

Hands-On Chatbots and
Conversational UI Development

Build chatbots and voice user interfaces with Chatfuel,
Dialogflow, Microsoft Bot Framework, Twilio, and Alexa Skills

Srini Janarthanam

BIRMINGHAM - MUMBAI

Hands-On Chatbots and Conversational UI
Development
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1261217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78829-466-9

www.packtpub.com

http://www.packtpub.com

Credits

Author
Srini Janarthanam

Copy Editor
Safis Editing

Reviewer
Vamsi Venigalla

Project Coordinator
Sheejal Shah

Commissioning Editor
Kunal Chaudhari

Proofreader
Safis Editing

Acquisition Editor
Siddharth Mandal

Indexer
Pratik Shirodkar

Content Development Editor
Arun Nadar

Production Coordinator
Melwyn D'sa

Technical Editor
Prajakta Mhatre

About the Author
Srini Janarthanam is an expert in conversational systems and has been working in the field
for over 15 years. He has led and worked on several projects, building conversational
systems for a variety of domains including tourism, healthcare, and education. He obtained
doctorate in Philosophy (PhD) from the University of Edinburgh for his work in Artificial
Intelligence and Natural Language Processing.
He is currently the co-founder and director of Chatomate, a UK brand building tailored
chatbots, AI, and automation solutions for businesses. Previously, he worked as a research
associate at Heriot-Watt University and the University of Edinburgh. He has published over
50 articles and papers in online chatbot magazines, journals, and international research
conferences.

I am eternally grateful to everyone who supported me on this incredible journey. I thank
my wife, Jayanthi, my son, Advaith, my parents, and everyone in the family for their
encouragement, support, and help in this project. I want to thank my friends, Priyanka,
Anup, Thiru, Suresh, Jaya, Nara, Diwakar, and many others, for encouraging me to take
up this project and for keeping an eye on its progress throughout.

I want to thank the reviewers of the book for lending a hand to shape the book to make it
what it is now. I also want to thank the entire team at Packt Publishing who have an
enormous share in getting this book to you.

Finally, I want to thank God for giving me an opportunity to discover my strengths and
for his grace and support to accomplish writing this book.

About the Reviewer
Vamsi Venigalla is a technology leader with over 12 years of experience in building
technology organizations, strategic planning, rolling out multiple transformational
platforms/products, IT program and project management, strategy and transformation
(business, people, process, and technology), and delivering results for various business
functions across mobile, sourcing, financial systems, HR, retail and supply chain in the food
production and manufacturing domains.
Vamsi graduated with a master's degree in computer science from North Carolina State
University, NC.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788294661.

If you'd like to join our team of regular reviewers, you can e-mail us
at customerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788294661
https://www.amazon.com/dp/1788294661

Table of Contents
Preface 1

Chapter 1: Introduction 7

Conversational user interfaces 8
A brief history of chatbots 9
Recent developments 10
Architecture of a conversational user interface 12
Classification 13
Applications 14

Developer's toolkit 15
Mockup tools 15
Channels 16
Chatbot development tools 16
Analytics 17
Natural Language understanding 17
Directory services 18
Monetization 18

Benefits 18
Chatbots are here to stay 19
Lets get started! 21

References 21

Chapter 2: Tour Guide for Your City 22

Getting started 23
Building your first bot 25
Basic building blocks 28

Blocks 29
Cards 29
Buttons 29
Plugins 29
Attributes 30

Default blocks 30
Next steps 31
More cards 35

Image 35

Table of Contents

[ii]

Audio 36
Video 37
Quick replies 38
Gallery 39
List 40

Navigation 41
Buttons 41
Go to block cards 42

Managing context 43
User input cards 44
Setting user attributes 46
Default contextual variables 47

Understanding natural language 48
Default block 48

Backend processing 50
Broadcasting 57
Bot templates 59
Analytics 60
Summary 60
References 60

Chapter 3: Let's Talk Weather 61

Conversational tasks 62
Conversational design 62
Backend tasks 63

Getting weather data 63
Getting the API key 63
Trying your key 65

Building the backend interface 68
Implementing the chatbot 72
Creating a chatbot web service 79
Publishing on Facebook Messenger 85

Creating a Facebook Page 85
Creating a username 88
Creating a Facebook App 89
Creating a Facebook interface web app 93
Connecting the Facebook App and interface app 96
Testing your chatbot 98
Adding more testers 99
Making it public 100

Table of Contents

[iii]

More Facebook message formats 101
Content types 101

Image attachments 101
Audio attachments 102
Video attachments 102
Files 102

Templates 103
Button template 103
List template 104
Generic template 107

Summary 109
References 109

Chapter 4: Building a Persona Bot 110

Introducing Dialogflow 111
Setting up Dialogflow 111
Creating a basic agent 112
Deploying the chatbot 116

Website integration 117
Facebook integration 120

Context 124
Entities 129

System entities 140
Rich response formats 143
Importing and exporting agents 145

Exporting, restoring, and importing agents 146
Exporting and importing intents and entities 148

Fulfillments 151
Summary 158
References 159

Chapter 5: Let's Catch a Train 160

Exploring Transport API 161
Creating a developer account 161
Exploring the dataset 163

Train stations near you 163
Response 163

Trains in the area 164
Response 164

Live departures 165
Response 165

Station timetables 166
Response 166

Service timetables 167

Table of Contents

[iv]

Response 167
Conversational design 168

Nearest station 168
Next train 168
Time of arrival 169

Building a simple SMS bot 169
Getting started 170
Setting up the dashboard 170
Simple Message Sender 172
My train notifier 175
Scheduling tasks 178

Building a two-way chatbot 181
Understanding users' utterances 186

Creating an API.AI agent 187
Create a Node.js interface to the API.AI agent 191
Integrating API.AI agent to SMS chatbot 195

Summary 202
References 202

Chapter 6: Restaurant Search 203

MS Bot Framework 204
Channel emulator 204

Building a bot 205
Deploying your bot 208
More message types 211

Sending more than one message per turn 211
Prompting users for information 211
Rich messages 215

Conversation flow 221
Responding to user utterances 226
Keeping context intact 229
Context switching 230
Contextual NLU 232
Ending the conversation 234

Conversational state 235
Getting started with Zomato 236

Getting data from Zomato 238
Restaurant search bot 239
Connecting to Skype 250
Summary 255
References 255

Table of Contents

[v]

Chapter 7: The News Bot 256

Getting started with the Twitter app 257
Building your first Twitter bot 261
Exploring the Twitter SDK 264

Updating your status 264
Retweet to your followers 266
Searching for tweets 266

Exploring a news data service 267
Setting up NewsAPI 267

Building a Twitter news bot 270
Building a personalized news bot 274

Creating a database of user interests 278
Accessing the user interests database 283
Informing the bot of user interests 286

Summary 291
References 292

Chapter 8: My TV Guide 293

Amazon Alexa 294
Warming up with a quotes bot 295

Configuring your skill 296
Interaction model 298
Conversation manager - quotes 306
Test on Alexa 313

My TV guide 314
Building the interaction model 314
Setting up the TV skill server 321
Testing the TV skill 328

Built-in intents and slot types 331
Summary 332
References 332

Chapter 9: My Man Friday 333

Todoist 334
Getting the key 334
Adding a task 336
Retrieving all tasks for the day 337

Building an action 338
Building a Dialogflow agent 338
Creating a web app 346

Table of Contents

[vi]

Testing the agent on Dialogflow 349
Integrating with Google Assistant 354
Test on Google Home 361

Summary 362
Conclusion 362
References 363

Appendix A: More Resources 364

Articles 364
List of conferences 364
List of magazines 365
Groups on social media 365

Index 366

Preface
Building chatbots is fun. Although chatbots are just another kind of software, they are very
different in terms of the expectations that they create in users. Chatbots are conversational.
This ability to process language makes them project a kind of human personality and
intelligence, whether we as developers intend it to be so or not. To develop software with a
personality and intelligence is quite challenging and therefore interesting.

This is a book for programmers who are interested in exploring the world of conversational
user interfaces. This book is organized as eight chatbot projects that will introduce the
ecosystem of tools, techniques, concepts, and even gadgets relating to conversational
interfaces. We will start exploring basic chatbots using button interfaces and move toward
using text utterances and finally voice. We will begin with a no-code platform to build our
first chatbot and move on to exploring libraries and services to program the modules
ourselves. Every chapter is a unique project with the objective of building a conversational
interface to a data source. We will seek to understand the data, identify conversational
tasks, carry out conversation design, and finally follow step-by-step instructions to
implement the interface.

What this book covers
Chapter 1, Introduction, begins by teaching you what conversational user interfaces are, and
their history and recent developments. We will then explore their basic architecture,
applications, and benefits, and some factors that suggest why conversational interfaces are
here to stay.

Chapter 2, Tour Guide for Your City, explores how to build chatbots without having to code.
We will explore a development and hosting platform called Chatfuel, using which we will
develop a tour guide for your city. We will design and build a simple button-based
chatbot and learn how to deploy the chatbot to Facebook Messenger, one of the most
popular channels for chatbots.

Chapter 3, Let's Talk Weather, follows on to build a chatbot for the same channel, but by
building it from scratch this time, using Java and Node.js. We will build a chatbot that can
tell us about the weather using an open data source called OpenWeatherAPI, host it as a
Cloud application, and link it to a Facebook App that connects to a Facebook Page. We will
explore Facebook Pages and the Messenger SDK from the perspective of building and
deploying chatbots.

Preface

[2]

Chapter 4, Building a Persona Bot, moves away from button-based chatbots to ones that can
understand natural language. We will explore a popular tool called API.AI (now known as
Dialogflow) which can be used to build chatbots that can understand natural language. We
will build a persona bot that emulates a popular personality, Albert Einstein. We will then
take a look at how to integrate the chatbot into a website and Facebook Messenger.

Chapter 5, Let's Catch a Train, delves into a more traditional channel of
communication—Short Messaging Service (SMS). We will analyze how to build a chatbot
for the SMS channel. Using a data service called Transport API, we will build a chatbot that
can talk about train schedules over SMS. We will also integrate an API.AI module for the
chatbot in order to allow it to understand what the user says.

Chapter 6, Restaurant Search, seeks to build a chatbot using Microsoft Bot Builder. This is
fast becoming a popular tool for building bots and can be used to design an efficient
conversation manager, rather than building it from scratch, as we did previously. We will
build a chatbot to search for restaurants using a data service called Zomato. This will then
be exposed on the Skype channel.

Chapter 7, The News Bot, explains a totally different channel of engagement—Twitter. We
will develop a Twitter bot that can listen to the tweets of users, understand their interests,
and send them personalized news on an hourly basis by connecting to a data source called
the News API.

Chapter 8, My TV Guide, seeks to understand the rise of voice-activated bots like Alexa. We
will then build an Alexa skill to talk about your TV schedule. We will build a skill that can
access the TV schedule data from the TVMaze data service and respond to user requests
made over Amazon Echo.

Chapter 9, My Man Friday, continues working on voice bots and builds a Google Assistant
action. This action will allow users to manage their to-do list using their Google Home
device. We will build a Cloud app that will integrate with the Todoist online service to
create tasks and retrieve pending tasks.

Appendix, More Resources, explains various articles, list of magazines, list of conferences and
so on to gain more knowledge about the chatbots.

Preface

[3]

What you need for this book
Here are some tools that we use extensively throughout the book. I recommend that you get
them installed on your computer and get acquainted with them, as that will help you as we
move through the projects:

Heroku: Heroku is a cloud platform that allows you to host your web apps in the
cloud. To get started, sign up to a free account at www.heroku.com and install the
Heroku command-line tool from https:/ /devcenter. heroku. com/ articles/
heroku-cli. You may also want to learn how to deploy apps on Heroku. I
recommend that you go through some of the tutorials at https:/ /devcenter.
heroku.com/ start.
Git: Git is a version control tool that you might be familiar with. We will use Git
extensively as it is part of the Heroku process. You will have to install the Git
command line on your system. You should be able to find it at https:/ /git- scm.
com/downloads.
Node.js: Node.js is a JavaScript runtime that we need to build web apps in most
of our projects. You can find it at https:/ /nodejs. org/en/ download/ .
Java SDK and Eclipse: Java 1.8 is used to build the chatbot in Chapter 3, Let's
Talk Weather. You need to install the Java SDK and the development environment
called Eclipse to follow the instructions in the chapter. Alternatively, you can try
to code the chatbot using Node.js or another programming language supported
by Heroku. You can find Java 1.8 at http:/ /www. oracle. com/ technetwork/ java/
javase/downloads/ index. html and Eclipse at https:/ /www. eclipse. org/
downloads/ .

Who this book is for
This book is for developers who are interested in creating interactive conversational
UIs/chatbots. You need to be able to program in Node.js and Java. Experience in using
Node.js libraries such as request and express, and a basic understanding of tools such as Git
and Heroku CLI will be helpful.

https://www.heroku.com/
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/start
https://devcenter.heroku.com/start
https://devcenter.heroku.com/start
https://devcenter.heroku.com/start
https://devcenter.heroku.com/start
https://devcenter.heroku.com/start
https://devcenter.heroku.com/start
https://devcenter.heroku.com/start
https://devcenter.heroku.com/start
https://devcenter.heroku.com/start
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Create
the index.js file."

A block of code is set as follows:

// EddieBot webhooks

const express = require('express')
const bodyParser = require('body-parser')
const app = express()
app.set('port', (process.env.PORT || 5000))

Any command-line input or output is written as follows:

npm init

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on the Get
Started button at the bottom of the chat window."

Tips and important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book--what you liked or disliked. Reader feedback is important to us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Chatbots- and- Conversational- UI-Development. We also
have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code--
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/Hands-On-Chatbots-and-Conversational-UI-Development
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

1
Introduction

The age of intelligent machines has arrived, and conversational interfaces are leading the
charge. Over the past couple of years, we have been swarmed by a number of new kinds of
machines and software collectively known as bots. Bots are automated hardware or
software machines that are powered by the advances in Artificial Intelligence (AI)
technologies. Recent developments in machine learning algorithms, such as deep learning
and deep reinforcement learning, have improved the performance of AI tasks such as
Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), Text to
Speech Synthesis (TTS), and Image Recognition. This has accelerated humankind's journey
toward the technological singularity, the point in time when AI surpasses natural human
intelligence by leaps and bounds.

One of the long-term goals in the field of AI is to build computer systems that can have
human-like conversations with users. With recent advances in AI technologies, we are now
one step closer to achieving this goal. Now, it is no longer fictional that we are able to
interact with devices and gadgets in our homes and offices using nothing but voice. We still
have a long way to go toward creating standards and building digital beings that are
capable of seamless natural language conversation. However, a recent surge in interests and
massive investments in pursuing these ideas suggest that we are on track toward evolving
such a global standard. If you are excited about the recent developments in AI and
automation technologies, this book is for you. We will embark on a journey toward a point
in time in the future that the design guru Mark Curtis calls conversational singularity, when
conversational devices disappear and conversation between man and machine is seamless
and natural.

Introduction Chapter 1

[8]

This is a book for programmers beginning to build conversational interfaces. Today, basic
button-based chatbots can be built without even having to write a single line of code. In this
book, that is where we will start. We will gradually move toward more complex and
flexible architectures, and we will explore channels to use, such as Facebook Messenger,
SMS, and Twitter. We will also be exploring tools for understanding natural language and
conversation management as we proceed. Finally, we will end our journey by building
voice-enabled bots on platforms such as Amazon Alexa and Google Assistant.

Conversational user interfaces
Conversational user interfaces are as old as modern computers themselves. ENIAC, the first
programmable general-purpose computer, was built in the year 1946. In 1950, Alan Turing,
a British computer scientist, proposed to measure the level of intelligence in machines using
a conversational test called the Turing test. The test involved having the machine compete
with a human as a dialogue partner to a set of human judges (yet another human). The
judges would interact with each of the two participants (the human and the machine) using
a text type interface that is not unlike most of the modern messaging chat applications. Over
chat, the judges were supposed to identify which of the two participants was the machine.
If at least 30% of the judges couldn't differentiate between the two participants, the machine
was considered to have passed the test. This was one of the earliest human thoughts on
conversational interfaces and their bearing on the intelligence levels of machines that have
such capabilities. However, attempts to build such interfaces have not been very successful
for several following decades.

For about 35 years, since the 1980s, Graphical User Interfaces (GUI) have been dominating
the way in which we have been interacting with machines. With recent developments in AI
and growing constraints such as the shrinking size of gadgets (from laptops to mobile
phones), reducing on-screen real estates (smart watches), and the need for interfaces to
become invisible (smart home and robots), conversational user interfaces are once again
becoming a reality. For instance, the best way to interact with mobile robots that are
distributed gadgets in smart homes would be using voice. The system should, therefore, be
able to understand the users' requests and responses in natural human language. Such
capabilities of systems can reduce human effort in learning and understanding current
complex interfaces.

Introduction Chapter 1

[9]

Conversational user interfaces have been known under several names: natural language
interfaces, spoken dialogue systems, chatbots, intelligent virtual agents, virtual assistants,
and so on. The actual difference between these systems is in terms of the backend
integrations (for example, databases, and task/control modules), modalities (for example,
text, voice, and visual avatars), and channels they get deployed on. However, one of the
common themes among these systems is their ability to interact with users in a
conversational manner using natural language.

A brief history of chatbots
The origins of modern chatbots can be traced back to 1964 when Joseph Weizenbaum at
Massachusetts Institute of Technology (MIT) developed a chatbot called Eliza. It used
simple rules of conversation and rephrased most of what the users said to simulate a
Rogerian therapist. While it showed that naive users may be fooled into thinking that they
are talking to an actual therapist, the system itself did not understand the user's problem.
Following this, in 1991, the Loebner prize was instituted to encourage AI researchers to
build chatbots that can beat the Turing test and advance the state of AI. Although no
chatbots beat the test until 2014, many notable chatbots won prizes for winning other
constrained challenges. These include ALICE, JabberWacky, Rose, and Mitsuku. However,
in 2014, in a Turing test competition to mark the 60th anniversary of Alan Turing's death, a
chatbot called Eugene Goostman, portraying a 13 year old kid, managed to fool 33% of the
judges—thereby beating the test. Artificial Intelligence Markup Language (AIML) and
ChatScript were developed as a way to script the knowledge and conversational content for
most of these chatbots. Scripts developed using these scripting languages can then be fed
into interpreters to create conversational behavior. Chatbots developed to beat the Turing
test were largely chatty with just one objective—to beat the Turing test. This was not
considered by many as advancement in AI or toward building useful conversational
assistants.

Introduction Chapter 1

[10]

On the other hand, research in artificial intelligence, specifically in machine learning and
natural language processing, gave rise to various conversational interfaces such as question
answering systems, natural language interfaces to databases, and spoken dialogue systems.
Unlike chatbots built to beat the Turing test, these systems had very clear objectives.
Question answering systems processed natural language questions and found answers in
unstructured text datasets. Natural Language Interfaces to Database Systems (NLIDBS)
were interfaces to large SQL databases that interpreted database queries posed in a natural
language such as English, converted them into SQL, and returned the hits as response.
Spoken Dialogue Systems (SDS) were systems that could maintain contextful
conversations with users to handle conversational tasks such as booking tickets, controlling
other systems, and tutoring learners. These were the precursors of modern chatbots and
conversational interfaces.

Recent developments
In 2011, Apple released an intelligent assistant called Siri as part of their iPhones. Siri was
modeled to be the user's personal assistant, doing tasks such as making calls, reading
messages, and setting alarms and reminders. This is one of the most significant events in the
recent past that rebooted the story of conversational interfaces. During the initial days of
Siri, users used it only a few times a month to perform tasks such as searching the internet,
sending SMS, and making phone calls. Although novel, Siri was treated as a work in
progress with a lot more features to be added in the following years. In the early days, Siri
had many clones and competition on Android and other smartphone platforms. Most of
these were modeled as assistants and were available as mobile apps.

In the same year (2011), IBM introduced Watson, a question answering system that
participated in a game show called Jeopardy and won it against previous human winners,
Brad Rutter and Ken Jennings. This marked a milestone in the history of AI as Watson was
able to process open domain natural language questions and answer them in real time.
Since then, Watson has been refashioned into a toolkit with an array of cognitive service
tools for natural language understanding, sentiment analysis, dialogue management, and so
on.

Following Siri and Watson, the next major announcement came from Microsoft in 2013,
when they introduced Cortana as a standard feature on Windows phones and later in 2015
on Windows 10 OS. Like Siri, Cortana was a personal assistant that managed tasks such as
setting reminders, answering questions, and so on.

Introduction Chapter 1

[11]

In November 2014, Amazon invited its Prime members to try out its very own personal
assistant called Alexa. Alexa was made available on Amazon's own product called Echo.
Echo was a first-of-its-kind smart speaker that housed within it an assistant like a "ghost" in
the machine. Although called a speaker, it was actually a tiny computer with the voice as its
only interface, unlike smartphones, tablets, and personal computers. Users can speak to
Alexa using voice, ask her to do tasks such as setting reminders, playing music, and so on.

Recently, in April 2016, Facebook announced that it is opening up its popular Messenger
platform for chatbots. This was a radically different approach to conversational interfaces
compared to Siri, Alexa, and Cortana. Unlike these personal assistants, Facebook's
announcement led to the creation of custom built and branded chatbots. These bots are very
much like Siri, Cortana, and Alexa, but can be custom tuned to the requirements of the
business building them. Chatbots are now poised to disrupt several markets, including
customer service, sales, marketing, technical support, and so on. Many messaging
platforms, such as Skype, Telegram, and others, also opened up to chatbots around the
same time.

In May 2016, Google announced Assistant, its version of a personal chatbot that was
accessible on multiple platforms such as Allo app and Google Home (a smart speaker like
Echo). All assistants like Siri, Cortana, Alexa, and Google Assistant have also opened up as
channels for third-party conversational capabilities. So, it is now possible to make your
Alexa and Google Assistant personalized by adding conversational capabilities (called
skills or actions) from a library of third-party solutions. Just as brands can develop their
own chatbots for various messaging services (for example, Skype and Facebook Messenger),
they can also develop skills for Alexa or actions for Google Assistant. Apple's very own
smart speaker, Homepod, powered by Siri, is slated to be released in 2018.

Parallel to these developments, there has also been major growth in terms of tools that are
available to build and host chatbots. Over the last two years, there has been an exponential
growth of tools to design, mock, build, deploy, manage, and monetize chatbots. This has
resulted in the creation of an ecosystem that designs and builds custom conversational
interfaces for businesses, charities, governmental, and other organizations across the globe.

Introduction Chapter 1

[12]

Architecture of a conversational user interface
In this section, let's take a look at the basic architecture of a conversational interface:

The core module of a conversational interface is the conversation manager. This module
controls the flow of the conversation. It takes the semantic representation of what the user
says as input, and decides what the response of the system should be. It will maintain a
representation of the conversational context in some form, say a set of key value pairs, in
order to meaningfully carry out the conversation over several turns between the user and
the system.

The semantic representation of the user input can be directly fed from button pushes. In
systems that can understand language, user utterances will be translated into semantic
representation, consisting of user intents and parameters (slots and entities), by a natural
language understanding module. This module may need to be previously trained to
understand a set of user intents identified by the developer pertaining to the conversational
tasks at hand.

Voice-enabled interfaces that accept user's speech inputs also need a speech recognition
module that can transcribe speech into text before feeding it into the natural language
understanding module. Symmetrically, on the other side, there is a need for a speech
synthesizer (or text-to-speech engine) module that converts the system's text response into
speech.

Introduction Chapter 1

[13]

The conversational manager will interact with backend modules. It can be a database or an
online data source that gets queried in order to answer a user's question (for example, TV
schedule) or an online service to carry out a user's instruction (for example, booking a
ticket).

The channel is where the chatbot actually meets the user. Depending on the channel, there
may be one or more modules that make up this layer. For instance, if the chatbot is on
Facebook Messenger, this layer consists of a Facebook Page and a Facebook App that
connects to the rest of the chatbot modules wrapped as a web app.

Classification
Conversational user interfaces have found themselves applied in various scenarios. Their
applications can be classified broadly into two categories: enterprise
assistants and personal assistants.

Enterprise Assistants are chatbots and other conversational user interfaces that are modeled
after customer service representatives and store assistants. Just like human customer service
representatives, the bots engage customers in conversation carrying out marketing, sales,
and support tasks. Most chatbots deployed on channels such as Facebook Messenger,
Skype, Slack, and many more are enterprise assistants. They are designed and built to do
tasks that store assistants and customer service representatives would do. Enterprise
assistants are being developed in many business sectors, automating a variety of
conversational tasks.

On the other hand, personal assistants are bots like Alexa, Siri, and Cortana, which act as a
user's personal assistant, doing tasks such as managing a calendar, sending texts, taking
calls, and playing music. These personal assistants can be extended in terms of their
capabilities. For instance, Alexa allows for such augmentation by letting developers build
skills that users can choose to add to their own Alexa. Brands can, therefore, develop skills
for Alexa or actions for Google Assistant that will enable Alexa and Assistant to interact
with the brand's IT services and perform tasks such as placing orders, checking delivery
status, and many more. For instance, popular brands like PizzaHut, Starbucks, and
Domino's have developed skills that can be enabled on Alexa.

Introduction Chapter 1

[14]

Applications
Although chatbots have been under development for at least a few decades, they did
not become mainstream channels for customer engagement until recently. Over the past
two years, due to serious efforts by industry giants like Apple, Google, Microsoft, Facebook,
IBM, and Amazon, and their subsequent investments in developing toolkits, chatbots and
conversational interfaces have become a serious contender to other customer contact
channels. In this time, chatbots have been applied in various sectors and various
conversational scenarios within these sectors: retail, banking and finance, governmental,
health, legal and third sector, and many more.

In retail, chatbots have been applied for product marketing, brand engagement, product
assistance, sales, and support conversations. Brand-engagement chatbots offer tips and
advice to loyal customers of a brand related to the use of products sold by the brand. For
instance, Sephora chatbot advises users on how to select their ideal lipstick. Similarly, TK-
Maxx chatbot assisted users in choosing gifts for their friends and family during Christmas
2016. One of the first retailers to explore chatbots for sales was H&M. The H&M chatbot
helped users browse through the product catalogue and add products to their shopping
carts. Car manufacturers like Tesla, Kia, and Mercerdes have developed chatbots that can
help car users with information regarding their cars.

Chatbots have been very successful in the banking and finance industry. Banking was one
of the first sectors that experimented with conversational interfaces. Banking chatbots can
answer generic questions about financial products, secure banking, and so on, along with
providing specific and personalized information about user's accounts. Many global banks
and financial service providers including Bank of America, ICICI bank, HSBC, Royal Bank
of Scotland, Capital One, Mastercard, and so on have deployed chatbots to assist their
customers. Many fintech companies are building chatbots that can act as financial
assistant to users. Ernest.ai and Cleo are chatbots that can link to your bank accounts and
talk to you about your spending, balances, and also provide tips to save money. Chatbots
are also being widely deployed in the insurance sector, where they act as assistants that can
get you tailored quotes (for example, SPIXII).

Chatbots are also being used in legal, health, governmental, and third sectors. A chatbot
called DoNotPay has assisted people to challenge parking tickets in London and New York
in over 160,000 cases. Following this, more chatbots have been developed to help people
access justice and legal services: assessment of crime (LawBot), business incorporation
(LawDroid), help tenants (RentersUnion), help with legal questions and documentation
(Lisa, LegaliBot, Lexi, DocuBot), and find lawyers (BillyBot).

Introduction Chapter 1

[15]

In the third sector, chatbots have been used to spread awareness of issues that charities care
about. Stoptober is a Facebook chatbot that was developed by the National Health
Services (NHS) in the UK to help smokers quit. Another chatbot, Yeshi, was developed to
draw awareness to Ethiopia's water crisis. Chatbots are beginning to make their entry into
healthcare as well. Chatbots like Your.MD and HealthTap were designed to diagnose health
issues based on symptoms. Emily is a chatbot designed by LifeFolder to help make the end
of life decisions (for example, legal documentation, life support, organ donation, and many
more).

Chatbots are not only being used to be customer facing but also internally, to face
employees. Chatbots, in a sense, are becoming coworkers by helping fellow employees with
tasks that are repetitive, mundane, and boring. Messaging services such as Slack and
Microsoft Teams have been encouraging chatbots on their platforms to automate office
communication. These bots aim to engage coworkers in chat on fun and essential tasks. For
instance, there are bots to help coworkers share knowledge (Obie.ai), access other services
such as GDrive (WorkBot), set up meetings (Meekan), discuss lunch (LunchTrain), and even
help with decision making (ConcludeBot, SimplePoll).

If you are interested in finding out more use cases, I would recommend you to take a look
at some of the bot directory services like botlist.co and www.chatbots.org, where you can
find more information and inspiration.

Developer's toolkit
Over the last few years, an ecosystem of tools and services has grown around the idea of
conversational interfaces. There are a number of tools that we can plug and play to design,
develop, and manage chatbots.

Mockup tools
Mockups can be used to show clients as to how a chatbot would look and behave. These are
tools that you may want to consider using during conversation design, after coming up
with sample conversations between the user and the bot on the back of a napkin. Mockup
tools allow you to visualize the conversation between the user and the bot and showcase
the dynamics of conversational turn-taking. BotSociety.io (https:/ /botsociety. io/) and
BotMock.com (https:/ /botmock. com/) are some of the popular mockup tools. Some of
these tools allow you to export the mockup design and make videos.

https://botlist.co/
http://www.chatbots.org
https://botsociety.io/
https://botsociety.io/
https://botsociety.io/
https://botsociety.io/
https://botsociety.io/
https://botsociety.io/
https://botsociety.io/
https://botsociety.io/
https://botmock.com/
https://botmock.com/
https://botmock.com/
https://botmock.com/
https://botmock.com/
https://botmock.com/
https://botmock.com/
https://botmock.com/

Introduction Chapter 1

[16]

Channels
Channels refer to places where users can interact with the chatbot. There are several
deployment channels over which your bots can be exposed to users. These include
messaging services such as Facebook Messenger, Skype, Kik, Telegram, WeChat, and Line;
office and team chat services such as Slack, Microsoft Teams, and many more; traditional
channels such as the web chat, SMS, and voice calls; and smart speakers such as Amazon
Echo and Google Home. Choose the channel based on your users and the requirements of
the project. For instance, if you are building a chatbot targeting consumers, Facebook
Messenger can be the best channel because of the growing number of users who use the
service already to keep in touch with friends and family. To add your chatbot to their
contact list may be easier then getting them to download your app. If the user needs to
interact with the bot using voice in a home or office environment, smart speaker channels
can be an ideal choice. And finally, there are tools that can connect chatbots to many
channels simultaneously (for example, Dialogflow integration, MS Bot Service, and
Smooch.io, and so on).

Chatbot development tools
There are many tools that you can use to build chatbots without having to code even a
single line: Chatfuel, ManyChat, Dialogflow, and so on. Chatfuel allows designers to create
the conversational flow using visual elements. With ManyChat, you can build the flow
using a visual map called the FlowBuilder. Conversational elements such as bot utterances
and user response buttons can be configured using drag and drop UI elements. Dialogflow
can be used to build chatbots that require advanced natural language understanding to
interact with users.

On the other hand, there are scripting languages such as Artificial Intelligence Markup
Language (AIML), ChatScript, and RiveScript that can used to build chatbots. These scripts
will contain the conversational content and flow that then needs to be fed into an interpreter
program or a rules engine to bring the chatbot to life. The interpreter decides how to
progress the conversation by matching user utterances to templates in the scripts. While it is
straightforward to build conversational chatbots using this approach, it becomes difficult to
build transactional chatbots without generating explicit semantic representations of user
utterances. PandoraBots is a popular web-based platform for building AIML chatbots.

Introduction Chapter 1

[17]

Alternatively, there are SDK libraries that one can use to build chatbots: MS Bot Builder,
BotKit, BotFuel, and so on provide SDKs in one or more programming languages to assist
developers in building the core conversational management module. The ability to code the
conversational manager gives developers the flexibility to mould the conversation and
integrate the bot to backend tasks better than no-code and scripting platforms. Once built,
the conversation manager can then be plugged into other services such as natural language
understanding to understand user utterances.

Analytics
Like other digital solutions, chatbots can benefit from collecting and analyzing their usage
statistics. While you can build a bespoke analytics platform from scratch, you can also use
off-the-shelf toolkits that are widely available now. Many off-the-shelf analytics toolkits are
available that can be plugged into a chatbot, using which incoming and outgoing messages
can be logged and examined. These tools tell chatbot builders and managers the kind of
conversations that actually transpire between users and the chatbot. The data will give
useful information such as the conversational tasks that are popular, places where
conversational experience breaks down, utterances that the bot did not understand, and the
requests which the chatbots still need to scale up to. Dashbot.io, BotAnalytics, and Google's
Chatbase are a few analytic toolkits that you can use to analyze your chatbot's performance.

Natural Language understanding
Chatbots can be built without having to understand utterances from the user. However,
adding the natural language understanding capability is not very difficult. It is one of the
hallmark features that sets chatbots apart from their digital counterparts such as websites
and apps with visual elements. There are many natural language understanding modules
that are available as cloud services. Major IT players like Google, Microsoft, Facebook, and
IBM have created tools that you can plug into your chatbot. Google's Dialogflow, Microsoft
LUIS, IBM Watson, SoundHound, and Facebook's Wit.ai are some of the NLU tools that you
can try. We will explore Dialogflow (previously called Api.Ai) in some of the chapters.

Introduction Chapter 1

[18]

Directory services
One of the challenges of building the bot is to get users to discover and use it. Chatbots are
not as popular as websites and mobile apps, so a potential user may not know where to
look to find the bot. Once your chatbot is deployed, you need to help users find it. There are
directories that list bots in various categories. Chatbots.org is one of the oldest directory
services that has been listing chatbots and virtual assistants since 2008. Other popular ones
are Botlist.co, BotPages, BotFinder, and ChatBottle. These directories categorize bots in
terms of purpose, sector, languages supported, countries, and so on. In addition to these,
channels such as Facebook and Telegram have their own directories for the bots hosted on
their channel. In the case of Facebook, you can help users find your Messenger bot using
their Discover service.

Monetization
Chatbots are built for many purposes: to create awareness, to support customers after sales,
to provide paid services, and many more. In addition to all these, chatbots with interesting
content can engage users for a long time and can be used to make some money through
targeted personalized advertising. Services such as CashBot.ai and AddyBot.com can
integrate with your chatbot to send targeted advertisements and recommendations to users,
and when users engage, your chatbot makes money.

The aforementioned is not an exhaustive list of tools and nor are the services listed under
each type. These tools are evolving over time as chatbots are finding their niche in the
market. This list is to give you an idea of how multidimensional the ecosystem is and help
you explore the space and feed your creative mind.

Benefits
Conversational user interfaces bring in the best of both worlds: human-like natural
interaction combined with the benefits of digital technology.

Availability: Like any other automated digital technologies, conversational
interfaces are low-cost and are available 24/7. It is like having someone man the
web chat desk all the time so that customers always have someone to get answers
from.

Introduction Chapter 1

[19]

Personalized experience: Unlike websites and smartphone apps, chatbots can
provide a very personalized experience owing to the conversational nature of
interaction. One-to-one conversation settings provide ample opportunity to
understand and adapt to a user's goals, preferences, and constraints.
Low cost: Chatbots are digital solutions and therefore provide customer support
services at least ten times cheaper than humans doing the very same tasks.
Consistency: Chatbots can be consistent in services, which may be hard to
achieve with human operators and may be very important in certain sectors.
Quick response times: Unlike human-based systems, the response time for
chatbots is much quicker. Users no longer have to wait for their call to be picked
up and during a conversation, the chatbot responses will be quicker than human
responses, especially when human operators are tasked with more than one
simultaneous chat (sometimes up to five). The ability of chatbots to handle
simultaneous conversations also removes the bottleneck of limited customer
support bandwidth and therefore helps businesses scale up.
Scale up: Chatbots can easily scale up to handle increasing and seasonal traffic,
which is not easy to do when using a battery of live advisors. Holiday season
may particularly drive up demand for customer support. At such times, chatbots
can be used to handle low priority and easy tasks, thereby reducing the load on
live advisors—and human assistance can be used judiciously to handle high-
value conversations.

Chatbots are here to stay
The conversational user interface technologies are currently one of the top trending topics
in the technology business. Most big brands have started formulating their chatbot strategy
within their larger AI and automation strategy. Innovations such as chatbots, smart
speakers, and self-driving cars are driving such major policy decisions. The world is gearing
up to bear the onslaught of automation technologies that are poised to replace humans in
repetitive and structured tasks.

The recent rise of chatbots has been fueled by many factors:

Milliennials have been steadily moving toward chat as their preferred channel to
interact with brands. Customer contact surveys show that people want to use
web chat channels when available, compared to other traditional channels, such
as email and phone, to contact businesses.

Introduction Chapter 1

[20]

The growth of chat messaging apps on smartphones and other devices has
surpassed the usage of social media apps such as Facebook and Twitter. Now
people spend more time on messaging apps, chatting with friends, family,
colleagues, and even businesses.
Rising customer demand on chat is putting tremendous pressure on brands. The
lack of skilled human resources to handle growing chat traffic is also an
important contributor of the rise of chatbots.
Availability of cognitive service tools for natural language understanding, speech
recognition, speech synthesis, conversation management, analytics, and so on has
made the design and development of chatbots easier than it was a few years ago.
Opening up of messaging channels and innovative new avenues, such as smart
speakers, has made delivering services over chatbots a reality. The fact that there
is a growing interest in messaging apps and devices such as smart speakers
presents an attractive opportunity for brands to build chatbots to take advantage
of the users who are already available on these channels.

There are several surveys and statistics that show that conversational interfaces are here to
stay. Through the following list, we offer some of the most compelling survey findings and
predictions that show that chatbots are here for the long run:

Gartner (https:/ / www. gartner. com/smarterwithgartner/ gartner- top-
strategic- predictions- for- 2018-and- beyond/) predicts that by 2021, brands
that design their websites to include voice and visual search will increase their
revenue by 30% and that more that 50% of businesses will spend more on
chatbots than traditional mobile apps.
In an Oracle survey, 80% of respondents (C-level executives) said that they are
planning to introduce chatbot services by 2020, if not already [OR].
Juniper research predicts that use of chatbots will produce annual cost savings of
USD 8 billion by 2022, up from USD 20 million in 2017 [JR].
A Hubspot survey found that about 47% of consumers are open to buying items
through a chatbot and around 40% don't care whether they talk to a chatbot or a
human as long as they get help easily and quickly [HB].
Finally, according to a recent Grand View Research report, the global chatbot
market is poised to reach a staggering USD 1.25 billion by 2025, growing at a
CAGR of 24.3% from USD 190 million in 2016 [GVR].

https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-predictions-for-2018-and-beyond/

Introduction Chapter 1

[21]

Lets get started!
So are you ready to get started and build some chatbots yet? I hope I have given you a good
introduction to the world of chatbots in this chapter. We covered historical and recent
developments, classification of chatbots, their application in various sectors, their benefits,
their future, and their basic architecture. Over the course of the next eight chapters, I will
introduce you to several tools, techniques, and concepts that will enable you to build
amazing conversational interfaces. Let the journey begin!

The tools that we are set to explore in this book are constantly evolving,
and you may be experiencing an advanced version of them when you
work on the projects. Care has been taken to explain the underlying
concepts in every chapter so that you will be able to work out how to
proceed based on your conceptual understanding and using your better
judgement, rather than just executing the instructions verbatim. For the
latest information on developments, refer to the documentation tools that
are referenced at the end of each chapter.

References
[Stoptober] https:/ /www. marketingweek. com/2016/ 09/ 20/ stoptober- uses-
facebook- messenger- bot- to- help-people- quit- smoking/

[Yeshi] https:/ / www. akqa. com/ work/ lokai/ walk- with- yeshi/

[Emily] https:/ / medium. com/ life- folder/ introducing- emily- the- chatbot-
that-talks- about- death- 97b390119cce

[SPIXII] https:/ /www. insly. com/ en/blog/ chatbot- is-the- future- of-
automated- insurance/

[OR] http:/ / uk. businessinsider. com/ 80- of-businesses- want- chatbots- by-
2020-2016- 12

[JR] https:/ /www. juniperresearch. com/ researchstore/ innovation-
disruption/ chatbots/ retail- ecommerce- banking- healthcare

[HB] https:/ / research. hubspot. com/ reports/ artificial- intelligence- is-
here

[GVR] http:/ /www. grandviewresearch. com/ industry- analysis/ chatbot-
market

https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.marketingweek.com/2016/09/20/stoptober-uses-facebook-messenger-bot-to-help-people-quit-smoking/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://www.akqa.com/work/lokai/walk-with-yeshi/
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://medium.com/life-folder/introducing-emily-the-chatbot-that-talks-about-death-97b390119cce
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
https://www.insly.com/en/blog/chatbot-is-the-future-of-automated-insurance/
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
http://uk.businessinsider.com/80-of-businesses-want-chatbots-by-2020-2016-12
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://www.juniperresearch.com/researchstore/innovation-disruption/chatbots/retail-ecommerce-banking-healthcare
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
https://research.hubspot.com/reports/artificial-intelligence-is-here
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market
http://www.grandviewresearch.com/industry-analysis/chatbot-market

2
Tour Guide for Your City

Having got a taste of chatbots and their brief history, in this chapter we'll get our hands
dirty by building your first chatbot. We will build a chatbot that will act as a city tour guide
for the user. We will use popular tourist conversations, such as learning about the city,
figuring out things to do, and searching for places to eat as example tasks. We will explore
how to use the various tools in the toolkit to build a chatbot capable of performing these
conversational tasks.

Let us explore a popular tool, Chatfuel, and learn how to build a chatbot from scratch.
Chatfuel is a tool that enables you to build a chatbot without having to code at all. It is a
web-based tool with a GUI editor that allows the user to build a chatbot in a modular
fashion. In addition to building chatbots, it also enables developers to monitor and manage
the bot's performance using management and analytics tools.

In this chapter, we will explore the building blocks of a chatbot. We will then build a tour
guide chatbot from scratch and deploy it on Facebook Messenger. We will explore various
features provided by Chatfuel to extend the capabilities of the chatbot such as backend
integrations and broadcasting messages. Finally, we will take a brief look at the analytics
suite.

Tour Guide for Your City Chapter 2

[23]

By the end of this chapter, you will be able to:

Understand the basics of Chatfuel
Understand the concept of conversational flow and navigation
Understand the building blocks: blocks, cards, plugins, and attributes
Manage contexts using key-value pairs and handle user utterances
Build chatbots and integrate webhooks for backend processing
Integrate the chatbot on Facebook Messenger

Getting started
Let's get started. To create an account with Chatfuel, go to https:/ /chatfuel. com:

Click GET STARTED FOR FREE. Remember, the Chatfuel toolkit is currently free to use.
This will lead you to one of the following two options:

If you are logged into Facebook, it will ask for permission to link your Chatfuel
account to your Facebook account
If you are not logged in, it will ask you to log into Facebook first before asking for
permission

https://chatfuel.com
https://chatfuel.com
https://chatfuel.com
https://chatfuel.com
https://chatfuel.com
https://chatfuel.com
https://chatfuel.com

Tour Guide for Your City Chapter 2

[24]

Chatfuel links to Facebook to deploy bots. So it requires permission to use your Facebook
account:

Authorize Chatfuel to receive information about you and to be your Pages manager:

Tour Guide for Your City Chapter 2

[25]

That's it! You are all set to build your very first bot:

Building your first bot
Chatfuel bots can be published on two deployment platforms: Facebook Messenger and
Telegram. Let us build a chatbot for Facebook Messenger first. In order to do that, we need
to create a Facebook Page. Every chatbot on Facebook Messenger needs to be attached to a
page. Here is how we can build a Facebook Page:

Go to https:/ /www. facebook. com/pages/ create/ .1.
Click the category appropriate to the page content. In our case, we will use Brand2.
or Product and choose App Page.
Give the page a name. In our case, let's use Get_Around_Edinburgh. Note that3.
Facebook does not make it easy to change page names. So choose wisely.
Once the page is created, you will see Chatfuel asking for permission to connect4.
to the page:

https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/

Tour Guide for Your City Chapter 2

[26]

Click CONNECT TO PAGE. You will be taken to the bot editor.5.
The name of the bot is set to My First Bot. It has a Messenger URL, which you6.
can see by the side of the name. Messenger URLs start with m.me. You might
notice that the bot also comes with a Welcome message that is built in. On the
left, you see the main menu with a number of options, with the Build option
selected by default. We will explore other options in later sections:

Tour Guide for Your City Chapter 2

[27]

Click the Messenger URL to start your first conversation with the bot. This will7.
open Facebook Messenger in your browser tab:

To start the conversation, click the Get Started button at the bottom of the chat8.
window.
There you go! Your conversation has just started. The bot has sent you a welcome9.
message:

Tour Guide for Your City Chapter 2

[28]

Notice how it greets you with your name. It is because you have given the bot access to
your info on Facebook.

Now that you have built your first bot and had a conversation with it, give yourself a pat on
your back. Welcome to the world of chatbots!

Basic building blocks
Before we move on to build our bot, let's look at the basic building blocks:

Blocks
Cards
Buttons
Plugins
Attributes

Tour Guide for Your City Chapter 2

[29]

Blocks
Go back to the editor and look at the Bot Structure tab. Under Bot Structure, you will find
two types of blocks—built-in and user-defined. Welcome message and Default answer are
the two built-in blocks. We will be building user-defined blocks to implement the
conversation capability of the chatbot. Each block can be thought of as a response segment
of the chatbot. Each block can contain one or more cards.

Cards
Cards are constructs that are used to send messages to the deployment platform. There are
many types of cards. Text cards are the basic type of cards; they carry text messages and
optional buttons. Other cards include images, quick replies (button arrays), lists, and
gallery. We will investigate each of these later.

Buttons
Most cards have buttons. Buttons are used to provide users with response options. Users
can respond to the chatbot's questions and requests by clicking the buttons. This is an
alternative approach to letting users key in their requests and responses using natural
language text.

Plugins
Plugins are parts of blocks where the chatbot is required to carry out special tasks instead of
just responding to the user. For instance, you can use a plugin to send an email to yourself
with all the information the chatbot got from the user. We will have a look at a number of
plugins later.

Tour Guide for Your City Chapter 2

[30]

Attributes
Attributes are variables in programmer's parlance. These are placeholders where we can
store data temporarily during the conversation. There are attributes that are predefined and
there are those that are user-defined. In this case, users actually means developers. These
can be used to steer the conversation one way or the other. Or they can be used to collect
data from the user for further processing in a backend module.

Default blocks
There are two blocks that are predefined—Welcome message and Default message.
Welcome message comes along with a default card with the welcome text in it. The
welcome block is triggered when the user first encounters the chatbot. On Facebook
Messenger, this is triggered when the user hits the Get Started button. The default answer
block is triggered when the bot does not know how to handle a user's input message. Try
saying hello to the bot on Facebook Messenger and see how it responds:

Tour Guide for Your City Chapter 2

[31]

Next steps
Now that we have brushed up on the basics, let's start building our bot:

On the welcome block, click the default text and edit it. Hovering the mouse1.
around the block can reveal options such as deleting the card, rearranging the
order of the cards, and adding new cards between existing cards. Delete the Main
menu button:

Add a Text card. Let's add a follow-up text card and ask the user a question. 2.
Add buttons for user responses. Click ADD BUTTON and type in the name of3.
the button. Ignore block names for now. Since they are incomplete, they will
appear in red. Remember, you can add up to three buttons to a text card:

Tour Guide for Your City Chapter 2

[32]

Button responses need to be tied to blocks so that when users hit a button the4.
chatbot would know what to do or say. Let's add a few blocks. To add a new
block, click ADD BLOCK in the Bot Structure tab. This creates a new untitled
block. On the right side, fill in the name of the block. Repeat the same for each
block you want to build:

Now, go back to the buttons and specify block names to connect to. Click the5.
button, choose Blocks, and provide the name of the block:

Tour Guide for Your City Chapter 2

[33]

For each block, you created, add content by adding appropriate cards.6.
Remember, each block can have more than one card. Each card will appear as a
response, one after another:

Tour Guide for Your City Chapter 2

[34]

Repeat the preceding steps to add more blocks and connect them to buttons of other blocks.
When you are done, you can test it by clicking the TEST THIS CHATBOT button in the
top-right corner of the editor. You should now see the new welcome message with buttons
for responses. Go on and click one of them to have a conversation:

Great! You now have a bot with a conversational flow.

Tour Guide for Your City Chapter 2

[35]

More cards
Besides text, there are other types of cards that can be used to deliver content. These cards
are also specific to the delivery platform. Only some platforms, such as Facebook
Messenger, support advanced cards such as carousels. Let's examine the types of cards
available to us.

Image
To add an image card, click the Image icon under ADD A CARD. Click Upload Image, and
choose an image file:

Tour Guide for Your City Chapter 2

[36]

Audio
You can send audio files over chat that can be instantly played by the user. To send an
audio file, click the + icon at the end of ADD A CARD menu. Choose Audio and provide
the URL of the audio file. Formats such as MP3, WAV, and OGG are supported:

Tour Guide for Your City Chapter 2

[37]

Video
Adding a video card is similar to that of the audio card. Click the + icon, choose Video, and
specify the URL of the video file. Only MP4 format is supported and the maximum size of
the video is limited to 25 MB. This is how it appears in the chat:

Tour Guide for Your City Chapter 2

[38]

Quick replies
Quick replies is an array of buttons displayed horizontally. These can be used to obtain
answers from the user in the same way as the buttons that are attached to text cards. The
difference is that here you can have up to 10 buttons and they are not attached to a card.
The buttons will also disappear once the user clicks one of them or types their
request/response instead of clicking the buttons. This is extremely useful when you either
have more than three response options or options that should not linger around after the
turn as they will lose context.

To add an array of quick replies buttons, click Quick Reply, add the button names. For each
button, you can specify the block it needs to lead to. If the responses are to be treated as
answers, they can be stored as user attributes as well. We will examine user attributes
further:

Tour Guide for Your City Chapter 2

[39]

Gallery
Gallery is a type of card that allows us to create a rich experience in presenting content.
Instead of just an array of buttons as quick replies, the same content can be presented in an
enriched manner with images and text descriptions. To add a gallery card, click Gallery
under ADD A CARD tab. A gallery card can be considered a card with a number of
minicards within.

Proceed to add an image, title, subtitle, optional URL, and buttons (up to three max) for the
default minicard. Once finished, add more minicards by clicking the + icon on the right:

Tour Guide for Your City Chapter 2

[40]

List
The list card is very similar to that of the gallery card in terms of content. It provides a way
to present rich content to the user with images and URLs. However, unlike the gallery card,
the layout of items is vertical. To add a list card, click the List icon in the ADD A
CARD tab.

Add a cover image, title, URL, subtitle, and call to action button, and create a group header.
Repeat the same for every item on the list. In fact, the top element need not be a group
header and could instead just be the first element in the list displayed prominently with an
image background:

Tour Guide for Your City Chapter 2

[41]

In the example shown, we have a group header with the title Indian restaurants. However,
if you don't want to have a header, you can simply use the spot for the first item in the list.
A list card has a minimum of two items and a maximum of four. You can also add an
optional button at the end of the list, say for instance, to provide a "more" option to request
more items.

Navigation
How can the user and the chatbot navigate through the conversation? How do they respond
to each other and move the conversation forward? In this section, we will examine the
devices to facilitate conversation flow.

Buttons
Buttons are a way to let users respond to the chatbot in an unambiguous manner. You can
add buttons to text, gallery, and list cards. Buttons have a label and a payload. The label is
what the user gets to see. Payload is what happens in the backend when the user clicks the
button:

A button can take one of four types of payloads: next block, URL, phone number, or share.
The next block is identified by the name of the block. This will tell the chatbot which block
to execute when the button is pressed. The URL can be specified, if the chatbot is to open a
web page on the embedded web browser. Since the browser is embedded, the size of the
window can also be specified. The phone number can be specified, if the chatbot is to make
a voice call to someone (for example, call to reserve a table). And finally, the Share option
can be used in cards such as lists and galleries to share the card with other contacts of the
user.

Tour Guide for Your City Chapter 2

[42]

Go to block cards
Buttons can be used to navigate the user from one block to another, however, the user has
to push the button to enable navigation. However, there may be circumstances where the
navigation needs to happen automatically. For instance, if the chatbot is giving the user
step-by-step instructions on how to do something, it can be built by putting all the cards
(one step of information per card) in one block. However, it might be a good idea to put
them in different blocks for the sake of modularity. In such a case, we need to provide the
user a next step button to move on to the next step.

In Chatfuel, we can use the Go to Block card to address this problem. A Go to Block card
can be placed at the end of any block to take the chatbot to another block. Once the chatbot
executes all the cards in a block, it moves to another block automatically without any user
intervention. Using Go to Block cards, we can build the chatbot in a modular fashion. To
add a Go to Block card at the end of a block, choose ADD A CARD, click the + icon and
choose Go to Block card. Fill in the block name for redirection:

Redirections can also be made random and conditional. By choosing the random option, we
can make the chatbot choose one of the mentioned blocks randomly. This adds a bit of
uncertainty to the conversation. However, this needs to be used very carefully because the
context of the conversation may get tricky to maintain.

Conditional redirections can be done if there is a need to check the context before the
redirection is done. Let's revisit this option after we discuss context.

Tour Guide for Your City Chapter 2

[43]

Managing context
In any conversation, the context of conversation needs to be managed. Context can be
maintained by creating a local cache where the information transferred between the two
dialogue partners can be stored. For instance, the user may tell the chatbot their food
preferences, and this information can be stored in context for future reference if not used
immediately. Another instance is in a conversation where the user is asking questions about
a story. These questions may be incomplete and may need to be interpreted in terms of the
information available in the context.

In this section, we will explore how context can be recorded and utilized during the
conversation in Chatfuel. Let's take the task of finding a restaurant as part of your tour
guide chatbot. The conversation between the chatbot and the user might go as follows:

User : Find a restaurant
Bot : Ok. Where?
User : City center.
Bot : Ok. Any cuisine that you fancy?
User : Indian
Bot : Ok. Let me see... I found a few Indian restaurants in the city
center.
Here they are.

In the preceding conversation, up until the last bot utterance, the bot needs to save the
information locally. When it has gathered all the information it needs, it can go off and
search the database with appropriate parameters. Notice that it also needs to use that
information in generating utterances dynamically. Let's explore how to do these
two—dynamically generating utterances and searching the database.

First, we need to build the conversational flow to take the user through the conversation
just as we discussed in the Next steps section. Let's assume that the user clicks
the Find_a_restaurant button on the welcome block. Let's build the basic blocks with text
messages and buttons to navigate through the conversation:

Tour Guide for Your City Chapter 2

[44]

User input cards
As you can imagine, building the blocks for every cuisine and location combination can
become a laborious task. Let's try to build the same functionality in another way—forms. In
order to use forms, the user input card needs to be used. Let's create a new block called
Restaurant_search and to it, let's add a User Input card. To add a User Input card,
click ADD A CARD, click the + icon, and select the User Input card.

Add all the questions you want to ask the user under MESSAGE TO USER. The answers to
each of these questions can be saved to variables. Name the variables against every
question. These variables are always denoted with double curly brackets (for
example, {{restaurant_location}}):

Tour Guide for Your City Chapter 2

[45]

Information provided by the user can also be validated before acceptance. In case the
required information is a phone number, email address, or a number, these can be validated
by choosing the appropriate format of the input information. After the user input card, let's
add a Go to Block card to redirect the flow to the results page:

And add a block where we present the results. As you can see here, the variables holding
information can be used in chatbot utterances. These will be dynamically replaced from the
context when the conversation is happening:

Tour Guide for Your City Chapter 2

[46]

The following screenshot shows the conversation so far on Messenger:

Setting user attributes
In addition to the user input cards, there is also another way to save information in context.
This can be done by using the set up user attribute card. Using this card, you can set context-
specific information at any point during the conversation. Let's take a look at how to do it.
To add this card, choose ADD A CARD, click the + icon, and choose the Set Up User
Attribute card:

Tour Guide for Your City Chapter 2

[47]

The preceding screenshot shows the user-likes-history variable being set to true
when the user asked for historical attractions. This information can later be used to drive
the conversation (as used in the Go to Block card) or to provide recommendations.
Variables that are already in the context can be reset to new values or no value at all. To
clear the value of a variable, use the special NOT SET value from the drop-down menu that
appears as soon as you try to fill in a value for the variable. Also, you can set/reset more
than one variable in a card.

Default contextual variables
Besides defining your own contextual variables, you can also use a list of predefined
variables. The information contained in these variables include the following:

Information that is obtained from the deployment platform (that is, Facebook)
including the user's name, gender, time zone, and locale
Contextual information—last pushed button, last visited block name, and so on

To get a full list of variables, create a new text card and type {{. This will open the drop-
down menu with a list of variables you can choose from. This list will also include the
variables created by you:

As with the developer-defined variables, these built-in variables can also be used in text
messages and in conditional redirections using the Go to Block cards.

Tour Guide for Your City Chapter 2

[48]

Understanding natural language
So far, we have seen how the conversational flow happens using buttons. In each case, the
user has to press a button or type in information to fill in a slot, which makes the
conversation progress. However, it is possible to have users initiate conversation and
navigate using natural language (NL) input as well in Chatfuel. In this section, we will
explore how to make the chatbot understand the user's natural language inputs and take
action.

Default block
Alongside the Welcome message block, there is a Default answer block. This block is used
by the chatbot as response to any input from the user that it does not understand. Go ahead
and change the contents of the block as follows:

Now test the bot by typing in a question to the chatbot on Messenger. You can see how the
default message gets used:

Tour Guide for Your City Chapter 2

[49]

Let us now explore how to handle NL input so that users don't end up with this default
response. To set up the chatbot to understand NL inputs, find and click the Set Up AI
option in the menu on the far left of the page. This is where we will specify NL input
templates and their corresponding chatbot responses:

Click ADD AI RULE. You will see two fields. Type user utterances and bot responses in the
respective fields:

Tour Guide for Your City Chapter 2

[50]

Bot responses can either be text or blocks. By providing block names, the chatbot can be
redirected to appropriate blocks when the user chooses to type responses rather than push
buttons. After having added a few rules, go back to Messenger and try the bot with the NL
inputs:

You can also add an element of uncertainty and randomness by choosing the random flag
in bot response and add more than one response. The bot would then choose one response
randomly.

Backend processing
Conversational tasks usually need to be backed up by backend tasks. For instance, booking
a table in a restaurant is not just a conversation, it also involves the action of booking a
table. This is a backend task where the information concerning the booking is sent over to a
booking server as an HTTP request. In this section, we will explore how to use the JSON
API card to enable backend tasks.

Tour Guide for Your City Chapter 2

[51]

Before we start using a JSON API card, we need a URL that can take a few parameters and
carry out a backend task. Let's build a dummy backend service that can book a table given
the restaurant name, number of people, and the time. To do this, we have to build a Node.js
web app and host it on the cloud:

Create a directory called Eddie-bot. In this directory, we need three files:1.
index.js, package.json, and Procfile.
Create the package file, package.json, which declares the packages necessary2.
for the app, as shown here:

 {
 "name": "eddie-server",
 "version": "1.0.0",
 "description": "Eddie - Chatfuel",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Srini Janarthanam",
 "license": "ISC",
 "dependencies": {
 "body-parser": "^1.15.2",
 "express": "^4.14.0",
 "request": "^2.72.0"
 }
 }

Create Procfile. Procfile is a special file used by our cloud service, called3.
Heroku, to tell the application dynos what command to run to get the app
started. It should contain the following code:

 web: node index.js

Create the index.js file. Finally, we need the program that will process the4.
request in the backend. Paste the following code:

 // EddieBot webhooks

 const express = require('express')
 const bodyParser = require('body-parser')
 const app = express()
 app.set('port', (process.env.PORT || 5000))

 // Process application/x-www-form-urlencoded
 app.use(bodyParser.urlencoded({extended: false}))

Tour Guide for Your City Chapter 2

[52]

 // Process application/json
 app.use(bodyParser.json())
 app.use(express.static('public'))

 // Spin up the server
 app.listen(app.get('port'), function() {
 console.log('running on port', app.get('port'))
 })

 // Index route
 app.get('/', function (req, res) {
 res.send('Hello world, I am EddieBot webhook.')
 })

 app.post('/booktable/', function (req, res) {
 console.log(JSON.stringify(req.body));
 // YOUR BOOKING CODE GOES HERE!!

 var out = {
 "messages": [
 {"text": "Thanks for your booking!"},
 {"text": "See you soon!!"}
]
 }
 var outString = JSON.stringify(out);
 console.log('Out:' + outString);
 res.send(outString);
 })

In the preceding program, we have a handle called booktable, which we will call
when the user wants to book a table at a particular restaurant. To this handle, we
will send a number of parameters that are necessary to make a table booking such
as restaurant name, number of people, and time. Once the booking is made, the
app returns a success message to the bot, which is then forwarded to the user. In
the preceding code, we are not actually making the booking. We are simply
assuming that the booking is made.

To get this app operational, we need to push it on to a cloud server. To do so on5.
Heroku, type the following commands in the console:

 C:\Eddie-bot> git init
 C:\Eddie-bot> git add .
 C:\Eddie-bot> git commit -m "Backend Eddie Bot v1"
 C:\Eddie-bot> heroku create eddie-bot-backend
 C:\Eddie-bot> git push heroku master

Tour Guide for Your City Chapter 2

[53]

The last command pushes the app onto the cloud, builds it, and executes the
index.js program which starts a web server. We will learn more about how to
build web apps in Node.js and Java in the subsequent chapters. Now, we can call
the https:/ /eddie- bot- backend. herokuapp. com/ booktable URL, with the
necessary parameters, to make a booking.

Now that the dummy booking server is set up, let us call it and make a booking6.
from the chatbot. This involves creating a flow using a number of card types.
Let's assume that the user clicks the More information button on a certain
restaurant, Tajmahal, for example. This needs to take the user to the block where
we display information about the restaurant such as cuisine, menu, and location,
with an option to book a table if the user is interested. Let's, therefore, build a
basic block for Tajmahal:

https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable
https://eddie-bot-backend.herokuapp.com/booktable

Tour Guide for Your City Chapter 2

[54]

We need to add a couple more cards to this block. To set the context, we need to7.
add a user attribute card where we set the name of the restaurant:

We then transfer the conversation to a generic table-booking block where other8.
necessary information can be gathered. To do this, let's create a
new Table_booking_form block:

Tour Guide for Your City Chapter 2

[55]

In this block, we have added a user input card where information concerning the
number of people and time are sought from the user. These are stored in
appropriate variables.

Finally, to this block, we add the JSON API card, which makes the chatbot call an9.
external server for backend processing:

In this card, we need to mention the kind of request (GET/POST), the URL to call, and the
parameters to send along. The response from the backend server is returned to the user.

Great! Let's test it out in Messenger:

Tour Guide for Your City Chapter 2

[56]

Notice how the text message returned from the backend server ends up in Messenger. The
response from the backend server needs to be in a specific format. In index.js, we sent
back a simple text message. However, other types of messages can be sent as well. For
instance, the following is an example of how you can send a text block with buttons:

{
 "messages": [
 {
 "attachment": {
 "type": "template",
 "payload": {
 "template_type": "button",
 "text": "Here are my recommendations!",
 "buttons": [
 {
 "type": "show_block",
 "block_name": "TajMahal",
 "title": "TajMahal (5 stars)"
 },
 {
 "type": "show_block",
 "block_name": "SpicyTandoori",
 "title": "Spicy Tandoori (4 stars)"
 }
]
 }
 }
 }
]
}

Explore the other types of messages that you can send to create more dynamic
conversational cards at https:/ / help. chatfuel. com/ facebook- messenger/ plugins/ json-
plugin/.

https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/
https://help.chatfuel.com/facebook-messenger/plugins/json-plugin/

Tour Guide for Your City Chapter 2

[57]

Broadcasting
Another interesting feature provided by Chatfuel is the ability send messages to more than
one user at any time. This is a facility that you can use to restart conversations with the user
or send notifications periodically. To use this feature, click the Broadcast option in the main
menu:

You will see four options. Let's select DELIVER YOUR MESSAGE NOW. There are three
things to do—compose a message to send, choose users, and hit SEND:

Tour Guide for Your City Chapter 2

[58]

Click USER FILTER to choose a subset of users you want to send the message to. This is
done using variables and values. For instance, you can choose to send the message to all
users who said that they love Indian cuisine (that is, {{restaurant_cuisine}} =
'Indian') and that they are in the Old Town ({{restaurant_location}} = 'Old
town'). This a message can be a discount offer at an Indian restaurant in the city:

Tour Guide for Your City Chapter 2

[59]

Having selected the target user group, create a block of a message and hit SEND. This
message will be sent immediately to all the qualifying users.

You can also send messages to target user groups at scheduled times, sequence automatic
messages after user interaction, and post from external sources, as well as using the
broadcast feature.

Bot templates
Chatbots can be built from templates. These are basic pre-designed chatbots that can be
readily edited and converted into the chatbot that you need. There are a number of
templates for you to start with. To do this, go to https:/ /dashboard. chatfuel. com/ #/bots.
Under the TUTORIAL TEMPLATES section, click View All Templates:

Chatfuel provides a number of templates with a variety of use cases such as restaurants,
celebrity assistant, quiz, and e-commerce. Explore them further to learn how the
conversation is structured and how various tools have been used to support those
conversations.

https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots
https://dashboard.chatfuel.com/#/bots

Tour Guide for Your City Chapter 2

[60]

Analytics
Chatfuel also provides analytics on your chatbot. To access the analytics, go to your
chatbot's dashboard and click Analyze in the main menu. The analytics page summarizes
the bot's usage statistics in terms of user growth, user activity, and user retention. It also
highlights usage patterns, such as the blocks that are popular with users and issues faced by
AI in terms of understanding users' language utterances. Finally, it also tells you where in
the world your users are coming from.

Summary
Congratulations! In this chapter, we embarked on a journey toward building awesome
chatbots. I hope, using Chatfuel, you have created your very first bot. Using tour guiding as
the use case, we explored a variety of chatbot design and development topics along the
way—conversation flow design, blocks, types of message content, navigating through the
conversational flow, understanding basic natural language utterances, and many more. We
have also learned the various building blocks provided by Chatfuel to build, monitor, and
manage chatbots.

In the following chapters, we will explore using a variety of other use cases and more
advanced topics in building chatbots, such as understanding nuances in natural language
utterances and managing more complex conversational contexts.

References
Chatfuel documentation: http:/ / docs. chatfuel. com/

http://docs.chatfuel.com/
http://docs.chatfuel.com/
http://docs.chatfuel.com/
http://docs.chatfuel.com/
http://docs.chatfuel.com/
http://docs.chatfuel.com/
http://docs.chatfuel.com/
http://docs.chatfuel.com/
http://docs.chatfuel.com/
http://docs.chatfuel.com/

3
Let's Talk Weather

Facebook Messenger is one of the most popular globally-available messaging platforms.
You can access it using your Facebook account. Messenger is available separately to
Facebook in the form of a website (http:/ /messenger. com and http:/ /m. me) and as a
smartphone app. This makes it extremely accessible. Facebook has more than 1 billion
global users and all of these social media users have access to Messenger as well; this
staggering number is also growing every day. This makes it a popular choice for chatbot
developers as a deployment platform. In addition to the number of users, the company is
investing hugely in making it a place for chatbots to thrive. Its recent features, such as the
Discover tab and SDK upgrade, serve as testimony to their commitment.

In this chapter, we will design and implement a chatbot that can talk about the weather. We
will build a chatbot and integrate it with a backend service that can provide us with real-
time weather information. We will then go on to integrate the chatbot in Facebook
Messenger. And finally, have a look at the exclusive features of Messenger that can be used
to make the chatbot more attractive and engaging.

By the end of this chapter, you will be able to:

Design conversational tasks to talk about the weather
Create backend integrations using the OpenWeatherMap API,
Build a chatbot in Java 8 and Node.js and host it on the cloud using Heroku
Understand Facebook Messenger SDK and types of message templates
Integrate the chatbot in Messenger

http://messenger.com
http://messenger.com
http://messenger.com
http://messenger.com
http://messenger.com
http://messenger.com
http://messenger.com
http://m.me
http://m.me
http://m.me
http://m.me
http://m.me
http://m.me
http://m.me

Let's Talk Weather Chapter 3

[62]

Conversational tasks
Let's first figure out the tasks that we want the chatbot to perform. I would think that a
chatbot capable of talking about the weather should be able to do it along the following
lines:

Weather now
Weather today
Weather this week
Weather this weekend
Weather in the future

All the mentioned reports are based on a geographical location. This piece of information
could be provided in many formats. Most people would provide a city/town name, or a ZIP
code. But given the fact that mobile devices have GPS capability, and messaging apps allow
for location sharing, another way of locating the user could be using LatLong (latitude and
longitude) coordinates. Let's account for all these variations. In addition to these tasks and
input types, we need to consider requests for clarifications that the chatbot must be capable
of if the input location information is ambiguous.

Conversational design
Now that we have identified the tasks that our chatbot needs to do, let's go on and design
the conversational flow. Conversational flow is the basic layout of how the interaction will
happen between the user and the bot.

Let's scribble down a few simple imagined conversations between the user and our weather
bot.

Example 1:

User: Hi
Bot: Hi there! I am WeatherMan, your weather bot. What would you like to
know? Current weather or forecast?
User: current weather
Bot: Ok. Which city?
User: London, GB
Bot: Ok. Weather now in London, GB. Temperature is 10 degrees Celsius.
Clear Skies.
User: Thanks.
Bot: No problem! :)

Let's Talk Weather Chapter 3

[63]

Let's make another one that is slightly more complex.

Example 2:

User: Hi there
Bot: Hi there! I am WeatherMan, your weather bot. What would you like to
know? Current weather or forecast?
User: Forecast
Bot: Ok. When? Tomorrow or this weekend?
User: Tomorrow
Bot: Ok. Which city?
User: Edinburgh
Bot: Edinburgh, US or Edinburgh, GB?
User: Edinburgh, GB
Bot: Ok. Weather tomorrow in Edinburgh, GB. Temperature is 12 degrees
Celsius. Cloudy.

Well within the domain of weather talk, more complex conversations are possible.
However, we will work with the preceding examples to show how you can build a chatbot
and deploy it on Facebook Messenger in principle. Let us deal with more complex
utterances and conversations later.

Backend tasks
Before we move on to implementing the chatbot, let us take a look at the source of
information for weather data, OpenWeatherMap (https:/ /openweathermap. org).
OpenWeatherMap is a cloud service serving weather info about 200,000+ cities across the
globe. It has both current and forecast data as well as historical data. It has both free and
paid services. Navigate to the website, type your city name, and give it a try.

Getting weather data
Let us now set up an account in OpenWeatherMap service to obtain weather data.

Getting the API key
Unlike the last chapter, where we created content for the chatbot manually, we will be using
this data live from the service endpoint. In order to do this, we need to sign up to this. To
sign up, navigate to https://home.openweathermap.org/ and create a new account.

https://openweathermap.org
https://openweathermap.org
https://openweathermap.org
https://openweathermap.org
https://openweathermap.org
https://openweathermap.org
https://openweathermap.org
https://home.openweathermap.org/
https://home.openweathermap.org/

Let's Talk Weather Chapter 3

[64]

To get started with the data, we will have to subscribe to the appropriate API service. To do
this, navigate through the website by clicking the API option on the main menu on the
home page:

On the API page, you will see the listing on all the API services that are available. Let's start
with the basic one: Current weather data. Click Subscribe:

Click Get API key and Start. This will take you to the appid page (https:/ /
openweathermap.org/ appid) where you can find documentation on the API (that is, how to
use the key and its limitations).

https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid
https://openweathermap.org/appid

Let's Talk Weather Chapter 3

[65]

To get your key, you need to go further. Navigate to the API keys page: https:/ /home.
openweathermap.org/ api_ keys. You will find a default key. If you don't, create one:

Now that we have our key, let's give it a try!

Trying your key
We have to construct the URL to get the data we need. Here is a basic one:

http://api.openweathermap.org/data/2.5/forecast?id=<CITY_CODE>&APPID=<YOUR_
API_KEY>

To get your city code, navigate to the following URL:

https://openweathermap. org/ find? q=

https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=
https://openweathermap.org/find?q=

Let's Talk Weather Chapter 3

[66]

Type Your city name and click Search. On the results page, grab your city code from the
URL:

For instance, the city code for London, GB is 2643743.

Replace <YOUR_API_KEY> with your key and try the URL on a web browser. You will get a
JSON object with current and forecast weather information, similar to the following one:

Let's Talk Weather Chapter 3

[67]

The list key with 37 items can be expanded, in that you will find current and forecast
information for every three hours starting from the current time:

Brilliant! We now have a data source to plug into our chatbot.

Let's Talk Weather Chapter 3

[68]

Building the backend interface
Let us now try some code! We are now going to build a module in Java that can access the
weather data from our data source in real time. We will then plug this module into the
chatbot for the conversation manager to use:

Open Eclipse.1.
Create a new Maven project.2.
Choose Create a simple project.3.
Provide the location of the project and hit Next.4.
On the next page, type Group Id, Artifact Id, Name, and Description.5.
Click Finish.

We now have a blank Maven project ready. Before we move on to developing the backend
code, let's add a few dependency packages to our project. Find the POM file (pom.xml) and
add the following Maven dependencies:

<dependencies>
 <!--https://mvnrepository.com/artifact/com.google.code.gson/gson-->
 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.0</version>
 </dependency>
 <!--
https://mvnrepository.com/artifact/org.apache.httpcomponents/httpclient-->
 <dependency>
 <groupId>org.apache.httpcomponents</groupId>
 <artifactId>httpclient</artifactId>
 <version>4.5.3</version>
 </dependency>
</dependencies>

We may need other dependencies later. But for the backend code, these packages will
suffice. Let's now create a Java class, Weather.java, to access weather data. The following
code shows the basic structure of the class:

package weatherman.weather;

import com.google.gson.JsonObject;

public class Weather {
 public static void main(String[] args) {
 }

Let's Talk Weather Chapter 3

[69]

 public Weather(){}

 public JsonObject getWeather(String cityCode){ return null; }
 public JsonObject getCurrentWeather(String cityName){ return null; }
}

We will now add the necessary code to get the actual data from OpenWeatherMaps service:

package weatherman.weather;

import java.io.IOException;

import org.apache.http.HttpResponse;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.HttpClientBuilder;
import org.apache.http.util.EntityUtils;

import com.google.gson.JsonObject;
import com.google.gson.JsonParser;

public class Weather {

 //put your api key here
 String apiKey = <Your API key>;

 public static void main(String[] args) {
 try {
 (new Weather()).getWeather("2643743");
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public Weather(){}

 public JsonObject getWeather(String cityCode)
 throws ClientProtocolException, IOException {

 //step 1: Prepare the url
 String url = "http://api.openweathermap.org/data/2.5/forecast?id="
 + cityCode + "&APPID=" + apiKey ;

 //step 2: Create a HTTP client
 HttpClient httpclient = HttpClientBuilder.create().build();

Let's Talk Weather Chapter 3

[70]

 //step 3: Create a HTTPGet object and execute the url
 HttpGet httpGet = new HttpGet(url);
 HttpResponse response = httpclient.execute(httpGet);

 //step 4: Process the result
 JsonObject json = null;
 int statusCode = response.getStatusLine().getStatusCode();
 if (statusCode == 200) {
 String response_string = EntityUtils.toString(response.getEntity());
 json = (new JsonParser()).parse(response_string).getAsJsonObject();
 Gson gson = new GsonBuilder().setPrettyPrinting().create();
 String prettyJson = gson.toJson(json);
 System.out.println(prettyJson);
 }
 return json;
 }

}

In the main method, we have instantiated a Weather object to get current weather for
London, GB (2643743). Run the preceding code and you will get the following result in the
console:

Let's Talk Weather Chapter 3

[71]

The result is in the form of a JSON object that we can use to respond to weather inquiries. In
the list item, there are 36 items. Each of those items provides weather data, such as average
temperature (temp), minimum temperature (temp_min), and maximum temperature
(temp_max) at a particular time (dt being the timestamp). Let's now implement two
methods, getWeatherAtTime() and getWeatherReport(), to generate a short weather
report:

public String getWeatherReport(String cityCode, Integer i)
 throws ClientProtocolException, IOException{

 JsonObject currentWeather = null;
 if (cityCode != null){
 currentWeather = getWeatherAtTime(cityCode, i);
 }

 String weatherReport = null;
 if (currentWeather != null){
 JsonObject weather = currentWeather.get("weather")
 .getAsJsonArray().get(0).getAsJsonObject();
 Double avgTemp = Double.valueOf(currentWeather.get("main")
 .getAsJsonObject().get("temp").getAsString()) - 273.15;
 String avgTempSt = String.valueOf(avgTemp).split("\\.")[0];
 weatherReport = "The temperature is " + avgTempSt +
 " degrees Celsius. "
 + weather.get("description").getAsString() + ".";
 }
 System.out.println(weatherReport);
 return weatherReport;
}

public JsonObject getWeatherAtTime(String cityCode, Integer i)
 throws ClientProtocolException, IOException{

 JsonObject json = getWeather(cityCode);
 JsonArray list = json.get("list").getAsJsonArray();
 JsonObject weatherAtTime = list.get(i).getAsJsonObject();
 return weatherAtTime;
}

You might have noticed that the getWeatherReport() needs two parameters—city code
and time. Time is passed as an integer with 0 being the current time, 1 being the next slot,
and so on. Calling the getWeatherReport() method from main with the name of the city
and time as parameters will result in a short textual weather report like the following one:

Temperature is 297.8 degrees . clear sky.

Let's Talk Weather Chapter 3

[72]

Obviously, given the richness of the data source, we can extend the number of backend
tasks.

Implementing the chatbot
Now that we have the backend tasks ready, let's focus on the chatbot itself. In general, the
chatbot will take the user's utterances as input and respond with utterances of its own.
However, since we are building a chatbot for Facebook Messenger, our chatbot will mostly
take input in the form of button presses and respond using both utterances and visually
appealing cards.

Let's start by implementing the Chatbot.java class. We will begin by working out an
algorithm to process and respond to users' utterances:

Process user input.1.
Update context.2.
Identify bot intent.3.
Generate bot utterance and output structure.4.
Respond.5.

This one is a very simple algorithm to start with. First, user input, in the form of utterances
or button presses is processed. Then the context of the conversation is updated. In the next
step, we identify what the bot needs to say. Once that is determined, we figure out how to
say it and respond. Let us start by implementing the basic structure based on the mentioned
algorithm:

package weatherman.chatbot;

import com.google.gson.JsonObject;

public class Chatbot {
 JsonObject context;

 public static void main(String[] args){}

 public Chatbot(){
 context = new JsonObject();
 }

 public JsonObject process(JsonObject userInput){

 //step1: process user input

Let's Talk Weather Chapter 3

[73]

 JsonObject userAction = processUserInput(userInput);

 //step2: update context
 updateContext(userAction);

 //step3: identify bot intent
 identifyBotIntent();

 //step4: structure output
 JsonObject out = getBotOutput();

 return out;
 }
}

We will now modify the main() method to simulate a chat window where the user can
type in their requests and responses and have a chat with the bot:

public static void main(String[] args){
 Chatbot c = new Chatbot();
 Scanner scanner = new Scanner(System.in);
 String userUtterance;

 do {
 System.out.print("User:");
 userUtterance = scanner.nextLine();
 //end the conversation
 if (userUtterance.equals("QUIT")){ break; }

 JsonObject userInput = new JsonObject();
 userInput.add("userUtterance", new JsonPrimitive(userUtterance));
 JsonObject botOutput = c.process(userInput);
 String botUtterance = "";
 if (botOutput != null && botOutput.has("botUtterance")) {
 botUtterance = botOutput.get("botUtterance").getAsString();
 }
 System.out.println("Bot:" + botUtterance);

 } while (true);
 }

Now, let us focus on the chatbot itself. We will first build a module to understand users'
utterances. We are going to build a very simple module using rules and regular
expressions to translate user utterances into user intents.

Let's Talk Weather Chapter 3

[74]

An intent is a formal unambiguous representation of what the user or the bot says. It
conveys the meaning behind an utterance or a gesture.

Let us first figure out an initial list of user intents for the tasks we have based on the
example conversations that we have created:

greet

request_current_weather

inform_city

thank

The greet intent represents the many different greetings that the user may use. We will,
therefore, translate a number of utterances such as hi, hi there, hello, and hello
there into the greet intent. Similarly, the thank intent represents all ways the user might
thank the bot. The request_current_weather intent is used to represent the utterances
where the user is requesting current weather info and the inform_city intent is where
they mention the name of the city:

public JsonObject processUserInput(JsonObject userInput){
 String userUtterance = null;
 JsonObject userAction = new JsonObject();

 //default case
 userAction.add("userIntent", new JsonPrimitive(""));
 if (userInput.has("userUtterance")){
 userUtterance = userInput.get("userUtterance").getAsString();
 userUtterance = userUtterance.replaceAll("%2C", ",");
 }
 if (userUtterance.matches("(hi|hello)(there)?")){
 userAction.add("userIntent", new JsonPrimitive("greet"));
 }
 else if (userUtterance.matches("(thanks)|(thank you)")){
 userAction.add("userIntent", new JsonPrimitive("thank"));
 }
 else if (userUtterance.matches("current weather")||
 userUtterance.matches("weather now")){
 userAction.add("userIntent", new
 JsonPrimitive("request_current_weather"));
 }
 else {
 //contextual processing
 String currentTask = context.get("currentTask").getAsString();
 String botIntent = context.get("botIntent").getAsString();
 if (currentTask.equals("requestWeather") &&

Let's Talk Weather Chapter 3

[75]

 botIntent.equals("requestPlace")){
 userAction.add("userIntent", new
 JsonPrimitive("inform_city"));
 userAction.add("cityName", new JsonPrimitive(userUtterance));
 }
 }
 return userAction;
}

In the preceding code, we derive the user's intent from the utterance. Some intents have
associated parameters as well. For instance, the inform_city intent has an
associated cityName parameter which represents the name of the city for which the user is
seeking a weather report. Interestingly, the inform_city intent is also an intent that we
derive from context. Because, when asked for city information, the user merely mentions
the name of the city. So anything typed in will be reported as a city name and will need to
be validated later. Intent and its associated parameters are boxed up as a JSON object
userAction. Let us move on to updating the context:

public void updateContext(JsonObject userAction){
 //copy userIntent
 context.add("userIntent", userAction.get("userIntent"));
 //
 String userIntent = context.get("userIntent").getAsString();
 if (userIntent.equals("greet")){
 context.add("currentTask", new JsonPrimitive("greetUser"));
 } else if (userIntent.equals("request_current_weather")){
 context.add("currentTask", new JsonPrimitive("requestWeather"));
 context.add("timeOfWeather", new JsonPrimitive("current"));
 context.add("placeOfWeather", new JsonPrimitive("unknown"));
 context.add("placeName", new JsonPrimitive("unknown"));
 } else if (userIntent.equals("inform_city")){
 String cityName = userAction.get("cityName").getAsString();
 JsonObject cityInfo = weather.getCityCode(cityName);
 if (!cityInfo.get("cityCode").isJsonNull()){
 context.add("placeOfWeather", cityInfo.get("cityCode"));
 context.add("placeName", cityInfo.get("cityName"));
 }
 } else if (userIntent.equals("thank")){
 context.add("currentTask", new JsonPrimitive("thankUser"));
 }
}

Let's Talk Weather Chapter 3

[76]

In the preceding code, we updated the context of the conversation using the input from the
user. Here, the user input is translated into tasks and parameters. The idea behind context is
the same as how humans keep the context of conversation while talking to someone.
The currentTask variable represents the current task of the chatbot. Intents such as greet,
thank, and request_current_weather will set this variable. Each task will have a
number of parameters that need to be filled in. For instance, the requestWeather task has
two slots: time and place. They need to be filled before the bot can get the weather report. If
the user asks for current weather, the time is set to current, but the place is still unknown.
Next step: identify the bot's intent!

Having updated the context, the chatbot's intent needs to be determined. For some tasks,
such as greeting and thanking the user, bot intents are quite straightforward. For other
complex tasks, the intents are determined based on the slots that need to be filled and the
response from backend tasks. We have the following intents for the bot:

greetUser

thankUser

requestPlace

informWeather

greetUser and thankUser are used to greet and thank users. requestPlace is used
when the bot needs to know the place of the weather report. informWeather is used when
the bot has successfully retrieved a report from the backend service that we have built in the
previous section:

public void identifyBotIntent(){
 String currentTask = context.get("currentTask").getAsString();
 if (currentTask.equals("greetUser")){
 context.add("botIntent", new JsonPrimitive("greetUser"));
 } else if (currentTask.equals("thankUser")){
 context.add("botIntent", new JsonPrimitive("thankUser"));
 } else if (currentTask.equals("requestWeather")){
 if
 (context.get("placeOfWeather").getAsString().equals("unknown")){
 context.add("botIntent", new JsonPrimitive("requestPlace"));
 }
 else {
 Integer time = -1;
 if
 (context.get("timeOfWeather").getAsString().equals("current")){
 time = 0;
 }
 String weatherReport = null;

Let's Talk Weather Chapter 3

[77]

 try {
 weatherReport = weather.getWeatherReport(
 context.get("placeOfWeather").getAsString(), time);
 }
 catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 if (weatherReport != null){
 context.add("weatherReport", new
 JsonPrimitive(weatherReport));
 context.add("botIntent", new JsonPrimitive("informWeather"));
 }
 }
 } else {
 context.add("botIntent", null);
 }
}

In the preceding code, notice how the bot decides what to do when the currentTask is
requestWeather. It decides to ask for the place when it is not known. And when both the
time and place are known, it fetches the report and updates the context. Next, the bot's
intent needs to be translated into an utterance:

public JsonObject getBotOutput(){
 JsonObject out = new JsonObject();
 String botIntent = context.get("botIntent").getAsString();
 String botUtterance = "";

 if (botIntent.equals("greetUser")){
 botUtterance = "Hi there! I am WeatherMan, your weather bot! "
 + "What would you like to know? Current weather or forecast?";
 } else if (botIntent.equals("thankUser")){
 botUtterance = "Thanks for talking to me! Have a great day!!";
 } else if (botIntent.equals("requestPlace")){
 botUtterance = "Ok. Which city?";
 } else if (botIntent.equals("informWeather")){
 String timeDescription =
 getTimeDescription(context.get("timeOfWeather").getAsString());
 String placeDescription = getPlaceDescription();
 String weatherReport = context.get("weatherReport").getAsString();
 botUtterance = "Ok. Weather " + timeDescription + " in " +
 placeDescription + ". " + weatherReport;
 }
 out.add("botIntent", context.get("botIntent"));
 out.add("botUtterance", new JsonPrimitive(botUtterance));

Let's Talk Weather Chapter 3

[78]

 return out;
}

private String getPlaceDescription() {
 return context.get("placeName").getAsString();
}
private String getTimeDescription(String timeOfWeather) {
 if (timeOfWeather.equals("current")){
 return "now";
 }
 return null;
}

Now that the bot's intent and utterance are identified, let us execute the main method and
have some fun! Run the Chatbot class by pressing Ctrl + F11. On the console, you will be
prompted to start the conversation. Have a look at the following example conversation:

User:hi there
Bot:Hi there! I am WeatherMan, your weather bot! What would you like to
know? Current weather or forecast?
User:current weather
Bot:Ok. Which city?
User:London,GB
Bot:Ok. Weather now in London,GB. The temperature is 291.72 degrees
Farenheit. broken clouds.
User:thanks
Bot:Thanks for talking to me! Have a great day!!
User:QUIT

As you may have noticed, there are a lot of unfinished tasks here. For instance, the city
name should be typed in the same format (<cityname,countrycode>) as it is in our
weather database. This is not ideal. The user should be able to say in London and still get
answers. We will get back to this in the next chapter, where we will look at how to handle
utterances where users may call the same entity with different names. But first, let us get
this code to work in Facebook Messenger.

Let's Talk Weather Chapter 3

[79]

Creating a chatbot web service
Our next step is to make the chatbot available as a web service. This is so that platforms,
such as Facebook Messenger, can access the chatbot without having to actually host them
on their own servers. In order to make the chatbot available as a web service, the chatbot
code needs to be packaged as a web server and hosted on a cloud platform. We will use the
Java Spark library to wrap the chatbot code as a web server and the Heroku cloud platform
to host it:

We need to add the Spark dependency to the POM file:1.

<!-- https://mvnrepository.com/artifact/com.sparkjava/spark-core -
->
<dependency>
 <groupId>com.sparkjava</groupId>
 <artifactId>spark-core</artifactId>
 <version>2.0.0</version>
</dependency>

Implement a Java class called WebServer.java. Make sure to place it in the2.
default package:

public class WebServer {
 public static void main(String[] args) {
 Spark.setPort(getHerokuAssignedPort());
 Spark.staticFileLocation("/public");
 final Chatbot bot = new Chatbot();

 get("/", (req, res) -> "Hello World! I am WeatherMan,
 the weather bot!!");

 //post handle for WeatherMan chatbot
 post("/bot", new Route() {
 public Object handle(Request request, Response response) {
 String body = request.body();
 System.out.println("body: " + body);
 String splitChar = "&";
 String keyValueSplitter = "=";
 String[] params = body.split(splitChar);
 String userUtterance = "null";
 for (int i=0; i < params.length; i++){
 String[] sv = params[i].split(keyValueSplitter);
 if (sv[0].equals("userUtterance")){
 if (sv.length > 0){
 userUtterance = sv[1];
 } else {

Let's Talk Weather Chapter 3

[80]

 userUtterance = "";
 }
 userUtterance = userUtterance.replaceAll("%20",
 "");
 userUtterance = userUtterance.replaceAll("%3A",
 ":");
 }
 }
 if (!userUtterance.equals("null")){
 System.out.println("User says:" + userUtterance);
 JsonObject userInput = new JsonObject();
 userInput.add("userUtterance", new
 JsonPrimitive(userUtterance));
 String botResponse = bot.processFB(userInput);
 System.out.println("Bot says:" + botResponse);
 if (botResponse != null) {
 return botResponse;
 }
 } else {
 return null;
 }
 response.status(400);
 return new ResponseError("Error! POST not handled.");
 }
 }, json());

 after((req, res) -> { res.type("application/json"); });

 exception(IllegalArgumentException.class, (e, req, res) -> {
 res.status(400);
 res.body(toJson(new ResponseError(e)));
 });
 }

 static int getHerokuAssignedPort() {
 ProcessBuilder processBuilder = new ProcessBuilder();
 if (processBuilder.environment().get("PORT") != null) {
 return
Integer.parseInt(processBuilder.environment().get("PORT"));
 }
 return 4567;
 //return default port if heroku-port isn't set (i.e. on
 //localhost)
 }
}

Let's Talk Weather Chapter 3

[81]

Implement the web server helper classes. WebServer.java imports classes from3.
Spark and Gson packages. It also needs two helper classes, JSONUtil.java and
ResponseError.java. The JSONUtil helper class helps WebServer turn the
response format into JSON:

package weatherman.web.utils;

import com.google.gson.Gson;
import spark.ResponseTransformer;

public class JSONUtil {
 public static String toJson(Object object) {
 return new Gson().toJson(object);
 }
 public static ResponseTransformer json() {
 return JSONUtil::toJson;
 }
}

The ResponseError class helps the WebServer class to report errors in a specific
format that may occur during web service:

package weatherman.web.utils;

public class ResponseError {
 private String errorType;
 public ResponseError(String message, String... args) {
 this.errorType = String.format(message, args);
 }
 public ResponseError(Exception e) {
 this.errorType = e.getMessage();
 }
 public String getMessage() {
 return this.errorType;
 }
}

Change the Java compiler to 1.8. The pom.xml file tells Heroku which compiler to4.
use when building the project in the cloud. Since we are using Lambda
expressions, we need to set the compiler to Java 1.8. To do this, add the following
code (the build element) in the pom.xml file just after the dependencies
element:

<build>
 <plugins>
 <plugin>

Let's Talk Weather Chapter 3

[82]

 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 <executions>
 <execution>
 <id>default-compile</id>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 <execution>
 <id>default-testCompile</id>
 <phase>test-compile</phase>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Save the pom.xml file. Right-click the project name, select Maven, and then
Update Project on the menu. Click OK in the dialog box. This will update the
Maven settings.

Add Procfile. Procfile is a Heroku artifact. In this file, we tell Heroku which5.
program to run after building the project. Implement Procfile:

web: java -cp target/classes:target/dependency/* WebServer

The preceding line informs Heroku to run the WebServer class in the default
package on a web dyno.

The name of the file should be Procfile and not Procfile.txt or
ProcFile.

Let's Talk Weather Chapter 3

[83]

Push it onto the cloud. Now that we have created our first version of the chatbot6.
and wrapped it as a web server, let us push it onto the cloud and make it
available as a web service. From the console window, where your Weatherman
project is, execute the following commands:

> git init
> git add .
> git commit -m "chatbot for weather v1"

By executing the preceding commands, we are creating and storing the project files in a
local GIT repository. Let us now create a Heroku app to hold our web app:

> heroku create weatherman-bot

You will see the results of this command as in the following screenshot. It says that we have
created a Heroku app named weatherman-bot and its URL is
https://weatherman-bot.herokuapp.com:

Let's Talk Weather Chapter 3

[84]

Finally, we will push the code into Heroku and also invoke it as a web service. To do this,
execute the following command:

> git push heroku master

You will see the following messages, which means the code has been pushed, compiled
successfully, and launched as well:

Now that we have successfully created the chatbot as a web service, we need to get this bot
to talk to users in Facebook Messenger.

Let's Talk Weather Chapter 3

[85]

Publishing on Facebook Messenger
To publish a custom built chatbot on Facebook, you need to follow these steps.

Creating a Facebook Page
You need a Facebook Page that can hold the chatbot. To create a Facebook Page, you need a
Facebook account. If you don't have one, go ahead and create one at www.facebook.com.

Once you are logged in to Facebook, you should be able to create any number of pages. To
create a page, follow these steps:

On the left, there is a menu with three tabs: SHORTCUTS, EXPLORE, and1.
CREATE. Under CREATE, click Page:

http://www.facebook.com

Let's Talk Weather Chapter 3

[86]

A Facebook Page can be created as a public profile to represent businesses,2.
brands, celebrities, public causes, and so on. You will see the following menu:

Choose Artist, Band or Public Figure. Since we are building a chatbot, let us
create it as a fictional character. Choose Fictional Character from the drop-down
menu, give it a name, and click Get Started:

Let's Talk Weather Chapter 3

[87]

We have now created a page. Let us go ahead and configure it:3.

fb_new_blank_page

Let's Talk Weather Chapter 3

[88]

Bookmark your page. Add a profile image by clicking Add a Picture and a banner
image by clicking Add a Cover (always use pictures that you have a copyright to).

Don't worry if you accidentally closed your browser and hadn't
bookmarked your page. You can see all your pages listed at https:/ /www.
facebook. com/ bookmarks/ pages.

You should now be able to make your very first post on the page.

Creating a username
Having created the page, let us do two more things before we move on: add a description of
the page and create a username.

To create a username, click Create Page @username right below the profile1.
picture:

You will be prompted for a Username. This name will uniquely identify the page2.
and makes the URL easy to remember. You may have to try a few names as the
one you have in mind might already be taken:

https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages
https://www.facebook.com/bookmarks/pages

Let's Talk Weather Chapter 3

[89]

Finally, when it has been created, you will be notified of the new page and the3.
Messenger URL:

Creating a Facebook App
You need to create a Facebook App that can connect to the Facebook Page we just created.
A Facebook App can be created on Facebook's developer portal. Follow the steps:

Navigate your browser to https:/ /developers. facebook. com.1.

https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com

Let's Talk Weather Chapter 3

[90]

Click the MyApps button in the top-right corner (next to your profile icon).2.
Click Add A New App.3.
Fill in the display name of the app and your contact email and click Create App4.
ID:

Having created the app shell, we need to add products to it. In our case, since we5.
are building a chatbot, we need to add a Messenger product to the app:

Let's Talk Weather Chapter 3

[91]

Hover your mouse over Messenger and click Set Up. This will add Messenger to6.
the app and take you to the Settings page. Scroll down the page to Token
Generation tab. This is where we link the app to the page that we created.
Click Select A Page and select the page you want the app to be linked to. This7.
will open an authentication dialog box where you will have to allow the app to
access the page. Click Continue as X, where X is your first name. Do not worry
about the warnings for now:

Let's Talk Weather Chapter 3

[92]

On the next page, click OK to finish the process. This will automatically close the8.
dialog box:

You will now see that the page is assigned a token called the Page Access Token.9.
Copy it and keep it aside.
We will have to set up the webhook to finish this process but we will have to do it10.
a bit later.

Let's Talk Weather Chapter 3

[93]

Creating a Facebook interface web app
In this step, we will create an interface that will allow our chatbot to talk to the Facebook
App. In the previous section, we created a Facebook App. This app will have to talk to the
interface we will be building in this section. Info about this module will have to go into the
webhook settings that we have left unfinished in the previous section. We will create a new
project to hold this interface app. Let us call it weatherman-fbmi. In your console, create a
separate directory (weatherman-fbmi) to hold this project. In this directory, we will create
the following three files:

index.js

package.json

Procfile

index.js is a Node.js program that acts as a web server to send and receive messages to
and from our Facebook App:

'use strict';
const express = require('express')
const bodyParser = require('body-parser')
const request = require('request')

const app = express()

// set your weatherman fb page access token
const token = '<YourFBPageAccesToken>';

const botServerUrl = 'https://weatherman-bot.herokuapp.com/bot';

app.set('port', (process.env.PORT || 5000))

// Process application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({extended: false}))

// Process application/json
app.use(bodyParser.json())

app.use(express.static('public'))

// Index route
app.get('/', function (req, res) {
 res.send('Hello world, I am Weatherman!.')
})

// Spin up the server

Let's Talk Weather Chapter 3

[94]

app.listen(app.get('port'), function() {
 console.log('running on port', app.get('port'))
})

You will have to replace <YourFBPageAccesToken> with the page access token that you
got from Step 9 of the Creating a Facebook App section. You may also have to replace the
botServerURL to your own.

The preceding code is enough to spin up the server when pushed onto Heroku. But we
need the server to actually create a bridge between our Facebook App and our chatbot. We
will now implement necessary routes to the previous web server. Add the following code to
index.js:

// for Facebook verification
app.get('/webhook/', function (req, res) {
 if (req.query['hub.verify_token'] === 'iam-weatherman-bot') {
 res.send(req.query['hub.challenge'])
 }
 res.send('Error, wrong token')
})

//FBM webhook
app.post('/webhook/', function (req, res) {
 console.log(JSON.stringify(req.body));
 let messaging_events = req.body.entry[0].messaging
 for (let i = 0; i < messaging_events.length; i++) {
 let event = req.body.entry[0].messaging[i]
 let sender = event.sender.id
 let recipient = event.recipient.id
 let time = req.body.entry[0].time

 // we call the chatbot here..
 if (event.message && event.message.text) {
 let text = event.message.text
 //send it to the bot
 request({
 url: botServerUrl,
 method: 'POST',
 form: {
 'userUtterance':text
 }
 }, function (error, response, body) {
 //response is from the bot
 if (!error && response.statusCode == 200) {
 // Print out the response body
 body = body.substring(1,body.length-1);
 body = body.replace(/\\/g, '')

Let's Talk Weather Chapter 3

[95]

 let botOut = JSON.parse(body)
 if (botOut.botUtterance != null){
 sendTextMessage(sender, botOut.botUtterance)
 }
 } else {
 sendTextMessage(sender, 'Error!')
 }
 }); //request ends
 }
 }
 res.sendStatus(200)
})

function sendTextMessage(sender, text) {
 if (text != 'null'){
 let messageData = { 'text':text }
 request({
 url: 'https://graph.facebook.com/v2.6/me/messages',
 qs: {access_token:token},
 method: 'POST',
 json: {
 recipient: {id:sender},
 message: messageData,
 }
 }, function(error, response, body) {
 if (error) {
 console.log('Error sending messages: ', error)
 } else if (response.body.error) {
 console.log('Error: ', response.body.error)
 }
 })
 }
}

The preceding code creates a POST route called webhook that will be called by the Facebook
App with the user's utterances. This will be sent to the chatbot using its URL
(botServerURL) as another POST request. The bot's response is sent back to Messenger in
the sendTextMessage() method. There are other message formats that can be used to
send richer responses from the bot. We will take a look at them in section X.

Let's Talk Weather Chapter 3

[96]

Let us create the package.json file to tell Heroku the packages that are needed for
index.js. Create the package.json file in your text editor with the following JSON:

{
 "name": "weatherman-bot-server",
 "version": "1.0.0",
 "description": "Weatherman bot fbmi server",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Srini Janarthanam",
 "license": "ISC",
 "dependencies": {
 "body-parser": "^1.15.2",
 "express": "^4.14.0",
 "request": "^2.72.0"
 }
}

As a final step, we need to create a Procfile to tell Heroku to run index.js. Create
Procfile in your text editor with the following command.

web: node index.js

Follow these steps to push the interface program onto the cloud. From the console window,
where your Weatherman interface project is, execute the following commands to create a
Heroku app and push the interface app to the cloud:

> git init
> git add .
> git commit -m "fbmi for weatherman v1"
> heroku create weatherman-bot-fbmi
> git push heroku master

You will receive a message with the app's URL in it. In my case, it is https:/ /weatherman-
bot-fbmi.herokuapp. com.

Connecting the Facebook App and interface app
Finally, we have to set up the webhook that we left incomplete in Step 10 when creating the
Facebook App. You may have observed that we have created two routes to serve as
webhooks. The GET route is used to verify the app and the POST route is used for
communicating messages to and from the chatbot:

https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com

Let's Talk Weather Chapter 3

[97]

Subscribe to the WeatherMan Facebook Page to receive the messages sent by Messenger
users on the web service:

We are now ready to test the chatbot!

Let's Talk Weather Chapter 3

[98]

Testing your chatbot
Now that the chatbot is up and running, we can test it on the Facebook Page that hosts it. A
username for the page was created in the Creating a username section. Navigate to https:/ /
m.me/weathermanuk on a web browser. This will open Facebook Messenger, where you can
chat with our WeatherMan bot. Go ahead and say hi there:

https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk

Let's Talk Weather Chapter 3

[99]

Adding more testers
You might notice that only you have access to the chatbot. Anyone else who goes to the
same URL and says hi will not be responded to by the chatbot. This is because the chatbot
is not published yet. You can add more testers to help you with testing the chatbot. Here is
how you do it:

Navigate your browser to https:/ /developers. facebook. com.1.
Click your app.2.
On Dashboard, choose Roles.3.
Under the Testers tab, you can add Facebook users by mentioning their4.
usernames.

Added users will have access to the chatbot. But remember, your bot is still unpublished:

https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com
https://developers.facebook.com

Let's Talk Weather Chapter 3

[100]

Making it public
The final step of this process is to apply to Facebook to make your chatbot public. This final
step will make your chatbot available to everyone at the Messenger URL (https:/ / m.me/
weathermanuk).

On your app dashboard, click Settings and then Basic on the Dashboard menu.1.
Upload an icon to represent the chatbot. This has to be a 1024 x 1024 pixel image. 2.
Choose a category: Apps for Messenger.3.
Add the URL to the privacy policy. This policy will have to tell users what4.
happens to the user data that is collected. There are a few services that can help
you create Facebook App privacy policies:

IUBENDA: https:/ / www. iubenda. com/ blog/ privacy- policy-
facebook- app/

TermsFeed: https:/ / termsfeed. com/ blog/ privacy- policy- url-
facebook- app/

On the Dashboard menu, click App Review.5.
Make your app public by choosing Yes.6.
On the Dashboard menu, choose Messenger under PRODUCTS.7.
On the right, find the App Review For Messenger tab.8.
Add pages_messaging to submission.9.
Go down to Current Submission tab.10.
Click Edit Notes against pages_messaging.11.
Select the Facebook Page that the chatbot subscribes to.12.
Choose Your Messenger experience includes automated replies and provide13.
examples of interactions for what users can say and what the bot will respond
with.
Add any other notes for the reviewer if you like. This should help the reviewer14.
understand the chatbot and set the right expectations.
Click Save. Go back to Messenger's Settings. You will find the Submit for15.
review button enabled. Click it for submission. If it is not enabled, you will find a
list of items you will need to work on before you can submit.

https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://m.me/weathermanuk
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://www.iubenda.com/blog/privacy-policy-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/
https://termsfeed.com/blog/privacy-policy-url-facebook-app/

Let's Talk Weather Chapter 3

[101]

You will immediately receive a message that you can view on the Alerts
page. Click Alerts on the Dashboard menu. You will see a message stating
that the app is being reviewed. The review usually takes a couple of days.
Once reviewed and approved, your chatbot is ready for public use.

Congratulations on coming this far!

More Facebook message formats
In this section, we will explore other Facebook message formats besides text. In the previous
example, we programmed the chatbot to send text responses back to the user. However,
Facebook has more formats that can be used to provide a richer experience to the user. You
can do this by changing the content of the message element in the POST request in
the sendTextMessage() method in the index.js file.

Content types
Besides text, other content types such as images, audio and video clips, and files can be sent
to users.

Image attachments
Images in JPEG, PNG, and GIF formats can be sent to the user using the following format
for message content:

"message":{
 "attachment":{
 "type":"image",
 "payload":{
 "url":"https://myimagelibrary.com/ijustwannadrawsomething.jpg"
 }
 }
 }

Let's Talk Weather Chapter 3

[102]

Audio attachments
Audio clips can be sent to the user using the following message element:

 "message":{
 "attachment":{
 "type":"audio",
 "payload":{
 "url":"https://mymp3library.com/ijustwannasing.mp3"
 }
 }
}

Video attachments
Video files can be sent over Messenger by specifying its URL with the following message
content:

"message":{
 "attachment":{
 "type":"video",
 "payload":{
 "url":"https://myvideolibrary.com/ijustwannadance.mp4"
 }
 }
}

Files
Files can be sent to users using the following message format by specifying the URL of the
file:

"message":{
 "attachment":{
 "type":"file",
 "payload":{
 "url":"https://myfileslibrary.com/ijustwannawrite.pdf"
 }
 }
 }

Let's Talk Weather Chapter 3

[103]

Templates
In addition to sending simple text and other content types, Facebook provides a way to
send cards. These are GUI elements that are visually appealing. There are also options for
adding buttons to cards that serve as responses that users can make.

Button template
Button templates can be created using the following message format. The following
message will display a card with two buttons. The labels on the buttons will be Buy
now and More info. Clicking Buy now will send the payload (PAYLOAD_BUY) as a response
message back to the bot. Clicking the More info button will take the user to the web page
specified in an embedded web view window:

"message":{
 "attachment":{
 "type":"template",
 "payload":{
 "template_type":"button",
 "text":"What would you like to do now?",
 "buttons":[
 {
 "type":"postback",
 "title":"Weather this weekend",
 "payload":"PAYLOAD_WEEKEND_LONDON"
 },
 {
 "type":"Goto Website",
 "url":"https://myweather.com/london",
 "title":"More Info"
 }
]
 }
 }
 }

Let's Talk Weather Chapter 3

[104]

The preceding message would render as shown in the following screenshot:

List template
List templates can be used to list a number of items in a vertical list. Using the following
message format, you can make a list that is presented in a visually attractive way:

"message": {
 "attachment": {
 "type": "template",
 "payload": {
 "template_type": "list",
 "top_element_style": "compact",
 "elements": [
 {
 "title": "London,GB",
 "image_url": "https://myweather.com/london.png",
 "subtitle": "Weather in London,GB",
 "default_action": {
 "type": "web_url",
 "url": "https://myweather.com/london",
 "messenger_extensions": true,
 "webview_height_ratio": "tall",
 "fallback_url": "https://myweather.com/"
 },
 "buttons": [
 {
 "title": "Info",
 "type": "web_url",
 "url": "https://myweather.com/london/weather",
 "messenger_extensions": true,
 "webview_height_ratio": "tall",

Let's Talk Weather Chapter 3

[105]

 "fallback_url": "https://myweather.com/"
 }
]
 },
 {
 "title": "Paris,FR",
 "image_url": "https://myweather.com/paris.png",
 "subtitle": "Weather in Paris,FR",
 "default_action": {
 "type": "web_url",
 "url": "https://myweather.com/paris",
 "messenger_extensions": true,
 "webview_height_ratio": "tall",
 "fallback_url": "https://myweather.com/"
 },
 "buttons": [
 {
 "title": "Info",
 "type": "web_url",
 "url": "https://myweather.com/paris/weather",
 "messenger_extensions": true,
 "webview_height_ratio": "tall",
 "fallback_url": "https://myweather.com/"
 }
]
 }
],
 "buttons": [
 {
 "title": "View More",
 "type": "postback",
 "payload": "payload"
 }
]
 }
 }

Let's Talk Weather Chapter 3

[106]

The preceding code also serves as an example of how you can use a list template in our
weather chatbot. You can make a list of prominent cities or allow the user to create their
own favorite cities. This list will provide shortcuts to get weather info on a list of cities. In
the preceding code, this is done by adding city-centric info to the elements JSON array list.
Each element has two URLs. One is for when the user touches the element itself and the
other is for when the user clicks the call-to-action button.

In the preceding code, buttons are set to lead the user to a web URL rather than send
payload messages to the bot. However, both can be done. You just need to change the
button type. And here is how it looks on Messenger:

Let's Talk Weather Chapter 3

[107]

Generic template
The generic template is one of the first templates introduced by Facebook to create visually
attractive cards. This is also called a carousel. This enables you to present a list of items as a
horizontal list of cards, where the user can scroll through them and respond using buttons.
Each card can have a maximum of three buttons. To create a generic template, use the
following message format:

"message":{
 "attachment":{
 "type":"template",
 "payload":{
 "template_type":"generic",
 "elements":[
 {
 "title":"London, GB",
 "image_url":"https://myweather.com/london.png",
 "subtitle":"What's the weather in London, GB?",
 "default_action": {
 "type": "web_url",
 "url": "https://myweather.com/london",
 "messenger_extensions": true,
 "webview_height_ratio": "tall",
 "fallback_url": "https://myweather.com/"
 },
 "buttons":[
 {
 "type":"web_url",
 "url":"https://myweather.com/london/weather",
 "title":"Goto Website"
 },{
 "type":"postback",
 "title":"Weather now",
 "payload":"PAYLOAD_CURRENT_WEATHER_LONDON"
 }
]
 }
]
 }
 }
 }

Let's Talk Weather Chapter 3

[108]

The preceding example has only one card. Add more to the elements list to make more
cards, one for each city perhaps. Observe that the card has two buttons. One is a web view,
where pushing the button labeled Goto Website takes you to the website with weather info
on London on an embedded web browser. And the next one is a postback button, which
will send as response a PAYLOAD_CURRENT_WEATHER_LONDON postback message to the
chatbot:

By using a combination of these elements and more, you can create magical conversational
experiences for the user on Facebook Messenger. The Facebook Messenger API is rapidly
evolving and new elements are being added to help developers to create amazing chatbot
conversations on the platform. So keep an eye on the developments.

Let's Talk Weather Chapter 3

[109]

Summary
In this chapter, we had a look at how to build a chatbot using an external information
source and integrate it with Facebook Messenger. We had a look at how to get the bot
published on Messenger and exclusive features, such as buttons and templates, that can
help us build a rich and engaging conversational experience for the user in Messenger.

In the next chapter, we will move away from button-based interaction and explore how to
process user utterances to make the chatbot more flexible for users. We will explore a
natural language understanding toolkit called Dialogflow and build a persona bot that will
mimic conversations with Albert Einstein.

References
Facebook Messenger documentation: https:/ /developers. facebook. com/ docs/
messenger-platform

https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform

4
Building a Persona Bot

In the last chapter, we built a chatbot to talk about weather information over Facebook
Messenger. Although we were able to have a conversation with it, it was mainly by the use
of buttons that were made available by the deployment platform. However, in order to
make the chatbot sound more natural, we need to allow users to chat with the chatbot using
natural language. This means that the chatbot needs to be able to process users' utterances,
understand them and identify the most appropriate response to give back to the user. In
this chapter, we will explore how we can process natural language inputs from the user
using a tool from Google called Dialogflow (previously called API.AI) to build a chatbot
that can understand natural language input from the user. We will deploy the chatbot on
two platforms: web chat and Facebook Messenger. We will explore concepts in natural
language such as intents, entities, and contexts, and we will discuss how to actually design
and deploy a rich conversational experience using these ideas. With a basic understanding
of these concepts, we will design and build a persona bot modeled on the world's favorite
physicist, Albert Einstein.

By the end of this chapter, you will be able to:

Understand the basics of Dialogflow
Understand concepts such as intents, entities, and contexts
Create a Dialogflow agent
Integrate the Dialogflow agent to web chat and Facebook Messenger
Extend the agent's capabilities using webhooks

Building a Persona Bot Chapter 4

[111]

Introducing Dialogflow
Dialogflow (previously called API.AI) is conversational agent building platform from
Google. It is a web-based platform that can be accessed from any web browser. The tool has
evolved over time from what was built as an answer to Apple Siri for the Android platform.
It was called SpeakToIt, an Android app that created Siri-like conversational experiences on
any Android smartphone. The AI and natural language technology that powered the
SpeakToIt app was opened up to developers as API.AI in 2015.

API.AI enabled developers to create conversational experiences by providing them tools to
undertake two kinds of tasks: understand and generate natural language utterances and
manage the conversation. While there are many competing tools to API.AI that are available
in the market, we chose API.AI because it was one of the first, is very mature and constantly
evolving, and is easy to use and integrate within other services.

Setting up Dialogflow
 First, let us create a developer account on API.AI (now called as Dialogflow).

Go to https:/ /api. ai/ :1.

https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/
https://api.ai/

Building a Persona Bot Chapter 4

[112]

Click GO TO CONSOLE on the top-right corner.2.
Sign in. You may need to use your Google account to sign in.3.

Creating a basic agent
Let us create our first agent on Dialogflow. Let us start with a basic one and then add more
complex features:

To create a new agent, click the drop-down menu on the left on the home page1.
(api.ai) and click Create new agent.
Fill in the form on the right. Give it a name and description. Choose a time zone2.
and click CREATE.
This will take you to the page with the intents listing. You will notice that there3.
are two intents already: Default Fallback Intent and Default Welcome Intent.
Let's add your first intent. Intent is what the user or bot wants to convey using4.
utterances or button presses. An intent is a symbolic representation of an
utterance. We need intents because there are many ways to ask for the same
thing. The process of identifying intents is to map the many ways unambiguously
to an intent. For instance, the user could ask to know the weather in their city
using the following utterances:

"hows the weather in london"
"whats the weather like in london"
"weather in london"
"is it sunny outside just now"

In the preceding utterances, the user is asking for a weather report in the city
of London. In some of these utterances, they also mention time (that is, now).
In others, it is implicit. The first step of our algorithm is to map these many
utterances into a single intent: request_weather_report.

The Intent name corresponds to users' intents. So name them from the user's
perspective. Let's add a user_greet intent that corresponds to the act of
greeting the chatbot by the user. To add an intent, click the CREATE
INTENT button.

Building a Persona Bot Chapter 4

[113]

You will see the following page where you can create a new intent:5.

Give the intent a name (for example, user_greet).

Add sample user utterances in the User says text field. These are sample6.
utterances that will help the agent identify the user's intent. Let's add a few
greeting utterances that the user might say to our chatbot:

hello
hello there
Hi there Albert
hello doctor
good day doctor

Building a Persona Bot Chapter 4

[114]

Ignore the Events tab for the moment and move on to the Action tab. Add a7.
name to identify the system intent here (for example, bot_greet to represent
chatbot's greeting to the user).
In the Response tab, add the bot's response to the user. This is the actual8.
utterance that the bot will send to the user. Let's add the following utterance in
the Text response field. You can add more responses so that the agent can
randomly pick one to make it less repetitive and boring:

Hi there. I am Albert. Nice to meet you!

You can also add up to 10 additional responses by clicking the ADD
MESSAGE CONTENT.

Click SAVE button in the top-right corner to save the intent. You have created9.
your very first intent for the agent.
Test it by using the simulator on the right side of the page. In the Try it now box,10.
type hello and press Enter:

Building a Persona Bot Chapter 4

[115]

You will see the chatbot recognizing your typed utterance and responding
appropriately.

Now go on and add a few more intents by repeating steps 5 through 10. To create11.
a new intent, click the + sign beside the Intents option in the menu on the left:

Think about what kind of information users will ask the chatbot and make a
list. These will become user intents. The following is a sample list to get you
started:

request_name

request_birth_info

request_parents_names

request_first_job_experience

request_info_on_hobbies

request_info_patent_job

request_info_lecturer_job_bern

Of course, this list can be endless. So go on and have fun.

Once you have put in the sufficient number of facts in the mentioned format, you can test
the chatbot on the simulator as explained in step 10.

Building a Persona Bot Chapter 4

[116]

Deploying the chatbot
Now that we have a chatbot, let us get it published on a platform where users can actually
use it. Dialogflow enables you to integrate the chatbot (that is, agent) with many platforms.
Click Integrations to see all the platforms that are available:

Building a Persona Bot Chapter 4

[117]

In this section, we will explore two platform integrations: website and Facebook. We will
explore more in later sections:

Website integration
Website integration allows you to put that chatbot on a website. The user can interact with
the chatbot on the website just as they would with a live chat agent.

On the Integrations page, find the Web Demo platform and slide the switch from1.
off to on.

Building a Persona Bot Chapter 4

[118]

Click Web Demo to open the following settings dialog box:2.

Building a Persona Bot Chapter 4

[119]

Click the bot.dialogflow.com URL to open the sample webpage where you can3.
find the bot on a chat widget embedded on the page. Try having a chat with it:

You can share the bot privately by email or on social media by clicking the Email
and Share option.

The chat widget can also be embedded in any website by using the iframe embed4.
code found in the settings dialog box. Copy and paste the code into an HTML
page and try it out in a web browser:

<iframe
 width="350"
 height="430"
 src="https://console.api.ai/api-client/demo/embedded/
 2d55ca53-1a4c-4241-8852-a7ed4f48d266">
</iframe>

Building a Persona Bot Chapter 4

[120]

Facebook integration
In order to publish the API.AI chatbot on Facebook Messenger, we need a Facebook Page to
start with. We also need a Facebook Messenger app that subscribes to the page. The steps to
create a Facebook Page and a Facebook Messenger app are presented in detail in the section
titled Publishing on Facebook Messenger in Chapter 3, Let's Talk Weather . Let's discuss the
further steps here:

Having created a Facebook Messenger app, get its Page Access Token. You can1.
get this on the app's Messenger Settings tab:

In the same tab, click Set up Webhooks. A dialog box called New Page2.
Subscription will open. Keep it open in one browser tab.

Building a Persona Bot Chapter 4

[121]

In another browser tab, from the Integrations page of API.AI, click Facebook3.
Messenger:

Copy the URL in the Callback URL text field. This is the URL of the API.AI agent4.
to call from the Messenger app. Paste this in the Callback URL text field of the
New Page Subscription dialog box on the Facebook Messenger app.
Type in a verification token. It can be anything as long as it matches the one on5.
the other side. Let's type in iam-einstein-bot.
Subscribe to messages and messaging_postbacks in the Subscription Fields6.
section. And wait! Don't click Verify and Save just yet:

Building a Persona Bot Chapter 4

[122]

In the API.AI browser tab, you will have the integrations settings open. Slide the7.
switch to on from the off position on the top-right corner.
This will allow you to edit the settings. Type the Verify Token. This has to be the8.
same as the one used in the Facebook Messenger App settings in step 5.
Paste the Page Access Token and click START.9.
Now go back to the Facebook Messenger app and click Verify and Save. This will10.
connect the app to the agent (chatbot).
Now on the Facebook Messenger settings page, under Webhooks, select the11.
correct Facebook page that the app needs to subscribe to and hit Subscribe:

Building a Persona Bot Chapter 4

[123]

You should now be able to open the Facebook page, click Send Message, and have a chat
with the chatbot:

Brilliant! Now you have successfully created a chatbot in API.AI and deployed it on two
platforms: web and Facebook Messenger. In addition to these platforms, API.AI enables
integration of your agent with several popular messaging platforms such as Slack, Skype,
Cisco Spark, Viber, Kik, Telegram, and even Twitter.

Building a Persona Bot Chapter 4

[124]

Context
So far, our chatbot answers questions in one shot. The user asks a question and the chatbot
answers. What if there are questions that require more conversation? What if the chatbot
needs to ask to follow up questions before it can actually answer the user's question? Such
tasks require conversational context.

Let us examine the following conversation:

User : Why did you take the job at the patents office?
Bot : After graduating, I tried to get a teaching post but was
unsuccessful.
So with the help of my friend Marcel Grossman's father, I got a job in the
patent office at Bern.
User : When did you get the job?

The user's second question relates to the first question and the answer from the chatbot. It is
not an independent question. The words the job could mean any job that Einstein might
have had during his lifetime but according to the context, it is clear what the user is talking
about. The chatbot, therefore, needs to take this into account to understand what the user
actually means.

In API.AI, we can enable agents to keep a record of conversational context using the
Contexts tab while creating intents. Each intent has to specify input and output contexts.
Input context specifies the context in which the intent will be considered. The output
context is what is set when the intent is matched and successfully executed with a response
utterance.

To successfully execute the preceding conversation, the agent needs to record contextual
information in the output context for the request_info_patent_job intent where the
question about Einstein's patents office job gets answered. This will then serve as input
context for follow-up questions such as, "When did you get the job?" or, "How much did the
job pay?" and many more.

Building a Persona Bot Chapter 4

[125]

Here is how you can do that:

Open the request_info_patent_job intent. Click the Contexts tab. You will1.
see the tab expand as shown in the following screenshot:

Type the name of the contextual item you want the agent to keep in the output2.
context field. Since we want the agent to know that the user's question is about
the patents office job, let us type in the name of the contextual item (that
is, patents-office-job) in the output context:

Attached to each contextual item is the lifespan of the context. It is set to 5 by
default. This ticks down by one to zero with each incoming user utterance. When
it reaches zero, it will automatically be erased from the context of the
conversation.

We have specified the output context for the intent. So if the agent recognizes this3.
intent from user's utterance, it will respond appropriately and also set the output
context. Let us try this on the simulator:

Building a Persona Bot Chapter 4

[126]

The preceding screenshot shows how the context is now changed from nothing
to patents-office-job. Every new utterance from the user will now be processed in
this context.

Building a Persona Bot Chapter 4

[127]

In order to use context, contextual items need to be specified as input context in4.
subsequent user intents. Let's try this out by creating a
new request_info_poffice_joining user intent. This intent is will be
recognized when the user asks when did you start your job in the
patents office or something similar. But even if the user asks when did you
start the job where there is no mention of the patents office, we should be
able to recognize it during the conversation about the patents office job. In order
to do that, we will mention what the conversation is about in the input context:

Building a Persona Bot Chapter 4

[128]

In the preceding screenshot, you can see the way the patents-office-job contextual
item is mentioned in the input contexts field. So, an utterance such as when did you
start in the context of patents-office-job will be recognized as
request_info_poffice_joining. The same utterance in other contexts will not be
recognized as a request_info_poffice_joining intent:

The preceding screenshot shows how the same utterance at different points of conversation
yields different results because the agent is now processing inputs from the user
contextually.

The lifespan of the contextual item in the output context can be increased or decreased. In
case the contextual item is no longer needed, it can be deleted by setting the lifespan to zero.
This can be a useful hack when the user thanks the bot after finishing a task. In such a case,
the chatbot can be made to reset the conversational context.

More contextual items can be added both in input and output fields as necessary. This may
be useful in creating more complex conversations. While using contextual items to drive
conversation is a good idea, we recommend the use of a contextual item called global to
create and manage global contextual items wherein global parameters can be stored and
used. This item will be available to all intents in its input and passed on to the output
context as well.

Building a Persona Bot Chapter 4

[129]

Entities
Entities add another layer of complexity to natural language conversations making the
chatbot more powerful and flexible. Any object of interest in the chatbot's conversations
with users can be considered an entity. For instance, in a chatbot dispensing weather
information, cities and towns can be considered as entities. Other entities of interest would
be the kind of information the user wants: temperature, the possibility of rain, wind speed,
and so on. In the case of temperature, the metric that is used, either Fahrenheit or Celsius,
can also be treated as entities.

Entities can be organized in terms of parameter names and values. For instance, in the
weather domain, you can append to request city-specific weather reports in the following
way:

intent = request_weather
city_name = london_gb

The preceding format is equivalent to the user asking, "What's the weather like in London?"
So instead of using one intent per city (for example, request_weather_london), we can
better organize user requests in terms of intents and entities. This also makes recognizing
user intents more manageable.

Let's have a look at a couple of other examples:

intent = change_metric
metric = celsius

The preceding example represents utterances such as, "How much is that in Celsius?" and,
"Can you report in Celsius scale, please."

In the case of the Einstein bot, we can represent his major works, such as Special Theory of
Relativity, General Theory of Relativity, and Brownian Movement as entities. Such entities
can be used in related intents such as
request_info_on_work and request_publications. Take, for instance, the following
intent specification:

intent = request_info_on_work
work = special_theory_of_relativity

Building a Persona Bot Chapter 4

[130]

The preceding intent could mean that the user is saying, "Tell me about your work on the
special theory of relativity" or something similar.

In order to make use of entities, we need to enumerate them in the agent. To do this, follow
the following steps:

Click the Entities option in the main menu. You will find this underneath the1.
Intents option that was used to create user intents:

Click CREATE ENTITY. 2.
Give it a type name. In the weather domain, London, Paris, or New York may be3.
actual entities but they can be grouped under a type name called City. In the case
of the Einstein bot, let's name it Work as the entities are actually his work.

Building a Persona Bot Chapter 4

[131]

There is a table with two columns. On the left, you will have to fill in a reference4.
value for the entity and on the right, you will list the synonyms of the entity. To
explain this, let us go back to the city example. Each city will have a reference
value (for example, newyork-us) to represent it internally in an unambiguous
manner. Each reference value can be expressed in terms of words or phrases in
natural language. In this case, newyork-us can be called "the big apple," "new
york city," "the city of new york," and so on. These need to be listed as synonyms.
For our bot, let us add three of Einstein's works—Special theory of relativity,
General theory of relativity, and Theory of Brownian Movement. For each of
these works, let us also add synonyms:

Building a Persona Bot Chapter 4

[132]

Having created the entities, let us now put them to use by creating an intent that5.
would use them. Let us create an intent called request_info_on_work:

Building a Persona Bot Chapter 4

[133]

Observe in the preceding screenshot how the words special theory of
relativity are highlighted. This is done automatically by the API.AI editor based
on the entity list we created. It identifies entities in example utterances that we
provide for every intent. It then adds those identified entities to the parameter list:

Building a Persona Bot Chapter 4

[134]

Try this in the simulator and observe the output from the agent. As shown in the6.
preceding screenshot, you will see that the agent has picked up the name of the
work and has created a parameter with the name (that is, Work) and value (that
is, general-theory). In the value field, you will find the reference value of the
entity no matter what synonym was used in the utterance.

Now, having extracted the parameters and values, let's figure out how to use
them in the response utterance. The parameter can be referenced in the
response utterances using the $ notation. In this case, the reference value of
the Work parameter can be obtained by using $Work. Try the Sure. I will
tell you all about $Work. But later! :) response utterance and
see what happens:

Building a Persona Bot Chapter 4

[135]

Since our reference values have a hyphen in them, they really don't suit the7.
utterances. So we can try using the synonym that the user used. To do this,
change $Work to $Work.original. Save the intent and try the simulator:

Try a similar but partially-specified utterance, such as tell me about your8.
work. This maps to the intent but does not have the required parameter. How
will the agent deal with this utterance? If you try it, you will see that the intent
has been recognized but the response is empty. This is because the agent is not
able to find the value for $Work.original.

In order to make sure that the agent gets a value for the Work parameter, you
have to make the parameter a required parameter. You do this by checking
the REQUIRED checkbox for the parameter. Click Define prompts in order
to give the agent a prompt to use in case the user forgot to mention the value
of the parameter in their utterance:

Building a Persona Bot Chapter 4

[136]

Click SAVE after you have defined the entities, made them required, and
defined the prompts:

Building a Persona Bot Chapter 4

[137]

Try the simulator once again with the tell me about your work utterance.9.
You will find the agent asking you back with the response prompt to name the
work. Following this, the agent will respond appropriately:

Building a Persona Bot Chapter 4

[138]

Entities can be stored in context and be used across utterances. In order to do this,10.
let us add a talk_about_work contextual item in the output context of
the request_info_on_work intent. Let us also add
another request_info_on_work_now intent with talk_about_work as the
input context:

Building a Persona Bot Chapter 4

[139]

The entities get passed from one intent to another via the contextual items. We can access
the entities from previous conversation turns by using the # notation. For instance, observe
how we populate the value of the Work parameter using the #talk-about-
work.Work value. This can then be used in the response utterance as $Work (for
example, Alright. I will tell you about $Work):

We will see how to use entities to perform advanced processing in the backend toward the
end of the chapter.

Building a Persona Bot Chapter 4

[140]

System entities
In addition to entities that we create (that is, developer entities) using the preceding approach,
there are also predefined system entities. These have been designed to capture entities that
are common to most domains and conversational tasks. Concepts such as dates, personal
names, city names, country names, email addresses, and phone numbers can be recognized
in user utterances using system entities:

Building a Persona Bot Chapter 4

[141]

The preceding screenshot shows how you can access them by using the @sys qualifier when
providing sample utterances. For instance, you want to get the user's email address. For
this, you can set up a user intent in the context of the conversation such as
inform_user_email. This user instance should have sample utterances, such as
"bluewhale@bmail.com" or "its bluewhale@bmail.com," where the user provides the chatbot
with their email. You will notice that the email address gets recognized as @sys.email. If it
doesn't get automatically recognized, you can specify that it is an email by selecting it and
choosing @sys.email. This tells the agent that all utterances with valid email addresses are
to be recognized as the inform_user_email intent:

Once recognized, the entity will be passed on as a parameter to be appended to the intent.
System entities such as @sys.geo-city and @sys.geo-country can be used to recognize
city names and country names in user utterances without having to specify all the names as
developer entities.

Building a Persona Bot Chapter 4

[142]

In order to recognize composite elements in natural language utterances such as the
mention of quantities (weight, length, and so on), we can use composite system entities.
@sys.unit-weight:unit-weight can be used to recognize utterances such as 10 kg, 15
kilos, and 20 kilograms. These will be resolved into the following parameter for further
action:

{"amount":10,"unit":"kg"}

Entity types cannot be directly specified in sample utterances. For instance, its
@sys.email cannot be specified as a sample utterance. Instead, it needs to be provided as a
template. To provide example templates to intents, switch the double quotes to @ sign.

In the preceding screenshot, observe that there is a sample utterance (that is, give me 10
kilograms) and a sample template i want @sys.unit-weight:unit-weight. Explore system
entities further to see how you can use predefined entities in your chatbot.

More info on system entities can be found at https:/ /api. ai/docs/
reference/ system- entities.

https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities
https://api.ai/docs/reference/system-entities

Building a Persona Bot Chapter 4

[143]

Rich response formats
In addition to text responses, you can also provide rich message types such as cards,
carousels, and those we used in Chapter 2, Tour Guide for Your City, when building our
Facebook Messenger bot for weather. The type of response that we can add to the agent
depends on the integrations it is enabled for. Each integration enables a different set of
response types.

Since we have integrated Facebook Messenger with the Einstein bot, we can add message
content specific to the platform. To do this, follow these steps:

Choose any user intent for which you want to add rich response formats.1.
Scroll down to the Response tab:2.

Alongside DEFAULT, there will be a tab for integrations that have been enabled3.
(for example, FACEBOOK MESSENGER). If you don't see your integration, you
can add it by clicking the + menu.
Under each integration, you will see the following:4.

Building a Persona Bot Chapter 4

[144]

If you want the default response(s) to appear first on the integration platform,5.
turn that switch on.
Click ADD MESSAGE CONTENT and choose the type of response. In case of6.
Facebook Messenger integration, you will find response types such as text
message, image, card, quick replies, and custom payload.
Enter the response format specific information.7.

The following is an example of card type response for Facebook Messenger integration:

Building a Persona Bot Chapter 4

[145]

And here is how it appears on Facebook Messenger:

Clicking the Right now button will send a No, tell me now text message back to the agent
as the user's response to the bot.

Now that you've got an idea of how to make your responses richer, go ahead and have a
play with different formats available for your integration.

Importing and exporting agents
All agents in API.AI can be exported and backed up. This option also allows you to move
the agent from one API.AI account to another.

Building a Persona Bot Chapter 4

[146]

Exporting, restoring, and importing agents
Here is how you can export an agent.

Click the Settings icon next to the agent's name on the left menu.1.
Click Export and Import:2.

Click EXPORT AS ZIP.3.

The downloaded ZIP file will be organized in terms of the agent settings, entities, and
intents in JSON file format. The following is the format of the JSON of the agent settings for
our Einstein bot:

{
 "description": "Simulated Albert Einstein",
 "language": "en",
 "googleAssistant": {
 "googleAssistantCompatible": false,
 "project": "einsteinbot-dce04",
 "welcomeIntentSignInRequired": false,
 "startIntents": [],
 "systemIntents": [],
 "endIntentIds": [],
 "oAuthLinking": {
 "required": false,
 "grantType": "AUTH_CODE_GRANT"
 },
 "voiceType": "MALE_1",
 "capabilities": [],
 "protocolVersion": "V2"

Building a Persona Bot Chapter 4

[147]

 },
 "defaultTimezone": "Africa/Casablanca",
 "webhook": {
 "available": false,
 "useForDomains": false
 },
 "isPrivate": true,
 "customClassifierMode": "use.after",
 "mlMinConfidence": 0.3
}

You can also restore an agent from a backup file using the RESTORE FROM ZIP option.
All the intents and entities will be deleted and restored from the ZIP file:

In case, you want to extend your agent from a ZIP file, it can be done using the
IMPORT option. This allows you to add extra intents and entities to an existing agent. All
entities and intents in the agent with the same names as those in the file will be replaced by
the ones in the ZIP file.

Building a Persona Bot Chapter 4

[148]

Exporting and importing intents and entities
Intents and entities can be exported separately and one at a time without having to export
the agent entirely. This can be done by clicking the cloud_download icon listed against each
intent and entity:

Here is an example intent downloaded from the Einstein bot:

{
 "userSays": [
 {
 "id": "aa492d7b-6119-4d4c-a626-03aea6868882",
 "data": [
 {
 "text": "what was your job at the patent office"
 }
],
 "isTemplate": false,
 "count": 0
 },
 {
 "id": "f8a43750-c215-4750-aac8-1a0f977611d8",
 "data": [
 {
 "text": "why did you take up the job at the patent office"
 }
],
 "isTemplate": false,
 "count": 0
 },
 {
 "id": "2b48f3e6-7949-4cf6-b25c-ebb4691e4812",
 "data": [
 {
 "text": "what did you do at the patent office"
 }
],
 "isTemplate": false,
 "count": 0
 }
],

Building a Persona Bot Chapter 4

[149]

 "id": "38b83408-16ae-4b05-b841-187b7205e116",
 "name": "request_info_patent_office_job",
 "auto": true,
 "contexts": [],
 "responses": [
 {
 "resetContexts": false,
 "action": "inform_patent_office_job",
 "affectedContexts": [
 {
 "name": "patents-office-job",
 "parameters": {},
 "lifespan": 5
 }
],
 "parameters": [],
 "messages": [
 {
 "type": 0,
 "speech": "After graduating, I tried to get a teaching post
 but was unsuccessful. So with the help of my friend Marcel
 Grossman\u0027s father, I got a job in the patent office at Bern."
 }
]
 }
],
 "priority": 500000,
 "webhookUsed": false,
 "webhookForSlotFilling": false,
 "fallbackIntent": false,
 "events": []
}

Building a Persona Bot Chapter 4

[150]

Intents can also be uploaded using specifications in the JSON format shown earlier. To do
this, create the JSON file, click more options in the Intents tab, and click Upload Intent:

When prompted, provide the intent file in JSON format, as shown here:

Here is an entity file from the Einstein bot (from the Work entity type). The name of the
entity type is Work and each entity is entered as an entry with reference values and
synonyms:

{
 "id": "9ed80101-6ecc-4006-bf7f-7c49bcbc03ef",
 "name": "Work",
 "isOverridable": true,
 "entries": [
 {
 "value": "special-theory",
 "synonyms": [
 "special theory of relativity",
 "special theory"
]
 },
 {

Building a Persona Bot Chapter 4

[151]

 "value": "general-theory",
 "synonyms": [
 "general theory",
 "general theory of relativity"
]
 },
 {
 "value": "brownian-movement-theory",
 "synonyms": [
 "brownian motion",
 "theory of brownian motion",
 "theory of brownian movement",
 "brownian movement",
 "brownian movement theory"
]
 }
],
 "isEnum": false,
 "automatedExpansion": false
}

New entity types can be added to the agent by creating them in the preceding format and
uploading them. The same approach can be used to edit existing entities:

Building a Persona Bot Chapter 4

[152]

Fulfillments
Although you can build complete agents in API.AI, you still need to use external sources for
backend tasks that the chatbot is supposed to perform. Backend tasks are the tasks that the
chatbot will perform behind the scenes while having a conversation with the user. These
can range from making a record of the conversation in the CRM, to identifying a lead, to
querying the database for information requested by the user. This is called fulfillment.

An example of fulfillment in a travel planning chatbot would be to query the database to
check and retrieve whether there are flights available for a given date, the to and from
source, and destination cities. This task will be fulfilled by a web app that can be called by
the chatbot once it has the necessary information to perform the query. Another instance
would be when it is required to make the booking.

Let us now create a task for the Einstein bot to explore this further. Let us create a calculator
module based on Einstein's world-famous equation, E=mc2.

This equation calculates the amount of energy that will be generated if the mass of a system
completely disappears. To do this calculation, we need to get the mass, m, of the system
from the user. We will pass it on to the web app, where the amount of energy, E, generated
from mass, m, is calculated. Let us have a look at an example conversation:

User: Hey. Can you tell me how much energy gets generated from an atom?
Bot: Yeah sure. How much does it weigh?
User: Lets say it is 2 grams.
Bot: Ok. A system that weighs 2 grams will transform into 179751036 MJ of
energy.

To add a webhook to the bot, do the following:

Create a web app that can take in parameters, do the backend task, and respond1.
with an utterance.
Host it in the cloud.2.
Configure the webhook for the agent.3.
Enable webhooks in intents where they are needed.4.

Building a Persona Bot Chapter 4

[153]

To build and host the web app, do the following:

In your console, create a directory to hold this project. In this directory, we will1.
create the following three files:

index.js

package.json

Procfile

index.js is a Node.js program that acts as a web app to receive parameters from
the chatbot, performs a backend operation, and sends back an utterance:

const express = require('express')
const bodyParser = require('body-parser')
const request = require('request')

const app = express()

app.set('port', (process.env.PORT || 5000))

// Process application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({extended: false}))

// Process application/json
app.use(bodyParser.json())

app.use(express.static('public'))

// Index route
app.get('/', function (req, res) {
 res.send('Hello world, I am EinsteinBot!.')
})

app.post('/emc2/', function (req, res) {
 console.log(JSON.stringify(req.body));
 var weight = req.body.result.parameters.weight;
 var m = weight.amount;
 var weight_unit = weight.unit;
 //convert weight into kg
 if (weight_unit == 'g'){
 m = m/1000.0;
 }
 var c2 = 9 * 10^16; //in m^2/s^2
 var e = m * c2;
 res.setHeader('Content-Type', 'application/json');

Building a Persona Bot Chapter 4

[154]

 var botSpeech = "Energy that the system can create is " + e
 + " Joules.";
 out = {speech: botSpeech,
 displayText: botSpeech,
 data: null};
 var outString = JSON.stringify(out);
 console.log('Out:' + outString);
 res.send(outString);
})

// Spin up the server
app.listen(app.get('port'), function() {
 console.log('running on port', app.get('port'))
})

emc2 is the POST handle that handles the request from the chatbot to convert mass
into energy.

Let us create the package.json file to tell Heroku the packages that are needed2.
for index.js. Create the package.json file in your text editor with the
following JSON:

{
 "name": "einstein-bot-webhook",
 "version": "1.0.0",
 "description": "Einstein Bot Webhook",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Srini Janarthanam",
 "license": "ISC",
 "dependencies": {
 "body-parser": "^1.15.2",
 "express": "^4.14.0",
 "request": "^2.72.0"
 }
}

As a final step, we need to create a Procfile to tell Heroku to run index.js.3.
Create Procfile in your text editor with the following command:

web: node index.js

Building a Persona Bot Chapter 4

[155]

Perform the following steps to push the interface program onto the cloud. From the console
window, where your Weatherman interface project is, execute the following commands to
create a Heroku app and push the interface app onto the cloud:

> git init
> git add .
> git commit -m "webhook for einstein bot v1"
> heroku create einstein-bot
> git push heroku master

You will receive a message with the app's URL in it. In my case, it is https:/ /einstein-
bot.herokuapp.com.

To configure the webhook for the agent, do the following:

Click the Fulfillment option on the left menu.1.
Switch on the webhook. You will see the following webhook specifications form:2.

Fill in the URL of the web app and click Save. In our example, it is3.
https://einstein-bot.herokuapp.com/emc2/. For now, we will not worry
about the authentication and other headers.

https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com
https://weatherman-bot-fbmi.herokuapp.com

Building a Persona Bot Chapter 4

[156]

To enable webhooks within intents, scroll all the way down on the intent page. Under the
Fulfillment tab, click Use webhook. Extending from the web app designed earlier to
convert mass into energy using Einstein's famous equation, let us see how it can be
embedded into the agent. To do this, let us first create a request_emc intent, which will
recognize utterances asking for the conversion (for example, "Can you convert 5 grams'
mass into energy?"). This intent needs a parameter (that is, mass). This is specified as a
system entity (@sys.unit-weight):

Building a Persona Bot Chapter 4

[157]

The default response should be something that can be used if the webhook fails. Enable the
webhook so that the web app will be called to process and provide the agent with a
response utterance:

Building a Persona Bot Chapter 4

[158]

The following screenshot shows how the webhook actually works in conversation on the
web chat platform:

Summary
Great work! In this chapter, we have designed and built a rich conversational chatbot
emulating Einstein using API.AI. Obviously, the chatbot we have built is very lean and to
build one that emulates a person even to a pretty decent level would require an enormous
amount of time and effort. However, this exercise has been useful to demonstrate the
concepts underlying natural language understanding in conversations such as intents,
entities, and contexts. We have demonstrated, with practical examples, how to perform
integrations with deployment platforms such as Facebook Messenger and web chat. We
have shown how backend tasks can be managed and integrated seamlessly into the
conversational experience.

Building a Persona Bot Chapter 4

[159]

I would encourage you to try prebuilt agents that can be imported into any agent to
enhance its conversation skills. For instance, a small talk module can be added to your
agent to make it more personable without having to design and code all the intents and
responses necessary for small talk. There are comparable tools from other providers. These
can be explored in the same way. The structure of most of these tools is very similar. Here is
the list of tools that you could explore further:

MS LUIS
IBM Watson
Facebook WIT.AI
Amazon Lex

In the next chapter, we will design and build an SMS chatbot for journey planning.

References
API.AI documentation: https:/ / api. ai/ docs/ getting- started/ basics

Facebook Messenger documentation: https:/ /developers. facebook. com/ docs/
messenger-platform

https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://api.ai/docs/getting-started/basics
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform

5
Let's Catch a Train

So far, we have built chatbots and deployed them on messaging platforms such as Facebook
Messenger. Facebook Messenger is currently the most popular messaging service. However,
there is a messaging service that has existed for quite a long time and is still popularly used
by businesses to connect with customers. Short Messaging Service, which is popularly
abbreviated as SMS, is a great platform for chatbots. Businesses around the globe use this
service to send thousands of notification messages to customers at various phases of their
journey: marketing, sales, transactions, delivery, and so on. And the best part is that it does
not require any internet data to communicate.

In this chapter, we will design and build a chatbot to help users plan their train journeys.
We will use a Transport data API to obtain information about trains, their arrival and
departure timings at stations, and so on, and to serve the information, build a chatbot to
interact with users in natural language. We will then explore how the chatbot can be
exposed to the SMS platform. We will learn to use the services of a communications API
provider called Twilio. We will also learn how to plug in toolkits such as API.AI to
understand user utterances and manage the conversation in an SMS chatbot.

First, let's take a look at the Transport API and the data that it has to offer. Based on the data
that is available, we will then brainstorm and design some sample conversational tasks. We
will then build a simple one-way SMS bot that can send timely notifications to users. And
build on that to develop a two-way chatbot that sends train information to users based on
their requests in natural language. We will explore how to build and integrate API.AI
agents into our chatbot to understand language and drive the conversation.

Let's Catch a Train Chapter 5

[161]

By the end of this chapter, you will be able to:

Design conversational tasks based on data
Create backend task modules using Transport API
Build SMS bots using Twilio
Integrate a Dialogflow agent to understand user utterances

Exploring Transport API
To get started, let's have a look at the data source that we are going to use in this chapter.
Transport API is a data service for all public transport services in the UK. If you are in a
different country, you would be able to find something similar to your country. But you can
still play around with this service. Transport API is a data platform for transport data
providing information on live arrivals and departures, timetables, journey planning, fares,
performance indicators, and commuters tweet mapping. Data is served using RESTful web
services.

Creating a developer account
To get started, create a developer account at https:/ /developer. transportapi.1.
com and get an app key and app ID:

https://developer.transportapi.com
https://developer.transportapi.com
https://developer.transportapi.com
https://developer.transportapi.com
https://developer.transportapi.com
https://developer.transportapi.com
https://developer.transportapi.com
https://developer.transportapi.com

Let's Catch a Train Chapter 5

[162]

Let's try the following sample request. Replace YOUR_APP_ID and2.
YOUR_APP_KEY with your app ID and key. Execute the following GET request
from a web browser. At this request, we are trying to retrieve information
concerning Euston train station, in London:

http://transportapi.com/v3/uk/places.json?query=euston&type=train_s
tation&app_id=
YOUR_APP_ID&app_key=YOUR_APP_KEY

The preceding request will return a JSON response with information such as the
full name of the station, its latitude and longitude coordinates, and station code:

Let's Catch a Train Chapter 5

[163]

Exploring the dataset
Transport API provides data regarding trains, buses, the tube (subway), and many other
forms of transport. To build our chatbot, let's begin with just the trains' data. In this section,
let's take a look at the different kinds of data available about trains. For all requests, the base
URL is http://transportapi.com/v3/uk/.

Train stations near you
This endpoint provides a list of train stations near a given location. The search location
should be provided as a latLon coordinate, as follows:

http://transportapi.com/v3/uk/train/stations/near.json?lat=55.9485&lon=-3.2
021&app_id=YOUR_APP_ID&app_key=YOUR_APP_KEY

Response
The response we get is a list of stations near the given latLon coordinates. For each station,
we get its name, location, and station code:

Let's Catch a Train Chapter 5

[164]

Trains in the area
Train stations can also be searched by providing a bounding box. The top-left and bottom-
right coordinates of the box need to be provided. This is particularly useful if you need a list
of all stations with city limits or something similar. Let's try this using the bounding box
coordinates for Edinburgh:

http://transportapi.com/v3/uk/train/stations/bbox.json?minlon=-3.4521&minla
t=55.6985&maxlon=-2.9521&maxlat=56.1985&app_id=YOUR_APP_ID&app_key=YOUR_APP
_KEY

Response
The response we get is as follows:

Let's Catch a Train Chapter 5

[165]

Live departures
The live status of trains arriving and departing a given station can be obtained using the
following endpoint. Let's try it out for Edinburgh Waverley station, whose station code is
EDB:

http://transportapi.com/v3/uk/train/station/EDB/live.json?&app_id=YOUR_APP_
ID&app_key=YOUR_APP_KEY

Response
Here is its response:

Let's Catch a Train Chapter 5

[166]

Station timetables
Timetables of trains arriving and departing from a given station on a given date and time
can be obtained using the following endpoint. Let's get all the trains departing Edinburgh
Waverley (EDB) station on 2017-08-05 at 06:00:

http://transportapi.com/v3/uk/train/station/EDB/2017-08-05/06:00/timetable.
json?app_id=YOUR_APP_ID&app_key=YOUR_APP_KEY

Response
And here is the response:

Let's Catch a Train Chapter 5

[167]

Service timetables
Timetables for each train service can be also be obtained. This data lets you see the arrival
and departure times of a given train service at the various stations it calls at on a given date
and time. Let's try an example out with service number, 23587103, on 2017-08-05 at
06:00:

http://transportapi.com/v3/uk/train/service/23587103/2017-08-05/06:00/timet
able.json?app_id=YOUR_APP_ID&app_key=YOUR_APP_KEY

Response
The response we get for the service timetable is as follows:

Let's Catch a Train Chapter 5

[168]

Conversational design
Now that we have a good idea of the data we have in our hands, let's brainstorm the
conversational tasks for our chatbot.

Nearest station
Next train
Time of arrival
Later trains from a station
How do I get from A to B?

Let's start with a simple one: getting to the nearest station.

Nearest station
In order to get to the nearest station for a user, we need his/her location. This could be in the
form of postcode or latLon coordinates. Platforms such as Facebook Messenger allow users
to share location in the form of latLon coordinates. However, since we are going to be using
the SMS platform, let's use the postcode route. The conversation for this task could go in
one of the following ways:

User : Where is my nearest station?
Bot: Can you give me your postcode?
User : EH12 9QR
Bot: Great. Your nearest station is South Gyle.

User: What is the nearest station to EH12 9QR?
Bot: The nearest station is South Gyle.

Next train
In order to get information on the next train, the conversation could go the following ways:

User : When is the next train to Glasgow?
Bot : From which station?
User : Edinburgh Park
Bot : The next train to Glasgow Central is at 10:00.

User : Next train
Bot : From?
User : Edinburgh Park
Bot : Finding next train from Edinburgh Park. Going to?

Let's Catch a Train Chapter 5

[169]

User : Glasgow
Bot : Next train to Glasgow Central is at 10:00.

Time of arrival
Sometimes users may want to know the time of arrival of the train in context at a specific
station. To get information on the time of arrival, the conversation could go as follows:

User : What time does the train arrive at Glasgow Central?
Bot : The train will arrive in Glasgow Central at 11:00.

Many more conversations are possible in the domain of travel. All the preceding tasks are
reactive, where the bot responds to users' requests. In contrast, proactive tasks can be
designed by having the bot initiate conversations. For instance, the bot can send train times
and delays/cancelled information to the user at set times during the day:

Bot : The 15:00 train to Edinburgh Waverley is delayed to 15:30.
User : Is there an earlier train to Haymarket?
...

Conversational tasks such as a list of later trains and planning your route are more complex
than the preceding tasks. As we proceed, we will see how to build a chatbot that can handle
a few of the mentioned tasks.

Building a simple SMS bot
Let's now build the SMS platform interface for the chatbot. To bear with the complexity, let
us do this in two steps. First, let us build a bot to simply send SMS text messages to a
mobile number. This could be a message concerning the status of a train arriving at a station
or the next train to a certain destination from a given station. Second, we will build a two-
way chatbot that can receive messages from users and respond to them appropriately. To
do this, we will use a service called Twilio. Twilio is a developer platform for
communications enabling developers to add messaging, voice, and video capabilities to
their software. We will explore how we can build notification bots and chatbots using
Twilio's messaging infrastructure.

Let's Catch a Train Chapter 5

[170]

Getting started
To get started with Twilio, perform the following steps:

Go to www.twilio.com, click Sign Up and register yourself for a free trial account.1.
Once you have registered, go over to the console page2.
at www.twilio.com/console.
Copy the ACCOUNT SID and Account Key. We will be using them for our3.
projects.

Setting up the dashboard
Let us build a bot that sends the notification to a user's mobile number. Twilio has four
main products: Programmable Chat, Programmable SMS, Programmable Voice, and
Programmable Video. To build a notification sender, we need to use the Programmable
SMS service. Here are the steps:

On the console dashboard, select Programmable SMS.1.
On the Programmable SMS Dashboard, click Get Started:2.

http://www.twilio.com
http://www.twilio.com/console

Let's Catch a Train Chapter 5

[171]

In order to send SMS messages, you need a phone number. Click Get a number3.
to get one:

This will provide you with a number. You can choose to accept it by4.
clicking Choose this Number. If not, pick another one. Make sure that the
number has SMS capability:

You will receive an acknowledgment that you have been allocated the number:5.

Click Done.

Let's Catch a Train Chapter 5

[172]

Are you seeing the Send a Message window? Why don't you send yourself a6.
message? Send a test message to your registered cellphone number (the number
that you used to verify the account):

Check your cellphone to see whether you have received your test message.7.
Click Yes to inform Twilio that you have received your message.

Simple Message Sender
Now that we have set up the account and got a phone number, let's move ahead to create a
bot to send notifications. To do this, perform the following steps:

Open the console window and create a directory called SMSBot.1.

Let's Catch a Train Chapter 5

[173]

In the SMSBot directory, create a new Node.js project using the npm init2.
command, as shown here:

Check the directory to see the files that have been generated. You will see a file
called package.json with meta information concerning the project.

Let's Catch a Train Chapter 5

[174]

We need to install the Twilio Node.js library to build our SMS bot. On the3.
console, execute the npm install twilio --save command:

Let's create a new JS file called index.js. Add the following code to the file:4.

//Index.js - SMSBot

//Add your Account SID
var accountSid = 'your_account_sid';

//Add your Auth Token here
var authToken = 'your_auth_token';

var twilio = require('twilio');
var client = new twilio(accountSid, authToken);

//Create a message with to and from numbers
client.messages.create({
 body: 'Srini says hello',
 to: '+447888999999',
 from: '+447888999990'
})
.then((message) => console.log(message.sid));

In the preceding code, the to number must be a verified number of trial accounts.
You cannot send messages to other numbers unless you upgrade your account.
The from number is the Twilio number that you had obtained previously.

Let's Catch a Train Chapter 5

[175]

Save the file and execute it using the node index.js command. This should5.
send the text message to your verified phone number.

My train notifier
Imagine a scenario where a user commutes to work every day from Edinburgh Waverley to
Glasgow Queen Street. And they struggle to figure out the trains and timings as they
prepare to leave every morning. Wouldn't it be great if we could provide a service that
sends a list of trains from their station to their destination at some point during their
morning routine?

Using the preceding Simple Message Sender module, let's build a bot that will send a list of
trains from a certain station to a certain destination station. Let's add a module to get the list
of trains from a given station to a certain destination:

Install the request library using npm install request --save.1.
Create a function to send SMS notifications:2.

function sendSMS(msg, userPhoneNumber){
 var twilio = require('twilio');
 var client = new twilio(accountSid, authToken);
 //Create a message with to and from numbers
 client.messages.create({
 body: msg,
 to: userPhoneNumber,
 from: '+4414XXXXXXXX' //YOUR_NUMBER
 })
 .then((message) => console.log(message.sid));
}

Create a function to get all trains departing from a given station:3.

 function getTrains(sourceStation, sourceStationCode,
 destinationStation,
 userPhoneNumber){
 var request = require('request');
 var url = 'http://transportapi.com/v3/uk/train/station/' +
 sourceStationCode + '/live.json?
 app_id=YOUR_APP_ID&app_key=YOUR_APP_KEY';
 request(url, function (error, response, body) {
 if (response){
 var json = JSON.parse(body);
 if (json.departures){
 //console.log('Departures:',

Let's Catch a Train Chapter 5

[176]

 //JSON.stringify(json.departures));
 var dep =
 getTrainsToDestination(destinationStation,
 json.departures.all);
 var summary = summarize(destinationStation,
 sourceStation, dep);
 console.log('Summary: ' + summary);
 sendSMS(summary, userPhoneNumber);
 } else {
 console.log('No Departures found!');
 }
 } else {
 console.log('error:', error); // Print the error if one
 // occurred
 }
 });
}

Create a function to retrieve all trains going to a certain destination station:4.

function getTrainsToDestination(destination, allDepartures){
 var d = [];
 if (allDepartures){
 for (var i=0; i < allDepartures.length; i++){
 var service = allDepartures[i];
 if (service.destination_name == destination){
 d.push(service)
 }
 }
 }
 return d;
}

Create a function to call the preceding functions to send the user a notification of5.
all trains heading to a certain destination station from the user's preferred station:

function summarize(destinationStation, sourceStation, departures){
 var out = '';
 if (departures.length > 0){
 out = 'Here are the departures this morning to ' +
 destinationStation
 + ".\n";
 for (var i=0; i< departures.length; i++){
 var service = departures[i];
 var serviceSummary = service.operator_name
 + " at " +
 service.expected_departure_time;

Let's Catch a Train Chapter 5

[177]

 out += serviceSummary + "\n"
 }
 } else {
 out = 'There are no trains to ' + destinationStation +
 ' from ' +
 sourceStation;
 }
 return out;
}

And set the variables and call the main module:6.

//Index.js

//Add your Account SID
var accountSid = 'your_account_sid';
//Add your Auth Token here
var authToken = 'your_auth_token';

var destinationStation = 'Glasgow Queen Street';
var userPhoneNumber = '+447888999999';
var sourceStationCode = 'EDB';
var sourceStation = 'Edinburgh Waverley';

getTrains(sourceStation, sourceStationCode, destinationStation,
userPhoneNumber);

Run it on the node index.js console to see whether it works. It should print the7.
summary of trains to the destination station on the console and also send it as an
SMS notification message to you:

Let's Catch a Train Chapter 5

[178]

Check your cellphone to see whether the message has arrived:8.

Congratulations! You have just created an SMS bot. 9.

Scheduling tasks
Now that we have a bot that sends SMS notification, let us try our hand at setting it to run
automatically on a daily or hourly basis. This feature will be useful to create proactive bots
that initiate conversation with users at certain times of the day. To do this, follow these
steps:

Create a bin directory.1.
Move the index.js file into the bin directory. Rename it as2.
sendTrainNotification.js.

Let's Catch a Train Chapter 5

[179]

Add as the first line of code, the following shebang:3.

#!/usr/bin/env node

Go back to the project directory. We are now going to push this app into Heroku4.
cloud.
Create a Git repository, add files, and commit:5.

git init
git add .
git commit -m "initial commit"

Create a Heroku app:6.

heroku create sms-notification-bot

Push the app to Heroku:7.

git push heroku master

We now have an app running at
https://sms-notification-bot.herokuapp.com.

Run the app locally:8.

heroku run sendTrainNotification.js

This should run the web app and send an SMS with train summaries to the user's
phone:

Let's Catch a Train Chapter 5

[180]

Now, we need to schedule the task. To do this, we need to set it up on the Heroku9.
resources page of the app. Go
to https://dashboard.heroku.com/apps/sms-notification-bot/resour
ces on your browser:

Type Scheduler in the Add-ons search box and choose Heroku Scheduler. 10.
Once added, click Heroku Scheduler. This will take you to https:/ / scheduler.11.
heroku.com/ dashboard.
Click Add new job.12.
In the textbox with $, type the name of the task to run (that13.
is, sendTrainNotification.js). Choose Frequency (Daily, Hourly, or Every
10 minutes) and click SAVE:

https://scheduler.heroku.com/dashboard
https://scheduler.heroku.com/dashboard
https://scheduler.heroku.com/dashboard
https://scheduler.heroku.com/dashboard
https://scheduler.heroku.com/dashboard
https://scheduler.heroku.com/dashboard
https://scheduler.heroku.com/dashboard
https://scheduler.heroku.com/dashboard
https://scheduler.heroku.com/dashboard
https://scheduler.heroku.com/dashboard

Let's Catch a Train Chapter 5

[181]

Check logs on the console of Heroku logs. You should notice that the task will be14.
running at regular set intervals and SMS are being sent to the user:

Congratulations! You have now built a proactive SMS bot.

Building a two-way chatbot
So far, we have built a bot that can send SMS notifications to users at set time intervals.
Although proactive, it is only communicating one way. The user is not able to send any
request to the bot to change the nature or content of the message it is sending. Let's work on
that.

To build a chatbot that can communicate both ways we need to do two things: build the
chatbot into the web app and modify setup configurations in Twilio. To do these, follow
these steps:

Create an index.js file in the root directory of the project.1.
Install the express and body-parser libraries. These libraries will be used to2.
make a web app:

npm install body-parser --save
npm install express --save

Create a web app in index.js:3.

// Two-way SMS Bot

const express = require('express')
const bodyParser = require('body-parser')
const twilio = require('twilio')

const app = express()
app.set('port', (process.env.PORT || 5000))

Let's Catch a Train Chapter 5

[182]

// Process application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({extended: false}))

// Process application/json
app.use(bodyParser.json())

// Spin up the server
app.listen(app.get('port'), function() {
 console.log('running on port', app.get('port'))
})

// Index route
app.get('/', function (req, res) {
 res.send('Hello world, I am SMS bot.')
})

//Twilio webhook
app.post('/sms/', function (req, res) {
 var botSays = 'You said: ' + req.body.Body;
 var twiml = new twilio.TwimlResponse();
 twiml.message(botSays);
 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
})

The preceding code creates a web app that looks for incoming messages from
users and responds to them. The response is currently to repeat what the user has
said.

Push it onto the cloud:4.

git add .
git commit -m webapp
git push heroku master

Now we have a web app on the cloud at https:/ /sms- notification- bot.
herokuapp. com/ sms/ that can be called when an incoming SMS message arrives.
This app will generate an appropriate chatbot response to the incoming message.

Go to the Twilio Programmable SMS Dashboard page at https:/ / www.twilio.5.
com/console/ sms/ dashboard.

https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard
https://www.twilio.com/console/sms/dashboard

Let's Catch a Train Chapter 5

[183]

Select Messaging Services on the menu and click Create new Messaging6.
Service:

Give it a name and select Chat Bot/Interactive 2-Way as the use case:7.

This will take you to the Configure page with a newly-assigned service ID:8.

Let's Catch a Train Chapter 5

[184]

Under Inbound Settings, specify the URL of the web app we have created in the9.
REQUEST URL field (that is, https:/ / sms-notification- bot. herokuapp. com/
sms/):

Now all the inbound messages will be routed to this web app.

Go back to the SMS console page at https:/ /www. twilio. com/console/ sms/10.
services. Here you will notice your new messaging service listed along with the
inbound request URL:

Click the service to attach a number to the service:11.

https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://sms-notification-bot.herokuapp.com/sms/
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services
https://www.twilio.com/console/sms/services

Let's Catch a Train Chapter 5

[185]

You can either add a new number, in which case you need to buy one or choose12.
the number you already have. We already have one sending notifications that can
be reused. Click Add an Existing Number.
Select the number by checking the box on the right and click Add Selected:13.

Once added, it will be listed on the Numbers page as follows:14.

In Advanced settings, we can add multiple numbers for serving different
geographic regions and have them respond as if the chatbot is responding over a
local number.

The final step is to try sending an SMS message to the number and receive a15.
response. Send a message using any SMS app on your phone and observe the
response:

Let's Catch a Train Chapter 5

[186]

Congratulations! You now have a two-way interactive chatbot.

Understanding users' utterances
Now that we have a basic two-way chatbot, let us look into how we can process user
utterances, understand their requests for information, and serve them effectively. In order
to process user utterances, we will use the API.AI toolkit that was introduced in Chapter 3,
Let's Talk Weather. User utterances will be processed and converted into user intents and
parameters by API.AI. These will then be used to retrieve and serve appropriate
information to the user.

Let's Catch a Train Chapter 5

[187]

Creating an API.AI agent
Let's first create an API.AI agent to understand user utterances in the conversational tasks
that we enumerated previously. Because we have already discussed building API.AI agents
extensively in Chapter 3, Let's Talk Weather, the following sequence of steps is going to be
brief. However, we will be interfacing with the agent in a different manner compared to
how it was done in Chapter 3, Let's Talk Weather:

Go to api.ai in your web browser. Log on with your Google credentials and click1.
GO TO CONSOLE.
Click Create new agent. You will find this in the bottom of the drop-down list2.
listing all the agents created by you so far.
Give it a name, description, and choose time zone. Click Save.3.
Click Entities. Create new entities for stations with station codes as reference4.
values and names and alternatives as synonyms:

https://dialogflow.com/

Let's Catch a Train Chapter 5

[188]

Click Create Intent. Create the following two intents to begin with:5.

request_live_departures: To request the next few departures from
a given station:

Let's Catch a Train Chapter 5

[189]

Set parameter Station as required and define the prompts to use in case the
parameter is missing in the user's utterances.

request_next_train: To request the next train from a given station to
a certain other station:

Let's Catch a Train Chapter 5

[190]

Set parameters fromStation and toStation as required:

And define the prompts to use in case the parameters are missing in the user's
utterances. For instance, prompts for fromStation are shown here:

Let's Catch a Train Chapter 5

[191]

Create a Node.js interface to the API.AI agent
There are many ways to connect to an API.AI agent. We discussed some of them in Chapter
3, Let's Talk Weather. In this section, we will explore one more approach:

Create a Node.js program called apiai.js in the project root directory.1.
Install the API.AI Node.js library using the following command from the console:2.

npm install apiai --save

Go back to agent settings (click the settings icon next to the agent's name on the3.
drop-down list) on the web console:

Under the General tab, copy the Developer access token:4.

Let's Catch a Train Chapter 5

[192]

Go back to the Node.js program, apiai.js, and create a request to access the5.
agent. Use the developer access token from the console in the code:

//API.AI
var apiai = require('apiai');
var apiai1 = apiai("YOUR_DEVELOPER_ACCESS_TOKEN");

var userUtterance = 'live departures from waverley';

var requestAPIAI = apiai1.textRequest(userUtterance, {
 sessionId: '12345'
});

requestAPIAI.on('response', function(response) {
 console.log(response);
});

requestAPIAI.on('error', function(error) {
 console.log(error);
});

requestAPIAI.end();

Run the program on the console using the node apiai.js command:6.

Let's Catch a Train Chapter 5

[193]

Observe the response displayed on the console. You will find the classified intent7.
as intentName and associated parameters. Using these, we can fetch the
appropriate information from the Transport API. And observe that there is no
fulfillment speech as we did not specify any when building the intents.
Let's try a few more examples: change the user utterance to show me8.
departures and run the code:

Observe the difference from the previous one. In this user utterance, we haven't9.
specified the station name. Therefore, the agent comes back with a question (in
fulfillment speech): Departures at which station?. Also note that the
Station parameter is empty and the actionIncomplete parameter is set to
true.

Let's Catch a Train Chapter 5

[194]

Now change the user utterance to waverley and run again:10.

Now examine the result again. There is no fulfillment speech and the11.
Station parameter is set to EDB (which is the station code for Edinburgh
Waverley). The actionIncomplete parameter is set to false.

What we have done so far is create a Node.js program to call an API.AI agent using its
Node.js library. We have also run and rerun the program to simulate a conversation. We
have been using the agent as a module to understand natural language utterances and
manage the conversation. Now we need to link this up to the main Node.js program
index.js to go fetch the results from Transform API and enable the conversation over
SMS.

Let's Catch a Train Chapter 5

[195]

Integrating API.AI agent to SMS chatbot
Now that we have an API.AI agent and a Node.js interface to interact with it, let's move on
to integrate it with the two-way SMS chatbot we have been building. To do this, we need to
revisit the index.js file which is the web app that responds to the incoming SMS
messages. We will copy and rework the code from apiai.js to call the API.AI agent from
index.js:

In the Twilio webhook, call the API.AI agent with the user's utterance. We shall1.
also use the user's phone number as sessionId so that the context of the
conversation is not lost:

//Twilio webhook
app.post('/sms/', function (req, res) {
 //send it to the bot
 var sessionId = req.body.From;
 var userUtterance = req.body.Body;
 //API.AI
 var apiai = require('apiai');
 var apiai1 = apiai("YOUR_DEVELOPER_ACCESS_TOKEN");

 var requestAPIAI = apiai1.textRequest(userUtterance, {
 sessionId: sessionId
 });

 var botSays = '';
 requestAPIAI.on('response', function(response) {
 console.log(response);
 if (response.result.actionIncomplete){
 botSays = response.result.fulfillment.speech;
 console.log('BotSays: ' + botSays);
 var twiml = new twilio.TwimlResponse();
 twiml.message(botSays);
 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
 }
 else {
 getTrainInfo(
 response.result.metadata.intentName,
 response.result.parameters, res);
 }
 });

 requestAPIAI.on('error', function(error) {
 console.log(error);
 });

Let's Catch a Train Chapter 5

[196]

 requestAPIAI.end();
})

We use the actionIncomplete flag in API.AI agent's response to decide whether
to use the agent's fulfillment speech as bot response or to call the backend module
to look for train information.

Create a new module to get train information:2.

function getTrainInfo(intent, parameters, res){
 if (intent == 'request_live_departures'){
 return getLiveDepartures(parameters.Station, res);
 }
 else if (intent == 'request_next_train'){
 return getNextTrain(parameters.fromStation,
 parameters.toStation, res);
 }
 else {
 var botSays = 'Working on it...';
 console.log('BotSays: ' + botSays);

 var twiml = new twilio.TwimlResponse();
 twiml.message(botSays);
 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
 }
}

Create modules to get live trains. We reuse the code from3.
SendTrainNotification.js that we used to send one-way notifications:

function getLiveDepartures(source, res){
 var request = require('request');
 var url = 'http://transportapi.com/v3/uk/train/station/'
 + source +
 '/live.json?
 app_id=YOUR_APP_ID&app_key=YOUR_APP_KEY';
 request(url, function (error, response, body) {
 if (response){
 var json = JSON.parse(body);
 if (json.departures){
 var botSays = summarize(json.departures.all, 5);
 console.log('BotSays: ' + botSays);

 var twiml = new twilio.TwimlResponse();
 twiml.message(botSays);
 res.writeHead(200, {'Content-Type': 'text/xml'});

Let's Catch a Train Chapter 5

[197]

 res.end(twiml.toString());
 } else {
 var botSays = 'No Departures found!'
 console.log('BotSays: ' + botSays);

 var twiml = new twilio.TwimlResponse();
 twiml.message(botSays);
 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
 }
 } else {
 console.log('error:', error); // Print the error if one
 // occurred
 var botSays = 'Error in fetching trains info. Sorry!';
 console.log('BotSays: ' + botSays);

 var twiml = new twilio.TwimlResponse();
 twiml.message(botSays);
 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
 }
 });
}

function summarize(departures, n){
 var out = '';
 if (departures.length > 0){
 out = 'Live departures:\n';
 for (var i=0; i < n; i++){
 var service = departures[i];
 var serviceSummary = service.operator_name + ":" +
 service.destination_name + "@" +
 service.expected_departure_time;
 out += serviceSummary + "\n";
 }
 } else {
 out = 'There are no trains from ' + source;
 }
 return out;
}

Let's Catch a Train Chapter 5

[198]

And a function to get the next train from source to destination:

function getNextTrain(source, destination, res){
 var request = require('request');
 var url = 'http://transportapi.com/v3/uk/train/station/'
 + source + '/live.json?
 app_id=YOUR_APP_ID&app_key=YOUR_APP_KEY';
 request(url, function (error, response, body) {
 if (response){
 var json = JSON.parse(body);
 if (json.departures){
 var botSays = getNextTrainToDestination(
 destination,
 json.departures.all);
 console.log('BotSays: ' + botSays);

 var twiml = new twilio.TwimlResponse();
 twiml.message(botSays);
 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
 } else {
 var botSays = 'No Departures found!'
 console.log('BotSays: ' + botSays);

 var twiml = new twilio.TwimlResponse();
 twiml.message(botSays);
 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
 }
 } else {
 console.log('error:', error);
 // Print the error if one
 // occurred
 var botSays = 'Error in fetching trains info. '
 + 'Sorry!';
 console.log('BotSays: ' + botSays);

 var twiml = new twilio.TwimlResponse();
 twiml.message(botSays);
 res.writeHead(200, {'Content-Type': 'text/xml'});
 res.end(twiml.toString());
 }
 });
}

Let's Catch a Train Chapter 5

[199]

And a function to get the next train to destination:

function getNextTrainToDestination(destination, allDepartures){
 if (allDepartures){
 for (var i=0; i < allDepartures.length; i++){
 var service = allDepartures[i];
 if (service.destination_name ==
 getStationName(destination)){
 var serviceSummary = service.operator_name + ":"
 + service.destination_name + "@" +
 service.expected_departure_time + "\n";
 return serviceSummary;
 }
 }
 }
 return null;
}

function getStationName(stationCode){
 if (stationCode == 'GLC'){
 return 'Glasgow Central';
 }
 else if (stationCode == 'EDB'){
 return 'Edinburgh';
 }
}

Save and push the revised code to Heroku. 4.
Test it by sending an SMS. Try the live trains task by saying, Live departures.5.
The bot will ask for the station name before presenting the live departures
information:

Let's Catch a Train Chapter 5

[200]

Let's Catch a Train Chapter 5

[201]

Test the next trains task by saying Get next train. The bot will ask for both source and
destination stations before presenting the results:

You can also try asking for the same information in other ways to test how well the API.AI
agent understands the user's intent. Congratulations! You have now built a two-way SMS
chatbot that understands natural language inputs.

Let's Catch a Train Chapter 5

[202]

Summary
Brilliant! I hope you had a great time exploring and building a transport chatbot providing
useful information on trains to users. Besides building the chatbot, we also explored the use
of Twilio communication APIs to expose the chatbot over the SMS platform. I hope you
tried to chat with your bot over SMS and realized how easy it is to get useful information
without internet data. We did explore a few conversational tasks and also got to implement
a couple. However, you could move on to more complex tasks, such as journey planning,
based on the chatbot model that we built in this chapter.

We also learned how to enable the chatbot to process natural language utterances from the
user by building a Dialogflow agent and plugging it into the SMS chatbot. This is a trick
you can use while building chatbots for other platforms too. You might now realize that
there are many ways in which the modules can be plugged in and played with. I encourage
you to try them all and design your system to suit the needs of the use case.

I hope you had fun building a chatbot for the SMS platform in this chapter. In the upcoming
chapters, we will learn how to deploy chatbots in other interesting social media platforms,
such as Twitter, and voice platforms, such as Alexa and Google Assistant.

References
Twilio documentation: https:/ /www. twilio. com/ docs/

Dialogflow: https:/ / dialogflow. com/docs/

https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://dialogflow.com/docs/
https://dialogflow.com/docs/
https://dialogflow.com/docs/
https://dialogflow.com/docs/
https://dialogflow.com/docs/
https://dialogflow.com/docs/
https://dialogflow.com/docs/
https://dialogflow.com/docs/
https://dialogflow.com/docs/
https://dialogflow.com/docs/

6
Restaurant Search

In previous chapters, we dealt with conversation management in one of the two
ways—built from scratch (Chapter 3, Let's Talk Weather) or using GUI tools such as
Dialogflow (Chapter 4, Building a Persona Bot) and Chatfuel (Chapter 1, Introduction). In
Dialogflow and Chatfuel, the conversational flow was specified by the developer using
visual elements (such as forms) on their custom-built web-based editor. However, it may
not always be the best way to tell the system how to manage the conversation. On the other
hand, we built a simple conversation manager in Java. Conversation management can get
complicated in complex human-chatbot conversations. Luckily, we have got toolkits that
allow us to build conversation management modules using code libraries specifically built
for the purpose.

In this chapter, we are going to explore how a conversation management module can be
built using an existing library—Bot Builder SDK. First, we will understand the MS Bot
Framework that Bot Builder SDK is a part of. We will install the necessary software and
libraries and learn to build chatbots using the SDK, test them on the emulator, and deploy
them in the cloud. Next, we will learn about the rich presentation options, and the devices
for which the conversational flow can be designed. We will then explore the Zomato service
for restaurant data and integrate it into a chatbot built using the Bot Builder SDK. We will
finally deploy it on Skype.

By the end of this chapter, you will be able to:

Understand the basics of MS Bot Framework
Build a chatbot with the Botbuilder Node.js library
Register the bot with Bot Framework
Host the bot in the cloud

Restaurant Search Chapter 6

[204]

Understand message types and card types
Manage context and conversational flow
Integrate with the Zomoto data API
Integrate the bot with Skype

MS Bot Framework
MS Bot Framework is a Microsoft product for chatbot development. It houses three
products: Bot Builder SDK, Bot Framework Portal, and channels. Bot Builder SDK is the
toolkit for building chatbots. It has libraries of classes and code that represent various
elements of a conversation. These can be used in our development process to build chatbots
at a faster pace than building them from scratch. The Bot Framework Portal is used to
register the bot in order to manage it efficiently and there is a host of tools for analytics and
diagnostics that can be used on this portal. Finally, the framework provides a unified
approach to integrating with several channels.

There are a huge number of channels that you can integrate your bot with, including Skype,
Facebook Messenger, Kik, Telegram, Slack, MS Teams, and Twilio. You can also create a
web chat client using the portal that can be embedded on any website. In addition to the
three tools, there are two other tools that are very useful during the development process:
channel emulator and channel inspector.

Channel emulator
Before we begin, we need to install software called a channel emulator. We will be using
this to emulate the channel (for example, Skype) to connect to the bot locally for
development and testing purposes. You can chat with your bot as well as inspect the
messages sent and received to identify any bugs.

To download it, go to the following page:

https://github.com/ Microsoft/ BotFramework- Emulator/ releases/ tag/ v3. 5.31

Download the version based on your needs and install it on your computer.

https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31
https://github.com/Microsoft/BotFramework-Emulator/releases/tag/v3.5.31

Restaurant Search Chapter 6

[205]

Building a bot
Let us now look at the steps to build a chatbot. Here we will use the botbuilder library and
create a bot using Node.js:

Create a Node.js project called foodie-bot:1.

> npm init

Install the two libraries that we need to use:2.

> npm install botbuilder --save
> npm install restify --save

Create a file named app.js. 3.
In app.js, paste the following code (from the Bot Framework tutorials):4.

var restify = require('restify');
var builder = require('botbuilder');

// Lets setup the Restify Server
var server = restify.createServer();
server.listen(process.env.port || process.env.PORT || 3978,
function () {
 console.log('%s listening to %s', server.name, server.url);
});

// Create chat connector for communicating with the Bot Framework
Service
var connector = new builder.ChatConnector({
 appId: process.env.MICROSOFT_APP_ID,
 appPassword: process.env.MICROSOFT_APP_PASSWORD
});

// Listen for messages from users
server.post('/foodiebot', connector.listen());

// Echo their message back.. just parrotting!
var bot = new builder.UniversalBot(connector, function (session) {
 session.send("You said: %s", session.message.text);
});

Restaurant Search Chapter 6

[206]

Notice that there are two classes, UniversalBot and ChatConnector, that the
Bot Framework's Node.js SDK provides. UniversalBot is the class where we
define the conversation flow, while the ChatConnector class connects the bot to
the chat channel. In the previous code, we used the session.send() method to
send text messages to the chat channel.

Save the file.5.
Run the emulator. In the address bar, type the following address and connect:6.

http://localhost:3978/api/messages

At this stage, you don't have to provide an app ID or password.

The emulator will connect to the bot (running in app.js). The app will start7.
logging messages on the console, as shown here:

In the emulator, in the following textbox, type a message to the bot and hit8.
SEND. You will see that the bot repeats the message back to you:

Restaurant Search Chapter 6

[207]

Congratulations! You have just created your first bot using Bot Framework.9.

Restaurant Search Chapter 6

[208]

Deploying your bot
For now, we have our bot running on a local machine and have interacted with it over the
channel emulator. How about we push it further and get it talking to the user on a website.
To do this, we need to register our bot in Bot Framework's very own bot directory. To get
your bot registered, perform the following steps:

Go to the Bot Framework page at https://dev.botframework.com.1.
Create an account, if you don't already have one. Sign in.2.
Click the My bots tab.3.
Click Create a bot:4.

Click Create. Choose Register an existing bot built using Bot Builder SDK:5.

https://dev.botframework.com

Restaurant Search Chapter 6

[209]

Scroll down to Configuration. Click Create Microsoft App ID and Password:6.

Copy the app ID and password and hang on to it.

Go back to app.js and replace the app ID and password variable with these new7.
values. Save it. Alternatively, we can set these as configuration parameters.
We are now ready to host our bot in the cloud and link it up to the Bot8.
Framework register. In order to do that, we need to create Procfile. Create a file
called Procfile, which tells Heroku how to start the app. Here is what goes
into Procfile:

web: node app.js

Create a Heroku web app:9.

> heroku create foodie-bot-sj

We need a Git repository to store our bot code: 10.

> git init
> git add .
> git commit -m initial-commit

Finally, let's push the code: 11.

> git push heroku master

Restaurant Search Chapter 6

[210]

Now we need to set the app ID and password as config variables in Heroku:

> heroku config:set MICROSOFT_APP_PASSWORD=<YOUR_APP_PASSWORD>
> heroku config:set MICROSOFT_APP_ID=<YOUR_APP_ID>

Having pushed the code onto the cloud, we can test it using the channel12.
emulator. Type the URL of the bot, along with the app ID and password, and
click CONNECT:

Once connected, type your message to the bot. You will see the bot parroting the13.
messages that you send:

Restaurant Search Chapter 6

[211]

Good work! Your bot is in the cloud and ready to be deployed on Skype and other channels,
but we will explore that later in the chapter.

More message types
Now that we have set up the chatbot and have the emulator to test it, let's try out more
messaging options.

Sending more than one message per turn
First, we can send more than one message at a time. So when the chatbot gets its turn, it can
send multiple messages using the session.send() method:

var bot = new builder.UniversalBot(connector, [
 function (session) {
 session.send('Hello there!');
 session.send('Welcome to New India restaurant!');
 });
 }
]);

Prompting users for information
To ask users for information, use the builder.Prompts.text() method, as shown here:

var bot = new builder.UniversalBot(connector, [
 function (session) {
 builder.Prompts.text(session, 'Hi! What is your name?');
 },
 function (session, results) {
 session.endDialog('Hello ' + results.response + '!
 My name is FoodieBot!');
 }
]);

Restaurant Search Chapter 6

[212]

builder.Prompts.text() can be used to get text data such as the names of people and
cities. The responses can be accessed using results.response. Try the preceding code by
replacing the definition for the bot variable in the previous code for app.js:

You can get numeric data using builder.Prompts.number():

var bot = new builder.UniversalBot(connector, [
 function (session) {
 builder.Prompts.number(session, 'Booking a table!
 For how many people?');
 },
 function (session, results) {
 session.endDialog('Ok. Looking for a table for ' +
 results.response + ' people.');
 }
]);

Restaurant Search Chapter 6

[213]

You can also ask users to choose one of the given options using
the builder.Prompts.choice() method:

var bot = new builder.UniversalBot(connector, [
 function (session) {
 builder.Prompts.choice(session, 'Booking a table!
 Any specific cuisine?', ['Indian', 'Chinese', 'Italian']);
 },
 function (session, results) {
 session.endDialog('Ok. Looking for a ' +
 results.response.entity + ' restaurant.');
 }
]);

Restaurant Search Chapter 6

[214]

Notice that the label for the choice (for example, Indian) is stored in
results.response.entity:

You can also provide choices in the following format, instead of an array, as shown here:

builder.Prompts.choice(session, 'Booking a table! Any specific cuisine?',
'Indian|Chinese|Italian');

Restaurant Search Chapter 6

[215]

You can also prompt for date and time and parse varied inputs such as tomorrow at 2pm,
Saturday at 8, or next Friday using the EntityRecognizer class, as follows:

builder.Prompts.time(session, "So when is the party?");
....
session.dialogData.partyDate =
builder.EntityRecognizer.resolveTime([results.response]);

Rich messages
Now that we know how to serve messages and prompts, let's dig a little deeper to learn
how to make it look more visually appealing by adding images and cards. To do this, we
will use Hero card. Hero card is a template for presenting information in a rich format using
images, URLs, and so on. Here is an example:

var bot = new builder.UniversalBot(connector, [
 function (session) {
 var msg = new builder.Message(session);
 msg.attachmentLayout(builder.AttachmentLayout.carousel)
 msg.attachments([
 new builder.HeroCard(session)
 .title("Chennai Kitchen")
 .subtitle("Authentic South Indian Restaurant")
 .text("Great tasting dosas. 5 star reviews.")
 .images([builder.CardImage.create(session,
 'https://images.pexels.com/photos/221143/
 pexels-photo-221143.jpeg?
 w=940&h=650&auto=compress&cs=tinysrgb')])
 .buttons([
 builder.CardAction.imBack(session,
 "book_table:chennai_kitchen", "Book a table")
]),
 new builder.HeroCard(session)
 .title("Mumbai Tandoor")
 .subtitle("Best Indian Restaurant in town")
 .text("Amazing reviews!")
 .images([builder.CardImage.create(session,
 'https://images.pexels.com/photos/45844/
 spices-white-pepper-nutmeg-45844.jpeg?
 w=940&h=650&auto=compress&cs=tinysrgb')])
 .buttons([
 builder.CardAction.imBack(session,
 "book_table:mumbai_tandoor", "Book a table")
])
]);

Restaurant Search Chapter 6

[216]

 session.send(msg)

 }
]);

For each Hero card, a title, subtitle, text, image, and button response can be specified. In the
preceding example, the buttons have been programmed to send response messages back to
the bot using the imBack() method. However, you can also program it to open a web page
using the openUrl() method, as follows:

builder.CardAction.openUrl(session,
'https://mumbaitandoor.com/bookTable','Book a table');

There are other types of cards as well: Thumbnail card, Adaptive card, Audio card, and
Animation card, for example. For a complete list of cards, please refer to the Bot Framework
documentation at https:/ / docs. microsoft. com/ en- us/bot- framework/ nodejs/ bot-
builder-nodejs-send- rich- cards.

https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-send-rich-cards

Restaurant Search Chapter 6

[217]

Thumbnail cards are similar to Hero cards but smaller. You can create Thumbnail cards
using the ThumbnailCard class, as shown here:

new builder.ThumbnailCard(session)
 .title("Chennai Kitchen")
 .subtitle("Authentic South Indian Restaurant")
 .text("Great tasting dosas. 5 star reviews.")
 .images([builder.CardImage.create(session,
 'https://images.pexels.com/photos/221143/
 pexels-photo-221143.jpeg?w=940&h=650&
 auto=compress&cs=tinysrgb')])
 .buttons([
 builder.CardAction.imBack(session,
 "book_table:chennai_kitchen",
 "Book a table")
])

Let's run the preceding code on the emulator:

Let's create a card to show GIF images. The AnimationCard class can be used to display
animated images:

new builder.AnimationCard(session)
 .title('Microsoft Bot Framework')
 .subtitle('Animation Card')
 .image(builder.CardImage.create(session,
 'https://makeYourOwnCurry.com/curryAnimation.jpeg'))
 .media([
 { url: 'http://i.giphy.com/Ki55RUbOV5njy.gif' }
])

Restaurant Search Chapter 6

[218]

Audio and Video cards can be used to present audio and video information:

//Video card
new builder.VideoCard(session)
 .title('Chicken Tikka')
 .subtitle('from Sanjeev Kapoor Khazana')
 .text('Authentic Chicken Tikka recipe by Chef
 Harpal Singh Sokhi')
 .image(builder.CardImage.create(session,
 'https://commons.wikimedia.org/wiki/
 File:Chicken_Tikka_(1).jpg'))
 .media([
 { url: 'http://fakevideourl.com/makingofchickentikka.mp4' }
])
 .buttons([
 builder.CardAction.imBack(session, "order:chicken_tikka",
"Order Chicken Tikka")
])

//Audio card

new builder.AudioCard(session)
 .title('Delicious Chicken Tikka')
 .subtitle('Must have at Mumbai Tandoor')
 .text('User')
 .image(builder.CardImage.create(session,
 'https://commons.wikimedia.org/wiki/
 File:Chicken_Tikka_(1).jpg'))
 .media([
 { url: 'http://fakeaudiourl.com/reviews1.wav' }
])
 .buttons([
 builder.CardAction.imBack(session, "order:chicken_tikka",
 "Order Chicken Tikka")
])

Restaurant Search Chapter 6

[219]

Let's see how it looks on the emulator:

In addition to these cards, there is a special card called the Receipt card which will present
information in a receipt format. It can be used to present an itemized bill with payment
information, as follows:

new builder.ReceiptCard(session)
 .title('James White')
 .facts([
 builder.Fact.create(session, '12345', 'Order Number'),
 builder.Fact.create(session, 'VISA 2392-****',
 'Payment Method')
])
 .items([
 builder.ReceiptItem.create(session, '£ 6.50', 'Chicken Tikka')
 .quantity(1),
 builder.ReceiptItem.create(session, '£ 5.00', 'Garlic Naan')
 .quantity(2)
])
 .tax('£ 1.15')
 .total('£ 12.65')
 .buttons([
 builder.CardAction.imBack(session, 'sendemail',
 'Send by email')
])

Restaurant Search Chapter 6

[220]

Let's run it on the emulator:

Finally, there is a card that can be used to authenticate the user by asking them to sign in.
This flow can be initiated using the SignIn card:

new builder.SigninCard(session)
 .text('Mumbai Tandoor Login')
 .button('Login', 'https://mumbaitandoor.com/login')
]);

Clicking the SignIn card takes the user to the web page where the user can be authenticated:

Now that we have explored the cards, let's move on to implementing the conversation flow.

Restaurant Search Chapter 6

[221]

Conversation flow
Now that we have a setup to test the chatbot and have explored a variety of ways
information can be presented to the user, let's examine the ways in which conversation flow
can be managed. The basic model available to us is the waterfall model, where the
conversation is composed of a sequence of steps. Let's take the example of booking a table
at a restaurant where the conversation proceeds in the following way: get the time of
reservation, the number of people at the table, and the name of the user:

// Bot Dialogs
var bot = new builder.UniversalBot(connector, [
 function (session) {
 session.send('Welcome to New India restaurant!');
 builder.Prompts.time(session, 'Table reservations.
 What time?');
 },
 function (session, results) {
 session.dialogData.timeOfReservation =
 builder.EntityRecognizer.resolveTime([results.response]);
 builder.Prompts.number(session, "And how many people?");
 },
 function (session, results) {
 session.dialogData.numberOfPeople = results.response;
 builder.Prompts.text(session, "And your name?");
 },
 function (session, results) {
 session.dialogData.nameOnReservation = results.response;
 session.send('Great! Your reservation is booked!');
 }
]);

Restaurant Search Chapter 6

[222]

Let's try this out on the emulator:

Restaurant Search Chapter 6

[223]

Let us dissect the code a little to understand what is happening. We start by constructing a
bot using the UniversalBot class. As we build the bot, we specify the steps of the waterfall
conversation as an array of functions. This is the root dialogue. Each function is a step in the
conversation. At each step, the bot says or prompts the user with a message. In case of
prompts, it expects the user to respond. The response is stored in results.response,
which is updated to the dialogue state managed in session.dialogData. This assignment
happens in the subsequent steps, the bot makes the next utterance or prompts for more
information. As we have discussed previously, there are a variety of ways information can
be prompted and verified.

It is not always possible to map out the entire conversation as an array of functions. What if
there are parts of the conversation that repeat? As programmers, we handle these situations
using functions and methods. A method would be a well-defined piece of code performing
a specific task and can be called for whenever it is required by the main method or another
method. Let's take, for example, the task of payment when placing an order. Whether you
are at the table or ordering takeout, you will have to make payments the same way. The
same set of questions will be asked: paying by card or cash, the card number, the name on
the card, the CVV number, and so on. Imagine a payment dialogue between the user and
the bot. Will this dialogue be used in more than one scenario? Wouldn't it be nice to keep
the conversational step of the payment dialogue separate and call the process whenever a
payment needs to be taken? This is what we can accomplish using the dialog() method.

The bot that we create using the UniversalBot class can be provided conversational skills
to carry out a variety of tasks, such as payments and product listing, using the dialog()
method. These can then be called upon when necessary from the root dialogue. Each
dialog() method can be used to define a sub-dialogue, and structurally will be an
independent waterfall dialogue. Let's now build a root dialogue and embed within it two
sub-dialogues asking for the order and asking for payment:

//Main dialogue
var bot = new builder.UniversalBot(connector, [
 function (session) {
 session.send("Welcome to New India restaurant.");
 session.beginDialog('askForOrder');
 },
 function (session) {
 session.beginDialog('askForPayment');
 },
 function (session) {
 session.send('Thanks for your order!');
 session.send(`Order summary:
 ${session.conversationData.order}
`+
 `Payment card number:

Restaurant Search Chapter 6

[224]

 ${session.conversationData.cardNumber}
`);
 session.endDialog();
 }
]);

// Ask for Order
bot.dialog('askForOrder', [
 function (session) {
 builder.Prompts.text(session, 'Whats your order?');
 },
 function (session, results) {
 session.conversationData.order = results.response;
 session.endDialog();
 }
]);

// Ask for payment
bot.dialog('askForPayment', [
 function (session) {
 builder.Prompts.text(session, 'Whats the card number?');
 },
 function (session, results) {
 session.conversationData.cardNumber = results.response;
 builder.Prompts.text(session, 'Whats the CVV number?');
 },
 function (session, results) {
 session.conversationData.cardCVVNumber = results.response;
 session.send('Thanks for the payment!');
 session.endDialog();
 }
])

In the preceding code, you can see three dialogues: root, asking for the order, and asking for
payment. Within the root dialogue, we use the session.beginDialog() to call upon the
sub-dialogues:

Restaurant Search Chapter 6

[225]

Also, notice that we have been using session.dialogData to store information from user
utterances so far. But now, we are using session.conversationData. We will explore the
difference between them later.

At this point, we need to understand the concept of dialog stack. In the beginning, the
dialog stack contains the root dialogue. As sub-dialogues get called from the root, these are
stacked on top of the root dialogue. Sub-dialogues can themselves call other sub-dialogues.
These, in turn, get stacked over them. When a sub-dialogue is finished, the bot returns the
next dialogue in the stack and continues doing so until there are no more.

Restaurant Search Chapter 6

[226]

Responding to user utterances
What we have now is a default conversation that starts the same way no matter what the
user says. You could say hi, or help, or any other utterance and the bot would answer with
a welcome message. Another way in which a conversation can get started is based on what
the user says.

Let us now explore how to respond when the user says help in the middle of the
conversation:

bot.dialog('help', function (session, args, next) {
 session.endDialog("Hi. I can take food orders.

 Say 'continue' to continue?");
})
.triggerAction({
 matches: /^help$/i,
});

Responding to user utterances can be done by adding triggerAction() with utterances
specified as regular expressions in the matches clause. Add the preceding code to app.js
and restart the server. Now the conversation may go as follows:

Restaurant Search Chapter 6

[227]

The code we added allows the bot to respond to the help user utterance. Notice how this
overrides the current expectation of order information that the bot is waiting for.

There are two other ways of interpreting user utterances: a custom recognizer and using
NLU services such as LUIS. Let us try the custom recognizer first. To your bot, attach the
following recognizer:

bot.recognizer({
 recognize: function (context, done) {
 var intent = { score: 0.0 };
 if (context.message.text) {
 switch (context.message.text.toLowerCase()) {
 case 'help':
 intent = { score: 1.0, intent: 'get-help' };
 break;
 case 'goodbye':
 intent = { score: 1.0, intent: 'say-goodbye' };
 break;
 }
 }
 done(null, intent);
 }
});

And create appropriate sub-dialogues for the intents:

bot.dialog('help', [
 function (session) {
 session.send('I can help you look for a
 restaurant or order a takeaway!');
 session.endDialog();
 }
]).triggerAction({
 matches: 'get-help'
});

bot.dialog('goodbye', [
 function (session) {
 session.send('Goodbye now!');
 session.endConversation();
 }
]).triggerAction({
 matches: 'say-goodbye'
});

Restaurant Search Chapter 6

[228]

While utterance patterns can be specified using the matches option for each sub-dialogue, it
is even better to organize them as intents using a global recognizer for all sub-dialogues.
This is to ensure that we do not have to duplicate the regular expressions. Once the intents
are identified, they can be used to trigger appropriate sub-dialogues, as shown here:

LUIS is Microsoft's natural language understanding service. It is similar to
Google's API.AI and Amazon's Lex. Any of these tools can be integrated
with the bot to provide NLU services if custom recognizers ,such as the
preceding, are not adequate. To explore this option further, consult the
official documentation at https:/ /docs. microsoft. com/ en-us/ bot-
framework/ nodejs/ bot- builder- nodejs- recognize- intent- luis.

https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-recognize-intent-luis

Restaurant Search Chapter 6

[229]

Keeping context intact
Processing user utterances using sub-dialogues can take the conversation out of context:

What happened to the conversation when the user typed continue, as mentioned in the
help message? Does the conversation continue? No, it doesn't. The bot seems to
have completely forgotten what it was doing before. This is because the dialog stack is
cleared when user utterances are processed. It may be ideal to clear the stack when the user
wants to change the topic of the conversation, but not when the user is asking for help.

There is a way to keep context intact even when users interrupt with questions and
remarks. This can be done by adding the onSelectAction option to the sub-dialogue that
gets invoked. This will keep the dialog stack intact and not clear it:

bot.dialog('help', function (session, args, next) {
 session.endDialog("Hi there. I can take food orders.");
})
.triggerAction({
 matches: /^help$/i,
 onSelectAction: (session, args, next) => {
 session.beginDialog(args.action, args);
 }
});

Restaurant Search Chapter 6

[230]

So it is actually part of the design decision to designate where the dialogue stack needs to be
cleared and where it should not be. For instance, when the user asks for help, it is better not
to clear the context as the help request could be related to the context. However, if the user
seems to be switching to another task (for example, asking for a table booking when they
are actually ordering food), it may be a good idea to clear the context as it is not appropriate
to return to taking the food order once the table has been booked.

Context switching
However, there may be cases where the user wants to switch from one task to another. In
such cases, we do not want to keep the dialog stack intact. By not using
the onSelectAction option, we can wipe out dialog stack. However, it is also a good idea
to let the user know that the bot is going to abandon the current task to take up the next
task. This can be done using the confirmPrompt option in the triggerAction() method:

bot.dialog('askForOrder', [
 ...
])
.triggerAction({
 matches: /^order food$/i,
 confirmPrompt: "Your food order will be abandoned. Are you sure?"
});

// Search for a restaurant
bot.dialog('searchRestaurant', [
 function (session) {
 session.send('Searching for a restaurant!');
 builder.Prompts.text(session, 'Where?');
 },
 function (session, results) {
 session.conversationData.searchLocation = results.response;
 session.endDialog();
 }
])
 .triggerAction({
 matches: /^restaurant search$/i,
 confirmPrompt: 'Your restaurant search task
 will be abandoned. Are you sure?'
});

By appending the triggerAction() method to the askForOrder dialogue, we will be
able to respond to user requests to order food at any point in the conversation. However,
the bot will proactively prompt them that any other task being done (for example, booking
a table) will be abandoned:

Restaurant Search Chapter 6

[231]

Notice how the confirm prompts are invoked when the user switches from one task to
other.

Restaurant Search Chapter 6

[232]

Contextual NLU
It may also be ideal to provide help in a contextual way. For instance, provide the user with
a menu when they ask for help while ordering. Let us see how utterances can be processed
contextually. To do this, we need to create a help sub-dialogue and append it to an existing
dialogue so that it can trigger when what the user says matches the template provided:

 // Ask for Order
bot.dialog('askForOrder', [
 function (session) {
 builder.Prompts.text(session, 'Whats your order?');
 },
 function (session, results) {
 session.conversationData.order = results.response;
 session.endDialog();
 }
])
.beginDialogAction('orderHelpAction', 'orderHelp',
 { matches: /^help$/i });

// Contextual help for ordering
bot.dialog('orderHelp', function(session, args, next) {
 var msg = "You can order for Chicken Tikka Masala,
 Paneer Butter Masala, Naan and Briyani.";
 session.endDialog(msg);
})

Notice how we use the beginDialogAction() method to link the orderHelp sub-
dialogue. orderHelp gets triggered when the user says help during the food ordering step:

Restaurant Search Chapter 6

[233]

In the preceding conversation, asking for help does not yield the standard response.
Instead, we get a contextual one.

Restaurant Search Chapter 6

[234]

Ending the conversation
Finally, it is a good practice to end the conversation when the tasks are finished. This is
done by informing the user that the tasks are finished, clearing out the dialogue stack, and
resetting the session.conversationData object. To do this, use the
session.endConversation() method. So, let us rewrite our root dialogue with
the session.endConversation() method:

//Main dialogue
var bot = new builder.UniversalBot(connector, [
 function (session) {
 session.send("Welcome to New India restaurant.");
 session.beginDialog('askForOrder');
 },
 function (session) {
 session.beginDialog('askForPayment');
 },
 function (session) {
 session.send('Thanks for your order!');
 session.send(`Order summary:
${session.conversationData.order}
`+
 `Payment card number:
 ${session.conversationData.cardNumber}
`);
 session.endConversation();
 }
]);

You can also set a default dialogue that gets triggered when the user says Goodbye and
ends the conversation:

bot.dialog('endConversation', [
 session.endConversation("Goodbye!")
])
.endConversationAction(
 "endTasks", "Ok. Goodbye.",
 {
 matches: /^goodbye$/i,
 confirmPrompt: "Cancelling current task. Are you sure?"
 }
);

Now let's have a look at how we can store the context of the conversation.

Restaurant Search Chapter 6

[235]

Conversational state
The state of the conversation can be stored in the form of key/value pairs. There are four
data stores that are available to do this. These are housed within the session object:

dialogData: Remember, the conversation is divided into dialogs (the root
dialogue and sub-dialogues initiated with beginDialog()). Within each dialog,
the state can be maintained separately. This is done using session.dialogData,
which we have used in the previous examples. It stores data pertaining to the
current sub-dialogue, and each sub-dialogue has its own copy of the
dialogData. When the dialogue finishes (that is, endDialog() is executed) and
is removed from the dialog stack, this data is deleted.
conversationData: This stores data pertaining to the whole conversation and is
shared among all members (that is, users) in the conversation. It gets cleared
when the conversation ends or when endConversation() is executed. This data
can be accessed using session.conversationData.
privateConversationData: This stores data pertaining to the whole
conversation as conversationData, but is private to every individual member
of the conversation. This is not shared with other members participating in the
conversation. It gets cleared when the conversation ends or
when endConversation() is executed. This data can be accessed
using session.privateConversationData.
 userData: Private data pertaining to a user can be stored here. This is persistent
across conversations. Data such as the user's name, age, gender, address, phone
number, email, and payment info can be stored here and be used in
conversations. This data can be accessed using session.userData.

So far, we have covered a number of concepts in the Bot Builder toolkit with examples
worked out. We have examined how to set up a root dialogue and take the conversational
flow into sub-dialogues. We have explored how to handle user utterances locally and
globally, as well as the use of various data objects to store user and conversation data. Let
us now proceed to building a bot with restaurant data.

Restaurant Search Chapter 6

[236]

Getting started with Zomato
First, we need to create an account with Zomato and get an API key:

Go to https:/ /developers. zomato. com/api:1.

Click Generate API Key:2.

https://developers.zomato.com/api
https://developers.zomato.com/api
https://developers.zomato.com/api
https://developers.zomato.com/api
https://developers.zomato.com/api
https://developers.zomato.com/api
https://developers.zomato.com/api
https://developers.zomato.com/api
https://developers.zomato.com/api
https://developers.zomato.com/api
https://developers.zomato.com/api

Restaurant Search Chapter 6

[237]

Sign up:3.

Restaurant Search Chapter 6

[238]

Confirm your email address and click Generate API Key again:4.

Copy the API key.5.

Getting data from Zomato
The base URL for fetching data is https://developers.zomato.com/api/v2.1/. Every
query sent to the Zomato server should have the API key sent as part of the header, as
follows:

curl -X GET --header "Accept: application/json" --header "user-key:
YOURAPIKEY" "https://developers.zomato.com/api/v2.1/categories"

Restaurant Search Chapter 6

[239]

In the preceding HTTP GET call, categories specify the handle that pulls out the various
categories of restaurants that are available. Categories include delivery, takeout, and dine-
in. Here is the list of handles that are available:

Handle Description

/categories Restaurant categories: dine-in, takeout, delivery, and many more.

/cities
Get info about the cities across the globe. Get the Zomato city ID from
this query to use in search queries later. Search using a name or the
latitude and longitude (latLong) of the city.

/collections Get a list of restaurants given the city ID or latLong coordinates.

/cuisines Get a list of cuisines in the city.

/establishments Get a list of restaurant categories that are available in the city.

/locations
Get the location ID to search for. These are IDs at different scales: city,
subzone, zone, landmark, and so on. This will be used to search for
restaurants.

/search
Search for restaurants in a given location ID, cuisine, category, and so
on.

/reviews Get reviews of a specific restaurant.

Now that we have explored the data that Zomato has about restaurants, let's move on to
building a bot using Zomato and Bot Builder SDK.

Restaurant search bot
Let us build a chatbot that can search for restaurants based on user goals and preferences.
Let us begin by building Node.js modules to get data from Zomato based on user
preferences. Create a file called zomato.js. Add a request module to the Node.js libraries
using the following command in the console:

> npm install request --save

Restaurant Search Chapter 6

[240]

In zomato.js, add the following code to begin with:

var request = require('request');

var baseURL = 'https://developers.zomato.com/api/v2.1/';
var apiKey = 'YOUR_API_KEY';

var catergories = null;
var cuisines = null;

getCategories();
getCuisines(76);

Replace YOUR_API_KEY with your Zomato key. Let's build functions to get the list of
categories and cuisines at startup. These queries need not be run when the user asks for a
restaurant search because this information is pretty much static:

function getCuisines(cityId){
 var options = {
 uri: baseURL + 'cuisines',
 headers: {
 'user-key': apiKey
 },
 qs: {'city_id':cityId},
 method: 'GET'
 }
 var callback = function(error, response, body) {
 if (error) {
 console.log('Error sending messages: ', error)
 } else if (response.body.error) {
 console.log('Error: ', response.body.error)
 } else {
 console.log(body);
 cuisines = JSON.parse(body).cuisines;
 }
 }
 request(options,callback);
}

Restaurant Search Chapter 6

[241]

The preceding code will fetch a list of cuisines available in a particular city (identified by a
Zomato city ID). Let us add the code for identifying the list of categories:

function getCategories(){
 var options = {
 uri: baseURL + 'categories',
 headers: {
 'user-key': apiKey
 },
 qs: {},
 method: 'GET'
 }
 var callback = function(error, response, body) {
 if (error) {
 console.log('Error sending messages: ', error)
 } else if (response.body.error) {
 console.log('Error: ', response.body.error)
 } else {
 categories = JSON.parse(body).categories;
 }
 }
 request(options,callback);
}

Now that we have the basic functions out of our way, let us code in the restaurant search
code:

function getRestaurant(cuisine, location, category){
 var cuisineId = getCuisineId(cuisine);
 var categoryId = getCategoryId(category);

 var options = {
 uri: baseURL + 'locations',
 headers: {
 'user-key': apiKey
 },
 qs: {'query':location},
 method: 'GET'
 }
 var callback = function(error, response, body) {
 if (error) {
 console.log('Error sending messages: ', error)
 } else if (response.body.error) {
 console.log('Error: ', response.body.error)
 } else {
 console.log(body);
 locationInfo = JSON.parse(body).location_suggestions;

Restaurant Search Chapter 6

[242]

 search(locationInfo[0], cuisineId, categoryId);
 }
 }
 request(options,callback);
}

function search(location, cuisineId, categoryId){
 var options = {
 uri: baseURL + 'search',
 headers: {
 'user-key': apiKey
 },
 qs: {'entity_id': location.entity_id,
 'entity_type': location.entity_type,
 'cuisines': [cuisineId],
 'categories': [categoryId]},
 method: 'GET'
 }
 var callback = function(error, response, body) {
 if (error) {
 console.log('Error sending messages: ', error)
 } else if (response.body.error) {
 console.log('Error: ', response.body.error)
 } else {
 console.log('Found restaurants:')
 var results = JSON.parse(body).restaurants;
 console.log(results);
 }
 }
 request(options,callback);
}

The preceding code will look for restaurants in a given location, cuisine, and category. For
instance, you can search for a list of Indian restaurants in Newington, Edinburgh that do
delivery. We now need to integrate this with the chatbot code. Let us create a separate file
called index.js. Let us begin with the basics:

var restify = require('restify');
var builder = require('botbuilder');
var request = require('request');

var baseURL = 'https://developers.zomato.com/api/v2.1/';
var apiKey = 'YOUR_API_KEY';

var catergories = null;
var cuisines = null;

Restaurant Search Chapter 6

[243]

getCategories();
//setTimeout(function(){getCategoryId('Delivery')}, 10000);

getCuisines(76);
//setTimeout(function(){getCuisineId('European')}, 10000);

// Setup Restify Server
var server = restify.createServer();
server.listen(process.env.port || process.env.PORT || 3978, function () {
 console.log('%s listening to %s', server.name, server.url);
});

// Create chat connector for communicating with
// the Bot Framework Service
var connector = new builder.ChatConnector({
 appId: process.env.MICROSOFT_APP_ID,
 appPassword: process.env.MICROSOFT_APP_PASSWORD
});

// Listen for messages from users
server.post('/foodiebot', connector.listen());

Add the bot dialog code to carry out the restaurant search. Let us design the bot to ask for
cuisine, category, and location before proceeding to the restaurant search:

var bot = new builder.UniversalBot(connector, [
 function (session) {
 session.send("Hi there! Hungry? Looking for a restaurant?");
 session.send("Say 'search restaurant' to start searching.");
 session.endDialog();
 }
]);

// Search for a restaurant
bot.dialog('searchRestaurant', [
 function (session) {
 session.send('Ok. Searching for a restaurant!');
 builder.Prompts.text(session, 'Where?');
 },
 function (session, results) {
 session.conversationData.searchLocation = results.response;
 builder.Prompts.text(session, 'Cuisine? Indian,
 Italian, or anything else?');
 },
 function (session, results) {
 session.conversationData.searchCuisine = results.response;

Restaurant Search Chapter 6

[244]

 builder.Prompts.text(session, 'Delivery or Dine-in?');
 },
 function (session, results) {
 session.conversationData.searchCategory = results.response;
 session.send('Ok. Looking for restaurants..');
 getRestaurant(session.conversationData.searchCuisine,
 session.conversationData.searchLocation,
 session.conversationData.searchCategory,
 session);
 }
])
 .triggerAction({
 matches: /^search restaurant$/i,
 confirmPrompt: 'Your restaurant search task will be abandoned.
 Are you sure?'
});

Notice that we are calling the getRestaurant() function with four parameters. Three of
these are ones that we have already defined: cuisine, location, and category. To these,
we have to add another: session. This passes the session pointer that can be used to send
messages to the emulator when the data is ready. Notice how this changes
the getRestaurant() and search() functions:

function getRestaurant(cuisine, location, category, session){
 var cuisineId = getCuisineId(cuisine);
 var categoryId = getCategoryId(category);
 var options = {
 uri: baseURL + 'locations',
 headers: {
 'user-key': apiKey
 },
 qs: {'query':location},
 method: 'GET'
 }
 var callback = function(error, response, body) {
 if (error) {
 console.log('Error sending messages: ', error)
 } else if (response.body.error) {
 console.log('Error: ', response.body.error)
 } else {
 console.log(body);
 locationInfo = JSON.parse(body).location_suggestions;
 search(locationInfo[0], cuisineId,
 categoryId, session);
 }
 }
 request(options,callback);

Restaurant Search Chapter 6

[245]

}

function search(location, cuisineId, categoryId, session){
 var options = {
 uri: baseURL + 'search',
 headers: {
 'user-key': apiKey
 },
 qs: {'entity_id': location.entity_id,
 'entity_type': location.entity_type,
 'cuisines': [cuisineId],
 'category': categoryId},
 method: 'GET'
 }
 var callback = function(error, response, body) {
 if (error) {
 console.log('Error sending messages: ', error)
 } else if (response.body.error) {
 console.log('Error: ', response.body.error)
 } else {
 console.log('Found restaurants:')
 console.log(body);
 //var results = JSON.parse(body).restaurants;
 //console.log(results);
 var resultsCount = JSON.parse(body).results_found;
 console.log('Found:' + resultsCount);
 session.send('I have found ' + resultsCount +
 ' restaurants for you!');
 session.endDialog();
 }
 }
 request(options,callback);
}

Restaurant Search Chapter 6

[246]

Once the results are obtained, the bot responds using session.send() and ends the
dialog:

Restaurant Search Chapter 6

[247]

Now that we have the results, let's present them in a more visually appealing way using
cards. To do this, we need a function that can take the results of the search and turn them
into an array of cards:

function presentInCards(session, results){
 var msg = new builder.Message(session);
 msg.attachmentLayout(builder.AttachmentLayout.carousel)
 var heroCardArray = [];
 var l = results.length;
 if (results.length > 10){
 l = 10;
 }
 for (var i = 0; i < l; i++){
 var r = results[i].restaurant;
 var herocard = new builder.HeroCard(session)
 .title(r.name)
 .subtitle(r.location.address)
 .text(r.user_rating.aggregate_rating)
 .images([builder.CardImage.create(session, r.thumb)])
 .buttons([
 builder.CardAction.imBack(session,
 "book_table:" + r.id,
 "Book a table")
]);
 heroCardArray.push(herocard);
 }
 msg.attachments(heroCardArray);
 return msg;
}

Restaurant Search Chapter 6

[248]

And we call this function from the search() function:

function search(location, cuisineId, categoryId, session){
 var options = {
 uri: baseURL + 'search',
 headers: {
 'user-key': apiKey
 },
 qs: {'entity_id': location.entity_id,
 'entity_type': location.entity_type,
 'cuisines': [cuisineId],
 'category': categoryId},
 method: 'GET'
 }
 var callback = function(error, response, body) {
 if (error) {
 console.log('Error sending messages: ', error)
 } else if (response.body.error) {
 console.log('Error: ', response.body.error)
 } else {
 console.log('Found restaurants:')
 console.log(body);
 var results = JSON.parse(body).restaurants;
 var msg = presentInCards(session, results);
 session.send(msg);
 session.endDialog();
 }
 }
 request(options,callback);
}

Restaurant Search Chapter 6

[249]

Here is how it looks:

Restaurant Search Chapter 6

[250]

Connecting to Skype
Now that we have a chatbot to search for restaurants, push it back on to Heroku cloud as
before. Remember to change the Procfile as we need to run index.js and not
app.js. Having set up the chatbot as a web app in Heroku, we are all set to deploy the bot
on Skype and other channels.

Go to your dashboard on Bot Framework at https:/ /dev. botframework. com/1.
bots:

Choose your bot. You will see that your bot is already connected to two2.
channels, Skype and Web Chat:

https://dev.botframework.com/bots
https://dev.botframework.com/bots
https://dev.botframework.com/bots
https://dev.botframework.com/bots
https://dev.botframework.com/bots
https://dev.botframework.com/bots
https://dev.botframework.com/bots
https://dev.botframework.com/bots
https://dev.botframework.com/bots
https://dev.botframework.com/bots

Restaurant Search Chapter 6

[251]

You will also be able to see the chat client on the right side. If you do not see one,3.
you should be able to open it by pressing the Test button. This is similar to the
emulator. So go on and say Hi to the bot:

You should be able to chat with the bot here as it is in the cloud and not on
localhost.

Restaurant Search Chapter 6

[252]

Click Skype:4.

Click Add to Contacts:5.

Restaurant Search Chapter 6

[253]

Click Open Skype:6.

Add the bot to your contacts and start chatting: 7.

Restaurant Search Chapter 6

[254]

Congratulations on your new bot in Skype. Now that we have created a bot using Bot
Builder SDK and deployed it on Skype, go explore all the other options that we learned
about but did not get to experiment with. Add a user-profiling dialogue where the bot
learns about the user's preferences. Extend the restaurant search dialogue by asking follow-
up questions based on reviews, ratings, and price range once the restaurants are found and
need further sorting. Try to add natural language support so that the user can switch
between tasks easily.

Restaurant Search Chapter 6

[255]

Summary
In the previous chapters, we explored and learned about how to build a chatbot using a
variety of tools. These include development environments such as Chatfuel, natural
language processing tools such as API.AI, and channel-specific SDKs such as Messenger
SDK. However, when it comes to coding the conversational flow to manage the
conversation, we either used form-based tools or built it from scratch. However, there is a
middle path. MS Bot Framework offers the Bot Builder SDK that can be used to develop
conversation management modules that manage how the dialogue flows between the bot
and the user. The SDK models the elements of conversations in an elegant manner allowing
developers to build chatbots quickly and easily. This gives developers greater flexibility
than drag-and-drop tools, and it saves time and effort compared to building the bot from
scratch.

In this chapter, we learned how to built a bot with the Bot Builder SDK and deploy it on the
Skype channel. In the next chapter, we will move on to more advanced bots that are
drastically different from those that we have explored so far—the Twitter bot!

References
Microsoft Bot Builder Node.js documentation: https:/ /docs. microsoft. com/ en- us/bot-
framework/nodejs/ bot- builder- nodejs- overview

https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-overview

7
The News Bot

So far we have explored how to build chatbots and deploy them in a variety of messaging
platforms such as Facebook Messenger, Skype, and even SMS. We explored the different
ways that tools, such as API.AI, can be used in the context of chatbot building. In this
chapter, we are going to explore how chatbots can be integrated into Twitter, a social media
platform. There are many similar social media platforms, such as Facebook and LinkedIn,
that cater to different contexts and markets. What we will explore in this chapter
conceptually applies to all of these platforms.

 Twitter is an online news and social media platform where users can post and interact with
messages that are called tweets. It has around 328 million active monthly users worldwide,
with around 317 million active monthly users tweeting around 500 million tweets every day
(Statista 2017). Twitter is used by businesses as a tool for brand engagement, product
announcements, and customer service.

In this chapter, we will explore how to build chatbots on Twitter so that tweets can be
posted and responded to automatically and quickly. We are going to build a news bot on
the Twitter platform that tweets current news on its timeline on a regular basis. It will also
personalize the experience for its followers by sending them news from topics that they are
interested in. We will first explore the Twitter API and build core modules for tweeting,
searching, and retweeting. Then, we will explore a data source for news around the globe.
We will then build a simple bot that tweets top news on its timeline. Finally, we will build a
personalized news bot that listens to incoming tweets from users about the topics that they
are interested in and tweets user-specific news to them.

The News Bot Chapter 7

[257]

By the end of this chapter, you will be able to:

Understand the basics of the Twitter API
Create a bot that listens to hashtags
Build a Twitter bot that tweets and retweets
Integrate NewsAPI and tweet top stories
Integrate MongoDB to track user interests
Build a conversational bot to get user interests and serve personalized news
Use Heroku Scheduler to tweet personalized news at a regular frequency

Getting started with the Twitter app
To get started, let us explore the Twitter developer platform. Let us begin by building a
Twitter app and later explore how we can tweet news articles to followers based on their
interests:

Log on to Twitter at www.twitter.com. If you don't have an account on Twitter,1.
create one.
Go to https:/ /apps. twitter. com/, which is Twitter's application management2.
dashboard.
Click the Create New App button:3.

https://twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/

The News Bot Chapter 7

[258]

Create an application by filling in the form providing name, description, and a4.
website (fully-qualified URL). Read and agree to the Developer Agreement and
hit Create your Twitter application:

The News Bot Chapter 7

[259]

You will now see your application dashboard. Explore the tabs:5.

Click Keys and Access Tokens: 6.

The News Bot Chapter 7

[260]

Copy consumer key and consumer secret and hang on to them.7.
Scroll down to Your Access Token:8.

Click Create my access token to create a new token for your app:9.

Copy the Access Token and Access Token Secret and hang on to them.10.

Now, we have all the keys and tokens we need to create a Twitter app.

The News Bot Chapter 7

[261]

Building your first Twitter bot
Let's build a simple Twitter bot. This bot will listen to tweets and pick out those that have a
particular hashtag. All the tweets with a given hashtag will be printed on the console. This
is a very simple bot to help us get started. In the following sections, we will explore more
complex bots.

Go to the root directory and create a new Node.js program using npm init:1.

The News Bot Chapter 7

[262]

Execute the npm install twitter --save command to install the Twitter2.
Node.js library:

Run npm install request --save to install the Request library as well. We
will use this in the future to make HTTP GET requests to a news data source.

Explore your package.json file in the root directory:3.

{
 "name": "twitterbot",
 "version": "1.0.0",
 "description": "my news bot",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "request": "^2.81.0",
 "twitter": "^1.7.1"
 }
}

Create an index.js file with the following code:4.

//index.js

var TwitterPackage = require('twitter');
var request = require('request');

console.log("Hello World! I am a twitter bot!");

The News Bot Chapter 7

[263]

var secret = {
 consumer_key: 'YOUR_CONSUMER_KEY',
 consumer_secret: 'YOUR_CONSUMER_SECRET',
 access_token_key: 'YOUR_ACCESS_TOKEN_KEY',
 access_token_secret: 'YOUR_ACCESS_TOKEN_SECRET'
}

var Twitter = new TwitterPackage(secret);

In the preceding code, put the keys and tokens you saved in their appropriate
variables. We don't need the request package just yet, but we will later.

Now let's create a hashtag listener to listen to the tweets on a specific hashtag:5.

//Twitter stream

var hashtag = '#brexit'; //put any hashtag to listen e.g. #brexit
console.log('Listening to:' + hashtag);
Twitter.stream('statuses/filter', {track: hashtag},
function(stream) {
 stream.on('data', function(tweet) {
 console.log('Tweet:@' + tweet.user.screen_name +
 '\t' + tweet.text);
 console.log('------')
 });
 stream.on('error', function(error) {
 console.log(error);
 });
});

Replace #brexit with the hashtag you want to listen to. Use a popular one so that
you can see the code in action.

Run the index.js file with the node index.js command.6.
You will see a stream of tweets from Twitter users all over the globe who used7.
the hashtag:

The News Bot Chapter 7

[264]

Congratulations! You have built your first Twitter bot. We will use the hashtag listening
module later in this chapter to build a more complex bot.

Exploring the Twitter SDK
In the previous section, we explored how to listen to tweets based on hashtags. Let's now
explore the Twitter SDK to understand the capabilities that we can bestow upon our Twitter
bot.

Updating your status
You can also update your status on your Twitter timeline by using the following status
update module code:

tweet ('I am a Twitter Bot!', null, null);

function tweet(statusMsg, screen_name, status_id){

The News Bot Chapter 7

[265]

 console.log('Sending tweet to: ' + screen_name);
 console.log('In response to:' + status_id);
 var msg = statusMsg;
 if (screen_name != null){
 msg = '@' + screen_name + ' ' + statusMsg;
 }
 console.log('Tweet:' + msg);
 Twitter.post('statuses/update', {
 status: msg
 }, function(err, response) {
 // if there was an error while tweeting
 if (err) {
 console.log('Something went wrong while TWEETING...');
 console.log(err);
 }
 else if (response) {
 console.log('Tweeted!!!');
 console.log(response)
 }
 });
}

Comment out the hashtag listener code and instead add the preceding status update code
and run it. When run, your bot will post a tweet on your timeline:

In addition to tweeting on your timeline, you can also tweet in response to another tweet (or
status update). The screen_name argument is used to create a
response. tweet. screen_name is the name of the user who posted the tweet. We will
explore this a bit later.

The News Bot Chapter 7

[266]

Retweet to your followers
You can retweet a tweet to your followers using the following retweet status code:

var retweetId = '899681279343570944';
retweet(retweetId);

function retweet(retweetId){
 Twitter.post('statuses/retweet/', {
 id: retweetId
 }, function(err, response) {
 if (err) {
 console.log('Something went wrong while RETWEETING...');
 console.log(err);
 }
 else if (response) {
 console.log('Retweeted!!!');
 console.log(response)
 }
 });
}

Searching for tweets
You can also search for recent or popular tweets with hashtags using the following search
hashtags code:

search('#brexit', 'popular')
function search(hashtag, resultType){
 var params = {
 q: hashtag, // REQUIRED
 result_type: resultType,
 lang: 'en'
 }

 Twitter.get('search/tweets', params, function(err, data) {
 if (!err) {
 console.log('Found tweets: ' + data.statuses.length);
 console.log('First one: ' + data.statuses[1].text);
 }
 else {
 console.log('Something went wrong while SEARCHING...');
 }
 });
}

The News Bot Chapter 7

[267]

Exploring a news data service
Let's now build a bot that will tweet news articles to its followers at regular intervals. We
will then extend it to be personalized by users through a conversation that happens over
direct messaging with the bot. In order to build a news bot, we need a source where we can
get news articles. We are going to explore a news service called NewsAPI.org in this
section. NewsAPI is a service that aggregates news articles from roughly 70 newspapers
around the globe.

Setting up NewsAPI
Let us set up an account with the NewsAPI data service and get the API key:

Go to newsapi.org:1.

Click Get API key.2.
Register using your email.3.
Get your API key.4.

https://newsapi.org/

The News Bot Chapter 7

[268]

Explore the sources:5.
https://newsapi.org/v1/sources?apiKey=YOUR_API_KEY.

There are about 70 sources from across the globe including popular ones such as
BBC News, Associated Press, Bloomberg, and CNN. You might notice that each
source has a category tag attached. The possible options are: business,
entertainment, gaming, general, music, politics, science-and-nature, sport, and
technology. You might also notice that each source also has language (en, de, fr)
and country (au, de, gb, in, it, us) tags. The following is the information on the
BBC-News source:

{
 "id": "bbc-news",
 "name": "BBC News",
 "description": "Use BBC News for up-to-the-minute news,
 breaking news, video, audio and feature stories.
 BBC News provides trusted World and UK news as well as
 local and regional perspectives. Also entertainment,
 business, science, technology and health news.",
 "url": "http://www.bbc.co.uk/news",
 "category": "general",
 "language": "en",
 "country": "gb",
 "urlsToLogos": {
 "small": "",
 "medium": "",
 "large": ""
 },
 "sortBysAvailable": [
 "top"
]
}

Get sources for a specific category, language, or country using:6.

https://newsapi.org/v1/sources?category=business&apiKey=YOUR_AP
I_KEY

The following is the part of the response to the preceding query asking for all
sources under the business category:

"sources": [
 {
 "id": "bloomberg",
 "name": "Bloomberg",
 "description": "Bloomberg delivers business

The News Bot Chapter 7

[269]

 and markets news, data, analysis, and video
 to the world, featuring stories from Businessweek
 and Bloomberg News.",
 "url": "http://www.bloomberg.com",
 "category": "business",
 "language": "en",
 "country": "us",
 "urlsToLogos": {
 "small": "",
 "medium": "",
 "large": ""
 },
 "sortBysAvailable": [
 "top"
]
 },
 {
 "id": "business-insider",
 "name": "Business Insider",
 "description": "Business Insider is a fast-growing
 business site with deep financial, media, tech, and
 other industry verticals. Launched in 2007, the
 site is now the largest business news site on the web.",
 "url": "http://www.businessinsider.com",
 "category": "business",
 "language": "en",
 "country": "us",
 "urlsToLogos": {
 "small": "",
 "medium": "",
 "large": ""
 },
 "sortBysAvailable": [
 "top",
 "latest"
]
 },
 ...
]

Explore the articles:7.

https://newsapi.org/v1/articles?source=bbc-news&apiKey=YOUR_API
_KEY

The News Bot Chapter 7

[270]

The following is the sample response:

"articles": [
 {
 "author": "BBC News",
 "title": "US Navy collision: Remains found in
 hunt for missing sailors",
 "description": "Ten US sailors have been missing since Monday's
 collision with a tanker near Singapore.",
 "url": "http://www.bbc.co.uk/news/world-us-canada-41013686",
 "urlToImage":
 "https://ichef1.bbci.co.uk/news/1024/cpsprodpb/80D9/
 production/_97458923_mediaitem97458918.jpg",
 "publishedAt": "2017-08-22T12:23:56Z"
 },
 {
 "author": "BBC News",
 "title": "Afghanistan hails Trump support in 'joint struggle'",
 "description": "President Ghani thanks Donald Trump for
 supporting Afghanistan's battle against the
 Taliban.",
 "url": "http://www.bbc.co.uk/news/world-asia-41012617",
 "urlToImage":
 "https://ichef.bbci.co.uk/images/ic/1024x576/p05d08pf.jpg",
 "publishedAt": "2017-08-22T11:45:49Z"
 },
 ...
]

For each article, the author, title, description, url, urlToImage,, and
publishedAt fields are provided. Now that we have explored a source of news data that
provides up-to-date news stories under various categories, let us go on to build a news bot.

Building a Twitter news bot
Now that we have explored NewsAPI, a data source for the latest news updates, and a little
bit of what the Twitter API can do, let us combine them both to build a bot tweeting
interesting news stories, first on its own timeline and then specifically to each of its
followers:

Let's build a news tweeter module that tweets the top news article given the1.
source. The following code uses the tweet() function we built earlier:

topNewsTweeter('cnn', null);

The News Bot Chapter 7

[271]

function topNewsTweeter(newsSource, screen_name, status_id){
 request({
 url: 'https://newsapi.org/v1/articles?source='
 + newsSource +
 '&apiKey=YOUR_API_KEY',
 method: 'GET'
 },
 function (error, response, body) {
 //response is from the bot
 if (!error && response.statusCode == 200) {
 var botResponse = JSON.parse(body);
 console.log(botResponse);
 tweetTopArticle(botResponse.articles, screen_name);
 } else {
 console.log('Sorry. No new');
 }
 });
}

function tweetTopArticle(articles, screen_name, status_id){
 var article = articles[0];
 tweet(article.title + " " + article.url, screen_name);
}

Run the preceding program to fetch news from CNN and post the topmost article
on Twitter:

The News Bot Chapter 7

[272]

Here is the post on Twitter:

Now, let us build a module that tweets news stories from a randomly-chosen2.
source in a list of sources:

function tweetFromRandomSource(sources, screen_name, status_id){
 var max = sources.length;
 var randomSource = sources[Math.floor(Math.random() *
 (max + 1))];
 //topNewsTweeter(randomSource, screen_name, status_id);
}

Let's call the tweeting module after we acquire the list of sources:3.

function getAllSourcesAndTweet(){
 var sources = [];
 console.log('getting sources...')
 request({
 url: 'https://newsapi.org/v1/sources?

The News Bot Chapter 7

[273]

 apiKey=YOUR_API_KEY',
 method: 'GET'
 },
 function (error, response, body) {
 //response is from the bot
 if (!error && response.statusCode == 200) {
 // Print out the response body
 var botResponse = JSON.parse(body);
 for (var i = 0; i < botResponse.sources.length;
 i++){
 console.log('adding.. ' +
 botResponse.sources[i].id)
 sources.push(botResponse.sources[i].id)
 }
 tweetFromRandomSource(sources, null, null);
 } else {
 console.log('Sorry. No news sources!');
 }
 });
}

Let's create a new JS file called tweeter.js. In the tweeter.js file, call4.
getSourcesAndTweet() to get the process started:

//tweeter.js

var TwitterPackage = require('twitter');
var request = require('request');

console.log("Hello World! I am a twitter bot!");

var secret = {
 consumer_key: 'YOUR_CONSUMER_KEY',
 consumer_secret: 'YOUR_CONSUMER_SECRET',
 access_token_key: 'YOUR_ACCESS_TOKEN_KEY',
 access_token_secret: 'YOUR_ACCESS_TOKEN_SECRET'
}

var Twitter = new TwitterPackage(secret);
getAllSourcesAndTweet();

Run the tweeter.js file on the console. This bot will tweet a news story every5.
time it is called. It will choose top news stories from around 70 news sources
randomly.

The News Bot Chapter 7

[274]

Building a personalized news bot
We now have a news bot that tweets news (or posts status updates) on its own timeline. We
will look at how to set it to run on a regular basis in a little while. Let us now build a more
interesting bot that can tweet to its followers using the news stories that they might like. In
other words, let's personalize the news:

Let's assume that we have information about the users and their interests. Add1.
the following to the tweeter.js file. For now, we are hardcoding the user
interests information into the code itself. Later we will see how they can be stored
and retrieved from a database:

var userInterests = [{'screen_name':'srinivasancj',
 'user_interest': 'technology'}];

Create a tweetUserSpecificNews module that uses userInterests to get the2.
category-specific sources. Call tweetUserSpecificNews() after
getAllSourcesAndTweet():

tweetUserSpecificNews();

function tweetUserSpecificNews(){
console.log('Tweeting personalised news');
 for (var i=0; i < userInterests.length; i++){
 var user = userInterests[i];
 var screen_name = user.screen_name;
 var interest = user.user_interest;
 var status_id = user.in_reply_to_status_id;
 //get sources
 request({
 url: 'https://newsapi.org/v1/sources?category=' +
 interest +
 '&apiKey=YOUR_API_KEY',
 method: 'GET'
 },
 function (error, response, body) {
 if (!error && response.statusCode == 200) {
 // Print out the response body
 var botResponse = JSON.parse(body);
 console.log(botResponse);
 var sources = [];
 for (var i = 0; i < botResponse.sources.length;
 i++)
 {
 console.log('adding.. ' +

The News Bot Chapter 7

[275]

 botResponse.sources[i].id)
 sources.push(botResponse.sources[i].id)
 }
 tweetFromRandomSource(sources, screen_name,
 status_id);
 } else {
 console.log('Sorry. No news in this category.');
 }
 });
 }
}

By specifying the screen_name of a tweet from the user, the tweets sent by the
bot are treated as a response to the user's original tweet. Therefore these tweets
don't end up on the bot's timeline. Instead they are sent directly to the user and
therefore personalized to the user.

Now that we have a bot that, when run, updates its own timeline with a random3.
news article and sends personalized news to its followers, let's make it run
automatically on a regular basis, say, once an hour. To do this, we first need to
create a web app and push it on to the Cloud.
Create a bin folder and move the tweeter.js file into the bin folder.4.
Rename the tweeter.js file to tweeter. And add the following code as the first5.
line. This is to tell Heroku which interpreter program to use to run the script:

#!/usr/bin/env node

In the project root directory, create a file named Procfile with the following6.
code:

web: node index.js

Create a local Git repository for the project, add files, and make an initial commit.7.
Type the following command on the console:

> git init
> git add .
> git commit -m initial-commit-personalised-bot

Create a Heroku app:8.

> heroku create my-twitter-bot

The News Bot Chapter 7

[276]

Push the app onto Heroku Cloud:9.

> git push heroku master

Add a Heroku Scheduler:10.

> heroku addons:add scheduler

Open your Heroku Dashboard on a browser:11.

https:/ / dashboard. heroku. com/ apps

Choose your Twitter bot app and open the app's dashboard.12.
In the Overview tab, under Installed add-ons, you will find the Heroku13.
Scheduler add-on listed. Click it:

You will now see the scheduled tasks for the app. Since we have just created this14.
app, you won't see any. Click Add new job:

https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps
https://dashboard.heroku.com/apps

The News Bot Chapter 7

[277]

Type the name of the program that needs to run on a scheduled basis, in our case15.
it is tweeter, and click Save:

The scheduler will now run the tweeter program on a regular basis, sending16.
personalized news to subscribed users:

The News Bot Chapter 7

[278]

Creating a database of user interests
Now that we have a web app that runs regularly, tweeting personalized news to users, let's
move on to the next obvious step, which is creating a database where the Twitter bot can
pick up user information. Currently, we have hardcoded this information into the bot,
which is not ideal. To create a database, let us use a MongoDB hosting service called
mlab.com.

Be aware that for legal reasons, if you decide to make the bot publicly
available, you may have to inform users that the bot will store users'
personal information.

To create a database for the twitter bot, follow these steps:

Go to www.mlab.com. Click SIGN UP:1.

https://mlab.com/

The News Bot Chapter 7

[279]

Fill in your details and click Create Account.2.
Verify your email by clicking the link that they send you. This will take you to the3.
account dashboard:

We need a MongoDB deployment. So, on the dashboard, click Create new:4.

Choose any Cloud provider you like from the following three choices: amazon5.
web services, Google Cloud Platform, or Microsoft Azure.

Click SANDBOX. Sandbox is a type of environment where you can play and6.
practice with deployments before you move them on to production.
Click CONTINUE:

The News Bot Chapter 7

[280]

Choose the AWS region and click CONTINUE:7.

Provide the final details, database name, and click CONTINUE:8.

The News Bot Chapter 7

[281]

Check the details and click SUBMIT ORDER to finish:9.

You have now created a database called twitterbot, which can be used to store
information concerning user interests.

Create a new collection by double-clicking the twitterbot database entry: 10.

Click Add collection. Create a collection called users.11.
Now, in order to connect to a database, we need to define its users. To create a12.
user, click the Users tab (next to Collections).
Click Add database user.13.
Create a new database user.14.

The News Bot Chapter 7

[282]

Get the URL of the database. It looks like this one:15.

mongodb://<dbuser>:<dbpassword>@ds111804.mlab.com:11804/twitter
bot

Replace <dbuser> and <dbpassword> with the user ID and password of the new
database user that you just created. Hang on to this.

Let's add some data into the users collection for the Twitter bot to read. Click the16.
Collections tab and then the users collection.
Click Add document. Type the JSON object from the user_interests list.17.
Click Create and go back:

The News Bot Chapter 7

[283]

Now you have your documents added to the collection:18.

Great! Now we have a MongoDB document database in the Cloud (Mlab.com) to store
information about user interests. Let's now figure out how to use this database to store and
retrieve information on user interests with the bot.

Accessing the user interests database
In the previous section, we created a MongoDB document database where we can store user
information that will be used by the Twitter bot to personalize news. In this section, we will
see how to connect to the database in real time with the bot.

Install the mongodb library (version 2.2.31) using the npm install command:1.

> npm install mongodb@2.2.31 --save

Test the connection by creating a Node.js program called mongodb.js with the2.
following code:

var MongoClient = require('mongodb').MongoClient;

// Connection URL
var url = 'YOUR_MONGO_DB_URI';

https://mlab.com/

The News Bot Chapter 7

[284]

// Use connect method to connect to the server
MongoClient.connect(url, function(err, db) {
 console.log("Connected successfully to server");
 db.close();
});

Run it to see whether the program is able to connect to your database.3.
Add a function to the mongodb.js program to fetch all documents in your4.
collection:

function findDocuments(db, callback) {
 // Get the documents collection
 var collection = db.collection('users');
 // Find documents
 collection.find({}).toArray(function(err, docs) {
 callback(docs);
 });
}

Replace the db.close() call in mongodb.js with a call to the preceding5.
function, as shown here:

var userInterests = [];

// Use connect method to connect to the server
MongoClient.connect(url, function(err, db) {
 console.log("Connected successfully to server");
 findDocuments(db, function(docs) {
 for (var i = 0; i < docs.length; i++){
 var user = {};
 user.screen_name = docs[i].screen_name;
 user.user_interest = docs[i].user_interest;
 userInterests.push(user);
 }
 db.close();
 console.log(userInterests);
 });
});

Run it to see whether it fetches the document that we put into the collection:6.

The News Bot Chapter 7

[285]

You should be able to see the document that we already stored in the users
collection. Later we will see how to put more user data into the collection using
the Twitter bot.

Now that we are able to successfully read user interests, let's wire this up to the7.
bot so that it can send personalized news to users based on the information it
finds in the database.
Open the tweeter program in the bin folder. Replace8.
the userInterests variable declaration with the following:

var MongoClient = require('mongodb').MongoClient;
// Connection URL
var url = 'YOUR_MONGO_DB_URI';
var userInterests = [];
loadUserData();

Let's define the loadUserData() function that will load the user data from the9.
document database:

function loadUserData(){
 // Use connect method to connect to the server
 MongoClient.connect(url, function(err, db) {
 console.log("Connected successfully to server");

 findDocuments(db, function(docs) {
 //console.log("Found the following records");
 for (var i = 0; i < docs.length; i++){
 var user = {};
 user.screen_name = docs[i].screen_name;
 user.user_interest = docs[i].user_interest;
 userInterests.push(user);
 }
 db.close();
 console.log(userInterests);
 //tweet to those followers who have
 //expressed interest in specific categories
 tweetUserSpecificNews();
 });
 });
}

Notice how tweetUserSpecificNews() is now called after loading the10.
userInterests array with data from the database. Remove the call to this
function if one exists outside the loadUserData() function.

The News Bot Chapter 7

[286]

Run the program on the console (in the bin folder) to see it in action:11.

> node tweeter

This will fetch user interests from the database, query for all sources, pick out
user-specific sources, randomly select one, and tweet the top news article from the
selected source:

Great! We are now one step closer to a conversational Twitter bot. The only piece of the
puzzle that's missing is a way to tell the bot what the user is interested in without having to
manually create documents in the database.

Informing the bot of user interests
Wouldn't it be interesting to have users tweet the bot about what they are and are not
interested in? The bot could then personalize the news based on what the users say they
like. The tweet conversation could go like the one shown here:

User > I am interested in politics.
Bot tweets political news every hour.
User > Send me technology news.
Bot tweets technology and political news every hour.
User > Stop sending political news to me.
Bot tweets technology news every hour.

The News Bot Chapter 7

[287]

To make this Twitter conversation possible, we need a listener that listens to tweets sent to
the bot by users informing it of their interests. This information, in natural language, needs
to be parsed, understood, and updated in the database. The hourly tweeter would tweet
personalized news based on the information it gets from the database. Sound good? Let's
get cracking on the tweet listener:

Open the index.js file. Retain the code for importing the Twitter library and1.
setting up the credentials:

var TwitterPackage = require('twitter');
var request = require('request');

var secret = {
 consumer_key: 'YOUR_CONSUMER_KEY',
 consumer_secret: 'YOUR_CONSUMER_SECRET',
 access_token_key: 'YOUR_ACCESS_TOKEN_KEY',
 access_token_secret: 'YOUR_ACCESS_TOKEN_SECRET'
}

var Twitter = new TwitterPackage(secret);
console.log("Hello World! I am a twitter bot!");

Set up a tweet listener to listen to all tweets sent to the bot. My bot's Twitter2.
handle is @chatbotguru:

//listening to incoming tweets
Twitter.stream('user', {}, function(stream) {
 stream.on('data', function(tweet) {
 console.log(tweet);
 var ct = /@chatbotguru/i;
 var userUtt = 'null';
 if (tweet.text.search(ct) != -1){
 userUtt = tweet.text.replace(ct, '');
 console.log('Tweet Msg:' + userUtt);
 console.log('Tweet from:' + '@' +
 tweet.user.screen_name);
 }
 });
});

Run the code. 3.

> node index.js

The News Bot Chapter 7

[288]

Send a tweet from your personal Twitter account to your bot's account. For4.
example, @chatbotguru I am interested in business news. This tweet
will be received by the listener that we have just set up:

You should be able to see the tweet received by the bot on your Twitter app, too:

Now let's work on the message that we have received from the user. Let's5.
examine the utterance for the topic of interest (politics, business, and so on) and
the sentiment conveyed (interested/not interested). This is then used to insert or
delete the user interest record in the database:

if (tweet.text.search(ct) != -1){
 userUtt = tweet.text.replace(ct, '');
 console.log('Tweet Msg:' + userUtt);
 console.log('Tweet from:' + '@' + tweet.user.screen_name);

 var userInterest = getInterestedGenre(userUtt);
 var userSentiment = getSentiment(userUtt);

 var user = { 'screen_name' : tweet.user.screen_name,
 'user_interest' : userInterest};

 console.log(user);

The News Bot Chapter 7

[289]

 // Use connect method to connect to the server
 MongoClient.connect(url, function(err, db) {
 console.log("Connected successfully to server");
 var collection = db.collection('users');
 if (userSentiment == 'positive'){
 collection.insertMany([user], function(err, result) {
 if (err){
 console.log(err);
 } else {
 console.log("Inserted a user interest into the
 collection");
 db.close();
 }
 });
 } else {
 collection.deleteOne(user, function(err, result) {
 console.log(err);
 console.log("Deleted a user interest from
 the collection");
 db.close();
 });
 }
 });
}

Let's define the getInterestedTopic() and getSentiment() functions:6.

function getSentiment(text){
 if (text.search('not interested') != -1){
 return 'negative';
 }
 if (text.search('no more') != -1){
 return 'negative';
 }
 if (text.search('don\'t send') != -1){
 return 'negative';
 }
 if (text.search('no ') != -1){
 return 'negative';
 }
 if (text.search('dont like ') != -1){
 return 'negative';
 }
 if (text.search('unsubscribe ') != -1){
 return 'negative';
 }
 if (text.search('don\'t follow ') != -1){

The News Bot Chapter 7

[290]

 return 'negative';
 }
 if (text.search('stop ') != -1){
 return 'negative';
 }
 return 'positive';
}

function getInterestedGenre(text){
 if (text.search('tech') != -1 ||
 text.search('technology') != -1){
 return 'technology';
 }
 else if (text.search('all kinds') != -1){
 return 'general';
 }
 else if (text.search('politics') != -1 ||
 text.search('political') != -1){
 return 'politics';
 }
 else if (text.search('sports') != -1){
 return 'sport';
 }
 else if (text.search('business') != -1){
 return 'business';
 }
}

These are very simple definitions to start with. You could use NLU toolkits, such
as API.AI, to understand user utterances for more complex functionality.

For the preceding code to work, we also need to import the MongoDB library and7.
set it up in the index.js file:

var MongoClient = require('mongodb').MongoClient;
var url = 'YOUR_MONGO_DB_URI';

The News Bot Chapter 7

[291]

Run the code again, send a tweet, and see how it works. You will be able to see8.
that the bot is now able to insert/delete records from the database. Go back to
mlab.com and have a look:

That's it! Your hourly tweeter will now be able to pick up the updates in the database and
tweet personalized news to all its users. Lastly, push the changes to Heroku Cloud so that
you don't have to keep the index.js file running on your local machine.

Summary
Hurray! You have built your very own conversational Twitter bot. I would strongly
recommend that you take this further and explore other kinds of conversation that you can
possibly have with the bot. How about having the bot search and retweet hashtags
automatically for you? How would you use metrics, such as retweet counts, follower
numbers, and like counts, to qualify a tweet for retweeting? Explore these questions to build
better and more useful Twitter bots.

In this chapter, we have covered a lot. We started off with the Twitter API and got a taste of
how we can automatically tweet, retweet, and search for tweets using hashtags. We then
explored a News source API that provides news articles from about 70 different
newspapers. We integrated it with our Twitter bot to create a new tweeting bot. We
explored how to personalize it for users by using user interest tags stored in a MongoDB
database.

https://mlab.com/

The News Bot Chapter 7

[292]

We finally explored how to close the loop by building a mechanism to enable the bot to
receive tweets on users' interests and have them stored in the database. I hope I gave you an
understanding of how useful Twitter bots can be and motivated you to build more of them.
In the next chapter, we will look at how to build a voice bot skill on Amazon Echo.

References
Twitter API documentation: https:/ / developer. twitter. com/ en/ docs

MongoDB documentation: http:/ /docs. mlab. com/

https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs
http://docs.mlab.com/
http://docs.mlab.com/
http://docs.mlab.com/
http://docs.mlab.com/
http://docs.mlab.com/
http://docs.mlab.com/
http://docs.mlab.com/
http://docs.mlab.com/
http://docs.mlab.com/
http://docs.mlab.com/

8
My TV Guide

In this chapter, we will explore a new genre of assistants that are taking over the world,
voice-powered home assistants. These are AI-powered chatbots that assume the
functionality of your assistant at home. They sit on a table in your living room and interact
with you using voice. They are called smart speakers but they are not just speakers. They are
assistants, much like the ones we have explored in the earlier chapters, but with an
embodiment of their own. One of the more popular ones is called Alexa, and is made
by Amazon. While the embodiment, which is that of a speaker, is called Echo, the assistant is
called Alexa.

There are other smart speakers on the market (for example, Google Home). However,
Amazon Echo seems to be leading the race with a market share of around 70% in 2017. The
use of smart speaker home assistants is also projected to grow exponentially over time
(https://www.emarketer. com/ Article/ Alexa- Say- What- Voice- Enabled- Speaker- Usage-
Grow-Nearly-130- This- Year/ 1015812). In this chapter, let's explore how to extend Alexa's
skill set by building our own skills. We will first build a simple skill that can retrieve an
inspiring quote to brighten your day. Then we will move on to building a skill where Alexa
can help you with your TV schedule for the day.

By the end of this chapter, you will be able to:

Understand the basics of Amazon Alexa
Understand and build slot, intents, and interaction models
Understand built-in slots and intents
Build a conversation management server on Heroku and integrate it with Alexa
Integrate data sources, Quote.rest, and the TVMaze API to the conversation
manager
Deploy skills on Amazon Echo

https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812
https://www.emarketer.com/Article/Alexa-Say-What-Voice-Enabled-Speaker-Usage-Grow-Nearly-130-This-Year/1015812

My TV Guide Chapter 8

[294]

Amazon Alexa
Amazon Alexa has its own development platform that allows developers to teach it new
skills. Skills are nothing but conversational capabilities that can be custom-built into Alexa
using a combination of Amazon's toolkit with our own. You do not actually need the
Amazon Echo smart speaker to get started, but it would be great if you had one. Amazon
Echo comes in three sizes: Amazon Echo, Amazon Echo Dot, and Amazon Echo Show. Echo
Dot is the most basic version and is priced at £49 at the time of writing. This would suffice
for a developer to develop and test custom-developed skills:

Source:Amazon.co.uk

The Alexa ecosystem also includes a skill store where custom skills can be published.
Published skills can be browsed and installed on your Alexa, thereby adding to Alexa's skill
set. This can be done either on Alexa's companion website (alexa.amazon.com), on the
Amazon Alexa app on Google Play/iTunes store, or the Amazon site
(www.amazon.com/alexa-skills/). Alexa connects to your Amazon account and can have a
chat with you about many things: setting timers, weather info, currency rates, making a to-
do or a shopping list, playing music, reading a book, ordering from Amazon, and so on. Go
on and try the following with Alexa, once you have set it up:

Alexa, what time is it?
Alexa, how is the weather?
Alexa, what is the news update?
Alexa, tell me a joke.
Alexa, add eggs to my shopping list.

https://www.amazon.com
http://www.amazon.com/alexa-skills/

My TV Guide Chapter 8

[295]

Warming up with a quotes bot
To get started, you need an Amazon developer account. Sign up at the following1.
URL:

https:// developer. amazon. com/ home. html

Once you have signed up, log in. 2.
On the dashboard, click ALEXA:3.

Choose Alexa Skills Kit and click Get Started:4.

https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html

My TV Guide Chapter 8

[296]

To create a new skill, click Add a New Skill:5.

Creating an Alexa skill is a two-phase process:

Configuring the skill on the developer portal.1.
Creating a conversation management module.2.

Configuring your skill
In order to explore the toolkit, we will use an example scenario of building a skill that
delivers an inspiring quote every day. So the conversation between the user and Alexa may
go like the following:

User: Alexa! Ask quote master to inspire me.
Alexa: The whole is greater than the sum of its parts.

On the developer portal, we will have to go through the following seven step process to
configure the skill and its interaction model:

My TV Guide Chapter 8

[297]

In the skill configuration form, leave the skill type as Custom Interaction Model:1.

Choose the language. This will be the language of your skill. Currently Alexa2.
supports English (US, UK, and India) and German.
Give it a name, say, Quote Master. This will be the name of the skill as it3.
appears on the Alexa app for other Alexa users to install on their own Echo
devices.
Give it an invocation name, say, Quote Master. The invocation name is how the4.
skill will get invoked by Alexa. Guidelines to choose invocation names are
available at the following URL:

https:// developer. amazon. com/ docs/ custom- skills/ choose- the- invocation-
name-for- a- custom- skill. html#invocation- name- requirements

You can install a number of skills on your Alexa, however two skills cannot have
the same invocation name. In the case of a conflict, this will be highlighted when
installing a new skill whose invocation name is already taken.

https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements
https://developer.amazon.com/docs/custom-skills/choose-the-invocation-name-for-a-custom-skill.html#invocation-name-requirements

My TV Guide Chapter 8

[298]

Leave the other fields to their default values, click Save, and then click Next:5.

Interaction model
Before we start building the interaction model, let us understand a few basic concepts. The
interaction model is the place where we specify the kind of utterances that Alexa needs to
be able to decode for the skill. This is specified in terms of intents and examples. Intents
represent the number of requests and responses that the user might have when interacting
with the skill. Each intent can be expressed in many ways. For instance, the user may want
to offer a greeting, and could say any of the following:

hi

hi there

hello there

what's up

good day

My TV Guide Chapter 8

[299]

The aforementioned are examples, while intent can be collectively named as greet:

Click Launch Skill Builder:1.

This will launch the skills building toolkit and display the dashboard:2.

Under the Intents tab, you can see that the skill already has three intents added by
default: CancelIntent, HelpIntent, and StopIntent. These three are built-in intents
and are added by default to every skill. This means that your skill can already
understand requests to cancel, help, and stop.

My TV Guide Chapter 8

[300]

The alternative to the dashboard view is to view the same information in code
format by clicking the Code Editor option:

To create a new intent, click ADD + along the Intents tab:3.

There are two kinds of intents that can be created or added to the skill. There are4.
built-in intents that can be added. These are pre-defined intents that can simply
be reused. This saves developers a lot of time redefining them for each skill they
build. On the other hand, we can custom design intents tailored to the needs of
our skill:

My TV Guide Chapter 8

[301]

Click Use an existing intent from the built-in library to browse through the list5.
of predefined intents:

My TV Guide Chapter 8

[302]

Click Create a new custom intent. Type the name of the intent,6.
say, GetQuote and click Create Intent:

Add a few sample utterances. These are the example utterances we discussed7.
earlier. Type each of the utterances and click + or type return to add it to the list
of example utterances for a given intent:

My TV Guide Chapter 8

[303]

Let's add one more intent to make this interesting: GetAuthor. This intent will8.
ask Alexa to retrieve the name of the author of the quote it just uttered:

Click Save Model, then Build Model, and allow a few minutes for the interaction9.
model to build:

My TV Guide Chapter 8

[304]

Now that we have specified the requests in terms of sample user utterances and10.
intents, click Skill Information to go back to the Skills Configuration panel. On
the side menu, click Configuration:

This brings us to the next part of the development, where we need to build a11.
module to manage the conversation. In this step, we are configuring the endpoint
where the conversation manager can be found. We have two options: AWS and
HTTPS. In the case of AWS, you need to create an AWS Lambda service to host a
server endpoint. In case of HTTPS, we can host as a web server in any cloud
platform we want. We will take the HTTPS option here.
In the following Default text field, enter the URL of the web app for your skill's12.
conversation manager. Since we haven't built one, enter an indicative URL for
now (for example, https://my-first-alexa-bot.herokuapp.com/alexa).
Ignore the other parameters for now and click Next.
On the SSL certificate panel, click Next and move forward to Test.13.

My TV Guide Chapter 8

[305]

On the Test panel, we can test whether Alexa can recognize the utterances that14.
we want her to recognize and classify their intents accurately. Scroll down to the
Service Simulator tab:

You will notice the HTTPS endpoint that you set in the Server Endpoint is
specified.

Type an utterance in the Text tab and click the Ask <skillname> button15.
underneath:

My TV Guide Chapter 8

[306]

You will see that Alexa has parsed the utterance and identified the intent. This is16.
presented in the form of a JSON object on the left (Service Request):

...
"request": {
 "type": "IntentRequest",
 "requestId": "EdwRequestId.a6845d2d-2901-4e8c-b260-
 3a3a89bd5068",
 "intent": {
 "name": "GetQuote",
 "slots": {}
 },
 "locale": "en-GB",
 "timestamp": "2017-10-11T07:45:24Z"
 },
...

On the right (Service Response), there will be an error message, because the endpoint that
we have specified does not exist yet. This endpoint needs to process the JSON request and
respond with an utterance that Alexa can say back to the user.

Conversation manager - quotes
Conversation manager is a web application that can receive Alexa's intent results and
respond with a bot response. Let us create a Node.js web app that can accept the intents that
we have specified in our skill and respond appropriately. To build the module, perform the
following steps:

Create a package.json file using npm init:1.

> npm init

Install express, request, body-parser, and hashmap:2.

> npm install request --save
> npm install express --save
> npm install body-parser --save
> npm install hashmap --save

Create an index.js file:3.

/*
* Alexa
*/

My TV Guide Chapter 8

[307]

const request = require('request')
const express = require('express')
const bodyParser = require('body-parser')

const app = express()

const Hashmap = require('hashmap');

var userContexts = new Hashmap();

app.set('port', (process.env.PORT || 5000))

// Process application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({extended: false}))

// Process application/json
app.use(bodyParser.json())

// Index route
app.get('/', function (req, res) {
 res.send('Hello world, I am Quote Master.')
})

// Spin up the server
app.listen(app.get('port'), function() {
 console.log('running on port', app.get('port'))
}

Add a POST route handler to handle the requests from Alexa. The following code4.
has place holders that we will fill in with appropriate code in subsequent steps:

app.post('/alexa', function (req, res) {
 console.log('Request from Alexa:');
 console.log(req.body);
 //1. add context code here

 //2. get userIntent from request

 //3. set default return json object
 //4. dialogue management code to decide what to
 //say in response to user intents.
})

My TV Guide Chapter 8

[308]

Let's create a local context variable to store all the information that we need. This5.
variable can be used to collect all the data that needs to be shared across a
session. To store information locally during the turn, we use
the sessionContext variable. This gets loaded from a userContexts global
variable, which is a hashmap holding all session contexts. Alexa presents user
intents each time with a session ID that is the same across a session. So, we can
use the session ID in order to store and retrieve its context in
the userContexts global variable:

 var sessionContext = {
 'lastUserIntent': 'null',
 'lastQuote': null
 };
 var sessionId = req.body.session.sessionId;
 if (!userContexts.get(sessionId)){
 userContexts.set(sessionId, sessionContext);
 } else {
 sessionContext = usercontexts.get(sessionId);
 }

We identify the user intent from the request6.
(req.body.request.intent.name). However, when there is a timeout and
Alexa ends the session, it returns SessionEndedRequest, which needs to be
handled appropriately. We handle it similarly to the
following Amazon.StopIntent:

 var userIntent = '';
 if (req.body.request.type === 'SessionEndedRequest'){
 userIntent = 'AMAZON.StopIntent';
 } else {
 userIntent = req.body.request.intent.name;
 }
 console.log('UserIntent:' + userIntent);

Let's now prepare a default JSON to return. The following is the format of a7.
return JSON. The ssml key contains the Speech Synthesis Markup Language
(SSML) response with embedded text. The text is what Alexa synthesizes in
response to the user's request:

 var rjson = {
 "version": "1.0",
 "response": {
 "shouldEndSession": false,
 "outputSpeech": {

My TV Guide Chapter 8

[309]

 "type": "SSML",
 "ssml": "<speak> Whole is larger than
 the sum of its parts!</speak>"
 }
 }
 };

The default SSML response needs to be overwritten with a response appropriate8.
to the user's request. So if the user is asking for a quote, we need to get them a
new inspiring quotation, but if they ask for its author, we need to respond with
the name of the author. This dialogue management logic is what we will code
next. If the user intent is to get a new quote, we make a GET request to fetch a
new quote from quotes.rest. Notice how we store the quote in context so that
if the user asks for the author of the quote, Alexa knows the answer from the
context:

if (userIntent === 'AMAZON.StopIntent'){
 rjson.response.shouldEndSession = true;
 rjson.response.outputSpeech.ssml = '<speak> Ok.
 Have a good day! </speak>';
 console.log(rjson);
 res.json(rjson);
 }
 else if (userIntent === 'GetQuote'){
 request({
 url: 'http://quotes.rest/qod.json?category=inspire',
 method: 'GET'
 },
 function (error, response, body) {
 //response is from the bot
 if (!error && response.statusCode == 200) {
 var q = JSON.parse(body).contents.quotes[0];
 var quote = {'quote': q.quote,
 'author': q.author}
 sessionContext.lastQuote = quote;
 usercontexts.set(sessionId, sessionContext);
 rjson.response.outputSpeech.ssml = '<speak>' +
 quote.quote + '</speak>';
 console.log(rjson);
 res.json(rjson);

 } else {
 console.log('Error: ' + error)
 console.log('Statuscode: ' + response.statusCode)
 }
 });

My TV Guide Chapter 8

[310]

 }
 else if (userIntent === 'GetAuthor'){

 rjson.response.outputSpeech.ssml =
 '<speak>' + sessionContext.lastQuote.author
 + '</speak>';
 console.log(rjson);
 res.json(rjson);
 }
 else {
 rjson.response.shouldEndSession = true;
 rjson.response.outputSpeech.ssml = '<speak>
 Sorry. I did not get you! </speak>';
 console.log(rjson);
 res.json(rjson);
 }

Now that we have the web app to manage the conversation, let us push it on the9.
cloud to the server endpoint that was configured in the Skill Configuration
panel:

> git init
> git add .
> git commit -m alexa-quote-bot
> heroku create my-first-alexa-bot
> git push heroku master

After carrying out the preceding instructions in your console, you will have the
conversation manager running at
https://my-first-alexa-bot.herokuapp.com/alexa. This is where Alexa
will send a POST request to. The response will be parsed and the SSML utterance
will be synthesized to the user.

My TV Guide Chapter 8

[311]

Now go back to the test panel, type a sample utterance (for example, tell me a10.
quote), and click Ask Quote Master:

My TV Guide Chapter 8

[312]

Continue the conversation. Type who said that and click Ask Quote Master:11.

This request will be identified as the GetAuthor intent and responded to with the
name of the author of the quote.

Notice that the sessionId for both the preceding requests are the same. Now12.
click Reset to reset the conversation. Any new request will have a different
sessionId.

My TV Guide Chapter 8

[313]

Test on Alexa
Congratulations! Your very first Alexa skill is ready. You can test it on your Alexa if you
have one at home. All the skills you develop will be added to your Alexa by default. You
can see this on your Alexa dashboard (alexa.amazon.com), click the Skills tab in the menu,
and Your Skills in the top right:

You will notice that Alexa waits after reading the quote for you. This is to allow the user to
make a follow-up request. This is enabled by setting shouldEndSession to false by
default. It is set to true only when the user says stop or times out without saying anything
while Alexa is waiting for a response.

http://alexa.amazon.com

My TV Guide Chapter 8

[314]

My TV guide
Let us move on to a more challenging project: building an Alexa skill to get info on TV
shows. In this task, we will build a TV skill that will enable Alexa to answer questions about
TV shows. For instance, Alexa will be able to answer the following questions.

What's next on BBC One?
What's on ITV now?
What is the show about?
Whats on ITV at 2pm?

Building the interaction model
In addition to the concepts we explored in the QuoteMaster skill, in this task we will
explore more complex conversational elements: slots. Let us follow the seven step process
from earlier to create a new skill called My TV:

Fill in the Skill Information and move on to the Interaction Model page.1.
Click Launch Skill Builder and open the dashboard. As before, you will see that2.
there are three intents in the model by default.
As you may have noticed, there are elements in the preceding questions that can3.
be enumerated and classified as entity types. For instance, BBC One, BBC Two,
and ITV can be classified as networks. In Alexa, this knowledge can be fed into
the system as slot types. To create a slot type, here is what you need to do:
Under Intents on the menu on the left, you will find Slot Types. Click ADD +:

My TV Guide Chapter 8

[315]

Img: alexa_slot_types

As with intents, there are two types of slots—built-in slots and custom slots: 4.

My TV Guide Chapter 8

[316]

We will create a custom slot called Network. Click Create Slot Type:

On this page, we will have to specify all the networks that we want Alexa to5.
identify during conversations with the user. Let's make a small list: Channel 4,
BBC One, BBC Two, and ITV. We can add more later.
Let's add the first one: BBC One. Click + at the end of the text field. Add all6.
variations of the the BBC One value, BBC 1, BBC One, and so on, as its synonyms.

My TV Guide Chapter 8

[317]

Add all the other networks in the same way:7.

Img: alexa_slot_network_filled

Let's now create the intents that use the Network slot type. Let's start with8.
GetNextProgramme. This intent corresponds to all utterances where the user
asks for the next program in a given network. An example utterance would be,
what is the next programme on BBC One?. Click Intents + and add the
sample utterances. But instead of mentioning the network in the utterance, we
need to use slot types (using {} notation), as shown here:

whats on {network} now?
what the next show on {network}
whats next on {network}?

My TV Guide Chapter 8

[318]

When you start entering the slot type in the utterance, the list of slot types pops
out from where one can be chosen, as shown here:

Although the slot network is required to carry out the task, keep it unchecked as a
required slot (checkbox under REQ) for now:

Let's add another intent: GetProgrammeAtTime. This one is for utterances where9.
the user asks for the show on a particular network at a specific time. An example
utterance would be, what show is on BBC One at 2pm.

My TV Guide Chapter 8

[319]

Create a new intent and add the following as utterance samples:

what show is on {network} at {time}
whats on {network} at {time}

Since time is not a defined slot, we will need to define it later. All slots connected
to the intent will be listed on the right, as shown here:

Click Choose a slot type... and choose AMAZON.TIME. This one of the10.
predefined slot types. Click the checkbox to make the slot required and provide a
prompt and response, as we did for the network slot:

My TV Guide Chapter 8

[320]

Add other utterances and save the model.11.
Add the final intent: GetDescription. This intent is for utterances where the12.
user wants to know more about a show. For example, the user could say, whats
the show about as a follow-up question to the preceding two intents:

This one does not have any slots attached because we are going to try to keep the
information required in the conversational context.

Add other utterances for the intent and save the model:13.

tell me more about the show
describe the show
what is the show about
whats it about

Let's test the model as we did with the QuoteMaster skill. On the test panel, type14.
a few utterances and check out how Alexa analyzes them:

My TV Guide Chapter 8

[321]

Since you don't have a server set to respond, the response is going to be an error.

Setting up the TV skill server
Now that we have the interaction model, we need a conversation manager that can respond
to user intents. Let's now set up the server to respond to the user:

On the Skills Configuration page, click configuration and choose an HTTPS1.
option.
Create a Node.js project using npm and add the default libraries, as we did for the2.
QuoteMaster server discussed earlier.
Create an index.js file and import the request, express, body-parser, and3.
hashmap libraries.

My TV Guide Chapter 8

[322]

Create a web server using the Express library, as you did before:4.

const request = require('request')
const express = require('express')
const bodyParser = require('body-parser')

const Hashmap = require('hashmap');

var usercontexts = new Hashmap();

const app = express()

app.set('port', (process.env.PORT || 5000))

// Process application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({extended: false}))

// Process application/json
app.use(bodyParser.json())

app.use(express.static('public'))

// Index route
app.get('/', function (req, res) {
 res.send('Hello world, I am the TV Guide.')
})

We need another library to process dates and times, which we will call a moment.5.
Install it using npm install and add the following code to index.js. This is
used to construct today's date for retrieving the TV schedule for the day:

const moment = require('moment')

var todaysSchedule = {};
const now = new Date();
var date = now.getDate();
if (date < 10) { date = '0' + date; }
var month = now.getMonth() + 1;
if (month < 10) { month = '0' + month; }
const todaysDate = now.getFullYear() + '-' + month + '-' + date;

loadTodaysSchedule(todaysDate);

My TV Guide Chapter 8

[323]

Create a loadTodaysSchedule() function to get the TV schedule for the day.6.
This can be stored locally and queried to answer user questions. Note that the
schedule will not change every day automatically:

function loadTodaysSchedule(todaysDate){
 var url = 'http://api.tvmaze.com/schedule?country=GB&date='
 + todaysDate;
 console.log('URL:' + url);
 request({
 url: url,
 method: 'GET'
 },
 function (error, response, body) {
 //response is from the bot
 if (!error && response.statusCode == 200) {
 // Print out the response body
 todaysSchedule = JSON.parse(body);
 console.log('Todays Schedule: ' +
 todaysSchedule.length);
 console.log(todaysSchedule);
 } else {
 console.log('Error: ' + error)
 console.log('Statuscode: ' + response.statusCode)
 }
 });
}

Here is the template for the actual response endpoint:7.

app.post('/alexa', function (req, res) {
 console.log('Request from Alexa:');
 console.log(req.body);
 //1. add context code here

 //2. get userIntent from request

 //3. set default return json object
 //4. dialogue management code to
 //decide what to say in response to user intents.
})

// Spin up the server
app.listen(app.get('port'), function() {
 console.log('running on port', app.get('port'))
})

My TV Guide Chapter 8

[324]

Let's save the context and load it up like we did in the QuoteMaster skill. We will8.
be saving the show information that the user asked for so that we can describe it
in their subsequent turn:

 var sessionContext = {
 'show': null
 };
 var sessionId = req.body.session.sessionId;
 if (!usercontexts.get(sessionId)){
 usercontexts.set(sessionId, sessionContext);
 } else {
 sessionContext = usercontexts.get(sessionId);
 }

Let's get the user intent from the request and prepare the default JSON response:9.

var userIntent = '';
 if (req.body.request.type === 'SessionEndedRequest'){
 userIntent = 'AMAZON.StopIntent';
 } else {
 userIntent = req.body.request.intent.name;
 }
 console.log('UserIntent:' + userIntent);
 var rjson = {
 "version": "1.0",
 "response": {
 "shouldEndSession": false,
 "outputSpeech": {
 "type": "SSML",
 "ssml": "<speak>Hello, I am your TV Guide!</speak>"
 }
 }
 };

My TV Guide Chapter 8

[325]

And here is the code for responding to user intents. The JSON user response is10.
reset with information retrieved from the day's schedule:

 if (userIntent === 'AMAZON.StopIntent'){
 rjson.response.shouldEndSession = true;
 rjson.response.outputSpeech.ssml =
 '<speak> Ok. Have a good day! </speak>';
 console.log(rjson);
 res.json(rjson);
 }
 else {
 if (userIntent === 'GetNextProgramme'){
 var network =
 req.body.request.intent.slots.network.value;
 var e = getNextProgrammeInNetwork(network);
 sessionContext.show = e;
 usercontexts.set(sessionId, sessionContext);
 rjson.response.shouldEndSession = false;
 rjson.response.outputSpeech.ssml =
 '<speak> The next show on ' + network + ' is ' +
 e.show.name + ' at ' + e.airtime + '! </speak>';
 console.log(rjson);
 res.json(rjson);
 }
 else if (userIntent === 'GetProgrammeAtTime'){
 var network =
 req.body.request.intent.slots.network.value;
 var time = req.body.request.intent.slots.time.value;
 var e = getProgrammeAtTime(network, time);
 sessionContext.show = e;
 usercontexts.set(sessionId, sessionContext);
 rjson.response.shouldEndSession = false;
 rjson.response.outputSpeech.ssml = '<speak> On '
 + network +
 ' at ' + e.airtime +
 ' is ' + e.show.name +
 '! </speak>';
 console.log(rjson);
 res.json(rjson);
 }
 else if (userIntent === 'GetDescription'){
 var e = sessionContext.show;
 var desc = getDescription(e);
 rjson.response.shouldEndSession = true;
 rjson.response.outputSpeech.ssml = '<speak> ' + desc +
 ' </speak>';
 console.log(rjson);

My TV Guide Chapter 8

[326]

 res.json(rjson);
 }
 else if (userIntent === 'Thank'){
 rjson.response.shouldEndSession = true;

 rjson.response.outputSpeech.ssml = '<speak>
 You are most welcome. Goodbye! </speak>';
 console.log(rjson);
 res.json(rjson);
 }
 else {
 rjson.response.shouldEndSession = true;
 //rjson.response.outputSpeech.ssml = '<speak> Ok.
 //Have a good day! </speak>';
 console.log(rjson);
 res.json(rjson);
 }
 }

Finally, the part of code that retrieves the necessary info from the schedule:11.

function getNextProgrammeInNetwork(networkName){
 console.log('Getting next programme in : ' + networkName);
 for (var i=0; i < todaysSchedule.length; i++){
 var e = todaysSchedule[i];
 var showtime = moment(e.airdate + ' ' + e.airtime);
 moment().format();

 var a = moment();
 var b = moment(showtime);
 if (a.diff(b, 'minutes') < 0){
 if (e.show.network.name === networkName){
 console.log(e.show.name + ' on ' +
 e.show.network.name + ' at ' + e.airtime);
 return e;
 }
 }
 }
}

function getProgrammeAtTime(networkName, time){
 console.log('Getting next programme in : ' + networkName + '
 at ' + time);
 for (var i=0; i < todaysSchedule.length; i++){
 var e = todaysSchedule[i];
 if (e.show.network.name === networkName){
 var showtime = moment(e.airdate + ' ' + e.airtime);

My TV Guide Chapter 8

[327]

 var requestedtime = moment(e.airdate + ' ' + time);
 moment().format();

 var a = moment(requestedtime);
 var b = moment(showtime);
 if (a.diff(b, 'minutes') > -30 && a.diff(b, 'minutes')
 < 30){
 console.log(e.show.name + ' on ' +
 e.show.network.name + ' at ' + e.airtime);
 return e;
 }
 }
 }
}

function getDescription(episode){
 console.log('Getting episode info:' + episode.show.name);
 console.log(episode.show.summary);
 return episode.show.summary;
}

Now, let's move this web app on to the Cloud:12.

> git init
> git add .
> git commit -m alexa-tv-bot
> heroku create my-alexa-tv-bot
> git push heroku master

After pushing the web app on to the cloud using the preceding instructions, we will have
the conversation manager running at
https://my-alexa-tv-bot.herokuapp.com/alexa. This is where Alexa will send a
POST request to. The response will be parsed and the SSML utterance will be synthesized to
the user.

My TV Guide Chapter 8

[328]

Testing the TV skill
Let's now go back to the test panel and test some sample utterances to see how they work:

Type whats next on bbc one and click Ask My TV:1.

My TV Guide Chapter 8

[329]

Try whats on bbc two at 4pm and click Ask My TV:2.

My TV Guide Chapter 8

[330]

Finally, let's try to get more information on the show with a follow-up request.3.
Remember not to press the Reset button before making a follow-up request as it
might reset the conversational context:

The response you get will be a brief description of the show that Alexa previously
pulled out. Here is a part of the JSON output:

"outputSpeech": {
 "ssml": "<speak> <p>Sarah Moore saves three items from the
 tip in each episode and transforms them into a much more
 valuable piece, before returning the profits back to the
 original owners of the item.</p> </speak>",
 "type": "SSML"
 },

Having tested the skill on the simulator, test it on Echo. Remember, you need to4.
say the invocation name before the request. For instance, Alexa, ask my TV,
whats next on BBC One.

My TV Guide Chapter 8

[331]

Built-in intents and slot types
Alexa has a library of built-in intents and slot types that can be used in any skill that we
build. Using built-in intents come with their own set of advantages. As a developer, you
don't have to provide sample utterances and whenever Alexa gets updated with more
sample utterances, your skill gets a boost. Also, it makes it easy for users to remember a
simple set of phrases across skills to get things done with Alexa.

Here is a set of standard built-in intents that you can use:

Built-in intents Description

Amazon.YesIntent Whenever the user says yes, yeah, or something similar

Amazon.NoIntent When the user says no, no thanks, or something similar

Amazon.CancelIntent
When the user asks to cancel the current task, such as cancel,
never mind, or forget it

Amazon.HelpIntent When the user asks for help (help, can you help me)

Amazon.StopIntent When the user says stop, off, or shut up

Alexa also has a number of slot types that you can use:

Built-in slot types Description

AMAZON.DATE

Any description of a date can be picked up using this slot
type. For example, today (2017-10-10), now, this
weekend (2017-W40-WE), next year (2018), or this
winter. These phrases will be decoded into the ISO 8601
date format.

AMAZON.TIME
Any reference to time, such as two o clock, tomorrow
morning, or noon, will be picked up and stored in the ISO
8601 time format.

AMAZON.DURATION
Duration, such as ten minutes, six hours, or seven
years. The decoded info is represented in the ISO 8601
duration format.

AMAZON.NUMBER
Any number, such as one, one hundred, or two three
four.

AMAZON.FOUR_DIGIT_NUMBER Any four digit number.

My TV Guide Chapter 8

[332]

There are other slot types, such as AMAZON.AggregateRating (for ratings such as best,
five star, top ten), AMAZON.Animal (for animals), AMAZON.AT_CITY (for cities across
the globe), AMAZON.Color (for colors), and AMAZON.Country (for countries), that can be
used. Browse the full list at the following URL:

https://developer. amazon. com/ docs/ custom- skills/ slot- type- reference. html

Summary
Brilliant! I believe you had fun building your first two Alexa skills in this chapter. We
explored the basics of skill building—intents and slots. We explored the process of building
the interaction model on the Alexa development platform as well as building the
conversation manager web app on the cloud. We have built two skills—one for quotes and
another for TV schedules—providing us ample opportunities to explore and understand the
various elements of the Alexa skill development process. I would encourage you to take this
as a starting point and explore more. There are about 10,000 skills in the Alexa store and it's
continuing to grow. With the usage of the home assistance smart speakers projected to
grow, there will be a huge market for customizable Alexa skills in the years to come. In the
next chapter, we will explore how to build actions for Google Assistant and invoke them on
Google Home.

References
Amazon Alexa documentation: https:/ / developer. amazon. com/ docs/ ask-overviews/
build-skills-with- the- alexa- skills- kit. html

https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html
https://developer.amazon.com/docs/ask-overviews/build-skills-with-the-alexa-skills-kit.html

9
My Man Friday

Now that we are in the last chapter of the book, let's do something really interesting. How
about we build a bot that acts as your very own man Friday. Imagine asking the bot to do
tasks such as organizing your to-do list, reminding you of tasks and meetings, and so on. In
the last chapter, we developed an Alexa skill to browse through the TV programs for the
day. In this chapter, we will explore the process of building skills on Google Assistant.
Google Assistant is Google's offering of a personal assistance chatbot like iPhone's Siri and
Amazon's Alexa. You can interact with Google Assistant on a variety of channels such as
Allo mobile app, Allo for web, and Google Home.

Google Home is a smart speaker similar to Amazon Echo and is powered by Google
Assistant. In other words, Google Home is the embodiment in which Assistant lives. This is
very similar to the relationship between Alexa and Echo or between Siri and iPhone. Google
Home is a direct competitor to Amazon Echo and currently holds a 24% market share. Like
Alexa, the skills (or actions, as they call it) of Assistant can be enhanced.

In this chapter, we will build an action for Google Assistant. In an effort to make it man
Friday, let's start by integrating it into an online service that can be used to manage your
daily tasks easily. We will explore how the action can be enabled to interact with this
service to add and retrieve tasks. First, let's explore an online service called Todoist and
examine how to add and retrieve tasks using the REST API. Then, we will build an agent
with the Dialogflow toolkit and integrate it with Google Assistant as an action. Finally, we
will integrate the action with the Todoist service to finish the loop.

By the end of this chapter, you will be able to:

Build a Dialogflow agent to handle to-do lists
Integrate to Todoist service using fulfillment webhooks
Create Google Actions and integrate with Google Assistant
Test the action on Google Home

My Man Friday Chapter 9

[334]

Todoist
Todoist is an online service to store and organize lists of items that you plan to do in the
near future. Users can add tasks to their account, organize them under projects, and assign
deadlines and reminders to their tasks. The account can be accessed on their website as well
as apps on Android and iOS devices. The Todoist service can be accessed using their
developer API as well. Let us examine two basic services: adding tasks and retrieving the
to-do list for the day.

Getting the key
To access Todoist, we need an API key. To get one, follow these steps:

Go to https:/ /todoist. com/ .1.
Sign up for an account.2.
Log in to the account and view the dashboard.3.
Try adding a task by clicking Add Task:4.

You can see that the tasks can be organized into projects. You can create a new
project if you want to. By default, tasks will be added to your inbox and carry the
due date of the day they are created.

https://todoist.com/
https://todoist.com/
https://todoist.com/
https://todoist.com/
https://todoist.com/
https://todoist.com/
https://todoist.com/
https://todoist.com/

My Man Friday Chapter 9

[335]

Click the task that you just created and explore the options: 5.

You can change the due date, the project it belongs to, the priority of the task, and
set reminders.

Now that we have explored the capabilities of the service platform, let's get the6.
API key to your account. Click the settings icon in the top-right corner:

My Man Friday Chapter 9

[336]

Click Settings.7.
On the side menu, click Integrations.8.
Scroll down to API token: 9.

 Copy down your token and keep it safe.

Let's now write a Node.js program to add items and retrieve lists.

Adding a task
Using the key, we can add and retrieve the list of tasks to do. Here is the Node.js code to
add a task to your to-do list:

 var task = {'type': 'item_add',
 'temp_id': uuid.v4(),
 'uuid': uuid.v4(),
 'args': {
 'content': taskDescription
 }};

My Man Friday Chapter 9

[337]

 var url = 'https://todoist.com/api/v7/sync?token=' +
 todoist_token +
 '&sync_token=*&resource_types=["items"]&commands=['
 + JSON.stringify(task) +']';
 console.log('URL:' + url);
 request({
 url: url,
 method: 'GET'
 },
 function (error, response, body) {
 //response is from the bot
 if (!error && response.statusCode == 200) {
 console.log(JSON.parse(body));
 } else {
 console.log('Error: ' + error)
 console.log('Statuscode: ' + response.statusCode)
 }
 });

Retrieving all tasks for the day
To retrieve all tasks in the to-do list for the day, use the following Node.js code:

 var url = 'https://todoist.com/api/v7/sync?token='
 + todoist_token +
 '&sync_token=*' +
 '&resource_types=["items"]';
 console.log('URL:' + url);
 var resp = syncrequest('GET', url);
 var allItems = JSON.parse(resp.getBody('utf8')).items;
 var allItemsSummary = '';
 for (var i = 0; i < allItems.length; i++){
 allItemsSummary += allItems[i].content;
 if (i < allItems.length - 2){
 allItemsSummary += ', ';
 }
 else if (i == allItems.length - 2) {
 allItemsSummary += ' and ';
 }
 else {
 allItemsSummary += '.';
 }
 }

 response = 'You have ' + allItems.length + ' in your list. '

My Man Friday Chapter 9

[338]

 + allItemsSummary;
 console.log(response);

The preceding code will later be embedded into the web service that will be called from
Dialogflow to get the response utterance generated dynamically from the webhook. To
explore the full range of possible actions within Todoist, refer to the documentation
here: https://developer. todoist. com.

Building an action
To build a Google Assistant Action, we need to start from Dialogflow. Broadly, the steps are as
follows:

Build a Dialogflow agent.1.
Create a web app that accesses the Todoist service.2.
Integrate the agent with Google Actions.3.
Test it in the simulator.4.
Test it on Google Home.5.

Building a Dialogflow agent
To build a Dialogflow agent, follow these steps:

Go to dialogflow.com and sign in using your Google account.1.
Click the drop-down menu on the left and click Create new agent:2.

https://developer.todoist.com
https://developer.todoist.com
https://developer.todoist.com
https://developer.todoist.com
https://developer.todoist.com
https://developer.todoist.com
https://developer.todoist.com
https://developer.todoist.com
https://developer.todoist.com
https://dialogflow.com/

My Man Friday Chapter 9

[339]

Add agent info and click SAVE:3.

My Man Friday Chapter 9

[340]

This will create a new Google project assigned to the agent. You can view the4.
settings info by clicking the Settings icon next to the agent's name on the drop-
down list.

Let's add four intents to the agent to begin with:5.

greet

add_task

inform_task_description

list_all_tasks

We assume here that the user will begin the conversation with a greeting (the
greet intent) followed by a request to either add a task (add_task) or list all
tasks for the day (list_all_tasks). In the following request to add a task, the
agent will ask the user to describe the task for which the user will respond with a
task description (inform_task_description).

My Man Friday Chapter 9

[341]

Add a few example utterances for the greet intent:6.

hi

hello there

Let's work on the add_task intent. This is the intent that a user would use to add7.
a task to this list. Now add a few utterances here:

i want to add a task

add new task

add a task to my list

My Man Friday Chapter 9

[342]

We need to follow this up with a request for a description of the task that needs8.
to be added. So let's ask for the task description in response and also set the
context to asked-for-task:

My Man Friday Chapter 9

[343]

The user will naturally respond with a task description. We need to capture that9.
description and send it to a web app that can record it in your Todoist list. Let's
do this with the inform_task_description intent in the asked-for-
task context:

All utterances in inform_task_descriptions can be considered task10.
descriptions and therefore sent to Todoist as they are. To capture the whole
utterance in a parameter (say task), select the whole utterance and select
@sys.any in the drop-down menu that appears:

My Man Friday Chapter 9

[344]

This will create a parameter called any associated with the intent. Let's rename11.
it task. Click any and change it to task:

Do the same for a few other example utterances. The following are task12.
descriptions:

buy gifts for christmas

send a birthday card to Jones

have tablet after lunch

Add Sorry. I could not add new task. as a response to the intent. This13.
response will be delivered only when the agent fails to add a new task using the
web app. We will enable the webhook for this intent in a short while. Save the
intent by clicking the SAVE button.

My Man Friday Chapter 9

[345]

Create a new list_all_tasks intent to list all the tasks in the to-do list of the14.
user. Add the following utterances:

what tasks do i have still

list all my tasks

get me the list of all tasks

Give the response action a name: inform_all_tasks and set a default
response to Sorry. I cannot get the list of tasks just now. We
will enable a webhook for this intent later as well.

Let's now set up the web service to call for the list_all_tasks and15.
add_task intents. Click Fulfillment on the menu to the left.
Enable a webhook and type the URL of the web app to call. Since we don't have16.
one yet, just create a placeholder for it
(https://my-home-bot.herokuapp.com/home):

Scroll down to the end of the page and click SAVE.

My Man Friday Chapter 9

[346]

Go back to the list_all_tasks and add_task intents. For each of these intents,17.
scroll down and click Fulfillment. This ensures that the intent and parameters
are sent to the web app that generates appropriate response utterances.

Creating a web app
Now that we have a Dialogflow agent to understand user utterances, we need to build a
web app that it can interact with. The agent will send user intents and parameters to the
web app so that appropriate responses can be generated. For instance, when the user wants
to add a new task, the task description needs to be sent to the web app, which will in turn
will add a new task in your to-do list using the Todoist API. To create the web app, follow
these steps:

Create a new Node.js project using npm and create a home bot project:1.

> npm init

Install the necessary libraries:2.

> npm install request --save
> npm install sync-request --save
> npm install express --save
> npm install body-parser --save
> npm install moment --save
> npm install node-uuid --save

request and sync-request are libraries that will be used to interact with the
Todoist service. express and body-parser will be used to spin up a web server.
moment will be used for time/date-related computations. Finally, node-uuid will
be used to generate UUIDs for tasks.

Create a file called index.js. Add the import statements, as shown here:3.

'use strict'

/*
* Google Home Bot
*/

const request = require('request')
const syncrequest = require('sync-request')
const express = require('express')
const bodyParser = require('body-parser')

My Man Friday Chapter 9

[347]

const moment = require('moment');
const uuid = require('node-uuid');

To spin up a server, we need to add the following code:4.

const app = express()

app.set('port', (process.env.PORT || 5000))

// Process application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({extended: false}))

// Process application/json
app.use(bodyParser.json())

app.use(express.static('public'))

// Index route
app.get('/', function (req, res) {
 res.send('Hello world, I am your man Friday.')
})

// Handle the intents
app.post('/home', function (req, res) {
 // Handling the intent code
}

// Spin up the server
app.listen(app.get('port'), function() {
 console.log('running on port', app.get('port'))
})

Add the following code in the /home POST handle to handle the intents:5.

 console.log('Request from DialogFlow:');
 console.log(req.body);
 var intent = req.body.result.metadata.intentName;
 var botSpeech = 'hello world';
 if (intent === 'inform_task_description'){
 var taskDescription = req.body.result.parameters.task;
 addTask(taskDescription);
 botSpeech = 'Adding new task.';
 }
 else if (intent === 'list_all_tasks'){
 botSpeech = getAllTasks();
 }

My Man Friday Chapter 9

[348]

 var out = {speech: botSpeech,
 displayText: botSpeech,
 data: null};
 var outString = JSON.stringify(out);
 console.log('Out:' + outString);
 res.send(outString);

Finally, we need to create the two functions that are called from the /home6.
handle. To add a new task, first we add the following code:

function addTask(taskDescription){
 var todoist_token = 'YOUR-TODOIST-TOKEN';
 var task = {'type': 'item_add',
 'temp_id': uuid.v4(),
 'uuid': uuid.v4(),
 'args': {
 'content': taskDescription
 }};

 var url = 'https://todoist.com/api/v7/sync?token='
 + todoist_token +
 '&sync_token=*&resource_types=["items"]&commands=['
 + JSON.stringify(task) +']';
 console.log('URL:' + url);
 request({
 url: url,
 method: 'GET'
 },
 function (error, response, body) {
 //response is from the bot
 if (!error && response.statusCode == 200) {
 console.log(JSON.parse(body));
 } else {
 console.log('Error: ' + error)
 console.log('Statuscode: ' + response.statusCode)
 }
 });
}

And next, to get a summary of all tasks, we add the following code:

function getAllTasks(){
 var todoist_token = 'YOUR-TODOIST-TOKEN';
 var url = 'https://todoist.com/api/v7/sync?token='
 + todoist_token +
 '&sync_token=*' +
 '&resource_types=["items"]';

My Man Friday Chapter 9

[349]

 console.log('URL:' + url);
 var resp = syncrequest('GET', url);
 var allItems = JSON.parse(resp.getBody('utf8')).items;
 var allItemsSummary = '';
 for (var i = 0; i < allItems.length; i++){
 allItemsSummary += allItems[i].content;
 if (i < allItems.length - 2){
 allItemsSummary += ', ';
 }
 else if (i == allItems.length - 2) {
 allItemsSummary += ' and ';
 }
 else {
 allItemsSummary += '.';
 }
 }
 var alltasks = 'You have ' + allItems.length + '
 in your list. '
 + allItemsSummary;
 return alltasks;
}

Let's push it into the cloud now:7.

> git init
> git add .
> git commit -m initial-commit
> heroku create my-home-bot
> git push heroku master

Once pushed, the web app is ready to talk to our Dialogflow agent.

Testing the agent on Dialogflow
Now we are ready to test our man Friday on Dialogflow. On Dialogflow, you can test your
agent using the simulator. If you have created a Dialogflow agent (previously called
API.AI) in one of the previous chapters, you may already know how to carry out this
process. If not, follow these steps:

Go to dialogflow.com.1.

https://dialogflow.com/

My Man Friday Chapter 9

[350]

On the right, you will see a frame with a Try it now text field at the top. Type2.
hi and hit return. Here is where we will type our inputs to the agent. The agent
will return a textual response as well as the intent of the user and the system
action:

My Man Friday Chapter 9

[351]

Now add a task. Try the add a new task utterance. The agent should now ask3.
for a task description. You will also notice that the context is updated to asked-
for-task:

My Man Friday Chapter 9

[352]

Provide a task description. The agent will now add a new task to your to-do list4.
and get back with an acknowledgement:

If it fails to contact the Todoist service for some reason, it will return the
default response message.

Add a couple more tasks in the same manner.5.

My Man Friday Chapter 9

[353]

We can now check out the tasks added to our to-do list by logging on to6.
todoist.com or using the Todoist app:

Now try to retrieve all the tasks. Try the get all tasks utterance:7.

Hurray! You have successfully integrated the Dialogflow agent with Todoist.

https://todoist.com/

My Man Friday Chapter 9

[354]

Integrating with Google Assistant
Now that the agent is ready, our next step is to integrate it with Google Assistant. Perform
the following these steps to carry out this integration:

In order to test your actions on the web without a hardware device, you
may need to turn on the Web & App Activity, Device Information,
and Voice & Audio Activity permissions on the Activity Controls page
(https:/ /myaccount. google. com/ activitycontrols) for your Google
Account.

On the Dialogflow menu on the left, click Integrations:1.

https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols
https://myaccount.google.com/activitycontrols

My Man Friday Chapter 9

[355]

Click Google Assistant:2.

On the Google Assistant dialog box, move the slider in the top-right corner to the3.
enable position.
Choose a Welcome intent. Choose the greet intent that we have defined.4.

My Man Friday Chapter 9

[356]

Click TEST and then VIEW to open the Actions Simulator:5.

My Man Friday Chapter 9

[357]

This will open another tab and take you to console.actions.google.com where
the agent can be tested in simulation as an action on Google Assistant:

Change Surface type to Phone and Input type to Keyboard.6.

https://console.actions.google.com/

My Man Friday Chapter 9

[358]

Type Talk to my test app and hit return. This will open the test version of7.
the action and you should be able to have the same conversation with the agent
as we had on Dialogflow. All tasks will be added to your to-do list, which can be
checked by visiting todoist.com or asking to get all tasks once the test tasks
have been added:

Note that talk to my test app is the default invocation phrase. We
will define invocation phrases for the action in a moment.

https://todoist.com/

My Man Friday Chapter 9

[359]

After testing the agent, go back to Dialogflow, click Update Draft, and click Visit8.
Console in the dialog box that opens:

On the Overview page for the action, you will notice that the actions are linked to9.
Dialogflow. The next step is to provide some essential app information.
Click Edit:10.

My Man Friday Chapter 9

[360]

Type a name, pronunciation, and description.11.
Scroll down to find default invocations for the action. You can add more if12.
necessary:

Add images for the icon and banner. These can be left blank during the13.
development stage.
Scroll down to the bottom and click SAVE.14.

Now the action is available to test for the Google Account associated with the developer. In
order to make it available to other users you have to submit the action for approval at the
following URL:

https://developers. google. com/ actions/ distribute/

https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/
https://developers.google.com/actions/distribute/

My Man Friday Chapter 9

[361]

Test on Google Home
Now that the action is all set up, you can test it on your Google Home device. You need to
be set up on the same Google Account that was used to build the agent and the action, as it
is still under development and not published yet. So turn on your Google Home and say,
Hey Google, talk to my man Friday:

Source: store.google.home

You should now be able to have the same conversation that you had on the simulator, on
Google Home using voice. Although the accuracy of the speech recognizer is pretty high
when it comes to common words and phrases in the English language, it may still not be
able to recognize unusual names and non-Western concepts. The conversation will start
with a disclaimer message stating that the action is still a test version. Try adding a task and
reviewing all the tasks you still have left to do. Go on the Todoist app to strike off tasks
completed and review them again on the device. Have fun. Congratulations on building
your very own action for the Google Assistant!

My Man Friday Chapter 9

[362]

Summary
Brilliant! Great work building a Google Assistant action to manage your to-d0 list. I believe
you will extend the functionality of the agent to organize tasks by projects and also be able
to create and retrieve tasks for specified times. Such extensions can make the agent much
more powerful. Imagine being able to manage your daily tasks using a voice-powered
assistant at home or at work. A Global Market Insights (June 2017) report stated that voice
powered assistants on smart speakers are poised at an estimated CAGR of 50% from 2017 to
2024. These assistants will not only interact with services over the cloud but also with IoT
and smart home devices, such as smart bulbs, smart thermostats, and smart plugs, making
them voice-controlled. Following Amazon, Google, and Apple, more players are joining in
to capture their share of the market. The number of Google Actions and Alexa Skills are
expected to grow in the coming years to satisfy growing market demand. I hope this
chapter got you started on your journey to building more interesting and innovative
capabilities for voice-powered assistants.

Conclusion
I hope you enjoyed working through all the projects building exciting and interesting
chatbots and voicebots. Great work! But remember, we have barely scratched the surface of
what is yet to be unleashed. There is more to building chatbots and conversational UI than
just plugging tools, services, and data together. It takes practice and a deeper
understanding of underlying concepts to get the design right and build bots that give users
a great experience. The user should be able to get the job done by having a conversation
with the bot without having to think too much and with a smile on their face. Great
conversational experience, the experience that the user gets when interacting with or at the
thought of doing so, is what we should always aim for. And only with practice and mindful
design can we achieve that.

Remember that this technology is evolving at a rapid pace and so are the tools, services, and
our collective understanding of underlying concepts. To keep yourself up-to-date, I would
recommend you become part of groups on social media (such as Facebook pages and
LinkedIn groups) dedicated to chatbots and AI, participate in local meetups, subscribe to
journals and magazines, and participate in chatbot hackathons and conferences (see
Appendix). Many brands across the world are introducing chatbots as a new channel of
customer contact. Keep an eye out for the news and interact with them, if you can, to
experience and understand their design principles.

My Man Friday Chapter 9

[363]

I believe that this book has given you a fundamental understanding of concepts, tools, and
techniques that you can build upon in the future. I hope you had fun building all the bots
whilst also being inspired with new ideas to build more in the days to come. And as a
closing note, I wish you exciting days ahead designing and building great conversational
experiences.

References
Google Actions documentation: https:/ /developers. google. com/actions/ extending-
the-assistant

https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant
https://developers.google.com/actions/extending-the-assistant

More Resources

Articles
Here are some articles that you might find interesting and useful:

Chatbot Design Canvas by Srini Janarthanam [https:/ / chatbotslife. com/
chatbot- design- canvas- c3940685ca2c]
Designing Chatbots by Yogesh Moorjani [https:/ / uxdesign. cc/ how- to-design-
a-robust- chatbot- interaction- 8bb6dfae34fb]
25 Chatbot Platforms: A Comparative Table by Olga Davydova [https:/ /
chatbotsjournal. com/ 25- chatbot- platforms- a- comparative- table-
aeefc932eaff]
The Ultimate Guide to Designing a Chatbot by Sébastien Fourault [https:/ /
chatbotsmagazine. com/ the- ultimate- guide- to- designing- a-chatbot- tech-
stack-333eceb431da

19 Best UX Practices for Building Chatbots by Eunji Seo [https:/ /
chatbotsmagazine. com/ 19- best- practices- for- building- chatbots-
3c46274501b2]
The Tools Every Bot Creator Must Know by Ron Levinson [https:/ /
chatbotsmagazine. com/ the- tools- every- bot-creator- must- know-
c0e9dd685094]

List of conferences
Here's a list of popular conferences where you can learn more about the state of the
industry and network with chatbot designers, developers, and investors:

Chatbot Summit (chatbotsummit.com)
ChatbotConf (https:/ / orat. io/chatbotconf)
Re-work AI Assistant Summit (www.re-work.co/events/)
Intelligent Assistants Conferences (http:/ /opusresearch. net/ wordpress/
events/)

https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://chatbotslife.com/chatbot-design-canvas-c3940685ca2c
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://uxdesign.cc/how-to-design-a-robust-chatbot-interaction-8bb6dfae34fb
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/the-ultimate-guide-to-designing-a-chatbot-tech-stack-333eceb431da
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/19-best-practices-for-building-chatbots-3c46274501b2
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
https://chatbotsmagazine.com/the-tools-every-bot-creator-must-know-c0e9dd685094
http://chatbotsummit.com/
https://orat.io/chatbotconf
https://orat.io/chatbotconf
https://orat.io/chatbotconf
https://orat.io/chatbotconf
https://orat.io/chatbotconf
https://orat.io/chatbotconf
https://orat.io/chatbotconf
https://orat.io/chatbotconf
https://orat.io/chatbotconf
https://www.re-work.co/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/
http://opusresearch.net/wordpress/events/

More Resources

[365]

List of magazines
Here is a list of magazines and newsletters that publish insightful articles and news about
the happenings in the world of chatbots:

Chatbots Magazine (chatbotsmagazine.com)
Chatbots Journal (chatbotsjournal.com)
Chatbot's Life (chatbotslife.com/)
Chatbot News Daily (chatbotnewsdaily.com/)
Chatbots Weekly (www.chatbotsweekly.com/)

Groups on social media
Here's a list of social media groups to sign up to in order to network with and keep abreast
of the latest in the industry:

UX for Bots (https:/ / www. facebook. com/ groups/ uxforbots/)
ChatBots (https:/ / www. facebook. com/ groups/ aichatbots/)
Chatbots Developers (Global) (https:/ /www. facebook. com/ groups/
chatbotsdevelopers/)
Messenger Platform Developer Community (https:/ /www. facebook. com/
groups/messengerplatform/)
Chatbot Professionals (https:/ /www.linkedin. com/ groups/ 7052578)

http://chatbotsmagazine.com
https://chatbotsjournal.com
https://chatbotslife.com/
https://chatbotnewsdaily.com/
http://www.chatbotsweekly.com/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/uxforbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/aichatbots/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/chatbotsdevelopers/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.facebook.com/groups/messengerplatform/
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578
https://www.linkedin.com/groups/7052578

Index

A
actions 11
Amazon Alexa
 about 294
 URL 294
Amazon developer account
 conversation manager 306, 311
 interaction model 298, 300, 302, 306
 setting up 295
 skill, configuring 296, 298
 skill, testing on Alexa 313
analytics 60
appid page
 URL 64
Artificial Intelligence (AI) 7
Artificial Intelligence Markup Language (AIML) 9
Automatic Speech Recognition (ASR) 7

B
backend tasks
 about 63
 backend interface, building 68, 72
 weather data, obtaining 63
backend
 processing 50, 56
 URL 53
Bot Framework
 URL 216, 250
bots 7
BotSociety.io
 URL 15
broadcasting 57, 59
built-in intents
 about 331
 Amazon.CancelIntent 331
 Amazon.HelpIntent 331

 Amazon.NoIntent 331
 Amazon.StopIntent 331
 Amazon.YesIntent 331
built-in slot types
 about 331
 AMAZON.DATE 331
 AMAZON.DURATION 331
 AMAZON.FOUR_DIGIT_NUMBER 331
 AMAZON.NUMBER 331
 AMAZON.TIME 331
 URL 332

C
cards
 about 35
 audio 36
 gallery 39
 image 35
 list 40
 quick replies 38
 video 37
chatbot, building blocks
 about 28
 attributes 30
 blocks 29
 buttons 29
 cards 29
 plugins 29
chatbot, for city tour guide
 building 25, 28
chatbot, restaurant search
 building 205, 207, 239, 246, 249
 conversation flow 221, 225
 conversational state 235
 deploying 208, 211
 message types 211

[367]

 message, sending 211
 prompting, users for information 211, 214
 rich messages 215, 220
chatbot, templates
 about 59
 URL 59
chatbot
 about 19, 20
 building 31, 34
 deafult blocks 30
 history 9
 implementing 72, 76
 publishing, on Facebook Messenger 85
 web service, creating 79, 83, 84
Chatfuel
 about 22, 23
 URL 23
context
 default contextual variables 47
 managing 43
 user attributes, setting 46
 user input cards 44, 46
conversation flow
 about 221, 225
 context, maintaining 229
 context, switching 230
 contextual NLU 232
 conversation, ending 234
 user utterances, responding to 226
conversational design
 about 62, 168
 nearest station 168
 next train 168
 time of arrival 169
conversational tasks 62
conversational user interfaces, benefits
 availability 18
 consistency 19
 low cost 19
 personalized experience 19
 quick response times 19
 scale up 19
conversational user interfaces
 about 8
 advancements 10

 applications 14, 15
 architecture 12
 chatbot, history 9
 classification 13

D
dataset, Transport API
 exploring 163
 live departures 165
 live departures, response 165
 service timetables 167
 service timetables, response 167
 station timetables 166
 station timetables, response 166
 train stations 163
 train stations, response 163
 trains area 164
 trains area, response 164
developer account, Transport API
 creating 161, 162
dialog stack 225
Dialogflow agent
 building 338, 340, 341, 342, 343, 345, 346
 testing 349, 350, 351, 352, 353
DialogFlow
 about 111
 agent, creating 112, 115
 agents, exporting 145, 146
 agents, importing 145, 146
 agents, restoring 146
 chatbot, deploying 116
 context 124, 128
 entities 129, 137, 139
 entities, exporting 148
 Facebook integration 120, 123
 fulfillment 152, 158
 intents, exporting 148
 intents, importing 148
 rich response formats 143, 145
 setting up 111
 system entities 140, 142
 URL, for system entities 142
 website integration 117, 119

[368]

E
enterprise assistants 13

F
Facebook, message formats
 audio attachments 102
 content types 101
 files 102
 image attachments 101
 templates 103
 video attachments 102
Facebook, templates
 button template 103
 generic template 107, 108
 list template 104
Facebook
 App, connecting to interface app 96
 App, creating 89, 92
 chatbot, launching 100
 chatbot, publishing 85
 chatbot, testing 98
 interface web app, creating 93, 96
 message formats 101
 page, creating 85, 88
 references 100
 testers, adding 99
 URL 89
 username, creating 88
fulfillment 152, 158

G
Google Assistant action
 building 338
 Dialogflow agent, building 338, 340, 341, 342,

343, 345, 346
 Dialogflow agent, testing 349, 350, 351, 352,

353

 integrating 354, 355, 356, 358, 359, 360
 web app, creating 346
Google Home device
 testing 361
Graphical User Interfaces (GUI) 8

M
MS Bot Framework
 about 204
 channel emulator 204
 URL 204

N
National Health Services (NHS) 15
natural language (NL)
 about 48
 default block 48, 50
Natural Language Interfaces to Database Systems

(NLIDBS) 10
Natural Language Understanding (NLU) 7
navigation
 about 41
 block cards 42
 buttons 41
news data service
 exploring 267
NewsAPI
 setting up 267, 268, 270

O
OpenWeatherMap
 URL 63

P
personal assistants 13
personalized news bot
 building 274, 276, 277
 user interests bot, informing 286, 287, 288, 291
 user interests database, accessing 283, 285,

286

 user interests database, creating 278, 279, 281,
282, 283

S
skills 11
Skype
 connecting to 250, 253, 254
SMS bot
 building 169

 dashboard, setting up 170, 171, 172
 message sender 172, 173, 174, 175
 tasks, scheduling 178, 179, 180, 181
 train notifier 175, 178
Speech Synthesis Markup Language (SSML) 308
Spoken Dialogue Systems (SDS) 10

T
Text to Speech Synthesis (TTS) 7
Todoist
 about 334
 key, obtaining 334, 335, 336
 task, adding 336
 tasks, retrieving 337, 338
toolkit, developer
 about 15
 analytics 17
 channels 16
 chatbot development tools 16
 directory services 18
 mockup tools 15
 monetization 18
 natural language 17
Transport API
 exploring 161
TV guide
 about 314
 interaction model, building 314, 319
 TV skill server, setting up 321, 324, 327
 TV skill, testing 328, 330
Twitter app 257, 259, 260
Twitter bot
 building 261, 262

Twitter news bot
 building 270, 272
Twitter SDK
 exploring 264
 retweet 266
 status, updating 264
 tweets, searching 266
two-way chatbot
 building 181, 183, 184, 185
 users' utterances 186

U
users' utterances
 about 186
 API.AI agent, creating 187, 188, 189, 190
 API.AI agent, integrating to SMS chatbot 195,

198, 199, 201
 Node.js interface, creating to API.AI agent 191,

192, 193, 194

W
weather data
 API key, obtaining 63, 65
 key, testing 65, 67
 obtaining 63
 URL 63, 65
web app
 creating 346

Z
Zomato
 about 236, 238
 data, obtaining 238, 239

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Introduction
	Conversational user interfaces
	A brief history of chatbots
	Recent developments
	Architecture of a conversational user interface
	Classification
	Applications

	Developer's toolkit
	Mockup tools
	Channels
	Chatbot development tools
	Analytics
	Natural Language understanding
	Directory services
	Monetization

	Benefits
	Chatbots are here to stay
	Lets get started!
	References

	Chapter 1: Tour Guide for Your City
	Getting started
	Building your first bot
	Basic building blocks
	Blocks
	Cards
	Buttons
	Plugins
	Attributes

	Default blocks
	Next steps
	More cards
	Image
	Audio
	Video
	Quick replies
	Gallery
	List

	Navigation
	Buttons
	Go to block cards

	Managing context
	User input cards
	Setting user attributes
	Default contextual variables

	Understanding natural language
	Default block

	Backend processing
	Broadcasting
	Bot templates
	Analytics
	Summary
	References

	Chapter 2: Let's Talk Weather
	Conversational tasks
	Conversational design
	Backend tasks
	Getting weather data
	Getting the API key
	Trying your key

	Building the backend interface

	Implementing the chatbot
	Creating a chatbot web service
	Publishing on Facebook Messenger
	Creating a Facebook Page
	Creating a username
	Creating a Facebook App
	Creating a Facebook interface web app
	Connecting the Facebook App and interface app
	Testing your chatbot
	Adding more testers
	Making it public

	More Facebook message formats
	Content types
	Image attachments
	Audio attachments
	Video attachments
	Files

	Templates
	Button template
	List template
	Generic template

	Summary
	References

	Chapter 3: Building a Persona Bot
	Introducing Dialogflow
	Setting up Dialogflow
	Creating a basic agent
	Deploying the chatbot
	Website integration
	Facebook integration

	Context
	Entities
	System entities

	Rich response formats
	Importing and exporting agents
	Exporting, restoring, and importing agents
	Exporting and importing intents and entities

	Fulfillments

	Summary
	References

	Chapter 4: Let's Catch a Train
	Exploring Transport API
	Creating a developer account
	Exploring the dataset
	Train stations near you
	Response

	Trains in the area
	Response

	Live departures
	Response

	Station timetables
	Response

	Service timetables
	Response

	Conversational design
	Nearest station
	Next train
	Time of arrival

	Building a simple SMS bot
	Getting started
	Setting up the dashboard
	Simple Message Sender
	My train notifier
	Scheduling tasks

	Building a two-way chatbot
	Understanding users' utterances
	Creating an API.AI agent
	Create a Node.js interface to the API.AI agent
	Integrating API.AI agent to SMS chatbot

	Summary
	References

	Chapter 5: Restaurant Search
	MS Bot Framework
	Channel emulator

	Building a bot
	Deploying your bot
	More message types
	Sending more than one message per turn
	Prompting users for information
	Rich messages

	Conversation flow
	Responding to user utterances
	Keeping context intact
	Context switching
	Contextual NLU
	Ending the conversation

	Conversational state

	Getting started with Zomato
	Getting data from Zomato

	Restaurant search bot
	Connecting to Skype
	Summary
	References

	Chapter 6: The News Bot
	Getting started with the Twitter app
	Building your first Twitter bot
	Exploring the Twitter SDK
	Updating your status
	Retweet to your followers
	Searching for tweets

	Exploring a news data service
	Setting up NewsAPI

	Building a Twitter news bot
	Building a personalized news bot
	Creating a database of user interests
	Accessing the user interests database
	Informing the bot of user interests

	Summary
	References

	Chapter 7: My TV Guide
	Amazon Alexa
	Warming up with a quotes bot
	Configuring your skill
	Interaction model
	Conversation manager - quotes
	Test on Alexa

	My TV guide
	Building the interaction model
	Setting up the TV skill server
	Testing the TV skill

	Built-in intents and slot types
	Summary
	References

	Chapter 8: My Man Friday
	Todoist
	Getting the key
	Adding a task
	Retrieving all tasks for the day

	Building an action
	Building a Dialogflow agent
	Creating a web app
	Testing the agent on Dialogflow
	Integrating with Google Assistant
	Test on Google Home

	Summary
	Conclusion
	References

	Chapter 9: More Resources
	Articles
	List of conferences
	List of magazines
	Groups on social media

	Index
	Humble bundle_Ad_CDP.pdf
	Table of Contents
	Humble Bundle
	Index

