the
physical world may create spikes. If something briefly flutters past our light sensor, it might
register a short downwards spike, even though the ambient light did not change. You'll
learn how to correct for both types of random errors.

Creating a Sensor to Measure Ambient Light Chapter 2

[35]

Canceling noise
Since the digital PIR sensor already has error correction built into it, we will only focus on
how to cancel noise from our analog light sensor. Noise can be canceled electronically,
using, for instance, low-pass filters. It can also be cancelled algorithmically, using a simple
averaging calculation over a short window of values. The averaging calculation will
increase our resolution, at the cost of a small delay in the output.

If we perform the average over 10 values, we effectively gain one power of
10, or one decimal, of resolution in our output value. The value will be
delayed 10 seconds, however. This algorithm is therefore only suitable for
input signals that vary slowly, or where a quick reaction to changes in the
input stimuli is not required.
Statistically, the expected average value is the same as the expected value,
if the input is a steady signal overlaid with random noise.

The implementation is simple. We need the following variables to set up our averaging
algorithm:

privateconstintwindowSize = 10;
privateint?[] windowA0 = new int?[windowSize];
privateint nrA0 = 0;
privateint sumA0 = 0;

We use nullable integers (int?), to be able to remove bad values later. In
the beginning, all values are null.

After sampling the value, we first shift the window one step, and add our newly sampled
value at the end. We also update our counters and sums. This allows us to quickly calculate
the average value of the entire window, without having to loop through it each time:

if (this.windowA0[0].HasValue)
{
 this.sumA0 -= this.windowA0[0].Value;
 this.nrA0--;
}

Array.Copy(this.windowA0, 1, this.windowA0, 0, windowSize - 1);
this.windowA0[windowSize - 1] = A0;
this.sumA0 += A0;
this.nrA0++;

double AvgA0 = ((double)this.sumA0) / this.nrA0;

Creating a Sensor to Measure Ambient Light Chapter 2

[36]

int? v;

Removing random spikes
We now have a value that is 10 times more accurate than the original, in cases where our
ambient light is not expected to vary quickly. This is typically the case, if ambient light
depends on the sun and weather. Calculating the average over a short window has an
added advantage: it allows us to remove bad measurements, or spikes. When a physical
quantity changes, it normally changes continuously, slowly, and smoothly. This will have
the effect that roughly half of the measurements, even when the input value changes, will
be on one side of the average value, and the other half on the other side. A single spike, on
the other hand, especially in the middle of the window, if sufficiently large, will stand out
alone on one side, while the other values remain on the other. We can use this fact to
remove bad measurements from our window. We define our middle position first:

private const int spikePos = windowSize / 2;

We proceed by calculating the number of values on each side of the average, if our window
is sufficiently full:

if (this.nrA0 >= windowSize - 2)
{
 int NrLt = 0;
 int NrGt = 0;

 foreach (int? Value in this.windowA0)
 {
 if (Value.HasValue)
 {
 if (Value.Value < AvgA0)
 NrLt++;
 else if (Value.Value > AvgA0)
 NrGt++;
 }
 }

If we only have one value on one side, and this value happens to be in the middle of the
window, we identify it as a spike and remove it from the window. We also make sure to
adjust our average value accordingly:

 if (NrLt == 1 || NrGt == 1)
 {
 v = this.windowA0[spikePos];

Creating a Sensor to Measure Ambient Light Chapter 2

[37]

 if (v.HasValue)
 {
 if ((NrLt == 1 && v.Value < AvgA0) ||
 (NrGt == 1 && v.Value > AvgA0))
 {
 this.sumA0 -= v.Value;
 this.nrA0--;
 this.windowA0[spikePos] = null;

 AvgA0 = ((double)this.sumA0) / this.nrA0;
 }
 }
 }
}

Since we remove the spike when it reaches the middle of the window, it might pollute the
average of the entire window up to that point. We therefore need to recalculate an average
value for the half of the window, where any spikes have been removed. This part of the
window is smaller, so the resolution gain is not as big. Instead, the average value will not be
polluted by single spikes. But we will still have increased the resolution by a factor of five:

int i, n;

for (AvgA0 = i = n = 0; i < spikePos; i++)
{
 if ((v = this.windowA0[i]).HasValue)
 {
 n++;
 AvgA0 += v.Value;
 }
}

if (n > 0)
{
 AvgA0 /= n;

Creating a Sensor to Measure Ambient Light Chapter 2

[38]

Converting to a physical quantity
It is not sufficient for a sensor to have a numerical raw value of the measured quantity. It
only tells us something if we know something more about the raw value. We must therefore
convert it to a known physical unit. We must also provide an estimate of the precision (or
error) the value has.

A sensor measuring a physical quantity should report a numerical value,
its physical unit, and the corresponding precision, or error of the estimate.

To avoid creating a complex mathematical model that converts our measured light intensity
into a known physical unit, which would go beyond the scope of this book, we convert it to
a percentage value. Since we've gained a factor of five of precision using our averaging
calculation, we can report two decimals of precision, even though the input value is only
1,024 bits, and only contains one decimal of precision:

 double Light = (100.0 * AvgA0) / 1024;
 MainPage.Instance.LightUpdated(Light, 2, "%");
}

Illustrating measurement results
Following image shows how our measured quantity behaves. The light sensor is placed in
broad daylight on a sunny day, so it's saturated. Things move in front of the sensor, creating
short dips. The thin blue line is a scaled version of our raw input A0. Since this value is
event based, it is being reported more often than once a second. Our red curve is our
measured, and corrected, ambient light value, in percent. The dots correspond to our
second values. Notice that the first two spikes are removed and don't affect the
measurement, which remains close to 100%. Only the larger dips affect the measurement.
Also, notice the small delay inherent in our algorithm. It is most noticeable if there are
abrupt changes:

Creating a Sensor to Measure Ambient Light Chapter 2

[39]

Removal of spikes

If we, on the other hand, have a very noisy input, our averaging algorithm helps our
measured value to stay more stable. Perhaps the physical quantity goes below some sensor
threshold, and input values become uncertain. In the following image, we see how the
floating average varies less than the noisy input:

Removal of noise

Creating a Sensor to Measure Ambient Light Chapter 2

[40]

Calculating basic statistics
A sensor normally reports more than the measured momentary value. It also calculates
basic statistics on the measured input, such as peak values. It also makes sure to store
measured values regularly, to allow its users to view historical measurements. We begin by
defining variables to keep track of our peak values:

private int? lastMinute = null;
private double? minLight = null;
private double? maxLight = null;
private DateTime minLightAt = DateTime.MinValue;
private DateTime maxLightAt = DateTime.MinValue;

We then make sure to update these after having calculated a new measurement:

DateTime Timestamp = DateTime.Now;

if (!this.minLight.HasValue || Light < this.minLight.Value)
{
 this.minLight = Light;
 this.minLightAt = Timestamp;
}

if (!this.maxLight.HasValue || Light > this.maxLight.Value)
{
 this.maxLight = Light;
 this.maxLightAt = Timestamp;
}

Defining data persistence
The last step in this chapter is to store our values regularly. In later chapters, when we
present different communication protocols, we will show how to make these values
available to users. Since we will use an object database to store our data, we need to create a
class that defines what to store. We start with the class definition:

[TypeName(TypeNameSerialization.None)]
[CollectionName("MinuteValues")]
[Index("Timestamp")]
public class LastMinute
{
 [ObjectId]
 public string ObjectId = null;
}

Creating a Sensor to Measure Ambient Light Chapter 2

[41]

The class is decorated with a couple of attributes from the
Waher.Persistence.Attributes namespace. The CollectionName attribute defines the
collection in which objects of this class will be stored. The TypeName attribute defines if we
want the type name to be stored with the data. This is useful, if you mix different types of
classes in the same collection. We plan not to, so we choose not to store type names. This
saves some space. The Index attribute defines an index. This makes it possible to do quick
searches. Later, we will want to search historical records based on their timestamps, so we
add an index on the Timestamp field. We also define an Object ID field. This is a special
field that is like a primary key in object databases. We need it to be able to delete objects
later.

You can add any number of indices and any number of fields in each
index. Placing a hyphen (-) before the field name makes the engine use
descending sort order for that field.

Next, we define some member fields. If you want, you can use properties as well, if you
provide both getters and setters for the properties you wish to persist. By providing default
values, and decorating the fields (or properties) with the corresponding default value, you
can optimize storage somewhat. Only members with values different from the declared
default values will then be persisted, to save space:

[DefaultValueDateTimeMinValue]
public DateTime Timestamp = DateTime.MinValue;

[DefaultValue(0)]
public double Light = 0;

[DefaultValue(PinState.LOW)]
public PinState Motion= PinState.LOW;

[DefaultValueNull]
public double? MinLight = null;

[DefaultValueDateTimeMinValue]
public DateTime MinLightAt = DateTime.MinValue;

[DefaultValueNull]
public double? MaxLight = null;

[DefaultValueDateTimeMinValue]
public DateTime MaxLightAt = DateTime.MinValue;

Creating a Sensor to Measure Ambient Light Chapter 2

[42]

Storing measured data
We are now ready to store our measured data. We use the lastMinute field defined earlier
to know when we pass into a new minute. We use that opportunity to store the most recent
value, together with the basic statistics we've calculated:

if (!this.lastMinute.HasValue)
 this.lastMinute = Timestamp.Minute;
else if (this.lastMinute.Value != Timestamp.Minute)
{
 this.lastMinute = Timestamp.Minute;

We begin by creating an instance of the LastMinute class defined earlier:

LastMinute Rec = new LastMinute()
{
 Timestamp = Timestamp,
 Light = Light,
 Motion= D8,
 MinLight = this.minLight,
 MinLightAt = this.minLightAt,
 MaxLight = this.maxLight,
 MaxLightAt = this.maxLightAt
};

Storing this object is very easy. The call is asynchronous and can be executed in parallel, if
desired. We choose to wait for it to complete, since we will be making database requests
after the operation has completed:

await Database.Insert(Rec);

We then clear our variables used for calculating peak values, to make sure peak values are
calculated within the next period:

 this.minLight = null;
 this.minLightAt = DateTime.MinValue;
 this.maxLight = null;
 this.maxLightAt = DateTime.MinValue;
}

Creating a Sensor to Measure Ambient Light Chapter 2

[43]

Removing old data
We cannot continue storing new values without also having a plan for removing old ones.
Doing so is easy. We choose to delete all records older than 100 minutes. This is done by
first performing a search, and then deleting objects that are found in this search. The search
is defined by using filters from the Waher.Persistence.Filters namespace:

foreach (LastMinute Rec2 in await Database.Find<LastMinute>(
 new FilterFieldLesserThan("Timestamp",
 Timestamp.AddMinutes(-100))))
{
 await Database.Delete(Rec2);
}

You can now execute the application, and monitor how the MinuteValues collection is
being filled.

Summary
In this chapter, you've been shown how to create a simple sensor app for the Raspberry Pi
using C#. You've learned how to sample data, correct for common sampling errors, work
with physical quantities, and calculate basic statistics. You've also learned how to use a local
object database for persisting this data, and delete it when it's considered old. In the next
chapter, you will learn the basics of creating a working actuator.

3
Creating an Actuator for
Controlling Illumination

In the previous chapter, you learned how to create a sensor app that runs on Raspberry Pi.
You also learned some basic principles of sampling and error correction and how to persist
your sensed data.

In this chapter, we'll focus more on how to build an actuator, and prepare it for use in the
Internet of Things. The chapter will cover:

The basics of control parameters
Using relays to control equipment
Persisting control states
Logging important control events

Preparing our project
Let's create a new Universal Windows Platform application project. This time, we'll call it
Actuator. We'll follow the same steps outlined in the previous two chapters. We can also
use the same hardware, even though we will only use the relay in this project. To make
persistence of application states even easier, we'll also include the latest version of the
NuGet package Waher.Runtime.Settings in the project. It uses the underlying object
database defined by Waher.Persistence to persist application settings. We initialize the
application in a similar manner as in the previous two cases. But we don't need to handle
incoming pin measurement events from the Arduino or sampling. We make sure to
terminate the application in the same way as we did in previous applications.

Creating an Actuator for Controlling Illumination Chapter 3

[45]

Defining control parameters
Actuators come in all sorts, types, and sizes, from the very complex to the very simple.
While it would be possible to create a proprietary format that configures the actuator in a
bulk operation, such a method is doomed to fail if you aim for any type of interoperable
communication. Since the internet is based on interoperability as a core principle, we should
consider this from the start, during the design phase.

Interoperability means devices can learn to operate together, even if they are from different
manufacturers. To achieve this, devices must be able to describe what they can do, in a way
that each participant understands. To be able to do this, we need a way to break down
(divide and conquer) a complex actuator into parts that are easily described and understood.
One way is to see an actuator as a collection of control parameters. Each control parameter is
a named parameter with a simple and recognizable data type. (In the same way, we can see
a sensor as a collection of sensor data fields.) We will delve deeper into interoperability in
later chapters:

Actuator as a collection of control parameters

For our example, we will only need one control parameter: A Boolean control parameter
controlling the state of our relay. We'll just call it Output, for simplicity.

Creating an Actuator for Controlling Illumination Chapter 3

[46]

Understanding relays
Relays, simply put, are electric switches that we can control using a small output signal.
They're perfect for small controllers, like Raspberry Pi, to switch other circuits with higher
voltages on and off. The simplest example is to use a relay to switch a lamp on and off. We
can't light the lamp using the voltage available to us in Raspberry Pi, but we can use a relay
as a switch to control the lamp.

The principal part of a normal relay is a coil. When electricity runs through it, it magnetizes
an iron core, which in turn moves a lever from the Normally Closed (NC) connector to the
Normally Open (NO) connector. When electricity is cut, a spring returns the lever from the
NO connector to the NC connector. This movement of the lever from one connector to the
other causes a characteristic clicking sound. This tells you that the relay works. The lever in
turn is connected to the Common Ground (COM) connector.

The following figure illustrates how a simple relay is constructed. We control the flow of the
current through the coil (L1) using our output SIGNAL (D1 in our case). Internally, in the
relay, a resistor (R1) is placed before the base pin of the transistor (T1), to adapt the signal
voltage to an appropriate level. When we connect or cut the current through the coil, it will
induce a reverse current. This may be harmful for the transistor when the current is being
cut. For that reason, a fly-back diode (D1) is added, allowing excess current to be fed back,
avoiding harm to the transistor:

Simplified schematic of a relay

Creating an Actuator for Controlling Illumination Chapter 3

[47]

Connecting our lamp
Now that we know how a relay works, it's relatively easy to connect our lamp to it. Since
we want the lamp to be illuminated when we turn the relay on (set D1to HIGH), we will use
the NO and COM connectors, and let the NC connector be. If the lamp has a normal two-
wire AC cable, we can insert the relay into the AC circuit by simply cutting one of the wires,
inserting one end into the NO connector and the other into the COM connector, as is
illustrated in the following figure:

Connecting a lamp

Be sure to follow appropriate safety regulations when working with
electricity.

Connecting an LED
An alternative to working with the alternating current (AC) is to use a low-power direct
current (DC) source and an LED to simulate a lamp. You can connect the COM connector to
a resistor and an LED, and then to ground (GND) on one end, and the NO directly to the
5V or 3.3V source on the Raspberry Pi on the other end. The size of the resistor is
determined by how much current the LED needs to light up, and the voltage source you
choose. If the LED needs 20 mA, and you connect it to a 5V source, Ohms Law tells us we
need an R = U/I = 5V/0.02A = 250 Ω resistor. The following figure illustrates this:

Creating an Actuator for Controlling Illumination Chapter 3

[48]

Connecting a LED

Controlling output
The relay is connected to our digital output pin 9 on the Arduino board. As such,
controlling it is a simple call to the digitalWrite() method on our arduino object. Since
we will need to perform this control action from various locations in code in later chapters,
we'll create a method for it:

internal async Task SetOutput(bool On, string Actor)
{
 if (this.arduino != null)
 {
 this.arduino.digitalWrite(9,
 On ? PinState.HIGH : PinState.LOW);

The first parameter simply states the new value of the control parameter. We'll add a
second parameter that describes who is making the requested change. This will come in
handy later, when we allow online users to change control parameters.

Creating an Actuator for Controlling Illumination Chapter 3

[49]

Persisting control parameter states
If the device reboots for some reason, for instance after a power outage, it's normally
desirable that it returns to the state it was in before it shut down. For this, we need to persist
the output value. We can use the object database defined in Waher.Persistence and
Waher.Persistence.Files for this. But for simple control states, we don't need to create
our own data-bearing classes. That has already been done by Waher.Runtime.Settings.
To use it, we first include the NuGet, as described earlier. We must also include its
assembly when we initialize the runtime inventory, which is used by the object database:

Types.Initialize(
 typeof(FilesProvider).GetTypeInfo().Assembly,
 typeof(App).GetTypeInfo().Assembly,
 typeof(RuntimeSettings).GetTypeInfo().Assembly);

Depending on the build version selected when creating your UWP
application, different versions of .NET Standard will be supported. Build
10586 for instance, only supports .NET Standard up to v1.4. Build 16299,
however, supports .NET Standard up to v2.0.
The Waher.Runtime.Inventory.Loader library, available as a NuGet
package, provides the capability to loop through existing assemblies in a
simple manner, but it requires support for .NET Standard 1.5. You can call
its TypesLoader.Initialize() method to initialize
Waher.Runtime.Inventory with all assemblies available in the runtime.
It also dynamically loads all permitted assemblies available in the
application folder that have not been loaded.

Saving the current control state is then simply a matter of calling the Set() or SetAsync()
methods on the static RuntimeSettings class, defined in the Waher.Runtime.Settings
namespace:

await RuntimeSettings.SetAsync("Actuator.Output", On);

During the initialization of the device, we then call the Get() or GetAsync() methods to
get the last value, if it exists. If it does not exist, a default value we define is returned:

bool LastOn = await RuntimeSettings.GetAsync("Actuator.Output",
 false);
this.arduino.digitalWrite(1, LastOn ? PinState.HIGH :
 PinState.LOW);

Creating an Actuator for Controlling Illumination Chapter 3

[50]

Logging important control events
In distributed IoT control applications, it's vitally important to make sure unauthorized
access to the system is avoided. While we will dive deeper into this subject in later chapters,
one important tool we can start using is to log everything of security interest in the event
log. We can decide what to do with the event log later, whether we want to analyze or store
it locally, or distribute it in the network for analysis somewhere else. But unless we start
logging events of security interest directly when we develop, we risk forgetting logging
certain events later. So, let's log an event every time the output is set:

Log.Informational("Setting Control Parameter.",
 string.Empty, Actor ?? "Windows user",
 new KeyValuePair<string, object>("Output", On));

If the Actor parameter is null, we assume the control parameter has been set from the
Windows GUI. We use this fact, to update the window, if the change has been requested
from somewhere else:

if (Actor != null)
 await MainPage.Instance.OutputSet(On);

Using Raspberry Pi GPIO pins directly
The Raspberry Pi can also perform input and output without an Arduino board. But the
General-Purpose Input/Output (GPIO) pins available only supports digital input and
output. Since the relay module is controlled through a digital output, we can connect it
directly to the Raspberry Pi, if we want. That way, we don't need the Arduino board. (We
wouldn't be able to test-run the application on the local machine either, though.)

Checking whether GPIO is available
GPIO pins are accessed through the GpioController class defined in the
Windows.Devices.Gpio namespace. First, we must check that GPIO is available on the
machine. We do this by getting the default controller, and checking whether it's available:

gpio = GpioController.GetDefault();
if (gpio != null)
{
 ...
}
else

Creating an Actuator for Controlling Illumination Chapter 3

[51]

 Log.Error("Unable to get access to GPIO pin " +
 gpioOutputPin.ToString());

Initializing the GPIO output pin
Once we have access to the controller, we can try to open exclusive access to the GPIO pin
we've connected the relay to:

if (gpio.TryOpenPin(gpioOutputPin, GpioSharingMode.Exclusive,
 out this.gpioPin, out GpioOpenStatus Status) &&
 Status == GpioOpenStatus.PinOpened)
 {
 ...
 }
 else
 Log.Error("Unable to get access to GPIO pin " +
 gpioOutputPin.ToString());

Through the GpioPin object gpioPin, we can now control the pin. The first step is to set
the operating mode for the pin. This is done by calling the SetDriveMode() method. There
are many different modes a pin can be set to, not all necessarily supported by the
underlying firmware and hardware. To check that a mode is supported, call the
IsDriveModeSupported() method first:

if (this.gpioPin.IsDriveModeSupported(GpioPinDriveMode.Output))
{
 This.gpioPin.SetDriveMode(GpioPinDriveMode.Output);
 ...
}
else
 Log.Error("Output mode not supported for GPIO pin " +
 gpioOutputPin.ToString());

There are various output modes available: Output, OutputOpenDrain,
OutputOpenDrainPullUp, OutputOpenSource, and
OutputOpenSourcePullDown. The code documentation for each flag
describes the particulars of each option.

Creating an Actuator for Controlling Illumination Chapter 3

[52]

Setting the GPIO pin output
To set the actual output value, we call the Write() method on the pin object:

bool LastOn = await RuntimeSettings.GetAsync("Actuator.Output",
 false);
this.gpioPin.Write(LastOn ? GpioPinValue.High : GpioPinValue.Low);

We need to make a similar change in the SetOutput() method.

The Actuator project in the MIOT repository uses the Arduino use case by
default. The GPIO code is also available through conditional compiling. It
is activated by uncommenting the GPIO switch definition on the first row
of the App.xaml.cs file.

You can also perform Digital Input using principles similar to the
preceding ones, with some differences. First, you select an input drive
mode: Input, InputPullUp or InputPullDown. You then use the
Read() method to read the current state of the pin. You can also use the
ValueChanged event to get a notification whenever the input pin changes
value.

Summary
In this chapter, you've looked at how to create a simple actuator app for the Raspberry Pi
using C#. You've learned how to divide an actuator into a set of control parameters. You've
also learned the basics of how relays work and how you can control them using the
Arduino board. You've persisted control states and logged important security-related
control events. As an alternative to using Arduino, you've also learned how to work directly
with General Purpose input/output on the Raspberry Pi. In the next chapter, you'll learn
how to use the MQTT protocol to publish sensor data and control the actuator over the
internet.

4
Publishing Information Using

MQTT
In the previous chapter, you learned how to create an actuator app that runs on the
Raspberry Pi. You also learned how to do basic I/O directly using your Raspberry Pi.

In this chapter, we'll start publishing data we collect on the internet. The first protocol we'll
study is the MQTT protocol. This chapter covers:

An introduction to the MQTT protocol
The Publish/Subscribe communication pattern
Connecting to a broker
Publishing information
Subscribing to information
Testing and troubleshooting communication
Basic security considerations

Introducing the MQTT protocol
One of the most popular protocols to use for Machine-to-Machine (M2M) communication,
and the Internet of Things (IoT), is the MQ Telemetry Transport (MQTT) protocol. The
MQ refers to IBM's MQ series product line, even though MQTT was not part of that series
in the beginning. Since its inception in 1999, the MQTT protocol is implemented in a large
array of tools, servers, and libraries in many different languages.

Publishing Information Using MQTT Chapter 4

[54]

MQTT has drawn interest for various reasons. It is very simple and easy to use, and it is
TCP/IP-based. It also includes a new communication pattern that has become popular for
efficient distribution of data to multiple consumers: the Publish/Subscribe pattern. That
pattern allowed for efficient syndication of news and has become a great tool for efficiently
distributing other kinds of information as well, such as sensor data.

Most IP communication patterns before this were focused on either direct asynchronous
messaging or the request/response pattern. While it is possible to mass-distribute data using
the Internet Group Messaging Protocol (IGMP), on which UDP multicast is based, that
method is often very crude, and hence not always suitable for M2M and IoT, which require
more detail. IGMP requires a unique IP address for each type of conversation.

Understanding the Publish/Subscribe pattern
The Publish/Subscribe pattern solves the problem of detail, by introducing a new concept:
a topic, or a node. A broker is used to distribute messages from publishers to subscribers.
Each message that is being published, is published on a given topic (or node). In turn,
subscribers let the broker know which topics (or nodes) they are interested in. The broker
matches incoming publications with the requests of the subscribers, and forwards messages
accordingly. Using such message filtering makes sure participants avoid receiving
unnecessary messages. In MQTT, publishers can also be subscribers.

Topics (or nodes) can also be formed into trees, with topics, sub-topics, and so on. This
allows for a great amount of detail. In MQTT, topics are simple string names, where nodes
are separated by the forward slash character (/). MQTT also allows subscribers to subscribe
to any node in the tree. Using wildcards, subscribers can even subscribe to entire branches
of the tree, or even the entire tree itself. MQTT defines two types of wildcards: a node
wildcard (+), and a branch wildcard (#). The node wildcard matches any node on a given
level. The branch wildcard matches any number of nodes.

Using a broker also allows machines to overcome the problem of network topology, where
the publishers and subscribers normally reside behind firewalls. Since both publishers and
subscribers connect to the broker, only the broker needs to be accessible. The others can
reside behind firewalls. The following figure illustrates the basic Publish/Subscribe
communication pattern, where solid lines represent connections, dashed lines represent the
flow of information, and the grey boxes represent possible local networks protected by
firewalls:

Publishing Information Using MQTT Chapter 4

[55]

Publish/Subscribe pattern

Preparing our project
We create a new Universal Windows Platform application project, based on the Sensor
project described in chapter 2. This time, we call it SensorMqtt. We use the same hardware
setup and sensor code developed earlier. In this chapter, we will focus on how to publish
the information we've sampled on the internet, and how to receive it. We begin by adding a
new NuGet package, the Waher.Networking.MQTT.UWP package. This package contains a
simple MQTT client we can use to communicate using the MQTT protocol. We also add the
Waher.Runtime.Settings package introduced in the previous chapter.

Publishing Information Using MQTT Chapter 4

[56]

For.NET standard, .NET Core, or traditional .NET Framework projects,
you can use the Waher.Networking.MQTTNuGet instead. UWP apps use
different libraries and runtime binaries when it comes to communication
and encryption. For this reason, it requires a somewhat modified version
of the original library.

Selecting an MQTT broker
To use MQTT, you need to decide what MQTT broker you will use. You can either select a
publicly-available broker, or host your own broker, either in an internal network, or on the
Internet. For the purposes of this book, we will use a free, publicly-available MQTT broker,
hosted by iot.eclipse.org. It uses the Mosquitto broker(http:/ /mosquitto. org/).

A non-exhaustive list of MQTT broker software is available at
https://github.com/mqtt/mqtt.github.io/wiki/servers. There are
many to choose from.

The broker at iot.eclipse.org is publicly accessible, and it allows
anonymous access and wildcard subscriptions. Any data you publish will
be visible to anybody on the internet. For the purposes of illustrating how
MQTT works, it serves its purpose.

If you plan to publish sensitive or personal data, make sure to use secured
brokers. To secure a broker, make sure it only accepts encrypted
connections, only authenticates clients using certificates (not passwords),
and authorizes access using access-control lists (ACL). It must also be
updated regularly, to make sure security patches are installed in a timely
fashion.

Creating a Device ID
The Internet contains a huge number of devices. To be able to distinguish our device from
the rest, we must make sure to create a persistent Device ID for it, and make sure it's
unique:

private string deviceId;

http://mosquitto.org/
http://mosquitto.org/
http://mosquitto.org/
http://mosquitto.org/
http://mosquitto.org/
http://mosquitto.org/
http://mosquitto.org/
http://mosquitto.org/
https://github.com/mqtt/mqtt.github.io/wiki/servers

Publishing Information Using MQTT Chapter 4

[57]

After having started the Arduino initiation, we need to check whether we have a deviceId
created. We use our runtime settings library for this:

this.deviceId = await RuntimeSettings.GetAsync(
 "DeviceId", string.Empty);

If you haven't created one yet, let's do so. A simple way to generate a globally
unique deviceId is to create a Guid. We also remove any hyphens:

if (string.IsNullOrEmpty(this.deviceId))
{
 this.deviceId = Guid.NewGuid().ToString().
 Replace("-", string.Empty);
 await RuntimeSettings.SetAsync("DeviceId", this.deviceId);
}

Log the deviceId to the log. This will allow us to see it in the user interface:

Log.Informational("Device ID: " + this.deviceId);

Connecting to the broker
Once we have our Device ID and know which broker we want to use, it's easy to connect to
it. We begin by defining an MQTT client variable for our application:

private MqttClient mqttClient = null;

We then create the corresponding MqttClient object (defined in the
Waher.Networking.MQTT namespace). Creating the object will automatically connect to
the broker:

this.mqttClient = new MqttClient("iot.eclipse.org", 8883, true,
 this.deviceId, string.Empty);

The first parameter defines the host name or IP address of the broker. The second defines
the port to connect to. The iot.eclipse.org broker supports unencrypted MQTT
communication on port 1883 and encrypted communication on 8883. We choose the
encrypted version (third parameter) for some minimal form of security, due to MQTT's
inherent vulnerabilities. The last two parameters are the username and password to use.
Since the broker accepts anonymous connections, we use our Device ID as the username,
and an empty string as the password.

Publishing Information Using MQTT Chapter 4

[58]

An overload to the constructor accepts a certificate parameter instead of
the username and password. It is only used with encryption. If such a
client certificate is used, it can also be used to authenticate the client, by
the server.

We must also make sure to close the connection when we're done. This is done by disposing
the connection object:

if (this.mqttClient != null)
{
 this.mqttClient.Dispose();
 this.mqttClient = null;
}

Monitoring connection events
Connecting to a broker is an asynchronous process that is error-prone and can take time.
Applications should always strive to provide relevant feedback to their users as quickly as
possible. For asynchronous communication processes, such relevant feedback can be
showing the state of the process. The MqttClient object allows us to monitor this state,
through the OnStateChanged event. For our example, we log each state change as an
event:

this.mqttClient.OnStateChanged += (sender, state) =>
 Log.Informational("MQTT client state changed: " +
 state.ToString());

Recovering from lost connections
Since MQTT uses TCP, it requires a live socket connection to work. Since a socket
connection may fail for different reasons over time, we need to build a recovery mechanism
into our device. The simplest such mechanism is to check the state of the connection at
regular intervals, and reconnect if we detect that the connection has been lost. We can use
our sampling timer for this. Once a minute, we check the connection state, and initiate a
reconnection if it is offline or in an error state. The reconnection itself fails, if the network is
not available at the time. In that case, new reconnection attempts will be performed every
minute:

if (Timestamp.Second == 0 && this.mqttClient != null &&
 (this.mqttClient.State == MqttState.Error ||
 this.mqttClient.State == MqttState.Offline))
{

Publishing Information Using MQTT Chapter 4

[59]

 this.mqttClient.Reconnect();
}

The MqttClient class has a basic mechanism for keeping the connection
alive. PING messages are regularly sent every 15 seconds, which is half of
the keep-alive time configured by default. If a message is not received
within the keep-alive time interval, the broker will assume the connection
to be lost.

The client can choose to register a last will and testament to the broker
when it connects. The will and testament will be published by the broker
itself on the topic specified by the will, if the connection is lost. You can set
the will in the constructor of the MqttClient class. Gracefully terminating
the connection by disposing the MqttClient class, will not trigger the will
to be published.

Publishing sensor data
Now that we have a live connection, we're ready to publish sampled sensor data. We will
first need some member variables. These will store last values, last-published values, and
the timestamps of last-published values:

private double? lastLight = null;
private bool? lastMotion = null;
private double? lastPublishedLight = null;
private bool? lastPublishedMotion = null;
private DateTimelastLightPublishTime = DateTime.MinValue;
private DateTimelastMotionPublishTime = DateTime.MinValue;

From our sampling and event methods where we receive and calculate our most recent
sensor data, we call two new methods: PublishLight() and PublishMotion(). To
illustrate different ways of publishing data, these two methods will publish the
corresponding sensor data fields on individual topics, as strings. They will then
individually call PublishLastJson(), which will publish both fields on one topic, as a
JSON object string.

Publishing Information Using MQTT Chapter 4

[60]

Choosing relevant values
Before we publish the data, we need to consider what data is relevant to publish. We want to
avoid spamming the broker, or any subscribers. We define relevant to mean values that
show a significant change (more than one percentage point), or values after significant
silence (at least 15 seconds):

private void PublishLight(double Light)
{
 DateTime Now = DateTime.Now;

 this.lastLight = Light;

 if ((!this.lastPublishedLight.HasValue ||
 Math.Abs(this.lastPublishedLight.Value-Light) >= 1.0 ||
 (Now-this.lastLightPublishTime).TotalSeconds >= 15.0) &&
 this.mqttClient != null &&
 this.mqttClient.State == MqttState.Connected)
 {
 this.lastPublishedLight = Light;
 this.lastLightPublishTime = Now;

What relevant means should be configurable. In following chapters, when
discussing the event subscription pattern, a method will be demonstrated
where the subscriber defines what relevant means.

We then proceed by creating the string we want to publish. Our goal is to publish this string
on the Waher/MIOT/[DEVICE_ID]/Light topic, where [DEVICE_ID] is replaced by the
real device ID:

 string ValueStr = ToString(Light, 2) + " %";

Choosing a quality of service
We then need to choose a Quality of Service. There are three to choose from: At most once,
At least once, and Exactly once. At most once is the simplest, and requires only one MQTT
packet to be sent for each publication. But the publication is not guaranteed to be received;
it can be lost in transit. Since we regularly update our sensor data, we choose this service. It
doesn't negatively affect system performance a great deal if packets are lost, and we avoid
unnecessary control packets.

Publishing Information Using MQTT Chapter 4

[61]

If you want to safeguard against accidental losses, you can use the At least once service
instead. When such a packet is received, an Acknowledgement is returned as a receipt. The
original packet is resent until an acknowledgement is received, or the process is aborted.
Since the acknowledgement message can also be lost, this method makes sure the original
packet is delivered, but not that it is delivered only once to each destination. This quality of
service is perfect for important, nonrepetitive messages, especially idempotent commands.
Idempotent commands are commands that can be applied any number of times, giving the
same result. Examples include setting control parameters to absolute values. Turn the light
on is an idempotent command. It only causes a change if the light is off. If you issue the
command a hundred times, the light will still only be turned on once.

If you need to avoid repetitive reception of a packet, you can use the Exactly Once quality
of service. The MQTT layer divides such a packet into two acknowledged packet
transmissions, one that transports the content, and one that delivers it-both
idempotent operations. The transport packet can be sent multiple times without affecting the
state of the receiver. The content is never delivered to the overlying application; it is only
stored in a cache. The delivery takes the packet from the cache, and removes it, before
delivering it to the overlying application. If the delivery packet is received again, the
original packet is not found in the cache, and hence, not delivered again to the application.
The Exactly Once service model is perfect for any non-idempotent commands, such as
relative control commands (for example Increase light 10%), or messages that need to be
counted.

Sending a packet using the At most once service requires one MQTT packet
to be transmitted. Sending a packet using the At least once service requires
at least two MQTT packets to be transmitted. Sending a packet using
the Exactly once service requires at least four MQTT packets to be
transmitted. Only the original packet contains the content payload
however.

Publishing the light field
When we have chosen the quality of service, we need to decide whether the content should
be retained by the broker on the given topic. In our example, we choose not to. A new
subscriber will be updated anyway if the sensor is connected. If the sensor is not connected,
we don't want to give new subscribers obsolete sensor data.

Publishing Information Using MQTT Chapter 4

[62]

The last parameter of the PUBLISH() method contains the actual payload of the packet we
want to publish. Payloads in MQTT are always binary! There are no rules for how the
content is encoded. We choose to encode our string using UTF-8:

 this.mqttClient.PUBLISH(
 "Waher/MIOT/" + this.deviceId + "/Light",
 MqttQualityOfService.AtMostOnce, false,
 Encoding.UTF8.GetBytes(ValueStr));

 this.PublishLastJson();
 }

 MainPage.Instance.LightUpdated(Light, 2, "%");
}

Care must be taken when decoding data received on MQTT, to avoid
unexpected decoding errors. You should always assume data received can
be erroneously encoded.

Publishing data on the Motion and JSON topics is done in a similar way. Refer to the code
in the GitHub project for details.

Checking encrypted communication
If you're interested in what is being communicated, you normally use a network sniffer, or
network protocol analyzer. One of the better ones is called Wireshark
(https://www.wireshark.org/). But external sniffers, or network protocol analyzers, have,
for obvious reasons, difficulty monitoring encrypted communication. You are left with two
options: either you turn off encryption while you use the external tool to examine your
communication, or you monitor the communication internally before it is encrypted or after
it has been decrypted.

Which method to use depends on the use case. It might be necessary to retain encryption, or
something in the communication chain will not work, or work differently. In this case, you
are left with only one option: you need to monitor the communication internally.

https://www.wireshark.org/

Publishing Information Using MQTT Chapter 4

[63]

To facilitate this, the MqttClient class accepts a set of sniffer objects. These are objects
implementing the ISniffer interface, defined in the Waher.Networking.Sniffers
namespace. Anything received or sent over the connection will be reported to these sniffer
objects. Any relevant communication events will also be reported to these objects. The
SensorMqtt app in the GitHub project defines a very simple sniffer, that redirects anything
reported to it, to the event log. Since we already have a simple display of logged events, we
can easily see what is being communicated, in realtime, even when the connection is being
encrypted. To enable such internal sniffing, we simply modify the constructor of the MQTT
client, as follows:

this.mqttClient = new MqttClient("iot.eclipse.org", 8883, true,
 this.deviceId, string.Empty, new LogSniffer());

The following figure shows an example of how such MQTT communication can look in our
log:

Using the log to display contents of encrypted communication.

Publishing Information Using MQTT Chapter 4

[64]

Adding MQTT support to the actuator
To add MQTT support to our actuator, we create a new UWP app project and name it
ActuatorMqtt. We copy the actuator logic from our Actuator project, and the preceding
procedures to create and maintain an MQTT connection to the broker. Even though it's an
actuator, we want to publish sensor data for it, representing the current state of the actuator.
If it changes state, we want the new state to be published. But since the value will not be
updated using a regular interval, as in the sensor case, we will ask the broker to retain our
latest value. We will also use a different Quality of Service level: At Least Once. This is to
make sure that the most recent value is propagated correctly. We don't need to use the
Exactly Once level, since the operation is idempotent:

this.mqttClient.PUBLISH(
 "Waher/MIOT/" + this.deviceId + "/On",
 MqttQualityOfService.AtLeastOnce, true,
 Encoding.UTF8.GetBytes(On.ToString()));

StringBuilder Json = new StringBuilder();

Json.Append("{"ts":"");
Json.Append(DateTime.Now.ToUniversalTime().ToString(
 "yyyy-MM-ddTHH:mm:ss.fffZ"));
Json.Append("","on":");
Json.Append(On ? "true" : "false");
Json.Append('}');

this.mqttClient.PUBLISH(
 "Waher/MIOT/" + this.deviceId + "/JSON",
 MqttQualityOfService.AtLeastOnce, true,
 Encoding.UTF8.GetBytes(Json.ToString()));

When publishing data using JSON, you should include a timestamp. This
is especially important if the data is being retained by the broker. This
allows subscribers to determine when the data was published and how
valid it is. The Date and Time format to use should conform to ISO-8601
and be in Coordinated Universal Time, as in the preceding above. This is
especially important if you publish the data on the Internet for global
consumption. This ensures it is portable and easy to decode.

Publishing Information Using MQTT Chapter 4

[65]

Subscribing to topics
Subscribing to topics is easy. You call the SUBSCRIBE method with one or more topics
you're interested in. For each topic, you can also provide the maximum Quality of Service
level you want to support on your end. Anything published with a higher Quality of Service
will be downgraded on your connection. You can also use the wildcard characters, + (node)
and # (branch), in your subscription request. In our example, we choose to subscribe to the
Waher/MIOT/[DEVICE_ID]/Set/+ topic. Through it, publishers can execute generic set
commands on actuator properties. The name of the actual property is defined by the sender,
in the last subtopic node. We update the OnStateChanged event handler as follows:

this.mqttClient.OnStateChanged += (sender, state) =>
{
 Log.Informational("MQTT client state changed: " +
 state.ToString());

 if (state == MqttState.Connected)
 this.mqttClient.SUBSCRIBE(
 "Waher/MIOT/" + this.deviceId + "/Set/+",
 MqttQualityOfService.AtLeastOnce);
};

You can use different wildcards on different levels of the topic tree to
achieve interesting effects. To subscribe to a specific parameter named On,
you subscribe to Waher/MIOT/[DEVICE_ID]/Set/On. To subscribe to
any of the parameters on a given device you subscribe to
Waher/MIOT/[DEVICE_ID]/Set/+. To subscribe to the On parameter on
any device, subscribe to Waher/MIOT/+/Set/On. To subscribe to anything
that is sent to a device, subscribe to Waher/MIOT/[DEVICE_ID]/#, and so
on.

Handling incoming commands
As soon as the MQTT client receives data on any of the topics it has subscribed to, it raises
the OnContentReceived event. We provide an event handler to parse incoming data.

Publishing Information Using MQTT Chapter 4

[66]

Extra care must be taken, considering we don't know who sent the data,
how the data has been encoded, or even if it is correctly encoded.

Also remember that the maximum size of an MQTT packet is 256 MB,
which may create temporary memory problems for small devices.

In the new MQTT v5 specification published by Oasis on December 25
2017, a client can specify a maximum packet size. This would mitigate this
problem if supported. There is also a possibility to control the flow of
packets, by stating the amount of concurrent packages requiring
acknowledgements that the client can process.

Since we used a node-level wild-card in the subscription, we first check the last part of the
topic, to figure out what parameter has been requested to change. If it is the On parameter,
we proceed by parsing it. Note that the bool type uses Pascal casing in its string
representation of Boolean values. Before we parse it, we must make sure to convert it to
Pascal casing first. We also make sure to catch any unforeseen errors in a try-catch
statement:

this.mqttClient.OnContentReceived += async (sender, e) =>
{
 try
 {
 if (e.Topic.EndsWith("/On"))
 {
 string s = Encoding.UTF8.GetString(e.Data);
 s = s.Substring(0, 1).ToUpper() +
 s.Substring(1).ToLower();

 if (bool.TryParse(s, out bool On))
 await this.SetOutput(On, "MQTT");
 }
 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }
};

Publishing Information Using MQTT Chapter 4

[67]

Testing MQTT
You now have both a sensor and an actuator that speaks MQTT! Great. But they still don't
communicate with anyone. To test your communication interfaces, there are many client
tools available for download on the Internet. Some will allow you to publish and subscribe
to data through interactive GUIs. The following screenshot shows how mqtt-spy (https:/ /
github.com/eclipse/ paho. mqtt- spy/ wiki/ Downloads) can be used to interact with our
actuator and monitor general MQTT activity:

Using mqtt-spy to interact with our Actuator.

https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads
https://github.com/eclipse/paho.mqtt-spy/wiki/Downloads

Publishing Information Using MQTT Chapter 4

[68]

Security considerations
Since MQTT is very simple to get started with, both from an application user perspective
and a protocol developer perspective, it has become very popular for use in IoT. But the
simplicity has its drawbacks. MQTT has some serious vulnerabilities that any developer
using it must be made aware of.

Managing authentication
One of the biggest vulnerabilities is its management of passwords. They are sent in clear
text in the protocol. And MQTT does not use a pluggable authentication architecture like
the Simple Authentication and Security Layer (SASL) either. This causes a whole range of
problems. If passwords are to be used, the application must persist them. If SASL would
have been used, a hash would most likely have been sufficient. This creates a whole new set
of vulnerabilities for the application layer.

The common solution is to use either encryption or out-of-band authentication, or a
combination of both instead. But out-of-band authentication is not a standardized part of
MQTT, so interoperability problems may become an issue. The most common solution is to
use TLS to encrypt communication. This will only create a false sense of security, since you
still have the problem of how to persist the password. To avoid passwords, you can use
client certificates, and use them to authenticate the user out of band. This avoids the clear
text password. But you are left with a solution that is no longer small and simple with a
small code foot-print, which were the original motivators behind choosing MQTT in the
first place.

The MQTT v5 specification contains an optional feature called enhanced
authentication. It is optional for both clients and servers. If this option is
available in the broker, as well as some secure authentication mechanisms,
and this option is enforced, this vulnerability will have been partly
mitigated. The solution is still susceptible to man-in-the-middle attacks,
since the mechanism is optional. You must make sure it is the enhanced
authentication mechanism that is used during authentication and not its
vulnerable predecessor.

Publishing Information Using MQTT Chapter 4

[69]

Managing privacy
Lack of privacy in MQTT is another big vulnerability. Due to the ability to subscribe using
wildcards, you can also subscribe to data you're not supposed to have access to. There is no
management of access control built into MQTT. Publishers cannot negotiate with
subscribers who should have access to what. There are no identities at all available to
clients, regarding other actors in the network.

Privacy is difficult to manage in MQTT. The most common solution to this problem is to use
Access Control Lists (ACL) to control who can subscribe to what topics. But these are
completely out-of-band, and hence not interoperable between brokers. Solutions depending
on ACLs may have serious problems migrating to other types of brokers.

Another way to solve privacy is by using End-to-end encryption(E2E). E2E encryption not
only makes sure the broker is incapable of decoding the content payload, it also makes sure
eavesdroppers in MQTT cannot either. But E2E encryption is not trivial in a
Publish/Subscribe environment, where you have the one-to-many transmission of data.

In single-casting point-to-point communication, E2E encryption can be relatively easily
implemented using encryption based on a Public Key Infrastructure (PKI), such as RSA.
Everybody can distribute their own public key. But since the private key is required to
decrypt data, you need to encrypt it specifically for each recipient. Therefore,
Publish/Subscribe complicates matters. To solve this, you would have to divide the problem
in two. First, you could use point-to-point PKI-encrypted communication to exchange keys
for a symmetric cipher, like the Advanced Encryption Standard (AES). When everybody
knows the shared symmetric key, Publish/Subscribe with one-to-many communication can
be encrypted, using the symmetric cipher, instead of the PKI cipher.

Managing interoperability
The lack of content metadata in MQTT is problematic for interoperability. If all participants
in the network are developed and controlled by the same entity, this might not be a
problem. But if actors from different companies are to cooperate on the same network,
interoperability becomes a big problem.

Publishing Information Using MQTT Chapter 4

[70]

Since payloads are binary, there is no standardized way of knowing what type of content it
contains, or how it is encoded. Each recipient must try as best it can. This may open a wide
array of vulnerabilities, related to quality assurance, possibility of injection, resilience,
localization, and so on. Traditionally, this problem has been solved on the Internet by
providing some form of Content Type. This is missing in MQTT. And there is no good way
to solve the problem, except by making backwards incompatible changes to the protocol.

In the MQTT v5 specification, you can provide a content type string and
application-specific user properties with the published payload. This
provides some form of way to describe the data that is being transmitted.

Managing authorization
Authorization is the ability to determine who has access to what or who can do what.
Authorization requires authenticated identities. MQTT does not forward the identities of
publishers. This makes authorization a big problem. How do you know if a packet is valid,
or if the sender is authorized to send it? Since anybody can publish packets on any topic, by
default, injection a great problem.

As with the problem of privacy, this vulnerability can be solved using ACL. It can also be
solved by cryptographic means, for instance by signing packets using a PKI encryption
method, such as RSA. Signatures using PKI work well in a Publish/Subscribe setting. It is
only the sender that needs the private key. Recipients only require the public key of the
sender to validate the signature.

The same PKI method can be used to achieve privacy in point-to-point communication or
used to distribute shared symmetric keys. But implementation is far from simple, and the
chances of achieving interoperability is slim.

Publishing Information Using MQTT Chapter 4

[71]

The authorization problem, perhaps the most important problem to solve,
is not solved in the MQTT v5 specification. Due to the serious
vulnerabilities inherent in the MQTT protocol, it is better used in
controlled environments, and then only with equipment that is
programmed using the same proprietary data protection measures.
Achieving secure, open, and interoperable internet-based solutions using
MQTT is far from simple, if at all practically possible. For this reason, it
might be better to view MQTT as a good M2M protocol, and not a suitable
IoT protocol.

If interoperability is important to your solution, there are other protocols
that you can use to solve these issues. More on these protocols in later
chapters.

Summary
In this chapter, you've been shown how you can use MQTT to publish sensor data and
interact with actuators on the internet. You've learned the basic principles behind the MQTT
protocol, how to connect and maintain a connection with an MQTT broker, how to publish
data on topics as well as how to subscribe to topics to receive published data. You've also
learned how to test and troubleshot your interfaces. In the end, you were introduced to the
basic vulnerabilities inherent in the protocol, and what you must do to protect your
solutions. In the next chapter, you'll learn how you can use the HTTP protocol to include
your things into the Web of Things.

5
Publishing Data Using HTTP

In the previous chapter, you learned how to use the MQTT protocol to communicate with
your devices. You also learn the pros and the cons of the protocol and how to use it in a
secure manner.

In this chapter, we'll introduce the HTTP protocol, and how it can be used to communicate
with your connected things. The chapter covers:

An introduction to the HTTP protocol
The Request/Response communication pattern
How to locate resources on the web
Basic principles of the HTTP protocol semantics
Publishing machine-readable web service interfaces
Encryption fundamentals

Introducing the HTTP protocol
The Hypertext Transfer Protocol, or HTTP, is one of the best known and most used
internet protocols today. It was originally designed in 1989 by Tim Berners-Leeas a means
to publish hypertext documents on a distributed set of servers, today called web servers.
Clients, for example web browsers, would be able to fetch these documents using the HTTP
protocol. Hyper, meaning beyond in the word hypertext, literally means beyond the text,
signifying the possibility to link to other hypertext documents from within the text itself.
These referenced documents may in turn reside on other servers. To achieve this, each
document, or resource, is assigned a Uniform Resource Locator or URL. This URL is
treated as a simple string but contains all the information the client needs to find and
download the contents of the resource.

Publishing Data Using HTTP Chapter 5

[73]

Resources on the web are not necessarily hypertext documents. They can be images, audio,
video, binary applications, or more generally, any type of data that can be encoded.
Originally, hypertext documents were written in HTML, and could include basic
formatting and simple media content, such as images. Later developments allowed for the
separation of the overall design of the hypertext document into Cascading Style Sheet, or
CSS, documents. Hypertext documents, or web pages as they are now called, would soon
be made dynamic with the inclusion of JavaScript documents and the standardization of a
Document Object Model, or DOM. Data can be represented in eXtensible Markup
Language or XML documents, as JavaScript Object Notation or JSON documents, or any
number of different formats.

All technologies related to HTTP in some way are often referred to as web technologies. All
resources accessible using HTTP are likewise called the web, the World Wide Web, or
WWW. When we talk of web services, we talk of services made available using the HTTP
protocol somehow. Popular methods include Simple Object Access Protocol (SOAP) and
Representational State Transfer, or REST, sometimes called RESTful web services.

Don't confuse the internet with the web. The internet is standardized by
the Internet Engineering Task Force, or IETF, and concerns itself with all
IP-related protocols and technologies; HTTP is just one of many. The IETF
publishes standards in documents called Request For Comments or RFCs.
The web is standardized by the World Wide Web Consortium or W3C.
They produce standards that are called Recommendations.

Locating a resource
All these resources, whether they are static files or dynamically generated in real-time, must
be identified using URLs, one for each resource, if they are to be accessible on the web. A
URL is a string with the following basic format:

scheme ":" authority[path] ["?" query] ["#" fragment]

The scheme part describes how to interpret the rest of the URL. For communication
purposes, you can see this as the means to access and retrieve the resource, or simply put,
what communication protocol is being used. For HTTP, this part would be http. For
encrypted HTTP, or HTTPS, it would be https.

Publishing Data Using HTTP Chapter 5

[74]

The authority describes the entity hosting the resource. For HTTP, this would typically be
the domain name or IP address of the web server, prefixed by //. The authority also
determines the port number to use when connecting to the web server. As the HTTP
protocol is based on the TCP protocol, a TCP connection to a given port on the server needs
to be performed. This port number is by default 80 for traditional HTTP, and 443 for
HTTPS. If any other port number is used, it must be specified in the authority. This is done
by appending a colon, :,after the domain name or IP address, followed by the port number
to use.

Historically, you could also provide user credentials directly in the URL
for authentication purposes. This is not a recommended way to do
authentication on the web.

The optional path portion can be empty or contain a semicolon,/, followed by an optional
series of sub-paths (delimited by semicolons: /), and finally a resource name. It is like a path
in a filesystem. Originally, the resources were actual static files in an actual filesystem.
Today, resources can be dynamically generated or fetched from a database by the
underlying services.

The optional query portion contains a set of parameters that can be used to customize the
resource. Normally, queries consist of a set of name"="value pairs, separated by
& characters. The optional fragment part is typically used for secondary client-side
referencing and is normally not part of the server-side processing of a resource. It can be
used to identify a section in an article, for instance.

Following are some URL examples:

http://example.com

http://example.com:8080/Folder1/Folder2/Resource.ht

https://example.com/Page?Article=12345&Cat=678#Section2

URLs, or the more general URIs, are defined in RFC 3986:

https:/ /tools. ietf. org/ html/ rfc3986

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

Publishing Data Using HTTP Chapter 5

[75]

Understanding the Request/Response pattern
The HTTP protocol is based on a client/server architecture, where clients know what they
want to do and request documents (or data or services) from a server. The client is active,
the server is reactive. For this purpose, HTTP is built around a simple Request/Response
mechanism. Clients connect to servers, pose their requests, and servers respond with one
response per request. The connection can be dropped by any of the clients or servers:

Request/Response pattern in HTTP

Most HTTP servers today allow for multiple requests over the same
connection to improve performance. This feature, called persistent
connections, was not specified in HTTP 1.0. Support for it is required in
HTTP 1.1, unless explicitly disabled, but only one request can be served at
a time. In HTTP 2.0 multiple requests can be processed simultaneously
over the same connection.

Publishing Data Using HTTP Chapter 5

[76]

Handling sessions
The underlying connection is stateless. This means the HTTP layer does not remember
anything about the client between requests. All information relevant to the request must be
transmitted in the actual request. The purpose of this is to allow for scalability. The client
should not rely on a particular server being able to handle the request. In reality, the server
might actually be a set of servers in a cluster, taking turns to respond to incoming requests.

To add states to the communication, such as providing a session, the concept of a cookie
was introduced. Cookies are named strings corresponding to the domain, stored on the
client. Cookies can be embedded in requests, as HTTP headers, and allow the server
application to process requests according to states read from the cookies. Creating sessions
is one example of how cookies can be used. A session can be seen as a short-lived bag of
states maintained by the server, referred to by a session identifier, or a session cookie.

How session cookies are handled is important from a security perspective.
Access to the cookie gives you access to the session, the corresponding
login, and potentially the data it contains and refers to.

Limiting connectivity
One of the limitations of the HTTP protocol is that only the client can initiate
communication over a connection. If both actors are reachable from each other, both can
connect to each other and perform requests on each other over two different connections.
But typically, web clients reside behind firewalls. These protect private Local Area
Networks, or LANs, from incoming connections. While this is a good solution to protect
private computers in cases where people navigate the web using web clients, it poses a
problem for the Internet of Things.

In the traditional sense, the web server contains the interesting information (the pages), and
clients consume them from their private network. The server resides publicly on the
internet, and clients connect to it to retrieve the information they want to consume. For the
Internet of Things, the roles are reversed: the entity that contains the interesting information
is typically a device residing in the local private network. The information has to be
transported somehow to an entity on the internet or beyond, be it a server, another thing, or
perhaps an application running on a phone or other device in some other private network.
But these cannot typically connect to your device in your private network.

Publishing Data Using HTTP Chapter 5

[77]

Choosing a connection direction
There are two basic solutions to this problem if HTTP is to be used:

Make the device public or reachable by interested parties. This means making the
device into a web server. A sensor can return momentary values immediately as
responses to GET method calls, and actuators can react directly on control state
POST requests. Latency is minimized.
Emulate a Publish or Subscribe pattern, constantly pushing new sensor
information to the server using POST requests, and at the same time polling the
server, perhaps using the same POST request, for any new control actions to
execute. In this case, the device is a web client, and the server is responsible for
pushing the information to interested parties.

In this book, we've chosen the first approach, for the following reasons:

Real-time communication with devices, especially in control applications, is of
paramount importance. The first method avoids unnecessary latency.
The Publish/Subscribe pattern (the second approach) is better solved using other
protocols rather than HTTP.
We want to avoid building our own back-end server software or use proprietary
platforms on the web. The more we can use standard software components, the
less time we need to spend on proprietary non-reusable code that does not
deliver added value. Instead, we can focus on developing the functionality we
wish to achieve.
The second pattern is too limited in its communication patterns. It is best suited
for sensor data collection on centralized servers. This use case is too narrow. We
aim for distributed real-time applications. It's easier to do centralized data
collection in distributed real-time environments than it is to do distributed real-
time operations in an architecture based on centralized data collection.
We want to publish local pages on the device anyway, making it possible to
configure it locally using a browser. This requires us to make the device into a
web server anyway, albeit available perhaps only in the local network.
Privacy should be paramount to any IoT solution. Decentralized architecture can
protect privacy better than centralized ones operated by third parties.

Publishing Data Using HTTP Chapter 5

[78]

HTTP 2.0 and Web Sockets are technologies that attempt to solve the
above problem, but only do so halfway. Still, only the client can connect to
the server, but once a HTTP/2 or Web Socket connection is established, the
server can use that connection to push information to the client. But the
problem of network topology and firewalls remain. It is not possible for a
server to connect to a device residing behind a firewall.

Understanding methods
Each request specifies one HTTP method to call. The HTTP method is a simple string
provided in the request. Even though web servers are technically free to invent their own
methods, the HTTP 1.1 specification only defines nine methods, of which you typically only
use five: GET, HEAD, POST, PUT and DELETE. A sixth method OPTIONS can be used to request
information from a resource what communication options it supports. Use OPTIONS to learn
what methods are supported by a resource.

The HTTP method should be seen as a method on the web server. It
should not be confused with a method on an underlying service hosted by
the web server, which is more related to the resource path than the HTTP
method.

The GET method retrieves the contents of a resource. The HEAD method performs the same
operation as a GET method call, but only returns the headers, not the corresponding content.
The HEAD method can be used to quickly assess the existence of resources, how they are
encoded, and their sizes, or checks cache status without the risk of starting content
downloads. This can be useful in multimedia scenarios, for example when the application
needs to evaluate what a resource represents to be able to choose the type of application or
receptor needed to handle the content, before starting the download. Both the GET and HEAD
methods are considered safe methods, meaning they don't affect the resources themselves
or perform an action other than retrieval.

When publishing resources accessible using the GET method, you must
always assume responses are being cached. If you publish information that
changes in real-time, you must always consider how long information can
be stored in caches, if allowed at all.

Publishing Data Using HTTP Chapter 5

[79]

Updating resources
Updating the contents of a resource is done using the PUT method. The content provided in
the request is supposed to be stored under the supplied resource. To delete a resource, the
DELETE method is used.

The PUT and DELETE methods, together with the GET and HEAD methods, are considered
idempotent. This means that any number of identical requests made to the server, in
sequence, results in the same server or resource state. This property is used by caches in
clients, web proxies, and the server itself, to optimize performance. For idempotent method
calls, cached responses can be returned.

An idempotent operation I(x) is such that In(x)=I(x) for all n∈ℤ+.

Interacting with resources
Any other type of interaction with resources that are not safe nor idempotent, such as
submitting data to a resource, or performing resource-specific actions, should be done using
the POST method. We will use the POST method extensively for control actions or for web
form submissions, to name a couple of examples. The POST method is not safe nor
idempotent. This means proxies and web servers relay the request all the way to the
underlying service for processing every time a POST request is received and accepted.

Technically, you could implement idempotent control actions using the
PUT method. But that would require knowledge of impotence from the
client on a control-parameter basis. It's simpler to just assume no control
operations are idempotent at the HTTP level and use the POST method for
all.

An example of an idempotent control action is the setting of absolute
parameter values. Changing a control parameter using relative values,
such as a change in percent, or toggling a digital output, is not
idempotent. Counting operations are not idempotent either.

Publishing Data Using HTTP Chapter 5

[80]

The following table summarizes the most common methods in HTTP:

Method Safe Idempotent

HEAD ✓ ✓

GET ✓ ✓

PUT ✓

DELETE ✓

POST

Encoding content
To distinguish between the different types of content possible to transport using HTTP, an
interoperability layer has been built into the protocol. The encoding of any payload is
identified using an Internet Content Type or Media Type. By always including this type of
information with the payload, the receiver can always determine if it can decode the
payload, and how. Today, Media Types are managed by the Internet Assigned Numbers
Authority or IANA.

These Media Types were originally designed for use with email, and are
therefore also called Multipurpose Internet Mail Extensions, or MIME
types. The format of Media Types is defined by the IETF in RFC
2046: https://tools.ietf.org/html/rfc2046

The basic structure of a Media Type is as follows:

top_level_type "/" subtype [";" parameters]

The top_level_type defines the general category of the content. This may include
application, audio, image, text, video, and so on. To further classify the encoding, a
subtype is needed. For files, this often corresponds to the file format used. When the
top_level_type and subtype are not sufficient to determine how the content is encoded,
as is typically the case for text-based content, additional parameters can be added.
Following are some examples of some common Internet Content Types:

text/html; charset=utf-8
image/png
application/xml

https://tools.ietf.org/html/rfc2046
https://tools.ietf.org/html/rfc2046

Publishing Data Using HTTP Chapter 5

[81]

For a list of registered Media Types, with links to reference
documentation, see: https:/ /www. iana. org/ assignments/ media- types/
media- types. xhtml.

Applying headers
Both requests and responses contain HTTP headers. These consist of sets of key-value pairs.
Normally, clients do not need to set these headers explicitly. It is typically done by the
HTTP clients being used. But sometimes, you need to set some of these headers manually,
to customize a request according to your needs. Following is a shot list of useful headers:

Header Description

Accept If the resource supports multiple content type encodings, you can specify
your preference using the Accept header.

Cache-Control Controls how the response may be cached.

Content-Type The media type of the content payload.

ETag
An entity tag is a string identifying the content. It can be a hash value of
the content, or an ordinal number, as long as it changes when the content
changes. Entity tags can be used for caching purposes.

Expires Describes when the content expires. Is used by caches to remove old
entries.

Last-Modified A timestamp for the content. It can be used for caching purposes.

User-Agent A string describing the software of the client making the request.

For a complete list of headers, their syntax, and what they mean, see
section 14 of RFC 2616, defining the HTTP 1.1
protocol: https://tools.ietf.org/html/rfc2616#page-100

https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://tools.ietf.org/html/rfc2616#page-100
https://tools.ietf.org/html/rfc2616#page-100

Publishing Data Using HTTP Chapter 5

[82]

Optimizing requests
Other headers can be used to optimize HTTP performance. HTTP supports conditional
requests. Conditional requests are typically used together with some form of cache or
previous knowledge of a resource. You can use the If- headers to perform actions, such as
getting a resource if it is newer (Last-Modified) or different (ETag) from the resource you
already have. You can upload new content only if you have a newer (Last-Modified) or
different (ETag) version:

Header Description

Expect

Can be used to break a Request/Response into two
requests/responses. First, only the header of the request is sent, and
secondly, only the content, and only if the server is ready to accept
it. While this might be counter-intuitive as a means to optimize
communication, it might increase performance if uploading content
using conditional requests. It avoids the transfer of the content in
cases where it is not necessary.

If-Match
Only executes the method if the current entity tag of a resource
matches any of the entity tags provided in this header. Typically
used with PUT and DELETE.

If-Modified-Since

Checks the current timestamp of the content of the resource, and
only executes the method if the resource has a later timestamp
compared to the value provided in the header. Typically used with
GET.

If-None-Match
The opposite of If-Match. Only executes the method if the current
entity tag of a resource does not match any of the entity tags
provided in this header. Typically used with GET.

If-Unmodified-Since Executes the method only if the content timestamp is older than the
timestamp provided. Typically used with PUT and DELETE.

Publishing Data Using HTTP Chapter 5

[83]

Sending content
After sending the header, the content portion is sent, if expected. Content can be sent both
in requests and responses. Both static content, where the size is known, and dynamic
content, whose size is not known at the beginning of transmission, can be sent. This is
controlled by the Content-Length and Transfer-Encoding header fields. These fields
are typically managed by the HTTP client used.

The actual content is then sent in binary form. The actual encoding and decoding should be
properly defined using the Content-Type header field and might have to be performed by
the application itself. If using the Waher.Content NuGet library,with additions, encoding
and decoding can be done for you.

Understanding status codes
All requests in HTTP return a response. The response begins with a status code, followed
by a set of HTTP headers, followed by optional content. First, the status code needs to be
understood. The code is first divided into sections:

Range Meaning

1xx Informational response. The request is acknowledged, and processing continues.
This is used when dividing a Request/Response into more than one.

2xx Success response. The request has been received, understood, and accepted.

3xx Redirection response. The client is requested to redirect the original request to a new
source.

4xx Client error. The client has done something wrong.

5xx Server error. The server has done something wrong.

Publishing Data Using HTTP Chapter 5

[84]

Some of the more common status codes include:

Range Meaning

200 OK. Request executed successfully.

301 Moved Permanently. The resource has moved permanently to another location. The
new URL should be used in future requests.

303

See Other. The server requests the client to continue to a new location. This code is
normally used in the Post-Redirect-Get, or PRG-pattern, a pattern that should be
implemented by all resources accepting POST requests from browsers.
The PRG-pattern avoids accidentally resending POST requests when going
backwards in browser histories. When sending a POST request containing a form
to a server, it processes the form, but should respond with a 303 See Other
response instead of a 200 OK response, alerting the browser to perform a GET on
the new location. When backtracking locations using the Back button, it is this GET
that is remembered, not the previous POST, thus avoiding the accidental reposting
of obsolete information to the server.

304 Not Modified. Used together with conditional requests to signify that the operation
was not performed since the condition failed.

307 Temporary Redirect. The resource has moved temporarily to another location. Retry
using the new URL. Future requests can be made to the original URL.

400 Bad Request. The request was badly formed and should be corrected before
attempting again.

401 Unauthorized. The request has not been authorized. Authentication should ensue
before attempting the request again.

403 Forbidden. Authentication failed, or user account lacks sufficient privileges to
access resource.

404 Not Found. Resource was not found on the server.

406 Not Acceptable. Resource does not support the representations requested by the
client.

500
Internal Server Error. Something went wrong inside the server, and the request
could not be p
roperly served.

Publishing Data Using HTTP Chapter 5

[85]

For a more complete list of status codes, see RFC 2616, Section
6.1.1: https://tools.ietf.org/html/rfc2616#page-39

Using encryption
Encryption is the means to hide your content from access by unauthorized individuals.
Only individuals with the correct set of keys or secrets should in theory be able to view the
unencrypted content. Encryption is extremely important on the internet, which abounds
with malicious users, teenage hackers, criminals, curious neighbors or co-workers,
journalists, and state-sponsored surveillance apparatuses (not all mutually exclusive).
Encryption is not only important to use, but it is important to do right.

Encryption in HTTP is called HTTPS, or HTTP Secure. It does not change the semantics of
HTTP, it just requires the TCP connection to be encrypted before HTTP communication can
take place. After the TCP connection has been established from the client to the server, an
encryption handshake phase begins. During this phase, an encryption protocol is chosen,
either Secure Socket Layer (SSL) or Transport Layer Security (TLS). Then the client and
server agree on ciphers to use, and exchange keys, such as a server certificate, and
optionally a client certificate. When the handshake is complete, normal HTTP semantics is
possible, over the encrypted line. The following figure shows a simplified diagram of the
communication taking place:

https://tools.ietf.org/html/rfc2616#page-39

Publishing Data Using HTTP Chapter 5

[86]

HTTPS communication

Publishing Data Using HTTP Chapter 5

[87]

Secure Socket Layer, or SSL, is obsolete and deemed insecure. SSL should
be disabled on all clients and servers in operating systems, as well as
explicitly in code, to avoid downgrade attacks, where a malicious entity
pretends it only knows SSL, and thus becomes able to utilize known
vulnerabilities to decipher communication.

Validating certificates
An encryption scheme contains a chain of events and is no more secure than its weakest
link. For HTTPS, the weakest links are certificate validation and the choice of ciphers.

Many developers deceive themselves by using self-signed certificates. These are easy to
produce and do not cost anything, but they don't validate either. To avoid problems,
certificate validation is disabled in software. Perhaps these developers think that it's enough
not to be able to directly view what is being communicated by a sniffer. This is not correct.
When you disable certificate validation, you also lose the ability to verify whether a
malicious user is pretending to be the expected remote party, using a man-in-the-middle or
MITM attack. Using an MITM attack, the attacker can freely access your communication as
if it was unencrypted.

Don't disable proper certificate validation features.

Proper certificate validation includes two checks. One is to check that the certificate has not
been revoked. If a certificate is compromised, it can be revoked by the Certificate
Authority, or CA, that issued the certificate. Self-signed certificates do not have a CA, so
they cannot be revoked. Revoked certificates fail validation. The other check is to make sure
the subject name in the certificate corresponds to the domain name you used to form the
connection, or that the domain name is listed in the subject name of the certificate. Any valid
certificate will not do. The certificate must also have been created to protect the resource
you want to connect to.

Publishing Data Using HTTP Chapter 5

[88]

The full security features of HTTPS can only be used with domain names.
If using the IP address to address a resource, you are not able to verify that
the remote party is who it claims to be.

Always make sure the subject name of the certificate corresponds to the
corresponding domain name of the remote entity you connect to.

There are several cost-effective, and even free, alternatives providing valid
certificates for your domains.

Redefining the web
The web, which is all based on the HTTP protocol, consists of an enormous set of
technologies. To give you an overview of these goes beyond the scope of this book. But it
might be good for the reader to know that many of the original ideas, definitions, and
abstractions have been loosened and remade.

Originally, resources on the web were considered to be web pages, that is, pages for human
consumption. Resources were identified using Uniform Resource Locators, or URLs. It was
quickly realized that this was not a good abstraction. The URL construct was redefined into
a Uniform Resource Identifier, or URI. Not all identifiers point to actual resources that can
be found on the web. An example could be namespaces in XML, for instance. Furthermore,
resources do not need to be pages. They can be data items, as is the case within the realms
of the Semantic Web and Linked Data, where each data subject can be identified using an
URI.

We can also access dynamic content and Application Programming Interfaces (or APIs)
using URLs. The first popular web service architecture, Simple Object Access Protocol, or
SOAP, focused on semantics rather than content. It was one of the cornerstones of the
emerging new paradigm that came to be known as Service-Oriented Architecture, or SOA.

Publishing Data Using HTTP Chapter 5

[89]

Today, a new service-oriented architecture, based on Representational State Transfer, or
REST, has become very popular. One of the reasons is that RESTful interfaces are more
loosely coupled than SOAP interfaces. This means they are easier to extend and adapt to.
Another reason is that representation is separated from resource. This basically means you
can extend the service to support multiple content types or representations of data, without
modifying the interface itself. This permits the use of JSON, which simplifies their use from
JavaScript clients. RESTful APIs focus more on content and resources than semantics, and
URLs play an important part in this. RESTful interfaces also enforce server statelessness and
require the client request to contain all required information to process the request. The
reason this is done, is to be able to scale by allowing multiple servers to process incoming
requests. To facilitate interacting with resources, each response is assumed to be self-
describing and contain a set of links specifying operations that can the client can perform on
the corresponding resource.

Earlier models focusing on relational, or linked content models, were RSS
and ATOM. Based on syndication principles, and closely related to
semantic web technologies, they use URLs to link to related data content, a
mix between machine-readable and human-readable content.

Authentication is another field where the web is seeing rapid restructuring. Authentication
is the means to make sure a claim is true, particularly claims of identity. Originally, servers
were considered to be aware of which users had the right to access which content, and so
client authentication could be done locally on each server. This model worked when content
providers published their own content and wanted to control who had access to it in their
local environment. But the model failed in modern architecture that required
interoperability between different online entities. This is especially the case for the Internet
of Things, where servers are small and typically unaware of external entities, and
transactions span a multitude of servers. Clients need to be able to identify themselves in
the same manner regardless of server. New, distributed authentication methods such as
JSON Web Tokens, or JWT, and OAuth2 are being defined for this purpose. A distributed
authorization framework is also being worked on, under the name User-Managed Access
or UMA.

Optimization and security are other fields where great change is occurring. The traditional
Request/Response mechanism is limiting in many regards. This has been addressed in
efforts such as Web Sockets or HTTP/2. Web Sockets involve a HTTP connection being
negotiated to become more like a normal full-duplex socket. HTTP/2, which is a standard
from IETF, removes the limitation of being able to only pose one question at a time, greatly
enhancing HTTP performance.

Publishing Data Using HTTP Chapter 5

[90]

The topology problem of HTTP is still a major obstacle. Clients can connect to servers, but
servers can normally not connect back to clients, since most of these reside behind firewalls.
It is even more difficult for actors behind separate firewalls to interconnect. Web RTC aims
to provide interconnectivity between actors behind separate firewalls using web
technologies. Other alternatives, such as using HTTP over XMPP, instead of TCP, also
solves this problem.

Preparing our project
As in the previous chapter, we will create a new project based on our Sensor project. Let's
call it SensorHttp. We use the same hardware and software setup as in previous chapters.
But this time, we add the Waher.Networking.HTTP.UWP NuGet package instead. It will
allow us to host a web server on Raspberry Pi and publish web resources, both static and
dynamic ones.

For .NET standard, .NET Core, or traditional .NET Framework projects,
you can use the Waher.Networking.HTTP NuGet instead. Universal
Windows Platform apps use different libraries and runtime binaries when
it comes to communication and encryption. For this reason, it requires a
somewhat modified version of the original library.

Since we will accept incoming connections to our app, we also need to provide sufficient
capabilities to do so. If we don't, the framework will throw an exception if we try. We add
the internetClientServer capability to our set of capabilities in the
Package.appxmanifest file:

<Capability Name="internetClientServer" />

Creating an HTTP server
The HTTP library defines a HttpServer class that we will use to set up our server. Creating
an HTTP server is easy:

 privateHttpServerhttpServer = null;
 ...
 this.httpServer = new HttpServer();

Publishing Data Using HTTP Chapter 5

[91]

Add a reference to a sniffer in the constructor, such as the
LogSniffer available in the GitHub project, to view communication
passing through the server.
You can also specify port numbers you want to use when hosting the web
server. If you don't specify port numbers, the default HTTP port will be
used.

The UWP version of the HTTP library does not support server-side
encryption at the current time. The reason is that the underlying UWP
framework does not support it. When .NET Standard 2.0 is released and
available for Raspberry, this will be solved automatically, since the
Waher.Networking.HTTP library can be used instead of the UWP
version. In that version of the library, you just specify a server-side
certificate to the HttpServer class, to enable server-side encryption
(HTTPS):

X509Certificate2 Certificate =
Waher.Content.Resources.LoadCertificate(
"SensorHttp.certificate.pfx", "password");
This.httpServer = new HttpServer(Certificate);

Likewise, we must make sure to close the server properly when the application ends. This is
simply done by disposing of the object:

 if (this.httpServer != null)
 {
 this.httpServer.Dispose();
 this.httpServer = null;
 }

Adding dynamic synchronous resources
To publish resources through our web server, we just call the Register method on the
HttpServer object. We can choose between two methods: either we provide resource
objects, inherited from the HttpResource class, such as the HttpSynchronousResource
or HttpAsychronousResource classes, or we use lambda expressions or delegates for
simple GET and POST resources.

Publishing Data Using HTTP Chapter 5

[92]

We first demonstrate the latter to publish a resource for reading momentary sensor data.
We provide a lambda expression, taking a request and response parameter. This expression
will be executed when a GET method is received on the /Momentary resource:

this.httpServer.Register("/Momentary", (req, resp) =>
{
 ...
});

The resource will be added as a synchronous resource. This means that
the response must be generated completely before returning from the
expression. We don't have to worry about exceptions or explicitly sending
the response. The web server will do that for us if we forget.

To access query variables in the request, you can call the
req.Header.TryGetQueryParameter() method.

Choosing representation
Instead of only providing a fixed format of the content we return from our resource, HTTP
allows us to use the Accept header in the request to figure out what format the client
desires. This makes it possible to use the resource seamlessly in different types of
applications and for different use cases. Returning XML, JSON, or an image, based on client
preference, allows us to use the resource in automation and mobile phone apps, or embed it
in image tags. If the client wants something we cannot provide, we return a 406 Not
Acceptable error back to the client. We do this by throwing an HTTP exception object. If
no Accept header is available, we chose to return XML. Note that we also must specify an
HTTP header in the response, to make sure any proxies and clients understand that the
response should not be cached:

if (req.Header.Accept != null)
{ resp.SetHeader("Cache-Control",
"max-age=0, no-cache, no-store");
 switch (req.Header.Accept.GetBestContentType("text/xml",
 "application/xml", "application/json", "image/png",
 "image/jpeg", "image/webp"))
 {
 case "text/xml":
 case "application/xml":
 this.ReturnMomentaryAsXml(req, resp);
 break;

Publishing Data Using HTTP Chapter 5

[93]

 case "application/json":
 this.ReturnMomentaryAsJson(req, resp);
 break;

 case "image/png":
 this.ReturnMomentaryAsPng(req, resp);
 break;

 case "image/jpg":
 this.ReturnMomentaryAsJpg(req, resp);
 break;

 case "image/webp":
 this.ReturnMomentaryAsWebp(req, resp);
 break;

 default:
 throw new NotAcceptableException();
 }
}
else
 this.ReturnMomentaryAsXml(req, resp);

The ability to differentiate between the contents of a resource and its
representation, and therefore have a natural way of allowing the client to
choose representation without changing the resource name, is one of the
properties of RESTful interfaces.

Returning an XMLresponse
Returning text-based responses is easy. The HttpResponse class derives from
TextWriter. There are some things you need to keep in mind, however:

Specify the Content Type properly.
Don't confuse text encodings. If the text format contains references to the
encoding to use, make sure the text encoding matches the Content Type
encoding, which will be used for the binary transfer.
XML and HTML are examples of text formats normally containing encoding
specification as part of the text body.

Publishing Data Using HTTP Chapter 5

[94]

We begin our response as follows:

private void ReturnMomentaryAsXml(HttpRequest Request,
 HttpResponse Response)
{
 Response.ContentType = "application/xml";

 Response.Write("<?xml version='1.0' encoding='");
 Response.Write(Response.Encoding.WebName);
 Response.Write("'?>");

Adding a schema reference
If you work with XML, you should also work with XML Schema. The XML Schema
specifies the layout of the XML document. It can also be used to specify data types for
content embedded in the document. XML Schemas make working with XML more
predictable, since it is possible to validate XML against it and perform certain processes
automatically. XML Schemas separate elements and their attributes using namespaces.
These are typically URLs. In XML, the namespace of an element and its children are defined
by using the xmlns attribute. Typically, for short XML responses, we only need to set it on
the root element. In our case, we will use a local schema and define the namespace to be the
URL of the sensor itself, with /schema.xsd appended to it:

string SchemaUrl = Request.Header.GetURL();
int i = SchemaUrl.IndexOf("/Momentary");
SchemaUrl = SchemaUrl.Substring(0, i) + "/schema.xsd";

Response.Write("<Momentary timestamp='");
Response.Write(DateTime.Now.ToUniversalTime().
 ToString("yyyy-MM-ddTHH:mm:ss.fffZ"));
Response.Write("' xmlns='");
Response.Write(SchemaUrl);
Response.Write("'>");

Adding momentary values
Adding content to the XML response is not straightforward. We add each value, if
available, as a child element. At the end, we close the root element:

 if (this.lastLight.HasValue)
 {
 Response.Write("<Light value='");
 Response.Write(ToString(this.lastLight.Value, 2));

Publishing Data Using HTTP Chapter 5

[95]

 Response.Write("' unit='%'/>");
 }

 if (this.lastMotion.HasValue)
 {
 Response.Write("<Motionvalue='");
 Response.Write(this.lastMotion.Value ?
 "true" : "false");
 Response.Write("'/>");
 }

 Response.Write("</Momentary>");
}

Since the method is called from a synchronous resource, the response will be sent
automatically. The GitHub project also contains the JSON method, which is implemented in
the same manner and which returns the same type of JSON as in the MQTT project.

Returning an image response
To return a dynamic image we need to be able to draw it. SkiaSharp is a powerful cross-
platform two-dimensional drawing engine. It will allow us to draw graphs and create
images. Add the SkiaSharp NuGet package to the project. The SensorHttp project, in the
GitHub repository for this book, contains a GenerateGauge()method that draws a gauge
using SkiaSharp, based on the current momentary values. The method returns an object of
type SKImage. Returning the image to the requester can be done very simply, as follows:

private void ReturnMomentaryAsPng(HttpRequest Request,
 HttpResponse Response)
{
 Response.Return(this.GenerateGauge(Request.Header));
}

What happens when you return an object is that the web server checks if there are any
registered encoders for the type of object you're returning. A content encoder is a class
implementing the IContentEncoder interface from the Waher.Content library. To
encode the image, we simply add the Waher.Content.Images NuGet package. Since
the Waher.Runtime.Inventory package introduced earlier is used to find encoders, we
must also make sure to include the two assemblies during the initialization of the
application. This is done by referencing the assemblies of the IContentEncoder interface
and the ImageCodec class:

Types.Initialize(

Publishing Data Using HTTP Chapter 5

[96]

 typeof(FilesProvider).GetTypeInfo().Assembly,
 typeof(RuntimeSettings).GetTypeInfo().Assembly,
 typeof(IContentEncoder).GetTypeInfo().Assembly,
 typeof(ImageCodec).GetTypeInfo().Assembly,
 typeof(App).GetTypeInfo().Assembly);

By implementing your own encoders using the IContentEncoder
interface, you can return any type of data easily from your web resources.

Explicitly encoding your content
You can also choose to explicitly encode your content. The image encoder, for instance,
encodes images to PNG files. If you want to encode the image to another file format, you
can explicitly do so, as follows:

private void ReturnMomentaryAsJpg(HttpRequest Request,
 HttpResponse Response)
{
 SKImage Gauge = this.GenerateGauge(Request.Header);
 SKData Data = Gauge.Encode(SKEncodedImageFormat.Jpeg, 90);
 byte[] Binary = Data.ToArray();

 Response.ContentType = "image/jpeg";
 Response.Write(Binary);
}

Here you must explicitly set the content type of the response and then write the binary
encoded data to the response stream.

You can now run the application and test it by typing in the URL of your new resource.

To test different representations of the same resource, you can download
plugins to several of the web browsers available that allow you to
customize HTTP headers in requests. This allows you to modify the
Accept header and see how you get different responses depending on the
values you provide.

Publishing Data Using HTTP Chapter 5

[97]

Adding dynamic asynchronous resources
The actuator project (ActuatorHttp in the GitHub repository) also needs a /Momentary
resource that returns the current state of the output in XML or JSON. The implementation is
similar to that of the sensor, so it's straightforward to do. But we also need a way to control
the output. We do that by adding a /Set resource. Since we will call asynchronous
methods, we take this opportunity to add this resource as an asynchronous POST resource.
This means we must explicitly handle errors and exceptions, as well as explicitly sending
the response when it is ready:

this.httpServer.Register("/Set", null, async (req, resp) =>
{
 try
 {
 // Process resource here

 resp.SendResponse(); // Sends response.
 }
 catch (Exception ex)
 {
 resp.SendResponse(ex); // Sends error response.
 }
}, false);

The first parameter defines the relative URL of the resource. The second is null, which
means the resource does not accept GET method calls. The third contains a lambda
expression that will be called when the POST method is called on the resource. Note the
keyword async, which defines the expression as an asynchronous function. The fourth
argument tells the web server that the resource is not synchronous, which is the same as
saying it is asynchronous.

Decoding content
The POST request will have some content with it. Decoding this data is simple; we just call
the DecodeData() method on the request object. The Content-Type HTTP header
determines which decoder will be used when decoding the payload. We will assume plain
text will be sent (Content-Type equal to text/plain). This will be decoded into a normal
string:

if (!req.HasData)
 throw new BadRequestException();
string s = req.DecodeData() as string;

Publishing Data Using HTTP Chapter 5

[98]

You can easily create your own content decoders. This is done by creating
a class with a default constructor, implementing the
Waher.Content.IContentDecoder interface, and making sure the
assembly is initialized in the runtime inventory.

We then use the static Waher.Content.CommonTypes to help us with parsing the Boolean
value. The TryParse method will accept 1, true, yes, or on as true values, and 0, false,
no, and off as false values, using case insensitive comparison. If the content is not plain
text, or not correctly formatted, we return a 400 Bad Request error back to the client:

if (s == null || !CommonTypes.TryParse(s, out bool OutputValue))
 throw new BadRequestException();

Performing control action
As in the case for the /Momentary resource, we check the Accept header to see how the
client wants the response to be represented. If no such header is available, we will assume
XML is requested. If an unrecognized content type is requested, we make sure to return a
406 Not Acceptable response before we perform the control action:

if (req.Header.Accept != null)
{
 switch (req.Header.Accept.GetBestContentType("text/xml",
 "application/xml", "application/json"))
 {
 case "text/xml":
 case "application/xml":
 await this.SetOutput(OutputValue,
 req.RemoteEndPoint);
 this.ReturnMomentaryAsXml(req, resp);
 break;

 case "application/json":
 await this.SetOutput(OutputValue,
 req.RemoteEndPoint);
 this.ReturnMomentaryAsJson(req, resp);
 break;

 default:
 throw new NotAcceptableException();
 }
}
else
{

Publishing Data Using HTTP Chapter 5

[99]

 await this.SetOutput(OutputValue, req.RemoteEndPoint);
 this.ReturnMomentaryAsXml(req, resp);
}

Here, we reuse the content serialization methods defined for the /Momentary resource. But
since the resource is defined as an asynchronous resource, it will actually not be sent, or
completely sent, until the resp.SendResponse(); is called.

Summary
In this chapter, you've been shown how you can use HTTP to publish sensor data and
interact with devices on the internet. You've learned the basic principles of the HTTP
protocol and how to publish resources and interact with them using HTTP. You've also
learned to separate resource, state and representations of data, which is a requirement for
making RESTful web services. In the next chapter, we will delve deeper into the world of
the HTTP protocol by showing you how human interfaces can be built to interact with the
machine-based web services created in this chapter.

6
Creating Web Pages for Your

Devices
In the previous chapter, you learned how to use the HTTP protocol to publish your data
dynamically from your devices. But HTTP is so much more. No HTTP implementation is
complete without a human interface as well. This chapter continues the presentation of the
HTTP protocol.

In this chapter, you'll learn how to add human user interfaces to your devices, and how you
can monitor and interact with them. The chapter covers:

How to publish file-based content
The power of Markdown
Publishing human-readable web content
How to interact with backend web services from JavaScript
Authentication on the web
How to protect your pages using a user login
How to protect your web services using JSON Web Tokens (JWT)

Adding file-based resources to your projects
Adding dynamic web service interfaces to publish our sensor data is not sufficient. To
complete the web interface, we also want to publish some static resources, in the form of
files, to provide a simple web page interface the user can view in a browser. To do this, we
add a HttpFolderResource resource to our web server. It publishes all files available in a
folder and its subfolders.

Creating Web Pages for Your Devices Chapter 6

[101]

In UWP (Universal Windows Platform) applications, content files to be used can be stored
under the Assets project folder. They should be marked as content files, but not be copied
to the output directory. When deploying the application, these asset files will be deployed
into the corresponding assets folder on the device. To find this folder at runtime, we can do
as follows: create a Root subfolder in the Assets folder, to keep our web content files in,
and put a favicon.ico file there, to provide our website with an icon. We can get the path
of the file as follows, and then get the path to the folder by removing the filename (which is
11 characters long):

StorageFile File = await
 StorageFile.GetFileFromApplicationUriAsync(
 new Uri("ms-appx:///Assets/Root/favicon.ico"));
string Root = File.Path;
Root = Root.Substring(0, Root.Length - 11);

We then register a HttpFolderResource with our web server object, pointing to this Root
folder. The first parameter defines the resource under which the folder will become public.
We use the empty string to make the files accessible directly on the root. The second
parameter is the disk folder containing the files. We then say that the PUT and DELETE
methods are not allowed, making sure external users cannot change the contents of the files.
We will accept anonymous GET requests and require user sessions. This will come in handy
later, to keep track of user states, such as whether the user has logged in:

this.httpServer.Register(new HttpFolderResource(
 string.Empty, Root, false, false, true, true));

When running your application, any files you put in the Root folder will now be available
from your browser as well.

Apart from the favicon.ico file, you should place a schema.xsd file,
containing the schema used in the XML representation of your sensor
data. You can also include any web content you like, such as HTML files,
CSS files, JavaScript files, images, and so on. You can also create a
directory structure that will be logically mapped to the corresponding
URLs on the web. The SensorHttp and ActuatorHttp projects in the
GitHub repository contain several examples.

Creating Web Pages for Your Devices Chapter 6

[102]

Converting Markdown to HTML in real time
Writing web content in HTML is time-consuming and laborious. Modern content
management systems prefer simpler methods to edit and publish content. One such method
is to use Markdown, which is a simple plain text format for writing content. Markdown, as
opposed to markup (HTML), is made to be simple to use. It is easily parsed, and good-
looking web pages can be generated from it.

Markdown was originally invented by John Gruber at
daringfireball.net. Since he allowed anybody to use the specification
and extend it, it has become popular, and many extensions exist.

If you want to work with Markdown instead of HTML when you publish web content in
your projects, you can do so easily. All you need to do is add two NuGet packages. The
Waher.Content.Markdown package contains a Markdown parser that can generate HTML,
XAML, and plain text from an extended version of Markdown with multimedia extensions
and server-side script support. The Waher.Content.Markdown.Web.UWP package includes
a real-time conversion module that the web server can use to convert Markdown files to
HTML files in real time, if the browser accepts HTML but not Markdown. All we need to do
is add these two packages and include them in the type inventory initialization call at the
beginning of the app:

Types.Initialize(
 typeof(FilesProvider).GetTypeInfo().Assembly,
 typeof(RuntimeSettings).GetTypeInfo().Assembly,
 typeof(IContentEncoder).GetTypeInfo().Assembly,
 typeof(ImageCodec).GetTypeInfo().Assembly,
 typeof(MarkdownDocument).GetTypeInfo().Assembly,
 typeof(MarkdownToHtmlConverter).GetTypeInfo().Assembly,
 typeof(App).GetTypeInfo().Assembly);

You would use the Waher.Content.Markdown.Web package instead if
not developing a UWP application.

You can extend the web server with any number of real-time converters.
Each converter can convert one internet content type to another. A
converter is a class with a default constructor implementing the
Waher.Content.IContentConverter interface. The web server can,
furthermore, combine converters dynamically to find conversion paths
and more advanced conversion capabilities.

https://daringfireball.net/

Creating Web Pages for Your Devices Chapter 6

[103]

Adding simple Markdown content to the sensor
project
Now that we can publish information using Markdown, let's add a new content file called
Index.md to the web content Root folder in our sensor project. Let us add the following
simple Markdown:

Title: Momentary
Author: Peter Waher
Description: This page displays the current state of the sensor.
Cache-Control: max-age=0, no-cache, no-store
CSS: Main.css
Javascript: UpdateGauge.js

Current state
============================

The following table contains the current state of the sensor.

Sensor	Value
Light	{SensorHttp.App.Light}
Motion	{SensorHttp.App.Motion}

![Light Gauge is green, if motion is detected.](/Momentary)

Even though you normally see the HTML version of the content in a
browser, you can still access the original Markdown document using the
Accept header in the request. For this reason, never put any sensitive
information in the document, such as passwords required to access
databases or web services.

The first part of the Markdown file contains metadata about the file. This information will
be used to set up the page, control caching, include related content (such as CSS files and
JavaScript files), and publish information for simple Search Engine Optimization (SEO).
After the first empty row, the content of the page begins. Simple rules allow you to add
basic formatting, including a header, a table, and an image. Script between curly braces
allows us to call methods or get values from properties in the underlying code. The
SensorHttp project in the GitHub repository contains the CSS and JavaScript files
referenced. They provide basic styles to make the page pleasant to view, and dynamic
features, by updating the values in the table and the gauge every 2 seconds, repeatedly
calling our web service interface. The application also contains the simple static properties
referenced previously.

Creating Web Pages for Your Devices Chapter 6

[104]

For a reference of the Markdown syntax supported, including multi-media
extensions, metadata header fields, and so on, see
http://waher.se/Markdown.md.

Calling our sensor API from JavaScript
We will call our /Momentary API in two ways. First, we will update the gauge on the
screen. This is done by resetting the src property on the IMG tag of the gauge. To make sure
the browser reloads the image, we add a query parameter that is unique, but not used by
the API. Since it is an IMG tag, the browser will automatically add an Accept header field,
telling the resource it wants an image. Code is straightforward:

 var Images = document.getElementsByTagName("IMG");
 Images[0].src = "/Momentary?TP=" + Date();

For updating the table, we use an XMLHttpRequest object. Here, we must manually set the
Accept header to make sure we get the representation we desire. We need to follow the
process. When we detect a successful response, we update the table with the received
values:

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function ()
{
 if (xhttp.readyState == 4)
 {
 if (xhttp.status == 200)
 {
 var Data = JSON.parse(xhttp.responseText);
 var Cells = document.getElementsByTagName("TD");

 Cells[1].firstChild.innerHTML =
 Data.light.value + Data.light.unit;
 Cells[3].firstChild.innerHTML =
 Data.motion ? "Detected" : "Not detected";
 }

 delete xhttp;
 }
};

xhttp.open("GET", "/Momentary", true);
xhttp.setRequestHeader("Accept", "application/json");
xhttp.send("");

http://waher.se/Markdown.md

Creating Web Pages for Your Devices Chapter 6

[105]

Note that we use the same resource for updating both information in the
table and the gauge. This is one of the benefits of using RESTful interfaces.

We are now ready to test our page. If you run the application, you can view the page by
navigating to http://IP_ADDRESS/Index.md. Note that UWP applications do not support
the loopback interface, so you cannot view the page from the same machine you're running
the app on. If you deploy it to Raspberry Pi, you can view it from your workstation or
laptop. If you run it locally, you need to use another machine, phone, or tablet to connect to
your machine and to view the page. The following image shows what your page might look
like:

Sensor Markdown document, converted to HTML

http://IP_ADDRESS/Index.md

Creating Web Pages for Your Devices Chapter 6

[106]

Adding simple Markdown content to the actuator
project
We also want to add a simple web interface to the actuator. It will just display the current
state and provide a button we can use to toggle the state of the output. Note that we can
embed HTML seamlessly into the Markdown to accomplish this. We embed the current
value in a SPAN element with an id attribute, so that we can access it easily from JavaScript:

Title: Actuator
Author: Peter Waher
Description: This page displays the current state of the actuator.
Cache-Control: max-age=0, no-cache, no-store
CSS: Main.css
Javascript: ToggleOutput.js

Current state
============================

Output is currently turned **{ActuatorHttp.App.Output}**

<button onclick='ToggleOutput();'>Toggle Output</button>

Calling our actuator API from JavaScript
Calling the actuator API is done slightly differently, since we use the POST method instead
of the GET method. We need to send some content with the request. Sending text-based
content is easy. We only need to send a string in the send() method. But we still need to set
the Content-Type header to describe what type of text-based content we want to send. In
our example, we use plain text:

var Span = document.getElementById("OutputState");
var CurrentState = Span.innerHTML;
var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function ()
{
 if (xhttp.readyState == 4)
 {
 if (xhttp.status == 200)
 {
 var Data = JSON.parse(xhttp.responseText);
 Span.innerHTML = Data.output ? "ON" : "OFF";
 }

Creating Web Pages for Your Devices Chapter 6

[107]

 delete xhttp;
 }
};

xhttp.open("POST", "/Set", true);
xhttp.setRequestHeader("Accept", "application/json");
xhttp.setRequestHeader("Content-Type", "text/plain");
if (CurrentState == "ON")
 xhttp.send("OFF");
else
 xhttp.send("ON");

The following image shows what our very simple user interface might look like in a
browser:

Actuator Markdown document, converted to HTML

Adding default redirections
Users normally don't remember syntax, so we can't assume they will remember the URL for
the device. The IP address should be sufficient. To solve this, we want to create a default
resource that redirects to our default page if only the IP address is provided. This is easily
done as follows:

this.httpServer.Register("/", (req, resp) =>
{
 throw new TemporaryRedirectException("/Index.md");
});

Creating Web Pages for Your Devices Chapter 6

[108]

Plotting graphs
No sensor application is complete without plotting graphs. We can do this directly from the
web interface hosted on the sensor itself. We have already defined a web page for it:
/History.md. We first need to add the Waher.Script.Graphs NuGet package to the
project. It adds graph plotting functions to our scripting engine. It uses the cross-platform
SkiaSharp two-dimensional drawing package to do the actual drawing. We must just
make sure to add the corresponding assemblies of Waher.Script and
Waher.Script.Graphs to the types inventory when we initialize the application.

For a list of script syntax supported, including some extension libraries,
see http://waher.se/Script.md.

Reading historical values from the database
To plot historical values, we first need to read them from the database. We can use the
Find<T>() method on the static Database class to find, filter, and sort objects in the
database. It returns an enumerable set of objects of type T (IEnumerable<T>). We want to
plot all values that are available, so we don't filter them. However, we want to get them in
time order. To accessing the values from the script easier, we also convert our enumerable
set of objects to an array. Database access is asynchronous, so we make our method
asynchronous too:

public static async Task<LastMinute[]> GetLastMinutesAsync()
{
 List<LastMinute> Result = new List<LastMinute>();

 foreach (LastMinute Rec in
 await Database.Find<LastMinute>("Timestamp"))
 {
 Result.Add(Rec);
 }

 return Result.ToArray();
}

http://waher.se/Script.md

Creating Web Pages for Your Devices Chapter 6

[109]

Script runs synchronously, so we add a second method calling the first, and then wait for
the operation to complete:

public static LastMinute[] GetLastMinutes()
{
 Task<LastMinute[]> T = GetLastMinutesAsync();
 T.Wait();
 return T.Result;
}

Plotting historical values
We are now ready to plot the values. We create a new Markdown page called History.md.
In it, we create a script block in which we call the static method, extract the corresponding
values, and then create the plot. We will want to reuse the same type of graph for all our
historical values (minutes, hours, and days), so we first create a function, DrawGraph,
which calculates the plot, and then call it with the results received from the static method
we called:

Title: History
Author: Peter Waher
Description: This page displays historical values of the sensor.
Cache-Control: max-age=0, no-cache, no-store
CSS: Main.css

Historical values
============================

The following graphs display historical values of the sensor.

Minutes

{
DrawGraph(Records):=
(
 MinTP:=Records.MinLightAt;
 Min:=Records.MinLight;
 MaxTP:=Records.MaxLightAt;
 Max:=Records.MaxLight;
 TP:=join(MinTP, reverse(MaxTP));
 Values:=join(Min, reverse(Max));
 plot2darea(Records.Timestamp, Records.AvgMotion,
 rgba(0,255,0,64))+
 polygon2d(TP, Values, rgba(0,0,255,32))+

Creating Web Pages for Your Devices Chapter 6

[110]

 plot2dline(Records.Timestamp, Records.AvgLight, "Red");
);
DrawGraph(SensorHttp.App.GetLastMinutes());
}

The script works with canonical extensions. This means, for example, that
if a property is not available on an array V=[E1, ..., En], as is the case
here, but on the elements of the array E1, ..., En, then the property is
automatically canonically extended to the array, as follows:
V.Property = [E1.Property, ..., En.Property]
This saves a lot of time in terms of not having to write code loops. For
more information, see
http://waher.se/Script.md#canonicalExtensions.
In the IoT Gateway repository on GitHub, you can compile and execute
the Waher.Script.Lab application. It allows you to experiment with
script live. With it you can experiment with different types of plots, data,
and combinations. You can also download an executable version
(compiled for the x86 processor) at
https://github.com/PeterWaher/IoTGateway/blob/master/Executables

/Waher.Script.Lab.x86.zip?raw=true.

Displaying the plot
We can now run the application and navigate to the /History.md resource. It might look
something like the following image. If you look at the script, you will notice that the
expression that returns the plot (the last statement in the function) is a sum of three separate
graphs. First, an area chart shows how much average motion has occurred during the
period. A polygon then paints an area, where the upper border represents the largest light
values, and the lower the smallest light values during each period. The red line corresponds
to the average light value during each period.

http://waher.se/Script.md#canonicalExtensions
https://github.com/PeterWaher/IoTGateway/blob/master/Executables/Waher.Script.Lab.x86.zip?raw=true
https://github.com/PeterWaher/IoTGateway/blob/master/Executables/Waher.Script.Lab.x86.zip?raw=true

Creating Web Pages for Your Devices Chapter 6

[111]

Adding graphs is done using the addition operator:

Plot of historical data

Generalizing the page
When we understand how the first plot works, it's easy to generalize the page and create
similar plots for the other time bases we have: hours and days. First, we need to create
analogous static methods in our code to read hourly and daily historical values from our
persistence layer. We call these methods GetLastHours() and GetLastDays(). We then
simply add the following sections to our Markdown page.

Creating Web Pages for Your Devices Chapter 6

[112]

The DrawGraph script function defined earlier will draw the corresponding graphs:

Hours

{DrawGraph(SensorHttp.App.GetLastHours());}

Days

{DrawGraph(SensorHttp.App.GetLastDays());}

Creating a menu system
We now have two pages on the sensor that we would like to navigate between, using some
kind of menu system. Instead of having to insert this menu structure manually into each
page, the Markdown engine we use allows us to define a master/detail view of our page.
We can create a master Markdown document that contains the menu, and that embeds
detail documents in it.

Creating the master document
We begin by creating a new Markdown document in the Root folder and call it Menu.md. In
it, we add the headers that we want all detail pages to have. We, therefore, move the CSS
file to the Menu.md file, since we want all pages to have the same design. We can also define
an Icon header.

We then go on to provide the general disposition of the page, using the HTML5 elements
header, nav, main, and footer. We define the menu using a bullet-point list. This list is
rendered to ul and li tags respectively. We can use the CSS file to transform this bullet-
point list into a nicer-looking menu system. If a bullet contains a single link, pointing to the
detail file being viewed, it will be marked using the active class name in HTML. This
allows us to provide special styling for those elements dynamically in CSS.

Creating Web Pages for Your Devices Chapter 6

[113]

Finally, we use the special [%Details] metadata reference on the location in the file where
we want the detail Markdown page to be inserted. The result may look as follows. Note that
we need the empty rows to allow the Markdown parser to separate the corresponding
blocks into logical blocks:

CSS: Main.css
Icon: /favicon.ico

<header id="header">
<nav>

* [Momentary](/Index.md)
* [History](/History.md)
* [%Title]
* [Mastering IoT](https://github.com/PeterWaher/MIoT)
* [IoT Gateway](https://github.com/PeterWaher/IoTGateway)

</nav>
</header>
<main>

[%Details]

</main>

<footer>
This application is part of the [Mastering Internet of
Things](https://github.com/PeterWaher/MIoT) book.
</footer>

Referencing the menu
Now that we have the menu defined, we enter all our earlier detail pages, and add the
following reference in the metadata section at the top of each document:

Master: Menu.md

Creating Web Pages for Your Devices Chapter 6

[114]

We also make sure to remove the superfluous CSS tags, since we have one in the master
document. If we run the application now and view the Index.md page in a browser, it
might look as shown in the following image. Clicking on the links in the menu allows you
to navigate your small website:

Menu system

Authenticating users
Our last task before the web page is complete is to provide some minimum form of
protection by providing a login page. A user must be logged in to be able to view the data
of the device or control its output.

Creating Web Pages for Your Devices Chapter 6

[115]

The Markdown engine allows us to implement simple login pages. It is done by providing
two header fields, Login and UserVariable. What they do is tell the parser that the page
can only be viewed if a Waher.Security.IUser object is defined in the current session,
with the variable name defined by the UserVariable header. If no such variable is found,
the client is redirected to a new page, defined by the Login header. So, we begin by adding
the following two rows to the Index.md and History.md files in the sensor project (the
work for the controller is analogous):

UserVariable: User
Login: Login.md

Adding a login page
We now create a new Markdown page in the web Root asset folder, called Login.md. This
page will display a simple login form to the user. When the user is redirected to this page, a
query parameter called from will be available to inform the application where the
redirection came from. A similar from variable will also be available in the session. After a
successful login, the idea is to redirect the user back to this page. We begin by providing the
simple contents of the form:

Title: Login
Description: Login page to the device.
Author: Peter Waher
Master: Menu.md
Parameter: from

Login
=============

<form id="LoginForm" action="/Login" method="post">

Please login by providing a user name and password:

User Name:
<input id="UserName" name="UserName" type="text" autofocus="autofocus"
style="width:20em" />

Password:
<input id="Password" name="Password" type="password" style="width:20em" />

{{if exists(LoginError) then]]
<div class='error'>
((LoginError))
</div>

Creating Web Pages for Your Devices Chapter 6

[116]

[[;}}

<button id="LoginButton" type="submit">Login</button>

</form>

User Name: and Password: should be followed by two spaces. These are
invisible in print. Two spaces at the end of a row is transformed into a
hard-line break in the generated output.

As we have done before, we can mix HTML with Markdown. What is new is that we use a
new type of script in our Markdown file: pre-processed script. Embedded script, within
single curly braces {...}, is executed when the page is rendered, and the result is
displayed in the corresponding location. Pre-processed script is different. It allows you to
change the structure of the actual document before it is parsed and rendered. Pre-processed
script is written between double curly braces {{...}}. Furthermore, the script can emit
Markdown between [[...]], inserted anywhere in the pre-processed script. We use this to
add an error label, if one is available in a session.

For more information about pre-processed script, see
https://waher.se/Markdown.md#preProcessedScript.

If we start the application and go to the main page, we are now confronted with something
like in the following image:

Login form

https://waher.se/Markdown.md#preProcessedScript

Creating Web Pages for Your Devices Chapter 6

[117]

Creating our user
To authenticate users, we need a user database. Waher.Security defines two interfaces
that we will use: IUser and IUserSource. Each user implements the first, and the user
database implements the second. We will implement a very simplistic database with only
one user. Full user management goes beyond the scope of this book, but such an
implementation should be straightforward, using the persistence layer presented in this
book.

We begin by defining our user. It will have the username MIoT and password rox:

public class User : IUser
{
 public string UserName => "MIoT";
 public string PasswordHash =>instance.CalcHash("rox");
 public string PasswordHashType => "SHA-256";

 public bool HasPrivilege(string Privilege)
 {
 return false;
 }
}

Always use salted hashes when persisting credentials. Never persist
passwords. This reduces the risk should the database get leaked. Salted
hashes avoid the possibility of them being reused in other systems.
Adding salt means the password is combined with some information that
is unique to the installation of the application, for instance, a random
number generated the first time the application is run.

Creating a very simple user database
The user database will only contain our one user. We leave it to the reader to create a more
dynamic user database:

private IUserSource users = new Users();

public class Users : IUserSource
{
 public bool TryGetUser(string UserName, out IUser User)
 {
 if (UserName == "MIoT")
 User = new User();
 else

Creating Web Pages for Your Devices Chapter 6

[118]

 User = null;

 return User != null;
 }
}

We also define our salted hash function as follows, using the unique device identity as the
salt:

private string CalcHash(string Password)
{
 return Waher.Security.Hashes.ComputeSHA256HashString(
 Encoding.UTF8.GetBytes(Password + ":" + this.deviceId));
}

Posting login form
After filling out the form in a browser, and pressing the Login button, the contents will be
sent to the server resource /Login using the POST method. We need to add such a resource
to the server:

this.httpServer.Register("/Login", null, (req, resp) =>
{
 // Code comes here
}, true, false, true);

Here we've registered only a POST handler. The first true parameter tells the server the
resource is synchronous. The following false tells the server that we only serve the
/Login resource, and not any sub-resources. The last true tells the server the resource
requires a user session.

If sending the form over an unencrypted line, as is the case if you use
UWP, the password will be readable by anybody sniffing the network
traffic.

Creating Web Pages for Your Devices Chapter 6

[119]

Parsing the form
The form will be sent using a Content-Type of application/x-www-form-urlencoded.
This type is recognized by Waher.Content, and so decoding is simple. The form will be
parsed into a string dictionary. All we need to do is to check that we get what we expect,
and that the form has the correct parameters:

if (!req.HasData || req.Session == null)
 throw new BadRequestException();

object Obj = req.DecodeData();
Dictionary<string, string> Form =
 Obj as Dictionary<string, string>;

if (Form == null ||
 !Form.TryGetValue("UserName", out string UserName) ||
 !Form.TryGetValue("Password", out string Password))
{
 throw new BadRequestException();
}

We also need to check the source of the original request, in case we want to redirect the user
back there after a successful login:

string From = null;

if (req.Session.TryGetVariable("from", out Variable v))
 From = v.ValueObject as string;

if (string.IsNullOrEmpty(From))
 From = "/Index.md";

Redirecting the user
Now that we have the credentials, we need to check them against our user database. We
will define a method for this, bool Login(UserName, Password), returning whether the
credentials were authenticated or not. If successful, we set the session variable User, which
we defined in the Markdown documents, to the corresponding user object. This tells the
application that the user is logged in, and will stay logged in, while the session is
maintained:

IUser User = this.Login(UserName, Password);
if (User != null)
{

Creating Web Pages for Your Devices Chapter 6

[120]

 Log.Informational("User logged in.", UserName,
 req.RemoteEndPoint, "LoginSuccessful",
 EventLevel.Minor);

 req.Session["User"] = User; req.Session.Remove("LoginError");

 throw new SeeOtherException(From);
}
else
{
 Log.Warning("Invalid login attempt.", UserName,
 req.RemoteEndPoint, "LoginFailure", EventLevel.Minor);
 req.Session["LoginError"] =
 "Invalid login credentials provided.";
}

throw new SeeOtherException(req.Header.Referer.Value);

The last thing we do in the method is to return a 303 See Other HTTP response, instead
of the normal 200 OK, followed by some new content to display. This is called the PRG
pattern, or POST-Redirect-GET pattern. This redirects the client to the page we want them
to see and provides a better user experience in the browser.

It's important to log login attempts to the event log. These audit-logs are
the main source for detecting intrusion attempts in systems. Without
them, it is virtually impossible to evaluate threats and any damage after
breaches have been detected.

Authenticating the user
The authentication method used in our application is simple. It checks the user database to
see if a user with the given name is available. Then it checks the password hash method
used and calculates the corresponding hash of the provided password. If the hashes match,
credentials are authenticated. If not, or if the hash method is not recognized, authentication
fails:

private IUser Login(string UserName, string Password)
{
 if (this.users.TryGetUser(UserName, out IUser User))
 {
 switch (User.PasswordHashType)
 {
 case "":
 if (Password == User.PasswordHash)

Creating Web Pages for Your Devices Chapter 6

[121]

 return User;
 break;

 case "SHA-256":
 if (this.CalcHash(Password) ==
 User.PasswordHash)
 return User;
 break;

 default:
 Log.Error("Unsupported Hash function: " +
 User.PasswordHashType);
 break;
 }
 }

 return null;
}

You can now test the application. The first time you view any of your pages, the login page
will be displayed. A successful login will then redirect you back to the original page you
wanted to view.

Protecting our web services
The login page described earlier only protects our Markdown content, not our dynamic web
services. If you know the resource names of the web services, you can still extract all sensor
data and control the actuator output, unauthenticated. To avoid this, we need to add an
authentication layer on top of our web services. We can do this by using JWT (Java Web
Tokens). These tokens are simple strings that are cryptographically signed by a server, and
that can be easily transported in any type of machine-to-machine communication where
you want to avoid sessions and login forms. The server can then validate the token by
checking the signature. By adding the Waher.Security.JWT.UWP NuGet package to our
SensorHttp and ActuatorHttp projects, we can use JWT to protect our web services.

For .NET standard, .NET Core, or traditional .NET Framework projects,
you can use the Waher.Security.JWT NuGet instead.

Creating Web Pages for Your Devices Chapter 6

[122]

Getting a session token
We begin by creating a token factory. It will allow us to create tokens:

private JwtFactory tokenFactory = new JwtFactory();

We then add a resource that allows a web page, after having logged in, to get a session
token:

this.httpServer.Register("/GetSessionToken", null, (req, resp) =>
{
 IUser User;

 if (!req.Session.TryGetVariable("User", out Variable v) ||
 (User = v.ValueObject as IUser) == null)
 {
 throw new ForbiddenException();
 }

 string Token = this.tokenFactory.Create(
 new KeyValuePair<string, object>("sub", User.UserName));

 resp.ContentType = JwtCodec.ContentType;
 resp.Write(Token);
}, true, false, true);

When you create a token, you provide a set of claims. One of the most
important is sub, which means subject, and relates to the entity that the
token is about. You can add any number of claims here, standard as well
as custom. Try adding a custom claim containing the client IP address.
You can then use that information inside your method, to make sure that
future requests are only accepted if they are made from the same IP
address. Other authorization claims can also be added. Care must be
taken, however, since you don't want to leak sensitive personal
information through the tokens.
For a list of public claim names, see IANA's list at
https://www.iana.org/assignments/jwt/jwt.xhtml.

https://www.iana.org/assignments/jwt/jwt.xhtml

Creating Web Pages for Your Devices Chapter 6

[123]

Validating tokens
The Waher.Security.JWT.UWP library also contains the JwtAuthentication class that
authenticates web requests based on JWT tokens. We first need to define a variable for it:

private JwtAuthentication tokenAuthentication;

When we've established the device identity, which we will use as a realm, we create an
instance of this authenticator (the realm allows browsers to isolate credentials between
sites):

this.tokenAuthentication = new JwtAuthentication(this.deviceId,
 this.users, this.tokenFactory);

The authenticator references our users database to check that subjects match users in the
database. It also references the token factory to validate that tokens are correctly signed. We
then simply add the reference to the authenticator as the last parameter to all the web
service resource registrations that we want to protect.

Using tokens in JavaScript
Now that our web services are protected, we need to update our JavaScript to match this
change. We begin by getting the current session token, as follows:

var SessionToken = null;

function GetSessionToken()
{
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function ()
 {
 if (xhttp.readyState == 4)
 {
 if (xhttp.status == 200)
 {
 SessionToken = xhttp.responseText;
 window.setInterval(RefreshGauge, 2000);
 }

 delete xhttp;
 }
 };

 xhttp.open("POST", "/GetSessionToken", true);
 xhttp.send("");

Creating Web Pages for Your Devices Chapter 6

[124]

}

GetSessionToken();

When we have the token, we only need to add it to requests being made, using the
BearerAuthorization header, to pre-empt the WWW-authentication step, as follows:

xhttp.open("GET", "/Momentary", true);
xhttp.setRequestHeader("Accept", "application/json");
xhttp.setRequestHeader("Authorization", "Bearer " + SessionToken);
xhttp.send("");

If you run the application now, it will still work. Try to access the /Momentary resource as
before, without logging in first, and you'll see the resource is blocked.

Unfortunately, since we cannot add custom headers to requests being
made from IMG tags on the page, we cannot control the authorization
mechanism being used for images on the momentary page. But such
requests still send relevant cookies, so we can secure images being shown
in IMG tags by using session state variables. The SensorHttp project in
the GitHub page has, therefore, created a parallel resource,
/MomentaryPng, which only returns a PNG image of the momentary
value if the user has logged in and the corresponding session variable is
defined.

Summary
In this chapter, you've been shown how you can use HTTP to publish a human interface to
interact with your sensor data and actuator on the internet. You've learned how to publish
file-based content and dynamic web services. You've also learned how to interact with your
web services from JavaScript, how to plot graphs, and how to update your pages
dynamically. You've built a menu system for your pages and secured them using JWT.

In the next chapter, you will learn how you can use the CoAP protocol as an efficient
alternative to HTTP for constrained devices.

7
Communicating More Efficiently

Using CoAP
In the previous two chapters, you learned how to use the HTTP protocol to publish your
data and to interact with your devices. But HTTP has some limitations when it comes to
resource-constrained devices: it is very verbose and consumes a lot of bandwidth compared
to the amount of data being transported.

In this chapter, you'll learn how to use the Constrained Application Protocol, or CoAP, to
create interfaces for resource-constrained devices, typically devices in networks where
bandwidth is an issue. The chapter covers:

An introduction to the CoAP protocol
Security in CoAP
Content encoding in CoAP
Publishing data using CoAP
The Observe or Event Subscription communication pattern
Responding to control actions using CoAP
Testing your CoAP devices
Encrypting your CoAP devices

Communicating More Efficiently Using CoAP Chapter 7

[126]

Introducing CoAP
There are several problems with using HTTP for resource-constrained devices. HTTP is
verbose and requires a lot of bytes for headers. These headers are in plain text, and since
HTTP has grown over time, there are a lot of headers that need to be supported to achieve
compliance with the standards. This forces implementations to become large, which might
be a problem if the device has limited memory. CoAP is much simpler and has less options,
and therefore has a smaller code footprint than HTTP.

CoAP is an Internet Engineering Task Force (IETF) standard and is
defined in RFC 7252: https://tools.ietf.org/html/rfc7252.

At the same time, the amount of data in the payload is often small. A sensor value can be
encoded in just a few bytes. The great difference between number of bytes sent and number
of content bytes sent implies a great waste. This waste of bandwidth is particularly noticeable
in resource-constrained networks, such as the IPv6 radio-based network 6LoWPAN (IPv6
over Low-Power Wireless Personal Area Networks). In such networks, datagrams have
been reduced in size to be a maximum of 127 bytes, leaving only about 70-80 bytes for
encrypted payload per datagram, depending on cipher used, before payload must be
fragmented. This space must contain both headers and content. The need to compress
headers is obvious. For this reason, CoAP employs binary headers. This not only reduces
message size, but also reduces code footprint even further.

If you're required to send content that exceeds the amount of data possible
to embed in a datagram, CoAP allows you to divide your content into
blocks. Whenever you send data using CoAP, you can also provide a
block size. If the content exceeds this block size, the CoAP layer divides it
into blocks and transmits them individually, while the receiving end
assembles the blocks and delivers the complete payload to its application
at the other end. Block-wise transfers using CoAP is defined in RFC 7959:
https:/ /tools. ietf. org/ html/ rfc7959.

The design of HTTP is also not well suited for the use case of transporting sensor data or
performing small quick control actions. HTTP is based on TCP and on the
Request/Response pattern. This means that each transfer of sensor data using HTTP is
doubly acknowledged; it requires at least four messages. If we ignore TCP's connection
establishment and TLS handshakes, each request is acknowledged, and each response is
also acknowledged, resulting in four messages minimum. It doesn't matter if the client
requests the data from the sensor, or if the sensor pushes the data.

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7959

Communicating More Efficiently Using CoAP Chapter 7

[127]

CoAP reduces the set of methods endpoints can use somewhat, by
converting the method to a 6-bit integer. But only seven methods are
defined by IANA: GET, POST, PUT, DELETE, FETCH, PATCH, and iPATCH.
In a similar manner, the number of response or result codes available have
been somewhat reduced to facilitate implementations. Typically, response
codes in CoAP have similar response codes in HTTP, with similar
meanings.

The preceding image shows the flow of IP messages between a Client and a Server based
on the Request/Response pattern using TCP:

Transfer of a sensor value using HTTP requires a minimum of four IP packets

Using UDP
CoAP optimizes this drastically, changing two things. First, it uses UDP instead of TCP. In
UDP, IP packets, called datagrams, are not acknowledged or ordered as they are in TCP.
This means that datagrams can get lost or be received in a different order compared to
when they were sent. Such considerations must be handled by CoAP implementations.
While CoAP manages acknowledgements also, it is optional. This means that the
application has the option of using the unacknowledged service when sending data. This
saves a lot of network traffic, especially in cases where loss of datagrams is acceptable.

Communicating More Efficiently Using CoAP Chapter 7

[128]

This is typically the case, for instance, with sensors measuring analog ambient values that
regularly report their status. If a value gets lost, it gets replaced automatically by the next.
And previous values are probably close enough to still be valid if changes are not expected
to be drastic between messages.

CoAP over UDP normally uses port 5683 for unencrypted
communication.

Efficiently distributing data
CoAP also introduces two new communication patterns: multicast and Event Subscription
or Observe as it is called in CoAP. Since CoAP is based on UDP and UDP supports
multicasting, using the Internet Group Management Protocol, or IGMP, CoAP messages
can also be multicast, at least when encryption is not used. This is done by sending CoAP
messages to predefined multicast addresses.

For IPv4, the CoAP multicast address is 224.0.1.187. For IPv6, it's
[FF02::FD] or [FF05:FD] for the link-local or site-local scope.

Multicasting not only allows for efficient distribution, it also allows clients to find CoAP
devices with multicast support by multicasting requests. Multicasting a request and
monitoring responses allows you to find new devices in the local network. Typically,
multicasting (IGMP) is turned off in many gateways, however.

Care must be taken when using CoAP multicasting, since encryption is not
allowed using the current versions of the standards. This is expected to
change in the future.

Communicating More Efficiently Using CoAP Chapter 7

[129]

Understanding the Observe pattern
For sensors reporting data regularly and securely, the greatest optimization is the use of the
Observe (or Event Subscription) pattern. Using this pattern, the requestor, or subscriber, is
only required to send one request, called the subscription. Just as with a normal request,
the device returns a response containing the data it wants to return. The difference lies in
when the resource changes. When that happens, the device automatically sends a new
response to the subscriber, without having to wait for a corresponding request.

Resources that support the Observe pattern are called observable
resources. Observing resources is defined in RFC 7641:
https://tools.ietf.org/html/rfc7641

In a normal case, this reduces the number of messages sent on the network by a factor of
(close to) two. From four messages, it's possible to reduce this to (close to) one, depending
on the direction of communication. If data is pushed from the device to the receiver, the
number of messages is reduced by a factor of (close to) four in the normal unacknowledged
case. If data is polled by the client, the number of messages depends on how often the
polling is done. Either a great reduction of messages is achieved (if rapid polling is used to
achieve low latency), or an increase in the number of messages is achieved (if slow polling
is used with long latency). But in both cases, the latency, or the delay it takes for the
receiving party to get its mirrored value updated, is reduced.

Typically, an observable resource updates its value using a regular time
interval. More sophisticated methods are possible by using parameters in
the request, letting the server know how often to report a value, if interval-
based reporting is desired, or when to report it, if event-based or
hysteresis-based reporting is desired.

https://tools.ietf.org/html/rfc7641

Communicating More Efficiently Using CoAP Chapter 7

[130]

The preceding image shows the transfer of unacknowledged sensor data using the Observe
pattern:

Transfer of unacknowledged sensor data using the Observe pattern

Observed data can be transported using both the acknowledged and
unacknowledged service. Typically, the server will use the same service as
the subscriber did when making the original subscription, if not explicitly
defined by the resource itself. Larger content sent using blocked transfer
can also be observed.

Securing CoAP communication
HTTP is secured using Transport Layer Security (TLS), as presented in previous chapters.
But TLS requires an underlying stream of data such as that provided by TCP connections.
Since the order of UDP datagrams is not preserved, TLS cannot be used with UDP directly.
For this purpose, Datagram Transport Layer Security (DTLS), was developed. DTLS is a
modification of TLS; it can be used by protocols such as UDP that lose, and possibly
reorder, datagrams.

Communicating More Efficiently Using CoAP Chapter 7

[131]

CoAP normally uses port 5684 for DTLS encrypted communication.

Since DTLS is often used in resource-constrained environment, DTLS implementations are
also significantly more lightweight than traditional TLS implementations. At least, if not a
large security library is used that implements each corresponding technology available.
Typically, the use of certificates can be avoided by using simple and efficient authenticated
encryption algorithms, such as the AES CCM cipher suite, prescribed as one of two
mandatory cipher suites for use with CoAP (the other being based on Elliptic Curve public
keys). The AES CCM cipher provides AES encryption of data using keys of 128 or 256 bits.
It also includes a signature and validation scheme for each datagram sent, based on the AES
CCM algorithm, using either 64 or 128 bits (8 or 16 bytes). This makes injection of telegrams
into the stream difficult.

Typically, pre-shared keys (PSK) is used together with AES CCM in CoAP. To be able to
establish a DTLS session, the client and server need to validate each other using an identity
and key pair, where the key is the shared secret. If both reach the same result using the
algorithm, both are seen to be authenticated and encrypted application data (CoAP) can
ensue. While certificates, or a plethora of other cipher suites, can be used together with
CoAP to make it even more secure, the AES CCM PSK ciphers require only a small code
footprint. They add reasonably little overhead to datagrams, while providing a reasonable
level of security, making them suitable for use with CoAP, except in situations where very
strong encryption is required.

AES CCM with PSK does not enjoy the property of forward secrecy. This
is a property where the compromise of long-term keys (such as the PSK)
does not compromise past session keys.

Understanding DTLS sessions
Since UDP is not based on connections, it is easy for anybody to transmit datagrams to
anyone, on any port. For this reason, DTLS needs to have a mechanism that prevents the
injection of datagrams into existing sessions, or sessions being negotiated. It must also be
able to reject replays of earlier conversations. It does this by introducing explicit counters
into datagrams, and it adds a client cookie, which is typically calculated on attributes the
server can retrieve from the client.

Communicating More Efficiently Using CoAP Chapter 7

[132]

This adds a pair of messages to the handshake, compared to TLS. But if we use an AES
CCM PSK cipher suite to authenticate and encrypt data, we avoid the overhead of sending
certificates, which might require multiple datagrams to complete, since these can be large
and need to be divided into multiple fragments.

DTLS v1.2 is defined by IETF in RFC 6347:
https://tools.ietf.org/html/rfc6347

The preceding image shows the flow of messages in a DTLS handshake when using PSK:

DTLS handshake when using PSK

https://tools.ietf.org/html/rfc6347

Communicating More Efficiently Using CoAP Chapter 7

[133]

Before communicating CoAP over DTLS, one of the endpoints needs to establish a DTLS
session with the other. Let's call the first the client and the other the server in this case, even
though these roles might not necessarily be correct in the CoAP sense. (The DTLS client
establishing the session might be the CoAP server, and vice versa.)

The DTLS client starts by sending a hello message to the server. Since anybody can do that,
the server responds with a hello verification request, and sends a cookie. The client now
sends a new hello message, with the cookie and the same random number. The cookie pins
the DTLS client to a given IP address and the random number provided. The client hello
message also contains an array of all the cipher suites it can use, ordered by preference. The
server now responds with two messages: one server hello and one server hello done
message. These are typically included in the same datagram for improved performance. The
server passes its random number, the cipher it selects from the list provided by the client,
and the session ID. This session ID can be used to reconnect to an existing session.

When the pleasantries of salutation have been completed, the client sends its corresponding
cipher keys for the cipher the server selected. In our example, it is the AES CCM PSK
cipher. The key consists of the identity part of the identity-key pair. It then tells the server,
using the change cipher specification message, that the next message will be encrypted
using the negotiated cipher and parameters. Following this message, the client sends a
finished message containing verification data. This verification data is a salted SHA-256
hash of the handshake conversation up to that point. Typically, all three messages are sent
in the same UDP datagram, for performance.

The server receives the verification data and validates it with its secret key. If successful, it
returns two messages. The first tells the client that the server will change to the new cipher
settings. The second provides verification data to the client, allowing the client to validate
the identity of the server, avoiding man-in-the-middle (MITM) attacks.

When both have validated the authenticity of the other, application data (in our case, CoAP
messages) can be sent using the DTLS cipher established in the session. Since DTLS sessions
are not based on connections, it is up to the client and server to decide how long the session
is remembered for. If a session becomes invalid, a new session must be negotiated. To avoid
the possibility of the other end forgetting a session, sessions should be closed when not
used. Regular events, such as those provided by the observe pattern, also make sure a
session is kept alive over time.

Communicating More Efficiently Using CoAP Chapter 7

[134]

Encoding content
Encoding content in HTTP is relatively easy, but decoding is complicated. Since it is easy to
encode and provide a content type string, the decoder needs to be very flexible to support
all the content types that might be used, including all the individual variants, character
encodings, and so on. You can even create proprietary and vendor-specific encodings very
easily.

CoAP has reversed these relationships. In CoAP, it is more complicated to encode the
content you want to transfer, but this makes it much easier for the receiving end, who need
to decode the information. Only of few of all available Internet Content Types, or Media
Types, are possible to encode in CoAP. Fewer options means it's easier to decode, but more
difficult to encode that which you want to encode. The Content Type string is replaced with
a short numeric Content Format, which is also much easier to encode and parse. But since
plain text, XML, and JSON are available as CoAP Content Formats (as content formats 0, 41,
and 50 correspondingly), they will be fine for our purposes.

A registry of available content formats for use in CoAP is maintained by
IANA at
https://www.iana.org/assignments/core-parameters/core-parameters

.xhtml.

Adding CoAP to our devices
We are now ready to implement CoAP in our projects. To do this, we create two new
projects, which we will call SensorCoap and ActuatorCoap, copying the corresponding
code from the Sensor and Actuator projects. If we wish to retain HTTP functionality, we
can copy the code from the SensorHttp and ActuatorHttp projects instead. Our devices
can support multiple protocols. We use the same hardware as we used in previous chapters.
We add the Waher.Networking.CoAP.UWP NuGet package to both projects.

For .NET standard, .NET Core, or traditional .NET Framework projects,
you can use the Waher.Networking.CoAP NuGet instead. Universal
Windows Platform apps use different libraries and runtime binaries when it
comes to accessing network adaptors. For this reason, it requires a
somewhat modified version of the original library.

https://www.iana.org/assignments/core-parameters/core-parameters.xhtml
https://www.iana.org/assignments/core-parameters/core-parameters.xhtml

Communicating More Efficiently Using CoAP Chapter 7

[135]

We must also make sure to initialize the runtime inventory of classes with a reference to the
CoAP library assembly, in the beginning of the application, to make sure content encoding
and decoding includes the content formats defined in it:

Types.Initialize(
 typeof(FilesProvider).GetTypeInfo().Assembly,
 typeof(RuntimeSettings).GetTypeInfo().Assembly,
 typeof(IContentEncoder).GetTypeInfo().Assembly,
 typeof(ICoapContentFormat).GetTypeInfo().Assembly,
 typeof(IDtlsCredentials).GetTypeInfo().Assembly,
 typeof(App).GetTypeInfo().Assembly);

We must not forget to add the internetClientServer capability to our
set of capabilities in the Package.appxmanifest files as well:

<Capability Name="internetClientServer" />

We must also make sure to create a Device ID, as we did in the HTTP
chapter.

Creating a CoAP endpoint
Since directionality in CoAP is not as stringent as in HTTP, the same class is used for both
clients and servers, both named endpoints to make things simpler. We add a
CoapEndpoint field (defined in the Waher.Networking.CoAP namespace) for our
endpoint:

private CoapEndpoint coapEndpoint = null;

To start using CoAP, we begin by creating an unencrypted CoAP endpoint using the
default port number (5683):

this.coapEndpoint = new CoapEndpoint();

Communicating More Efficiently Using CoAP Chapter 7

[136]

Publishing interval-based observable data
Let us begin publishing sensor data. This is done in a similar way to the HTTP case, by
adding resources to our endpoint. There are two additions we must consider. First, we
want to support observable resources. This means we need to store a reference to the
resource we create, so that we can tell it when values change. These reference variables will
be of CoapResource type. We also specify what messaging service to use when updating
values to subscribers. For our ambient light sensor, we will choose the unacknowledged
service.

We will also add some metadata about the resources we create, for interoperability. We will
discuss this more in the next chapter. For now, it's sufficient to know that we give a human-
readable title to our resource, as well as specify the content formats our resource supports:

this.lightResource = this.coapEndpoint.Register("/Light",
 (req, resp) =>
 {
 string s;

 if (this.lastLight.HasValue)
 s = ToString(this.lastLight.Value, 2) + " %";
 else
 s = "-";

 resp.Respond(CoapCode.Content, s, 64);
 }, Notifications.Unacknowledged, "Light, in %.", null, null,
 new int[] { PlainText.ContentFormatCode });

Classes for common content formats are available in the
Waher.Networking.CoAP.ContentFormats namespace.

To let the resource know it should update any subscribers using a regular time interval, we
call the TriggerAll() method on the resource, with the time interval we want to define:

this.lightResource?.TriggerAll(new TimeSpan(0, 0, 5));

In this case, subscribers will be updated every five seconds about changes to the light value.
We don't have to worry more about this; the CoAP library takes care of the rest.

The ?. operator executes the method, but only if the object reference is not
null. This avoids exceptions during the initialization or termination phases
of an application.

Communicating More Efficiently Using CoAP Chapter 7

[137]

Publishing event-based observable data
Similarly, we add a resource for our motion detector. But for this resource, we will use the
acknowledged service, since missing a value when expecting one might have serious
consequences:

this.motionResource = this.coapEndpoint.Register("/Motion",
 (req, resp) =>
 {
 string s;

 if (this.lastMotion.HasValue)
 s = this.lastMotion.Value ? "true" : "false";
 else
 s = "-";

 resp.Respond(CoapCode.Content, s, 64);
 }, Notifications.Acknowledged, "Motion detector.", null, null,
 new int[] { PlainText.ContentFormatCode });

We will use this resource to illustrate event-based observable data. When the motion
detector changes value, we don't want a delay in the sending of the new value to any
subscribers, as we want the value to be sent immediately. To do this, we also call the
TriggerAll() method on the resource, but this time, without an interval parameter, and
only when we want the value to change. We update our event handler that is called when
the motion detector pin changes value:

this.lastMotion = (value == PinState.HIGH);
this.motionResource?.TriggerAll();

Now the resource will be triggered immediately when the motion detector value changes.
Having done that, we add a time interval-based trigger to the resource as well, but with a
longer time interval. This will ensure the receiver knows the resource still works and that
the subscription is alive, even when the value does not change. It also makes sure the
underlying DTLS session is kept alive. We add an interval of 1 minute:

this.motionResource?.TriggerAll(new TimeSpan(0, 1, 0));

More advanced algorithms can be used to decide when an observable
resource should be triggered. One could allow the client to decide when a
resource is to be updated, for instance using query parameters in the
subscription request.

Communicating More Efficiently Using CoAP Chapter 7

[138]

Choosing the desired representation
As in HTTP, CoAP supports RESTful interfaces. This means that the same resource can be
represented in different ways, based on the preferences of the client. We will create a
momentary resource that returns all momentary values when called. While the previous
resources only support plain text responses, the momentary resource will support XML and
JSON as well. The actual representation will be chosen based on the Accept header
provided by the client. If no Accept header is provided, plain text will be returned by
default:

this.momentaryResource = this.coapEndpoint.Register("/Momentary",
 (req, resp) =>
 {
 if (req.IsAcceptable(Xml.ContentFormatCode))
 this.ReturnMomentaryAsXml(req, resp);
 else if (req.IsAcceptable(Json.ContentFormatCode))
 this.ReturnMomentaryAsJson(req, resp);
 else if (req.IsAcceptable(PlainText.ContentFormatCode))
 this.ReturnMomentaryAsPlainText(req, resp);
 else if (req.Accept.HasValue)
 throw new CoapException(CoapCode.NotAcceptable);
 else
 this.ReturnMomentaryAsPlainText(req, resp);
 }, Notifications.Acknowledged, "Momentary values.",
 null, null,new int[] { Xml.ContentFormatCode,
 Json.ContentFormatCode, PlainText.ContentFormatCode });

Returning CoAP content
To illustrate how to return content in CoAP, let's look at the plain text example. The XML
and JSON examples are analogous. Content encoding and decoding is based on the same
encoding/decoding principles as defined in the Waher.Content library, which maps
objects in memory to and from their corresponding Internet Content Types and binary
encodings. CoAP works with Content Format codes instead, and a much-reduced set of
Internet Content Types that are supported, as described earlier. So, to return plain text, we
simply build a string and return it as follows. We've chosen a block size of 64 bytes. Any
payload larger than this will be automatically divided into blocks, each one sent separately.
The blocks are automatically reassembled at the receiving end:

private void ReturnMomentaryAsPlainText(CoapMessage Request,
 CoapResponse Response)
{
 StringBuilder s = new StringBuilder();

Communicating More Efficiently Using CoAP Chapter 7

[139]

 s.Append("Timestamp: ");
 s.AppendLine(DateTime.Now.ToUniversalTime().ToString());

 if (this.lastLight.HasValue)
 {
 s.Append("Light: ");
 s.Append(ToString(this.lastLight.Value, 2));
 s.AppendLine(" %");
 }

 if (this.lastMotion.HasValue)
 {
 s.Append("Motion detected: ");
 s.AppendLine(this.lastMotion.Value ? "true" : "false");
 }

 Response.Respond(CoapCode.Content, s.ToString(), 64);
}

To facilitate implementation, you can also override the content format selected during
encoding by explicitly providing the content format you wish to use. Since both XML and
JSON are text based, we can encode them as strings and override the content format with
that corresponding to the actual code we want to use. This simplifies matters, since you
don't need to return an XmlDocument object to get it encoded as XML. You just encode it as
a string, and explicitly set the content format to its XML counterpart:

Response.Respond(CoapCode.Content, s.ToString(), 64,
 new CoapOptionContentFormat(Xml.ContentFormatCode));

The same applies to JSON:

Response.Respond(CoapCode.Content, s.ToString(), 64,
 new CoapOptionContentFormat(Json.ContentFormatCode));

The different CoAP Option classes that you can use, in both requests and
responses, are available in the Waher.Networking.CoAP.Options
namespace.

The XML and JSON serializations used in the GitHub CoAP projects mimic the ones made
for HTTP, except the output has been shortened to illustrate constrained bandwidth devices
normally targeted by CoAP, and to minimize the number of blocks required to transport the
content.

Communicating More Efficiently Using CoAP Chapter 7

[140]

Adding a control resource to our actuator
Out actuator will have a simpler interface. We will only register one observable resource
called Output. It will return the current state of the output. Clients can subscribe to changes
to the resource to be notified whenever the output changes, for any reason. Apart from
adding a GET method handler, we will also add a POST method handler, allowing clients to
change the output from the network. We begin by adding the GET method handler:

this.outputResource = this.coapEndpoint.Register("/Output",
 (req, resp) =>
 {
 string s;

 if (this.output.HasValue)
 s = this.output.Value ? "true" : "false";
 else
 s = "-";

 resp.Respond(CoapCode.Content, s, 64);

The resource returns a simple Boolean value (true or false), depending on the state of the
output. If the state is unknown, - is returned. The response will be encoded as plain text in
both cases.

Responding to change requests
We follow up by adding the POST method. We implement this as an asynchronous method.
The library supports both synchronous responses and asynchronous responses. The main
difference is that you must trap any exceptions in asynchronous methods, unless you want
the application to terminate unexpectedly if one is thrown.

The first thing we do is try to decode the payload in the request. The library does this for
you if the request comes with a content format specified. If one is missing, we decode the
payload as if it were plain text. We also use the CommonTypes.TryParse method, which is
forgiving. It recognizes 1, true, yes, and on as true values, and 0, false, no, and off as
false values, using case-insensitive comparisons. If we're unable to understand the request,
we return an error using an RST message. Otherwise, we simply state that the operation has
been successful, and that the state has been Changed:

}, async (req, resp) =>
{
 try
 {

Communicating More Efficiently Using CoAP Chapter 7

[141]

 string s = req.Decode() as string;
 if (s == null && req.Payload != null)
 s = Encoding.UTF8.GetString(req.Payload);

 if (s == null || !CommonTypes.TryParse(s,
 out bool Output))
 resp.RST(CoapCode.BadRequest);
 else
 {
 resp.Respond(CoapCode.Changed);
 await this.SetOutput(Output, req.From.ToString());
 }
 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }

There are four message types in CoAP: Acknowledged messages called
Confirmable messages (CON), Unacknowledged messages called Non-
confirmable messages (NON), Acknowledgement messages (ACK), and
Error messages called Reset messages (RST).
Typically, requests are made using CON, and asynchronous messages are
sent using CON or NON. Error responses are returned using RST. You can
also stop observing resources using an RST message. Responses can be
sent back either piggy-backed on an ACK or in a separate CON or NON
message. In a synchronous resource, the response is probably piggy-
backed on the ACK, to avoid having to send two messages. Asynchronous
resources can respond immediately using an ACK message, if one is
required, and then send the response in a separate CON or NON message
when the response is ready.

We also tell the resource to send event notifications using the Acknowledged messaging
service, to avoid important state changes getting lost:

}, Notifications.Acknowledged, "Digital Output.", null, null,
 new int[] { PlainText.ContentFormatCode });

Communicating More Efficiently Using CoAP Chapter 7

[142]

Adding output triggers
As we did for the other observable resources we added to the sensor, we need to specify
when the output resource is to be triggered. We mimic the motion detector setup in that we
first add a longer interval of 1 minute to let the subscriber know the subscription is active:

this.outputResource?.TriggerAll(new TimeSpan(0, 1, 0));

We then update the SetOutput method to trigger the resource whenever the resource is
changed, whether internally or from an incoming request:

internal async Task SetOutput(bool On, string Actor)
{
 ...

 this.outputResource?.TriggerAll();
}

Testing your devices
You are now ready to test your new CoAP-enabled devices. The easiest way to do this is to
use a publicly available CoAP test tool. In this book, we will use the Copper (Cu) plugin
from Firefox, which adds the coap URI scheme to the browser and allows you to explore
CoAP resources easily. In the next chapter, we will show how you can create CoAP clients
communicating with CoAP servers using the CoapEndpoint class.

The Copper (Cu) plugin can be found at
https://addons.mozilla.org/sv-se/firefox/addon/copper-270430/. If
your CoAP server device is made available online, you can also use
http://coap.me/ to test it. Check http://coap.technology/tools.html
for a list of the different tools available.

Discovering the contents of your device
Now, open Firefox and install the Copper (Cu) plugin. Then navigate to your sensor device
by simply entering coap://IP_ADDRESS/ into the address field of the browser; you replace
IP_ADDRESS with the actual IP address of your device. Once you press Enter, Copper (Cu) is
shown.

https://addons.mozilla.org/sv-se/firefox/addon/copper-270430/
http://coap.me/
http://coap.technology/tools.html

Communicating More Efficiently Using CoAP Chapter 7

[143]

In UWP, you cannot connect to your device using the loopback interface.
To connect to a UWP app running locally, do so from another machine in
the network.

Now press the Discover button. By doing that, a CoAP GET request is made to the /.well-
known/core resource. This is a resource that is built automatically by the CoAP endpoint
class. It describes registered resources according to a link format specified in CoRE. We will
learn more about CoRE in the next chapter. The resources appear in the browser window.
Notice that observable resources are displayed differently to non-observable resources:

Discovery of the sensor CoAP interface

Communicating More Efficiently Using CoAP Chapter 7

[144]

You can now select any of the resources you see and press the GET button. Doing that will
perform a GET on the resource. You can see the actual CoAP communication taking place in
the bottom part of the browser window. The Incoming tab in the center portion of the
window will display the result. Pressing the Observe button will make a subscription to the
corresponding resource. You can then see the value update in the window every time the
device sends a notification message. Press the Cancel button to cancel the subscription.

Make sure you notice the difference between acknowledged messages and
unacknowledged messages by subscribing to the Light and Motion resources. Also notice
the difference between interval updates and updates triggered by events.

If your client supports CoAP over DTLS, you can also use the URI scheme
coaps to interact with your device securely.

Controlling your device
In the same way, you can navigate to your activator device and press the Discover button.
You should see your Output resource. As with the resources on the sensor, you can read
the resource and subscribe to it by pressing the GET and Observe buttons respectively. But
you can also control it. You do that by writing the value you want to send to the device in
the Outgoing tab in the central portion of the browser window. Try writing 1 here, and
then press the POST button. Then write 0 and press POST. You should see how the output
toggles. You can also see the status code of the action in the status area, as well as the
round-trip time (RTT) just below the buttons. If you're observing the resource at the same
time, you'll get notified of the changes as well. You can also check the corresponding
checkbox in the app window, and see how that generates notifications as well:

Communicating More Efficiently Using CoAP Chapter 7

[145]

Controlling the actuator

Securing your devices
Up to this point, we've only used unsecured and unencrypted CoAP. This should only be
done while developing, and in closed networks. On the internet, and if the data is personal,
CoAP should always be encrypted, and access to the device should always be authenticated
and authorized. All these things can be managed directly by the DTLS layer.

To enable DTLS, we create our CoAP endpoint in a different manner:

this.coapEndpoint = new CoapEndpoint(
 CoapEndpoint.DefaultCoapsPort, this.users);

Communicating More Efficiently Using CoAP Chapter 7

[146]

Here, we utilize the IUserSource source of users defined in the previous chapters.
Remember that it defined one user, with the username MIoT and the password rox. The
password was hashed, however, and it is this hash that will be used as a pre-shared key. The
username acts as the identity used by DTLS to identify the pre-shared key. So, to access the
device using these settings, a session needs to be established by the device using DTLS and
the PSK identity of MIoT and the binary pre-shared key of:

SHA-256(UTF-8-Encode("rox" + ":" + DEVICE_ID))

The DEVICE_ID is the ID of the device. You can find it in the log. Unfortunately, you
cannot use the Copper (Cu) add-on to test DTLS, but the next chapter will provide you with
examples of how to test this.

You can enable both unencrypted and encrypted CoAP communications
on the endpoint by creating the endpoint in the following manner:

The string after the user source, if not empty, limits access to the endpoint
to users with the corresponding privileges only. The two last Boolean
parameters determine if loopback interfaces can be used for reception or
transmission. But since loopback is not enabled in UWP apps, we set these
to false.

this.coapEndpoint = new CoapEndpoint(
 new int[] { CoapEndpoint.DefaultCoapPort },
 new int[] { CoapEndpoint.DefaultCoapsPort },
 this.users, string.Empty, false, false);

If unencrypted CoAP is enabled on the device, make sure the unencrypted
port is not published on the internet. Only encrypted ports should be
available on the internet.

Limitations of CoAP
As with HTTP, CoAP suffers from a topology problem. You need to choose in which
direction communication is to be performed. If a firewall exists between two endpoints, the
client needs to be the one residing inside the firewall, and the server needs to reside outside.
The alternative is to open a hole in the firewall to allow external entities to access your
device. Since management of such security privileges is difficult to manage in a dynamic
network, vulnerabilities are easy to create unknowingly.

Communicating More Efficiently Using CoAP Chapter 7

[147]

The next chapter will discuss a setup where we switch roles, and devices become clients
instead of servers as in this example. In such cases, sensors report data to a central server,
which can act as a broker. Brokers can be used to circumvent the topology problem by
making sure devices behind different firewalls can still talk to each other through the
broker.

Other limitations discussed in this chapter are consciously-made decisions that meet the
needs of resource-constrained devices. Devices can be resource constrained in terms of
memory, processing power, and network bandwidth. For this reason, CoAP is lightweight,
with small telegrams. Large payloads are time-consuming to transfer, since they are divided
into many blocks. Content encoding is also limited to a small set of recognized formats. If
richer content is to be transferred, it must be transferred in a binary manner, using
proprietary encoding or other protocols.

For clients that are unable to communicate over UDP, or use DTLS, RFC
8323 defines a mechanism for communicating CoAP over TCP, TLS and
WebSockets: https://tools.ietf.org/html/rfc8323

Even though this removes many of the advantages of using CoAP, it
might be necessary to support this in certain cases. Another method that
can be used by clients that can only communicate using HTTP, such as
web clients, is to use a HTTP<->CoAP proxy. This is defined in section 10
of RFC 7252: https://tools.ietf.org/html/rfc7252#section-10

Summary
In this chapter, you've been shown how you can use CoAP to publish RESTful interfaces for
your devices. You've learned the basic principles behind CoAP and DTLS, its strengths and
limitations, as well as the basics for the new observe or event subscription pattern. You've
encoded content in CoAP, published sensor data and created observable resources and
triggered events. You've also published control parameters and learned how to discover
resources on a device. You know how to test your resources, and how to secure them using
encryption, authentication, and authorization. In the next chapter, you will learn how the
Lightweight Machine-to-Machine, or LWM2M, protocol can be used to provide your
CoAP devices with an interoperability layer, making it easier to interact with CoAP devices
from different manufacturers.

https://tools.ietf.org/html/rfc8323
https://tools.ietf.org/html/rfc7252#section-10

8
Interoperability

Up to this point, we have been satisfied with making our devices communicate using IP-
based protocols. We've created our own communication interfaces. Doing so might be
simple and a quick way to get started, but it has serious disadvantages: nobody else will be
able to communicate without great effort, and we will not be able to use standardized
software to help us with our tasks.

In this chapter, we will introduce the concept of application-level interoperability, how
standardized technologies can help us in our work. You'll be introduced to Constrained
RESTful Environments (CoRE), the Light-weight Machine-to-Machine enabler
(LWM2M), a standardized object model for the management of devices based on CoAP and
CoRE. IPSO Smart Objects, a set of standardized object interfaces for sensors and
actuators, will also be presented. Standardized technologies will allow you to utilize
existing software to interact and manage your devices, which in turn will allow you to
spend more time on more productive tasks.

The chapter covers:

An introduction to application-layer interoperability
The difference between tight and loose coupling
An introduction to CoRE
An introduction to the LWM2M object model
An introduction to IPSO Smart Objects
An introduction to open software for LWM2M device management
Publishing sensor data using LWM2M
Reacting to actuator commands using LWM2M

Interoperability Chapter 8

[149]

Understanding the benefits of
interoperability
While designing proprietary technologies might be exciting, fun, and a quick way to start
experimenting and learning, it might not always be the best option. Often, there are
alternatives. Others have often solved similar problems and created solutions that you
might explore. Some of these might even include technologies that have been standardized
by recognized standardization bodies. While these technologies might restrict you at first
glance, they provide several positive advantages as well. One of these is peer review. Often,
simple and obvious mistakes are caught and corrected during peer review. Experience
gained during experimentation is fed back into the process, resulting in better design.
Standards are more stable, and do not change quickly over time. Changes are also made in a
way which avoid breaking compatibility. This makes your solutions based on them resilient
and more future-proof. The technology is also more battle tested. The pros and cons are
often well known.

Another big advantage of using standardized technologies is that you can use existing
software to solve parts of your tasks. When building IoT applications, you must make sure
your things are backed by the corresponding infrastructure. Building backend servers and
services is time-consuming and often non-productive from a commercial point of view, as
customers do not pay for infrastructure, only added value, most often in terms of
functionality. When using standardized technologies, you often get access to open software
you can use, to help you build your infrastructure and backend services. This allows you to
focus more of your time on commercially productive tasks, making you more productive.

The benefits of application-layer standards
Although we have used standards in earlier chapters, these have been Transport-layer
(TCP, UDP), Session-layer (MQTT), and Presentation-layer (HTTP, CoAP) standards, as
displayed in Figure 1. Here, we've used the Open Systems Interconnection (OSI) model, as
a good way to illustrate communication between applications in a network. The standards
on different levels facilitate development and deployment. But we have had to add the
remaining application-layer to our code, in a proprietary fashion. If we manage to use
standardized technologies in the application layer as well, we can say that our application
becomes interoperable. Devices from different manufacturers can interact, in a
standardized manner, without having to resort to customized development. Products
become replaceable. This opens systems up to competition, but also to opportunities.

Interoperability Chapter 8

[150]

The competition will provide for better devices and systems. Manufacturers using
application-layer standards will be able to reach a market they would otherwise not have
access to. You can use devices from others, while others can use your devices. You can use
software from others, while others can use your software:

Application-layer standards provide the basis for true interoperability.

Information flow through the OSI model

Understanding coupling
Application-layer interfaces can be either tightly coupled or loosely coupled. Applications
using tightly coupled interfaces require previous knowledge about the detailed
functionality of each other. This makes them deterministic and simple to implement and
test, but also difficult to extend outside of the intended use cases.

Interoperability Chapter 8

[151]

Applications using loosely coupled interfaces on the other hand, avoid making assumptions
about the capabilities of the other party. Instead, metadata is used to describe the
capabilities, allowing each participant to discover the capabilities of the other.
Implementing loosely coupled architectures is more demanding, but the results become
more flexible. It's easier to extend and to maintain backwards compatibility in loosely
coupled architectures. Testing, on the other hand, becomes more difficult, since variations
and complexity increases.

We will begin our journey into the realm of interoperability, by introducing some tightly
coupled interfaces, based on CoAP. Since applications using CoAP strive to work well in
resource constrained networks, tightly coupled interfaces provide a good option. These
allow for more compact messages since a minimum of metadata is required to be
transmitted. In the following sections, we will contrast these by presenting some loosely
coupled alternatives and examine the differences.

Achieving interoperability using CoAP
Application-layer interoperability using CoAP can be achieved by the introduction of three
technologies: CoRE, LWM2M, and IPSO Smart Objects.

Discovering resources using CoRE
We've already mentioned CoRE in the previous chapter. The CoAP protocol is an artefact
published by the IETF CoRE Working Group. Another artefact is the CoRE Link Format,
which we've used to find what resources are available on a device. By performing a GET
method call on the /.well-known/core resource, the caller will receive a Link Format
document, briefly describing what resources are available on the device, and some minimal
set of corresponding information, such as if the resource is observable or not.

The following is an example Link Format document, generated by our SensorCoap
application developed in the previous chapter. New lines have been added for readability.
Resources are separated by commas (,), and parameters for each resource are separated by
semicolons (;). The obs parameter tells the receiver the resource is observable. The title
parameter provides a human-readable title. Content formatting is provided by the ct
parameter. If multiple formats are supported, these are separated by spaces, and the entire
set of values is encased by quotes ("). It's not much, but it is a start:

</.well-known/core>,
</Light>;obs;title="Light, in %.";ct="0",

Interoperability Chapter 8

[152]

</Motion>;obs;title="Motion detector.";ct="0",
</Momentary>;obs;title="Momentary values.";ct="41 50 0"

The CoRE Link Format is defined in RFC 6690:
https://tools.ietf.org/html/rfc6690

Understanding the LWM2M object model
LWM2M adds standardized application-layer functionality to your device. It does this by
first dividing the device into objects. Each object can be instantiated into one or more object
instances. Each object instance has a set of resources, which in turn can optionally contain a
set of resource instances. The preceding image illustrates this relationship:

The LWM2M object model

https://tools.ietf.org/html/rfc6690

Interoperability Chapter 8

[153]

Each object, object instance, resource, and resource instance are identified by non-negative
integers. Each participant must know beforehand what these integers mean, what resources
relate to such objects, and their corresponding functionality. LWM2M defines a set of
objects that are used for managing the device. Later in this chapter, we will introduce IPSO
Smart Objects, which define a set of objects that can be used by common types of sensors
and actuators. The following table lists some of the common objects defined by LWM2M:

Index Meaning

0 Security object: Defines the URL of a server and credentials for establishing a
session with the server.

1 Server object: Defines which of the security objects are bootstrap servers and which
are normal LWM2M servers.

2 Access control object: Defines access control lists, for who can access what
resources.

3 Device object: Provides general information, such as make, model, and serial
number of the device.

LWM2M is standardized by Open Mobile Alliance (OMA). You can read
the specification at:
http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20
170208-A/OMA-TS-LightweightM2M-V1_0-20170208-A.pdf

Understanding the LWM2M infrastructure
The LWM2M infrastructure consists of clients, servers and, optionally, a bootstrap server.
The devices we will make in this book are all clients in an LWM2M sense, even though they
act as servers in a CoAP sense. LWM2M clients register with one or more LWM2M servers,
who then act as managers of the clients and who can read and control the resources
published by the clients.

Bootstrapping is a method whereby the clients are configured in the network. This part is
optional, and clients can be preconfigured with what servers to connect and register with. If
such a configuration is not available, the client first establishes a session with a bootstrap
server. The bootstrap server then provides information about what servers to register with,
and any credentials required to establish secure sessions. When the bootstrap procedure is
finished, the client connects to the set of servers provided and registers with those.

http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20170208-A/OMA-TS-LightweightM2M-V1_0-20170208-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0-20170208-A/OMA-TS-LightweightM2M-V1_0-20170208-A.pdf

Interoperability Chapter 8

[154]

Registrations are made for a given amount of time. Before that time
elapses, the client needs to update the registration, to keep it alive. This
registration update procedure allows the servers to remove references to
devices that are no longer alive.

Understanding LWM2M server operations
When the servers are aware of the clients, they can begin to interact with them. First, they
discover what objects, instances, and resources are available. This is done using CoAP GET
method calls on the device, object, or object instance levels. The LWM2M returns CoRE Link
Format Documents, describing available child CoAP resources.

Servers can then begin to read LWM2M resource values, by executing CoAP GET calls on
the resources or resource instances. Typically, resources must support a simple binary
content format that is relatively compact, called the Type-Length-Value, or TLV, format.
Optionally, the device can also support JSON, based on SenML, and a plain text format.
Since resources are RESTful, the LWM2M server can choose what format the LWM2M client
should respond with. If the resource is observable, the LWM2M server can also choose to
subscribe to event notifications from the resource, using the CoAP observe pattern.

Some resources are writable and others are executable. Resources are written by the
LWM2M server, by sending a PUT or POST request to the client, on the given resource,
providing the new content as content payload, encoded using TLV. Some resources are
content-less and can be used to model actions. When sending a PUT or POST request to such
a resource, no content payload is required. Instead, the request results in the corresponding
action being executed.

All objects, object instances, resources, and resource instances are published over CoAP as
CoAP resources. The path of the corresponding resource consists of the integer identifiers of
each corresponding step. The following are some examples:

Resource Meaning

/3 Object 3, the device object.

/3/0 Instance 0, on Object 3-the default device object instance.

/3/0/11 Resource 11, on Object 3, object instance 0-Error code.

/3/0/11/1 Resource instance 1, or the Error code resource on the default device object
instance.

Interoperability Chapter 8

[155]

Using IPSO Smart Objects
While the LWM2M interface provides an application-layer standard for device management
over CoAP, it lacks by itself object definitions for sensors and actuators. These are, however,
provided by the IPSO Alliance. Some IPSO Smart Objects that we will use are presented in
the following table. Notice that there is a slight overlap:

Object IPSO Smart Object definition

3200 IPSO Digital Input

3201 IPSO Digital Output

3202 IPSO Analogue Input

3203 IPSO Analogue Output

3300 IPSO Generic Sensor

3301 IPSO Illuminance Sensor

3302 IPSO Presence Sensor

3306 IPSO Actuation

3320 IPSO Percentage

For a list of defined object types available for LWM2M, see:
http:/ / www. openmobilealliance. org/ wp/ OMNA/ LwM2M/ LwM2MRegistry.
html

IPSO Smart Object descriptions can be downloaded from: https:/ /www.
ipso- alliance. org/ ipso- community/ resources/ smart- objects-
interoperability/

You can participate in the development of existing and new IPSO Smart
Objects through this GitHub
repository: https://github.com/IPSO-Alliance/pub

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://github.com/IPSO-Alliance/pub

Interoperability Chapter 8

[156]

Adding LWM2M to our devices
We are now ready to implement LWM2M in our projects. To do this, we create two new
projects which we will call SensorLwm2m and ActuatorLwm2m, copying the corresponding
code from the SensorCoap and ActuatorCoap projects. This allows us to immediately
inherit what we've done to enable CoAP in our devices. We use the same hardware we've
used in previous chapters. We add the Waher.Networking.LWM2M.UWP NuGet package to
both projects.

For .NET standard, .NET Core, or traditional .NET Framework projects,
you can use the Waher.Networking.LWM2M NuGet instead. Universal
Windows Platform apps use different libraries and runtime binaries when
it comes to accessing network adaptors. For this reason, it requires a
somewhat modified version of the original library.

We must also make sure to initialize the runtime inventory of classes with a reference to the
LWM2M library assembly, at the beginning of the application, to make sure content encoding
and decoding includes the content formats defined in it:

Types.Initialize(
 typeof(FilesProvider).GetTypeInfo().Assembly,
 typeof(RuntimeSettings).GetTypeInfo().Assembly,
 typeof(IContentEncoder).GetTypeInfo().Assembly,
typeof(ICoapContentFormat).GetTypeInfo().Assembly,
 typeof(IDtlsCredentials).GetTypeInfo().Assembly,
 typeof(Lwm2mClient).GetTypeInfo().Assembly,
 typeof(App).GetTypeInfo().Assembly);

We must not forget to add the internetClientServer capability to our
set of capabilities in the Package.appxmanifest files as well:

<Capability Name="internetClientServer" />

Creating an LWM2M client
We begin by declaring a new field member of type Lwm2mClient (defined in the
namespace Waher.Networking.Lwm2m):

private Lwm2mClient lwm2mClient = null;

Interoperability Chapter 8

[157]

The Lwm2mClient class provides the basic LWM2M functionality described previously.
When we instantiate it, we need to provide it with a client name, a reference to the CoAP
endpoint that will be used for communication, and some basic LWM2M objects. We begin
by providing it with the security object (0), the server object (1), the access control object (2),
and the device object (3). We don't have to provide any details for the first three. We will let
the bootstrap process take care of filling these with values. The device object, however,
requires some parameters for us to fill in, including manufacturer, serial number, and
version numbers. These values will be presented to the server and can be used to identify
the type of device the client represents. Make sure to update these values so they
correspond to what you're doing:

this.lwm2mClient = new Lwm2mClient("MIoT:Sensor:" + this.deviceId,
 this.coapEndpoint,
 new Lwm2mSecurityObject(),
 new Lwm2mServerObject(),
 new Lwm2mAccessControlObject(),
 new Lwm2mDeviceObject("Waher Data AB", "SensorLwm2m",
 this.deviceId, "1.0", "Sensor", "1.0", "1.0"));

For the actuator, all mentions of Sensor should be replaced by Actuator.

Performing the bootstrap procedure
We will use a bootstrap server in our example. When the application starts, we want it to
connect to the previous bootstrap server to see if there's any new information for it. If
there's no configured bootstrap server available, we provide a reference to one. Data
provided by the bootstrap server will be persisted in the persistence layer. This data will
include what LWM2M servers to register with, and what credentials to use. So, to begin, we
first need to load any previous data, if such is available. Directly after creating our client, we
call the LoadBootstrapInfo method:

await this.lwm2mClient.LoadBootstrapInfo();

Interoperability Chapter 8

[158]

We then initiate the bootstrap procedure. If no bootstrap information was found, we ask it
to connect to a default bootstrap server provided by eclipse.org, situated at
leshan.eclipse.org, port number 5783 (not 5683, the default CoAP port, which goes to the
LWM2M server, not the bootstrap server):

if (!await this.lwm2mClient.RequestBootstrap())
 await this.lwm2mClient.RequestBootstrap(
 new Lwm2mServerReference("leshan.eclipse.org", 5783));

The bootstrap procedure might take some time to complete, depending on
whether the client is required to respect a hold-off time or not. Such a
client hold-off time is used to avoid spamming the bootstrap server if
many clients awake simultaneously, for instance, after a power outage.

Leshan is an open source LWM2M server implementation available on
GitHub. It provides simple web interfaces that you can use to interact with
your LWM2M clients. It also contains a bootstrap server. Using its APIs,
you can interact with LWM2M clients registered with it. You can choose to
use the public sandboxes available online, hosted by eclipse.org, or
download and host your own servers. Some links of interest are:

GitHub: https://github.com/eclipse/leshan

Public server sandbox: http:/ /leshan. eclipse. org/

Public Bootstrap server sandbox: http://leshan.eclipse.org/bs/

Registering with the LWM2M servers
As soon as the bootstrap procedure completes, the LWM2M client will automatically
register itself with the LWM2M servers configured to it by the bootstrap server. But if you
do not want to use a bootstrap server to configure your device, you need to perform this
registration yourself:

this.lwm2mClient.Register(60,
 new Lwm2mServerReference("leshan.eclipse.org", 5683));

The first parameter provides the lifetime, in seconds, of the registration. You should
perform a registration update before that time elapses for instance, after half that time. You
do that by just making the following call:

this.lwm2mClient.RegisterUpdate();

https://github.com/eclipse/leshan
http://leshan.eclipse.org/
http://leshan.eclipse.org/
http://leshan.eclipse.org/
http://leshan.eclipse.org/
http://leshan.eclipse.org/
http://leshan.eclipse.org/
http://leshan.eclipse.org/
http://leshan.eclipse.org/
http://leshan.eclipse.org/
http://leshan.eclipse.org/
http://leshan.eclipse.org/bs/

Interoperability Chapter 8

[159]

Deregistration is performed automatically by disposing the client object. If
you want to deregister, without disposing the object, you can simply call
the Deregister() method.

Following the progress
You can keep track of LWM2M state changes by registering event handlers on any of a
series of events published on the Lwm2mClient object:

Event Raised when

OnStateChanged The internal state of the LWM2M client changes.

OnBootstrapCompleted The bootstrap procedure completes.

OnBootstrapFailed
The bootstrap procedure fails. Use this event handler to
schedule a retry at a suitable time.

OnRegistrationSuccessful The registration procedure completes on one server.

OnRegistrationFailed

The registration procedure fails on one server. There's
no need to schedule a retry when this happens, since
this is automatically performed by the LWM2M client
object.

OnDeregistrationSuccessful The deregistration procedure completes on one server.

OnDeregistrationFailed The deregistration procedure fails on one server.

OnRebootRequest A server requests the client to perform a reboot.

Two events require special mention. The OnBootstrapFailed event is raised if the
bootstrap procedure failed for some reason. This probably means that the LWM2M client
lacks the information it requires to register itself with the LWM2M servers. When this
happens, we should reschedule an attempt to perform the bootstrap procedure. We can use
the ScheduleEvent() method on the CoapEndpoint object for this purpose.

A server can also request the client to reboot, for management purposes. When this
happens, the OnRebootRequest event is raised. UWP apps cannot ask the application or
system to reboot programmatically, however. So, when this event is raised, we can choose
to simply reinitiate the bootstrap procedure instead.

Interoperability Chapter 8

[160]

Defining Smart Objects
We are now ready to add our first IPSO Smart Object. The IPSO Smart Object Guidelines,
from the Smart Objects Starter Pack, contains the object definitions we need. If you haven't
downloaded these already, do so now. The Digital Input smart object is defined as follows:

Name Res. R/W/E M/O Type Description

Digital Input State 5500 R M Boolean The current state of a digital input.

Digital Input Counter 5501 R O Integer The cumulative value of the active
state detected

Digital Input Polarity 5502 RW O Boolean The polarity of the digital input as a
Boolean (0 = Normal, 1= Reversed)

Digital Input
Debounce Period 5503 RW O Integer The debounce period in milliseconds.

Digital Input Edge
Selection 5504 RW O Integer

The edge selection as an integer (1 =
Falling edge, 2 = Rising edge, 3 =
Both Rising and Falling edge)

Digital Input Counter
Reset 5505 E O Reset the Counter value

Application Type 5750 RW O String
The application type of the sensor or
actuator as a string, for instance, "Air
Pressure".

Sensor Type 5751 R O String The type of the sensor, for instance,
PIR type.

We notice that the object only has one mandatory resource, the current state. In our
implementation, we will also provide support for the counter and counter reset resources,
as well as the two string resources describing the sensor. There is one command resource,
the counter reset command. It can be executed (E). Four resources can be written to (W),
and all, except the command, can be read (R).

Interoperability Chapter 8

[161]

Creating the digital input object class
To begin our implementation, we create a subfolder to our project called IPSO. In it, we will
put all IPSO-related classes. We begin by defining a class for the Digital Input object. It's
quite small: all it does is provide a placeholder for an array of Digital Input object instances,
and define the object ID:

public class DigitalInput : Lwm2mObject
{
 public DigitalInput(params DigitalInputInstance[] Inputs)
 : base(3200, Inputs)
 {
 }
}

Creating the digital input object instance class
Similarly, we create a class for the Digital Input Object Instance. In it, we define member
fields for each resource our object instances will have:

public class DigitalInputInstance : Lwm2mObjectInstance
{
 private Lwm2mResourceBoolean state;
 private Lwm2mResourceInteger counter;
 private Lwm2mResourceCommand counterReset;
 private Lwm2mResourceString applicationType;
 private Lwm2mResourceString sensorType;

In the constructor, we create the corresponding resource objects, using their types, and
providing them with the corresponding resource identities, names, and initial values. We
also define whether we want the resource to be writable or not, and whether writable, if we
want the resource to persist the value:

public DigitalInputInstance(ushort InstanceId, bool? CurrentState,
 string ApplicationType, string SensorType)
 : base(3200, InstanceId)
{
 this.state = new Lwm2mResourceBoolean("Digital Input State",
 3200, InstanceId, 5500, false, false, CurrentState);
 this.counter = new Lwm2mResourceInteger(
 "Digital Input Counter", 3200, InstanceId, 5501,
 false, false, 0, false);
 this.counterReset = new Lwm2mResourceCommand(
 "Digital Input Counter Reset", 3200, InstanceId, 5505);
 this.applicationType = new Lwm2mResourceString(

Interoperability Chapter 8

[162]

 "Application Type", 3200, InstanceId, 5750,
 true, true, ApplicationType);
 this.sensorType = new Lwm2mResourceString("Sensor Type", 3200,
 InstanceId, 5751, false, false, SensorType);

For our command, we provide a simple event handler that will be called when the
command is executed. We reset the value, and trigger all corresponding resources, to make
sure subscribers get alerted about the event:

this.counterReset.OnExecute += (sender, e) =>
{
 this.counter.IntegerValue = 0;
 this.counter.TriggerAll();
 this.TriggerAll();
};

Finally, we need to register the resources just created so that the object instance can publish
them correctly:

 this.Add(this.state);
 this.Add(this.counter);
 this.Add(this.counterReset);
 this.Add(this.applicationType);
 this.Add(this.sensorType);
}

To create a resource with dynamically calculated values, add an event
handler for the OnBeforeGet event on the resource object. It allows you to
calculate and set a new value before the value is sent to the server.

Defining trigger intervals for observable resources
Object instances and their readable resources are, by default observable, in LWM2M. All we
need to do is tell the framework when event notifications should be triggered. As in the
previous chapter, we will first define a long interval with which the resources are triggered
by default. This will allow subscribers to keep track of what subscriptions are still alive.
Defining trigger intervals must be done after the resources have been registered with the
CoapEndpoint class. For this reason, it cannot be done in the constructor. We therefore
override the AfterRegister() method to define trigger intervals:

public override void AfterRegister(Lwm2mClient Client)
{
 base.AfterRegister(Client);

Interoperability Chapter 8

[163]

 this.TriggerAll(new TimeSpan(0, 1, 0));
 this.state.TriggerAll(new TimeSpan(0, 1, 0));
 this.counter.TriggerAll(new TimeSpan(0, 1, 0));
}

Notifying subscribers manually
We also need to be able to manually trigger our observable notifications. For digital input
objects, this is easy. We do this every time the digital input changes state:

 public void Set(bool Value)
 {
 if (!this.state.BooleanValue.HasValue ||
 this.state.BooleanValue.Value != Value)
 {
 this.state.BooleanValue = Value;
 this.state.TriggerAll();

 if (Value)
 {
 this.counter.IntegerValue++;
 this.counter.TriggerAll();
 }

 this.TriggerAll();
 }
 }
}

Instantiating the digital input object
We are now almost done with our digital input smart object. In our application class, we
create a field member digitalInput0 to hold a reference to our digital input object
instance. We instantiate it, by adding it to the list of LWM2M objects supported by our
LWM2M client:

this.lwm2mClient = new Lwm2mClient("MIoT:Sensor:" + this.deviceId,
 this.coapEndpoint,
 new Lwm2mSecurityObject(),
 new Lwm2mServerObject(),
 new Lwm2mAccessControlObject(),
 new Lwm2mDeviceObject("Waher Data AB", "SensorLwm2m",
 this.deviceId, "1.0", "Sensor", "1.0", "1.0"),
 new DigitalInput(
 this.digitalInput0 = new DigitalInputInstance(0,

Interoperability Chapter 8

[164]

 this.lastMotion, "Motion Detector", "PIR")));

The last thing we need to do, to get our digital input object to work, is to report new values
to it. We update our pin update event, to report new values to our digital input object:

bool Input = (value == PinState.HIGH);
this.lastMotion = Input;
this.digitalInput0?.Set(Input);
this.motionResource?.TriggerAll();
this.momentaryResource?.TriggerAll();

Now that you know how to publish one LWM2M sensor object, the
procedure for publishing more sensor objects and object instances is
straightforward. The SensorLwm2m project in the GitHub repository adds
objects and object instances representing an analog input, two generic
sensors, one illuminance sensor, one presence sensor, and one percentage
sensor to the application. They will present the motion detector and light
sensor values through different IPSO Smart Object interfaces, allowing for
increased interoperability.

Creating the digital output object instance class
We now proceed with the actuator. We prepare the ActuatorLwm2m project in the same
way as the SensorLwm2m project. The main difference is the types of objects and object
instances we choose to add to the Lwm2mClient object.

Just as there's an IPSO Digital Input object, there's an IPSO Digital Output smart object. It is
quite similar with one main difference: the main parameter is writable, and we need to
connect the value of that parameter to our output. Following the steps outlined previously,
for the creation of the DigitalInput and DigitalInputInstance classes, we create
similar DigitalOutput and DigitalOutputInstance classes. When it is time to create
the main resource, the digital output state, we make sure to trap the OnRemoteUpdate
event on the resource. We make sure to forward this event, as follows:

this.state = new Lwm2mResourceBoolean("Digital Output State",
 ObjectInstanceId, InstanceId, 5550, true, false,
 CurrentState);

this.state.OnRemoteUpdate += (sender, e) =>
{
 this.state.TriggerAll();
 this.TriggerAll();

Interoperability Chapter 8

[165]

 try
 {
 this.OnRemoteUpdate?.Invoke(this, e);
 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }
};

Where the OnRemoteUpdate event is defined as follows:

public event CoapRequestEventHandler OnRemoteUpdate = null;

Setting remotely updated output values
We then only need to trap these events from our main application. We instantiate the IPSO
Digital Output smart object as follows:

this.lwm2mClient = new Lwm2mClient("MIoT:Actuator:" +
 this.deviceId, this.coapEndpoint,
 new Lwm2mSecurityObject(),
 new Lwm2mServerObject(),
 new Lwm2mAccessControlObject(),
 new Lwm2mDeviceObject("Waher Data AB", "ActuatorLwm2m",
 this.deviceId, "1.0", "Actuator", "1.0", "1.0"),
 new DigitalOutput(
 this.digitalOutput0 = new DigitalOutputInstance(0,
 this.output.HasValue && this.output.Value, "Relay")));

It's then easy to forward incoming changes to the rest of the application by attaching an
event handler on the OnRemoteUpdate event we just created:

this.digitalOutput0.OnRemoteUpdate += async (sender, e) =>
{
 try
 {
 await this.SetOutput(this.digitalOutput0.Value,
 e.Request.From.ToString());
 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }
};

Interoperability Chapter 8

[166]

Testing your LWM2M device
We are now ready to test our LWM2M devices. You can use any LWM2M-enabled server,
either publicly available on the internet or hosted by yourself. This is one of the benefits of
using standards. The examples in this chapter assume we use the publicly available Leshan
server sandbox hosted by eclipse.org. The following table summarizes some of the
communication parameters:

LWM2M Server Web portal: http://leshan.eclipse.org/

LWM2M CoAP/UDP port: 5683

LWM2M CoAP/DTLS/UDP port: 5684

Bootstrap portal: http://leshan.eclipse.org/bs/

Bootstrap CoAP/UDP port: 5783

Bootstrap CoAP/DTLS/UDP port: 5784

Home page: https://eclipse.org/leshan/

GitHub: https://github.com/eclipse/leshan

Configuring the bootstrap server
The first step is to configure the bootstrap server. Go to the bootstrap portal and click Add
new client bootstrap configuration. The web portal will allow you to create a bootstrap
configuration, where the client connects to the bootstrap server using unencrypted CoAP,
and then gets redirected to one LWM2M server using either unencrypted or encrypted
CoAP. The interface supports configuring credentials using pre-shared keys, as shown in
Figure 3. Add the name of the LWM2M client under Client endpoint and leave the
LWM2M Server URL as it is. The default URL will work. We can reutilize the client name
in the Identity field if we want, as long as we make sure to use the same identity when we
configure the LWM2M server.

http://leshan.eclipse.org/
http://leshan.eclipse.org/bs/
https://eclipse.org/leshan/
https://github.com/eclipse/leshan

Interoperability Chapter 8

[167]

As a key, enter a random hexadecimal string. Also, add a similar configuration for the
actuator:

Configuring the bootstrap server

If you host a Leshan server locally, you will have more options on how to
configure the bootstrap and LWM2M servers.

Interoperability Chapter 8

[168]

Configuring the LWM2M server
When the bootstrap server has been configured, we do a similar configuration in the
LWM2M server. Go to the server portal, click the Security tab, and then click the Add new
client security configuration button. Fill in the same information that you provided for the
bootstrap server, as shown in following image:

Configuring the LWM2M server

Interacting with your devices
After adding two client security configurations, you can now run your applications. If you
click the Clients tab in the web portal, you will see them appear as they register. Click on
any of the connected devices, to view their objects, object instances, and resources. You can
also interact with them. Each object instance, or individual resource can be read, observed,
or written to, and commands can be executed. Just press the Read, Observe, Write, and
Exec buttons.

Interoperability Chapter 8

[169]

If the web interface does not update itself automatically, when something
changes, try another browser. At the time of writing, Firefox could display
the dynamic content and react to events.

Use the sensor to test the Read and Observe parameters. See how the different resource
parameters work. Use the actuator to try the write command and see how you can use it to
control the relay. Since there are multiple object interfaces showing similar things, try to
observe all resource parameters, and see how they update on all objects, when you write to
only one.

Summary
In this chapter, you've been shown how application-layer standards can help you in your
development by providing third-party infrastructure software you can use, as well as
enabling them to interact with others without having to customize your code.

As you've seen, tightly-coupled interfaces are straightforward to implement. However, if
you want to do something that goes beyond the interfaces that have already been
established, it all becomes a bit tricky. All of the software interacting with your devices
needs to be updated to take into consideration the new interfaces you create. If you want
your interfaces standardized, it becomes even harder.

In this chapter, you've learned also learned the basics of CoRE, the LWM2M object model
and IPSO Smart Objects. You've been introduced to the Leshan project and used it to
publish sensor data and actuator control parameters using LWM2M. In the coming
chapters, you will learn more about XMPP and how its loosely coupled IoT interfaces can
be used to perform similar tasks, but without locking you into predefined object templates.

9
Social Interaction with Your

Devices Using XMPP
In the previous chapters of this book, we discussed different relatively simple protocols and
communication patterns to illustrate how communication can be done with devices, in
different ways. In the second part of this book, we will introduce a more advanced
paradigm of communication that allows us to do much more interesting things with our
devices, in a more secure and interoperable, yet flexible, manner. The following chapters
will be dedicated to the Extensible Messaging and Presence Protocol (XMPP). Since it
provides such a rich set of tools that Internet of things (IoT) developers can use, the scope of
the XMPP protocol will be presented throughout several of the following chapters.

This chapter will focus on social interaction with things. It covers:

An introduction to XMPP
The basics of XMPP Extension Protocols (XEPs)
Trust-based communication
Request/response pattern using XMPP
Event subscription pattern using XMPP
Publish/subscribe pattern using XMPP
Controlling devices
Human-to-machine chat interfaces

Social Interaction with Your Devices Using XMPP Chapter 9

[171]

Introducing XMPP
The XMPP was developed within the Jabber project in the late 1990s as a means to provide
the necessary communication infrastructure for instant messaging (or chat) applications.
These kinds of applications required an open, flexible, and extensible protocol that allowed
peers to communicate with each other, even if they were residing behind separate firewalls.

The protocol has since grown and covers a lot of different use cases requiring instant
messaging (that is, asynchronous messaging between peers) that are not related to chat. The
protocol is also maintained by a separate organization, called the XMPP Standards
Foundation (XSF). The core of the XMPP protocol is also standardized by the Internet
Engineering Task Force (IETF). XMPP Extension Protocols (XEPs) are maintained and
published by the XSF.

Using XML
The XMPP protocol is based on the Extensible Markup Language, or XML. It is XML that
makes the protocol extensible, in a well-defined manner. Since XML elements are defined
by namespaces, it is easy to mix content from different parties, without mixing meaning or
semantics. Namespaces also provide a mechanism to control versioning and maintaining
backward compatibility as interfaces are developed. As long as you control a namespace,
for instance, by using your own domain, you can freely extend the protocol with anything
you like, without negatively affecting other entities in the network.

Understanding the value of brokers
By default, XMPP uses brokers, or XMPP servers, to relay communication between entities
in the network. XMPP can work in a server-less mode as well, but the default mode of
operation is for entities to connect to a broker. As we have seen in earlier chapters, a broker
provides a lot of features to the network that are very valuable, especially for the IoT.

One such feature makes the network topology independent, or more topology
independent. Since clients in the network connect to brokers, they can all reside behind
separate firewalls and still communicate with each other. This is also a security feature since
connections are outbound. Firewalls can block incoming connections without preventing
clients inside the firewalls from communicating with each other.

Social Interaction with Your Devices Using XMPP Chapter 9

[172]

Providing global scalability
Each broker operates on a domain, and each domain is protected by a domain certificate.
Clients connect to the domain using Transmission Control Protocol (TCP) and Transport
Layer Security (TLS) and validate the certificate. Connections can be normal binary socket
connections, EXI compressed connections, Bidirectional-streams Over Synchronous
HTTP, or BOSH connections. The latter is typically used by web clients. These connections
are typically named client-to-server, or c2s connections.

Encryption using TLS is optional. It is typically negotiated over the same
connection. With the policy of ubiquitous encryption, more and more
brokers require the use of TLS.

Brokers on different domains can interchange information through the process of
federation. This requires that both brokers be accessible to each other. They can
interconnect, and authenticate each other by validating the certificate of the other party.
Through the process of dial-back, servers typically perform a dual connection to make sure
the original caller is from the domain it claims to be. Once both parties have successfully
identified the other, they can interchange communication between each other, and of each
other's clients. These connections are named server-to-server or s2s connections.

The default port for c2s connections is 5222, and for s2s connections, it is
5269.

It is the feature of the federation that makes the XMPP network globally scalable. Anyone
can set up its own XMPP server or XMPP servers on domains it controls. As long as the
brokers are reachable by other brokers, it can potentially communicate with any client on
any of these brokers. As we will see, this communication can also be made in a secure
manner.

Social Interaction with Your Devices Using XMPP Chapter 9

[173]

Extending server functionality
The third type of connections are component connections. Component connections can be
used by external software, typically running on the same machine as the broker, or in the
same local area network, to extend the functionality of the server. Components are
identified using sub-domains to the server domain. Clients can browse the server for
available components and interact with them as if they were parts of the actual server.

Authenticating clients
Each broker is responsible for authenticating its clients. This is done using the extensible
Simple Authentication and Security Layer (SASL). The broker references the
authentication methods available, in order of preference, and the client chooses the first
method it recognizes. Communication between entities in the network cannot begin before
the clients have been successfully authenticated and activated by the corresponding broker.

Once a client has been authenticated, its authenticated identity will always be forwarded in
any communication it performs. It is this federated mechanism of authenticated users and
forwarding their authenticated identities that will have huge data protection implications, It
simplifies security decisions a great deal for clients connected to the network, since clients
do not have to identify each other, but are still able to make security decisions based on the
identities of each other.

The principles of authentication, federation, and routing are defined in
IETF RFC 6120: https://tools.ietf.org/html/rfc6120.

https://tools.ietf.org/html/rfc6120

Social Interaction with Your Devices Using XMPP Chapter 9

[174]

Understanding XMPP addresses
Typically, but not necessarily, brokers authenticate clients to accounts. Each account
typically has an account name or username. When forming an XMPP address, this account
name or username is called the local part. The XMPP address can have one to three parts.
Apart from the local part, there is the domain part, which is simply the domain of the
broker or a sub-domain. Finally, the address can also have a resource part. Since multiple
connections can be made to the same account using the same account or username, the
connections are distinguished by the use of a resource part, which is typically a random
string, for security reasons. These three parts can be combined in different ways, to address
different entities in the network:

Address format Meaning

Domain Addresses a broker, or one of its components if the domain
represents a sub-domain.

Local@Domain
Addresses a user account on the broker identified by the
domain part. Addresses of this kind are often referred to as Bare
JIDs, or Bare Jabber IDs.

Local@Domain/Resource

Addresses a client connection made by a client to the account
identified by the local part on the broker identified by the
domain part. Addresses using this format are often referred to
as Full JIDs.

The XMPP Address format is standardized in IETF RFC 6122:
https://tools.ietf.org/html/rfc6122.

XMPP clients in the network are often referred to as peers. Being a peer
means being equal to those with whom you communicate. When referring
to XMPP clients as clients, we typically refer to their role in the TCP
network layer (OSI level 3), since they connect to the broker or server. On
the network layer, the client and the server have two different roles. But
once the XMPP session is established, and the XMPP client becomes active,
it can communicate with any other XMPP client, as if it was a peer, or
equal. Here, we refer to its role in the application layer (OSI level 7).

https://tools.ietf.org/html/rfc6122
https://tools.ietf.org/html/rfc6122

Social Interaction with Your Devices Using XMPP Chapter 9

[175]

Using trust-based communication to secure the
network
Instant messaging, such as that permitted by XMPP, and social networking, build on trust.
Using the trust negotiated in your network, you can secure your Internet of Things
applications in an efficient manner. Since all participants in the network are identified, and
their identities are propagated in your network, it is easy for each thing to build a list of
authenticated identities (in XMPP, it is called a roster), which should have access to its
information. Since the identities, and their corresponding broker domains, are already
authenticated, the things do not need to perform the authentication themselves.

In XMPP, trust between entities in the network is implemented using presence
subscriptions. To be able to communicate effectively with another client, you need to have
the Full JID of that client. Normally, only the Bare JID is available. The resource part of the
corresponding client is normally random. The reason for this is to make sure the resource
part cannot easily be guessed. Only entities with an approved presence subscription to that
resource part will receive it when it is made available.

A client who wants to receive the resource part of another, therefore, sends a presence
subscription request to the other. The other can choose to accept or reject this request. Once
the presence subscription is accepted, the first will become aware of the presence of the
second. The second can also choose to send a presence subscription to the first, in turn. If
the first accepts this request, the presence subscription is mutual, and both will be informed
about the presence of each other. Any presence subscription accepted can be canceled at a
later time.

The option to block further requests and report the requestor for spam is
also possible, as defined in XMPP extensions XEP-0191 and XEP-0377.

There are various ways in which presence subscriptions can be managed. The device itself
can manage it or it can also be managed by another client. All clients connected to the same
Bare JID will receive the requests. All clients will also become aware of the decisions made
by any other clients connected to the same Bare JID. In the examples in this chapter, we will
simply accept all requests. In later chapters, we will introduce a method of delegation of
trust, where a provisioning server helps our things to make the correct decisions.

Social Interaction with Your Devices Using XMPP Chapter 9

[176]

The principles of managing presence subscription and the roster are
defined in IETF RFC 6121 at https://tools.ietf.org/html/rfc6121.

Understanding XMPP communication patterns
What makes XMPP so versatile, apart from its extensibility and scalability, is its flexibility.
While many of the other protocols we've discussed only support one basic communication
pattern, and some two, XMPP supports three of the most important communication
patterns, from which most other communication patterns can be easily derived. Apart from
the ability to send asynchronous messages, performing request/response and
publish/subscribe, XMPP is also federated (globally scalable), uses brokers to avoid network
topology limits, and allows for peer-to-peer communication (from the application layer, OSI
level 7). Among the protocols presented in this book, XMPP is the only protocol with these
capabilities:

Async. Msg. Req/Resp Pub/Sub Federation Broker P2P7

MQTT ✓ ✓ ✓

HTTP ✓ ✓

CoAP ✓ ✓ ✓

XMPP ✓ ✓ ✓ ✓ ✓ ✓

Understanding stanzas
An XMPP client sends XML fragments on its XMPP connection. The root elements of these
fragments are called stanzas. There are three basic types of stanzas, each one corresponding
to one of the three basic communication patterns available: asynchronous message
(message), request/respond (iq, short for Information Query), and Publish/Subscribe
(presence).

XMPP has a second Publish/Subscribe mechanism as well, which is
defined in XEP-0060.

https://tools.ietf.org/html/rfc6121

Social Interaction with Your Devices Using XMPP Chapter 9

[177]

There are five common attributes each stanza can have, most of which are optional at one
stage or another:

Attribute Meaning

id
It's possible to assign an identity to the stanza. This identity can be used in
references. Typical use is in the request/response pattern. But it can be used
elsewhere as well.

to
To whom a stanza is addressed. The server might provide this value,
especially in the publish/subscribe case.

from
From whom a stanza is sent. The server provides or overwrites this value. It
doesn't have to be provided by the sending client.

type
Provides further types of information about the stanza. Depends on which
stanza is being used.

xml:lang
Optional way to identify the language used, as defined in IETF RFC:
https://tools.ietf.org/html/rfc5646.

The address provided in the to attribute might work differently
depending on the stanza being used. If a Full JID is provided, the stanza is
delivered to the client connection that corresponds to that Full JID.

If a Bare JID is provided, the corresponding account is referenced. If a
message stanza is sent to a Bare JID, the corresponding server might, or
might not, forward the message to one or more of the corresponding
clients. If an iq stanza is sent to a Bare JID, it is never forwarded to a
client. Instead, it is processed by the server managing the corresponding
account.

For presence stanzas, it is not necessary to provide a to attribute for
clients. Instead, the stanza is forwarded to all clients in the roster, which
have a presence subscription approved by the sender.

https://tools.ietf.org/html/rfc5646

Social Interaction with Your Devices Using XMPP Chapter 9

[178]

In all cases, the server sets the from attribute of the stanza to the Full JID
of the sender. This allows the recipient to know from where the stanza
came. It is also this feature that lets presence subscribers become aware of
the resource part of the Full JID of the sender. Through this Full JID, the
receiver will be able to send iq request/response stanzas to the original
sender.

Extending XMPP
The first word in the acronym XMPP, the Extensible Messaging and Presence Protocol,
highlights the extensible nature of XMPP. It is extensible in a well-defined, well-behaved
and deterministic sense.

We have already mentioned that XMPP is based on XML. During the negotiation, the XML
root element (level 1) is sent by both parties. It is this element that indicates to both parties
that XMPP will be used. During the course of communication, XML fragments are sent. The
root element of each such fragment (level 2 XML element) is called a stanza. The contents of
the stanza, however, are defined by fully qualified XML elements (level 3 XML elements) in
an extensible manner. Being fully qualified in XML means the elements have both a local
name and a namespace. If you control the namespace, you can embed any valid XML
content you like there, as long as you maintain your fragment within the maximum allowed
stanza size defined by the server. Recipients of the stanza will only process it, if it
recognizes the fully qualified name, and knows how to process it.

The maximum stanza size is server-specific. But RFC 6120 states that it
must not be smaller than 10,000 bytes.

The XMPP Standards Foundation maintains a set of XMPP extensions, defining different
such extensions and their corresponding semantics, for interoperability purposes. Most
XMPP clients support a set of these extensions already, while other extensions are available
as plugins to the clients. Yet other extensions must be implemented by the developer using
the client.

A list of extensions maintained by the XMPP Standards Foundation can be
seen at https://xmpp.org/extensions/.

https://xmpp.org/extensions/

Social Interaction with Your Devices Using XMPP Chapter 9

[179]

Selecting a client library
In order to use XMPP in your projects, the easiest way is to use a predefined client library.
Such a library will help you with the basics of connecting and maintaining an XMPP
connection, allow you to define and add extensions, send and receive stanzas, and so on. It
will also provide you with a basic set of extensions already implemented, and a mechanism
to add plugins.

There are many libraries on the internet to choose from, too many to list
here. The XSF publishes a shortened list of client libraries
at https://xmpp.org/software/libraries.html.

In this book, we will use the Waher.Networking.XMPP client library, written in C#. It's
available on GitHub and as NuGets (in two versions: one .NET Standard and one for the
first generation Universal Windows Platform, UWP). There are also plugins available for
the Internet of Things that we will use.

The operating principle of this library is simple. In the constructor, you define sufficient
information to connect. You then connect calling the Connect method. The reception of
standard stanzas triggers events on the client. Extensions are added by registering message,
iq, and presence handlers on the client. During initialization, you simply provide the
fully qualified names of the elements you extend the client with, and the corresponding
callback methods the client will call when the corresponding extensions are referenced.

Selecting a broker
To use XMPP, you also need to select an XMPP broker. You have to choose if you want to
host your own XMPP server under your own domain name or use a publicly available
XMPP broker. There are many to choose from.

For a short list of XMPP server software, you can use to set up your own
domain, visit https://xmpp.org/software/servers.html. To find a
publicly available XMPP server,
visit https://www.google.se/search?source=hp&q=public+xmpp+server.

In this book, we will use the XMPP broker available at waher.se. While not necessary for
this chapter, it will help us in later chapters when we introduce provisioning.

https://xmpp.org/software/libraries.html
https://xmpp.org/software/servers.html
https://www.google.se/search?source=hp&q=public+xmpp+server

Social Interaction with Your Devices Using XMPP Chapter 9

[180]

Readers of this book can request an account at
https://waher.se/Broker.md and
https://waher.se/RequestAccount.md. Don't forget to mention this book
in the registration. Classes and organizations can request API keys at
https://waher.se/RequestApiKey.md. This will allow them to
automatically generate a given number of accounts securely. Please allow
some time for the application to be processed.

Adding XMPP to our devices
We now have sufficient information to begin using XMPP in our projects. To do this, we
create two new projects, which we will call SensorXmpp and ActuatorXmpp, copying the
corresponding code from the Sensor and Actuator projects as we have done earlier. As
with the previous chapters, we use the same hardware.

For reference, the projects are available on GitHub
at https://github.com/PeterWaher/MIoT.

We also add a series of NuGet packages to our projects:

NuGet Description

Waher.Networking.XMPP.UWP XMPP client library.

Waher.Networking.XMPP.Sensor.UWP
XMPP IoT sensor data plugin. Added
to both projects.

Waher.Networking.XMPP.Chat.UWP XMPP IoT chat plugin.

Waher.Networking.XMPP.Control.UWP
XMPP IoT control plugin. Only added
to the ActuatorXmpp project.

Waher.Networking.XMPP.Provisioning.UWP
Added to both projects. We will discuss
this module in a later chapter.

https://waher.se/Broker.md
https://waher.se/RequestAccount.md
https://waher.se/RequestApiKey.md
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT

Social Interaction with Your Devices Using XMPP Chapter 9

[181]

For .NET Standard, .NET Core, second-generation UWP, or traditional
.NET Framework projects, you can use the package versions without UWP
instead. First-generation UWP apps use different libraries and runtime
binaries when it comes to accessing network adaptors. For this reason,
they require a somewhat modified version of the original library.

When we initialize our runtime environment, we must make sure to include the assemblies
defining relevant classes, at the beginning of the application. We will include the capability
of using a rich chat environment using the formatted syntax (based on markdown) and
graphs (based on the script engine), so we include these assemblies as well:

Types.Initialize(
typeof(FilesProvider).GetTypeInfo().Assembly,
typeof(RuntimeSettings).GetTypeInfo().Assembly,
typeof(IContentEncoder).GetTypeInfo().Assembly,
typeof(XmppClient).GetTypeInfo().Assembly,
typeof(Waher.Content.Markdown.MarkdownDocument).
GetTypeInfo().Assembly,
typeof(Waher.Content.Xml.XML).GetTypeInfo().Assembly,
typeof(Waher.Script.Expression).GetTypeInfo().Assembly,
typeof(Waher.Script.Graphs.Graph).GetTypeInfo().Assembly,
typeof(App).GetTypeInfo().Assembly);

We must not forget to add the internetClientServer capability to our
set of capabilities in the Package.appxmanifest files as well:

<Capability Name="internetClientServer" />

Connecting to our broker
The first thing we will need to do is to connect to the XMPP broker we've chosen. We need
the name of the host (preferably a domain name), the port number to use, and the client
credentials.

XMPP allows us to work with password hashes, depending on the SASL mechanism used
to authenticate the client. This is a great data protection mechanism not available in the
other protocols discussed. It allows us to persist the hash instead of the actual password.
Since the hash value will vary depending on the domain connecting to it, it cannot be
reused in other settings, which is often the case when passwords are reused between
services.

Social Interaction with Your Devices Using XMPP Chapter 9

[182]

Getting persisted credentials
We will use the persistent settings library we presented earlier to check if we've got
persisted credentials from earlier sessions:

string Host = await RuntimeSettings.GetAsync(
"XmppHost","waher.se");
int Port = (int)await RuntimeSettings.GetAsync("XmppPort", 5222);
string UserName = await RuntimeSettings.GetAsync(
"XmppUserName",string.Empty);
string PasswordHash = await RuntimeSettings.GetAsync(
"XmppPasswordHash", string.Empty);
string PasswordHashMethod = await RuntimeSettings.GetAsync(
"XmppPasswordHashMethod", string.Empty);

Preparing the connection for first-time use
The first time the application is run, there will be no credentials available. There are various
ways in which credentials can be obtained:

We can ask the user for credentials
We can preprogram or configure credentials
We can generate new credentials

The projects in GitHub will ask the user for account information using a simple dialog. Here
the user will be prompted with a dialog the first time the application is run. The dialog will
be displayed until valid credentials are provided. These will later be persisted using the
static RuntimeSettings class, and will be available to the application the next time it is
executed.

The problem of presenting a dialog to the user is that things normally
don't have a display where the dialog can be viewed. For laboratory
experiments, it might be sufficient, however. If you choose to present
dialogs in your app, you can download and run the Windows IoT Remote
Client on your development machine. You also need to enable the
Windows IoT Remote Server under the Remote tab in the Device Portal
of the device. The Remote Client software will allow you not only to view
the display of the device remotely, but it also allows you to interact with it
using the mouse and keyboard. While some latency in the input is present,
it works perfectly for entering credentials in the connection dialog.

Social Interaction with Your Devices Using XMPP Chapter 9

[183]

Remember: don't forget to disable the Remote Server once you're done!

Connecting to the server
Once we have our credentials, or if we've chosen to automatically create new credentials,
we are ready to connect to the server. We first need to create a variable to hold our XMPP
client:

private XmppClient xmppClient = null;

We then create the client using the connection details we've procured. We also provide the
default language code that we will use, as well as a reference to the assembly that
represents the current application. This assembly will be used to extract some basic
information about the application, such as the application name and version. This
information can be requested by other participants in the network:

this.xmppClient = new XmppClient(Host, Port,
UserName, PasswordHash, PasswordHashMethod, "en",
typeof(App).GetTypeInfo().Assembly)
{
AllowCramMD5 = false,
AllowDigestMD5 = false,
AllowPlain = false,
AllowScramSHA1 = true
};
this.xmppClient.OnStateChanged += this.StateChanged;
this.xmppClient.OnConnectionError += this.ConnectionError;
this.AttachFeatures();

Log.Informational("Connecting to " + this.xmppClient.Host + ":" +
this.xmppClient.Port.ToString());
this.xmppClient.Connect();

Social Interaction with Your Devices Using XMPP Chapter 9

[184]

When authenticating itself with the server, the client will use one
authentication mechanism from a list of mechanisms presented to it by the
server. Some of these mechanisms are more secure than others. While the
client will validate the server certificate and check that it corresponds to
the domain name, there's still a risk of losing user credentials if somebody
manages to perform a downgrade attack while presenting a valid
certificate anyway — especially if valid domain names are not used. To
prevent credentials from leaking, you can explicitly turn off unsecure
authentication mechanisms, such as PLAIN, CRAM-MD5, and DIGEST-MD5,
and only allow SCRAM-SHA-1. This requires, however, that the server you
connect to supports the SCRAM-SHA-1 mechanism.

Following the connection process
By using the OnStateChanged and OnConnectionError events, we have a simple
mechanism with which we can follow the connection process. We also become aware of the
Full JID of the connection, once the connection has become active and you're fully
connected to the XMPP network:

private void StateChanged(object Sender, XmppState State)
{
Log.Informational("Changing state: " + State.ToString());

if (State == XmppState.Connected)
Log.Informational("Connected as " +
this.xmppClient.FullJID);
}

private void ConnectionError(object Sender, Exception ex)
{
Log.Error(ex.Message);
}

Registering a new account
In XMPP, clients can register for a new account, using the XMPP connection itself. This is
called In-Band Registration and is defined in XEP-0077. To enable this feature, you have to
call the AllowRegistration() method, before connecting to the network:

this.xmppClient.AllowRegistration();

Social Interaction with Your Devices Using XMPP Chapter 9

[185]

You must also make sure to create the XmppClient using a proper password, not a
password hash:

this.xmppClient = new XmppClient(Host, Port, UserName, Password,
"en", typeof(App).GetTypeInfo().Assembly)

Once the server gets to the part of authenticating the client and learns that such an account
does not exist, it will attempt to register the account, using the credentials provided. If
successful, the proper password hash and password hash method will be available, once the
connection has been fully established. Make sure to persist them!

Allowing In-Band Registration on a server makes the server vulnerable to
malicious bots or users that swamp the server with account generation
requests. To mitigate this effect, some servers have added different
protection measures. Some servers include a CAPTCHA image containing
text that the user will have to be able to read and enter in the registration
form (which the client processes). This method is not well suited to the
Internet of Things, which typically lacks human interfaces.

Another method, more suited to the IoT, is to force the sender of the
registration form to sign it using a shared secret. This is the principle used
by the XMPP server at waher.se, for instance. Using an API key and a
shared secret, the form is signed. Only valid signatures will be accepted,
and accounts will be created only to the extent permitted by the
corresponding key. This process of signing registration forms is defined in
XEP-0348. To activate this feature, you call AllowRegistration with the
corresponding key and secret, as follows:

this.xmppClient.AllowRegistration(Key, Secret);

Maintaining the connection
The XmppClient object will try to maintain the connection live. This includes pinging the
server and trying to reconnect if something happens. But connectivity can get lost for many
reasons. The application should therefore regularly check the connection, and force a
reconnection attempt if it finds it offline or in an error state. In our sensor project, we can
check the connection every minute, and force it to reconnect if necessary. We can take the
opportunity to use our sampling timer to achieve this:

if (Timestamp.Second == 0 && this.xmppClient != null &&
(this.xmppClient.State == XmppState.Error ||
this.xmppClient.State == XmppState.Offline))

Social Interaction with Your Devices Using XMPP Chapter 9

[186]

{
this.xmppClient.Reconnect();
}

In the actuator, as we don't have a sampling timer, we need to create a separate timer for
this task:

this.minuteTimer = new Timer((State) =>
{
if (this.xmppClient != null &&
(this.xmppClient.State == XmppState.Error ||
this.xmppClient.State == XmppState.Offline))
{
this.xmppClient.Reconnect();
}
}, null, 60000, 60000);

Managing the roster
Apart from connecting to the XMPP network, we need a way to manage our roster, or who
our friends are. In this chapter, we will use the simplest, but not safest, approach, by
accepting all presence subscription requests:

private void AttachFeatures()
{
this.xmppClient.OnPresenceSubscribe += (Sender, e) =>
{
Log.Informational("Accepting friendship request.",
this.xmppClient.BareJID, e.From);
e.Accept();
};

this.xmppClient.OnPresenceUnsubscribe += (Sender, e) =>
{
Log.Informational("Friendship removed.",
this.xmppClient.BareJID, e.From);
e.Accept();
};

this.xmppClient.OnPresenceSubscribed += (Sender, e) =>
Log.Informational("Friendship request accepted.",
this.xmppClient.BareJID, e.From);
this.xmppClient.OnPresenceUnsubscribed += (Sender, e) =>
Log.Informational("Friendship removal accepted.",
this.xmppClient.BareJID, e.From);

Social Interaction with Your Devices Using XMPP Chapter 9

[187]

We also take the opportunity to log events of interest:

this.xmppClient.OnError += (Sender, ex) => Log.Error(ex);
this.xmppClient.OnPasswordChanged += (Sender, e) =>
Log.Informational("Password changed.",
this.xmppClient.BareJID);
}

Note that anyone with an active subscription to your device's presence
will be able to request sensor data from it, and be able to request control
actions to be performed on it. In a later chapter, we will discuss how to
secure this.

Making sensor data available over XMPP
The NuGet Waher.Networking.XMPP.Sensor[.UWP] provides a SensorServer class that
helps a sensor to publish its sensor data on the XMPP network. It also contains a
SensorClient class, which can be used to request sensor data from other entities on the
XMPP network. These classes use interoperability interfaces defined in the IEEE IoT
Harmonization working group, which we will discuss more deeply in a later chapter.
(These sensor data interfaces are in turn based on legacy interfaces defined in XEP-0323.)
They support a wide array of features that are important in the IoT, some of which we will
cover in later chapters:

They allow for small quick sensors returning simple result sets
They allow for slow asynchronous processes with progress updates for
immediate (near real-time) feedback
They allow for large result sets that are reported in segments
They allow for queueing and scheduling of requests
Request/response, event subscription and publish/subscribe patterns are
supported
Representation is loosely coupled and does not require interface changes for new
types of devices
Interfaces allow for sufficient metadata to be included in result sets for it to be
possible to use in both machine-to-machine (M2M) and human-to-machine
(H2M) interfaces
Interfaces support localization
Secure distributed transactions are supported
Limitation of requests (provisioning) is supported

Social Interaction with Your Devices Using XMPP Chapter 9

[188]

The IEEE IoT Harmonization working group interfaces are published
at https://gitlab.com/IEEE-SA/XMPPI/IoT.

The URL will be updated before publication of the book.

Understanding the conceptual model
The sensor data model in XMPP is similar to how we treated sensor data in previous
chapters. Each device maintains a collection of timestamps; each one is comprised of a set
of fields, as shown in Figure 1. The model also allows for measurement or communication
errors to be reported. Apart from a value, each field also has a name, optional localization
information, field type information, quality of service information, and custom annotations.
In a later chapter, we will build on this model by introducing the concept of nodes, where a
device can be said to host a set of nodes, or virtual devices:

Figure 1. Conceptual model of sensor data in XMPP

https://gitlab.com/IEEE-SA/XMPPI/IoT

Social Interaction with Your Devices Using XMPP Chapter 9

[189]

There are different kinds of fields that can be represented in this model. They all share the
aforementioned common properties, but represent the corresponding value differently:

Representation Description

Physical Quantity
Represents a floating-point numerical value (xsd:double) together
with a string (xsd:string) unit value. The number of decimals used
in the representation corresponds to the precision of the value.

String Value encoded as xsd:string.

Boolean Value encoded as xsd:boolean.

Date Value encoded as xsd:date.

DateTime Value encoded as xsd:dateTime.

Duration Value encoded as xsd:duration.

Enumeration Represents a string value (xsd:string) from a discrete enumeration.
The enumeration is defined using a type attribute (xsd:string).

Int32 Value encoded as xsd:int.

Int64 Value encoded as xsd:long.

Time Value encoded as xsd:time.

XML datatypes are defined in the W3C XML Schema Definition Language
(XSD) at http://www.w3.org/TR/xmlschema11-2/.

Creating an XMPP sensor server
To make our data available on the network, we create a SensorServer object in both of our
projects. We need a variable to reference our server:

private SensorServer sensorServer = null;

http://www.w3.org/TR/xmlschema11-2/

Social Interaction with Your Devices Using XMPP Chapter 9

[190]

In our AttachFeatures method, we create an instance of this object, and provide an event
handler for the principle event: OnExecuteReadoutRequest. This event is triggered each
time a sensor data request is received. It is also triggered when a subscription event is
triggered, and an event message is being created. The SensorServer object takes care of
registering required handlers on our XMPP client:

this.sensorServer = new SensorServer(this.xmppClient, true);
this.sensorServer.OnExecuteReadoutRequest += async (sender, e) =>
{
try
{
Log.Informational("Performing readout.",
this.xmppClient.BareJID, e.Actor);

List<Field> Fields = new List<Field>();
DateTime Now = DateTime.Now;

Field classes for the different fields are defined in the
Waher.Things.SensorData namespace.

Returning momentary values
We can use the event arguments provided in the handler to learn things about the original
request, such as who made the request (the Actor) and which types of data are desired. The
interface is loosely coupled, so we just return a set of fields. We don't have to be exact
unless it saves processing time. Interfaces will filter the contents not desired or permitted
anyway, to avoid information leaks because checks were omitted:

if (e.IsIncluded(FieldType.Identity))
Fields.Add(new StringField(ThingReference.Empty, Now,
"Device ID", this.deviceId, FieldType.Identity,
FieldQoS.AutomaticReadout));

if (this.lastLight.HasValue)
Fields.Add(new QuantityField(ThingReference.Empty, Now,
"Light", this.lastLight.Value, 2, "%",
FieldType.Momentary, FieldQoS.AutomaticReadout));

if (this.lastMotion.HasValue)
Fields.Add(new BooleanField(ThingReference.Empty, Now,
"Motion", this.lastMotion.Value,
FieldType.Momentary, FieldQoS.AutomaticReadout));

Social Interaction with Your Devices Using XMPP Chapter 9

[191]

Returning historical values
If historical values are desired, we can send our partial results immediately, to allow the
client to provide some immediate feedback. Loading historical data can take a little time,
depending on the underlying storage medium and amount of data stored:

if (e.IsIncluded(FieldType.Historical))
{
e.ReportFields(false, Fields);
Fields.Clear();

To avoid too large stanzas and allow the client to follow the progress, we can choose to
return historical elements, 50 at a time:

foreach (LastMinute Rec in
await Database.Find<LastMinute>(new FilterAnd(
new FilterFieldGreaterOrEqualTo("Timestamp", e.From),
new FilterFieldLesserOrEqualTo("Timestamp", e.To)),
"Timestamp"))
{
if (Fields.Count > 50)
{
e.ReportFields(false, Fields);
Fields.Clear();
}

if (Rec.AvgLight.HasValue)
{
Fields.Add(new QuantityField(ThingReference.Empty,
Rec.Timestamp, "Light, Minute, Average",
Rec.AvgLight.Value, 2, "%", FieldType.Computed |
FieldType.Historical, FieldQoS.AutomaticReadout));
}

...
}

The population of the field list with all elements in each record is straightforward and is
also repeated for the hourly values in the same way.

Social Interaction with Your Devices Using XMPP Chapter 9

[192]

Returning writable values
In the general case, some momentary values might correspond to control parameters in an
actuator. To highlight this, an overload exists for the field constructors, allowing the
application to signal which one of the fields is "writable", or which ones correspond to
control parameters with the same name. In our actuator, we report our output value as a
writable parameter, by appending a Boolean argument to the value true:

if (this.output.HasValue)
{
Fields.Add(new BooleanField(ThingReference.Empty, Now,
"Output", this.output.Value,
FieldType.Momentary, FieldQoS.AutomaticReadout, true));
}

Triggering events
As mentioned earlier, the sensor data interfaces support event subscription as well as the
readout on request. When subscribing to events, you provide minimum and maximum time
intervals for events. You can also provide information about individual fields, and describe
threshold values for how much a value is allowed to change until an event is triggered. To
enable this feature properly, the application needs to report new momentary values to the
Sensor Server object. The object, in turn, keeps track of all active subscriptions and
makes sure events are triggered as they should be. When they are triggered, the
OnExecuteReadoutRequest event is triggered as if a request would have been received.
The event arguments point to the original subscription request when processing the
readout.

Reporting new momentary values is easy. You only call the NewMomentaryValues()
method whenever you calculate a new momentary value. For example:

this.sensorServer?.NewMomentaryValues(new QuantityField(
ThingReference.Empty,Timestamp, "Light", Light, 2, "%",
FieldType.Momentary, FieldQoS.AutomaticReadout));

And we do the same for our motion:

this.sensorServer?.NewMomentaryValues(
new BooleanField(ThingReference.Empty, this.lastPublished,
"Motion", Motion, FieldType.Momentary,
FieldQoS.AutomaticReadout));

Social Interaction with Your Devices Using XMPP Chapter 9

[193]

Similarly, we should also report each change of the output value in our actuator. This
would allow others to subscribe to events relating to the change of the switch:

this.sensorServer?.NewMomentaryValues(
new BooleanField(ThingReference.Empty, DateTime.Now, "Output",
On, FieldType.Momentary, FieldQoS.AutomaticReadout));

Publishing control parameters
The NuGets Waher.Networking.XMPP.Control[.UWP] provides a ControlServer class
that helps an actuator to publish its control parameters on the XMPP network. It also
contains a Control Client class that can be used to set control parameter values on other
entities on the XMPP network. As with the sensor interfaces, the control classes use
interoperability interfaces defined in the IEEE IoT Harmonization working group. (These
sensor data interfaces are in turn based on the legacy interfaces defined in XEP-0325.) The
control interfaces support:

Simple atomic set operations
Complex group set operations
The representation that is loosely coupled and does not require interface changes
for new types of devices
Interfaces that allow for sufficient metadata to be included in result sets for it to
be possible to use in both M2M and H2M interfaces
Interfaces that support localization
Secure distributed transactions
The limitation of requests (provisioning)

Understanding the conceptual model
The control data model in XMPP is very simple. Each device just consists of a set of control
parameters. When we introduce nodes in later chapters and allow our devices to be divided
into nodes, we can allow each controllable node to have its own set of control parameters:

Social Interaction with Your Devices Using XMPP Chapter 9

[194]

Figure 2. Conceptual model of control parameters in XMPP

As with sensor data, there are different kinds of control parameters that can be represented
in this model. They all share the common parameters presented in Figure 2, but represent
the corresponding control value differently:

Representation Description

String Value encoded as xsd:string.

Boolean Value encoded as xsd:boolean.

Color Value encoded as a six- or eight-character hexadecimal string in the
format RRGGBB or RRGGBBAA.

Date Value encoded as xsd:date.

DateTime Value encoded as xsd:dateTime.

Double Value encoded as xsd:double.

Duration Value encoded as xsd:duration.

Int32 Value encoded as xsd:int.

Int64 Value encoded as xsd:long.

Time Value encoded as xsd:time.

Social Interaction with Your Devices Using XMPP Chapter 9

[195]

Parameter classes for the different control parameters are defined in the
Waher.Things.ControlParameters namespace.

Creating an XMPP control server
To make our parameters available, we create a ControlServer object in our actuator
project. We need a variable to reference our server:

private ControlServer controlServer = null;

In our AttachFeatures method, we create our instance of the control server. We can either
choose to provide a set of control parameters in the constructor of the control server, or
override the OnGetControlParameters event and provide a dynamic set each time a set is
requested. The first method is simplest, if we're building a simple actuator, as we do in our
example. If we want to provide different control parameter sets for different nodes in the
device, we must choose the second option.

The control server object does not have an event that is raised when control parameters are
set. Instead, such callback methods are provided individually, for each control parameter.
Apart from providing a name for each parameter, we also have to provide (in order) a page
(think "tabbed dialog"), a label for the parameter, and a description (a tool-tip), as well as a
get and a set callback method. These two methods are used whenever the control server
needs to know the current value of the parameter, and when it wants the value to be
updated. For our actuator, we define the control server as follows:

this.controlServer = new ControlServer(this.xmppClient,
new BooleanControlParameter("Output",
"Actuator", "Output:","Digital output.",
(Node) => this.output,
async (Node, Value) =>
{
try
{
await this.SetOutput(Value, "XMPP");
}
catch (Exception ex)
{
Log.Critical(ex);
}
}));

Social Interaction with Your Devices Using XMPP Chapter 9

[196]

If you're implementing asynchronous callback methods, make sure you
trap all exceptions. Exceptions in asynchronous methods with a void
return types that, if not caught, will cause the application to shut down
unexpectedly.

Adding a chat interface
At this point, both our projects have machine interfaces for sensor data readout event
subscriptions, and control parameter operations. What we lack is a human interface. As
XMPP was built for chat, it would be nice if we could add a chat interface to our devices.

To send a chat message, we can call the SendChatMethod() on our XmppClient object.
Messages sent to the client can be received through the OnChatMessage event. All you
need to do to provide a custom chat interface is work with these two. There are some
interoperability issues you might need to consider, however, relating to sending formatted
messages, images, and so on. If you want, you can start with the
Waher.Networking.XMPP.Chat[.UWP] NuGet, which integrates both the SensorServer
and ControlServer objects, to provide a simple chat interface. When reading the sensor, it
will detect longer time series, and present these values in graph form, instead of tabular
form. It will also include multiple compatible series into one, if it detects series with names
ending with "Average," "Minimum," and "Maximum," respectively.

Source code for the chat interface is available in the IoT Gateway project,
at
https://github.com/PeterWaher/IoTGateway/tree/master/Networking/

Waher.Networking.XMPP.Chat.

Creating an XMPP chat server
As with the other server objects, we first need a variable to hold the reference to our chat
server. We also need a Bits of Binary client. Bits of Binary is a mechanism to transfer small
chunks of binary information from one client to another and is defined in XEP-0231. It is
one of several methods the chat server can use to transfer images:

private BobClient bobClient = null;
private ChatServer chatServer = null;

https://github.com/PeterWaher/IoTGateway/tree/master/Networking/Waher.Networking.XMPP.Chat
https://github.com/PeterWaher/IoTGateway/tree/master/Networking/Waher.Networking.XMPP.Chat

Social Interaction with Your Devices Using XMPP Chapter 9

[197]

In our AttachFeatures method, we create the instance as follows. We ask our Bits of
Binary-client to temporarily use the TEMP folder to store binary information, if necessary.
In the constructor of our chat server, we also provide a reference to our sensor server:

this.bobClient = new BobClient(this.xmppClient,
Path.Combine(Path.GetTempPath(), "BitsOfBinary"));
this.chatServer = new ChatServer(this.xmppClient, this.bobClient,
this.sensorServer);

In the actuator case, we need to provide a reference to the control server as well:

this.chatServer = new ChatServer(this.xmppClient, this.bobClient,
this.sensorServer, this.controlServer);

Images will be transferred using one of the following methods, depending
on the capabilities of the receiver or your broker:

Embedding an image using the data URI scheme
Uploading the image to your broker and sending an image tag
referencing the uploaded image, or providing a simple URL to
the uploaded image
Using Bits of Binary as a transport mechanism, embedding an as
an image tag with a reference to the Bits of Binary content

Testing your devices
You are now ready to test your applications. In the next chapter, we will see how we can
interact with our devices from code. In this chapter, however, we have to test our devices
using external software.

Testing the human interface
As we have added chat interfaces, we can begin by testing our devices using any instant
messaging client supporting XMPP. If you don't already have one, download one, create an
account using an appropriate broker, and connect to your newly created devices, by adding
them to your roster in your chat client. The devices should automatically accept your
requests. Then start chatting with them. Figure 3 shows an example chat with the sensor.
You can also chat with the actuator, and control its output using the chat interface. Check
the menu to see how to do that:

Social Interaction with Your Devices Using XMPP Chapter 9

[198]

Figure 3. Example chat session with the sensor

Testing the machine interface
To test the machine interface, we need a tool we can use. The IoT Gateway project on
GitHub contains such a tool written in .NET, called simply Waher.Client.WPF. An
executable version can be downloaded as well. You can use this to test both the machine
and chat interfaces of your devices. You can create one or more XMPP connections and add
contacts. If they are sensors or actuators, you can read them, control their parameters, and
subscribe to events from them. You can also listen on the XMPP communication to learn
what is being communicated. Figure 4 shows the main interface of this simple XMPP IoT
client:

Social Interaction with Your Devices Using XMPP Chapter 9

[199]

The IoT Gateway project is available at
https://github.com/PeterWaher/IoTGateway.

Figure 4. Simple XMPP IoT Client (Waher.Client.WPF)

The first group of buttons in the main window allows you to create a new connection file,
load an existing file, or save your current connections to a file. The second group allows you
to add a new connection to your window. This represents an XMPP connection, or a
connection to an XMPP broker. You can recycle a connection and spy (listen to) a
connection. The third group allows you to add and remove items to the tree in the left pane.
If you select a connection and press the addition symbol, you add a contact to your
connection. The last group lets you interact with your contacts: you can chat with them,
read momentary values, read all values, subscribe to events, and configure them. Buttons
are enabled if the corresponding action is available for the current selection.

For further study
The SensorXmpp and ActuatorXmpp projects in the MIoT repository on GitHub provide
the support for XEP-0054 to publish contact information using vCards. If you're interested
in learning how to implement your own extensions, search for 0054 in the code to see how
to register handlers and send stanzas.

https://github.com/PeterWaher/IoTGateway

Social Interaction with Your Devices Using XMPP Chapter 9

[200]

The SensorXmpp project also includes a method of publishing current momentary values
using the publish/subscribe pattern provided by the presence stanza. This behavior is
commented out in the default version, to avoid spamming the broker. If you want to play
with this pattern, check the PublishMomentaryValues() method.

The Mastering Internet of Things, or MIoT project on GitHub can be found
at https://github.com/PeterWaher/MIoT.

Summary
In this chapter, you’ve been shown the basic principles of how XMPP works, and how
XMPP can be used to provide a flexible, extensible, and scalable infrastructure for devices.
You’ve learned how brokers help devices cross topology barriers such as firewalls, and how
stanzas are related to important communication patterns. You’ve also learned the basics of
trust-based communication and loosely coupled interfaces for the IoT. You know how to
publish sensor data and control parameters over XMPP and how to test your sensors and
actuators using XMPP. In the following chapters, you will learn how to interact with your
devices with code.

https://github.com/PeterWaher/MIoT

10
The Controller

Up to this point, we have mostly focused on creating things, either sensors or actuators that
publish data in one form or another and allow other actors to perform control operations on
them. In this chapter, we will focus on how to find such devices, consume their data, and
how to issue control operations on them. The chapter covers:

Discovery of devices on the Internet of Things
An introduction to Thing Registry
How to register a device in a registry
How to discover devices in a registry
How to subscribe to sensor data events
How to issue control operations

Discovering things on the internet
When creating a controller that will use devices connected to the internet, you must solve
the problem of finding the devices you want to use. You can choose to preconfigure the
identities of the devices in a production environment, or to manually configure the
identities after installation. These methods require additional effort on the part of the
manufacturer, operator, or installer. It would be nice if the things could discover themselves
somehow.

In local area networks, discovery is easier. You can use a multi-cast based protocol, such as
the Simple Service Discovery Protocol (SSDP), part of Universal Plug and Play (UPnP), to
let your devices multi-cast their existence and capabilities in the network. Controllers can
listen to these messages, and connect to suitable devices they find. But on the internet, such
a method is not feasible for many reasons, and it is difficult to secure.

The Controller Chapter 10

[202]

Introducing Thing Registry
On the internet, you cannot multi-cast information freely, for scalability and security
reasons. While the IPv6 protocol allows for multi-casting on many layers, the feature is
often restricted in routers. But you can achieve a similar feature by the introduction of a
neutral third party: a Thing Registry. Thing Registries act as bulletin boards for things.
When things are installed and get their network identity, they can register their existence,
network identity, and conceptual identity on the registry. The network identity would
typically be the communication address (and protocol) used to communicate with the thing.
The conceptual identity would include meta-information about the thing, such as class,
type, manufacturer, location, serial number, and so on. The conceptual identity can be used
to indirectly identify the thing, while the network identity can be used to directly identify it.

Propagating information
Consumers that want to discover things register with the same thing registry. Depending
on the type of registry used, consumers can find their corresponding things in different
ways. There are two principal types of methods available, for the propagation of
information about things registered with the registry: event-based methods and search-
based methods.

Event-based methods are typically based on the Publish/Subscribe communication pattern.
Things register their existence by publishing information about themselves on a topic.
Consumers of devices subscribe to relevant topics and get informed about the existence of
devices through events on the corresponding topics. The topic tree becomes tightly coupled
with the types of devices registering with the registry. To interconnect things using an
event-based approach, publishers and subscribers typically need to be connected
simultaneously, or consumers need to be able to traverse the history of each topic to find the
corresponding things among all those available for the respective topic. Publishers also
need to repeatedly publish their existence during their lifetime.

Search-based methods, on the other hand, allow consumers to search more freely on the
metadata things registered in the registry. It is requirement-based instead of event-based.
Consumers search when they need to find entities, not when things register and become
available. Search-based methods are more scalable and allow for finding things using a
multi-dimensional set of tags, rather a restricted topic tree. They are also more loosely
coupled to the types of devices available. Things only need to register and unregister and
update their registration when their information changes. This method, however, does not
include a way to inform consumers of changes in registrations, or when new devices are
registered.

The Controller Chapter 10

[203]

Claiming ownership of things
One of the major drawbacks of an event-based approach is that it is very difficult to protect
devices. The device, or its owner, cannot control who can have access to it. It publishes its
identity and anybody with access to the registry can find it. There's no method for the
owner of the thing to claim it for itself. And there's no method for the owner to control who
can access the thing and what is done with it.

Search-based methods, however, can be adapted to allow for ownership claims. The basic
principle is as follows, and is outlined in the following diagram:

Discovery of things using a Thing Registry

A thing registers its network identity and conceptual identity, together with a1.
key.
The thing is registered as a private unclaimed thing. Private things are never2.
published in search results.

The Controller Chapter 10

[204]

The owner makes an ownership claim. An ownership claim is a special kind of3.
search, where the owner needs to present the same conceptual identity (all tags)
of the thing, including the key, to the registry. The first one to do this is
considered the owner of the thing.
A claimed thing is presented with the network identity of its owner, and the4.
owner the network identity of the thing. They now both know each other. The
thing is set to claim. The owner can choose if the thing is made public or if it
remains private. The key is removed. If public, it will be made available in
matching search results.
Other entities may perform searches on any of the tags available in the database.5.
Claimed public things with meta-information matching the search will be
returned.
When somebody connects to the thing and wants to perform an action, the thing6.
now knows who is responsible for permitting the action or not. It can ask the
owner, if it hasn't done so earlier, and allow the request if the owner permits it.

In the next chapter, you’ll learn how to disown a thing, and how to
transfer ownership of a thing to a new owner.

Transferring the conceptual identity to the owner
One of the tasks required to realize the previous sequence of events is to make a successful
ownership claim. This requires the owner to be able to present the same conceptual identity
as the thing, including the key, to the registry. Since the amount of information might make
manual editing of this information impractical, an efficient approach is needed to efficiently
transmit the information to the owner out of band.

One such method is defined using the Uniform Resource Identifier (URI) scheme
iotdisco. This method allows the encoding of the information into a URI, which can then
be presented as a presented as a Quick Response (QR) code, perhaps on a sticker. The
owner can scan it, for instance, using a smartphone application, and send the information to
the same registry to make the matching claim.

The Controller Chapter 10

[205]

As an example, consider the following set of meta-information about a thing:

Tag Value

CLASS Controller

TYPE MIoT Controller

MAN waher.se

MODEL MIoT ControllerXmpp

PURL https:// github. com/ PeterWaher/ MIoT

SN ebfe45db82884676bdaf1adcb93c70d3

V 1.0

KEY 9b3c08a2a246468aaaa6dd00a258cdc5

The preceding information can be encoded into a URI as follows, which in turn is encoded
into a QR-code, as shown in preceding image:

iotdisco:CLASS=Controller;Type=MIoT%20Controller;MAN=waher.se;MODEL=MIoT%20
ControllerXmpp;PURL=https%3A%2F%2Fgithub.com%2FPeterWaher%2FMIoT;SN=ebfe45d
b82884676bdaf1adcb93c70d3;#V=1.0;KEY=9b3c08a2a246468aaaa6dd00a258cdc5

QR-code containing conceptual identity of a thing.

For more information about the iotdisco URI scheme, visit
https://www.iana.org/assignments/uri-schemes/prov/iotdisco.pdf.

https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://github.com/PeterWaher/MIoT
https://www.iana.org/assignments/uri-schemes/prov/iotdisco.pdf

The Controller Chapter 10

[206]

Using thing registries in XMPP
Using XMPP for the implementation of thing registries has several benefits: it allows for ad
hoc connections and real-time communication between peers, regardless of obstacles in the
network topology imposed by firewalls. It automatically forwards the network identity of
all actors in the network in a way that cannot be spoofed easily. It is also federated, which
makes it globally scalable and avoids the creation of centralized bottlenecks. While Thing
Registries imply some form of centralization, at least of the bulletin board, the federated
aspect of XMPP allows anybody to create their own bulletin boards (registries).

There is also an open extension available for Thing Registries in XMPP. It is defined in
XEP-0347. It also defines a mechanism for publishing thing registries: they are made
available as components on the XMPP server. A thing, controller, or the owner using a
custom XMPP client can automatically detect the registry by browsing available
components on its broker. If participants use the same broker, they will automatically find
the same registry, regardless of where they are located on the internet, and can, therefore,
use it to exchange identities securely. It also allows for the use of Thing Registries to be
reachable at other locations.

The XMPP broker available at waher.se has an integrated Thing Registry.

Registering our devices
Before we create a controller, we need to update our sensor and actuator projects. They
need to search their brokers for available thing registries and register themselves with them.
Since the process is the same for both the sensor and the actuator, only changes to the
sensor project will be presented here.

A thing registry client is made available in the Waher.Networking.Provisioning NuGet
(or the Waher.Networking.Provisioning.UWP NuGet). It ties into the other XMPP
libraries presented so far. We begin by defining a variable for it:

private ThingRegistryClient registryClient = null;

The Controller Chapter 10

[207]

Once the XMPP client establishes a connection, we call a new method called
RegisterDevice. We will define this function to be asynchronous:

Task.Run(this.RegisterDevice);

Or:

await this.RegisterDevice();

Looping through available components
The first step is to find the thing registry. We assume that it is made available as a
component of the same broker that we are connected to. To avoid searching the broker
every time the device is restarted, we first check if we already know the address of the
registry:

private async Task RegisterDevice()
{
 string ThingRegistryJid = await RuntimeSettings.GetAsync(
 "ThingRegistry.JID", string.Empty);

 if (!string.IsNullOrEmpty(ThingRegistryJid))
 await this.RegisterDevice(ThingRegistryJid);
 else
 {
 Log.Informational("Searching for Thing Registry.");

Our search begins by looping through all items on the broker. These items publish a set of
features. These items and features are accessed through Service Discovery:

this.xmppClient.SendServiceItemsDiscoveryRequest(
 this.xmppClient.Domain, (sender, e) =>
{
 foreach (Item Item in e.Items)
 {
 this.xmppClient.SendServiceDiscoveryRequest(
 Item.JID, async (sender2, e2) =>
 {

Service Discovery is an extension to XMPP, and is defined in XEP-0030.
Service Discovery classes are defined in the
Waher.Networking.XMPP.ServiceDiscovery namespace.

The Controller Chapter 10

[208]

Finding the thing registry
We then analyze the set of features presented by each item, or component. If any of them
present the namespace defined in XEP-0347 for Thing Registries, we use the JID presented
by the component as the address for the registry:

try
{
 Item Item2 = (Item)e2.State;

 if (e2.HasFeature(ThingRegistryClient.NamespaceDiscovery))
 {
 Log.Informational("Thing registry found.", Item2.JID);

 await RuntimeSettings.SetAsync(
 "ThingRegistry.JID", Item2.JID);
 await this.RegisterDevice(Item2.JID);
 }
}
catch (Exception ex)
{
 Log.Critical(ex);
}

Creating a Thing Registry client
Now that we know the address of the Thing Registry, we must create a
ThingRegistryClient object to communicate with it:

private async Task RegisterDevice(string RegistryJid)
{
 if (this.registryClient == null ||
 this.registryClient.ThingRegistryAddress != RegistryJid)
 {
 if (this.registryClient != null)
 {
 this.registryClient.Dispose();
 this.registryClient = null;
 }

 this.registryClient = new ThingRegistryClient(
 this.xmppClient, RegistryJid);
}

The Controller Chapter 10

[209]

Defining the conceptual identity of the thing
The next step is to define a set of metadata tags that will constitute the conceptual identity of
the device. You can choose any tags you like. Tags are simply key-value pairs. Keys are
always strings, and values can be either strings or numeric (floating-point) values. Each key
tag (or name) is case insensitive. Some keys are defined in the IANA iotdisco URI scheme
definition, as well as XEP-0347. You should adhere to these for interoperability. They
include tags for physical identity, identity of the manufacturer, make, model, and version of
the device, as well as location information, and so on. We begin with some static
information:

string s;
List<MetaDataTag> MetaInfo = new List<MetaDataTag>()
{
 new MetaDataStringTag("CLASS", "Sensor"),
 new MetaDataStringTag("TYPE", "MIoT Sensor"),
 new MetaDataStringTag("MAN", "waher.se"),
 new MetaDataStringTag("MODEL", "MIoT SensorXmpp"),
 new MetaDataStringTag("PURL",
 "https://github.com/PeterWaher/MIoT"),
 new MetaDataStringTag("SN", this.deviceId),
 new MetaDataNumericTag("V", 1.0)
};

For a list of pre-defined tags, see
https://xmpp.org/extensions/xep-0347.html#tags.

Adding existing location information
To allow a controller to find things in its vicinity, we must register the location of the
devices it wants to find. We can do this either using numeric longitude, latitude, and
altitude values or using geographic reference tags. The longitude, latitude, and altitude
values might be valuable if you do applications that are geographically sensitive. But they
are difficult to use in smart city applications since vicinity is not defined by concepts of
geographical distance, but by other concepts, such as room, apartment, office, department,
address, and so on.

https://xmpp.org/extensions/xep-0347.html#tags

The Controller Chapter 10

[210]

In our examples, we will use the second approach. We first check if we have these values
available. If so, we add them to our metadata information about the device, using the tags
COUNTRY, REGION, CITY, AREA, STREET, STREETNR, BLD, APT, ROOM, and NAME, some of
which can be empty. By the virtue of having these values, we also assume we update an
existing registration:

if (await RuntimeSettings.GetAsync(
 "ThingRegistry.Location", false))
{
 s = await RuntimeSettings.GetAsync(
 "ThingRegistry.Country", string.Empty);
 if (!string.IsNullOrEmpty(s))
 MetaInfo.Add(new MetaDataStringTag("COUNTRY", s));

 ...

 this.UpdateRegistration(MetaInfo.ToArray());
}

Collecting location information
If we don't have access to this location information, we will use a simple approach of
displaying a dialog to the user. There the user can provide the required information:

else
{
 try
 {
 await MainPage.Instance.Dispatcher.RunAsync(
 CoreDispatcherPriority.Normal, async () =>
 {
 try
 {
 RegistrationDialog Dialog = new RegistrationDialog();

 switch (await Dialog.ShowAsync())
 {

The Controller Chapter 10

[211]

If the user fills in the form and presses the Register button, the information is persisted to
be used the next time the device is restarted. If the user presses the Cancel button, the
registration process starts again (since registration in our simple example is required). The
form included in the projects looks like the one shown in the following screenshot. Note
that the fields are optional. Depending on the granularity you need, different sets of fields
can be used:

case ContentDialogResult.Primary:
 await RuntimeSettings.SetAsync("ThingRegistry.Country",
 s = Dialog.Reg_Country);
 if (!string.IsNullOrEmpty(s))
 MetaInfo.Add(new MetaDataStringTag("COUNTRY", s));

 ...

 this.RegisterDevice(MetaInfo.ToArray());
 break;

case ContentDialogResult.Secondary:
 await this.RegisterDevice();
break;

Collecting location information.

The Controller Chapter 10

[212]

Registering the device
Now that we have the metadata information we require for the device, it's an easy task to
register it with the Thing Registry. We simply call the RegisterThing method on the thing
registry client and monitor the success of the operation in the result.

The first parameter in the RegisterThing() method call is a Boolean parameter that lets
the registry know if the thing is self-owned or not. A device that is self-owned makes its
own security decisions. For now, we will work with self-owned devices, so we set this
parameter to true. In the next chapter, we will introduce the concept of provisioning,
where the owner of a device can control who can access the device and do what with it:

private void RegisterDevice(MetaDataTag[] MetaInfo)
{
 Log.Informational("Registering device.");

 this.registryClient.RegisterThing(true, MetaInfo,
 async (sender, e) =>
 {
 try
 {
 if (e.Ok)
 {
 Log.Informational(
 "Registration successful.");

 await RuntimeSettings.SetAsync(
 "ThingRegistry.Location",
 true);
 }
 else
 {
 Log.Error("Registration failed.");
 await this.RegisterDevice();
 }
 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }
 }, null);
}

The Controller Chapter 10

[213]

You can call the Unregister() method to unregister the thing from the
registry.

Updating a registration
After a thing has been registered, we can update the registration as many times as we want.
We can only update our own registration. The difference between a registration and an
update is that a registration rewrites the complete set of metadata for the device, while an
update only changes, updates, or adds tags to the set, but it does not remove tags not
mentioned. Updates only work if there's a previous registration, however. If the update
procedure fails, we try to re-register the thing instead:

private void UpdateRegistration(MetaDataTag[] MetaInfo)
{
 Log.Informational("Updating registration of device.");

 this.registryClient.UpdateThing(MetaInfo, (sender, e) =>
 {
 if (e.Ok)
 Log.Informational(
 "Registration update successful.");
 else
 {
 Log.Error("Registration update failed.");
 this.RegisterDevice(MetaInfo);
 }
 }, null);
}

Updates are useful, especially if you have tags that change during the
lifetime of the device. This may include the longitude, latitude, and
altitude of a moving device, for instance. When you update a registration,
only the tags being updated or added are included. If you want to remove
a tag, set it to the empty string.

The Controller Chapter 10

[214]

Creating a controller
We are now ready to create our controller application. This controller application will
register itself with any available thing registry published by its broker, using the same
method presented earlier. It will then use the same registry to find our sensor and actuator,
by searching for the corresponding conceptual identities of both, limited to the same
geographical information the controller has. In this way, we can automatically detect
devices in our vicinity, regardless of how many instances of the sensor and actuator
applications there are registered in the registry.

Identifying things
While we have worked with standalone things (each one identified using a single XMPP
address called a JID), generic things on the XMPP network, as registered in a Thing
Registry, can be addressed using one, two, three, or four parameters, depending on the size
of the host publishing the interface to the thing:

JID XMPP address of device.

Node ID Address of virtual node inside device.

Source ID Larger devices might divide their nodes into sets, called data sources. Node
identities are unique within their data source, if specified.

Partition Large data sources might be further partitioned into subsets. If this is the case,
it is the triplet (node ID, data source ID, partition) that is considered unique.

Devices that publish more than one logical device (or node) are also referred to as
concentrators, since they concentrate several, possibly virtual, devices behind a single
XMPP endpoint. This can be used by composite devices, such as Programmable Logical
Controllers (PLCs), that encapsulate logical functions as nodes inside a single physical unit.
Concentrators can also be used in protocol bridges or when interfacing larger systems. We
will discuss concentrators more in the next chapter. For now, it's sufficient to recognize that
a thing in the network can be identified using one to four of these parameters, where the JID
parameter is the only required parameter. We define the corresponding variables for these
references:

private string sensorJid = null;
private string actuatorJid = null;
private ThingReference sensor = null;
private ThingReference actuator = null;

The Controller Chapter 10

[215]

The ThingReference class, defined in Waher.Things, contains NodeId,
SourceId and Partition properties.

Finding friends in the roster
After a successful registration or update of an existing registration in the Thing Registry, the
controller calls the FindFriends method with the metadata used in the registration:

this.FindFriends(MetaInfo);

The FindFriends method will connect the controller to the corresponding sensor and
actuator in its vicinity. The first step is to check that such connections are not already
defined. We will use the roster of our XMPP connection, that is, our list of "friends," as the
knowledge base of our contacts. To each contact on our roster, we can assign groups. Groups
are just string tags we annotate each contact with. We can use this array of groups to
describe our contacts. These descriptions are stored on the broker, and follow our account,
rather than our local storage. This means that if you change hardware, but reuse the XMPP
account, it will retain the information and friendships. So, the first thing we need to do is
check our roster if we already have our sensor and actuator identified:

private void FindFriends(MetaDataTag[] MetaInfo)
{
 this.sensorJid = null;
 this.sensor = null;
 this.actuator = null;
 this.actuatorJid = null;

 foreach (RosterItem Item in this.xmppClient.Roster)
 {
 if (Item.IsInGroup("Sensor"))
 {
 this.sensorJid = Item.BareJid;
 this.sensor = this.GetReference(Item, "Sensor");
 }

 if (Item.IsInGroup("Actuator"))
 {
 this.actuatorJid = Item.BareJid;
 this.actuator = this.GetReference(Item,
 "Actuator");
 }
 }

The Controller Chapter 10

[216]

Here, the GetReference() method loops through all groups to extract
any NodeId, SourceId, and Partition parameters made available by
the presence of optional group names, such as Sensor.nid:NODEID,
Sensor.sid:SOURCEID, and Sensor.prt:PARTITION. See the GitHub
source example for the details.

Limiting the search domain
If we have already a sensor connection defined, we skip to the subscription of sensor data
directly. There's no need to perform an actual search:

if (!string.IsNullOrEmpty(this.sensorJid))
 this.SubscribeToSensorData();

If, on the other hand, a sensor connection is not defined, or if an actuator connection is not
defined, we need to perform a search. We want to find appropriate devices near where the
controller is. We do this by preparing the search and aggregating search operators (defined
in the Waher.Networking.XMPP.Provisioning.SearchOperators namespace)
corresponding to the location-based metadata tags we are using in our registration:

if (string.IsNullOrEmpty(this.sensorJid) ||
 string.IsNullOrEmpty(this.actuatorJid))
{
 List<SearchOperator> Search = new List<SearchOperator>();

 foreach (MetaDataTag Tag in MetaInfo)
 {
 if (Tag is MetaDataStringTag StringTag)
 {
 switch (StringTag.Name)
 {
 case "COUNTRY":
 case "REGION":
 case "CITY":
 case "AREA":
 case "STREET":
 case "STREETNR":
 case "BLD":
 case "APT":
 case "ROOM":
 case "NAME":
 Search.Add(new StringTagEqualTo(
 StringTag.Name,
 StringTag.StringValue));

The Controller Chapter 10

[217]

 break;
 }
 }
 }

We top off the search by limiting it to the types of devices that we are interested in:

Search.Add(new StringTagGreaterThan("TYPE", "MIoT "));

Performing the search
Now that we have the scope of the search defined, performing the search is easy. We call
the Search method on the registry client, submitting an offset, the maximum number of
nodes to return in the search result, and a callback method to call when the result is
returned:

Log.Informational("Searching for MIoT devices in my vicinity.");

this.registryClient.Search(0, 100, Search.ToArray(),
 (sender, e) =>
 {
 Log.Informational(e.Things.Length.ToString() +
 (e.More ? "+" : string.Empty) + " things found.");

Picking suitable devices
Each thing in the search result, apart from being public, is also returned with the complete
set of metadata tags it has registered with the registry. We loop through the things found,
and analyze the TYPE tag to identify which things correspond to our sensor and actuator:

foreach (SearchResultThing Thing in e.Things)
{
 foreach (MetaDataTag Tag in Thing.Tags)
 {
 if (Tag.Name == "TYPE" &&
 Tag is MetaDataStringTag StringTag)
 {
 switch (Tag.StringValue)
 {
 case "MIoT Sensor":
 if (string.IsNullOrEmpty(
 this.sensorJid))
 {

The Controller Chapter 10

[218]

 this.sensorJid = Thing.Jid;
 this.sensor = Thing.Node;

Only the sensor case will be demonstrated. The actuator case is completely
analogous.

Making new friends
When we have identified a device we need access to, we need to update our roster
accordingly by annotating the contact with the corresponding groups. If a roster item
already exists, we update it. If one does not exist, we add one. We also need to send a
presence subscription to the corresponding device, if one is not already available, to be able
to communicate with it:

 RosterItem Item = this.xmppClient[this.sensorJid];
 if (Item != null)
 {
 this.xmppClient.UpdateRosterItem(this.sensorJid,
 Item.Name, this.AddReference(Item.Groups,
 "Sensor", Thing.Node));

 if (Item.State != SubscriptionState.Both &&
 Item.State != SubscriptionState.To)
 {
 this.xmppClient.RequestPresenceSubscription(
 this.sensorJid);
 }
 }
 else
 {
 this.xmppClient.AddRosterItem(
 new RosterItem(this.sensorJid, string.Empty,
 this.AddReference(null, "Sensor", Thing.Node)));

 this.xmppClient.RequestPresenceSubscription(
 this.sensorJid);
 }
}
break;

The Controller Chapter 10

[219]

Here, the AddReference() method does the opposite of what the
GetReference() method does: it adds group names encoding the
identity of the device. See the GitHub repository for details.

Reacting to roster events
Changes to the roster may occur for different reasons. You might change the roster yourself.
Another application, logged in to the same account as you, may change the roster. And
those that you have presence subscriptions to may change the state of the subscription.
Your application therefore needs to respond to changes in the roster, to maintain its state of
operation. There are three events you need to listen to: when roster items are added,
updated, or deleted:

this.xmppClient.OnRosterItemAdded +=
 XmppClient_OnRosterItemAdded;
this.xmppClient.OnRosterItemUpdated +=
 XmppClient_OnRosterItemUpdated;
this.xmppClient.OnRosterItemRemoved +=
 XmppClient_OnRosterItemRemoved;

Adding a friend
When a new roster item has been added, you need to make sure you subscribe to its
presence if it's a sensor or actuator. Otherwise, you will not be able to communicate with it
properly:

private void XmppClient_OnRosterItemAdded(object Sender,
 RosterItem Item)
{
 Log.Informational("Roster item added.", Item.BareJid);

 if (Item.IsInGroup("Sensor") || Item.IsInGroup("Actuator"))
 {
 Log.Informational("Requesting presence subscription.",
 Item.BareJid);

 this.xmppClient.RequestPresenceSubscription(
 Item.BareJid);
 }
}

The Controller Chapter 10

[220]

Losing a friend
When you lose a connection, or a friend, you might need to update your state or find new
devices, if the connection that was lost was your sensor or actuator. Since this may happen
for various reasons, we create a function for this event:

private void XmppClient_OnRosterItemRemoved(object Sender,
 RosterItem Item)
{
 Log.Informational("Roster item removed.", Item.BareJid);
 this.FriendshipLost(Item);
}

When this happens, we restart the registration procedure, which in turn triggers the search
procedure. This will allow the controller to eventually find new devices in its vicinity to
which it can connect, to continue its operation:

private void FriendshipLost(RosterItem Item)
{
 bool UpdateRegistration = false;

 if (string.Compare(Item.BareJid, this.sensorJid, true) == 0)
 {
 this.sensorJid = null;
 this.sensor = null;
 UpdateRegistration = true;
 }

 if (string.Compare(Item.BareJid, this.actuatorJid, true) == 0)
 {
 this.actuatorJid = null;
 this.actuator = null;
 UpdateRegistration = true;
 }

 if (UpdateRegistration)
 Task.Run(this.RegisterDevice);
}

The Controller Chapter 10

[221]

Reacting to revoked presence subscriptions
If one of your contacts cancels your presence subscription, you need to reorganize yourself
as well, since you will no longer be able to communicate properly with that device. You
should treat this case in the same way as if the roster item was removed. Any other changes
might be caused by changes in the remote device. So, to make sure, you should re-subscribe
to its sensor data, if it's a sensor, to make sure you continue to get information from it:

private void XmppClient_OnRosterItemUpdated(object Sender,
 RosterItem Item)
{
 bool IsSensor;

 Log.Informational("Roster item updated.", Item.BareJid);

 if (((IsSensor = (this.sensorJid != null &&
 string.Compare(Item.BareJid,this.sensorJid,true)==0)) ||
 (this.actuatorJid != null &&
 string.Compare(Item.BareJid,
 this.actuatorJid,true)==0))&&
 (Item.State == SubscriptionState.None ||
 Item.State == SubscriptionState.From) &&
 Item.PendingSubscription!=PendingSubscription.Subscribe)
 {
 this.FriendshipLost(Item);
 }
 else if (IsSensor)
 this.SubscribeToSensorData();
}

Reacting to presence changes
Now that you have presence subscriptions active for your contacts, you need to react to
changes in presence. They may indicate that the corresponding device has restarted, for
instance. So, you need to register an event handler that is called when presence changes for
one of your contacts in the roster:

this.xmppClient.OnPresence += XmppClient_OnPresence;

The Controller Chapter 10

[222]

Whenever your sensor signals an online presence, you should re-subscribe to it, to make
sure events are delivered in a timely fashion:

private void XmppClient_OnPresence(object Sender, PresenceEventArgs e)
{
 Log.Informational("Presence received.",
 e.Availability.ToString(), e.From);

 if (this.sensorJid != null &&
 string.Compare(e.FromBareJID,this.sensorJid,true)==0 &&
 e.IsOnline)
 {
 this.SubscribeToSensorData();
 }
}

Interacting with devices
We now have what we need to start interacting with our devices. In the previous chapter,
we demonstrated how to create a sensor server and an actuator server. The controller,
however, will be a sensor client and actuator client. We prepare the controller with
variables for this purpose. The classes are available in the same NuGets and namespaces as
the server counterparts:

private SensorClient sensorClient = null;
private ControlClient controlClient = null;

When we instantiate them, we provide them with a reference to our XMPP client:

this.sensorClient = new SensorClient(this.xmppClient);
this.controlClient = new ControlClient(this.xmppClient);

We will also maintain the current state, from the controller point of view, of the current
values of the sensor and actuator, as well as the timestamps of when the values were last
assigned:

private double? light = null;
private bool? motion = null;
private bool? output = null;
private DateTime lastEventFields = DateTime.Now;
private DateTime lastEventErrors = DateTime.Now;
private DateTime lastOutput = DateTime.Now;

The Controller Chapter 10

[223]

As a sensor client, we have two options to retrieve data. Either we poll it, using the
Request/Response pattern, or we use the event subscription pattern to get informed of
changes as they occur. As hinted at in previous sections, the latter is the best option for our
controller. We will maintain our current subscription in a separate variable:

private SensorDataSubscriptionRequest subscription = null;

Subscribing to sensor data events
From several sections of the code, we've made references to a SubscribeToSensorData()
method that will be called when we're ready to subscribe to the sensor data from the sensor.
We are now ready to focus on how this is done. The first thing to note is that we can only
perform a subscription if we know a sensor, and if it is online:

private void SubscribeToSensorData()
{
 RosterItem SensorItem;

 if (!string.IsNullOrEmpty(this.sensorJid) &&
 (SensorItem=this.xmppClient[this.sensorJid]) != null &&
 SensorItem.HasLastPresence &&
 SensorItem.LastPresence.IsOnline)
 {

If a previous subscription exists, we make sure to unsubscribe to it. This has the effect that if
stray messages are received on this subscription, they are thrown away, and the sender
informed the subscription is no longer active:

if (this.subscription != null)
{
 this.subscription.Unsubscribe();
 this.subscription = null;
}

The Controller Chapter 10

[224]

Performing the subscription is done by calling the Subscribe() method on the
SensorClient object. You need to consider if the subscription is made to a node in a
concentrator or to a standalone device. You also need to provide which types of fields you
are interested in, any subscription rules, and minimum and maximum time intervals for
events. In our case, we are only interested in momentary values, and the Light and Motion
fields. We're interested in Light as soon as it changes by one unit of a percent. The motion
should be sent when it changes by 1, which is the same to say, as when it changes value
since it is a Boolean value. We don't want events more often than once a second, and no less
often than once a minute. These two parameters are important since they make sure we
don't get spammed, while at the same time they give us a means to measure if the
subscription is active or not. If we don't get an event in a little more than a minute, we can
be certain the subscription has been forgotten for one reason or another:

ThingReference[] Nodes;

if (this.sensor.IsEmpty)
 Nodes = null;
else
 Nodes = new ThingReference[] { this.sensor };

Log.Informational("Subscribing to events.",
SensorItem.LastPresenceFullJid);

this.subscription =
this.sensorClient.Subscribe(SensorItem.LastPresenceFullJid,
 Nodes, FieldType.Momentary, new FieldSubscriptionRule[]
 {
 new FieldSubscriptionRule("Light", this.light, 1),
 new FieldSubscriptionRule("Motion",
 this.motion.HasValue ?
 (double?)(this.motion.Value ? 1 : 0) : null, 1),
 },
 new Waher.Content.Duration(false, 0, 0, 0, 0, 0, 1),
 new Waher.Content.Duration(false, 0, 0, 0, 0, 1, 0), true);

Reacting to sensor data events
Any incoming events related to our subscription can be accessed through event handlers on
the subscription object that is returned from the subscription request. To follow these
events, we define three event handlers:

 this.subscription.OnStateChanged +=
 Subscription_OnStateChanged;
 this.subscription.OnFieldsReceived +=

The Controller Chapter 10

[225]

 Subscription_OnFieldsReceived;
 this.subscription.OnErrorsReceived +=
 Subscription_OnErrorsReceived;
 }
}

For two of these events, we will simply output their state to the event log, so we can follow
the process:

private void Subscription_OnStateChanged(object Sender,
 SensorDataReadoutState NewState)
{
 Log.Informational("Sensor subscription state changed.",
 NewState.ToString());
}

private void Subscription_OnErrorsReceived(object Sender,
 IEnumerable<ThingError> NewErrors)
{
 this.lastEventErrors = DateTime.Now;

 foreach (ThingError Error in NewErrors)
 Log.Error(Error.ErrorMessage);
}

Collecting relevant sensor data
The field event handler is called when sensor data is received from the subscription. It will
contain an enumeration of fields. All we need to do is loop through them and see if we can
find the fields we are looking for. If we do, we update our internal state, and make sure we
update the controller output. We also make sure to update our main window, so that we get
visual feedback:

private void Subscription_OnFieldsReceived(object Sender,
 IEnumerable<Field> NewFields)
{
 bool RecalcOutput = false;

 this.lastEventFields = DateTime.Now;

 foreach (Field Field in NewFields)
 {
 switch (Field.Name)
 {
 case "Light":

The Controller Chapter 10

[226]

 if (Field is QuantityField Q)
 {
 MainPage.Instance.LightUpdated(
 Q.Value, Q.NrDecimals, Q.Unit);
 if (Q.Unit == "%")
 {
 this.light = Q.Value;
 RecalcOutput = true;
 }
 }
 break;

 case "Motion":
 if (Field is BooleanField B)
 {
 MainPage.Instance.MotionUpdated(
 B.Value);
 this.motion = B.Value;
 RecalcOutput = true;
 }
 break;
 }
 }

Calculating control output
For this example, we will use a very simple formula to compute the expected control
output: we will turn the relay on, if motion is detected when it's dark, which we interpret as
when the (ambient) light sensor reports a light of less than 25%. The relay is turned off
when there's no motion, or when it's not dark anymore:

if (RecalcOutput && this.motion.HasValue && this.light.HasValue)
{
 bool Output = this.motion.Value && this.light.Value < 25;

Care must be taken when installing the light sensor, so that it is not
affected by, say, a lamp, connected to the relay. The expected output
should also have a time component, to avoid intermittent blinking states.

The Controller Chapter 10

[227]

Performing control action
We are now ready to perform the control action. First, we need to get the full JID of the
actuator. This is done by checking the last presence sent by the actuator. This is stored in the
corresponding roster item. Note that we can only perform the control action if the actuator
is online:

if (!string.IsNullOrEmpty(this.actuatorJid) &&
 (!this.output.HasValue || this.output.Value != Output))
{
 RosterItem Actuator = this.xmppClient[this.actuatorJid];

 if (Actuator != null &&
 Actuator.HasLastPresence &&
 Actuator.LastPresence.IsOnline)
 {

Performing a control operation on an actuator is done by calling the Set() method on the
ControlClient object instance. As when subscribing to events, we must differentiate
between an actuator that runs standalone and an actuator that operates as a node inside a
concentrator:

 ThingReference[] Nodes;

 if (this.actuator.IsEmpty)
 Nodes = null;
 else
 Nodes = new ThingReference[]
 { this.actuator };

 this.controlClient.Set(
 Actuator.LastPresenceFullJid,
 "Output", Output, Nodes);
 this.output = Output;
 this.lastOutput = DateTime.Now;

 MainPage.Instance.RelayUpdated(Output);
 }
 }
 }
}

The Controller Chapter 10

[228]

Recovering from stale states
The final thing we need to do before our controller is ready, is to add a mechanism to
recover from stale states. There are many reasons why a controller might end up in a stale
state. A stale state is defined as a state that does not correspond to reality. There might be
network problems for the controller, or any of the devices it depends on. The devices might
be broken, replaced, or simply restarted. To build in some form of resilience into our
controller, we need to monitor that we get sensor data in a timely fashion and that we can
perform control actions properly.

There are basically three things we need to monitor:

That we receive subscription events properly
That the device connections are still valid
That we have a proper configuration at all

To monitor these, we set up a timer that is executed regularly every second. We define a
variable for it:

private Timer secondTimer = null;

And initiate it during initialization of the controller:

this.secondTimer = new Timer(SecondTimerCallback, null,
 1000, 1000);

Re-subscribing to sensor data
Our first test is to compute the number of seconds since we got some information from our
subscription. If it's more than 70 seconds (remember that we configured a maximum
interval of 60 seconds), we draw the conclusion that the subscription is no longer active. So
we make a new subscription request:

private void SecondTimerCallback(object State)
{
 DateTime Now = DateTime.Now;
 double SecondsSinceLastEvent = Math.Min(
 (Now - this.lastEventFields).TotalSeconds,
 (Now - this.lastEventErrors).TotalSeconds);
 double SecondsSinceLastOutput =
 (Now - this.lastOutput).TotalSeconds;
 RosterItem Item;
 bool Search = false;

The Controller Chapter 10

[229]

 if (this.subscription != null && SecondsSinceLastEvent > 70)
 this.SubscribeToSensorData();

Invalidating existing friendships
If more than a day has passed, and we still do not get data from the sensor, we invalidate
the connection, and remove the annotations we have stored for the corresponding roster
item:

else if (SecondsSinceLastEvent > 60 * 60 * 24)
{
 if (!string.IsNullOrEmpty(this.sensorJid))
 {
 Item = this.xmppClient[this.sensorJid];

 this.sensor = null;
 this.sensorJid = null;

 if (Item != null)
 {
 this.xmppClient.UpdateRosterItem(this.sensorJid,
 Item.Name, this.RemoveReference(Item.Groups,
 "Sensor"));
 }
 }

 Search = true;
}

Here, the RemoveReference() method removes the groups used for
annotating the roster item, and that is used by the AddReference() and
GetReference() methods. See the GitHub repository for details.

The Controller Chapter 10

[230]

Reconfiguring the controller
We do an identical test for the actuator. If we haven't been able to configure the actuator for
a day, we assume the connection is no longer valid, so we invalidate it. The local Search
variable is used to signal if we need a reconfiguration. If that is the case, we just re-register
the controller with the thing registry again. That process will, in turn, trigger a new search,
and find new devices:

 if (Search)
 Task.Run(this.RegisterDevice);
}

Decommissioning of devices
We are now done with our controller. The controller will now work and control the actuator
based on input from the sensor, if both have been registered in the same registry, using the
same location tags.

There are two issues we have not covered in this chapter, but need considering in a real-life
scenario:

Provisioning: The next chapter will introduce this concept. It will allow the
owner of a device to control who can do what with it. Provisioning also handles a
transfer of ownership of devices.
Decommissioning: When a device is no longer to be used on the internet, it
should be unregistered from the Thing Registry, so that others cannot find it and
try to interact with it. A device unregisters itself by calling the Unregister()
method on the ThingRegistryClient object instance. A controller may also
need to test multiple devices in the search result, assuming some of them might
not be valid anymore.

The Controller Chapter 10

[231]

Summary
In this chapter, you’ve been shown the basic principles of how to create a controller that
dynamically finds, connects to, and interacts with devices in its vicinity on the internet.
You’ve been introduced to the fundamentals of discovery on the internet, as well as the
basic principles of Thing Registries and how these can be used to interconnect entities on
the internet. You have learned the difference between conceptual and network identities,
and how these can be paired using an ownership claim procedure. You’ve also learned how
XMPP helps realize discovery and interaction between devices, how to register self-owner
devices, update metadata about the device, and search for devices in a Thing Registry. You
also know how to maintain a sensor data subscription alive with a sensor and how to
perform control operations on an actuator. In the next chapter, we will delve deeper into the
concepts of security and interoperability between things on the internet and see how
standardization efforts can help you solve some of these issues.

11
Product Life Cycle

 Managing devices in an IoT infrastructure is more complicated than just installing devices,
finding them, and starting to communicate with them, as we did in the previous chapter.
You need to manage the devices over their entire life cycle. Furthermore, if you're planning
to host an open network of IoT devices, you need to make sure the owners of each device
can manage their own devices. Otherwise, the operator of the network will quickly become
overloaded with work managing other people's devices. Lastly, interaction between devices
and other entities must also be done in a secure manner. This chapter presents a method for
how to accomplish all these things. It covers:

A definition of ownership of data
Claiming things as your own
Determining who is allowed to befriend your things
Determining who can read your things
Determining who can control your things
Automatic decision support for things
Transfer of ownership
Decommissioning of things

Product Life Cycle Chapter 11

[233]

Defining ownership of data
In recent years, the predatory exploitation of information on the internet has highlighted the
problem that there's no clear definition of ownership of data on the internet. Huge
corporations are pushing the big data paradigm to hoard as much information as they
possibly can, in the hope that it can be mined in the future to create additional value. This
value will obviously fall into the hands of the companies doing the hoarding themselves,
not the original creators of the information being hoarded. While big data and data mining
have their obvious valuable use cases, their drawbacks must be clearly understood to be
effectively addressed.

While certain types of information are protected by different types of legislation, there's no
generic legislation that can be used to define ownership of data, and control its use, as well
as profit from its usage. There is intellectual property and copyright legislation to protect
ideas and created content. Trade secrets, legislation can be used to protect sensitive
information. Privacy legislation can be used to protect personally identifiable information.
While certain types of sensor data could be personal information, and thus protected by
privacy legislation, it is far from the case in general. And the possibility of automatically
hoarding sensor data from the internet makes any policing of such laws very difficult. In
short, generally, there are no laws that can be used to protect sensor data on the internet.
The responsibility to protect your data therefore lies with the owner.

Choosing who should own the data
Before we can try to define ownership of data, we must understand who should be the
owner of the data. There are different candidates:

Should the owner be the person or entity generating or inventing the data? For
IoT, that would best correspond to the owner of the device generating the data.
Or should the owner be the person or entity processing or controlling the data? In
that case, it could be the big data corporation hoarding information from the
internet that becomes the owner of the information it has hoarded.
Another possibility is that the owner of the information could be the person
whom the data relates to.

Product Life Cycle Chapter 11

[234]

Owners of devices would prefer the first option to be true. They invested in the devices, and
want to own any information those devices generate. Big data enterprises in turn prefer the
second option. They want to benefit from mining any information they can get access to,
and benefit from being able to decide with or to whom to share or sell this information. The
disadvantages of such an approach for the owners of the devices and private persons
should be obvious. Privacy activists in turn would opt for the third option. A fanatic
interpretation of this is also problematic, since it would prohibit legitimate uses of certain
personal information by others as well. The approach chosen in this book is the first option,
empowering the owner of a device to control the information that device produces.

Understanding ownership of physical objects
Before we define ownership of information, let's first look at how ownership of physical
objects is defined and enforced, to see if we can mimic it for information as well.

If you own something, how do you enforce your ownership of this thing in the general
case? Certain types of items, such as vehicles or real estate, have central registries where
ownership is defined, and where third parties can go to verify ownership claims. Valuable
things can also be registered in a similar manner, by sending information and photographic
evidence of the things to an insurance company, for instance. In that way, claims of
ownership can be verified.

But how do you enforce ownership of less valuable things? If you place them openly in the
street, can you still successfully claim the things are yours if somebody chooses to take
them? Obviously not. You need to protect the things behind lock and key. Insurance
companies will not respond to claims of lost things that have not been appropriately
protected. But more is required. If you carelessly allow anybody access to the thing,
including people that are not trustworthy, can you complain if the thing is lost or
destroyed? Of course not. You also need to limit access to the thing, based on trust.

If you haven't seen your thing in long a while, can you still claim that you are in possession
of it? If you haven't seen a thing in decades, are you sure it is still there? Claiming
ownership of a thing also requires knowledge of presence, or monitoring.

You demonstrate your ownership of a thing if you comply with all of the aforementioned
factors.

Product Life Cycle Chapter 11

[235]

Defining ownership of information
We are now ready to define ownership of information, in a congruent manner. The
cornerstone of defining ownership of information is using decentralization of storage and
processing of the information as the principal method. This is in stark contrast to
centralized storage and processing, as defined in big data.

Note that decentralization as a principal means of processing is not
opposed to centralized processing of (parts of) the information. It just
means that centralized processing is secondary, and always with approval
from the primary source.

Decentralization of processing permits you to demonstrate your ownership of the
decentralized information, as follows:

If the data is only available in your device, it can be protected behind lock and
key
If the communication infrastructure properly authenticates identities of
participants, authorization can be used to limit access based on trust
Propagation of presence of all participants to approved subscribers in the
network allows you to easily monitor your devices
Registration of ownership claims of devices in a Thing Registry allows for
verification of ownership

Note that limiting access to the data is key to controlling ownership. As
soon as the data leaves your control, the other party can technically do
whatever they desire with it. You should therefore only allow access to
your data to those that you intimately trust, or have a contract with, or an
other arrangement, that specifies what can be done with the data. If you
don't do this, you cannot enforce your ownership of the data, and for all
practical reasons, you've lost your data.

All the requirements for being able to control ownership of data is possible if an
infrastructure based on XMPP is used. XMPP furthermore has the benefit of being
standardized, and therefore interoperable. Of the protocols presented in this book, it is the
only protocol with these properties. Ownership is enforced in XMPP by the following:

Protection under lock and key are solved in XMPP using authentication and
encryption.
Trust is modeled using presence subscriptions.

Product Life Cycle Chapter 11

[236]

Limiting access can be done manually, or automatically, using a method called
provisioning. We will discuss provisioning in more depth in this chapter.
Monitoring of your devices is done using presence.
Registration and discovery is performed in Thing Registries, as described in the
previous chapter.

Limiting access to your information has an added advantage: it provides a
means to establish the value of your information, by controlling who has
access to it. Only limited resources have value. And the value is
established on the principles of supply and demand. Limiting access to
information will form the basis for creating an open market of information
in the smart society.

Understanding provisioning
The major item still left to discuss, before we have an infrastructure where we can control
ownership of the information it generates, is provisioning. Provisioning is the means to
control who can access your devices, and do what with them.

The IEEE IoT Harmonization working group, which we presented in previous chapters,
provides an extension to XMPP for provisioning. (This interface is based on legacy
interfaces defined in XEP-0324.) The provisioning extension provides things with decision
support in answering three main questions:

Am I allowed to accept a presence subscription request from an entity?
Am I allowed to be read by an entity, and if so, which data?
Am I allowed to be controlled by an entity, and if so, which parameters?

The provisioning extension defines the concept of a provisioning server to which all things
can ask the aforementioned questions when necessary. The provisioning server in turn
makes sure to ask the owner, when the owner is available, if a question arises it cannot find
an answer to, based on previous responses from the owner. Before the owner can respond,
the principle of data protection by default is used, and the request is automatically denied.
But as soon as the owner has responded, successive questions will get the updated
response.

Product Life Cycle Chapter 11

[237]

Things are encouraged to cache responses to questions they pose. When
rules are updated, the provisioning server simply asks the corresponding
devices to clear their caches. This will make sure the devices ask the
corresponding questions again, thus making sure the answers reflect the
new rules. In production, the load on the provisioning server is
proportional to the change of rules in the network, and not the size of the
network.

Using a Thing Registry to register ownership
Figure 1 provides a schematic overview of the entire life cycle of a thing. In the previous
chapter, we illustrated how a Thing Registry can be used as a bulletin board to discover
things according to some parameters. We used self-owned things to illustrate the concept
without complicating matters unduly. But a Thing Registry can also be used to match things
and owners, and interchange their network identities with each other. This matching of
ownership is basically the registry of ownership for things that we need. The initial steps
are as follows:

During production, only meta-information about each produced thing is known.
This meta-information, or conceptual identity, is stored in each thing.
During installation, the thing is physically installed and connected.
During configuration, a network identity is generated. This includes IP addresses
and other types of network addresses. In XMPP, this includes the creation of an
XMPP address. This address is not known to anybody else other than the thing,
and the broker with which the thing has registered.
The thing then generates a random key. This key will be used to make sure
guessing the meta-information of a thing is practically impossible.
The thing then registers itself with the Thing Registry. This time, it does not
register itself as self-owned. Instead, it has no owner from the beginning. In this
registration process, the metadata made available from production, as well as the
key, is registered with the Thing Registry.
Somehow, the metadata is transferred from the thing to the owner. It can be done
using an iotdisco URI, and a QR code, as described in the previous chapter.
With the information provided, the owner can now claim the device as his or
hers, by sending the same information to the same Thing Registry in a claim
request. If there's an unclaimed thing with exactly the same information
available, including the key, the thing is registered as owned, and the network
identities of each are sent to the other.

Product Life Cycle Chapter 11

[238]

Note: if QR codes on stickers, prepared in production, are to be used to
transfer the meta-information to the owner, the key needs to be generated
already in the production environment. If so, a decision has to be made if
the same key is to be reused, or a new one generated, when transferring
the ownership at a later stage.

Figure 1. Life cycle of a thing

Product Life Cycle Chapter 11

[239]

Provisioning of a claimed thing
When we created self-owned things in the previous chapter, they had to take decisions by
themselves. In this chapter, as we introduce provisioning and the concept of ownership, we
have an alternative. As soon as something happens in the network that the thing does not
know how to respond to, it can ask the provisioning server, who will help the thing answer
the question. The provisioning server, in turn, will ask the corresponding owner, if it does
not know the answer. An example sequence is illustrated in Figure 2. The questions we will
focus on are:

Can an entity subscribe to presence?
Can an entity read the device, and how much?
Can an entity control the device, and which parameters?

The provisioning server is found in the same way as the Thing Registry was found: by
examining the components made available by the XMPP broker. Typically, it can even be
the same component as the Thing Registry, even though it does not have to be.

During the claimed phase, the thing is also free to update and amend the meta-information it
has registered in the Thing Registry. This is useful, as the thing is now able to update the
registry with variable information, such as position. Such information cannot be part of the
original registration, since claiming ownership requires the information to be static:

Product Life Cycle Chapter 11

[240]

Figure 2. Interaction between device, provisioning server, and owner

Product Life Cycle Chapter 11

[241]

Ending ownership
All ownership comes to an end, either if the thing changes owner, or the thing is thrown
away or destroyed. To support these events, two operations are available: disowning a
thing and unregistering a thing. Disowning a thing removes the ownership registration, but
leaves the thing in the Thing Registry. The thing then re-registers itself, allowing it to be
claimed by a new owner. In this way, a transfer of ownership can take place. Unregistering
a thing, means the thing is removed from the Thing Registry altogether. It is the graceful
thing to do, at the end of the life of a thing.

When the ownership of a thing gets transferred to a new owner, it is
vitally important to transfer it in the provisioning server as well. Without
this transfer of ownership, the old owner will be able to control the device
without the knowledge of the new owner.

Adding provisioning support to our devices
We are now ready to implement support for provisioning in our devices. We create two
new projects, a SensorXmpp2 and an ActuatorXmpp2. We base these on the SensorXmpp
and ActuatorXmpp projects, developed in the previous chapters. The
Waher.Networking.XMPP.Provisioning namespace, already made available in these
projects, contains a ProvisioningClient class which will do most of the work. It supports
both the device and owner interfaces of provisioning.

Provisioning interfaces are published by the IEEE IoT Harmonization
working group, introduced in Chapter 9, Social Interaction with Your
Devices Using XMPP.

Searching for a provisioning server
For our purposes, we start with the device set of interfaces for provisioning. We add a
member variable that will hold our provisioning client to both our SensorXmpp2 and
ActuatorXmpp2 projects:

private ProvisioningClient provisioningClient = null;

Product Life Cycle Chapter 11

[242]

When we search the components made available by the server to find a Thing Registry, we
make sure to check for provisioning support as well:

if (e2.HasFeature(ProvisioningClient.NamespaceProvisioningDevice))
{
 Log.Informational("Provisioning server found.", Item2.JID);
 this.UseProvisioningServer(Item2.JID, OwnerJid);
 await RuntimeSettings.SetAsync("ProvisioningServer.JID",
 Item2.JID);
}

Here, the OwnerJid contains the JID to the device's owner, if known. If not, it is simply
empty.

Creating a provisioning client
When we've found a component providing provisioning support, we instantiate a
provisioning client, pointing to that component:

private void UseProvisioningServer(string JID, string OwnerJid)
{
 if (this.provisioningClient == null ||
 this.provisioningClient.ProvisioningServerAddress!=JID||
 this.provisioningClient.OwnerJid != OwnerJid)
 {
 if (this.provisioningClient != null)
 {
 this.provisioningClient.Dispose();
 this.provisioningClient = null;
 }

 this.provisioningClient = new ProvisioningClient(
 this.xmppClient, JID, OwnerJid);
 this.AttachFeatures();
 }
}

Now that we have created a provisioning client referencing our XMPP
client, we must remove the OnPresenceSubscribe and
OnPresenceUnsubscribe event handlers defined earlier. These are now
managed by the provisioning client, who will forward new requests to the
provisioning server, who in turn will forward any new requests to the
owner.

Product Life Cycle Chapter 11

[243]

Adding provisioning support
In the AttachFeatures method that we defined in previous chapters, we create the
corresponding sensor, actuator, and chat servers. All we need to do to add provisioning
support to these is to add a reference to the provisioning client, to each constructor. For a
sensor server, we simply write:

this.sensorServer = new SensorServer(this.xmppClient,
 this.provisioningClient, true);

The control server in an actuator is instantiated in a similar manner (here, the ellipsis
represents the control parameters we give the control server by default):

this.controlServer = new ControlServer(this.xmppClient,
 this.provisioningClient, ...);

Similarly, instantiation of the chat server also accepts a provisioning client as an argument:

this.chatServer = new ChatServer(this.xmppClient, this.bobClient,
 this.sensorServer, this.provisioningClient);

As soon as a readout event or control operation is received, these three server objects will
now check with the provisioning client if the operation is allowed or not, or if only parts of
the request are permitted. Only permitted operations will be allowed to be executed.

Registration of device
We must also modify our registration procedure with the Thing Registry. In the previous
chapter, we registered self-owned things. These are their own owners and manage security
decisions by themselves. Now we must point out that the devices are not self-owned:

this.registryClient.RegisterThing(false, MetaInfo,
 async (sender, e) =>
 {
 try
 {

In the response, we can learn if the thing has already been claimed. If so, we make sure to
update our internal state to reflect this ownership:

if (e.Ok)
{
 await RuntimeSettings.SetAsync("ThingRegistry.Location",
 true);
 await RuntimeSettings.SetAsync("ThingRegistry.Owner",

Product Life Cycle Chapter 11

[244]

 e.OwnerJid);

Transmitting the conceptual identity
If our device does not have an owner, we must make it possible for the owner to claim the
device. This is done by presenting the same meta-information as the device just registered.
We do this by creating an iotdisco URI that we store to a file:

if (string.IsNullOrEmpty(e.OwnerJid))
{
 string ClaimUrl = registryClient.EncodeAsIoTDiscoURI(MetaInfo);
 string FilePath = ApplicationData.Current.LocalFolder.Path +
 Path.DirectorySeparatorChar + "Sensor.iotdisco";

 Log.Informational("Registration successful.");
 Log.Informational(ClaimUrl, new KeyValuePair<string, object>(
 "Path", FilePath));

 File.WriteAllText(FilePath, ClaimUrl);
}

Instead of storing the iotdisco URI as a file, a more efficient way to
transmit the URI is by encoding it using QR codes.

Reacting to claims
Device claims can occur either when the device is online, or when it is offline. We need to
handle both cases. If the claim occurred while the device was offline, we get notified of this
fact in the response to the registration call:

 else
 {
 await RuntimeSettings.SetAsync("ThingRegistry.Key",
 string.Empty);
 Log.Informational("Registration updated. Device has "+
 "an owner.", new KeyValuePair<string, object>(
 "Owner", e.OwnerJid));
 }

Product Life Cycle Chapter 11

[245]

By adding an event handler for the Claimed event on the ThingRegistry instance, we can
react immediately to the event, if the device is online. We store the network address of the
owner, as well as clear the key:

this.registryClient.Claimed += async (sender, e) =>
{
 try
 {
 await RuntimeSettings.SetAsync("ThingRegistry.Owner",
 e.JID);
 await RuntimeSettings.SetAsync("ThingRegistry.Key",
 string.Empty);
 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }
};

Updating the registration of our device
In the same way, we need to react to the thing being disowned. This can also happen either
when the device is online or offline. If it happens offline, we detect it when we update our
registration in the Thing Registry, by checking the response arguments. When the device
has been disowned, we make sure to forget the identity of the previous owner, and re-
register the device as a claimable device again:

this.registryClient.UpdateThing(MetaInfo, async (sender, e) =>
{
 try
 {
 if (e.Disowned)
 {
 await RuntimeSettings.SetAsync(
 "ThingRegistry.Owner", string.Empty);
 await this.RegisterDevice(MetaInfo);
 }
 else if (e.Ok)
 Log.Informational(
 "Registration update successful.");
 else
 {
 Log.Error("Registration update failed.");
 await this.RegisterDevice(MetaInfo);
 }

Product Life Cycle Chapter 11

[246]

 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }
}, null);

Reacting to being disowned
Similarly, we must detect if the device becomes disowned while it is online. This is done by
listening to the Disowned event on the ThingRegistry instance:

this.registryClient.Disowned += async (sender, e) =>
{
 try
 {
 await RuntimeSettings.SetAsync("ThingRegistry.Owner",
 string.Empty);
 await this.RegisterDevice();
 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }
};

There are some other minor changes made in the code between
SensorXmpp2 and ActuatorXmpp2 compared to SensorXmpp and
ActuatorXmpp that reflect the asynchronous nature of initializing the
devices with provisioning. You can view the changes in the GitHub
project source code, by comparing the App.xaml.cs files of the
corresponding projects.

Product Life Cycle Chapter 11

[247]

Managing the owner side
The ProvisioningClient instance allows you to create a GUI for the owner-side
application that can be used to configure your network. When the device-side interface has
requests, the owner side has corresponding events. The following events can be subscribed
to, so as to listen for incoming questions from the provisioning server:

Event Description

IsFriendQuestion
This event is raised when the owner needs to decide if a third
party is allowed to subscribe to the device's presence or not.

CanReadQuestion
When the provisioning server needs to ask the owner if a third
party is allowed to read one of its devices, this event is raised.

CanControlQuestion
When a new control operation is attempted, this event is raised to
allow the owner to decide if it's allowed or not.

Note that the owner does not need to be online when the device asks the
provisioning server a question. The provisioning server keeps the message
and sends it to the owner when the owner gets online.

Deciding what to do
Somehow, the owner needs to decide how to respond to the questions posed by the
provisioning server. This can either be done manually, by the owner, or through some
advanced method using machine learning. Regardless of the method, the owner sends back
rule increments to the provisioning server. The provisioning server in turn persists these
increments, helping it to respond to similar requests in the future.

The friendship question can only be responded to in the affirmative or negative. Either the
third party can connect, or it cannot. The read and control responses have more flexibility.
Apart from an affirmative or a negative option, it is also possible to grant partial
permissions. Here, either the allowed categories of sensor data fields, or the actual field or
parameter names, can be specified in the rule increment. If the third party tries to read or
control more, only the approved fields or parameters will be allowed.

Product Life Cycle Chapter 11

[248]

The rule increments can also be based on the origin of the request. For friendship questions,
the origin can be limited to the caller XMPP address (or JID) of the third party, its domain,
or it can be ignored, handling all future requests according to the rule increment. For the
read and control options, the choice can also be based on the presence of a service, device,
or user token. The methods available for answering questions are:

Event Response methods

IsFriendQuestion IsFriendResponse

CanReadQuestion

CanReadResponseCaller
CanReadResponseDomain
CanReadResponseService
CanReadResponseDevice
CanReadResponseUser
CanReadResponseAll

CanControlQuestion

CanControlResponseCaller
CanControlResponseDomain
CanControlResponseService
CanControlResponseDevice
CanControlResponseUser
CanControlResponseAll

Managing owned devices
The owner interface also has methods that allow you to manage your devices. You can use
these methods if you don't persist the devices you own, or if you want to experiment with
devices you're currently developing. Some of the more important methods are:

Method Description

GetDevices Gets a list of the devices you own.

ClearDeviceCache
Asks the provisioning server to request a particular device to clear
its rule cache.

ClearDeviceCaches
Asks the provisioning server to request all owned devices to clear
their rule caches.

DeleteDeviceRules

There are two overloads of this method. One requests the
provisioning server to delete all rules pertaining to a particular
owned device. The other allows the owner to delete all rules for all
its devices.

Product Life Cycle Chapter 11

[249]

Using tokens for identification
Devices, owners, or third-party services can use tokens to identify either a service, a device,
or a user. These tokens are small and easy to distribute in distributed transactions. They can
also be challenged: a process used to verify that a sender is allowed to use a given token.

To get a token, the corresponding entity registers a certificate with a public key with the
provisioning server, and gets a token as a response. Anyone receiving a token can ask the
provisioning server for the corresponding public certificate. But only the original sender of
the certificate retains the private key. To challenge a token, a challenge message is sent to
the sender of the token. If the token is resent from another source, the receiver of the
challenge needs to forward the challenge to the original sender. The original sender can use
the private key to respond to the challenge. Only the holder of the private key can do that.
But anyone with the public key can verify that the response is correct.

The challenge/response mechanism for tokens is managed by the
provisioning client and the provisioning server. This process is invisible to
users of the ProvisioningClient class.

Both readout requests and control requests can be annotated using a variable number of
tokens, of three different categories (service, device, and user). By doing that, it is possible
to create rules based on the use of certificates, regardless from where the corresponding
request comes. This might simplify matters greatly for owners, since they can approve
access based on the corresponding service, device, or user, instead of having to check who
controls a given network identity.

Available methods for managing tokens include:

Method Description

GetToken

Sends the public part of a certificate to the provisioning server. A
corresponding token is returned. The token can then be distributed.
Only the holder of the private part of the certificate can successfully
respond to challenges.

GetCertificate
Gets the public part of a certificate corresponding to a given token.
This method can be used to verify the identity of the holder of the
token, by performing an X.509 certificate validation.

Product Life Cycle Chapter 11

[250]

Testing provisioning
To test the provisioning capabilities of your devices, you can either develop your own GUI,
or use the simple IoT Client available in the IoT Gateway GitHub repository. Setup files
are available.

The simple IoT Client can be downloaded from:
https://github.com/PeterWaher/IoTGateway#clients

For source code examples of how the owner interface is implemented,
see https:/ /github. com/ PeterWaher/ IoTGateway/ blob/ master/ Clients/
Waher. Client. WPF/ Model/ Provisioning/ ThingRegistry. cs.

Provisioning your devices
When you open your IoT Client for the first time, you need to create a connection to an
XMPP broker. This is done using the Connect to... command (the star icon). That allows you
to create an account or connect to an existing account on an XMPP broker. Connect to the
same broker your devices use, so that you can automatically use the same Thing Registry
and provisioning server.

https://github.com/PeterWaher/IoTGateway#clients
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs
https://github.com/PeterWaher/IoTGateway/blob/master/Clients/Waher.Client.WPF/Model/Provisioning/ThingRegistry.cs

Product Life Cycle Chapter 11

[251]

Once you're connected, you will see the Thing Registry and provisioning server component
or components. Right-click this component to access context-sensitive commands. You can
also right-click any of your devices to get context-sensitive commands relating to
provisioning and the registry. Press the Add... button (the plus sign). In the context of a
Thing Registry command, this means you want to add a device to the list of your devices, or
claim one as your own:

Figure 3. Accessing context-sensitive commands for the Thing Registry

Product Life Cycle Chapter 11

[252]

Claiming a device
Now, fetch the iotdisco URI generated for the device you want to claim. Paste it into the
dialog that appears. You will be able to see all the metadata encoded in the URI, as is shown
in Figure 4:

Figure 4. Claiming a device

Product Life Cycle Chapter 11

[253]

Click the Claim button, and the device is yours (unless it has already been claimed by
somebody else), as shown in Figure 5. As it is yours, you can now do anything with it:

Figure 5. Claim successful

Adding rules
If somebody else tries to connect to your device, a tab will appear called Questions. In this
tab anything you need to decide will be shown. Figure 6 shows an example of when a third
party tries to read the device. Note that you can choose how much you will allow the third
party to be able to read:

Product Life Cycle Chapter 11

[254]

Figure 6. Answering questions from the provisioning server

Summary
In this chapter, you've been shown the basic principles of how to add provisioning support
to your devices, and how to control who can do what with your things.

Product Life Cycle Chapter 11

[255]

In this chapter, you've learned:

The fundamentals of ownership of information
The basic principles of provisioning
How to add provisioning support to your devices
How to react to provisioning events
How to manage your devices
How certificates and tokens can be used for identification
How to test your devices

In the next chapter, we will analyze how we can build even more powerful things, by
analyzing the concept of concentrators, and how to manage multiple virtual devices inside
a single physical entity.

12
Concentrators and Bridges

Real-world devices are sometimes complex. They often host multiple logical entities or
logical devices providing different functionalities inside themselves. This encapsulation of
virtual devices inside one communicating entity is called a concentrator. A concentrator
concentrates multiple virtual or logical devices into one physical device. A method is
presented that allows you to work with virtual devices seamlessly, as if they were
standalone devices on the network. The same technique can be used to bridge between
protocol islands, either using the same or different types of communication protocols, or to
integrate backend systems into the network. This chapter covers:

An introduction to the concept of concentrators
How concentrators can be used to model embedded devices
How concentrators can be used to bridge between protocols
How concentrators can be used to integrate backend systems
How embedded nodes are referenced
How concentrators are managed
How to create a concentrator that hosts both our sensor and actuator
How to provision embedded devices in a concentrator

Concentrators and Bridges Chapter 12

[257]

Introducing concentrators
Up to this point, we've studied relatively simple devices, each fitting neatly into a physical
device. But often, you can add value to your physical device, if you divide it into multiple
logical devices. A simple example may be our sensor. It senses two different things: ambient
light and motion. These two things are independent of each other and could be modeled as
individual sensors logically. But running them on different Raspberry Pi would be more
expensive and would only make sense if the actual sensors were separated by some
distance. For that reason, it is more cost efficient to implement them into one single unit.
They share the same Raspberry Pi, operating system, and network connection.

Dividing a device into multiple logical devices permits you to do things you normally
would not do with a single device: you can manage and operate them separately on the
network. You can also provision them differently and assign different owners to the
different logical devices. Sometimes, this makes a lot of sense, as we will soon see.

Understanding concentrators in XMPP
Since a concentrator is a single physical device with a single connection to the network,
another form of internal addressing is required to identify which internal device is
referenced in a request. In XMPP, the physical device, or the concentrator, has a single
XMPP Address, or Jabber ID (JID).

Embedded devices, or logical devices, are called nodes, and they are identified with node
identities. Optionally, these nodes can be collected into data sources, if there are many
nodes with different functions. For very large concentrators, data sources can optionally be
divided into partitions as well. A node identity is unique within the given partition and
data source in which it resides. If there are no partitions or data sources, these can be
considered blank strings.

In all IoT-related interactions except presence subscription, you can address a logical node
instead of the physical device, by adding an id attribute (node identity), and optionally a
src (data source) and a pt (partition) attribute as well. Since presence is managed on an
XMPP address basis, you must manage those on a concentrator level. How these identities
can be used to model different types of concentrators will be explored in the following
sections.

Concentrators and Bridges Chapter 12

[258]

Attribute Meaning Description

id Node identity Identifies the node. The identity is unique within the data
source and partition in which the node resides.

src Data Source
Optional data source identity. Nodes can be divided into
collections called data sources. If not provided, the empty
string is assumed.

pt Partition Optional partition. Data sources can be further partitioned.

Modeling a Programmable Logic Controller
A Programmable Logic Controller, or PLC, is a device with some generic functionality that
can be configured (or programmed) in certain ways to interact with its surroundings.
Typically, it contains a series of input or output modules, either analog, digital, and/or
serial. More advanced PLCs contain other types of objects as well. If the PLC is to be
connected to the network, it makes no sense to create an individual connection for each
input/output module. Instead, the PLC gets a single connection.

Some PLCs can be modeled as a single sensor or actuator with a sequence of input fields
(for example, Input 1, Input 2, ...) or output fields (Output 1, Output 2, and so on). But
it would make more sense to model the PLC as a concentrator, where each input or output
module becomes a logical device embedded in the PLC. This has several advantages:

Each module of a similar kind gets the same type of interface, such as field
names, parameters, and so on (Input or Output, for example).
They can be registered separately and claimed by different owners.
Interfaces for embedded devices are typically simpler.
Service interfaces become more loosely coupled, and do not have to consider
changes in the capabilities of different PLCs, such as the quantity and types of
embedded devices. It is sufficient to recognize the interfaces of the embedded
devices that are used.

Concentrators and Bridges Chapter 12

[259]

The following diagram illustrates a PLC modeled as a concentrator. Data sources and
partitions are not used in this example. Only the node identity is used to identify the
corresponding embedded device:

PLC modeled as a concentrator

Bridging protocols
The concentrator abstraction is versatile and can be used in many different use cases.
Another common task that suits the model well is the implementation of Protocol Bridges.
There are many advantages of building a protocol bridge that bridges devices and services
from one protocol to and from XMPP using concentrators. The implementation would be
seamless. Actors on the different sides would not have to know anything about the protocol
on the other side. They would not even know that they are communicating with entities
that use another protocol. The reason for this flexibility, is the versatility of the XMPP
protocol in supporting the different communication patterns typically used in IoT-based
protocols.

Concentrators and Bridges Chapter 12

[260]

The following diagram illustrates a simple bridge between the XMPP network and a
Modbus network. Modbus is a common protocol used in industrial automation
applications. In this example, the logical devices inside the concentrators are not embedded
devices, but external standalone devices, and they are communicating using Modbus,
instead of XMPP. Here, devices are divided into data sources, representing different
Modbus networks. Each data source is identified with the IP address of the corresponding
TCP/IP Modbus gateway that is being used:

Protocol bridge modeled as a concentrator

I've prepared an MQTT to XMPP bridge, reachable at the XMPP address
iot.eclipse.org@waher.se. It is a concentrator app that runs on a
Raspberry Pi, which bridges data published on the MQTT broker,
available at iot.eclipse.org. The topic tree is modeled as nodes in the
concentrator. You can read and subscribe to data on the nodes. You can
publish data to the broker by sending control operations to the
corresponding topics.

Note: The bridge is provisioned to add an extra level of security on top of
the MQTT. This means that the first time you try to access the bridge, it
will reject your presence subscription. Send me a mail beforehand, and I
will make sure you get access to the bridge.

https://iot.eclipse.org/

Concentrators and Bridges Chapter 12

[261]

Integrating backend systems
Another great use case for the concentrator pattern is to integrate backend systems into the
network. By using a concentrator as a point of integration, data in the backend system will
appear as devices in the XMPP network. This will allow services and other devices to
interact with the backend system, just as if it was any other type of device in the network.
This has great benefits, since it removes the need to support the backend system directly in
all devices and services that need data from the backend system.

The following diagram contains a simple example of backend system integration using
concentrators. Note how the partitioning of data sources allows for identities do be reused
in different partitions, without the creating ambiguity. This is useful in larger systems and it
can be used to solve many problems. One such problem can be the desire to reutilize object
identities available in country-specific datasets, as illustrated in the following diagram:

Backend system integration using concentrators

Concentrators and Bridges Chapter 12

[262]

Referencing embedded nodes
In the previous chapters, we've used different classes from different NuGet packages to
perform different tasks on the XMPP network. Depending on whether we've implemented a
sensor, an actuator, a controller, or a combination of these, different classes have been used.
The following table gives an overview of the different classes that we have used, together
with their most important methods and events:

Class Methods Events

SensorClient
RequestReadout()
Subscribe()

SensorServer OnExecuteReadoutRequest

ControlClient
Set()
GetForm()
CancelForm()

ControlServer OnGetControlParameters

ThingRegistryClient

RegisterThing()
UpdateThing()
Mine()
Remove()
Unregister()
Disown()
Search()

Claimed
Removed
Disowned

ProvisioningClient

GetToken()
GetCertificate()
IsFriend()
CanRead()
CanControl()
IsFriendResponse()
CanReadResponse*()
CanControlResponse*()
ClearDeviceCaches()
ClearDeviceCache()
GetDevices()
DeleteDeviceRules()

IsFriendQuestion
CanReadQuestion
CanControlQuestion

Concentrators and Bridges Chapter 12

[263]

Referencing embedded sensor nodes
Referencing embedded nodes is done through overloading of the methods we are already
familiar with. The SensorClient class has two main methods for obtaining sensor data:
the RequestReadout and Subscribe methods. The first returns data immediately, the
second when new data is made available. Both methods have overloaded versions that
enable you to provide a reference to one or more ThingReference objects. Each
ThingReference object (class defined in Waher.Things) contains a NodeId, SourceId,
and a Partition property. By adding such references to the request, you direct the request
to the corresponding embedded node instead of to the concentrator itself.

You can explicitly reference the concentrator itself, by adding a reference
to the static ThingReference.Empty property. It has the three properties
set to the empty string.

Sensor data is asynchronously returned to the client and provided through events on the
request object. This data consists of collections of Field and ThingError objects. Each
Field object has a Thing property that lets you know from which node the data comes. If
the reference is empty, it comes from the device maintaining the XMPP connection itself.
Each ThingError object also contains a reference to the originating node, if any.

Supporting embedded sensor nodes
Sensors instantiate the SensorServer class to publish sensor data. There is no need to
instantiate one such class for each embedded sensor node. Instead, only the concentrator
needs to instantiate it. Incoming requests raise the OnExecuteReadoutRequest event. The
event argument class contains a Nodes property that contains the nodes referenced in the
request. The event handler must then either redirect the request to the corresponding
embedded sensor node, or handle the embedded nodes internally in the event handler.

During readout, a collection of Field or ThingError objects is generated. Each one
contains a reference to the node from where the data originated. If the device is not a
concentrator, a reference to ThingReference.Empty is used.

Concentrators and Bridges Chapter 12

[264]

Referencing embedded actuator nodes
Interaction with actuators is done using the ControlClient class. The two main methods
are Set and GetForm. The first is used to perform control actions, the second to get
available control actions. Both methods have overloads accepting one or more
ThingReference objects, referencing the embedded actuator nodes in question.

Supporting embedded actuator nodes
For simple actuators, we instantiate the ControlServer class with a set of control
parameters that the actuator publishes. For concentrators we cannot always do this since the
embedded actuators typically have different sets of control parameters.

If all embedded actuators have the same set of control parameters, we can still instantiate
the ControlServer class with the set of control parameters to publish. The get and set
event handlers contain a reference to the embedded node in question. If, on the other hand,
the embedded actuators do not have the same set of control parameters, we instantiate the
ControlServer class without parameters. Instead, we provide an event handler for the
OnGetControlParameters event. The event handler gets a reference to the node in
question from the Node property in the event arguments and returns a set of control
parameters for the referenced node.

Using embedded nodes in Thing Registries
All devices in Thing Registries are referenced using their XMPP address, their optional
node identity, source identity, and partition. If the last three are not provided, they are
assumed to be blank. The ThingRegistryClient that we use to interact with a Thing
Registry has overloaded versions of all methods accepting embedded node references. This
includes the RegisterThing, UpdateThing, Remove, Unregister, and Disown methods.

When we claim a device, we send only metadata to the registry. But the response contains a
Node property that together with the JID property identifies the corresponding node. In the
same way, the Claimed, Removed, and Disowned events contain a Node reference that
points to the corresponding embedded node, if not empty. When searching for things using
the Search method, each SearchResultThing found also contains a Node reference.

Concentrators and Bridges Chapter 12

[265]

The concentrator can choose to either only register itself, leaving the node
identity, source identity, and partition blank or omitted, or to register
relevant embedded nodes as well. The first option is useful, if
provisioning of embedded nodes is not of relevance. The second option
allows each embedded node to be administered by a separate owner. Each
embedded node will get its own stack of rules in the provisioning server.
Presence subscription will be managed by the concentrator only, however.

Consider the following example: in a building there might be
a PLC installed with many input/output modules. These modules might
be shared by many of the apartments in the building. If the property
manager wants to allow the residents to control their input/output
modules, it makes sense to provision each embedded node by itself. This
would allow each resident to be able to control their modules, without
letting them control the modules of their neighbors, except with their
explicit permission.

Using embedded nodes in provisioning
From a device perspective, all provisioning tasks are taken care of by the
ProvisioningClient class, together with the SensorServer and ControlServer
classes. All you need to do is instantiate the ProvisioningClient class and provide a
reference to it to the SensorServer and ControlServer object instances. These will then
interact, including the management of any information related to embedded nodes.

Presence subscription can only be handled on an XMPP account basis. So, the IsFriend
method does not take any reference to embedded nodes. However, the CanRead and
CanControl methods both have overloads that accept one or more ThingReference
objects.

From an owner perspective, the provisioning client raises events when questions are
received from the provisioning server. The IsFriendQuestion event does not provide
information about embedded nodes, nor does the IsFriendResponse method, as detailed
earlier. But the CanReadQuestion and CanControlQuestion events both provide the
node identity, source identity, and partition in the event arguments to the corresponding
event handler. Likewise, the CanReadResponse*() and CanControlResponse*()
methods all accept a node reference argument, for specifying any embedded node
reference.

Concentrators and Bridges Chapter 12

[266]

The provisioning rule caches are assumed to be managed on a concentrator level. For this
reason, the ClearDeviceCaches and ClearDeviceCache methods do not take embedded
node information. However, the DeleteDeviceRules method does accept node reference
information in an overload, allowing owners to delete rules pertaining to specific
embedded nodes.

Managing a concentrator
Referencing embedded nodes is only one part of managing a concentrator. While the
preceding interfaces might be sufficient for interacting with small devices with a fixed
number of embedded nodes, there are many cases where management of embedded
devices is required.

The Waher.Networking.XMPP.Concentrator and .UWP NuGet packages define a
ConcentratorClient and ConcentratorServer class that will help you with these tasks.
They will help with:

Management and discovery of data sources
Management of nodes in data sources, including browsing, searching, updating,
adding, and removing embedded nodes, including large sets of nodes
Access management
Execution of commands and queries
Management of sensor data databases

All concentrator functions are optional, and the concentrator can choose which features to
support. This allows the interface to support very simple concentrators (such as PLCs),
medium-sized concentrators (such as bridges), and large concentrators (such as backend
systems). At the same time, clients accessing concentrators will have the possibility to adapt
to the features supported by the concentrator.

The work on the concentrator interfaces is an ongoing effort within the
IEEE IoT Harmonization working group. It was formerly managed in the
XMPP Standards Foundation, under the name XEP-0326.

Concentrators and Bridges Chapter 12

[267]

Interfacing a concentrator
The basic class for interfacing a concentrator is the ConcentratorClient class. You can
use the GetCapabilities method to check which methods are supported by a specific
concentrator. You can explore the data sources provided by the concentrator, by calling the
GetAllDataSources, GetRootDataSources, and GetChildDataSources methods. If
there are many data sources in a concentrator, they can be ordered in a tree structure.
Similarly, nodes in data sources can also be ordered in a tree structure. Given a data source,
you can access available nodes and their properties by calling the GetNode, GetNodes,
GetAllNodes, GetRootNodes, and GetChildNodes methods.

Other methods are available. Check the corresponding classes and their
code documentation for more information.

Building a concentrator
For small static concentrators, where embedded devices should be individually
provisioned, there's strictly speaking not much more to do other than to manage embedded
node references in your code when you interact with the Thing Registry, and when you
manage sensor data and control requests from clients. The Thing Registry manages the
discovery process and provisioning is transparent to the device. Your SensorServer and
ControlServer instances manage requests for embedded nodes.

But this method does not allow clients, such as the owner of a concentrator, to browse
available nodes on the device, and certainly not if the embedded nodes are not individually
provisioned, or if more administrative tasks are required. The ConcentratorServer class
can help you to build a more dynamic concentrator that allows clients with sufficient access
privileges to administer the concentrator. It also creates an object model, which makes it
easier for developers to define data sources and node structures.

Concentrators and Bridges Chapter 12

[268]

Defining data sources
All concentrators created using the ControlServer class publish at least one data source.
All embedded nodes reside in one of those data sources. While the concept of a data source
is optional in the sensor data, control, registry, and provisioning interfaces, it is a required
component when building concentrators using the ControlServer class. It gives the
ControlClient class a means to browse nodes in a logical sense. It also gives the
developer a logical model for publishing nodes.

All data sources implement the IDataSource interface (defined in Waher.Things). This
interface gives each data source an identity, a localizable name, references to root nodes and
child sources, as well methods to do access control.

Localization support is provided by Waher.Runtime.Language. It
provides a means to return and process translated strings in different
languages.

Defining embedded nodes
Each embedded node in the concentrator implements the INode interface (defined in
Waher.Things). Apart from node identity, a localizable name, references to child nodes,
and basic access control, it also provides a means for publishing editable, and localizable
properties, commands, and more.

The INode interface, however, only defines a generic embedded node. It allows the
ConcentratorServer object to manage the embedded nodes. To make an embedded node
into a sensor or an actuator respectively, you should implement the ISensor or IActuator
interfaces correspondingly (also defined in Waher.Things). These interfaces will allow the
ConcentratorServer object to read sensor data and to get access to control parameters.

Concentrators and Bridges Chapter 12

[269]

The following diagram shows the basic object model for nodes in a concentrator:

Concentrator object model

Redirecting node requests
When the ConcentratorServer object is instantiated, it creates its own SensorServer
and ControlServer instances. There is no need to instantiate these separately. When a
request is received on these objects, it checks that the request is properly made, and that
references, data sources and nodes exist, and are correctly defined.

Concentrators and Bridges Chapter 12

[270]

If a sensor data request is received, for instance, the ConcentratorServer object checks
that the node exists and that it implements the ISensor interface. If the IsReadable
property is true, it proceeds by calling the StartReadout method, defined by ISensor,
on the node. Similarly, if a control operation is received, the ConcentratorServer object
checks that the node implements the IActuator interface. If the IsControllable
property is true, it can access its controllable parameters by calling the
GetControlParameters method defined by IActuator. All other types of processing,
including error management, are managed by the ConcentratorServer object.

Implementing a concentrator
We are now ready to implement our first concentrator. The goal will be to create a
concentrator that includes both our sensor and our actuator into a single physical device. It
will work seamlessly with the controller application developed in Chapter 10, The
Controller, since each embedded node registers itself as a separate thing. The details of this
implementation can be found in the ConcentratorXmpp project, in the Mastering Internet of
Things GitHub repository.

Instantiating the concentrator
Instantiating the concentrator is easy. We first add a reference to the
Waher.Networking.XMPP.Concentrator.UWP NuGet package to our project (if we're not
doing an UWP app, we add the Waher.Networking.XMPP.Concentrator NuGet). We
then simply create the object, with a reference to the XMPP client object we use, and
reference to all the root data sources we define. We will define only one data source, the
MeteringTopology data source. It is the default data source for embedded nodes that can
be used for metering applications or cyber-physical systems. Nodes are arranged in a
network topology, defining how they are connected and how to communicate with them:

this.concentratorServer = new ConcentratorServer(this.xmppClient,
 new MeteringTopology());

Note that we do not need to instantiate the SensorServer and
ControlServer classes, since the ConcentratorServer does this for us.

Concentrators and Bridges Chapter 12

[271]

Defining the data source
Defining the metering topology data source is a straightforward process. We begin by
stating that it implements the IDataSource interface:

public class MeteringTopology : IDataSource
{
 public MeteringTopology()
 {
 }

We define some basic properties of the source, such as its identity, that it does not have any
child sources, and that it does not change over time:

public const string ID = "MeteringTopology";
public string SourceID => ID;
public bool HasChildren => false;
public DateTime LastChanged => DateTime.MinValue;
public IEnumerable<IDataSource> ChildSources => null;

We also need to make sure to give the data source a localizable human-readable name.
Localizable strings are divided into namespaces. These namespaces can be defined as
strings or as types, in which case the namespace becomes the full name of the type.
Localizable strings are then identified and numbered using positive integer's values. A
default value is also provided, in case the string is not defined yet. In that case, the default
string is persisted for the corresponding namespace and identity number:

public Task<string> GetNameAsync(Language Language)
{
 return Language.GetStringAsync(typeof(MeteringTopology), 1,
 "Metering Topology");
}

Check the Waher.Runtime.Language NuGet and the Translator class
for more information about how to browse, export, and import dynamic
localizable strings.

Concentrators and Bridges Chapter 12

[272]

Providing basic access control
The IDataSource defines a method called CanViewAsync, which allows the data source to
decline access to the source unless certain prerequisites are met. For our first
implementation, we will assume that anyone who has been granted access to the
concentrator, also has access to the data source:

public Task<bool> CanViewAsync(RequestOrigin Caller)
{
 return Task.FromResult<bool>(true);
}

The RequestOrigin object will contain the XMPP address (or JID) of the entity making the
request to access the data source. It also contains any service, device, or user tokens used in
the call. Access can be granted or rejected based on any of these identities.

Publishing our nodes
Our data source will only contain two static embedded root nodes. We add these in code:

public static ActuatorNode ActuatorNode = new ActuatorNode();
public static SensorNode SensorNode = new SensorNode();

public IEnumerable<INode> RootNodes =>
 new INode[] { ActuatorNode, SensorNode };

Access to all nodes in the source is provided through the GetNodeAsync method. Since our
implementation only contains two static nodes, we do a simple if-then-else sequence to
check for the identities. In a more dynamic setting, some form of look-up procedure would
be used:

public Task<INode> GetNodeAsync(IThingReference NodeRef)
{
 if (SensorNode.SameThing(NodeRef))
 return Task.FromResult<INode>(SensorNode);
 else if (ActuatorNode.SameThing(NodeRef))
 return Task.FromResult<INode>(ActuatorNode);
 else
 return Task.FromResult<INode>(null);
}

Concentrators and Bridges Chapter 12

[273]

Defining our embedded sensor node
To define a node class, we need to determine which of the interfaces, ISensor or
IActuator, to implement. Implementing ISensor and IActuator automatically
implements INode, which is a requirement. But the node can also choose to implement
both. For our sensor node, we will only implement the ISensor interface, however. We
base our class on the ThingReference class, defined in Waher.Things. The sensor node
will have a static identity. And we do not use partitions in our example:

public class SensorNode : ThingReference, ISensor
{
 public const string NodeID = "Sensor";

 public SensorNode()
 : base(NodeID, MeteringTopology.ID, string.Empty)
 {
 }

The ThingReference class defines the NodeId property, which we define in the
constructor. The INode interface provides two alternative identities that can be used in
certain cases: a LocalId, which is unique only among siblings, and a LogId, which is used
when logging events relating to the node. For our purposes, we let these be identical to the
NodeId property:

public string LocalId => this.NodeId;
public string LogId => this.NodeId;

Defining basic properties
Our example model is static, as we mentioned before. We will not support editing of nodes:

public DateTime LastChanged => DateTime.MinValue;

Our sensor will always be readable and never controllable. While the ISensor and
IActuator interfaces define the methods for these actions, a class implementing the
ISensor interface, for example, might not always be readable. It might depend on settings
or timing:

public bool IsReadable => true;
public bool IsControllable => false;

Concentrators and Bridges Chapter 12

[274]

Our nodes will not define any commands either:

public bool HasCommands => false;
public Task<IEnumerable<ICommand>> Commands => null;

We need to define a localizable human-readable name for the node class:

public Task<string> GetTypeNameAsync(Language Language)
{
 return Language.GetStringAsync(typeof(MeteringTopology), 4,
 "Sensor Node");
}

Defining the node topology
The node topology is basically the way nodes are connected, or related, to each other in the
data source. There are two typical relations that need to be defined: a node's parent and a
node's children. If the node does not have a parent, it's a root node. If it lacks children, it's a
leaf node. All nodes with the same parent node, are called sibling nodes. In our example,
our nodes are both parent nodes and leaf nodes:

public IThingReference Parent => null;
public bool HasChildren => false;
public bool ChildrenOrdered => false;
public Task<IEnumerable<INode>> ChildNodes => null;

The topology is managed using a set of methods defined by INode. Since we have a static
topology, these methods will respond in the negative, or throw a
NotSupportedException.

Method Description

AcceptsChildAsync
If the node, from its perspective, accepts a new node as a child
node.

AcceptsParentAsync
If the node, from its perspective, accepts a parent node as a
parent.

CanAddAsync
If the caller (RequestOrigin) can add child nodes to the current
node.

AddAsync Adds a child node to the node.

CanDestroyAsync If the caller (RequestOrigin) can destroy the current node.

DestroyAsync Destroys the node.

Concentrators and Bridges Chapter 12

[275]

UpdateAsync Is called when the node properties have been updated.

CanEditAsync If the caller (RequestOrigin) can edit the current node.

CanViewAsync If the caller (RequestOrigin) can view the current node.

MoveDoXwnAsync Moves the node up one step among its sibling nodes.

MoveUpAsync Moves the node down one step among its sibling nodes.

RemoveAsync
Removes a child node from the current node, without destroying
it.

Editing of properties in nodes is done dynamically by the
ConcentratorServer class. All you need to do, is to publish the
corresponding properties as public fields or properties on the node class,
and to provide them with Get and Set methods in case they are made
properties. You can also annotate the fields or properties with attributes
defined in the Waher.Networking.Things.Attributes namespace, to
give the resulting control form a better GUI.

Providing displayable parameters
Apart from editable properties of the node, you can also define a set of readable properties
named displayable parameters. These displayable parameters are displayed together with
the node, whenever the node is presented in a detailed list view. For our sensor, we simply
display the current sensor values:

public async Task<IEnumerable<Parameter>>
 GetDisplayableParametersAsync(Language Language,
 RequestOrigin Caller)
{
 LinkedList<Parameter> Parameters =
 new LinkedList<Parameter>();

 if (App.Instance.Light.HasValue)
 Parameters.AddLast(new DoubleParameter("Light",
 await Language.GetStringAsync(
 typeof(MeteringTopology), 2, "Light (%)"),
 App.Instance.Light.Value));

 if (App.Instance.Motion.HasValue)
 Parameters.AddLast(new BooleanParameter("Motion",
 await Language.GetStringAsync(
 typeof(MeteringTopology), 3, "Motion"),

Concentrators and Bridges Chapter 12

[276]

 App.Instance.Motion.Value));

 return Parameters;
}

Providing status feedback
It is possible to return textual feedback to the administrator for each node. This feedback
might include important events, statuses, and error messages. We will make it easy for us,
and assume the node works fine:

public NodeState State => NodeState.None;

public Task<IEnumerable<Message>> GetMessagesAsync(
 RequestOrigin Caller)
{
 return Task.FromResult<IEnumerable<Message>>(null);
}

As an exercise, make the node state reflect the status of the sensor. If there
are problems connecting to the Arduino board, let the node state reflect
this.

Performing readout of a sensor
The last thing we need to do for our sensor node is to implement the StartReadout
method, which will perform the actual readout. Its details conform to the sensor readout
example in the SensorXmpp project:

public async void StartReadout(ISensorReadout Request)
{
 try
 {
 Log.Informational("Performing readout.", this.LogId,
 Request.Actor);
 ...
 }
 catch (Exception ex)
 {
 Log.Critical(ex);
 }
}

Concentrators and Bridges Chapter 12

[277]

Defining our embedded actuator node
Our actuator node will be defined in much the same way as the sensor node. The key
difference is that it will implement the IActuator interface as well as the ISensor
interface:

public class ActuatorNode : ThingReference, ISensor, IActuator
{
 public const string NodeID = "Actuator";

 public ActuatorNode()
 : base(NodeID, MeteringTopology.ID, string.Empty)
 {
 }

We also need to explicitly state that it is always controllable:

public bool IsReadable => true;
public bool IsControllable => true;

Defining control parameters for embedded nodes
Each embedded node is assumed to have a different set of control parameters. The
ConcentratorServer therefore calls the GetControlParameters method defined by the
IActuator interface, when necessary. All we need to do is implement this method. The
definition of the control parameters otherwise conforms to the definition of the control
parameters in the ActuatorXmpp project:

public ControlParameter[] GetControlParameters()
{
 return new ControlParameter[]
 {
 ...
 };
}

Concentrators and Bridges Chapter 12

[278]

Registering our embedded nodes
We are now almost ready to try our concentrator with our controller application. For the
controller to find our sensor and actuator, we need to register them in the Thing Registry.
To do this, we need to make two different registrations. We create a registration method
that takes generic metadata for the concentrator, and then add node-specific information for
each node:

private void RegisterDevice(MetaDataTag[] MetaInfo)
{
 Log.Informational("Registering device.");

 MetaDataTag[] SensorTags = this.GetSensorMetaInfo(MetaInfo);
 MetaDataTag[] ActuatorTags = this.GetActuatorMetaInfo(
 MetaInfo);

 this.registryClient.RegisterThing(true, ActuatorNode.NodeID,
 MeteringTopology.ID, ActuatorTags,
 this.RegistrationResponse, ActuatorNode.NodeID);
 this.registryClient.RegisterThing(true, SensorNode.NodeID,
 MeteringTopology.ID, SensorTags,
 this.RegistrationResponse, SensorNode.NodeID);
}

Where the sensor node metadata is modified as follows, for example:

private MetaDataTag[] GetSensorMetaInfo(MetaDataTag[] MetaInfo)
{
 List<MetaDataTag> SensorTags = new List<MetaDataTag>(MetaInfo)
 {
 new MetaDataStringTag("CLASS", "Sensor"),
 new MetaDataStringTag("TYPE", "MIoT Sensor")
 };

 return SensorTags.ToArray();
}

Concentrators and Bridges Chapter 12

[279]

Trying your concentrator
You should now be ready to try your concentrator with the controller application. While
some details have been left to the reader, they are available in the ConcentratorXmpp
project in the GitHub repository. When it runs, it makes the necessary registrations in the
Thing Registry. The controller application will now be able to find both registrations and
use them, if necessary. The controller application is already prepared for handling node
identities, data sources, and partitions, as described in Chapter 10, The Controller.

You can also use the simple IoT Client presented in Chapter 9, Social Interaction with Your
Devices Using XMPP to interact with your concentrator. A concentrator will be expandable.
You can expand it to view available data sources. Data sources with nodes (or with other
child sources) will in turn be expandable, as will nodes with child nodes. You interact with
the embedded nodes as you would any other type of sensor or actuator:

Concentrator in the simple IoT Client

Concentrators and Bridges Chapter 12

[280]

Adding provisioning support to the
concentrator
If you're familiar with the concepts of provisioning, as described in the previous chapter,
and concentrators as described in this chapter, adding provisioning support to a
concentrator is straightforward and will be left to the reader. The details are available in the
ConcentratorXmpp2 project in the Mastering Internet of Things GitHub repository. The
outline of the implementation is as follows:

After finding a provisioning server, you create an instance of the
ProvisioningClient class pointing to the provisioning server, with a reference
to the XMPP client being used. This action will provision presence subscription
requests (or friendship requests) for your device.
If you want each embedded node to be provisioned as well, you provide a
reference to the provisioning client to the ConcentratorServer instance when
you create it. It will pass it on to the SensorServer and ControlServer
instances it creates.
If you provision embedded nodes, you must manage owner identities and
ownership states separately for each node, and separately for the concentrator
itself. The owner of the concentrator might be different from the owner of each
embedded node.

If you create an instance of the ProvisioningClient class, without
passing it on to the ConcentratorServer constructor, you need to make
sure that presence subscriptions are provisioned (that is, friendships are
managed). Anyone with an approved presence subscription will be
granted read and control access to all embedded nodes.

The concentrator at iot.eclipse.org@waher.se is provisioned in this
manner: anyone with granted access to the concentrator will be able to
read and write to any of the topics (just as they would with an MQTT
connection to the iot.eclipse.org broker, except they would be using
XMPP).

mailto:iot.eclipse.org@waher.se
https://iot.eclipse.org/

Concentrators and Bridges Chapter 12

[281]

Summary
In this chapter, you've been shown the basic principles of how to create a concentrator to
embed functionality as nodes. You've learned the fundamental use cases for concentrators,
the basic object model for a concentrator, and how to publish data sources and nodes in a
concentrator. You've also learned the basic principles of managing nodes in a concentrator,
how to register embedded nodes in a Thing Registry, and the basic principles of
provisioning for embedded nodes in a concentrator. You've seen how to interact with nodes
in a concentrator as if they were standalone devices on the network. In the next chapter, we
will analyze how an Internet of Things Service Platform can help you with many of the
repetitive tasks required to implement services for the Internet of Things.

13
Using an Internet of Things

Service Platform
As we have seen throughout the chapters of this book, developing services for the Internet
of Things may often include many repetitive tasks. These relate to the architecture of the
application, infrastructure, data persistence, manageability, communication framework,
hosting, inter-connectivity, user interfaces, and so on. In practical applications, you also
need to consider managing devices. When on a tight schedule or having limited resources,
many of these tasks are omitted, or receive little attention, to cut corners.

In this chapter, you will learn how an Internet of things (IoT) service platform can help you
with many of the repetitive tasks required to create a successful IoT application. This
chapter covers:

An introduction to the IoT Gateway project
An overview of its architecture
An introduction to its hardware abstraction layer
Management through its XMPP architecture
How to create services
How to interface things
Using its databases and persistence layer
Understanding the hosting environment
An introduction to its security infrastructure

Using an Internet of Things Service Platform Chapter 13

[283]

Understanding the IoT Gateway project
An IoT service platform can help you with many of the repetitive tasks required when
creating an IoT service or device. It also provides you with an abstraction layer for devices
and gives you support for many IoT-related protocols. By using such a platform as the base
for your application, many of those repeated programming tasks can be eliminated, or
wholly or partially automated and solved. This leaves you to focus on what you really want
to do: develop functionality. This approach drastically increases productivity and shortens
development cycles, which can be used to either increase functionality or quality, or to
decrease development costs. Furthermore, it improves interoperability, increases security,
and makes it simpler to manage massive amounts of things in large networks, since many
of these aspects are already integrated into the platform.

For these reasons, this chapter is dedicated to the study of one such IoT platform: the
WaherIoT Gateway. We have already used parts of the gateway in earlier chapters, when
we used some of its libraries for communication, persistence, and so on.

Running the IoT Gateway
The IoT Gateway can be run as a standalone application, without any modification. There
are different encapsulations of the IoT Gateway already prepared. They are built using the
same code, but have different properties and are aimed at different operating systems. Since
all libraries used are based on .NET Standard, they are portable across platforms and
operating systems. The encapsulations are then compiled into .NET Core 2 applications.
These are the ones being executed. Since both .NET Standard and .NET Core 2 are portable,
the gateway can therefore be encapsulated for more operating systems than currently
supported.

Check out this link for a list of operating systems supported by .NET Core
2:
https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0
-supported-os.md

https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md

Using an Internet of Things Service Platform Chapter 13

[284]

Available encapsulations such as installers or app package bundles are listed in the
following table. For each one is listed the start project that can be used if you build the
project and want to start or debug the application from the development environment:

Platform Executable project

Windows console Waher.IoTGateway.Console

Windows service Waher.IoTGateway.Svc

Universal Windows Platform app Waher.IoTGateway.App

The IoT Gateway encapsulations can be downloaded from the GitHub
project page: https://github.com/PeterWaher/IoTGateway#iot-gateway

All gateways use the library Waher.IoTGateway, which defines the
executing environment of the gateway and interacts with all pluggable
modules and services. They also use the Waher.IoTGateway.Resources
library, which contains resource files common among all encapsulations.

The Waher.IoTGateway library is also available as a NuGet:
https://www.nuget.org/packages/Waher.IoTGateway/

Running the console version
The console version of the IoT Gateway (Waher.IoTGateway.Console) is the simplest
encapsulation. It can be run from the command line. It requires some basic configuration to
run properly. This configuration can be provided manually (see following sections), or by
using the installer. The installer asks the user for some basic information and generates the
configuration files necessary to execute the application.

The console version is the simplest encapsulation, with a minimum of operating system
dependencies. It's the easiest to port to other environments. It's also simple to run from the
development environment. When run, it outputs any events directly to the terminal
window. If sniffers are enabled, the corresponding communication is also output to the
terminal window.

https://github.com/PeterWaher/IoTGateway#iot-gateway
https://www.nuget.org/packages/Waher.IoTGateway/

Using an Internet of Things Service Platform Chapter 13

[285]

This provides a simple means to test and debug encrypted communication:

IoT Gateway console application

Using an Internet of Things Service Platform Chapter 13

[286]

Running the gateway as a Windows service
The IoT Gateway can also be run as a Windows service (Waher.IoTGateway.Svc). This
requires the application be executed on a Windows operating system. The application is a
.NET Core 2 console application that has command-line switches allowing it to be
registered and executed in the background as a Windows service. Since it supports a
command-line interface, it can be used to run the gateway from the console as well. The
following table lists recognized command-line switches:

Switch Description

-? Shows help information.

-console Runs the service as a console application.

-install
Installs the application as a Window Service in the underlying
operating system.

-displayname Name
Sets a custom display name for the Windows service. The default
name if omitted is IoT Gateway Service.

-description Desc
Sets a custom textual description for the Windows service. The
default description if omitted is Windows Service hosting the
Waher IoT Gateway.

-immediate If the service should be started immediately.

-localsystem Installed service will run using the Local System account.

-localservice Installed service will run using the Local Service account (default).

-networkservice Installed service will run using the Network Service account.

-start Mode

Sets the default starting mode of the Windows service. The default
is Disabled. Available options are StartOnBoot,
StartOnSystemStart, AutoStart, StartOnDemand and
Disabled

-uninstall
Uninstalls the application as a Windows service from the operating
system.

Using an Internet of Things Service Platform Chapter 13

[287]

Running the gateway as an app
It is possible to run the IoT Gateway as a Universal Windows Platform (UWP) app
(Waher.IoTGateway.App). This allows it to be run on Windows phones or embedded
devices such as the Raspberry Pi running Windows 10 IoT Core (16299 and later). It can also
be used as a template for creating custom apps based on the IoT Gateway:

IoT Gateway UWP App

Configuring the IoT Gateway
All application data files are separated from the executable files. Application data files are
files that can be potentially changed by the user. Executable files are files potentially
changed by installers. For the Console and Service applications, application data files are
stored in the IoT Gateway subfolder to the operating system's Program Data folder.
Example: C:ProgramDataIoT Gateway. For the UWP app, a link to the program data
folder is provided at the top of the window. The application data folder contains files you
might have to configure to get it to work as you want.

Using an Internet of Things Service Platform Chapter 13

[288]

Configuring the XMPP interface
All IoT Gateways connect to the XMPP network. This connection is used to provide a secure
and interoperable interface to your gateway and its underlying devices. You can also
administer the gateway through this XMPP connection.

The XMPP connection is defined in different manners, depending on the encapsulation. The
app lets the user configure the connection via a dialog window. The credentials are then
persisted in the object database. The Console and Service versions of the IoT Gateway let
the user define the connection using an xmpp.config file in the application data folder. The
following is an example configuration file:

<?xml version='1.0' encoding='utf-8'?>
<SimpleXmppConfiguration
xmlns='http://waher.se/Schema/SimpleXmppConfiguration.xsd'>
 <Host>waher.se</Host>
 <Port>5222</Port>
 <Account>USERNAME</Account>
 <Password>PASSWORD</Password>
 <ThingRegistry>waher.se</ThingRegistry>
 <Provisioning>waher.se</Provisioning>
 <Events></Events>
 <Sniffer>true</Sniffer>
 <TrustServer>false</TrustServer>
 <AllowCramMD5>true</AllowCramMD5>
 <AllowDigestMD5>true</AllowDigestMD5>
 <AllowPlain>false</AllowPlain>
 <AllowScramSHA1>true</AllowScramSHA1>
 <AllowEncryption>true</AllowEncryption>
 <RequestRosterOnStartup>true</RequestRosterOnStartup>
</SimpleXmppConfiguration>

Most of the elements in this configuration file should be familiar to you if you have read
the Chapter 9, Social Interaction with Your Devices Using XMPP on XMPP. The following is a
short recapture:

Element Type Description

Host String Host name of the XMPP broker to use.

Port 1-65535 Port number to connect to.

Account String Name of XMPP account.

Password String Password to use (or password hash).

Using an Internet of Things Service Platform Chapter 13

[289]

ThingRegistry String Thing registry to use, or empty if not.

Provisioning String Provisioning server to use, or empty if not.

Events String Event long to use, or empty if not.

Sniffer Boolean If network communication is to be sniffed or not.

TrustServer Boolean If the XMPP broker is to be trusted.

AllowCramMD5 Boolean If the CRAM-MD5 authentication mechanism is
allowed.

AllowDigestMD5 Boolean If the DIGEST-MD5 authentication mechanism is
allowed.

AllowPlain Boolean If the PLAIN authentication mechanism is allowed.

AllowScramSHA1 Boolean If the SCRAM-SHA-1 authentication mechanism is
allowed.

AllowEncryption Boolean If encryption is allowed.

RequestRosterOnStartup Boolean If the roster is required, it should be requested on
start up.

Securing the password
Instead of writing the password in clear text in the configuration file, it is recommended
that the password hash be used instead, if the authentication mechanism supports hashes.
When the installer sets up the gateway, it authenticates the credentials during start up, and
writes the hash value in the file instead. When the hash value is used, the mechanism used
to create the hash must be written as well. In the following example, new-line characters are
added for readability:

<Password type="SCRAM-SHA-1">
 rAeAYLvAa6QoP8QWyTGRLgKO/J4=
</Password>

Setting basic properties of the gateway
The basic properties of the IoT Gateway are defined in the Gateway.config file in the
program data folder. For example:

<?xml version="1.0" encoding="utf-8" ?>

Using an Internet of Things Service Platform Chapter 13

[290]

<GatewayConfiguration
xmlns="http://waher.se/Schema/GatewayConfiguration.xsd">
<Domain>example.com</Domain>
<Certificate configFileName="Certificate.config"/>
<XmppClient configFileName="xmpp.config"/>
<DefaultPage>/Index.md</DefaultPage>
<Database folder="Data" defaultCollectionName="Default"
 blockSize="8192" blocksInCache="10000" blobBlockSize="8192"
 timeoutMs="10000" encrypted="true"/>
<Ports>
<Port protocol="HTTP">80</Port>
<Port protocol="HTTP">8080</Port>
<Port protocol="HTTP">8081</Port>
<Port protocol="HTTP">8082</Port>
<Port protocol="HTTPS">443</Port>
<Port protocol="HTTPS">8088</Port>
<Port protocol="XMPP.C2S">5222</Port>
<Port protocol="XMPP.S2S">5269</Port>
<Port protocol="SOCKS5">1080</Port>
</Ports>
<FileFolders>
<FileFolder webFolder="/Folder1" folderPath="\ServerPath1"/>
<FileFolder webFolder="/Folder2" folderPath="\ServerPath2"/>
<FileFolder webFolder="/Folder3" folderPath="\ServerPath3"/>
</FileFolders>
</GatewayConfiguration>

Element Type Description

Domain String The name of the domain, if any, pointing to the machine
running the IoT Gateway.

Certificate String The configuration file name specifying details about the
certificate to use.

XmppClient String The configuration file name specifying details about the XMPP
connection.

DefaultPage String Relative URL to the page shown if no web page is specified
when browsing the IoT Gateway.

Database String

How the local object database is configured. Typically, these
settings do not need to be changed. All you need to know is
that you can persist and search for your objects using the static
Database defined in Waher.Persistence.

Using an Internet of Things Service Platform Chapter 13

[291]

Ports Port Which port numbers to use for different protocols supported
by the IoT Gateway.

FileFolders FileFolder Contains definitions of virtual web folders.

Providing a certificate
Different protocols (such as HTTPS) require a certificate to allow callers to validate the
domain name claim. Such a certificate can be defined by providing a Certificate.config
file in the application data folder, and then restarting the gateway. If providing such a file,
different from the default file, it will be loaded and processed, and then deleted. The
information, together with the certificate, will be moved to the relative safety of the object
database. For example:

<?xml version="1.0" encoding="utf-8" ?>
<CertificateConfiguration
xmlns="http://waher.se/Schema/CertificateConfiguration.xsd">
<FileName>certificate.pfx</FileName>
<Password>testexamplecom</Password>
</CertificateConfiguration>

Element Type Description

FileName String Name of certificate file to import.

Password String Password needed to access private part of certificate.

Providing web content
The IoT Gateway includes a web server. It allows service modules to publish dynamic
content and web APIs. But it also allows you to publish file-based web content. The root
folder of the web server resides in the Root subfolder to the application data folder. It
contains the default start page Index.md, which is a Markdown file. Markdown is by default
converted to HTML automatically by the web server, unless Markdown is explicitly
requested by the client. Since browsers do not request Markdown by default, browsing to
the resource will result in a HTML page. After starting the gateway, you can browse its
domain (or IP address), and the default start page is displayed, as shown in the following
screenshot:

Using an Internet of Things Service Platform Chapter 13

[292]

Default first page

Note that the localhost interface is not available in UWP apps. You must
browse pages hosted by the gateway from another machine in the
network.

You should examine the contents of the Root folder and its subfolders.
This will allow you to better understand how the web content is built up.

Using an Internet of Things Service Platform Chapter 13

[293]

Publishing network folders
Any subfolders to the Root folder will be available as web folders under your domain (or IP
address). The IoT Gateway also allows you to publish network folders as web folders on the
Gateway. This allows you to access distributed content on the network through a single
web server. You do this by defining each network folder in a FileFolder element in the
Gateway.config file described earlier. You must make sure the user account used to host
the IoT Gateway has network access to the corresponding folders.

Using Markdown
While you can publish any type of content using the IoT Gateway web server, the default
web page is defined using Markdown stored in .md files. Markdown has been shown to be
a very efficient way to publish content on the web. Through the automatic rendering to
HTML, it is relatively easy to create web pages with a consistent look and feel. And since
HTML can be embedded in Markdown, it does not limit the content provider. The IoT
Gateway contains a Markdown reference in the Root folder. You access it by
browsing /Markdown.md.

If you don't have access to the Gateway, you can also find the reference
here:
https://waher.se/Markdown.md

Using metadata for Search Engine Optimization
The first paragraph in a Markdown document can optionally consist of metadata about the
document. This metadata is used, among other things, to generate information that search
engines can use to better index the corresponding page. The following are examples of
metadata tags that you could include in pages that you want indexed:

Tag Description

Alternate Link to alternate page.

Author Name of author.

Copyright Link to a copyright statement.

Date Date when document was created.

https://waher.se/Markdown.md

Using an Internet of Things Service Platform Chapter 13

[294]

Description Description of the contents of the document.

Help Link to help page.

Icon Link to icon for page.

Keywords Set of keywords describing the contents.

Next Link to next page in series.

Previous Link to previous page in series.

Prev Same as Previous.

Subtitle Subtitle of the page.

Title Title of the page.

Web Link to web page.

For a complete list of supported metadata tags,
see https://waher.se/Markdown.md#metadata.

Providing menus using the Master/Detail model
The Markdown engine supports a Master/Detail model when rendering HTML output.
Content is typically provided in the Detail pages. Menus on the other hand are provided in
the Master pages. The Master pages are shared between multiple Detail pages and can
therefore act as placeholders for a menu system. When writing a content page, define the
Master page using the Master metadata tag:

Master: Master.md

In the Master page, define where the Detail page is to be introduced, by referring to the
Details metadata tag using the [%Details] construct. Master pages can complement the
metadata provided by Detail pages, by providing their own set of metadata tags.

https://waher.se/Markdown.md#metadata
https://waher.se/Markdown.md#metadata

Using an Internet of Things Service Platform Chapter 13

[295]

The following shows the default menu in Master.md in the Root folder:

<header>
<nav>

* [Home](/Index.md)
* [Markdown](/Markdown.md)
* [Script](/Script.md)
* [Calculator](/Calculator.md)
* [License](/Copyright.md)
* [IoT Gateway](https://github.com/PeterWaher/IoTGateway)
* [Waher Data](http://waher.se/)

</nav>
</header>
<main>

[%Details]

</main>

Note that empty rows have syntactical meaning in Markdown. They
separate blocks (or paragraphs) of text.

The bullet list is rendered as a series of elements inside an tag.
If the link inside the bullet refers to the current page, the element
will be annotated with the class attribute active. This allows you to
display the item differently.

Using an Internet of Things Service Platform Chapter 13

[296]

Customizing the user experience
There are metadata tags that you can use to customize the experience users have when
visiting your page:

Tag Description

AudioAutoplay
If audio content is provided on the page, this metadata element specifies
if the content is to be played automatically when the page has loaded.

AudioControls If controls are to be displayed for playing audio content on the page.

CSS
Includes a reference to a Cascading Style Sheet (CSS) document on the
page.

JavaScript Includes a reference to a JavaScript document on the page.

Parameter

Defines one query parameter that should be made available to
underlying server script. By default, parameter values are strings unless
they can be parsed as double or Boolean values. Metadata tags can be
used multiple times on each page, one for each parameter being
defined.

Refresh Tells the browser to refresh the page after a given number of seconds.

VideoAutoplay
If video content is provided on the page, this metadata element specifies
if the content is to be played automatically when the page has loaded.

VideoControls If controls are to be displayed for playing video content on the page.

Adding security headers
The HTML generator recognizes certain HTTP headers that could be collectively named
security headers. If metadata tags with the same names as these are used, they are copied
into the generated HTML verbatim. This includes:

Tag Description

Access-Control-Allow-Origin
Allows you to define a Cross-origin resource sharing
(CORS) header.

Using an Internet of Things Service Platform Chapter 13

[297]

Cache-Control

Overrides the default Cache-Control header
generated by the renderer. Together with the Vary
meta-tag they provide a means to control how the
generated page will be cached.

Content-Security-Policy Defines the expected behavior of the page.

Public-Key-Pins
Tells clients to pin a specific public key, decreasing
the risk of Man-In-The-Middle (MITM) attacks.

Strict-Transport-Security Forces clients to connect to the page using HTTPS.

Sunset Flags content for removal at a given (future) time.

Vary
Together with the Cache-Control header, defines how
the page can be cached.

Authorizing user privileges
The Markdown engine supports authorization of authenticated user privileges. The
following metadata tags can be used to protect your content:

Tag Description

Login

Link to login page, if a valid user has not been authenticated. The login
page in turn should contain a method for users to authenticate
themselves. The simplest method might be a form with a post back to a
web service, which authenticates the given credentials and stores the
corresponding user object in the given user variable (see below).

Privilege

Privileges required by the authenticated user, before the user is allowed
to view the page. The metadata tag can be used multiple times, once for
each privilege. If no privileges are provided, all authenticated users are
allowed to view the page. Unauthenticated users are still not allowed.

UserVariable

Name of the variable that holds the authenticated user object. The object
must implement the IUser interface, defined in Waher.Security. For
each privilege required, the IUser.HasPrivilege method is called to
assure the user has the correct privileges.

Using an Internet of Things Service Platform Chapter 13

[298]

Customizing content using server-side script
You can provide links to files containing server-side script by using the Script metadata
tag. This script will be loaded and executed before the HTML page is generated. You can
also embed script in your Markdown page by placing it between single braces { and }. The
results of executing the script will be output in rendered results instead of the expression
and the braces. If the result is an image such as a graph, the corresponding image will be
inserted in its place.

For more information about embedding script in Markdown, including
how to output graphs, see:
https://waher.se/Markdown.md#script

Using pre-processed script
There's also a pre-processing stage being performed before the HTML page is generated.
You can embed script to be executed during the pre-processing stage between double
braces {{ and }}. Outputting Markdown from pre-processed script is done by embedding
the text between double brackets [[and]] inside the pre-processed script. Script to be
executed inside Markdown text inside pre-processed script is embedded between double
parenthesis ((and)).

The results of pre-processed script can change the structure of the document. It is assumed
that the result will be output in string format. The result will be inserted in the in-memory
text representation of the Markdown document, before the Markdown itself is parsed. For
this reason, pre-processed script can be used to output data from dynamic data sources, for
instance.

For more information about pre-processed script, see:
https://waher.se/Markdown.md#preProcessedScript

https://waher.se/Markdown.md#script
https://waher.se/Markdown.md#preProcessedScript

Using an Internet of Things Service Platform Chapter 13

[299]

Interacting with .NET code from script
Through script you can interact with .NET code in your .NET modules. This includes
accessing namespaces, types, creating and destroying objects, as well as calling methods,
including static methods. Results will be available to the script. This feature allows you to
provide logic in your custom .NET code modules that you can access through script on
pages.

For more information about how to interact with .NET code in your
modules, see:
https://waher.se/Script.md#interactionWithNetCodeBehindClasses

Testing script
If you want to test your script live, the IoT Gateway comes with a script sandbox called the
Calculator. It's available from the mail menu. In it, you can type any script you like, and see
the results as you press ENTER.

For a complete script reference, see the local resource /Script.md hosted
by your IoT Gateway. You can also access it here:
https://waher.se/Script.md.

Before deploying a solution based on the IoT Gateway, you should either
protect the sandbox by requiring users to log in before they can access the
sandbox, or you should remove it completely by removing the page and
the web service Waher.WebService.Script.

https://waher.se/Script.md#interactionWithNetCodeBehindClasses
https://waher.se/Script.md
https://waher.se/Script.md

Using an Internet of Things Service Platform Chapter 13

[300]

Script sandbox

Using an Internet of Things Service Platform Chapter 13

[301]

Customizing code visualization
Code in Markdown can either be in-lined in text by embedding it between back-ticks ` and
`, or placed in a separate block whose first and last rows begin with three back-ticks ```,
where the first can be suffixed by the name of the language used by the code. Visualization
of such block-level code can be customized by specific code content handlers. The default
behavior is to present the code verbatim, adding syntax highlights represented by the
language if provided. But if there exists a class in the system implementing the
ICodeContent interface defined in Waher.Content.Markdown.Model, which recognizes
the language provided, the presentation of such code can be completely customized.

Visualizing Graphviz graphs
As an example, the IoT Gateway provides a code visualization of Graphviz diagram code.
Instead of presenting the actual code, the code is converted to an image, and the image is
presented. This requires Graphviz to be installed on the machine. The following example is
taken from the Graphviz reference documentation. The following diagram shows how the
code is presented in the rendered HTML output:

```dot: Fancy graph
digraph G {
   size ="4,4";
   main [shape=box]; /* this is a comment */
   main -> parse [weight=8];
   parse -> execute;
   main -> init [style=dotted];
   main -> cleanup;
   execute -> { make_string; printf}
   init -> make_string;
   edge [color=red]; // so is this
   main -> printf [style=bold,label="100 times"];
   make_string [label="make anstring"];
   node [shape=box,style=filled,color=".7 .3 1.0"];
   execute -> compare;
}
```


Using an Internet of Things Service Platform Chapter 13

[302]

Customized code presentation

Graphviz and reference documentation can be found at:
https://graphviz.org

Customizing multimedia presentation
Multimedia can also be included in Markdown documents. The same syntax used for
inserting images is used for all types of multimedia. The Markdown processor checks the
system for classes implementing the IMultimediaContent interface defined in
Waher.Content.Markdown.Model. Available classes analyze the URL, provided and
grade their ability to handle the content. The best one is selected and gets to render the
content. By default, there are multi-media renderers for images, video, and audio files, but
also YouTube videos, external web pages, table of contents generation, and Markdown
inclusion. You can provide any number of your own multimedia renderers to customize
presentation of multimedia content by the gateway.

https://graphviz.org

Using an Internet of Things Service Platform Chapter 13

[303]

For more information on multimedia in Markdown, see:
https://waher.se/Markdown.md#multimedia

Pushing information to web clients
The IoT Gateway includes a mechanism to push information to connected web clients.
Pages that accept information pushed to them, should include the Events.js JavaScript
file in a JavaScript metadata reference. For example:

JavaScript: /Events.js

Each such page will include JavaScript that creates a TabID and registers itself with the
server-side ClientEvents class, defined in Waher.IoTGateway. The ClientEvents class
can then be used to check which tabs are registered with it, and for which resources. It can
also be used to push data to the page. Methods available are:

Method Description

GetOpenLocations()
Returns an array of locations (relative URLs) currently
being viewed.

GetTabIDsForLocation()
Returns the Tab IDs of clients currently viewing a given
page. The pages can be filtered based on query parameters.

GetTabIDsForLocations()
Returns the Tab IDs of clients currently viewing any of a
given set of pages.

GetTabIDs()
Gets an array of connected clients. Each tab in a browser
has a separate Tab ID.

PushEvent()

Pushes a type and corresponding data to a set of Tab IDs.
The data can be JSON. The type should correspond to a
JavaScript function taking one parameter. The Event.js
JavaScript running in the clients with the corresponding
Tab IDs will receive the event and call the corresponding
function with the data provided.

https://waher.se/Markdown.md#multimedia

Using an Internet of Things Service Platform Chapter 13

[304]

Monitoring performance
There are various methods to monitor the performance of the IoT Gateway and its services.
Apart from monitoring performance counters provided by the operating system, you can
also monitor event logs and sniffer output, if enabled.

Monitoring event logs
In the application data folder, a subfolder called Events is created. In it, XML files will be
output when events are logged from anywhere in the system. Old XML files will be deleted
automatically. The XML files reference XSL transforms in the Transforms subfolder to the
application data folder. This makes it possible to view finished XML files in browsers in a
user-friendly manner.

Events are also persisted in the object database. These events can be
searched and accessed via the XMPP interface.

You can output events from your code by accessing the static Log class
defined in Waher.Events.

Monitoring communication sniffers
By default, sniffers are disabled. If you enable sniffers in the network configuration, the
application data subfolders, HTTP, UPnP, XMPP, and so on, will be created. XML files will be
created containing any communication taking place. As with events, references to XSL
transforms will be available, making it easy to read the contents in a browser. Old files will
be automatically deleted.

Sniffers are useful when troubleshooting communication. But sniffers
provide a way to access otherwise secured communication. Therefore,
make sure to disable sniffers when they are not needed.

Using an Internet of Things Service Platform Chapter 13

[305]

Developing services for the IoT Gateway
You can easily develop your own service modules for the IoT Gateway. You just create a
.NET Standard 2.0 Class Library and add the code you want to include. You add references to
the libraries you wish to use. If you want to access Gateway functionality, add a reference to
the Waher.IoTGateway library.

Creating a service module
It is the Waher.Runtime.Inventory module that keeps track of all modules, classes, and
types in the runtime environment. You don't have to initialize it yourself, as you did in the
earlier chapters. The IoT Gateway makes sure to initialize it with all available assemblies.
However, it defines an interface IModule that might be of importance to you. By
implementing it, you will get notified when the Gateway starts and stops. This is done
through calls to the Start() and Stop() methods defined by the interface. By
implementing this interface, you can make sure to initialize and terminate your service
module properly.

Most of the architecture in the IoT Gateway is loosely coupled. This means
there are no hard connections between classes defining properties and
functionalities. Instead, an inventory of all available classes and which
interfaces they implement is maintained.

You can call the GetTypesImplementingInterface() method on the
static Types class, defined in Waher.Runtime.Inventory, to learn which
types are available supporting a given functionality.

Understanding the basic architecture
The IoT Gateway project contains different libraries and components, many of which we
have already used in previous chapters. They are grouped together and named according to
a naming convention that makes it easy to identify the function of each component. The
following diagram contains a simple overview of the libraries used:

Using an Internet of Things Service Platform Chapter 13

[306]

IoT Gateway component overview

Using an Internet of Things Service Platform Chapter 13

[307]

Creating a manifest file
The Console and Service encapsulations of the IoT Gateway support standalone service
modules. A standalone service module can be packaged and installed separately from the
IoT Gateway. To be able to do this, you need to create a manifest file for your service. The
manifest file describes which files are included in your services, and whether they are
application files (assembly files) or content files. Note that you don't have to use libraries
included in the IoT Gateway. The manifest file also describes the folder structure used.
Create a manifest file with the extension .manifest and include it in your project as a
content file. For example:

<Module xmlns="http://waher.se/Schema/ModuleManifest.xsd">
<Assembly fileName="YourCompany.Service.Module.dll"/>
<Folder name="Root">
<Content fileName="MainPage.md"/>
<Content fileName="MainCode.js"/>
<Folder name="Images">
<Content fileName="Image1.png"/>
<Content fileName="Image2.png"/>
</Folder>
</Folder>
</Module>

The UWP app must be customized if you want to include your services in
it. You should still create your services as standalone services. It allows
you to test it using the console or Windows Service encapsulations of the
IoT Gateway as well.

You can view the schema for the manifest file here:
https://github.com/PeterWaher/IoTGateway/blob/master/Utilities/W
aher.Utility.Install/Schema/Manifest.xsd

Installing your service
In your installation folder of the IoT Gateway, there's a utility called
Waher.Utility.Install.exe. It helps you with installation and uninstallation of your
services. It accepts the following command-line switches:

Switch Description

-? Shows help information.

https://github.com/PeterWaher/IoTGateway/blob/master/Utilities/Waher.Utility.Install/Schema/Manifest.xsd
https://github.com/PeterWaher/IoTGateway/blob/master/Utilities/Waher.Utility.Install/Schema/Manifest.xsd

Using an Internet of Things Service Platform Chapter 13

[308]

-m MANIFEST_FILE Points to the manifest file describing the files in the module.

-d APP_DATA_FOLDER Points to the application data folder.

-s SERVER_EXE Points to the executable file of the IoT Gateway.

-v Verbose mode.

-i Install. This is the default. Switch is not required.

-u Uninstall. Add this switch if the module is being uninstalled.

-r Remove files. Add this switch if you want files removed during
uninstallation. Default is to not remove files.

Testing and debugging your service
If you have the possibility, it's easier to develop, test, and debug on your local machine. One
way to do this, is to use the console version of the IoT Gateway. To test and debug your
service, follow these steps:

Install the IoT Gateway with all files, including debug files
Execute Waher.Utility.Install from a post-build command-line event in
Visual Studio, to install your service after successful compilation
In the debug settings, launch the Waher.IoTGateway.Console executable file in
the installation working folder, instead of executing the project file

You should now be able to run and debug your service directly from the Visual Studio IDE.

An alternative is to execute the dotnet.exe application instead (located
in C:Program Filesdotnet) to execute a .NET application available as a
.dll file. In that case, the name of the .dll file should be provided as a
command-line argument to dotnet.exe.

Deploying your service to an embedded device
To deploy your service to an embedded device, you need to create a UWP app based on the
Waher.IoTGateway.App template. You add a reference to your service project. You're then
ready to run the UWP app. The app will automatically find your service module, as the
Console and Service encapsulations did. You can both execute it locally, for testing
purposes, and remotely, on an embedded device.

Using an Internet of Things Service Platform Chapter 13

[309]

Extending communication capabilities
You're free to create and add any type of connectivity to the IoT Gateway in your services. If
you want to extend existing capabilities, you can do so as well. The static Gateway class
defined in Waher.IoTGateway defines properties you can use to access the web server,
CoAP Endpoint, and XMPP network connection, and so on. You can extend these by
registering resources or protocol extensions in the Start and Stop methods of your
IModule implementation:

Member Description

Gateway.XmppClient XMPP client connection.

Gateway.HttpServer Web server and available resources.

Gateway.CoAPEndpoint CoAP Endpoint and available resources.

Interfacing things
The IoT Gateway implements a dynamic concentrator, where individual nodes can
optionally be registered and provisioned. Management of nodes is done through the XMPP
interface. It can be performed using the simple IoT client for instance.

Waher.Things defines the basic abstraction model for things in the gateway. Each node
(INode) can have a parent and a set of children, forming a tree structure of nodes. Nodes
reside in a data source (IDataSource). Data sources also form a tree structure. A node is
considered a thing and is referenced (IThingReference) through the triple Node ID, Source
ID, and Partition. Controllable nodes are called actuators (IActuator) and readable nodes
sensors (ISensor). These interfaces, and how they are used to read data, perform control
operations, and define displayable parameters, were introduced in the previous chapter. If
the node should be able to support registration in a Thing Registry, and requires decision
support from a Provision Server, it should implement ILifeCycleManagement:

Using an Internet of Things Service Platform Chapter 13

[310]

Basic abstraction model for things

Using the Metering Topology data source
In the previous chapter, we created a small static concentrator. The IoT Gateway defines a
more flexible dynamic concentrator. It allows standalone modules to define new classes of
nodes that can be administered through the concentrator interface. The
Waher.Things.Metering library defines a data source called the Metering Topology
(MeteringTopology). The Metering Topology has one root node (Root), representing the
IoT Gateway itself. Nodes in this library are derived from the MeteringNode class. All
nodes deriving from MeteringNode inherit certain important properties: they are all
persisted in the local object database.

Using an Internet of Things Service Platform Chapter 13

[311]

They also maintain persisted information about their current state, and it is possible to log
different types of messages on them:

Basic abstraction model for the Metering Topology

Two specializations exist of the metering node: one that allows administrators to annotate it
with metadata (MetaMeteringNode), and one that allows administrators to decide if its life
cycle should be managed by a Thing Registry and provisioning server
(ProvisioningMeteringNode).

Using an Internet of Things Service Platform Chapter 13

[312]

Controlling node hierarchy
In the previous chapter, we created a static hierarchy of nodes. The IoT Gateway supports a
dynamic hierarchy. While the concentrator infrastructure in the gateway performs most of
the tasks required to manage your nodes, you need to provide some basic information that
the gateway cannot guess. INode defines methods that allow the gateway to understand
which node classes can be added where. It asks all available node classes, which it fetches
from the inventory, and asks them who can be added to whom, and which nodes accept
which nodes as children. If the response is positive to both these questions, the
corresponding child type can be added to the corresponding parent type.

Method Description

AcceptsChildAsync
If the node, from its perspective, accepts a new node as a child
node.

AcceptsParentAsync
If the node, from its perspective, accepts a parent node as a
parent.

Editing node properties
Properties that need to be persisted only need a get and a set method defined, and the object
database used by Waher.Persistence will persist the property according to its type. But
allowing administrators to edit properties requires human interfaces. It is not sufficient to
know the name of the property and the data type of the value.

To enable the IoT Gateway to create human readable interfaces for editing node properties,
you must annotate each editable property with information suitable for human interaction.
The Waher.Things.Attributes namespace contains a series of attributes that can be used
to annotate properties and classes with such information. If these attributes are not
sufficient, you can customize the property dialog by implementing the
AnnotatePropertyForm() method defined in the IPropertyFormAnnotation interface,
available in the Waher.Networking.XMPP.DataForms namespace. Available attributes
include:

Method Type Description

AlphaChannel Property Enables editing of the alpha channel of a color property.

DateOnly Property Only the date part of a DateTime-valued property is
editable.

Using an Internet of Things Service Platform Chapter 13

[313]

DefaultLanguage Class Defines the default language code for human readable
texts in the class.

Header Property Defines a localizable header string for the property.

Masked Property Makes sure input for the property is masked.

Open Property
Defines an open parameter. Open parameters accept
values outside of given options, as long as the input
conforms to the underlying data type.

Option Property
Defines an option for the property and its corresponding
localizable human-readable label. The attribute can be
used multiple times.

Page Property Defines the page (or tab) with a localizable label in the
dialog for the property.

Range Property Defines the valid input range for the property.

ReadOnly Property Defines a property as read-only (in property dialogs).

RegularExpression Property Provides a regular expression for validation of user
input.

Required Property Tells the system the property is required.

Section Property Defines a section with a localizable label inside a page
(or tab) where the property will be displayed.

Text Property Adds a localizable text paragraph before or after the
property. The attribute can be used multiple times.

ToolTip Property Defines a localizable tool-tip text for the property.

Interacting with your things
The best way to understand how these attributes and properties work to create a dynamic
concentrator is to spend some time and examine the Waher.Things.Arduino project,
available in the IoT Gateway repository. It defines an object structure for what we did in the
previous chapter, with the difference that this time objects are generalized. This means that
depending on which objects we choose to create at runtime and how we configure them, we
can change the functionality of our concentrator. We can choose to add different types and
numbers of sensors and actuators, and all in runtime, using our administrative client:

Using an Internet of Things Service Platform Chapter 13

[314]

Architecture of the Arduino project

The Arduino project contains three classes that represent the sensors and actuator:
AnalogInput, DigitalInput, and DigitalOutput. These contain properties and logic
related to their function. They derive from AnalogPin and DigitalPin correspondingly.

Using an Internet of Things Service Platform Chapter 13

[315]

These contain logic and displayable parameters common for all pins of the corresponding
type. These in turn are derived from Pin, which contains properties common to all pins. By
deriving from ProvisionedMeteringNode, all pins can be provisioned. This is managed
automatically by the IoT Gateway for you. The UsbConnectedDevice node will act as the
parent node for all pin nodes. It corresponds to the Arduino and USB serial Firmata
connection.

When implementing a class such as the UsbConnectedDevice, you must
take into consideration that the underlying resource (the USB serial port)
is singular. This means, only one instance of the USB serial interface can
be open at once. But the UsbConnectedDevice class can be instantiated
multiple times for various reasons. Since it is persisted in the object
database, it can be loaded as the result of simply scanning the database,
generating a report, or browsing the data source. It is therefore important
to separate the node logic from the communication logic, and make sure at
most one instance of the communication logic class is active at once. You
can check the Waher.Things.Arduino implementation of the
UsbConnectedDevice class for an idea on how to do this.

Managing your things
If you run the Waher.IoTGateway.App UWP app with the Arduino connected to your PC
or device, the Waher.Things.Arduino service (located in the Module class) will find the
Arduino automatically and add a UsbConnectedDevice node to the Metering Topology
Root node. You can select it in the Simple IoT Client and press the Add icon. Since there
are multiple node classes that can be added to the Arduino node, you'll be presented with a
list of possible choices, as shown in following screenshot:

Adding node

Using an Internet of Things Service Platform Chapter 13

[316]

In the property dialog that appears, see the following screenshot, available properties are
ordered and displayed in tabs (or pages). The first three tabs contain the identity of the new
node, a required property, and metadata about the node. The fourth tab contains
information about provisioning, if provisioning is to be used, the IoTDisco URI if not
claimed, and the owner JID if claimed. In the last tab, you can set properties controlling
which pin to use, how to configure the pin, what is being read or controlled, and how to
scale and report the data:

Property pages

After adding an analog input node for pin A0, a digital input for pin D8, and a digital
output for pin D9, we should have a setup that is like we had earlier. The main difference is
that we have two sensor nodes for the light input and the motion detector. You can get an
overview of your configuration by viewing the displayable parameters in the list view in
the Connections tab, as shown in the following screenshot.

Using an Internet of Things Service Platform Chapter 13

[317]

You can also select the individual nodes and read and configure them (if you have
permissions).

Configuring the Arduino board

Packaging your service
When your service has reached a sufficient level of quality, you will want to distribute it to
others. Depending on the encapsulation of the IoT Gateway you've chosen, you have
different options.

Creating an installer
The IoT Gateway has a Windows WiX MSI installer project (Waher.IoTGateway.Win32).
This MSI can install the IoT Gateway in a customized manner.

The WiX toolset is an open source set of tools to create Windows installers.
More information about the WiX toolset can be found here: http:/ /
wixtoolset. org/ .

You don't have to customize the Wix MSI project to include your service. Instead, there's a
WiX Burn project called Waher.IoTGateway.Setup. It has the capacity to install multiple
MSI packages, as well as make sure .NET is installed.

http://wixtoolset.org/
http://wixtoolset.org/
http://wixtoolset.org/
http://wixtoolset.org/
http://wixtoolset.org/
http://wixtoolset.org/
http://wixtoolset.org/

Using an Internet of Things Service Platform Chapter 13

[318]

To create an installer for your service, follow these steps:

Create a Burn project mimicking Waher.IoTGateway.Setup.1.
From the Burn project, call the Waher.IoTGateway.Win32 MSI package to2.
install the IoT Gateway.
Create a WiX MSI installer project, which will install your service files.3.
Reference the Waher.IoTGateway.Installers project in your Wix MSI project.4.
It includes custom actions that you will need to install your service.
Copy your files appropriately.5.
Call the InstallManifest custom action to install your installed service using6.
its manifest file into the IoT Gateway.
Call the UninstallManifest or StopServiceAndUninstallManifest custom7.
action to uninstall your service using its manifest file.
You can call the StartService and StopService custom actions to start and8.
stop the Windows service.
Call the OpenLocalhost custom action to open a browser displaying the main9.
page of the IoT Gateway.

Summary
In this chapter, you've been shown the principles of how the IoT Gateway works, and what
you can do with it. You've learned about the different execution models and how to
configure and run the gateway. You've been shown how to provide and customize dynamic
web content using the gateway, how to develop services for the gateway, and how to
monitor gateway performance. You've also learned how to interface and manage things
using the gateway abstraction layer, and how to package your finished service. In the next
chapter, we start the third part of the book by looking at how to harmonize different IoT
technologies.

14
IoT Harmonization

In the previous chapters of this book, we just got a taste of the different methods and
technologies used to create IoT applications. From simple to complex, using different
patterns of communication, some secure others less so, the variety of technologies in use is
enormous. In this chapter, we will take some steps back and review the original goal of why
we want to create a Smart City, and what a Smart City really might be. Considering what
we now know, this will result in some important conclusions. This chapter covers the
following topics:

A review of the vision of a Smart City
Driving forces for the development of Smart Cities
Requirements for reaching these goals
An overview of required new standards
An introduction to the IEEE IoT Harmonization project
A presentation of new business roles

Envisioning the Smart City
At the beginning of this book, we presented the following vision of what a Smart City is in
a Smart Society; there are the following access:

The ubiquitous access to interoperable sensors and actuators
The ubiquitous access to data and information from society's authorities
Access to smart services in all niches of society

IoT Harmonization Chapter 14

[320]

Simply put, a Smart Society will be open and transparent, and there will be sensors and
actuators everywhere that you can interact with through a multitude of services tailored for
the needs of the society.

Deriving some immediate consequences
From the preceding vision, we can derive a set of keywords immediately:

Interoperability (as opposed to proprietary or bespoke): Without
interoperability based on standards, there can be no ubiquitous access to devices.
Openness (as opposed to closed off or sealed): The members of the society
collectively pay for its authorities to perform its duties. The data they collect must
be accessible by members of the society. If not, any decisions they make will be
made using sub-standard information that is not smart. Access to devices also
means devices must be open in the sense that they can be reutilized by different
parties. Requiring service providers to install duplicate devices in the same areas
where existing devices doing the same thing already exist, just to get the same
type of data, is not smart.

Open does not mean free. A restaurant can be open to the public, but it
does not mean you can go there and eat for free. It means, the restaurant
cannot deny you entry if you want to go there based on your identity. The
internet is open, but you pay to access it.

Localization (as opposed to globalization): Globalized efforts can never respond
to local needs. A society cannot be smart unless it can organize itself at a local
level and adapt to local challenges. Technology must meet this need, not work
against it.
Identity (as opposed to anonymous access): Openness on the internet places a lot
of responsibility on the shoulders of those publishing information. As we have
seen, strongly authenticated identities protect the publishers of information, by
allowing them to make proper security decisions on who to allow access
(authorization). Anonymous access protects malicious users. Strong identities
protect publishers. A Smart City must protect those that publish devices and
data. Therefore, it must support strongly authenticated identities.

IoT Harmonization Chapter 14

[321]

Strong identities do not imply privacy intrusion
Using strong identities means you must authenticate yourself before you
can participate in a meaningful conversation. A privacy intrusion occurs
when somebody else uses information about you without your knowledge
or consent (or some other legal basis). Anonymous communication gives a
false promise of protecting you against such intrusions, it doesn't. Privacy
legislation does (more on this in a later chapter). You don't protect your
privacy by forcing everyone, including yourself, to wear blindfolds when
you communicate with them. Privacy means you have the right to choose
with whom you communicate and have confidential communication with.
You can only do that if you know who the other party is. It also means that
others are not allowed to listen in on confidential conversations. Only
good privacy legislation together with strong identities can help you
protect your privacy.

Ownership: Why would somebody investing in producing data or installing
devices let somebody else access them? Unless there is some form of
compensation, it would only increase load and degrade system performance,
while others would be able to deliver the same kind of service you provide, at a
lower cost. To incentivize parties to open access to data and things, Smart Cities
must be based on ownership of data and things and have an economic feedback model
where consumers of data and things compensate owners for access:

Smart City foundation

IoT Harmonization Chapter 14

[322]

Avoiding the lure of the dark side
There are other visions of the Smart City, compared to the vision presented in this book,
several bordering on the dystopic. They are often pushed by global big businesses, and
often for reasons of self-interest, advancing their positions and trademarks. These ideas are
then repeated, without realizing the underlying reasons, by a large audience hoping to be
noticed or hoping to be able to jump on the buzz word bandwagon and earn money in start-
up companies looking for venture capital. The common denominator in these visions (or
deliriums) is often an all-intrusive collection (or hoarding) of data from everywhere,
everyone, and everything. This data is then to be processed ("mined") centrally in "the
cloud". The belief (or hope) is that advances in computing performance and Artificial
Intelligence will allow these companies to extract valuable information from the dataset,
information that would not be possible without the large-scale hoarding they hope to
implement. Supposedly, this valuable information will allow us to live longer, cure
incurable diseases, be more beautiful, and live in peace (for some reason, it's mostly
marketing, economic, and political profiling that occurs in these supposedly humanistic
data centers. Altruism is good, as long as somebody else pays for it).

Be it as it may, saving the world from dangerous diseases and pestilence is an important use
case. But it is just one of many important use cases. To protect privacy and ownership of
data and things, an open decentralized architecture respecting ownership is required. Such an
architecture does not inhibit centralized processing of data. Centralized collection and
processing would still be possible, but only with the permission of the corresponding owners.
And through this permission, and an economic feedback model, the owners have a chance
to take part of the profits from the data and the conclusions they contribute to. The reverse is
not true, however: an architecture based on centralized hoarding of information cannot be
used to provide localized services on the edge, respecting the privacy and rights of its
owners.

Currently, big businesses push for centralized global proprietary solutions that cement their
trademarks. These solutions are often antithetical to the concepts of interoperability,
openness, localization, and privacy. The only ownership they are concerned about is their
own. They risk becoming the new robber barons of the information age, due to lack of
legislation and government incentives and direction:

Once centralized, you cannot go back

IoT Harmonization Chapter 14

[323]

Understanding the driving forces
While today's robber barons try to push their information domination schemes on the world
disguised as Smart City solutions, a decentralized open infrastructure for a true Smart City,
respecting ownership and privacy is inevitable. Why? The following are a set of driving
forces that will help break the big business monopoly on infrastructure in different
domains, and make an open infrastructure a reality:

Reuse of existing resources: This is logical and the only cost-effective way to
provide smart services. It's not feasible that service providers must install their
own set of equipment, if existing equipment is available. Buyers of equipment
will require manufacturers to provide open standardized interfaces. It will not be
possible to seal off and control everything from devices, infrastructure, backend,
and services.
Cross-fertilization of domains: It will be the source for most new types of
services in a Smart Society. It's in the intersection of domains that most
innovations occur (e-Health services can benefit greatly from home automation
and security services, for instance). A single domain cannot envision everything
that can be done with their technology. Inventiveness will require openness and
interoperable access.
Local requirements: It will not be satisfied by global efforts not supporting or
understanding local needs. The requirement to optimize every aspect of society
will force underlying infrastructure to support local efforts.
Privacy legislation: It will force companies to respect owner rights. Not doing so
will be exceedingly costly.
Representational government: This, albeit slow, will understand their role, and
help create legislation protecting the rights and freedoms of its citizens. They
have done so in the past every time robber barons have appeared. Finally, if
everything else fails, anti-trust legislation will break monopolies, forcing the parts
to become interoperable.

IoT Harmonization Chapter 14

[324]

Dividing responsibilities
Very few companies are able to provide complete vertical solutions, taking into
consideration the creation of devices, hosting of infrastructure, and development of
backend and frontend software. And those that do, must often cut corners, resulting in
faulty or insecure solutions, or in dead ends. And while complexity and requirements
increase, demand for lower costs and efficiency increase, making it even more difficult.
Vertical segmentation is not sustainable, except for the largest companies. For big
businesses, vertical segmentation is a means to control its customer base and defend its
market share. But as we have seen, even for big businesses, vertical segmentation is not
sustainable. They will be forced to open their solutions, allowing others to compete on their
markets. This makes it unnecessary even for them to strive for market domination through
vertical segmentation. A better option is Horizontal Segmentation, as is illustrated in the
following image. If you specialize, you can reach a broader audience than if you would
have to solve all problems in a vertical stack, using the same effort. Each rectangle in the
following image is approximately of the same area, representing the effort and resources
you have. You can do more if you specialize:

Vertical versus horizontal segmentation

Consider a temperature sensor manufacturer. They want to deliver connected temperature
sensors. Can they imagine all types of applications that would benefit from integrating a
temperature sensor? Are they experts in backend development and internet security? Surely
not. It would therefore make sense for them to publish their sensors using interoperable
interfaces, and let others invent the applications, people who do not know how to create
temperature sensors. Service providers are better at creating services, operators better at
hosting infrastructure, data providers better at publishing data, and device manufacturers
better at creating devices. They shouldn't have to do the work of others. And most often,
there's no benefit from trying. It is often more cost effective to use existing products that do
not lie within your core business than it is to develop similar products yourself.

IoT Harmonization Chapter 14

[325]

Proposing a solution
So, if our model of representational government is kept intact, a decentralized interoperable
infrastructure respecting ownership of data and things is inevitable. It is just a question of
time. But how much time, and what technology should such an infrastructure be based on?
There's a plethora of devices and communication protocols in use already. Do they have to
be updated or become obsolete?

To solve some of these questions, IEEE formed a working group called the IEEE Devices and
Systems Harmonization Working Group, which hosts a project named Standard for
Harmonization of Internet of Things (IoT) Devices and Systems. The objectives of this group and
project is to find the underlying common denominator between different technologies and
propose a means to harmonize these technologies so they can interact in one unified
network.

Developing standards
To provide a truly interoperable infrastructure, all aspects of it need to be standardized.
Nothing can be proprietary or bespoke open source, which can be changed at any minute. A
recognized standards body must publish reviewed interfaces that everyone can use, and
that are guaranteed to be maintained and responsibly updated to avoid breaks in
compatibility. Standards must be available in the following areas:

Communication
Representation
Operation
Security
Privacy
Discovery
Decision Support
Economic feedback models (or contracts)

IoT Harmonization Chapter 14

[326]

Using abstractions
When harmonizing devices communicating using different technologies, the question of
complexity arises. If you have only two technologies, only one bridge is required. If you
need to bridge three technologies, three bridges would be required. But how about four
technologies? Do you need to create six bridges? Or 10 bridges between five technologies?
15 bridges for six technologies? For N technologies, you would need N(N - 1) / 2 bridges, at
least if you bridge them directly between each other, as is shown in the following image.
This process has an order of complexity of N2, which is clearly not maintainable as
technologies grow. If somebody introduces a new technology, either that party needs to
create bridges to every other technology that exists, or each technology provider needs to
create a bridge to the new technology:

Bridging between technologies directly

A more fruitful method is to create an abstraction layer that can act as an intermediary
between each technology. In such a case, the complexity of the system would be linear. Any
technology provider would only have to provide a bridge to that abstraction layer, to be
able to participate in the harmonized network, as is shown in the following image:

Bridging between technologies using an abstraction layer

IoT Harmonization Chapter 14

[327]

Choosing XMPP
Due to the versatile nature of XMPP compared to other protocols, XMPP is proposed to
work as a backend protocol, interconnecting islands of devices communicating using other
means. Since it supports the common communication patterns used in other technologies,
standardized as well as legacy technologies, it can also bridge seamlessly between XMPP
and the corresponding underlying technology. The federated aspect of XMPP makes it
possible to seamlessly integrate islands into a whole.

The proposal also aims at creating standardized interfaces for a decentralized open, secure,
and interoperable infrastructure for the Smart City. These interfaces will act as the proposed
abstraction layer, facilitating harmonization between technologies. They must define loosely
coupled interfaces that contain sufficient room for metadata to allow for any imaginable use
case. It proposes to do this by standardizing the extensions presented earlier in this book:

Sensor data (representation)
Control operations (operation)
Protocol Bridging (concentrators)
Discovery (thing registries)
Decision support (provisioning, security, privacy)

You can access the current state of the interfaces by viewing the IEEE
GitLab repository at: https:/ /gitlab. com/ IEEE- SA/ XMPPI/ IoT. Since the
URL of a repository might change to a subdomain of ieee.org, a current
link will be available at the Mastering IoT repository at GitHub:
https://github.com/PeterWaher/MIoT, other links of interest: https:/ /
standards. ieee. org/ develop/ wg/DASH. html and https:/ /standards.
ieee. org/ develop/ project/ 1451- 99. html.

Defining economic feedback models
One of the goals of the IoT Harmonization working group is to define a method to publish
and accept contracts for usage of things in the network. Discovery and provisioning
interfaces already exists. But an infrastructure for contracts that can be accepted would
allow for the creation of economic feedback models based on usage. This would permit the
creation of open markets for the Smart City. It would complete the requirements of
standards and allow the creation of true Smart Cities.

https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://gitlab.com/IEEE-SA/XMPPI/IoT
https://github.com/PeterWaher/MIoT
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/wg/DASH.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html
https://standards.ieee.org/develop/project/1451-99.html

IoT Harmonization Chapter 14

[328]

Defining new roles
The proposed model creates room for several new business roles that companies can
specialize in. Apart from device manufacturers and service providers, it also defines
business models for the following:

Smart City Operators: who provide infrastructure, monitor compliance of
contracts, and enforce economic feedback
Device publishers: who install, monitor, and publish things
Data publishers: who maintain and publish datasets

The last two are particularly important. By creating open markets for data and things, actors
will find it lucrative to publish these. This will also drive competition, which in turn will
generate access to better and cheaper things and data, which in turn will drive the
development of the Smart Society.

Summary
In this chapter, you've been introduced to the IEEE IoT Harmonization effort. You've been
presented with a vision of the Smart Society, what its driving forces are, and some of its
perils. You've been given an overview of the standardization effort required, how XMPP
plays a role in future Smart Societies and the need for economic feedback models to make
the Smart Society a reality, and what new business roles will appear. In the next chapter, we
will discuss security for the IoT.

15
Security for the Internet of

Things
Unfortunately, security is one of those things that is seldom considered sufficiently, if at all.
Security is invisible and, therefore, difficult to measure. Functionality is much more
entertaining, and it is visible and demonstrable. It can turn heads, raise money, and give
positive feedback. Security, on the other hand, cannot give positive feedback. And it is
difficult to raise money for it, since it is difficult to prove security claims are valid. Lack of
security, however, can give negative feedback, but only when it is too late.

If security problems are grave on the internet as a whole, for things on the internet, it's even
worse. Devices, not operated by human, and supposed to work for years, perhaps without
being able to be updated, are at great risk of being compromised and utilized for malicious
purposes. The goal of this chapter is to motivate the reader to take security for the Internet
of Things into account from the very beginning, integrating it into the fabric of the design
and architecture, and not adding it later as an add-on, in case it is needed. It covers:

An introduction to the problem
A review of common attack surfaces
An introduction to common counter measures

Understanding the risks
James Clapper, former director of National Intelligence of the USA, told Popular Science in
2016 that America's Greatest Threat is the Internet of Things. And the list of threats to America
is not small.

Security for the Internet of Things Chapter 15

[330]

The reason for this statement is that our society is so automated and optimized.
Vulnerabilities in things make it possible to disrupt services, logistics, communication,
energy, and the economy. It is possible to paralyze a modern society, using vulnerabilities
in the systems used to make it run.

Today, hospital equipment, health devices, utilities, transport, trains, ships, cars, vans,
airplanes, power plants, nuclear facilities, grocery stores, railways, motorways, harbors, and
so on are to some extent automated. And they will be more so in the future, some even
becoming autonomous, running without human intervention. And many of these systems
contain serious vulnerabilities, sometimes known, but most often unknown to the creators,
but not to cyber warriors. Many of the items on which people will depend, will become
susceptible to attacks and remote control. Some recent accidents and incidents already bear
witness to apparent hacker activity.

When connecting yourself, or a device to the internet, you must understand what the
internet is, who else is connected, and what they do. It is not a safe laboratory, office, or
home network. Your neighbors on the internet will include criminals, murderers,
pedophiles, teenage hackers, profiling companies, government agencies, and so on, and
then you and your devices. If you lived in a neighborhood with such neighbors, would you
leave your door to the house unlocked?

You can do an experiment to find out who's monitoring you on the
internet, and how long it takes for them to find your machine. If you
publish a server on the internet and log all access to it on common ports,
and enable audit logs, you will find all types of entities prowling the
internet trying to find a way in into your server. Hacking is automated.
Finding your server can be done in minutes. It doesn't take many minutes
to find available servers using IPv4 on the internet on a given port.
Scanning IPv6 takes a little more time, but is doable. On HTTP you can
check the From header, to distinguish legitimate scanning made by
research institutes and search engines from illicit ones. Remember to
compare the presented domain name with the IP address being used to
send requests. Known vulnerabilities are tested, from communication
level to application level. Common passwords are automatically tested.
Don't rationalize away the risk by asking yourself who's interested in my
service anyway? with the purpose of not having to do anything because
your service or data is not interesting enough. Perhaps they're not
interested in your service, data, or devices. Perhaps they're only interested
in using your equipment to perform attacks on others, or store illegal
information such as child pornography, or just destroy your devices
because it's fun, or for the reason of blackmailing you.

Security for the Internet of Things Chapter 15

[331]

Getting to a bad place
When the internet was created and especially the web, much effort was invested into the
interconnection of machines, transmission of messages, and publication of information, and
little effort was made concerning the problem of how to avoid malicious users sabotaging
the network and published information. Good people will not consider the fact that bad
people will share the network with them. Resilience was defined as the ability to recover
from faults. This would typically mean infrastructure losses and breakdowns, which were
imagined to be random events, natural disasters, or wars, which were large scale local area
events. Malicious attacks, however, do not affect components randomly, or locally, but
systematically and globally, and in a much more sophisticated manner. Attacks exploit
vulnerabilities in the design or code, to make it do things that were never intended or
imagined. As such, protection mechanisms have not naturally developed. It is difficult to
develop a protection mechanism for something you have not imagined would occur. Simple
redundancy and routing provide little protection against such attacks. And what is worse:
data protection mechanisms contain vulnerabilities that can be exploited. They increase
complexity and, therefore, also the risk of introducing new vulnerabilities.

The lack of proper security measures gave rise to a plethora of methods to hijack content,
machines, and users. Instead of learning from past mistakes, much of the same errors are
repeated today in the development of the Internet of Things, as enthusiastic engineers
quickly create things that publish new information on the internet, paying little attention to
the more boring aspects of security and protection. As security is invisible, it doesn't turn
the heads of investors or journalists. So, it is one of the things that is being left for later,
when there is time. As it happens, there just never is sufficient time...

But things are much more vulnerable than personal computers. While users can install
software that protects personal computers, albeit not 100%, and keep their operating
systems updated, things installed in the field often do not have the same possibilities. They
might have to run years in the field unchanged, and resist hijacking and hacking attempts.
And if vulnerabilities are found and exploited, things in the field might not even be
updateable to counteract the attack and repair the vulnerability.

Understanding the root causes
So, how do we avoid repeating the same mistakes? Are these vulnerabilities and security
threats an intrinsic part of the internet that we cannot counteract, and therefore we do not
even try? Or are there methods that can be used to significantly improve the security in
communication?

Security for the Internet of Things Chapter 15

[332]

The major problem was that solutions were devised before the whole problem was
understood. They wanted to find a method to transmit messages between computers in
interconnected networks. They managed to do that exceedingly well. They did not consider,
however, how to avoid the injection of fraudulent messages, or eavesdropping on
transmitted messages. So, these were left out in the underlying protocols. As it became
evident that these problems existed and posed a threat, solutions were added to solve them.
But as these were aggregates, they became optional additions. They were never integrated
into existing technology and made mandatory, since that would break compatibility. And the
more technologies that existed, the more the paradigm was cemented owing to the inability
to break compatibility; the more additions and aggregations that were made increased the
amount of optional data protection measures available. But as they were optional, they
required expert knowledge, which was not uniformly available, leaving the internet work to
grow uncontrolled, unsecured, and very vulnerable.

And, as if that was not enough, problems got worse with the introduction of the World
Wide Web, and the use of the HTTP protocol. It is an exceedingly popular protocol, and the
very good at what it was designed to do: transporting open documents. But the complete
absence of integrated and distributed security in the protocol and lack of capabilities when
it comes to communication patterns have created an impressive library of technologies and
extensions that complement the missing parts, extending it beyond the wildest dreams of its
originators. But as has been mentioned earlier, these are all optional aggregates, requiring
expert knowledge not readily available. Creating secure web platforms today is a very
challenging task, even though the technology was introduced close to three decades ago.

Looking at alternative options
At some point in time, you must realize that continuing this path is not a good idea.
Sometimes, you must throw away the old, even though it has served you well, and begin
anew. When the weight of the legacy outweighs the benefits of continuing as usual, it's time
to look at new options. And with the introduction of the Internet of Things, this is
happening.

Security for the Internet of Things Chapter 15

[333]

We have looked at several of the new options in this book. We've looked at new
communication patterns and introduced new protocols. When designing a solution, you
have the option of using a new type of technology. But take care to avoid repeating the
same mistakes that others have done before you: don't be satisfied with a technology only
because it solves your immediate problem quickly and rapidly and hope you can always do
adjustments as requirements appear. Even though modern development processes
encourage this mode of thinking, erroneously calling it agile, it is not a wise choice for the
long run. Important design considerations with critical security implications for the future
should be carefully reviewed before decisions are made that can only be changed with
difficulty later. Try to envision the entire life cycle of the product, service, or system, before
you set the first stone. Functionality built on top can be developed ad hoc, but intrinsic
architectural decisions are more difficult to change.

A building is not more robust than its foundation. If the foundation is weak, it doesn't
matter how much effort you plough into building additions on top. It will never be a solid
building. For that reason, the creation of the foundation is the most important step when
erecting a building, even if it is not visible. The same holds true for information systems.
Without a robust foundation with sound architectural decisions, the system will always be
vulnerable. Therefore, spend time and consideration to make a good foundation that will
support your solution over time.

Getting to a better place
Regardless of whether you want it or not, if you're designing something for the Internet of
Things, you must lay the foundation for it at the beginning. At the core of the foundation
lies communication (among other things). Throughout the chapters, we've seen that
protocols such as MQTT and HTTP, while they are easy to use, form a very bad foundation
for interconnected things on the internet. While there are applications where they can be
used, such as secondary web interfaces (HTTP) and local distributions of data (MQTT), for
interoperability and exchange of data between devices on the internet, they are poor
options. The amount of vulnerabilities you need to protect against, as well as the lack of
communication pattern support, greatly outweighs using another protocol. CoAP with
LWM2M might be a good choice, but only if the topology remains fixed, and if data
collection and centralized processing is your main (or only) mode of communication. It's
also a very poor choice, if interconnectivity between devices is on your feature wish list, or
any form of secure formation of ad hoc networks.

Security for the Internet of Things Chapter 15

[334]

If you, on the other hand, see a value in being able to create secure interoperable ad hoc
networks of things and services, XMPP will provide you with a solid foundation to build
upon. If you are not sure you need these things, assume you will, since it helps you avoid
building yourself into a corner that you can only escape from with great difficulty. Since
XMPP was originally built for instant messaging, it has intrinsic support for ad hoc
networks. It is also the only protocol that has an intrinsic (inescapable) pluggable (SASL)
distributed (federated) authentication mechanism coupled with an authorization
mechanism (presence subscription negotiation) and encryption. It always forwards the
authenticated identity of communicating parties in telegrams, making it easier for devices
to make security decisions. Brokers make spoofing (pretending to have an address you
don't have) more difficult by overriding senders claimed addresses, and checking that
brokers forward messages they have a right to forward. Brokers also help solve the
topology problem. And the rich support for communication patterns and scalability permits
you to design virtually any communication model you might need. For this reason, you will
find XMPP at the core of many of the world's most renowned communication infrastructure
products. And if high intensity communication between nodes is required, server-less
communication is a possibility if the network topology allows it.

Brokers can help things with security issues, as in the case of XMPP, or
make it harder to cope with all vulnerabilities, as in the case of MQTT. For
this reason, MQTT might be a good option to transport information in
controlled environments where its vulnerabilities can be checked. XMPP is
a better option in uncontrolled networks, such as the internet, where
brokers help participants reduce their vulnerability.

Mastering data protection technologies
It is difficult to master all the technologies that exist concerning data protection. It is
furthermore, a field that is in constant flux as new vulnerabilities are found. By choosing a
good underlying foundation for your project, such as XMPP, you get a technology that
helps you with many of the underlying risks — but not all. You will still need to understand
the basics of data protection and cyber security. To cover this field meaningfully would
require multiple books and is beyond the scope of this book. In this chapter, however, you
will be presented by a very brief overview of technologies you should be familiar with, to
the point of knowing how they work, what problems they solve, and when to use them.

Security for the Internet of Things Chapter 15

[335]

Skimming the basics of encryption
Encryption algorithms are often divided into symmetric and asymmetric ciphers.
Encryption algorithms often use multiple algorithms together to achieve the expected
properties. Such ciphers are called hybrid. But understanding the distinction between
symmetric and asymmetric ciphers is important.

Symmetric ciphers are typically faster and have smaller keys. AES is an example of a
symmetric cipher that has hardware support on most modern machines. Elliptic curve
cryptography is also symmetric. These ciphers are called symmetric since both encryption
and decryption use the same key. Since these ciphers often are faster, they are preferred
when encrypting a large bulk of data, for example, when transferring content, or when the
sender and receiver are the same, such as when encrypting local storage or personal
information. Since the key must be the same, if two (or more) entities partake in the
conversation, cryptographic key exchange becomes important. Diffie-Hellman is a set of
algorithms for key exchange. Note that the cipher is not stronger than the weakest link.

Asymmetric ciphers on the other hand are slower. They have one key for encryption and
another for decryption. In a Public Key Infrastructure (PKI) based on asymmetric ciphers,
the public key, which can be known by everybody, is used for encryption and for
validating signatures. The private key, known only to the holder of the key, is used for
decryption and the creation of signatures. Given the public key, it's considered hard to
derive the private key. PKI has the advantage of not requiring key exchange. RSA is an
example of a popular asymmetric cipher.

Hybrid ciphers typically combine the features of different ciphers. It's common to use an
asymmetric cipher, such as RSA, to encrypt symmetric keys, for instance, in the key
exchange phase, and then use the corresponding symmetric cipher, such as AES or an
elliptic curve, to encrypt the bulk of the message.

Security for the Internet of Things Chapter 15

[336]

Encryption can provide you with a false sense of security. Normally, when
discussing encryption, merely node-to-node encryption, such as TLS, is
discussed. Since transport typically makes multiple jumps between nodes,
such as brokers, proxies, middleware, or malicious middlemen, data is
decrypted at each node, and then re-encrypted before being passed on, if
the next step is also encrypted. Data is not secured when it has been
decrypted. Transport layer security protects against sniffing
(eavesdropping) and injection of false messages, but it is only as secure as
the underlying cipher, many of which can be broken today. Downgrade
attacks trick the other party to use a cipher that can be broken.

A stronger form of encryption is end-to-end encryption (E2E) where data
is decrypted when it reaches its intended destination. E2E is performed on
the application layer and not on the transport layer.

Protecting data integrity
Hash algorithms are deterministic, unstable cryptographic functions that produce a short
value, or a hash, given a set of data. Unstable means that a small change in the input
produces a very large change in the output. This makes it very difficult to reverse the
calculation; such that given a hash, it is very difficult to find a dataset that generates that
same hash. Doing so is called finding a collision. SHA is a set of well-known hash
algorithms.

Hashes can be used to create signatures or maintain the integrity of a data item, such as a
file. Since the hash is small, it's easy to transmit and store. Computing the hash multiple
times gives the same value, unless something has been changed in the file. The hash,
therefore can be used to protect the integrity of the file, meaning you can detect if
somebody has tampered with the information.

Hashes can also be used to protect user credentials. Instead of transmitting or storing
passwords, hashes of passwords, combined with some salt, can be transmitted and stored.
When a user provides a password, the hash is calculated and compared, instead of the
password itself. This produces the same result. But if a malicious user gets access to the
database, or listens to the communication, and retrieves a hash, the original password will
be very difficult to extract. And the use of the salt (a random number unique to the context)
makes sure the hash cannot be used somewhere else.

Security for the Internet of Things Chapter 15

[337]

Understanding key sizes
When using different algorithms, it might be difficult to evaluate the relative strengths of
each, since the key sizes vary (counted in bits). The NSA has made some recommendations
for commercial enterprises on the relative strengths of different methods. These can be used
as a guideline for how secure the corresponding cipher is, or how "easy" it is to break it (for,
or according to, the NSA). They can therefore be considered comparatively of similar
strength.

Algorithm Key size Usage

RSA 3072 Keys, signatures

Diffie-Hellman 3072 Key exchange

Elliptic Curve NIST P-384 Key exchange, signatures

SHA 384 Integrity

AES 256 Confidentiality

You can find the NSA recommendations here:
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FA
Q.pdf

Using certificates
X.509 certificates are containers of cryptographic algorithm references and keys, as well as
metadata, or claims that the certificate is supposed to make. These claims might be related
to a name such as a domain name, email address, and so on. The claims are only valid for a
given amount of time. A certificate contains an expiration date. After that date, the
certificate automatically becomes invalid.

The algorithm references constitute an example of a loosely coupled
architecture, making algorithms pluggable. As algorithms become obsolete,
they can be exchanged for newer ones, without having to change the
overlying architecture.

https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf

Security for the Internet of Things Chapter 15

[338]

Certificates define a PKI. The public part of the certificate can be transmitted to others, who
can use it to validate the claims made, and that the certificate is valid. The public part can
also be used to validate signatures made by the holder of the private part and encrypt
information to it. The holder of the private part can use it to sign information, and to
decrypt information sent to it. The private part of the certificate is typically protected by a
password. Certificates also have a thumbprint, a hash value that can be used for integrity
checks to identify that certificate.

Certificates also have a mechanism to protect against losses or compromises of the private
part of the certificate: most certificates are issued by a Certificate Authority, or CA. You can
revoke a certificate with its issuer. The CA maintains a list of certificates that have been
revoked. When validating a certificate, its chain is also validated to check a certificate has
not been revoked. The chain is formed by fetching the certificate of the issuer, validating it,
checking its issuer, and so on, until reaching a root certificate. A root certificate does not
have an issuer. The root certificate must be installed in the system, for the chain to be valid.
The list of installed root certificates is typically maintained by the operating system or the
system administrator.

When connecting to a domain on the internet, the domain name is first
resolved into one or more IP addresses by your DNS server. When
connecting to these addresses, you don't really know if the IP addresses
are correct. A malicious user might have introduced their own IP
addresses into the server to perform a Man-In-The-Middle attack
(MITM). This is called DNS spoofing. As you connect to the server using
TLS, the server presents a certificate to prove it is who it says. The client
validates the certificate and reads the name (or subject) on it and
compares it with the name originally resolved. If they match,
communication can continue, since only the holder of the private part of
the certificate can generate the appropriate signature.

When validating certificates, consider pinning the CA certificate. This
means that you explicitly check the identity of the CA certificate, or its
thumbprint, and make sure it is one that you know. This pin must be
updated, as the CA needs to update its certificates too. But the lifetime of a
CA certificate is often longer than a normal certificate. And pinning the
CA certificate in your validation routine makes sure an impostor is not
able to present you with a valid certificate made from another CA that has
been compromised (or a self-signed certificate that somebody has
installed, see the following section).

Security for the Internet of Things Chapter 15

[339]

Avoiding self-signed certificates
One of the most common certificate-related errors developers commit is to create self-
signed certificates, instead of creating proper certificates. Perhaps it is to be able to create
certificates with an apparent long lifetime, to avoid having to update them in the field, or to
avoid the cost of creating a proper certificate. Both arguments are invalid. You can easily
create valid certificates for free today.

Using self-signed certificates is a great risk in itself. Apparent security is not true security.
First, you must disable security features to allow such certificates to be validated. Either you
do that in code or you install the certificate everywhere where the certificate is to be
validated. Both create severe vulnerabilities. In the first case, disabling such features in
code, often results in these features being forgotten and ending up in production
environments. This in turn results in the system being vulnerable against MITM attacks.
Installing self-signed certificates in the system can be even worse. Having access to the
private part of a certificate you can create other certificates, having the self-signed certificate
as an issuer. These will automatically validate. You can then perform successful MITM
attacks using DNS spoofing of well-known services, and you would not notice, since the
fraudulent certificates used would validate everywhere where the self-signed certificate
was installed.

You can easily automate the creation of valid certificates for free, by using
an ACME client, such as certbot, and a CA such as Let's Encrypt:
https://letsencrypt.org/

It might in some cases be better to not use encryption at all, than to use
encryption based on self-signed certificates.

Also, a requirement to use TLS or DTL, does not require you to use
certificates, even if it is the common use case. There are ciphers based on
pre-shared keys (PSK) that you can use. In such case encryption is
established. But you lose the ability to validate certificate chains and
revoke compromised keys. But, it's preferable to use PSK in a responsible
manner than it is to use self-signed certificates.

Use https://www.ssllabs.com/ssltest/ to check your TLS servers and
get tips on what you can do to improve their security. While you're at it, if
you run Windows Servers, you can use the IIS Crypto tool to control
cipher settings to improve your score:
https://www.nartac.com/Products/IISCrypto.

https://letsencrypt.org/
https://www.ssllabs.com/ssltest/
https://www.nartac.com/Products/IISCrypto

Security for the Internet of Things Chapter 15

[340]

Avoiding creating a Certificate Authority
Unless you are a big company with the goal of creating a proper certificate authority, don't
create your own CA just because you need a method to create a lot of your own certificates:

First, make sure you really need these certificates. If you're forced to use client-
side certificates for things, just because the authentication mechanism in the
underlying protocol is inherently insecure, such as is the case with MQTT,
consider choosing another technology such as XMPP. If the underlying
technology permits, such as in the case of CoAP and LWM2M, consider using
PSK that you can generate easily yourself instead of certificates, rather than
having to create your own CA. Certificates should only be used on high-value
nodes due to their increased complexity and relatively short lifetime.
Creating a CA requires you to maintain a redundant and resilient set of certificate
servers that can respond to validation requests. If they go down, your system
risks going down.
If you need more certificates than can be created using the free options of CAs
such as Let's Encrypt, consider getting a commercial account instead of creating
your own CA.
Creating your own CA requires you to install the CA certificate on all machines
that will interact with your things and services. This is undesirable. It creates
vulnerabilities in these systems and forces you to maintain your CA servers and
corresponding certificates under stringent watch.

Don't create solutions that require the installation of root certificates.
These must be maintained. Also, don't create long-lived certificates.
Instead, use ACME to automate the creation of relatively short-lived
certificates.

Security for the Internet of Things Chapter 15

[341]

Using tokens to transport claims
Due to the complexity of using certificates and the need to be able to transport custom
claims, technologies such as JSON Web Tokens, or JWT, have become popular. They allow
the transmission of claims encoded into a simple text string that is easy to distribute and
contains a HMAC SHA-256 signature. HMAC basically means that the claims are salted in a
special way with a secret. This secret must be shared between the issuer of the token and all
recipients. While JWT tokens are simpler to implement and maintain, they induce a
vulnerability compared to certificates in distributed systems, since the secret must be
distributed between all entities. Therefore, only use such tokens where such a distribution
can be made in a controlled manner. The simplest example is if the issuer is the same as the
receiver. This is the case when an application on a web server issues a token to a web page,
whose JavaScript uses the token in subsequent API calls to the server, as we did in Chapter
6, Creating Web Pages for Your Devices.

Enforcing ubiquitous encryption
It is easier to just encrypt everything than it is to analyze how sensitive different aspects of
the system are and encrypt only that which is sensitive enough. Hardware support for
encryption has made the performance loss of using encryption negligible in most cases.
And selecting and making choices just increases the risk of making the wrong choices.
Therefore, just enforce ubiquitous encryption: encrypt all data at rest (storage) and data in
transit (communication) by default.

If you process sensitive data, especially sensitive personal data, you should consider end-to-
end encryption as well. Normal transport-level encryption, such as that provided by TLS,
only encrypts data between nodes in the network. To avoid data leaking through
compromised nodes, end-to-end encryption can be used.

Simple is often better and more secure, since it is easier to maintain an
overview. Complexity increases the risk of making mistakes. Simplify
your processes and reduce unnecessary decisions where you can, to
increase security. Ubiquitous encryption is an example of this.

Security for the Internet of Things Chapter 15

[342]

Creating checklists
The chain is not stronger than the weakest link. And in many cases, the human factor is the
weakest of them all. Even experienced and knowledgeable people forget things. And if it is
not your human factors playing a trick, it might be one of your co-workers... To avoid
forgetting important steps during development, quality assurance, deployment, and
production, create mandatory checklists to follow, just as in aviation. Using checklists is a
great support in stressful moments, and for people with good, albeit short, memories.
Execute these checklists at important milestones in your project, to make sure you haven't
forgotten anything important. Items you could include in these checklists, but should not be
limited to:

Run security-related unit tests
Check certificates are valid and not set to expire soon
Make sure ubiquitous encryption is enforced
Check TLS endpoints using https:/ /www. ssllabs. com/ssltest/

Check security headers with https:/ /securityheaders. io/

Execute validation checks
Execute penetration tests to make sure unauthenticated and unauthorized access
is never granted at any level of the system to any data, service, or device
Scan the network for open ports that should be closed, unauthenticated access
points, and use of standard passwords
Update software and operating systems
Update documentation
Make sure your Data Protection Impact Assessment (see the next chapter) is
updated
Configure key stores and usage of Trusted Platform Modules (TPM) to manage
cryptographic keys
Update keys and passwords where necessary

https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/
https://securityheaders.io/
https://securityheaders.io/
https://securityheaders.io/
https://securityheaders.io/
https://securityheaders.io/
https://securityheaders.io/
https://securityheaders.io/
https://securityheaders.io/

Security for the Internet of Things Chapter 15

[343]

The checklists or corresponding tests should be updated as new
vulnerabilities are found and data protection measures added.

Also remember that a checklist is a tool to help you remember important
steps in stressful situations. It is not a replacement for critical thought. Just
because you've completed your checklist doesn't mean your system is
secure. And don't avoid creating checklists, just because you can't figure
out everything you have to do. Partial checklists are better than non-
existing checklists.

Updating your firmware
Just as operating systems must be updated regularly, and software running on PCs need
frequent updates, things need to be updated as vulnerabilities are found and protected
against. New proposed legislation, beginning in the USA, will require things to be
updateable. Otherwise, government authorities will not be allowed to buy them. Such
legislation is sure to be implemented in other countries as well, as time passes. This will put
pressure on manufacturers to include this in their products. The result will be that products
that do not support this feature will find it difficult to find a market place. For that reason,
plan to make your things updateable remotely. Care must be taken, however, to make sure
only you can update your things, and nobody else.

Distributing your risks
Centralized processing is not only bad for privacy, scalability, and responsiveness. It is bad
for security reasons as well. Centralized nodes easily become vulnerable in Denial of
Service (DoS) attacks, especially Distributed Denial of Service (DDoS) attacks. The point
of a DoS attack is to flood a central node with requests to deplete its processing power,
effectively denying access to the server to its rightful owners. But just as distributing the
attack among multiple attacking machines makes the DoS more efficient, distributing the
processing makes the system less vulnerable and more resilient to such attacks. Edge
computing is based on processing information as close to the source (the edge) as possible.
This is the ultimate form of distributed processing, even though intermediate nodes can be
used as well. As the loads on central nodes decrease, it's easier to scale organically.
Processing power can be dedicated to the main task at hand, instead of solving complex
scalability issues centrally. It also helps maintain privacy and integrity, since data is
processed close to the people concerned.

Security for the Internet of Things Chapter 15

[344]

This can be used by the owners of the equipment to enforce ownership of the information as
well. Since data is not stored at central points, illicit access to all the information is also
made more difficult. This decreases the risk of it being abused or leaked in bulk.

Centralized Distributed (federated)

Expensive Inexpensive

Inefficient Efficient

Difficult to scale Scales organically

Unsecure Secure

Loss of integrity Maximal integrity

Easy to abuse Difficult to abuse

User cannot control information User owns information

Note that a distributed architecture for processing does not prohibit
centralized processing of certain information under certain conditions.
Such can always be made, but with adequate permissions. The opposite is
not true, however. Once you've centralized processing, it's very difficult to
go back and perform distributed processing of the information.

Avoiding leaking data unintentionally
Many data leaks that occur in systems are unintentional. Developers publish data in an
accessible format because they want it to be easy for them to access the data. It might not
occur to them that their APIs or data sources will be found, and attempted, by others.
Always add a layer of authentication and authorization to your data sources and APIs as
well. It is not sufficient to add such layers in user interfaces. So much should be clear by
now.

But there are other unintentional data leaks that are more difficult to find: do you use third-
party services? Every time you call such a service, you leak information to them, through
the parameters you use in your API calls. Whether it be position information through a map
API, or IP addresses through a log API, information is leaked, and can be collected and
processed to analyze your service, your users, and their behavior. Make sure you have
confidentiality agreements signed with every third party you communicate with that
regulate which data can be collected, and for which purposes.

Security for the Internet of Things Chapter 15

[345]

Search features and the use of wildcards in searches and subscriptions are other sources of
leaks. While very useful to accomplish legitimate tasks, they can also be used by malicious
users to extract too much information from your system. Make sure to log and monitor such
use and put limits on how much freedom is allowed.

If you've used Waher.Persistence.FilesLW for persisting data locally
in the examples in this book, you can easily protect that data from leaking
unintentionally, by encrypting it, if you run the application on a platform
that supports .NET Standard 1.5, such as .NET Core 2 or UWP 2. In that
case, you simply use the Waher.Persistence.Files library instead. All
data at rest, persisted using this library, will be seamlessly encrypted
using AES-256 by default. The application interface is the same.

Summary
In this chapter, you've been introduced to some of the risks involved in creating solutions
for the Internet of Things. The goal has not been to dissuade you from doing so, but to
prepare you, so that you know how to protect your solutions from common forms of attack.
You've learned why security for the IoT is so important, how vulnerable smart societies are,
and how design choices affect the security of your solutions. You've also been given an
overview of some common forms of attacks and how to protect your systems from common
vulnerabilities. In the next chapter, we will discuss privacy and how it affects the Internet of
Things.

16
Privacy

The last chapter of this book is dedicated to perhaps the most important subject of our time:
privacy. Its importance is widely underestimated, and the design decisions we make for
information systems we help build have a huge impact on our ability to protect the privacy
of our users. The question of privacy is often completely omitted, simply because it is
believed by many to be impossible to protect in the information society of today. I, as the
author of this book, leave this chapter till last, because if there is anything I wish you to take
with you in your professional career it is a heightened awareness of how important privacy
is, that it is possible to protect, and what you can and must do to protect it. This chapter
covers the following topics:

An introduction to what privacy is and why it matters
An introduction to new privacy legislation
How technology can help protect privacy

Defining privacy
If you ask people on the street, at work, at home, or in class what privacy is, or what it
means, you are normally met with blank stares. People have no clue. They are not even sure
if it is important or not. It is too vague. You might even encounter people who claim that
privacy is a bad thing. Only bad people require privacy. If you have nothing to hide, why
hide? No wonder privacy has eroded fast, if people don't know what it is, see no value in it,
and do nothing to defend it against those who profit from eliminating it.

Privacy Chapter 16

[347]

Understanding the importance
In article 12 of UN's Universal Declaration of Human Rights, we can read: No one shall be
subjected to arbitrary interference with his privacy, family, home or correspondence, nor to attacks
upon his honor and reputation. Everyone has the right to the protection of the law against such
interference or attacks. Simply put, privacy is a fundamental human right.

The fundamental human rights form the basis on which all legislation should be built,
national as well as international. Without it, or parts of it, our society will degrade into
something that is not pleasant. Each article is based on hundreds, or thousands, of years of
experience and multitudes of failed examples, and each one is a requirement for building a
society that gives a minimum of protection for its citizens.

Understanding what it means
As with all articles of the declaration, they contain few words to make the point clear.
Perhaps too few words we might think, especially since technology has advanced so much
since the declaration was written. But there are some following basic things that we can
derive from the declaration:

Correspondence originally referred to communication using letters. Today, it
includes electronic communication such as email.
The use of the words arbitrary interference means there are non-arbitrary forms of
interference that are acceptable, without breaking the UN declaration. What could
those be? Modern privacy laws provide the answer (see the following sections).
The definition contains a double negation: You have a right to not be subject to
arbitrary interference with your correspondence. Let's eliminate that double
negation and write it as a positive statement: You have the right to communicate
confidentially. This is a fundamental human right.
You also have the right to select with whom you communicate. Others cannot do that
for you, meaning eavesdrop arbitrarily.
The article also states that you have the right to not be subject to attacks on your
honor or reputation. This means you have the right to be legally protected from
people suggesting (which is a form of attack) you might have something to hide,
simply because you want to have confidential conversations with others. There
are things we want to do in private, and only discuss with private friends or
family, without it being suspicious, illicit, or immoral. It is our fundamental
human right to do those things, as long as we do not limit other people's
fundamental human rights.

Privacy Chapter 16

[348]

Google represents one of the biggest threats to privacy in recent times.
Their disregard for the items listed in this section should come as no
surprise to the reader. That they seem to have complete disrespect for
Article 12 of the Universal Declaration of Human Rights is perhaps best
summarized by Eric Schmidt, a previous Google CEO, in his statement If
you have something that you don't want anyone to know, maybe you shouldn't be
doing it in the first place. The obvious extension to this is that he thought
Google had the right to collect any personal information about everyone,
since if anyone objected, it was due to morally suspicious activity. They
are in the right; anybody objecting is in the wrong. Visit https:/ / www.
eff.org/ deeplinks/ 2009/ 12/ google- ceo- eric- schmidt- dismisses-
privacy. For a search engine that respects privacy, see:
https://duckduckgo.com/. For a social network that respects privacy, see
Little Sister®: https:/ /littlesister. se/ . Also, make sure to follow the
Electronic Frontier Foundation: https:/ /www. eff.org/ .

Being informed
The rights given to you state that you have the right to communicate in confidence with
people and that you decide who they are. At the same time, you have the right to not be
subjected to arbitrary interference. These statements together provide an important
implication: you have the right to be informed about non-arbitrary interference with your
privacy. Otherwise, you will not be able to select with whom you communicate, or not be
able to communicate in confidence. If somebody interferes with your privacy, for instance,
by collecting and processing your personal information, that party is obliged to inform you
about it, so that you can take the corresponding steps to protect your rights.

Introducing the GDPR
The state of privacy of individuals in the world looked bleak until 2016. Most people were
subjected to the pleasures of global internet companies, who abused their positions to
collect and process the personal information of their users, without their informed consent,
selling it on to third parties, and not always in the best interest of the original users. This
uncontrolled state of affairs is only beneficial for a few robber barons who can exploit the
fact that most people are unaware of what is happening, how the proposed technology
works, what the alternatives are, what their rights are, who is benefitting from it all, and
who bears the long-term consequences.

https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://www.eff.org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy
https://duckduckgo.com/
https://littlesister.se/
https://littlesister.se/
https://littlesister.se/
https://littlesister.se/
https://littlesister.se/
https://littlesister.se/
https://littlesister.se/
https://littlesister.se/
https://www.eff.org/
https://www.eff.org/
https://www.eff.org/
https://www.eff.org/
https://www.eff.org/
https://www.eff.org/
https://www.eff.org/
https://www.eff.org/
https://www.eff.org/
https://www.eff.org/

Privacy Chapter 16

[349]

To provide authorities with effective means to regulate the processing of personal
information and give some of the lost rights back to people, the European Union managed
to create perhaps the first effective and good legislation in this field in May 2016: the
General Data Protection Regulation, or the GDPR. It gives companies two years to adapt
their processing activities before the law comes into full effect in May 2018. This legislation
is good for everybody except those who want to exploit the personal information of
unsuspecting individuals. It provides effective means to regulate the processing of personal
information, it provides and defines proper rights for individuals, and it gives companies a
means to compete using privacy as a quality measurement, instead of having to compete
breaking privacy. For the first time, companies have an efficient means to earn money, by
providing solutions that protect the privacy of people, instead of invading it.

If you talk to lawyers about the GDPR, some might object, saying that
much of the GDPR existed previously, and that the GDPR is not much of a
difference to earlier legislation. This might be true in some regards, and in
theory alone. Much of the regulation existed in various forms of legislation
earlier. What is different is that the GDPR not only harmonizes the
legislation across member states in the EU, but that it also extends its reach
to any service in the world being offered to European citizens. It also
provides an efficient means to regulate it with heavy sanctions and fines if
you don't comply. This difference makes the law something every
company must consider, even global giants. Earlier legislation, you could
pretty much ignore. In theory, the GDPR might not be much different; it is
based on previous work. But in practice, it implies a drastic paradigm shift
in how the processing of personal information can be performed. Anyone
interested in privacy can read the source material directly on the internet.
It is available in 24 languages, all with the same status as law: http:/ / eur-
lex.europa. eu/ legal- content/ EN/ TXT/? uri=OJ:L:2016:119:TOC.

Balancing rights
The first thing the GDPR recognizes is that there are many different human rights and that
no right is absolute. While individuals have a right to privacy, people also have the right to
associate with companies for the purposes of industry, creating solutions and providing
services that process personal information. One of the goals of the GDPR is to balance these
rights, as well as the provisions set up in other existing laws.

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

Privacy Chapter 16

[350]

Another goal is to facilitate the free flow of information. This might sound nefarious, or
counter-intuitive, but it is not. It means that companies complying with the regulations set
forth in the GDPR are allowed to share this information with others that also follow the
regulations, as long as this flow of information complies with the requirements, and
without having to apply for a permission to do so. We will outline what these requirements
are in the following sections, and what happens if you do not follow these requirements.

It is interesting to note that some countries have enacted legislation
prohibiting the free flow of personal information by requiring data to be
stored and processed within the boundaries of the same nation. In
comparison, the GDPR does facilitate the free flow of information since it
focuses on rights of the data subjects, rather than technical solutions and
limitations.

Measuring proportionality
It is difficult to establish a balance between two incompatible measurements. Privacy is
subjective, profit or public value can be measured objectively. How do you balance these
two?

The GDPR outlines some sort of a minimum and a maximum effort you must make to
protect the privacy of individuals. The minimum effort is called: state of the art. The state of
the art is a fluid term, popular in patent law. It refers to the highest level of general
development in each field, and it is known to people skilled in the craft, or skilled in the art.
Simply put: while there might exist plenty of more advanced solutions to different topics,
sorting under specialized developments, professionals in the field know what the best
practices are, that is, the highest level of general development. This is also what is expected
of you, by the GDPR. Lack of knowledge is not an acceptable excuse in the GDPR. If
something is complicated or hard, just because you're inexperienced in the field of inquiry
does not make it a valid argument for not having to enforce it. It is not a measurement of
the true complexity of the problem. What is valid is what people that are skilled in the art
think.

The maximum effort the GDPR requires of you is that you're not required to do more than
what is proportional to the risks faced by all participants, or data subjects. This includes a
measurement of the cost.

A data subject is a natural person about whom personal data is being
processed.

Privacy Chapter 16

[351]

Defining personal data
The GDPR concerns the processing of personal data. So, it is important to know exactly
what is meant by personal data. Personal Data is any information relating directly, or
indirectly, to an identified or identifiable natural person called a data subject. Let's think about
what this very broad definition means:

Information that not only directly, but also indirectly, relates to a person is also
personal. Number of references is not limited.
It does not matter if the processing activity has the person identified or not. It is
sufficient that a person can be identified even, by an external party, for the data to
be personal.
It does not even matter, if this process of identification is possible for all records,
or to what degree this possibility exists. If the data is indirectly related to an
identifiable person, the data is personal.
The GDPR goes on to provide a non-exclusive list of artefacts considered
personal data: names, identification numbers, location data (such as positions),
online identifiers (such as MAC, IP and email addresses, keys, account names,
and so on), one or more factors specific to the physical, physiological, genetic,
mental, economic, cultural, or social identity.

Personality is contagious: Data relating to personal data automatically
becomes personal data.

It might just be easier for you to process your information as if it all was
personal. Sensor data is often personal. There are various relations that
might make the sensor data personal: one might be the indirect
relationship with its owner. Another might be related to what the sensor
measures. If the sensor is in a home, in a vehicle, at the office, in a
wearable device, and so on, it's personal. If it is a public sensor with the
ability to measure information that can be used to identify people, it's also
personal.

Privacy Chapter 16

[352]

Anonymizing data
If you manage to anonymize data, the GDPR no longer applies to that data. Unfortunately,
the term is often used erroneously. Anonymization of data means that it is no longer possible
to identify a natural person from the data. This requires stringent proof. Replacing the
identity of persons in a dataset with numbers, GUIDs, or hashes does not satisfy this
requirement, since it is still possible to reverse engineer and identify the original set of
persons, especially if you have a list of possible persons to compare against. This process is
called pseudonymization and is still considered personal data, according to the GDPR.
Pseudonymized data is defined as data where it is possible to identify a person given
external data. Pseudonymization is still considered a data protection mechanism.

While anonymization is difficult, valid methods still exist. One example is statistical
aggregation. Operations as sums, averages, variance, standard deviations, and so on
eliminate the possibility to say anything about individuals, if the population is sufficiently
large. Another method is data obfuscation, or data masking. This means you destroy
certain details in the dataset, which accomplishes the same thing as aggregation. An
example can be to destroy one of the four bytes in an IPv4 address. From the three
remaining bytes, you can deduce the region, but not the individual performing an action,
for instance.

Defining processing
Now that we have a better understanding of what constitutes personal data, we also need to
know what "processing" means. As with personal data, the definition is very broad. The
GDPR defines processing to mean any operation or set of operations that is performed on
personal data or on sets of personal data, regardless if the processing is done using
automatic or manual means. It limits manual operations to those that are made for the
purposes of filing. There are very few loopholes.

Doing as little as possible
If you want to find a one-word definition for what the GDPR is, it is: minimalism. You can
say it's a minimalistic definition. What it means is that the GDPR allows you to:

Do as little as possible.
For as short a time as possible. Old data must be deleted.
For as few purposes as possible.
As correctly as possible. You are obliged to update erroneous data.

Privacy Chapter 16

[353]

Share with as few as possible. You must also assure their datasets are kept up to
date.
And always with proportional data protection mechanisms in place.

Informing the data subjects
But it is you who defines what these limits are. You must also inform the data subjects of
what you are doing. This information must be provided in a transparent manner.
Transparent does not mean open, since you can hide relevant information by providing too
much information. This is normally what happens in legal agreement texts. Under the
GDPR, long complicated texts such as those do not constitute transparent information.
Instead, transparency means the text must be informative, easy to understand, clear, and
concise. It must use plain language, and special consideration must be made if the
processing activity involves children. It must be relevant to the audience (the receivers), not
the sender, which is typically the case with legal documents.

There might be cases where processing of personal data does not require
informing data subjects. Such cases include processing activities mandated
by law that require secrecy. Another exception might be if it is impossible
to inform the subjects. In such cases, general statements should be made
available publicly by other means.

Once you've defined your boundaries and informed the data subjects, you can commence
processing. You are then not allowed to go outside of the boundaries you've set up and
informed the data subjects about, without informing the data subjects about that fact. And
you are only allowed to perform the new processing activity on data collected after the time
you informed the subjects. You are not allowed to execute it on old data retroactively.

This minimalistic requirement implies a paradigm shift on how data can
be processed. The traditional statement made by proponents of centralized
big data solutions that the more you collect, the more potential value you have is
no longer true, considering the GDPR. Since you are not allowed to
retroactively process the data you've collected in new processing activities,
hoarding the data "just in case" makes no sense. The old paradigm is no
longer true. In the new paradigm, the more data you collect, the more risk
you have and the greater your responsibility. But the potential value stays
the same. The new paradigm states that you should only collect data to which
you can assign a value.

Privacy Chapter 16

[354]

Finding your legal grounds
To be allowed to process personal data in the first place, you must have a legal foundation
for doing so. The GDPR provides you with the following six options to choose from:

The most recognized form is based on consent. This means that you get an
approval from each data subject after having informed them of what you are
going to do. After getting the approval, you're allowed to perform the processing
that you've described. Each subject must be allowed to withdraw their consent at
any time. And doing so should be as easy as it was to give it. And when they do,
you're no longer allowed to process their personal data and must remove it.
You are also allowed to process personal data if it is your legal obligation to do
so. You are still required to inform the data subjects (unless the law explicitly
states you're not allowed to), but do not need their consent.
If you have a legitimate interest that outweighs the rights and freedoms of the
data subjects, you are also allowed to perform the processing, after informing the
data subjects of what you're intending to do. The data subjects have the right to
object to the processing. In such cases, you are only allowed to continue
processing such data for which you have compelling reasons to continue. This
means that you are not able to continue the processing without such data. Data
for which there are no compelling reasons to maintain, must be deleted.
Processing based on legitimate interest does not require consent, but still requires
information being provided to data subjects. An example of legitimate interest
might be to monitor employees at work to optimize production, for instance.
Another example might be processing to facilitate research and development of
new and better products and services.
If you have a contract with a data subject, you can perform the corresponding
processing for the time specified. You must, as always, provide transparent
information about the processing activities to the data subject.

Note that the processing of personal information of employees based on a
contract with the employer does not constitute a legal ground based on
that contract. Instead, the processing must be based on a legitimate interest.

If the processing activity can save lives somehow, it is of vital interest. Such
processing is allowed, always with proportional data protection mechanisms, and
always with a requirement of transparent information being given to the data
subjects.

Privacy Chapter 16

[355]

Other types of processing that are for the common good, or public interest, can
also be allowed, given the requirements of proportionality and transparency.

Avoiding certain topics
There are certain things that you should stay away from. Unless you have explicit consent
or are otherwise explicitly permitted, you are not allowed to do any of the following
processing activities, considered high-risk activities:

Processing of special categories of data. This includes data related to racial or
ethnic origin, political opinions, religious or philosophical beliefs, or trade union
membership, and the processing of genetic data, biometric data for the purpose of uniquely
identifying a natural person, data concerning health or data concerning a natural
person's sex life or sexual orientation.
Perform profiling of data subjects such that automatic decisions are made that
have negative consequences (in a legal sense) for the data subjects. You can grade
people and reward the people the algorithm finds are good. But you are not
allowed to punish the bad.

People are still allowed to make mistakes, but not algorithms. Since it is
difficult to prove if an algorithm is fair or just, it cannot be made an
arbiter, and decisions should not be made solely on the outcomes of
automatic profiling. If you involve at least one human that weighs in, in
the loop, you're safe, at least from the perspective of the GDPR.

Monitoring publicly accessible areas on a large scale. You need a special permit
to be the big brother...

If you are at risk of exposing data subjects to a high risk, you must perform a Data
Protection Impact Assessment (DPIA). If such an assessment concludes there is such a high
risk, you must consult with authorities, who will euphemistically give you advice on the
subject. I suggest you follow that advice. It is not called advice because it's optional for you
to do anything. It is called advice because you can do something else, if you can show it is
better. They still have their eyes on you and can give you any number of sanctions if they
find you're doing something you shouldn't be.

Privacy Chapter 16

[356]

Distributing responsibilities
The GDPR defines a top-down approach of assuring privacy is protected. At the top, you
will find the European Council. It issued the GDPR. Under it, you find the European Data
Protection Authority. It consists of the presidents of each national data protection authority.
The goal of the European authority is to harmonize the interpretation of the GDPR across
national boundaries. Each national authority controls the activity of each controller within
the confines of the corresponding national border. It can get help from certification
authorities, who help certify compliance from companies, organized by domain. Certificates
and codes of conduct simplify audits for both companies and national authorities. Controllers
determine the purposes and means of processing personal data. They have all the
responsibilities and are hit hardest with sanctions if something is not done according to the
requirements of the GDPR. Processors process personal data on behalf of a controller. They
require documented instructions from the controller to be allowed to process data and are not
allowed to contract other processors without the explicit permission from the controller.
Any processing activity outside of what is permitted for a processor makes them a
controller by default:

Authorities

Privacy Chapter 16

[357]

GDPR does not concern itself where companies are registered, but where
the main decisions are taken. If a controller makes its main decisions
inside the EU, the GDPR applies to all processing of all personal data,
regardless where in the world the data subject resides. If the controller
resides outside of the EU, the GDPR still applies to all processing that
involves European citizens.

Avoiding sanctions
So, what are the data protection authorities allowed to do? Well, their arm is indeed long.
They can:

Perform audits. Controllers and processors are required to give authorities access
to all premises, equipment, data, and any information regarding the processing
the auditors require.
Issue warnings. Perhaps the lightest form of sanction.
Issue reprimands, forcing companies to act within a given time.
Give orders. They can basically order you to restrict your processing or turn the
entire system off.
Issue fines, up to 4% of total worldwide annual turnover (or 20,000,000 EUR,
whichever is higher).
Require compensations from the controller or processor, covering any damages,
including indirect damages, unless the controller or processor can prove they are
not responsible for the damages (reverse burden of proof).

Controllers are required to report personal data breaches within 72 hours
of becoming aware of them. Not doing so, without providing proper
justification, can also be a reason for sanctions.

Privacy Chapter 16

[358]

Assisting controllers and processors
Any controller and processor that processes personal data on a large scale or as a core
activity must designate a Data Protection Officer, or DPO. The DPO works together with
management and advises them with regards to privacy legislation. The DPO is a protected
resource. Management cannot issue instructions to the DPO, nor can they penalize the DPO
for performing its tasks. They must also choose the DPO based on merits and expert
knowledge. The DPO also helps instruct and advise the employees of the company. It is also
the natural point of contact for the authorities, as well as the public. If they have any
requests, they are free to contact the DPO.

Protecting personal data
The GDPR refers to specific data protection mechanisms only through the term state of the
art. It does this, to make sure the legislation does not become obsolete as technology
advances. But the term includes all aspects of authentication, authorization, encryption,
signatures, hashes, penetration tests, monitoring, logging, and so on, discussed throughout
this book. But the GDPR makes an important requirement: data protection must be
implemented by design and by default.

Data protection by design means that it is not sufficient to add security as a varnish, or as a
layer on top of an otherwise unprotected solution. Adding a login page is not sufficient, if
the underlying APIs or database layers are unprotected.

Data protection by default means that security is not something you activate. Instead, all
security features should be enabled by default. Instead of restricting access rights, you
should provide access rights.

Consider a white-list and a black-list as two examples of authorization
mechanisms. The white-list provides data protection by default. Nothing
is permitted, except the items available on the white-list. The black-list is
an example that does not provide data protection by default. From the
start, when the list is empty, everything is permitted. Only items on the
list are prohibited.

Privacy Chapter 16

[359]

Giving individual rights
The GDPR also defines a set of rights that every natural person has. This list is what makes
the GDPR a good legislation. Everyone has the right to:

Be informed about processing activities processing its personal data. The
information must be transparent.
Get access to any personal data being processed.
Export any personal data that the person has provided to a portable format.
Correct any erroneous data.
Delete its data (or be forgotten).

This right is not absolute. It depends on the legal foundation of the
processing activity. For activities based on consent, the right is absolute.
For processing activities based on legitimate interest, all data that the
controller does not have compelling reasons to maintain must be deleted.
For processing activities based on a contract or legal obligation, no right to
delete data exists.

Object to and restrict any processing of personal data while the status of the data
is disputed.
Withdraw consent from any processing activity based on consent. It must be as
easy to withdraw consent, as it was to give it.
Avoid being subject to automatic decisions having negative consequences (in a
legal sense) based on automatic profiling.

If a data subject corrects, objects to, restricts, or deletes any personal data,
the controller must make sure this is propagated to everyone with whom
the data has been shared, as long as this is technically possible.

Solving the puzzle
The design choices you make not only affect the security of your solution, but also how
difficult it will become to make the solution GDPR compliant. Centralized big data
solutions are difficult to make compliant, while decentralized edge solutions are easier to
make compliant. The reason is that decentralized solutions lend themselves naturally to the
wills of the corresponding owners. For centralized solutions, you must build a lot of data
protection mechanisms manually, to safeguard the privacy of its data subjects.

Privacy Chapter 16

[360]

In this book, we have studied multiple protocols for use with the Internet of Things. Among
these, XMPP provides the following several features that can help you build solutions that
protect the privacy of your data subjects:

The distributed, federated authentication and authorization model lends itself
perfectly to making security decisions in distributed ad hoc networks.
Presence negotiation required to communicate efficiently provides an efficient
means to model a crude binary form of consent. It's also easy to withdraw.
Provisioning provides a method for modeling a detailed form of consent. The
owner of the devices can control in detail who can access them and what they do
with them.
XMPP allows you to outsource much of the administration of privacy to the data
subjects themselves. Since many processing activities do not require centralized
processing and can be processed equally well on the edge, there's no need to
provide support for correction, deletion, restriction, and so on, explicitly in the
backend. The owner controls the data completely.
Using XMPP is an example of data protection by default. You need to negotiate
presence subscription before you can have a meaningful interaction using the iq
and presence stanzas. The roster is always at hand, as are the identities of
senders of messages, so you can always easily determine the validity of an
incoming message.

Summary
In this chapter, you've been introduced to the basic definition of privacy and why it is
important. You've also been introduced to the new privacy legislation GDPR and how it
relates to the basic definition of privacy. You've learned what rights individuals have, what
obligations companies that want to process personal data have, what might happen if you
do not comply with the GDPR, and how certain technologies can help you to comply with
the GDPR.

This chapter concludes this book. It is my hope that this book has provided you with
valuable insights into the world of the Internet of Things and some of the technologies
involved. If you have any comments, suggestions, or questions, please don't hesitate to
contact the author. Contact details can be found at https:/ /waher. se/.

https://waher.se/
https://waher.se/
https://waher.se/
https://waher.se/
https://waher.se/
https://waher.se/
https://waher.se/
https://waher.se/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Internet of Things for Architects
Perry Lea

ISBN: 978-1-78847-059-9

Understand the role and scope of architecting a successful IoT deployment, from
sensors to the cloud
Scan the landscape of IoT technologies that span everything from sensors to the
cloud and everything in between
See the trade-offs in choices of protocols and communications in IoT deployments
Build a repertoire of skills and the vernacular necessary to work in the IoT space
Broaden your skills in multiple engineering domains necessary for the IoT
architect

https://www.packtpub.com/hardware-and-creative/internet-things-architects

Other Books You May Enjoy

[362]

Practical Internet of Things with JavaScript
Arvind Ravulavaru

ISBN: 978-1-78829-294-8

Integrate sensors and actuators with the cloud and control them for your Smart
Weather Station
Develop your very own Amazon Alexa integrating with your IoT solution
Define custom rules and execute jobs on certain data events using IFTTT
Build a simple surveillance solutions using Amazon Recognition and Raspberry
Pi 3
Design a fall detection system and build a notification system for it
Use Amazon Rekognition for face detection and face recognition in your
Surveillance project

https://www.packtpub.com/hardware-and-creative/advanced-iot-javascript

Other Books You May Enjoy

[363]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET code
 interacting, from server-side script 299
 reference 299
.NET standard 1.3 31
.NET standard v1.5 31

6
6LoWPAN (IPv6 over Low-Power Wireless

Personal Area Networks) 126

A
abstraction layer 326
access control list (ACL)
 URL 56
 using 56, 69
Acknowledgement messages (ACK) 141
ACME client 339
Actuator project
 control parameters, defining 45
 Markdown content, adding 106
 output, controlling 48
 preparing 44
Advanced Encryption Standard (AES) 69, 335
AES CCM cipher 131
agile 333
alternating current (AC) 47
anonymization 352
antistatic wrist strap 20
Application Programming Interfaces (APIs) 88
application-layer standards
 benefits 149, 150
Arduino board
 testing 19
Arduino IDE

 downloading 18
 Firmata, installing on Arduino board 18
 FirstApp project, communicating with 25, 26
asymmetric ciphers 335
At least once 61
At most once 60
audit-logs 120
authentication
 about 89
 reference 173

B
B-tree-ordered files 33
backend system integration 261
Bidirectional-streams Over Synchronous HTTP

(BOSH) connections 172
big data 233
Binary Large Objects (BLOBs) 33
binary socket connections 172
Bits of Binary 196
black-list authorization 358
block size 33, 126
blocks 126
bootstrapping 153
broker, XMPP devices
 connecting 181
 connection for first-time use, preparing 182
 connection process, following 184
 connection, maintaining 185
 new account, registering 184
 persisted credentials, obtaining 182
 roster, managing 186
 server, connecting 183
broker
 about 54, 147, 171
 clients, authenticating 173

[365]

 global scalability, providing 172
 references 179
 selecting 179

C
cache 33
canonical extensions
 about 109
 reference 109
Cascading Style Sheet (CSS) 73, 296
certbot 339
Certificate Authority (CA)
 about 87, 338
 creation, avoiding 340
certificates
 using 337, 338
 validating 87
chat interface, XMPP device
 adding 196
 XMPP chat server, creating 196
client cookie 131
client hold-off time 158
client library
 reference 179
 selecting 179
ClientEvents class, methods
 GetOpenLocations() 303
 GetTabIDs() 303
 GetTabIDsForLocation() 303
 GetTabIDsForLocations() 303
 PushEvent() 303
CoAP test tool
 reference 142
CoAP-enabled devices
 change requests, responding 140
 CoAP content, returning 138
 CoAP endpoint, creating 135
 contents, discovering 142
 control resource, adding to actuator 140
 controlling 144
 desired representation, selecting 138
 event-based observable data, publishing 137
 interval-based observable data, publishing 136
 output triggers, adding 142
 securing 145

 testing 142
code visualization
 customizing 301
 Graphviz graphs, visualizing 301
collections 33
command-line switches
 -? 286
 -console 286
 -description Desc 286
 -displayname Name 286
 -immediate 286
 -install 286
 -localservice 286
 -localsystem 286
 -networkservice 286
 -start Mode 286
 -uninstall 286
Common Ground (COM) connector 46
component connections 173
concentrators, attribute
 id 258
 pt 258
 src 258
concentrators
 about 214, 257
 backend systems, integrating 261
 basic access control, providing 272
 building 267
 data sources, defining 268, 271
 embedded actuator node, defining 277
 embedded nodes, defining 268
 embedded nodes, registering 278
 embedded sensor node, defining 273
 implementing 270
 in XMPP 257
 instantiating 270
 interfacing 267
 managing 266
 node requests, redirecting 269
 nodes, publishing 272
 Programmable Logic Controller (PLC), modeling

258

 protocol bridge, building 259
 provisioning support, adding 280
 using, with controller application 279

[366]

conceptual identity 202
conditional requests 82
Confirmable messages (CON) 141
Constrained Application Protocol (CoAP)
 about 126
 adding, to devices 134
 communication, securing 130
 content, encoding 134
 data, distributing 128
 DTLS sessions 131
 limitations 146
 Observe pattern 129
 reference 126, 147
 UDP, using 127
Constrained RESTful Environments (CoRE) 148
Content Format
 about 134
 reference 134
Content Type 70
content
 encoding 80, 134
 sending 83
control parameters, XMPP device
 conceptual model 193
 publishing 193
 XMPP control server, creating 195
control parameters
 about 45, 193
 defining 45
controller application
 concentrators, using 279
 control action, performing 227
 control output, calculating 226
 creating 214
 devices, decommissioning 230
 existing friendships, invalidating 229
 friend, adding 219
 friend, losing 220
 friends, searching in roster 215
 interacting, with devices 222
 new friends, creating 218
 presence changes, reacting to 221
 reconfiguring 230
 relevant sensor data, collecting 225
 revoked presence subscriptions, reacting to 221

 roster events, reacting to 219
 search domain, limiting 216
 search, performing 217
 sensor data events, reacting to 224
 sensor data events, subscribing 224
 sensor data events, subscribing to 223
 sensor data, re-subscribing to 228
 stale state, recovering from 228
 suitable devices, selecting 217
 things, identifying 214
controllers 356
cookie 76
Coordinated Universal Time 65
Copper (Cu) plugin
 URL 142
coupling 150, 151
Cross-origin resource sharing (CORS) 296

D
data integrity
 protecting 336
data masking 352
data obfuscation 352
data persistence
 defining 40
Data Protection Impact Assessment (DPIA) 355
Data Protection Officer (DPO) 358
data protection technologies
 Certificate Authority creation, avoiding 340
 certificates, using 337, 338
 checklists, creating 342
 data integrity, protecting 336
 data leaks, avoiding 344, 345
 encryption 335
 firmware, updating 343
 key sizes 337
 mastering 334
 risks, distributing 343, 344
 self-signed certificates, avoiding 339
 tokens, used for transporting claims 341
 ubiquitous encryption, enforcing 341
data protection
 by default 358
 by design 358
data subject 351

[367]

data type 45
Datagram Transport Layer Security (DTLS) 130
datagrams 127
decentralization 235
decommissioning 230
default collection 33
Denial of Service (DoS) attacks 343
development environment
 selecting 21
Device ID 135
 creating 56
Device Portal 16, 182
device registration
 available components, looping through 207
 conceptual identity of thing, defining 209
 existing location information, adding 209
 location information, collecting 210
 performing 206
 Thing Registry client, creating 208
 Thing Registry, searching 208
 updating 213
 with Thing Registry 212
Diffie-Hellman 335
direct current (DC) 47
Distributed Denial of Service (DDoS) attacks 343
DNS spoofing 338
Document Object Model (DOM) 73
domain 172
domain name 74
domain part 174
downgrade attack 87, 183
DTLS sessions 131
DTLS v1.2
 reference 132
dynamic asynchronous resources, SensorHttp

project
 adding 97
 content, decoding 97
 control action, performing 98
dynamic synchronous resources, SensorHttp

project
 adding 91
 content, encoding 96
 image response, returning 95
 momentary values, adding 94

 representation, selecting 92
 schema reference, adding 94
 XMLresponse, returning 93

E
eavesdropping 332
edge computing 343
Electronic Frontier Foundation
 URL 347
embedded actuator node, concentrators
 control parameters, defining 277
 defining 277
embedded nodes
 embedded actuator nodes, referencing 264
 embedded actuator nodes, supporting 264
 embedded sensor nodes, referencing 263
 embedded sensor nodes, supporting 263
 referencing 262
 using, in Provisioning 265
 using, in Thing Registry 264
embedded sensor node, concentrators
 basic properties, defining 273
 defining 273
 displayable parameters, providing 275
 node topology, defining 274
 readout, performing of sensor 276
 status feedback, providing 276
embedding script, Markdown
 reference 298
encrypted communication
 checking 62
encryption
 about 335
 using 85
end-to-end encryption (E2E) 69, 335
error correction, Sensor project
 noise, cancelling 35
 performing 34
 random spikes, removing 36, 37
errors
 random errors 34
 systematic errors 34
Event Subscription 128, 129
event-based methods 202
Exactly once 61

[368]

EXI compressed connections 172
expiration date 337
Extensible Markup Language (XML)
 about 73
 using 171
Extensible Messaging and Presence Protocol

(XMPP)
 about 171
 broker, selecting 179
 brokers 171
 client library, selecting 179
 communication patterns 176
 concentrators 257
 extending 178
 stanzas 176
 thing registries, using 206
 trust-based communication, used, for securing

network 175
 used, for privacy protection 359, 360
 XML, using 171
 XMPP address 174

F
federation 172
fields 188
file-based resources
 actuator API, calling from JavaScript 106
 adding, to projects 100
 default redirections, adding 107
 Markdown content, adding to Actuator project

106

 Markdown content, adding to Sensor project 103
 Markdown, converting to HTML 102
 sensor API, calling from JavaScript 104
firewalls 54, 76
Firmata
 installing, on Arduino board 18
FirstApp project
 application, initializing 24
 capabilities, aggregating 24
 communicating, with Arduino 25, 26
 creating 22
 deploying 27, 29
 NuGet packages, adding 23
 testing 27

forward secrecy 131
Full JIDs 174

G
General Data Protection Regulation (GDPR)
 about 349
 certain topics, avoiding 355
 controllers, assisting 358
 data subjects, informing 353
 data, anonymizing 352
 individual rights, defining 359
 legal grounds, searching 354
 minimalism 352
 personal data, defining 351
 personal data, protecting 358
 process, defining 352
 processors, assisting 358
 proportionality, measuring 350
 reference 349
 responsibilities, distributing 356
 rights, balancing 349
 sanctions, avoiding 357
General-Purpose Input/Output (GPIO) pins
 about 50
 availability, checking 50
 output pin, initializing 51
 output pin, setting 52
get callback method 195
graphs
 historical values, plotting 109
 historical values, reading from database 108
 page, generalizing 111
 plot, displaying 110
 plotting 108
Graphviz
 graphs, visualizing 301
 reference 301
ground (GND) 47

H
hash algorithms 336
headers
 Accept 81
 applying 81

[369]

 Cache-Control 81
 Content-Type 81
 ETag 81
 Expect 82
 Expires 81
 If-Match 82
 If-Modified-Since 82
 If-None-Match 82
 If-Unmodified-Since 82
 Last-Modified 81
 reference 81
 User-Agent 81
HMAC 341
horizontal segmentation 324
HTML
 Markdown, converting 102
HTTP 2.0 77
HTTP over XMPP 90
HTTP/2 89
HTTPS 73, 85
human-to-machine (H2M) interface 187
hybrid ciphers 335
hypertext documents 72
Hypertext Transfer Protocol (HTTP)
 about 72
 certificates, validating 87
 connection direction, selecting 77
 connectivity, limiting 76
 content, encoding 80
 content, sending 83
 encryption, using 85
 headers, applying 81
 methods 78
 Request/Response pattern 75
 requests, optimizing 82
 resources, interacting 79
 resources, locating 73
 resources, updating 79
 sessions, handling 76
 status codes 83
 web, redefining 88

I
idempotent commands 61
idempotent method calls 79

IEEE IoT Harmonization working group
 about 187, 193
 reference 187
IIS Crypto tool
 URL 339
In-Band Registration 184
infrastructure, LWM2M
 bootstrap server 153
 clients 153
 servers 153
injection 70
instant messaging 171
Internet Assigned Numbers Authority (IANA) 80
Internet Content Type 80
Internet Engineering Task Force (IETF) 73, 126
Internet Group Management Protocol (IGMP) 54,

128

Internet of Things (IoT)
 about 53
 design considerations 332, 333
 foundation, laying for communication 333, 334
 risks 329, 330
 security threats 331
 security threats, root causes 331, 332
interoperability, with CoAP
 achieving 151
 IPSO Smart Objects, using 155
 LWM2M 152, 153
 resources, discovering with CoRE 151
interoperability
 about 148
 application-layer standards, benefits 149, 150
 benefits 149
 coupling 150, 151
interoperable application 149
IoT Client
 URL 250
IoT Dashboard
 about 12
 downloading 12
 URL 12
IoT Gateway project
 about 198, 283
 reference 196, 198, 284
IoT Gateway repository

[370]

 URL 22
IoT Gateway
 basic properties, setting 289
 certificate, providing 291
 communication sniffers, monitoring 304
 configuring 287
 console version, executing 284
 event logs, monitoring 304
 executing 283
 executing, as app 287
 executing, as Windows Service 286
 password, securing 289
 performance, monitoring 304
 services, developing 305
 XMPP interface, configuring 288
iotdisco URI scheme
 URL 205
IP address 74
IPSO Smart Objects
 about 148
 references 155
 using 155
IPv6 126

J
Jabber ID (JID) 214, 257
Jabber project 171
JavaScript Object Notation (JSON) 73
JavaScript
 actuator API, calling 106
 sensor API, calling 104
 tokens, using 123
JSON Web Tokens (JWT) 89, 121, 341

L
lamp
 LED, connecting 47
 relay, connecting to 47
latency 129
leaf node 274
LED
 connecting, to lamp 47
Leshan
 about 158

 URL 158
Let's Encrypt
 URL 339
Light-weight Machine-to-Machine enabler

(LWM2M) 148
Linked Data 88
Local Area Networks (LANs) 76
local name 178
local part 174
loosely coupled interface 150
LWM2M device
 bootstrap server, configuring 166, 167
 interacting with 168, 169
 LWM2M server, configuring 168
 testing 166
LWM2M
 adding, to devices 156
 bootstrap procedure, performing 157, 158
 client, creating 156, 157
 infrastructure 153
 object model 152, 153
 progress, following 159
 reference 155
 server operations 154
 servers, registering with 158
 Smart Objects, defining 160
Lwm2mClient object, events
 OnBootstrapCompleted 159
 OnBootstrapFailed 159
 OnDeregistrationFailed 159
 OnDeregistrationSuccessful 159
 OnRebootRequest 159
 OnRegistrationFailed 159
 OnRegistrationSuccessful 159
 OnStateChanged 159

M
machine-to-machine (M2M) interface 187
Man-In-The-Middle (MITM) attacks 87, 133, 297,

338

Markdown
 about 102
 converting, to HTML 102
 reference 103
 URL 293

[371]

 using 293
Media Type
 about 80
 reference 80
menu system
 creating 112
 master document, creating 112
 menu, referencing 113
metadata tags
 Login 297
 Privilege 297
 UserVariable 297
Metering Topology
 about 310
 using 310, 311
MIoT project
 reference 200
Mono
 URL 13
MQ Telemetry Transport (MQTT) protocol
 about 53
 Publish/Subscribe pattern 54
MQTT broker
 selecting 56
 URL 56
mqtt-spy
 URL 67
multicast 128
multimedia
 presentation, customizing 302
 reference 302
Multipurpose Internet Mail Extensions (MIME) 80

N
namespace 94, 171, 178
network folders
 publishing 293
network identity 202
network protocol analyzer 62
network sniffer 62
nodes 54, 257
Non-confirmable messages (NON) 141
Normally Closed (NC) connector 46
Normally Open (NO) connector 46
NuGet package

 adding 23, 55

O
OAuth2 89
object database provider 32
Object ID field 41
objects, LWM2M
 access control object 153
 device object 153
 security object 153
 server object 153
observable resources 129, 136
Observe pattern
 about 128, 129
 reference 129
Open Mobile Alliance (OMA)
 URL 153
Open Systems Interconnection (OSI) model 149
output, Actuator project
 control events, logging 50
 control parameter states, persisting 49
 controlling 48
owner interface
 ClearDeviceCache method 248
 ClearDeviceCaches method 248
 DeleteDeviceRules method 248
 GetDevices method 248
owner side application
 CanControlQuestion event 247
 CanReadQuestion event 247
 IsFriendQuestion event 247
 managing 247
 owned devices, managing 248
 provisioning server, responding to 247
ownership of data
 candidates, selecting 233
 defining 233
ownership of information
 defining 235
ownership of physical objects 234
ownership
 ending 241
 registering, with Thing Registry 237

[372]

P
Pascal casing 66
peers 174
personal data 351
physical quantity 38
physical unit 38
port number 74
Post-Redirect-Get (PRG pattern) 84, 120
pre-defined tags
 reference 209
pre-processed script
 about 116
 reference 116, 298
 using 298
pre-shared keys (PSK) 131, 339
presence subscriptions
 about 175
 reference 175
primary key 41
privacy
 about 347
 arbitrary interference, informing 348
 defining 346
 importance 347
 reference 347
private key 249
processors 356
Program Data folder 287
Programmable Logic Controller (PLC)
 about 214, 264
 advantages 258
 modeling 258
protocol bridge
 building 259
provisioning server 236, 239
provisioning support
 adding 243
 adding, to devices 241
 claims, reacting to 244
 conceptual identity, transmitting 244
 device registration, updating 245
 device, registration 243
 disowned device, detecting 246
 provisioning client, creating 242

 provisioning server, searching 241
provisioning, testing
 about 250
 device, claiming 252, 253
 devices, provisioning 251
 rules, adding 253
provisioning
 about 212, 230, 236
 embedded nodes, using 265
 of claimed thing 239
 ownership, ending 241
 ownership, registering with Thing Registry 237
pseudonymization 352
public claim names
 URL 122
public key 249
Public Key Infrastructure (PKI) 69, 335
Publish/Subscribe pattern 54
publishers 54

Q
Quality of Service
 At least once 61
 At most once 60
 Exactly Once 61
 selecting 60

R
random errors 34
Raspberry Pi
 Arduino board, testing 19
 Arduino IDE, downloading 18
 connecting to 16
 development environment, selecting 21
 General-Purpose Input/Output (GPIO) pins,

using 50
 IoT Gateway libraries, using 22
 IoT Gateway project, using 22
 starting 16
 Windows 10, installing 13, 15
Raspbian operating system
 reference 13
raw sensor data
 sampling 33

[373]

Recommendations 73
relay
 about 46
 connecting, to lamp 47
 constructing 46
Representational State Transfer (REST) 73, 89
Request For Comments (RFCs) 73
Request/Response pattern 75
requests
 optimizing 82
Reset messages (RST) 141
resources
 about 72
 interacting 79
 locating 73
 updating 79
RESTful web services 73
root node 274
Roslyn
 about 21
 URL 21
roster 175
RSA 69, 335

S
sampling 33
script syntax
 reference 108
Search Engine Optimization (SEO)
 about 103
 metadata, using 293
search-based methods 202
Secure Socket Layer (SSL) 85
security headers
 adding 296
security, SensorMqtt project
 authentication, managing 68
 authorization, managing 70
 considerations 68
 interoperability, managing 69
 privacy, managing 69
self-owned thing 212
self-signed certificates
 avoiding 339
Semantic Web 88

SenML 154
sensor data model
 nodes 188
 timestamps 188
sensor data, over XMPP
 conceptual model 188
 events, triggering 192
 historical values, returning 191
 momentary values, returning 190
 publishing 187
 writable values, returning 192
 XMPP sensor server, creating 189
sensor data, SensorMqtt project
 light field, publishing 61
 publishing 59
 Quality of Service, selecting 60
 relevant values, selecting 60
Sensor project
 basic statistics, calculating 40
 data persistence, defining 40
 error correction, performing 34
 inventory library, initializing 32
 Markdown content, adding 103
 measured data, storing 42
 measurement results, illustrating 38
 old data, removing 43
 persistence library, initializing 32
 preparing 31
 raw data, converting to physical quantity 38
 raw sensor data, sampling 33
SensorHttp project
 dynamic asynchronous resources, adding 97
 dynamic synchronous resources, adding 91
 HTTP server, creating 90
 preparing 90
SensorMqtt project
 connecting, to broker 57
 connection events, monitoring 58
 Device ID, creating 56
 encrypted communication, checking 62
 incoming commands, handling 65
 lost connections, recovering from 58
 MQTT broker, selecting 56
 MQTT support, adding to actuator 64
 MQTT, testing 67

[374]

 preparing 55
 security, considerations 68
 sensor data, publishing 59
 topics, subscribing 65
server-side script
 .Net code, interacting with 299
 content, customizing 298
 pre-processed script, using 298
 reference 299
 testing 299
server-to-server (s2s) connections 172
Service Discovery 207
Service-Oriented Architecture (SOA) 88
services, IoT Gateway
 basic architecture 305
 communication capabilities, extending 309
 debugging 308
 deploying, to embedded device 308
 developing 305
 installer, creating 317, 318
 installing 307
 manifest file, creating 307
 packaging 317
 service module, creating 305
 testing 308
 things, interfacing 309
session token
 obtaining 122
sessions
 about 76
 handling 76
set callback method 195
SHA 336
sibling nodes 274
Simple Authentication and Security Layer (SASL)

68, 173
Simple Object Access Protocol (SOAP) 73, 88
Simple Service Discovery Protocol (SSDP) 201
SkiaSharp 95
Smart City, solution
 abstractions, using 326
 economic feedback models, defining 327
 proposing 325
 roles, defining 328
 standards, developing 325

 XMPP, selecting 327
Smart City
 driving forces 323
 envisioning 319
 immediate consequences, deriving 320
 responsibilities, dividing 324
 risk, with centralized architecture 322
Smart Objects
 defining 160
 digital input object class, creating 161
 digital input object instance class, creating 161
 digital input object, instantiating 163
 digital output object instance class, creating 164
 remotely updated output values, setting 165
 subscribers, notifying manually 163
 trigger intervals, defining for observable

resources 162
sniffer objects 63
sniffing 335
spike 36
spoofing 334
stale state 228
stanzas 176
stanzas, attribute
 from 177
 id 177
 to 177
 type 177
 xml*lang 177
Starter Kits 12
state of the art 350, 358
stateless connection 76
Statistical aggregation 352
status codes
 1xx 83
 200 84
 2xx 83
 301 84
 303 84
 304 84
 307 84
 3xx 83
 400 84
 401 84
 403 84

[375]

 404 84
 406 84
 4xx 83
 500 84
 5xx 83
 about 83
 reference 84
sub-domains 173
subject name 87
subscribers 54, 129
subscription 129
symmetric ciphers 335
synchronous resource 92
systematic errors 34

T
Thing Registry
 about 202
 client, creating 208
 embedded nodes, using 264
 ownership, registering 237
things
 conceptual identity, transferring to owner 204
 discovering, on internet 201
 information, propagating 202
 interacting with 313, 314, 315
 interfacing 309
 managing 315, 317
 Metering Topology, using 310, 311
 node hierarchy, controlling 312
 node properties, editing 312
 ownership of things, claiming 203
 thing registries, using in XMPP 206
 Thing Registry 202
tightly coupled interface 150
tokens
 GetCertificate method 249
 GetToken method 249
 used, for identification 249
 used, for transporting claims 341
 using, in JavaScript 123
 validating 123
topic 54
topology independent 171
Transport Layer Security (TLS) 85, 130, 335

trust-based communication
 used, for securing network 175
Trusted Platform Modules (TPM) 342
Type-Length-Value (TLV) format 154

U
ubiquitous encryption
 about 172
 enforcing 341
UDP
 using 127
unacknowledged service 127
Uniform Resource Identifier (URI) 88
Uniform Resource Locator (URL)
 about 72, 88
 reference 74
Universal Plug and Play (UPnP) 201
Universal Windows Platform (UWP) applications

22, 101, 287
user authentication
 about 114
 authentication method, using 120
 form, parsing 119
 login form, posting 118
 login page, adding 115
 user database, creating 117
 user, creating 117
 user, redirecting 119
User-Managed Access (UMA) 89

V
vertical segmentation 324
Visual Studio 2017
 using 22

W
Waher.IoTGateway library
 reference 284
Waher.IoTGateway.Win32 317
Waher.Networking.CoAP NuGet 134
Waher.Persistence.Files package 31
Waher.Service.GPIO project
 URL 27
Waher.Things.Attributes namespace, attribute

[376]

 AlphaChannel 312
 DateOnly 312
 DefaultLanguage 313
 Header 313
 Masked 313
 Open 313
 Option 313
 Page 313
 Range 313
 ReadOnly 313
 RegularExpression 313
 Required 313
 Section 313
 Text 313
 ToolTip 313
WaherIoT Gateway 283
web browsers 72
web content
 code visualization, customizing 301
 customizing, with server-side script 298
 information, pushing to web clients 303
 Markdown, using 293
 menus, providing with Master/Detail model 294
 metadata, using for Search Engine Optimization

293

 multimedia presentation, customizing 302
 network folders, publishing 293
 providing 291
 security headers, adding 296
 user experience, customizing 296
 user privileges, authorizing 297
web pages 73, 88
Web RTC 90
web servers 72
web services
 protecting 121
 session token, obtaining 122
 tokens, using in JavaScript 123
 tokens, validating 123
Web Sockets 77, 89
web technologies 73
web
 redefining 88
white-list authorization 358
wildcards

 about 54
 using 345
Windows 10
 installing, on Raspberry Pi 13, 15
Windows IoT Remote Client 182
Windows Remote Arduino Experience App
 URL 19
Windows Service
 IoT Gateway, executing 286
Wireshark
 URL 62
WiX MSI installer project 317
WiX toolset
 about 317
 URL 317
World Wide Web (WWW) 73
World Wide Web Consortium (W3C) 73

X
X.509 certificates 337
Xamarin Studio
 about 22
 URL 22
XML data types
 reference 189
XML Schema 94
XMPP address, format
 Domain 174
 Local@Domain 174
 Local@Domain/Resource 174
XMPP address
 local part 174
 reference 174
 resource part 174
XMPP devices
 human interface, testing 197
 machine interface, testing 198
 testing 197
XMPP Extension Protocols (XEPs) 171
XMPP extensions
 reference 178
XMPP servers 171
XMPP Standards Foundation (XSF) 171
XMPP, adding to devices
 broker, connecting 181

 chat interface, adding 196
 control parameters, publishing 193

 NuGet packages, adding 180
 projects, creating 180
 sensor data, publishing over XMPP 187

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Preparing Our First Raspberry Pi Project
	Getting what you need
	Downloading the IoT Dashboard
	Installing Windows 10 on your Raspberry Pi

	Starting your Raspberry Pi
	Connecting to your Raspberry Pi
	Downloading the Arduino IDE
	Installing Firmata on your Arduino board

	Testing your Arduino board
	Choosing a development environment
	Using the IoT Gateway project and libraries

	Creating your first project
	Adding NuGet packages
	Aggregating capabilities
	Initializing the application
	Communicating with the Arduino
	Testing the app
	Deploying the app

	Summary

	Chapter 2: Creating a Sensor to Measure Ambient Light
	Preparing our project
	Initializing the inventory library
	Initializing the persistence library

	Sampling raw sensor data
	Performing basic error correction
	Canceling noise
	Removing random spikes

	Converting to a physical quantity
	Illustrating measurement results
	Calculating basic statistics
	Defining data persistence
	Storing measured data
	Removing old data
	Summary

	Chapter 3: Creating an Actuator for Controlling Illumination
	Preparing our project
	Defining control parameters
	Understanding relays
	Connecting our lamp
	Connecting an LED
	Controlling output
	Persisting control parameter states
	Logging important control events

	Using Raspberry Pi GPIO pins directly
	Checking whether GPIO is available
	Initializing the GPIO output pin
	Setting the GPIO pin output

	Summary

	Chapter 4: Publishing Information Using MQTT
	Introducing the MQTT protocol
	Understanding the Publish/Subscribe pattern

	Preparing our project
	Selecting an MQTT broker
	Creating a Device ID
	Connecting to the broker
	Monitoring connection events
	Recovering from lost connections

	Publishing sensor data
	Choosing relevant values
	Choosing a quality of service
	Publishing the light field

	Checking encrypted communication
	Adding MQTT support to the actuator
	Subscribing to topics
	Handling incoming commands

	Testing MQTT
	Security considerations
	Managing authentication
	Managing privacy
	Managing interoperability
	Managing authorization

	Summary

	Chapter 5: Publishing Data Using HTTP
	Introducing the HTTP protocol
	Locating a resource
	Understanding the Request/Response pattern
	Handling sessions
	Limiting connectivity
	Choosing a connection direction
	Understanding methods
	Updating resources
	Interacting with resources
	Encoding content
	Applying headers
	Optimizing requests
	Sending content
	Understanding status codes
	Using encryption
	Validating certificates
	Redefining the web

	Preparing our project
	Creating an HTTP server

	Adding dynamic synchronous resources
	Choosing representation
	Returning an XMLresponse
	Adding a schema reference
	Adding momentary values
	Returning an image response
	Explicitly encoding your content

	Adding dynamic asynchronous resources
	Decoding content
	Performing control action

	Summary

	Chapter 6: Creating Web Pages for Your Devices
	Adding file-based resources to your projects
	Converting Markdown to HTML in real time
	Adding simple Markdown content to the sensor project
	Calling our sensor API from JavaScript
	Adding simple Markdown content to the actuator project
	Calling our actuator API from JavaScript
	Adding default redirections

	Plotting graphs
	Reading historical values from the database
	Plotting historical values
	Displaying the plot
	Generalizing the page

	Creating a menu system
	Creating the master document
	Referencing the menu

	Authenticating users
	Adding a login page
	Creating our user
	Creating a very simple user database
	Posting login form
	Parsing the form
	Redirecting the user
	Authenticating the user

	Protecting our web services
	Getting a session token
	Validating tokens
	Using tokens in JavaScript

	Summary

	Chapter 7: Communicating More Efficiently Using CoAP
	Introducing CoAP
	Using UDP
	Efficiently distributing data
	Understanding the Observe pattern
	Securing CoAP communication
	Understanding DTLS sessions
	Encoding content

	Adding CoAP to our devices
	Creating a CoAP endpoint
	Publishing interval-based observable data
	Publishing event-based observable data
	Choosing the desired representation
	Returning CoAP content
	Adding a control resource to our actuator
	Responding to change requests
	Adding output triggers

	Testing your devices
	Discovering the contents of your device
	Controlling your device

	Securing your devices
	Limitations of CoAP

	Summary

	Chapter 8: Interoperability
	Understanding the benefits of interoperability
	The benefits of application-layer standards
	Understanding coupling

	Achieving interoperability using CoAP
	Discovering resources using CoRE
	Understanding the LWM2M object model
	Understanding the LWM2M infrastructure
	Understanding LWM2M server operations
	Using IPSO Smart Objects

	Adding LWM2M to our devices
	Creating an LWM2M client
	Performing the bootstrap procedure
	Registering with the LWM2M servers
	Following the progress
	Defining Smart Objects
	Creating the digital input object class
	Creating the digital input object instance class
	Defining trigger intervals for observable resources
	Notifying subscribers manually
	Instantiating the digital input object
	Creating the digital output object instance class
	Setting remotely updated output values

	Testing your LWM2M device
	Configuring the bootstrap server
	Configuring the LWM2M server
	Interacting with your devices

	Summary

	Chapter 9: Social Interaction with Your Devices Using XMPP
	Introducing XMPP
	Using XML
	Understanding the value of brokers
	Providing global scalability
	Extending server functionality
	Authenticating clients

	Understanding XMPP addresses
	Using trust-based communication to secure the network
	Understanding XMPP communication patterns
	Understanding stanzas
	Extending XMPP
	Selecting a client library
	Selecting a broker

	Adding XMPP to our devices
	Connecting to our broker
	Getting persisted credentials
	Preparing the connection for first-time use
	Connecting to the server
	Following the connection process
	Registering a new account
	Maintaining the connection
	Managing the roster

	Making sensor data available over XMPP
	Understanding the conceptual model
	Creating an XMPP sensor server
	Returning momentary values
	Returning historical values
	Returning writable values
	Triggering events

	Publishing control parameters
	Understanding the conceptual model
	Creating an XMPP control server

	Adding a chat interface
	Creating an XMPP chat server

	Testing your devices
	Testing the human interface
	Testing the machine interface

	For further study

	Summary

	Chapter 10: The Controller
	Discovering things on the internet
	Introducing Thing Registry
	Propagating information
	Claiming ownership of things
	Transferring the conceptual identity to the owner
	Using thing registries in XMPP

	Registering our devices
	Looping through available components
	Finding the thing registry
	Creating a Thing Registry client
	Defining the conceptual identity of the thing
	Adding existing location information
	Collecting location information
	Registering the device
	Updating a registration

	Creating a controller
	Identifying things
	Finding friends in the roster
	Limiting the search domain
	Performing the search
	Picking suitable devices
	Making new friends
	Reacting to roster events
	Adding a friend
	Losing a friend
	Reacting to revoked presence subscriptions
	Reacting to presence changes
	Interacting with devices
	Subscribing to sensor data events
	Reacting to sensor data events
	Collecting relevant sensor data
	Calculating control output
	Performing control action
	Recovering from stale states
	Re-subscribing to sensor data
	Invalidating existing friendships
	Reconfiguring the controller
	Decommissioning of devices

	Summary

	Chapter 11: Product Life Cycle
	Defining ownership of data
	Choosing who should own the data
	Understanding ownership of physical objects
	Defining ownership of information

	Understanding provisioning
	Using a Thing Registry to register ownership
	Provisioning of a claimed thing
	Ending ownership

	Adding provisioning support to our devices
	Searching for a provisioning server
	Creating a provisioning client
	Adding provisioning support
	Registration of device
	Transmitting the conceptual identity
	Reacting to claims
	Updating the registration of our device
	Reacting to being disowned

	Managing the owner side
	Deciding what to do
	Managing owned devices

	Using tokens for identification
	Testing provisioning
	Provisioning your devices
	Claiming a device
	Adding rules

	Summary

	Chapter 12: Concentrators and Bridges
	Introducing concentrators
	Understanding concentrators in XMPP
	Modeling a Programmable Logic Controller
	Bridging protocols
	Integrating backend systems

	Referencing embedded nodes
	Referencing embedded sensor nodes
	Supporting embedded sensor nodes
	Referencing embedded actuator nodes
	Supporting embedded actuator nodes
	Using embedded nodes in Thing Registries
	Using embedded nodes in provisioning

	Managing a concentrator
	Interfacing a concentrator
	Building a concentrator
	Defining data sources
	Defining embedded nodes
	Redirecting node requests

	Implementing a concentrator
	Instantiating the concentrator
	Defining the data source
	Providing basic access control
	Publishing our nodes
	Defining our embedded sensor node
	Defining basic properties
	Defining the node topology
	Providing displayable parameters
	Providing status feedback
	Performing readout of a sensor

	Defining our embedded actuator node
	Defining control parameters for embedded nodes

	Registering our embedded nodes
	Trying your concentrator

	Adding provisioning support to the concentrator
	Summary

	Chapter 13: Using an Internet of Things Service Platform
	Understanding the IoT Gateway project
	Running the IoT Gateway
	Running the console version
	Running the gateway as a Windows service
	Running the gateway as an app

	Configuring the IoT Gateway
	Configuring the XMPP interface
	Securing the password
	Setting basic properties of the gateway
	Providing a certificate

	Providing web content
	Publishing network folders
	Using Markdown
	Using metadata for Search Engine Optimization
	Providing menus using the Master/Detail model
	Customizing the user experience
	Adding security headers
	Authorizing user privileges
	Customizing content using server-side script
	Using pre-processed script
	Interacting with .NET code from script
	Testing script

	Customizing code visualization
	Visualizing Graphviz graphs

	Customizing multimedia presentation
	Pushing information to web clients

	Monitoring performance
	Monitoring event logs
	Monitoring communication sniffers

	Developing services for the IoT Gateway
	Creating a service module
	Understanding the basic architecture
	Creating a manifest file
	Installing your service
	Testing and debugging your service
	Deploying your service to an embedded device
	Extending communication capabilities
	Interfacing things
	Using the Metering Topology data source
	Controlling node hierarchy
	Editing node properties
	Interacting with your things
	Managing your things

	Packaging your service
	Creating an installer

	Summary

	Chapter 14: IoT Harmonization
	Envisioning the Smart City
	Deriving some immediate consequences
	Avoiding the lure of the dark side
	Understanding the driving forces
	Dividing responsibilities

	Proposing a solution
	Developing standards
	Using abstractions
	Choosing XMPP
	Defining economic feedback models
	Defining new roles

	Summary

	Chapter 15: Security for the Internet of Things
	Understanding the risks
	Getting to a bad place
	Understanding the root causes
	Looking at alternative options
	Getting to a better place
	Mastering data protection technologies
	Skimming the basics of encryption
	Protecting data integrity
	Understanding key sizes
	Using certificates
	Avoiding self-signed certificates
	Avoiding creating a Certificate Authority
	Using tokens to transport claims
	Enforcing ubiquitous encryption
	Creating checklists
	Updating your firmware
	Distributing your risks
	Avoiding leaking data unintentionally

	Summary

	Chapter 16: Privacy
	Defining privacy
	Understanding the importance
	Understanding what it means
	Being informed

	Introducing the GDPR
	Balancing rights
	Measuring proportionality
	Defining personal data
	Anonymizing data
	Defining processing
	Doing as little as possible
	Informing the data subjects
	Finding your legal grounds
	Avoiding certain topics
	Distributing responsibilities
	Avoiding sanctions
	Assisting controllers and processors
	Protecting personal data
	Giving individual rights

	Solving the puzzle
	Summary

	Other Books You May Enjoy
	Index
	Humble bundle_Ad_CDP.pdf
	Table of Contents
	Humble Bundle
	Index

