

Hands-On IoT Solutions
with Blockchain

Discover how converging IoT and blockchain can help you
build effective solutions

.

Maximiliano Santos
Enio Moura

BIRMINGHAM - MUMBAI

Hands-On IoT Solutions with Blockchain
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Deepti Thore
Technical Editor: Rudolph Almeida
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: January 2019

Production reference: 1030119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-224-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Maximiliano Santos works as an architect for IBM Cloud Garage Sao Paulo. He has
developed complex software architectures for the banking, real estate, insurance, chemical,
and consumer goods industries. He currently works as a Cloud Garage architect. Max has
designed solutions using IBM Watson's cognitive services, an Internet of Things (IoT)
platform, as well as machine learning and mobile applications.

Enio Moura is an enterprise architect and works as a delivery leader at IBM Cloud Garage
Sao Paulo. He has 25 years' operational and consulting experience in IT services with a lot
of experience in integration systems, cloud computing, architecture design, and blockchain
and infrastructure solutions, and also has in-depth knowledge of cloud applications and
mobile solutions.

About the reviewers
Fabio Cossini is a digital solutions architect at Avanade Inc., working with clients on their
application modernization journeys. He is also a technologist and enterprise architect for
general cross-industry and cross-technology solutions focused on digital transformation.
Since 2012, he has dedicated his career and academic research to IoT, the cloud, analytics,
cognitive computing, and blockchain, supporting companies to redefine their business
models.

I would like to thank Ênio J. Moura and Maximiliano "Max" Santos for the opportunity
to collaborate on this book. Their work will be of great help to those interested in learning
IoT and blockchain, and how these technologies will shape the future of business.

Sanket Thodge is the founder of Pi R Square Digital Solutions Pvt Ltd and is a corporate
trainer by profession, based in Pune, India. Sanket is the author of the book Cloud Analytics
with Google Cloud Platform, and is writing another, Blockchain with Artificial Intelligence. With
expertise in big data, Sanket has explored the cloud, IoT, machine learning, and blockchain.
He has applied for a couple of patents in IoT and has worked with numerous start-ups and
MNCs, providing consultancy and corporate training.

Xun (Brian) Wu has over 17 years' extensive hands-on experience of design and
development in blockchain, big data, the cloud, UI, and system infrastructure. A coauthor
of Blockchain By Example, Hyperledger Cookbook, Blockchain Quick Start Guide, and Seven
NoSQL Databases in a Week, he has also technically reviewed over 50 technical books for
Packt Publishing. He serves as a board advisor for several blockchain start-ups and owns
several patents on blockchain. He holds a computer science master's degree from NJIT and
lives in New Jersey with his two beautiful daughters, Bridget and Charlotte.

I would like to thank my parents, wife, and kids for their patience and support throughout
this endeavor.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Understanding IoT and Developing Devices on the IBM
Watson IoT Platform 6

What is IoT? 7
Common business use cases of IoT 8

Connected car 8
Connected persons 8

Technical elements in IoT 9
Devices 9
Edge computing 9
Networking 10

Wireless (Wi-Fi) or cabled network 10
Cellular/mobile network 11
Low-power wide-area network (LPWAN) 12
LoRa or LoRaWAN 14
Network summary 14

Application protocols 15
MQTT 15

Analytics and AI 16
IBM Watson IoT Platform features 16

Features 16
Dashboard 17
Devices, gateways, and applications 17
Security 18

Creating your first IoT solution 18
Creating a gateway 20
Creating an application 22
Creating a device 24

Summary 28
Further reading 28

Chapter 2: Creating Your First IoT Solution 29
Technical requirements 29
The first IoT solution – the gardening solution 30

Requirements overview 30
Solution overview 30
Selecting the equipment 31

Intel Edison 33
Arduino breakout board 34
Grove system 34

Table of Contents

[ii]

Grove base shield for Arduino 34
Grove sensors 34
Grove button 35
Grove relay 35

Wiring the device 35
Coding the device firmware 37

Measuring soil moisture 37
Measuring environmental temperature 39
Turning on the relay 40
Publishing events 41
Monitoring the events 42
Subscribing to actions 49

Creating the backend application 51
Creating a Cloud Foundry application in the IBM Cloud Platform 52
Uploading the code 53

Summary 56
Further reading 57

Chapter 3: Explaining Blockchain Technology and Working with
Hyperledger 58

What is blockchain? 59
Blockchain and Hyperledger 61

Hyperledger projects 62
Hyperledger Sawtooth framework 62
Hyperledger Iroha framework 62
Hyperledger Composer tool 63
Hyperledger Burrow framework 64

Hyperledger Fabric 65
Member or peer 67
Certificate Authority (CA) 67
Ordering Cluster 67
SDK/API 68

Selecting a good use case 69
Blockchain – food tracking use case 70

Summary 71
Questions 71
Further reading 72

Chapter 4: Creating Your Own Blockchain Network 73
Prerequisites 74
Creating your own blockchain network with Hyperledger Composer 74

Accessing Hyperledger Composer 75
Exploring the structure of a sample blockchain network 78

Installing your own blockchain network using Hyperledger Fabric
and Composer 90

Setting up Docker 91
Installing Hyperledger Composer 91

Table of Contents

[iii]

Components 92
Step 1 – Setting up CLI Tools 92
Step 2 – Setting up Playground 93
Step 3 – Hyperledger Fabric 93
Step 4 – IDE 94

Installing Hyperledger Fabric 1.3 using Docker 94
Deploying Hyperledger Fabric 1.3 to a Kubernetes environment 95

Summary 95
Further reading 96

Chapter 5: Addressing Food Safety - Building around the Blockchain 97
Regulations, challenges, and concerns in the modern food chain 97

Challenges regarding food safety 98
Food safety regulations – ISO 22000 98

How blockchain and IoT can help in a food chain 99
Food ecosystem 100
Opportunities and challenges in a food ecosystem 101

Farmers 102
Food manufacturers 102
Regulators 104
Transporters (transportation companies) 105
Stores and supermarkets 105
Customer 106

Is the food chain a good use case for IoT and blockchain technology? 107
Summary 108
Further reading 109

Chapter 6: Designing the Solution Architecture 110
The business of food 110

Challenges of the process 111
The process at the food factory 112
The process at the distribution center 113
The process at supermarkets and stores 115

The technological approach 116
Frontend applications 117
IoT-based asset tracking 118
API/SDK 120
Hyperledger Composer – a high-level overview 121

Software components 122
Composer REST server 122
Hyperledger Composer model 126
The Hyperledger Composer access control language 127
Hyperledger Composer transaction processor functions 128

Summary 129
Questions 130
Further reading 131

Table of Contents

[iv]

Chapter 7: Creating Your Blockchain and IoT Solution 132
Technical requirements 132
Solution overview 133
Creating a blockchain network 134

Concepts and enumerations 135
Asset definitions 136
Participants 136
Deploying and testing the business network for Hyperledger 137
Manipulating assets via transactions in the blockchain 140
Generating and exporting participant business cards 141
Defining access control lists (ACLs) 144
Upgrading the business network to a newer version 146
Setting up Composer REST servers for each participant 148

Creating the IoT part of the solution 149
Hardware setup 149
Firmware development 152
Application development 153

End-to-end testing 155
Creating a FoodBox 157
Transferring the asset to the transporter 158
Measuring the temperature while transporting 159
Transferring the asset to the warehouse 159
Creating a pallet and adding the box to it 160
Measuring the temperature while transporting a pallet 161
Tracking the FoodBox 161

Summary 163

Chapter 8: The IoT, Blockchain, and Industry 4.0 164
Industry 4.0 164
Cloud computing as an innovation platform 165

The cloud computing model 165
The importance of cloud computing to Industry 4.0 167

The IoT 167
Blockchain – simplifying business chains 168
Summary 170

Chapter 9: Best Practices for Developing Blockchain and IoT Solutions 171
Developing cloud applications 171

Reference architecture 174
Development using the 12–factor application model 174
Serverless computing 175

Blockchain development using Hyperledger Composer 176
The Hyperledger Composer toolkit 176
The Hyperledger Composer REST server 177

Authentication and multiuser mode 177
Data source configuration 177

Table of Contents

[v]

Summary 178
Further reading 178

Other Books You May Enjoy 179

Index 182

Preface
Blockchain and the Internet of Things (IoT) have proved to be the most in-demand
technologies right now, and are just at the beginning of their adoption curve. The
consolidation of blockchain and the IoT is on the priority list of several big companies and a
few have already started using its implementations, solutions, and initiatives in several
projects.

This book will help you develop a blockchain and IoT solution using best practices.

Who this book is for
This book is for anyone who is responsible for the security mechanisms of an IoT
infrastructure, and IT professionals who wish to develop solutions using blockchain and
IoT on the IBM Cloud platform. A basic understanding of IoT is required.

What this book covers
Chapter 1, Understanding IoT and Developing Devices on the IBM Watson IoT Platform, helps
you understand how IoT can be a game changer, what industries can do with this
technology, how to get started in the IoT world, and what features the IBM IoT Platform
provides and how you can leverage those features when creating an IoT solution.

Chapter 2, Creating Your First IoT Solution, helps you create your first end-to-end IoT
solution using the platform and a Raspberry Pi to exercise your skills. You will create an
automated garden-watering system that uses the platform to keep plants adequately
watered.

Chapter 3, Explaining Blockchain Technology and Working with Hyperledger, introduces you to
blockchain and helps you to understand how it works with a ledger to record the history of
transactions that provide a permissioned network with known identities.

Chapter 4, Creating Your Own Blockchain Network, helps you create your own blockchain
network using Hyperledger Composer, and explores how to create an asset, transaction
functions, access control, and query definition.

Preface

[2]

Chapter 5, Addressing Food Safety - Building around the Blockchain, helps you design and
implement a solution to address a logistics problem. You will gain an understanding of
how an IoT and blockchain solution can ensure that a food chain that starts at a farm and
ends on a person's plate can be securely tracked throughout its journey using those
technologies, and in order to gain the compliance from many countries that will apply to
this practice in a few years.

Chapter 6, Designing the Solution Architecture, helps you design the solution architecture
from the food safety transportation business problem and define the requirements for a
technical solution using blockchain to support the distributed ledger network and IoT
devices, and the platform, to support the tracking process.

Chapter 7, Creating Your Blockchain and IoT Solution, shows you how to create a blockchain
and IoT-integrated solution to address food safety transportation problems. You will gain
hands-on experience using blockchain and IoT platforms by coding and testing the
components designed in the previous chapter.

Chapter 8, The IoT, Blockchain, and Industry 4.0, helps you understand what the industry
trends are and what new business models can be created or derived from IoT and
blockchain solutions, as well as the market and technical trends regarding these
technologies.

Chapter 9, Best Practices for Developing Blockchain and IoT Solutions, helps you understand
previous project experiences and scenarios, and looks at the best practices and lessons
learned for designing and developing blockchain and IoT solutions.

To get the most out of this book
We expect that you have familiarity with a programming language and some experience
developing any solution for any embedded platform available (such as Raspberry Pi,
Arduino, ESP8266, or Intel Edison). We will mostly be using Node.js and the Hyperledger
Composer modeling language. Beginner-level JavaScript skills are welcome.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packt.com/support

Preface

[3]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​IoT- ​Solutions- ​with- ​Blockchain. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781789132243_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Next, open the IDE of your preference, create a new Node.js project, and install
the ibmiotf dependency package."

http://www.packt.com
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789132243_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

{
 "org": "<your iot org id>",
 "id": "<any application name>",
 "auth-key": "<application authentication key>",
 "auth-token": "<application authentication token>"
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

"successRedirect": “<redirection URL. will be overwritten by the property
'json: true'>”,
"failureRedirect": "/?success=false",
"session": true,

Any command-line input or output is written as follows:

$ npm start
> sample-device@1.0.0 start /sample-device

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"From the IoT Platform service created in the setup step, select Devices in the menu and
then select Add Device."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/

1
Understanding IoT and

Developing Devices on the IBM
Watson IoT Platform

In today's world, computers are able to process an unimaginable amount of data, and
anyone can create and sell their own devices. Because of this, Internet of Things (IoT) has
become a hot topic in the current business environment, and people are more connected
than ever.

In this chapter, you will see how IoT can be a game changer and discover what industries
can do with this technology. We will look at how to get started in the IoT world,
understand the features the IBM IoT Platform provides, and learn how to leverage these
features when creating our own IoT solution.

The following topics will be covered in this chapter:

IoT as a business and technology
Industries that are implementing IoT solutions
Technical elements that are part of an IoT solution
Features and capabilities available in the IBM Watson IoT Platform
Creating a simple gateway, application, and device that are integrated into the
IBM Watson IoT Platform

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[7]

What is IoT?
There are many definitions of what IoT is, but the most common articles found on the web
agree that it is a set of computerized things interconnected through the internet. Things can
be understood as people, objects, computers, phones, buildings, animals, and anything that
can be connected to the internet.

The term has been in use ever since embedded systems have been able to connect to the
internet and have become participants in the network. From computers to mobile phones,
smart watches to thermostats and refrigerators, entire production lines can now be
connected to the internet.

This evolution has also been enriched by the DIY community. Around the world, you will
find prototyping systems, such as Arduinos, Raspberry Pis, and other systems-on-a-chip
(SOC) available at lower prices; user-friendly programming languages; and even graphical
programming.

So, how could a connected refrigerator, for example, benefit you? Well, this type of
technology would allow the manufacturer to monitor your behavior and see that you are
not at home from 9 A.M. to 6 P.M. each day because the refrigerator door wasn't opened
during that time frame for one month. What if the refrigerator could be reprogrammed to
reduce usage during that period because no one is going to open the door? What if the
same manufacturer looks at the data collected from all the owners of that refrigerator?
Getting an insight into what the different groups of owners are and how they interact with
the refrigerator daily could make it possible to create a new model based on that
information. This solution would be more ecological, customizable, and cheaper. It would
also make it possible to update the refrigerator software to make it smarter, without the
need for buying a new one.

Apple has released frameworks for the IoT such as HomeKit and HealthKit. These have
different goals, but are still things that are connected to the internet.

People can connect objects such as door/window sensors, cameras, thermostats, light bulbs,
and locks to the internet and then use the Home app on their iPhones to control them from
anywhere in the world. This makes it possible to obtain automatic changes to thermostats
when you are on your way home, or to be notified of things such as an open door when
you're outside. It could even notify you of your daily weight, using a connected weight
scale. Google, Amazon, and other companies have also introduced similar solutions to
these use cases.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[8]

The IBM Watson IoT Platform does not intend to deliver a product. Instead, it focuses on
delivering a secure, scalable, and reliable platform to act as a connection hub between
devices and applications.

Common business use cases of IoT
The refrigerator was a simple and powerful example of using IoT at home, but it's not the
only example of how this could be used. In this chapter, we will discuss a few different
cases, industries, and people that could benefit from having connected devices.

Connected car
Let's take the example of an autonomous car. With this, automakers can monitor general
driver behavior and improve various aspects of the driving experience, as well as security.
They can also detect failed components sooner, leading to earlier recalls and
thereby improving customer satisfaction while reducing the production costs of
problematic components. From the perspective of an automobile owner, this could be
beneficial as they could monitor the wear and tear of the car parts and spend less money on
maintenance costs.

Connected persons
If you are a sports practitioner, you have probably already used a smartwatch to monitor
your fitness. If all of that information was properly stored and analyzed, then medical
studies could obtain more data that could predict diseases and maybe even improve
overall quality of life.

Furthermore, connecting health devices (such as scales, heart monitors, and blood meters)
and sharing data using blockchain could create a unified medical report for each person.
Doctors could improve diagnostics and medical decisions as a result. This would also
enable disease profiling and prediction.

IoT played a major role in the 2016 Olympics held in Rio de Janeiro. Many connected items
were used to gather information and process which factors had an effect on athletes' bodies
during matches. This was also helpful for creating new equipment, such as bikes, and new
regeneration strategies for intense competition.

These simple examples of how IoT will change our entire way of life provide us with more
than one reason as to why we should care about it so much.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[9]

Technical elements in IoT
Internet of Things does not rely only on devices and applications. It requires a set of
capabilities that, when used in an IoT solution, deliver more value to people and
companies. In this section, we will discuss some of these capabilities, such as devices,
hardware, and software, that are essential for designing and implementing an effective IoT
solution.

Devices
Devices are located at the edge of the IoT solution. In fact, these devices are what we call
Things in the context of IoT. They are usually capable of sending and receiving data events.

As an example, a device with an embedded soil moisture probe can detect that the
monitored soil has 43% moisture. It can then report this informative event to the platform
it's connected to. The platform can then send an action event to the device, triggering a
water valve to open and restore the soil moisture. This interaction depends on other aspects
related to the device, which will be covered in upcoming sections. For now, let's focus on
the device.

In order to handle these types of interactions, you may think of a device as a computing
unit that has analog or digital (or both) processing capabilities. This means that it is able to
read and write analog and digital signals to their probes and actuators.

An analog signal is a signal that can vary in a range of values. Let's take an Arduino Uno
board, for example. Arduino Uno has a 10-bit resolution analog-to-digital converter
(ADC), which means that it can read voltages from 0V to 5V and map them into integer
values between 0 and 1,023 (210 = 1,024). Analog signals are generally used to read data
from analog sensors.

A digital signal is a binary signal, which means that it has only two possible values: 0 or 1,
high or low. This kind of signal is mostly used to identify or change on and off states, for
example, turning an LED bulb on or off.

Edge computing
Devices are also capable of handling some actions by themselves. This could either be a
simple decision: for example, if the moisture level of the soil is below 50%, open the water
valve for a minute and check the moisture level again after five minutes.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[10]

Alternatively, it can be a complex task: for example, determining whether an object
detected by the camera of an autonomous car is a person waiting to cross the street or a
tree.

Devices that have to process these kinds of analyses cannot always rely on a network or an
application for information or assistance. What if one of them is out of service? This could
cause an accident.

Therefore, such devices are provided with a different type of capability called edge
computing, which is the capability of processing analytics at the very edge of the solution:
the device itself. Basically, edge computing allows the device to perform some actions and
calculations "offline," without an active connection to a network.

When selecting the device or devices that will be part of your IoT solution, the best method
is to ensure that all capabilities are present in the device.

Since there is a very high number of devices in an IoT network, exceeding capabilities can
lead to different problems related to cost, power supply, connection protocol, user
experience or even solution complexity.

Networking
Another important element of any IoT solution is networking. Today there are several ways
to connect devices, so this is an important aspect that has to be considered when choosing
your device. The most common networking standards used today are cabled networks or
Wi-Fi, cellular/mobile, LPWAN, and LoRa. All of these have pros and cons, so let's take a
closer look at their uses.

Wireless (Wi-Fi) or cabled network
Wi-Fi is the most common standard communication model on the internet. It assumes that
the device or object being connected to is capable of connecting to an IEEE 802.x network
and therefore is able to handle IP-based networks.

There are many wi-fi capable devices available in the market. Some examples of Wi-Fi
modules are the ExpressIf ESP-8266 and ESP-32 modules, Texas Instruments CC3200,
Microchip ATSAMW25, Intel Edison, and Galileo. This is not the complete list of devices
and there are many other combinations that combine a Wi-Fi capable controller and an
MCU.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[11]

Wi-Fi modules are relatively cheap and are generally good options for when it's possible or
desirable to use an available network and support high-payload transfers, given their
reliability and connection speed (up to 6.7 Gbps).

A Wi-Fi-based IoT solution looks pretty much like the following diagram:

Multiple devices can connect to a node, such as a router, which in turn connects to the
internet and allows connected devices to access the internet.

Cellular/mobile network
A cellular network is the same connection that any mobile phone uses. The basic idea with
this kind of network is to divide a territory into a number of cells, each one with a wireless
network connection served by a base station and a number of transceivers. The network
provides a number of services, such as voice, text, and data.

Mobile networks are an option when a device type in a solution is not in the range of a Wi-
Fi network, such as in a car. Another application that may require a mobile network device
is when the solution cannot depend on the user's network, for example, if you are using a
subscription for the device, and the device's activity depends on a network connection.
When using the subscription network, the device will continue to do its job even if the user
disables their own connection to the network.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[12]

The image below depicts the working of a standard cellular network:

We can see that a cellular antenna provides a signal to a limited region. The devices in
range can then connect through a wireless network to the antenna and use the services
provided by the mobile service provider, including the available internet connection.

Low-power wide-area network (LPWAN)
LPWAN is a type of wireless network designed to work in wide areas at very low bitrates,
which means that the exchange in this type of network is really small.

LPWAN uses low-power, low-bitrate, and low-frequency devices that are very powerful
when used to connect to things. This is because it enables the use of long-lasting batteries
and smaller devices. But there are still many restrictions, such as small data payloads or a
limited number of messages per day.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[13]

Having lower frequencies allows an LPWAN to be very reliable and unsusceptible to
interference, even when propagating messages for very large ranges. LPWAN providers
normally have a limit for the number of messages sent in the network. There are many
providers of LPWANs, and the most famous of these is probably Sigfox.

LPWANs do not have a direct connection from the device or gateway to the internet.
Instead, they usually have a pre-provisioned network, where at one end of the network you
will have the devices and at the other end you would have a number of web hooks and
functions that allow you to connect to your application or platform:

Different from a cellular network, LPWAN networks do not provide internet connection to
the devices, instead they provide means to create triggers on events received from the
devices to the network. As an example, you can create an application and a trigger at the
edge of the LPWAN provider network to the internet that whenever a data event is
received from a device, it calls a service available at the internet with given data from the
even published by the device.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[14]

LoRa or LoRaWAN
A LoRa network diagram is similar to an LPWAN network, except that instead of using
service provider infrastructure, LoRa networks can have a gateway that allows devices to
connect to the internet. The person responsible for a LoRa network infrastructure is the
owner of the network, meaning that you do not rely on a network service provider. You
create your own network:

There are a few technologies that work on the same model as LoRA, with different
protocols, such as ZigBee. Phillips Hue uses the same approach to connect light bulbs, LED
stripes, and other Hue devices to a gateway using ZigBee, and the gateway then connects to
the Hue cloud.

Network summary
To summarize, you can use this table as a reference when selecting network connections:

Type Speed Payload Range Connection
initialization Cost Infrastructure

Wi-Fi High High Low Bidirectional Low Private/Public
Mobile High High High Bidirectional High Provider
LPWAN Low Low High Device Low Provider
LoRa Low Low High Bidirectional Low Private

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[15]

Application protocols
After deciding the most adequate device for your IoT solution, it's important to define the
protocol that will be used to communicate with devices. IoT solutions tend to use
lightweight protocols, such as MQTT. This is not the only protocol that can be used in IoT,
but since the IBM Watson IoT Platform relies on MQTT and REST—and REST is very
popular—let's focus a little on MQTT.

MQTT
MQTT stands for Message Queuing Telemetry Transport. It is an extremely lightweight
messaging protocol based on the publish and subscribe pattern. As with any message
queuing model, it is an asynchronous protocol.

As shown in the following diagram, publish and subscribe (pub/sub) models rely on three
actors:

The three actors are explained as follows:

The publisher is the actor that produces any content and publishes it to a given
subject (known as a topic).
The subscriber is an event consumer. The subscriber subscribes to its subjects
(topics) of interest and gets the event published every time a publisher creates a
publication to one of its subscriptions.
The Broker is responsible for receiving publications and notifying the subscribers
of a topic of interest.

Now let's move on to the next important technical element.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[16]

Analytics and AI
Having an analytics or artificial intelligence software component in your IoT solution is not
required, but it's really interesting to use them to process data collected from devices to
extract patterns and insights that could lead to predictive maintenance, a better
understanding of user behavior, and so on.

For example, let's look at some data that is captured through washing machines. Someone
may have bought the appliance because it was supposed to save energy. However, after
processing the data collected, it becomes clear that the appliance is consuming more energy
than thought. The root cause is the lubricant as it was inadequate for its motor in non-
tropical countries.

Later, let's say you compare that information with sales data and realize that 1 million
washing machines were sold in Europe approximately eight months ago. The manufacturer
of the washing machine can get the benefit of early shipping rates for the spare parts that
must be exchanged. The manufacturer can also get a predictable amount of new lubricant
for their supplier, and this could perhaps lead to a new appliance design.

IBM Watson IoT Platform features
The IBM Watson IoT Platform is a hub for connecting devices, gateways, and applications
for IoT solutions. It supports REST and MQTT protocols for applications, devices,
gateways, event processing, and administrative tasks. The IBM Watson IoT Platform is
available on the IBM Cloud platform (formerly IBM Bluemix), a cloud platform based on
Cloud Foundry and Kubernetes.

Let's review the pertinent features of this platform.

Features
In this section, we will discuss the following main features of the IBM Watson IoT Platform:

Dashboard
Devices, gateways, and applications,
Security

Let's begin!

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[17]

Dashboard
This is the first thing that you will see when you access the IBM Watson IoT Platform. This
dashboard can be a combination a number of boards and cards, offering several
visualization options for your IoT solution:

Explore the boards and cards available in this screen to get familiar with the interface.

Devices, gateways, and applications
Another feature available in the platform is device management control. This feature makes
it possible to create and remove devices, gateways, applications, and device types. It also
makes it possible to check and trigger actions to the device, such as a firmware upgrade
request or reset:

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[18]

You can also create API keys so that your applications can connect to the IoT organization
and interact with the other components of the solution.

Security
You can also manage the security aspects of a solution using the IoT Platform. This might
include creating policies for device connections, white and black lists for the device's IP
address, or looking at a country's rules. You can also manage users that are permitted or
blocked from managing the IoT organization for solutions.

Creating your first IoT solution
In earlier sections of this chapter, there were many devices and applications that were not
explained in depth. To understand their roles in an IoT solution, it's important to create one
example of each.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[19]

The scenario created here will be a Device connected to the IBM Watson IoT Platform that
sends a timestamp as data, as well as an Application that prints that to stdout using
Node.js:

We will then improve this by adding a gateway to the solution, which looks similar to the
following diagram:

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[20]

At the end of the day, the difference of having a gateway connection and a device
connection is that you can create an abstraction or specialization of the device connected to
the IoT platform, depending on whatever is easier, cheaper, or any other reasons that might
drive the decision.

Creating a gateway
The first task of the job is to create an IoT organization. If you do not have an IBM ID and
IBM Cloud account, the sign-up process is very intuitive and only takes a couple of
minutes. If you already have an IBM Cloud account and an IBM ID, access the IBM Cloud
platform at http:/ ​/​bluemix. ​net. First, log in and create a space for the exercises in this
book.

After logging in to the IBM Cloud platform and accessing the designated space, select
the Create resource option to access the service catalog:

http://bluemix.net
http://bluemix.net
http://bluemix.net
http://bluemix.net
http://bluemix.net
http://bluemix.net
http://bluemix.net

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[21]

Select Internet of Things in the menu and create a service called Internet of Things
Platform. Now, select the option to Create:

When the service is created, you can select the Launch option and access the IoT Platform:

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[22]

When you access the IoT Platform, notice that the address is
https://xxxxxx.internetofthings.ibmcloud.com/.

Here, xxxxxx is your organization ID; make a note of it as it will be used during the entire
process.

Creating an application
Creating an application means that you're allowing an actual application or service to
connect to a specific Watson IoT Platform organization:

In order to do that, access the IoT organization through the IBM Cloud1.
dashboard, select Apps from the side menu, then select Generate API key and
fill in the Description field with Hands-On IoT Solutions with
Blockchain - Chapter 1 App. Finally, click on Next:

Select the Standard Application role and click on Generate Key. You will get2.
an API Key and Authentication Token. Make a note of these in a table
format, like the one that follows, as you'll need them to connect to your
application:

API key Authentication token

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[23]

Next, open the IDE of your preference, create a new Node.js project, and install3.
the ibmiotf dependency package:

npm install ibmiotf --save

Ensure that your package.json file looks something like the following:4.

{
 "name": "sample-application",
 "version": "1.0.0",
 "description": "Hands-On IoT Solutions with Blockchain - Chapter
1 App",
 "main": "index.js",
 "scripts": {
 "start": "node .",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Maximiliano Santos",
 "license": "ISC",
 "dependencies": {
 "ibmiotf": "^0.2.41"
 }
}

Now, create a file named application.json with the following content:5.

{
 "org": "<your iot org id>",
 "id": "<any application name>",
 "auth-key": "<application authentication key>",
 "auth-token": "<application authentication token>"
}

Create a file named index.js and add the following content:6.

var Client = require("ibmiotf");
var appClientConfig = require("./application.json");

var appClient = new Client.IotfApplication(appClientConfig);

appClient.connect();

appClient.on("connect", function () {
 console.log("connected");
});

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[24]

The application can be tested by running the npm start command:7.

$ npm start
> sample-application@1.0.0 start /sample-application
> node .
connected

Congratulations, you just created your first application connected to IBM Watson
IoT Platform!

Now, update index.js to have the following content:8.

var Client = require("ibmiotf");
var appClientConfig = require("./application.json");

var appClient = new Client.IotfApplication(appClientConfig);

appClient.connect();

appClient.on("connect", function () {
 appClient.subscribeToDeviceEvents();
});

appClient.on("deviceEvent", function (deviceType, deviceId,
payload, topic) {
 console.log("Device events from : " + deviceType + " : " +
deviceId + " with payload : " + payload);
});

Now, whenever a device publishes an event, you will get the event printed to stdout. In
the next section, we will create a device to publish the events.

Creating a device
In this section, you'll run through similar steps to create a fake device that connects to IBM
Watson IoT Platform and publishes an event.

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[25]

From the IoT Platform service created in the setup step, select Devices in the1.
menu and then select Add Device. Create a device type named DeviceSimulator
and fill in the Device ID field with DeviceSimulator01:

Since it's only a simulator, just click on Next until you reach the end of the2.
wizard:

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[26]

Note the device credentials generated, in the following format:3.

Device type Device ID Authentication method Authentication token

Go back to your preferred IDE and create the project with the same4.
characteristics as the previous application:

npm install ibmiotf --save

Ensure that your package.json file looks like the following:5.

{
 "name": "sample-device",
 "version": "1.0.0",
 "description": "Hands-On IoT Solutions with Blockchain - Chapter
1 Device",
 "main": "index.js",
 "scripts": {
 "start": "node .",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Maximiliano Santos",
 "license": "ISC",
 "dependencies": {
 "ibmiotf": "^0.2.41"
 }
}

Then, create a file named device.json with the following content:6.

{
 "org": "<your iot org id>",
 "type": "DeviceSimulator",
 "id": "DeviceSimulator01",
 "auth-method" : "token",
 "auth-token" : "<device authentication token>"
}

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[27]

Create a file named index.js and add the following content:7.

var iotf = require("ibmiotf");
var config = require("./device.json");

var deviceClient = new iotf.IotfDevice(config);

deviceClient.log.setLevel('debug');

deviceClient.connect();

deviceClient.on('connect', function(){
 console.log("connected");
});

The device simulator can be tested by running the npm start command:8.

$ npm start
> sample-device@1.0.0 start /sample-device
> node .
[BaseClient:connect] Connecting to IoTF with host :
ssl://3nr17i.messaging.internetofthings.ibmcloud.co
m:8883 and with client id :
d:3nr17i:DeviceSimulator:DeviceSimulator01
[DeviceClient:connect] DeviceClient Connected
connected

Now, update the code to send an event with the current timestamp to the IoT9.
Platform service:

var iotf = require("ibmiotf");
var config = require("./device.json");

var deviceClient = new iotf.IotfDevice(config);

deviceClient.log.setLevel('debug');

deviceClient.connect();

deviceClient.on('connect', function() {
 console.log("connected");
 setInterval(function function_name () {
 deviceClient.publish('myevt', 'json', '{"value":' + new Date()
+'}', 2);
 },2000);
});

Understanding IoT and Developing Devices on the IBM Watson IoT Platform Chapter 1

[28]

Run npm start again and every two seconds the device will send an event to10.
the Watson IoT Platform. You can check the logs of the application to see
whether it has received the events, like so:

Device Event from :: DeviceSimulator : DeviceSimulator01 of event
myevt with payload : {"value":Sun May 20 2018 21:55:19 GMT-0300
(-03)}
Device Event from :: DeviceSimulator : DeviceSimulator01 of event
myevt with payload : {"value":Sun May 20 2018 21:55:21 GMT-0300
(-03)}
Device Event from :: DeviceSimulator : DeviceSimulator01 of event
myevt with payload : {"value":Sun May 20 2018 21:55:23 GMT-0300
(-03)}
Device Event from :: DeviceSimulator : DeviceSimulator01 of event
myevt with payload : {"value":Sun May 20 2018 21:55:25 GMT-0300
(-03)}

Congratulations again, your device simulator is now publishing events and your
application is receiving them!

Summary
In this chapter, we had an overview of the IoT environment. We learned about some
important technical elements that play a role in the successful implementation of an IoT
solution.

We also looked at the different types of networking options, important considerations
when selecting a device type, and how to create a device and an application connected to
the IBM Watson IoT Platform.

In the next chapter, you will improve your development skills by creating a simple
connected garden.

Further reading
Examples in other languages such as Python, Java, C++, and C# can be found in the IBM
Watson IoT Platform documentation at the following link: https:/ ​/​console. ​bluemix. ​net/
docs/​services/​IoT/ ​getting- ​started. ​html#getting- ​started- ​with- ​iotp.

https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp
https://console.bluemix.net/docs/services/IoT/getting-started.html#getting-started-with-iotp

2
Creating Your First IoT Solution

In the previous chapter, we explored the Internet of Things (IoT) as well as the IBM
Watson IoT Platform. We also created our first simple solution. In this chapter, we will put
this into practice by creating a simple end-to-end solution, from selecting the device to
creating the device firmware and an application designed to control a simple garden
watering system.

The following topics will be covered in this chapter:

Understanding how to set up a solution
Creating a connected device
Creating a simple application connected to the platform
Publishing and processing device events
Publishing actions to devices
How to get help when you're in trouble

Technical requirements
 The complete solution code is available in the ch2 folder, available at the https:/ ​/​github.
com/​PacktPublishing/ ​Hands- ​On- ​IoT- ​Solutions- ​with- ​Blockchain. ​git repository.

Make sure that you have also installed Cloud Foundry CLI and Bluemix CLI; the
installation process for these command-line interfaces is described at https:/ ​/ ​console.
bluemix.​net/​docs/ ​cli/ ​index. ​html#overview.

https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain.git
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview
https://console.bluemix.net/docs/cli/index.html#overview

Creating Your First IoT Solution Chapter 2

[30]

The first IoT solution – the gardening
solution
Watering systems are common first projects for using IoT in the DIY community. We too
will use it as an example project to get started on the IBM Watson IoT Platform.

Requirements overview
Good solutions are based on problems that really matter to people. So let's start our
solution with an introduction to the actual problem:

John lives alone in an apartment in the city. He is a businessman who has to travel for work
for 3-4 days in a week. When not travelling or working, John likes to take care of his plants.
However, since he is not home for half the week, John is struggling to keep his garden
healthy and beautiful.

John has faced several challenging experiences with automated watering systems: either the
system did not water the plants enough (on hot or dry days, for example), or it watered
them too much when the weather was okay.

John is looking for a solution that only waters his garden when a plant has reached a
certain soil moisture condition, or whenever he feels it is necessary.

Solution overview
The following diagram shows an overview of the solution components that will be
developed to solve John's problem:

Creating Your First IoT Solution Chapter 2

[31]

A connected device will be attached to John's plant, and on a scheduled basis will retrieve
measurements from the plant and environment (soil moisture and temperature) and
publish the event to the IBM Watson IoT Platform. The device will also subscribe to trigger
commands (actions).

An application deployed to the IBM Cloud (Bluemix) will subscribe to John's events, and
whenever a configured minimum level of soil moisture or a high temperature threshold is
reached, the application will send an action command to water the plant for a certain
duration.

Selecting the equipment
Given the requirements described in the previous section, the device that needs to be
created must have the following capabilities:

Be able to measure the soil's moisture level (an analog probe has a good fit for
this solution)
Have bidirectional communication capability (so that the user can water the
garden whenever he feels it is necessary)
Be able to configure the soil's moisture limit (a configurable rule)

Creating Your First IoT Solution Chapter 2

[32]

The following assumptions are also true about the solution:

The user will prov

ide a Wi-Fi internet connection
The user will provide an energy supply for the system
The system will be used in an apartment, so there is no need for
long-distance connections
Payload size is irr

elevant as a Wi-Fi connection will be provided

Since we are prototyping before creating the actual device, there are a number of
prototyping platforms that can make it easier to wire and test the solution quickly. To do
this, we will use one of the most powerful and modular platforms: Intel Edison and Grove.

We will look for a device (or a composition) that has Wi-Fi connectivity and an analog
sensor connection. We will also need a soil moisture analog sensor probe, a temperature
and humidity sensor, and a water solenoid valve.

Consequently, the solution will require a list of parts, which will look something like this:

Quantity Component
1 Intel Edison module
1 Intel Edison Arduino breakout board
1 Grove base shield v2
1 Grove soil moisture sensor
1 Groove temperature sensor v1.2
1 Grove relay module
1 Grove button module
4 Grove universal 4-pin cable
1 12V water solenoid valve
1 12V 2A power supply
2 Jumper cables (male to male)

The following diagram provides an overview of the parts that are specified in the parts list
table. Please note that the shape and color of the devices are just for illustration purposes
and might be different depending on the vendor, edition, or other characteristics:

Creating Your First IoT Solution Chapter 2

[33]

The image was created with Fritzing and is licensed under CC BY-SA 3.0; see https://creativecommons.org/licenses/by-sa/3.0/

Let's quickly review the parts from this list.

Intel Edison
Edison is a system-on-a-chip (SoC), based on Intel x86 architecture with embedded
Bluetooth 4.0 and Wi-Fi designed for IoT applications. Edison runs a Linux distribution
named Yocto; has support for many platforms, such as Python, Node.js, C, and C++; and
has plugins for developing solutions using Arduino IDE, Eclipse, and Intel XDK.

Creating Your First IoT Solution Chapter 2

[34]

Arduino breakout board
The Arduino breakout board for Edison was also released by Intel, which provides the
same standard pin interface used by Arduino modules and is compatible with Arduino
shields. Since you can use the standard Arduino IDE, compatible libraries, connectors, and
shields, the Intel Edison Arduino breakout board is a great interface for prototyping and
running Arduino sketches.

Grove system
Grove is a set of components and shields that creates a standardized modular platform with
building blocks for prototyping solutions created by Seeed. There are many available
prototypes, including working code for the Grove platform available on the internet,
especially on do-it-yourself (DIY) community sites.

The Grove system has shields for platforms with heavy adoption in the market, such as
Arduino, Raspberry Pi, and BeagleBone. Bundles with the compute module, base shield,
Grove blocks, and spare parts can be found on the internet.

Note that not every sensor is compatible with every platform because some platforms lack
certain capabilities. For example, Raspberry Pi does not provide analog interfaces, so
sensors that are connectable through an analog interface will not be compatible with it.

Let's look at all the Grove components we will use as part of this IoT solution.

Grove base shield for Arduino
In this project, we will use the Grove base shield for Arduino, which provides an interface
for Grove standard connectors to connect Grove modules to the Arduino pin interface. It
provides four analog interfaces, four I2C interfaces, seven digital interfaces, and a UART
interface.

Grove sensors
In this project, we will be using two different types of sensors: the soil moisture sensor and
the temperature sensor.

The soil moisture sensor is an analog probe that provides soil resistive measurements,
which we will explain later in this chapter. The temperature of the sensor is based on a
thermistor, and its specifications and calculation are also detailed later in the Measuring
environment temperature section.

Creating Your First IoT Solution Chapter 2

[35]

Both sensors use the standard Grove connector cable that provides VCC, GND, and data
connectivity to the probe.

Grove button
This button follows the same connectivity to the computing module as the sensors
but provides an open or closed circuit state, depending on whether the button is pressed or
not.

It can have different interpretations: either the connection is interrupted when the button is
pressed, meaning it will keep doing something unless the button is pressed; or the
connection is activated when the button is pressed, meaning it will only do something after
the button is pressed.

Grove relay
The relay module, as expected, is connected to the standard Grove interface, but it is
classified as an actuator because it does not provide readings.

Other actuator modules such as LEDs, displays, motor drivers, and buzzers are used to
perform actions instead of reading states. The relay module too has two states, open circuit
or closed circuit, meaning that the input connection of the relay is not connected to the
output.

This concludes our review of the parts. Let's move on to the next step in the solution
development process.

Wiring the device
To assemble the hardware, we need to correctly connect the sensor probes to the processing
unit—in this case, the Intel Edison module.

Grove modules make the connections very simple, as the following steps show:

Using the Grove universal cables:1.
Attach the Grove moisture sensor to the A0 connection jack in the base
shield
Attach the Grove temperature sensor to the A3 connection jack in the
base shield

Creating Your First IoT Solution Chapter 2

[36]

Attach the Grove relay module to the D2 connection jack in the base
shield
Attach the Grove button module to the D3 connection jack in the base
shield

Using the jumpers:2.
Attach the solenoid valve's V+ end to an external 12V power supply
Attach the external GND pin to a GND pin in the base shield
Attach a relay connection to a GND pin
Attach the solenoid valve GND terminal to the other relay module
connection

The following diagram shows the correct connections:

Image was created with Fritzing and it is licensed under CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/

Creating Your First IoT Solution Chapter 2

[37]

Coding the device firmware
Next, we will create a device application (firmware) that reads the sensor data and sends it
to the backing application. In the previous chapter, we used Node.js to publish events from
a device simulator, and now we're going to use this method to leverage the previous
chapter's code. Remember that the objective of this solution is to water a plant whenever
the temperature is high or the soil moisture is too low.

The next section shows the code needed in order to create the firmware that reads all the
sensor data and publishes events to the IBM Watson IoT Platform.

Measuring soil moisture
The sensor probe used in this project is a resistive sensor, which measures the current that
is passed through the probes of the sensor. It has two probes that are physically separated;
one probe is attached to a positive end and the other to the GND end. When both probes are
connected by a common surface, it will measure the current that is passed through that
surface and give us a reading.

In our case, when the probes touch the soil, it will measure the current that passes
through. When soil gets wet, it becomes more conductive, meaning that more current will
pass through the probes.

The Intel Edison ADC (analog-to-digital) converter that is in the Arduino breakout board
has a 12-bit resolution, but this is limited through software to a 10-bit resolution. If we use
this as the basis for our measurement, we will get the following understanding of the
readings:

210 = 1024

This means that our readings will be a value from 0 to 1,023, where 0 means no water at all
and 1,023 means 100% of the water. This will vary because of other impurities that are
present in the soil, such as minerals. However, in this case, we will assume that the soil is
perfectly measured. When it's completely dry, it will give us a measurement of 0% and if
it's a glass of water without any soil, it will give us a reading of 100%.

Creating Your First IoT Solution Chapter 2

[38]

The following code will read the soil moisture sensor every two seconds:

var mraa = require('mraa');
var pin0 = new mraa.Aio(0);
var getSoilMoisture = function() {
 var sensorReading = pin0.read();
 return sensorReading;
};
setInterval(function() {
 console.log("Current Moisture " + getSoilMoisture());
},2000);

To run the code, type npm start in Edison's SSH console.

For testing purposes, let's take a look at the measurement readings of the sensors that are
printed to the console and gain some understanding of the values:

We already know that 0 means 0% water and 1,023 is 100, which means that the
sample measurement readings in the program are as follows:

Creating Your First IoT Solution Chapter 2

[39]

Applying the reading values to the preceding formula will transform them into percentage
values as follows:

Reading values Moisture percentage
256 25.02%
307 30.00%
302 29.52%
303 29.61%
299 29.22%
298 29.13%

Measuring environmental temperature
Similar to the previous code block (but slightly more mathematically complicated), the
temperature sensor returns an analog reading of the sensor.

If we look at the manufacturer's explanation (http:/ ​/​wiki. ​seeedstudio. ​com/ ​Grove-
Temperature_​Sensor_ ​V1. ​2/ ​) on how to read the sensor, we will discover that the sensor's
v1.2 is shipped with a thermistor with the value of 4,250 as well as a 100k resistor.

Consequently, the formula for calculating the temperature value using this sensor is as
follows:

The following code will give the temperature based on the sensor readings every two
seconds:

var mraa = require('mraa');
var pin3 = new mraa.Aio(3);
var RESISTOR = 100000;
var THERMISTOR = 4250;
var getTemperature = function() {
 var sensorReading = pin3.read();
 var R = 1023 / sensorReading - 1;
 R = RESISTOR * R;
 var temperature = 1 / (Math.log(R/RESISTOR)/THERMISTOR+1/298.15)-273.15;

http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/

Creating Your First IoT Solution Chapter 2

[40]

 return temperature;
};
setInterval(function() {
 console.log("Current Temperature " + getTemperature());
},2000);

The output of this code will look something like this:

Using the SSH console, these readings will be logged.

Turning on the relay
Last but not least, since we want to turn on a relay that will let water flow and then turn it
off, the code for turning the water on after one second and off after two seconds is as
follows:

var mraa = require('mraa');
var pinD2 = new mraa.Gpio(2);
pinD2.dir(mraa.DIR_OUT);
setTimeout(function() {
 pinD2.write(1);
 setTimeout(function() {
 pinD2.write(0);
 },2000);
},1000);

Creating Your First IoT Solution Chapter 2

[41]

After a delay of one second, you'll see the D3 relay module LED turn on and you will also
hear a click. This means that the relay connection is closed, and after two seconds it will
turn off and open the connection.

Publishing events
At this point in the chapter, we have explored Node.js scripts that are capable of reading
both soil moisture and temperatures, and we have also looked at the code that can turn on
and turn off the relay that lets the water flow to the plant.

The goal is now to publish both of these values to the IBM Watson IoT Platform.

As shown in the previous chapter, it's necessary to create a device and note the credentials,
so that we can use them to connect the device to the platform. The following code performs
the regular publishing of the events:

var iotf = require("ibmiotf");
var mraa = require('mraa');
var config = require("./device.json");
var deviceClient = new iotf.IotfDevice(config);
var temperatureSensor = new mraa.Aio(3);
var moistureSensor = new mraa.Aio(0);
var RESISTOR = 100000;
var THERMISTOR = 4250;
var getTemperature = function() {
 var sensorReading = temperatureSensor.read();
 var R = 1023 / sensorReading - 1;
 R = RESISTOR * R;
 var temperature = 1 / (Math.log(R/RESISTOR)/THERMISTOR+1/298.15)-273.15;
 return temperature;
};
var getSoilMoisture = function() {
 var sensorReading = moistureSensor.read();
 return sensorReading;
};
deviceClient.connect();
deviceClient.on('connect', function(){
console.log("connected");
setInterval(function function_name () {
deviceClient.publish('status', 'json', '{ "temperature": ' +
getTemperature() +', "soilMoisture": ' + getSoilMoisture() + '}', 2);
},300000);
});

Creating Your First IoT Solution Chapter 2

[42]

When the scripts start, they will load the configuration from the device.json file, connect
to the IBM Watson IoT Platform, and then publish an event with the current soil moisture
and temperature every five minutes.

Monitoring the events
The easiest way to view the data published by the device is by using boards and cards. If
you keep the device script running when creating the card, it will get the values from the
data structure published by the device.

To create a card, access the IBM Watson IoT Platform console and select1.
boards in the left menu:

Creating Your First IoT Solution Chapter 2

[43]

At the top right of the page, select + Create New Board, complete the information2.
required, and create the board. Most information that must be provided is
miscellaneous, but make sure it is meaningful to the target user. The board
created here is supposed to display the plants monitored readings:

Creating Your First IoT Solution Chapter 2

[44]

A board is a set of related cards, and a card is a set of related values that were
published by devices to the platform.

Select the created board and create the card by selecting + Add New Card.3.

Creating Your First IoT Solution Chapter 2

[45]

Select the Line chart device visualization and the device created:4.

Creating Your First IoT Solution Chapter 2

[46]

After selecting Line chart card, you need to select a data source for the event.5.
Select the device created as the data source for this card. The data source, as the
name says, is the source of information that will be used to populate the chart
with metrics collected from devices:

After selecting the data source, it's necessary to select the metrics that will be6.
plotted on the chart. If the device has already published some events to the IBM
Watson IoT Platform, the metric names will be available to be selected. On the
other hand, if the device code has never been run before, you will need to
provide the metric names. It's recommended (not required) that you at least test
the device code to avoid mistakes before creating the chart.

Creating Your First IoT Solution Chapter 2

[47]

In the solution that is being developed, we want the card to have both metrics7.
plotted in the line chart and tracked. Add each metric with its corresponding unit
and maximum and minimum possible values. For the soil moisture, we use
percentage, so Unit should be % for the minimum and maximum values 0 and
100 respectively:

Creating Your First IoT Solution Chapter 2

[48]

For temperature, measured in degrees Celsius (°C), the minimum and maximum8.
possible values are 0 and 100:

Creating Your First IoT Solution Chapter 2

[49]

Select the size of the card you prefer to display, name the card, and create it. You9.
will now be able to visualize the published data:

It's possible to verify the measurements sent by the plant device, plotted in the timeline. It's
also possible to change the time frame for the chart.

Subscribing to actions
After publishing events for the device, it's time to define actions that need to be handled by
the device. In our case, John, the user of the solution, wants to be able to water his plants
whenever a defined soil moisture threshold is detected, whenever the temperature reaches
a configurable value, or whenever he triggers an event to water the plant.

The water flow is controlled by the solenoid valve, which is opened and closed by the relay
module. The following code is an update of the previous one, including the subscription for
the water-the-plant action, which will open the valve for a minute.

Creating Your First IoT Solution Chapter 2

[50]

The starting point is to import all package dependencies, define the RESISTOR1.
and THERMISTOR constants with predefined values, and load the configuration
from device.json:

var iotf = require("ibmiotf");
var mraa = require('mraa');
var config = require("./device.json");
var deviceClient = new iotf.IotfDevice(config);
var temperatureSensor = new mraa.Aio(3);
var moistureSensor = new mraa.Aio(0);
var relayControl = new mraa.Gpio(2);
var RESISTOR = 100000;
var THERMISTOR = 4250;

Then, create helper functions to transform sensor readings into usable values.2.
The following functions are responsible for retrieving the sensor values from the
actual device and transforming them into human-understandable values:

var getTemperature = function() {
 var sensorReading = temperatureSensor.read();
 var R = 1023 / sensorReading - 1;
 R = RESISTOR * R;
 var temperature = 1 /
(Math.log(R/RESISTOR)/THERMISTOR+1/298.15)-273.15;
 return temperature;
};
var getSoilMoisture = function() {
 var sensorReading = moistureSensor.read();
 return sensorReading;
};

The next step is to create a helper function to activate the solenoid valve, wait for3.
the amount of time requested (the secondsToWater variable's value), and then
deactivate the valve so watering will stop:

var waterPlant = function(secondsToWater) {
 relayControl.write(1);
 setTimeout(function() {
 pinD2.write(0);
 },secondsToWater * 1000);

Connect to the IBM Watson IoT Platform and create a publishing function that4.
will publish events to the platform every five minutes:

deviceClient.connect();
deviceClient.on('connect', function(){
 console.log("connected");

Creating Your First IoT Solution Chapter 2

[51]

 setInterval(function function_name () {
 deviceClient.publish('status', 'json', '{ "temperature": ' +
getTemperature() +', "soilMoisture": ' + getSoilMoisture() + '}',
2);
 },300000);
});

And create a function that subscribes to the water event, triggering the5.
waterPlant function:

deviceClient.on("command", function
(commandName,format,payload,topic) {
 if(commandName === "water") {
 var commandPayload = JSON.parse(payload.toString());
 console.log("Watering the plant for " + commandPayload.duration
+ " seconds.");
 waterPlant(commandPayload.duration);
 } else {
 console.log("Command not supported.. " + commandName);
 }
});

This concludes the coding of our device firmware so that it can perform the desired actions
of our user, John.

Creating the backend application
With the device firmware setup completed, it's now time to focus on developing the
application that will process the device events and send commands so that John's plant will
get watered when he's not home.

The code for the application will run on the IBM Cloud Platform (Bluemix). Since this is just
an example application, we're going to use environment variables to store parameters
(temperature and soil moisture thresholds).

Creating Your First IoT Solution Chapter 2

[52]

Creating a Cloud Foundry application in the IBM
Cloud Platform

To create an application in IBM Cloud, access https:/ ​/​console. ​bluemix. ​net,1.
select the Create Resource option, and select Cloud Foundry Apps in the left
menu, followed by SDK for Node.js. After doing this, name the application and
create the runtime:

When application creation is complete, select Connections in the left menu and2.
create a connection to the IoT service:

https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net

Creating Your First IoT Solution Chapter 2

[53]

After creating the connection to the IBM Watson IoT Platform organization, select3.
the Runtime option in the left menu followed by Environment Variables. At the
bottom of the screen, add two User defined variables, MINIMUM_MOISTURE with
a value of 300 and MAXIMUM_TEMPERATURE with a value of 50:

Instead of using a JSON file for storing the configuration as we did in the previous chapter,
the only configuration needed now is in VCAP_SERVICES and environment variables. These
variables can be accessed from code using default library packages, and there are
accelerators in Node.js for accessing Cloud Foundry environment-related facilities, such as
the cfenv module used in the code presented in the following section.

Uploading the code
Since we are deploying the application to a Cloud Foundry environment, it's important to
know that Cloud Foundry containers expect to have an HTTP port to be published by the
container, so even though we are not using the container to expose HTTP resources, we're
going to start an Express JS server.

The following code handles the events received from devices and publishes actions if any
conditions are met.

Again, the entry point of the code is to load module dependencies and gather the1.
required configuration from the Cloud Foundry environment variables:

var express = require("express");
var cfenv = require("cfenv");
var Client = require("ibmiotf");
var minimumMoisture = parseInt(process.env.MINIMUM_MOISTURE);
var maximumTemperature = parseInt(process.env.MAXIMUM_TEMPERATURE);

Then, load configuration data from the Cloud Foundry environment and2.
generate connection configuration data:

var app = express();

Creating Your First IoT Solution Chapter 2

[54]

var appEnv = cfenv.getAppEnv();
var iotConfig = appEnv.getService("Internet of Things Platform-
mf");
var appClientConfig = {
 "org": iotConfig.credentials.org,
 "id": "hands-on-iot-app",
 "auth-key": iotConfig.credentials.apiKey,
 "auth-token": iotConfig.credentials.apiToken
}

The next step is to connect to the IBM Watson IoT Platform and subscribe to3.
target device events:

var appClient = new Client.IotfApplication(appClientConfig);
appClient.connect();
appClient.on("connect", function () {
 appClient.subscribeToDeviceEvents();
});
appClient.on("deviceEvent", function (deviceType, deviceId,
eventType, format, payload) {
 var deviceData = JSON.parse(payload);

Whenever an event is received from the subscription, the application checks4.
whether the temperature reported by the device is higher or the soil moisture is
below the thresholds defined. If so, a water event with a specified duration in
seconds is published to the device so the watering valve is activated:

 if(deviceData.temperature > maximumTemperature ||
deviceData.soilMoisture < minimumMoisture) {
 console.log("Device, please water the plant for 60 seconds");
 var actionData= { duration : 60 };
 actionData = JSON.stringify(actionData);
 appClient.publishDeviceCommand(deviceType, deviceId, "water",
"json", actionData);
 }
});

And finally, start the Express server so the IBM Cloud SDK for Node.js container5.
is started and monitored by the Cloud Foundry environment:

var port = process.env.PORT;
app.listen(port, function() {
 console.log("App listening!");
});

Creating Your First IoT Solution Chapter 2

[55]

To deploy the application, open the manifest.yml file and change the name attribute of
the application. Then, open a command-line terminal, switch to the application base
directory (the place where manifest.yml stands), and deploy the application using
the bluemix CLI:

bluemix login

bluemix target -o <your_cloud_foundry_organization_name> -s
<space_where_your_app_will_be_deployed>

bluemix cf push

After getting the successful deployment message, check the application logs using the
bluemix CLI:

bluemix cf logs <your_application_name>

The command will retrieve and display the log files from the Cloud Foundry application, as
shown next. To ensure you can retrieve these logs, ensure that all application traces are
being sent to stdout and stderr:

Log files from the Cloud Foundry application

Creating Your First IoT Solution Chapter 2

[56]

Looking at the device logs, you can see that whenever any of the conditions were met, they
got an action request to water the plants:

At this point, you already have an IoT application and device connected and working
properly in the IBM Cloud environment.

Summary
In this chapter, we developed a solution running on a real device that supports Node.js. We
also used the low-level mraa library, which interacts with the device GPIO (General
Purpose IO), reads analog sensors (temperature and soil moisture sensors) and uses digital
pins to switch a relay on and off. This looks very simple but most devices have sensors and
actuators, which may change the way in which they are used. However, they essentially
follow the same concept.

We created a dashboard in the IBM Watson IoT Platform that is helpful for looking at what
real-time data devices are publishing. We also created an application in the IBM Cloud
Platform (Bluemix) and attached backing services (the IBM Watson IoT Platform
organization) to the application in order to leverage configuration data to connect to the
service and deploy the application using the Bluemix command-line interface.

The next chapters will introduce blockchain as a platform for interconnected businesses and
explain its value and the common use cases in which it adds value to the business chain.

Creating Your First IoT Solution Chapter 2

[57]

Further reading
Most of the resources needed to complete solutions using the IBM Watson IoT Platform can
be found in the official documentation at the following link: https:/ ​/ ​console. ​bluemix.
net/​docs/​services/ ​IoT/ ​index. ​html#gettingstartedtemplate. There are also many
recipes published by the community that uses IBM Watson IoT, and these are available at
the developerWorks Recipes website here: https:/ ​/​developer. ​ibm. ​com/ ​recipes/
tutorials/​category/ ​internet- ​of- ​things- ​iot/ ​.

It's also very helpful to understand how to upload a project to a GitHub repository and
how to create a delivery pipeline to automatically build, test, and deploy an application
whenever a new change is pushed to the repository. Doing this is not within the scope of
this book, but it's still a really good practice to use.

Further information on Grove system platforms, modules, bundles, and component
specifications can be found on the manufacturer's website: http:/ ​/​wiki. ​seeedstudio. ​com/
Grove/​.

https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
https://developer.ibm.com/recipes/tutorials/category/internet-of-things-iot/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/
http://wiki.seeedstudio.com/Grove/

3
Explaining Blockchain

Technology and Working with
Hyperledger

Blockchain is a transforming force in a digital world in which people are connected more
than ever. To explain it in a few words, this shared, distributed ledger known as blockchain
is able to make the process of recording transactions and tracking assets in a business
network more secure, easier, and with transparency for all members.

People now often use services such as internet banking, e-commerce, and apps for making
purchases such as hotel reservations, taxi services, and other online services. This creates a
huge volume of transactions and data. On top of this, IoT also brings new possibilities to
this digital world. As products integrate with IoT, the volume of transactions grows
exponentially; therefore, the necessity to connect to suppliers, banks, and regulators across
geographical boundaries grows.

Blockchain technology provides a huge opportunity to transform operational business in
many industries, such as financial services, insurance, communications, and government.
Furthermore, it facilitates transactions between companies as they can be processed
digitally.

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[59]

What is blockchain?
Let’s take a more in-depth look at what blockchain really is. An asset consists of anything
that is capable of being owned or controlled to produce value. The assets are the
protagonists of this network, and can include tangible assets such as cars, houses, or
money. They can also include intangible assets such as copyrights and patents. If the assets
are the protagonist, then the ledger is the key. The ledger is a business's system of records.
Businesses will have multiple ledgers for multiple business networks in which they
participate.

The following diagram represents the status quo for business networks. Each participant
keeps their own ledger(s), which are updated to represent business transactions as they
occur:

With blockchain technology, members of a business network share a ledger that is updated
every time a transaction occurs through peer-to-peer replication, as depicted in the
following diagram:

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[60]

Blockchain allows multiple competing parties to securely interact with the same universal
source of truth. It has shared immutable ledgers for recording transaction history, which
provide a permissioned network with known identities.

The four important concepts of blockchain are as follows:

Consensus: For a transaction to be valid, all participants must agree on its
validity.
Provenance: Participants know where the asset came from and how its
ownership has changed over time.
Immutability: No participant can tamper with a transaction after it has been
recorded in the ledger. If a transaction was made in error, a new transaction must
be used to reverse the error, and both transactions are then visible.
Finality: A single shared ledger provides one place to go to determine the
ownership of an asset or the completion of a transaction.

The main focus when we talk about blockchain is on a business network based on
Blockchain, Blockchain for business, where transactions and members are permissioned,
private, and prioritized; we are working with assets, identity, and selective endorsement.

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[61]

You may be familiar with the idea that blockchain is a Bitcoin technology. In fact, we may
even say that Bitcoin was the first use case of blockchain. Bitcoin is a digital currency with
no central banks, no single administrator, and no paper currency. The software used is
capable of solving mathematical puzzles in a peer-to-peer network. The transactions do not
have an intermediary; they happen directly between users with transparency.

Blockchain and Hyperledger
There are many frameworks or technologies around blockchain: R3 (corda), Ethereum, Neo,
and Nem, each one with a particular design and architecture. Throughout this book, we
will focus on the blockchain technology Hyperledger (https:/ ​/​www. ​hyperledger. ​org/​).

Hyperledger is part of the Linux Foundation, which was launched in 2016 with a technical
and organizational governance structure and thirty founding corporate members. More
than 230 members are now part of this initiative. This includes companies such as Cisco,
Hitachi, IBM, ABN AMRO, ANZ Bank, Red Hat, VMware, and JP Morgan. Today,
Hyperledger works with many projects under the same umbrella and focuses on
differences in blockchain use cases, as well as covering frameworks and tools. A good
description of Hyperledger projects can be found at https:/ ​/​www. ​hyperledger. ​org. Here,
it is stated that Hyperledger incubates and promotes a range of business blockchain
technologies, including distributed ledger frameworks, smart contract engines, client
libraries, graphical interfaces, utility libraries, and sample applications. The Hyperledger
umbrella strategy encourages the reuse of common building blocks and enables rapid
innovation of DLT (distributed ledger technology)components:

https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://www.hyperledger.org
https://www.hyperledger.org
https://www.hyperledger.org
https://www.hyperledger.org
https://www.hyperledger.org
https://www.hyperledger.org
https://www.hyperledger.org
https://www.hyperledger.org
https://www.hyperledger.org

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[62]

Hyperledger projects
Exploring the Hyperledger projects, we find five frameworks and five tools. The
frameworks are Sawtooth, Iroha, Burrow, Indy, and Fabric. The tools are Caliper,
Composer, Cello, Explorer, and Quilt.

Let's discuss these frameworks and tools.

Hyperledger Sawtooth framework
Hyperledger Sawtooth follows the same architecture and characteristics as other
Hyperledger frameworks; it is an enterprise blockchain platform for building distributed
ledger applications and networks.

In my opinion, the most striking characteristic of Sawtooth is the facility to use the APIs, as
well as many languages such as Python, C++, Go, Java, JavaScript, and Rust. This aids in the
development of applications that run on top of the Sawtooth platform. In addition, you can
write smart contracts in Solidity for use with the Seth transaction family.

Another good feature is the parallel transaction execution. Most blockchains require serial
transaction execution in order to guarantee consistent ordering at each node on the
network. Ethereum contract compatibility can also be used with Seth; the Sawtooth-
Ethereum integration project extends the interoperability of the Sawtooth platform to
Ethereum.

Hyperledger Iroha framework
Hyperledger Iroha is a blockchain platform designed for building distributed ledgers; it is
based on use cases such as Know Your Customer and features mobile application
development and a new chain-base Byzantine fault tolerant consensus algorithm called
Sumeragi. Soramitsu, Hitachi, NTT Data, and Colu initially contributed to Hyperledger
Iroha.

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[63]

Hyperledger Composer tool
If you want to test an idea, create a proof of concept (POC) or a minimum value product
(MVP), or even start a project, then Hyperledger Composer can help you do so quickly and
easily. You can test your business network with a web application named Composer
Playground. With some clicks and a good use case, you can also create a business
networking integrated into your systems. Another option is to create a frontend application
to use your smart contract.

The picture below represent an official architecture overview in the site of Hyperledger
Composer Tool.

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[64]

Hyperledger Burrow framework
The first paragraph of the Hyperledger Burrow documentation contains a good description
of what this framework is. This description is as follows:

"Hyperledger Burrow is a permissioned Ethereum smart-contract blockchain node. It
executes Ethereum EVM smart contract code (usually written in Solidity) on a
permissioned virtual machine. Burrow provides transaction finality and high transaction
throughput on a proof-of-stake Tendermint consensus engine."

The idea is indeed to work with Ethereum smart contracts. The high level of architecture
applied to Hyperledger Burrow can be seen in the following diagram:

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[65]

Hyperledger Fabric
To explore the umbrella project of Hyperledger, we'll work with Hyperledger Fabric. This
was the first project or initial concept of the Hyperledger Framework, and Digital Asset and
IBM were among the initial contributors. The characteristics of Hyperledger Fabric are as
follows:

Allows components such as consensus and membership services to be plug-and-
play
Leverages container technology to host smart contracts called chaincode, which
comprise the application logic of the system

But before we move forward, let's review some concepts of blockchain and explore
Hyperledger Fabric in detail:

In the preceding diagram, you can see a high-level blockchain architecture. Let's explore
(analyze) the important components of this architecture:

Chaincode: This is our business network contract, and Just like a any contract, it
states possible transactions between members of the network, and guarantee that
every member has pre established defined access of the ledger
Ledger: Think as a digital storage to entire transactions history, as a database you
can have query capabilities to explore the data.

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[66]

Privacy: Channels: In the most of cases , there is an unique channel to all
networks, but Hyperledger Fabric allows multi lateral transactions, guaranteeing
the privacy and confidentiality, so if two members of the network for any reason
need to have a specified transaction among them they can have a separated
channel from the others.
Security and membership services: Each member has a specific permission in
the network , as a result every transactions will be logged and can be traced by
an authorized regulator or auditor.

To explain what we are talking about better, let's take a look at the components of
Hyperledger Fabric in a business network:

The components shown in the preceding diagram can be explained as follows:

Multiple members are part of the blockchain network. In this case, we have
Member 1, Member 2, Member 3, and Member N.
Each member has its own peer.
Each peer has a Certificate Authority.
The queue or transactions will be ordered by the Ordering Cluster.

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[67]

Member or peer
A peer is a member or a company in the network that hosts the ledger and smart contracts.
Smart contracts and ledgers are used to encapsulate the shared processes and shared
information in a network:

Certificate Authority (CA)
Each member of a business network can access a digital identity, issued for it by an
authority trusted by the system. In the most common case, digital identities (or simply
identities) take the form of cryptographically validated digital certificates that comply with
the X.509 standard and are issued by a CA.

Ordering Cluster
The queue or transactions will be ordered by the ordering services that provide a shared
communication channel to clients and peers, offering a broadcast service for messages
containing transactions. As part of ordering and distributing the transactions, Hyperledger
Fabric works with ordering services (OS) and a Kaftka cluster, which is the broker that
guarantees the load balancing and consensus. We'll explore this in more detail when we set
up the environment.

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[68]

SDK/API
The application or current system can connect to the blockchain network through an
SDK/API, which is normally developed using Node.js and is an important step in using the
smart contract:

There are some important improvements in Hyperledger Fabric 1.3. Since version 1.1 and
Node.js chaincode support, developers are now able to develop chaincode using the most
popular framework with the latest programming language. If you are using a version
before 1.1, you need to use Go to develop the chaincode. Let's explore the new features of
Hyperledger Fabric 1.3.

The examples used to set up coding in this book will follow Hyperledger Fabric 1.4, with
important new features such as:

New ways to develop applications

These new features facilitate the writing of decentralized code. They enable the
developer to use Node.js SDK Node.js chaincode intuitively and logically to
produce decentralized applications

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[69]

New features for operations and easier to maintain

With more Hyperledger Fabric networks deployed and tested, serviceability and
operational aspects become more important. Fabric v1.4 has new features for
logging improvements, health checks, and operational metrics. Fabric 1.4 is the
recommended version to start a production operation because its features focus
on stability and some important fixes. If you go to the Hyperledger Fabric
website, you can find information on future fixes that will be delivered in the
v1.4.x stream, while new features are being developed in the v2.0 stream.

Selecting a good use case
Before we start any blockchain project, an important step is to select a good use case. We
often see cases that can be solved through a distributed database or even a web application
with good permission access.There is a puzzle to be cracked:

Is a business network involved?
Is there a transaction that needs validation or a consensus?
Are audit trails important, or origin control?
Immutability (data)
Finality (fewer disputes)

Make sure to draw a map with different organizations on, or a business network and how
they are connected—this is a very important step. Moreover, check the use case addresses
one or more attributes listed between the second and fifth points. If you don't have more
than one of the attributes listed between the second and fifth points, then it probably does
not fit with the blockchain solution.

It's a good idea to have a think tank or design thinking session when selecting a use case.

This table demonstrates a good use case for different industries:

Financial Institutions Insurance Cross Industries and Others
• Credit letter
• Credit debit or bond
• Consortium shared ledger

• First party medical claims processing
• Scheduled personal property claims processing

• Loyalty points
• Capital asset management
• Identity management

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[70]

Blockchain – food tracking use case
Now, let's focus on the food tracking use case. Today, consumers are demanding more
information and transparency on how and where their products are made. The EU requires
more information about corporate supply chains, with huge penalties for companies and
countries that do not comply. Since 2016, Chinese customers have been tracking where their
food was produced, as well as how many times it has changed hands between different
wholesalers and brokers before reaching their dinner tables. So, the use case sounds a good
fit for blockchain, right?

Let's reflect on the five elements of blockchain:

Business networking1.

Producers, manufactures, transportation companies, retail stores.

Is there a transaction that needs validation or consensus?2.

Recording who owns what, when, and where an asset is in the supply chain.

Are audit trails important?3.

Consumers request, blocks like E.U. and countries like China require a tracking
audit.

Immutability and 5. Finality4.

Different companies and assets involved in a complex process.

Okay, now that we know that blockchain fits with our use case, let's take a look at the
benefits of using blockchain technology:

It is verifiable, preventing any party from altering or challenging the legitimacy
of the information being exchanged.
 Greater efficiencies are available through increased transparency in complex
global supply chains.
 Regulators, authorities, and business network companies can quickly and easily
request reliable information from across the supply chain.

In the next chapters, we will be exploring in more detail the food chain, and how
blockchain with IoT can transform it.

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[71]

Summary
Blockchain features a shared and distributed ledger capable of making the process of
recording transactions and tracking assets in a business network easier and more dynamic.
This is different from Bitcoin, which is an example of an unpermissioned public ledger and
defines an unregulated shadow currency with intensive resources. Blockchain is generally
permissioned, private, and prioritizes endorsements, using assets based on
a cryptocurrency.

The project known as Hyperledger is a collaborative effort with open source code that was
created to promote blockchain technologies.

In May 2017, there were five active frameworks and five active tools:

Frameworks: Hyperledger Burrow, Hyperledger Fabric, Hyperledger Iroha,
Hyperledger Sawtooth, and Hyperledger Indy
Tools: Hyperledger Cello, Hyperledger Composer, Hyperledger Explorer,
Hyperledger Quilt, and Hyperledger Caliper

In the next chapters, we will explore in more detail how the blockchain platform can be
used to solve some important challenges in the food chain, and we will discover that
Hyperledger Fabric 1.4 is a strong blockchain platform.

Questions
Q. Why use blockchain?

A. Blockchain provides trust and transparency to solve food chain challenges that have
stymied supply chains; with the use of blockchain, you can access the benefits of the
platform, such as these:

Trust and transparency
Choose who is acting and receiving information, as you need only one shared
ledger for transactions
As the ledger is immutable, lack of confidence is no longer a problem, and
participants can be sure of the origins and veracity of transactions
Quick and easy access to detailed end-to-end supply chain data
Minimize waste with better allocation of goods and products, based on data from
the ecosystem

Explaining Blockchain Technology and Working with Hyperledger Chapter 3

[72]

Blockchain gives participants the ability to share a ledger, which is updated through peer-
to-peer replication every time a transaction occurs. Privacy services are used to ensure that
participants see only the parts of the ledger that are relevant to them, and that transactions
are secure, authenticated, and verifiable. Blockchain also allows the contract for asset
transfers to be embedded, for execution with the transaction. Network participants agree
how transactions are verified through a process referred to as consensus. Government
oversight, compliance, and auditing can be part of the same network.

Further reading
To find further information about the topic, follow these links:

The Hyperledger Sawtooth documentation, which can be found at the following
link: https:/ ​/ ​sawtooth. ​hyperledger. ​org/ ​docs/ ​core/ ​releases/ ​latest/
introduction. ​html#distinctive- ​features- ​of- ​sawtooth

The Hyperledger Iroha documentation, which can be found at the following
link: https:/ ​/ ​www. ​hyperledger. ​org/ ​projects/ ​iroha/ ​resources

The Hyperledger Indy documentation, which can be found at the following
link: https:/ ​/ ​github. ​com/ ​hyperledger/ ​indy- ​node/ ​blob/ ​stable/ ​getting-
started. ​md

The Hyperledger Composer documentation, which can be found at the following
link: https:/ ​/ ​hyperledger. ​github. ​io/​composer/ ​latest/ ​introduction/
introduction. ​html

The Hyperledger Framework 1.4 documentation, which can be found at the
following link: https:/ ​/​hyperledger- ​fabric. ​readthedocs. ​io/ ​en/ ​release- ​1. ​4/​

 GitHub Hyperledger Framework link: https:/ ​/​github. ​com/ ​hyperledger/
fabric

https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html#distinctive-features-of-sawtooth
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://www.hyperledger.org/projects/iroha/resources
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://github.com/hyperledger/indy-node/blob/stable/getting-started.md
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger.github.io/composer/latest/introduction/introduction.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric

4
Creating Your Own Blockchain

Network
In this chapter, we'll create a blockchain network using Hyperledger Composer. We'll
explore a simple use case in which the asset can be transferred between the networking
participants. We'll learn how to quickly install Hyperledger Fabric version 1.1. Also, we'll
identify and implement a step-by-step guide for running your own business network.

We'll learn all of this by exploring the following topics:

Pre-requisites for creating a blockchain network
A brief overview of Hyperledger Composer
Exploring the Composer Playground to create a blockchain network
Setting up a local Hyperledger Fabric/Composer development environment

Creating Your Own Blockchain Network Chapter 4

[74]

Prerequisites
To complete the exercises in this chapter, please ensure you have the following installed on
your computer:

curl
Node.js 8.9.x
Python 2.7
Git 2.9.x or higher
Go
Windows 10/Ubuntu Linux 14.04/macOS 10.12

For Windows 10, you'll need Windows Subsystem for Linux to run
Ubuntu.

Creating your own blockchain network with
Hyperledger Composer
In Chapter 3, Explaining Blockchain Technology and Working with Hyperledger, we looked at
various frameworks that come under the umbrella of the Hyperledger distribution
ledger. We then analyzed one of these, Hyperledger Composer, a powerful tool for
developing a blockchain network.

In terms of blockchain, one of the biggest advantages of using Hyperledger Composer is
the excellent documentation that comes with the framework, not just on the site itself, but
also on the developer's website and other websites that hold examples of code and routines.

Here, we'll look at a step-by-step guide of a slightly less common use case than the one
found on Hyperledger Composer's tutorial site, which will demonstrate how simple it's to
create a blockchain network. We're going to use Hyperledger Composer's platform, which
is called Playground.

Creating Your Own Blockchain Network Chapter 4

[75]

Accessing Hyperledger Composer
The online Hyperledger Composer Playground enables us to explorer Hyperledger
components without any installation. The following steps will guide you through a tour of
the online Composer Playground:

Let's access the site at the following link: http:/ ​/​composer- ​playground.1.
mybluemix. ​net/ ​login. As we can see in the following screenshot, the home page
opens with a splash page:

http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login
http://composer-playground.mybluemix.net/login

Creating Your Own Blockchain Network Chapter 4

[76]

When you click the Let's Blockchain! button, you'll reach the next page, which2.
works as a dashboard:

On this page, you have the option of using the tutorial, which takes you through a
very detailed step-by-step process. This is great for exploring Hyperledger
Composer. For now, let's move on.

Creating Your Own Blockchain Network Chapter 4

[77]

Click on the Get Started link. After a few loading screens, you'll be taken to the3.
editor, where you'll be able to create your own blockchain network:

In our case, we'll have two participants and one asset, which can be a token that has a
value. The idea will be to move this asset and the value between the participants of the
network.

Creating Your Own Blockchain Network Chapter 4

[78]

Exploring the structure of a sample blockchain
network

Let's start with the name.cto model file. Model files define the assets,1.
participants, transactions, and events in our business network. Remember that,
after each step, you need to deploy the changes. Now we'll see some screenshots
that will illustrate the process:

Let's use the following code to create the participants, transactions, and events:2.

// **
 * Sample business network definition.
 */
 namespace org.example.basic

 asset SampleAsset identified by assetId {
 o String assetId
 --> SampleParticipant owner
 o Double value
 }

Creating Your Own Blockchain Network Chapter 4

[79]

participant SampleParticipant identified by participantId {
 o String participantId
 o String firstName
 o String lastName
 }

 transaction SampleTransaction {
 --> SampleAsset origin
 --> SampleAsset target
 o Double txTransferAmount
 }

 event SampleEvent {
 --> SampleAsset origin
 --> SampleAsset target
 o Double txTransferAmount
 }

Let's create a function to transfer the assets between the participants. We'll use3.
the name.js script file:

Creating Your Own Blockchain Network Chapter 4

[80]

Let's look at the code that shows the algorithm/logic used here:4.

 * Sample transaction processor function.
 * @param {org.example.basic.SampleTransaction} tx The sample
transaction instance.
 * @transaction
 */
 async function sampleExchange(tx) {
 // Get the asset registry for the asset.
 const assetRegistry = await
getAssetRegistry('org.example.basic.SampleAsset');

 //Ensure the balance is greather than the amount to be
transfered
 if(tx.origin.value > tx.txTransferAmount) {

 //charge from receiver account
 tx.origin.value = (tx.origin.value - tx.txTransferAmount);
 //add to receiver account
 tx.target.value = (tx.target.value + tx.txTransferAmount);
 // Update the asset in the asset registry.
 await assetRegistry.update(tx.origin);
 await assetRegistry.update(tx.target);

Creating Your Own Blockchain Network Chapter 4

[81]

 // Emit an event for the modified asset.
 let event = getFactory().newEvent('org.example.basic',
'SampleEvent');
 event.origin = tx.origin;
 event.target = tx.target;
 event.txTransferAmount = tx.txTransferAmount;

 emit(event);

 } else {
 throw Error(`You do not have enough balance for this
transaction: Balance US$: ${tx.origin.value} Transfer Amount:
${tx.txTransferAmount}`);
 }
 }

The Access Control List (ACL) is the feature that ensures a Hyperledger5.
Composer blockchain network segregates access for the actions that participants
can take on the assets. Now we'll create a business rule to allow the members of
the blockchain network to have the right access control. The basic file gives the
current participant, the network admin, full access to the business network and
system-level operations:

Creating Your Own Blockchain Network Chapter 4

[82]

Here we have some code that shows us how to create an access control:

/**
 * Sample access control list. rule Everybody Can Read Everything
and send a transaction for example
 */
 rule EverybodyCanReadEverything {
 description: "Allow all participants read access to all
resources"
 participant: "org.example.basic.SampleParticipant"
 operation: READ
 resource: "org.example.basic.*"
 action: ALLOW
 }
 rule EverybodyCanSubmitTransactions {
 description: "Allow all participants to submit transactions"
 participant: "org.example.basic.SampleParticipant"
 operation: CREATE
 resource: "org.example.basic.SampleTransaction"
 action: ALLOW
 }

Define access to the access control's assets as follows:6.

rule OwnerHasFullAccessToTheirAssets {
 description: "Allow all participants full access to their assets"
 participant(p): "org.example.basic.SampleParticipant"
 operation: ALL
 resource(r): "org.example.basic.SampleAsset"
 condition: (r.owner.getIdentifier() === p.getIdentifier())
 action: ALLOW
 }

Define a rule for SystemACL, whether network admin or user, as follows:7.

 rule SystemACL {
 description: "System ACL to permit all access"
 participant: "org.hyperledger.composer.system.Participant"
 operation: ALL
 resource: "org.hyperledger.composer.system.**"
 action: ALLOW
 }
 rule NetworkAdminUser {
 description: "Grant business network administrators full access to
user resources"
 participant: "org.hyperledger.composer.system.NetworkAdmin"
 operation: ALL
 resource: "**"

Creating Your Own Blockchain Network Chapter 4

[83]

 action: ALLOW
 }
 rule NetworkAdminSystem {
 description: "Grant business network administrators full access to
system resources"
 participant: "org.hyperledger.composer.system.NetworkAdmin"
 operation: ALL
 resource: "org.hyperledger.composer.system.**"
 action: ALLOW
 }

We're now ready to test our blockchain network. Click on the Test tab at the top8.
of your screen:

Creating Your Own Blockchain Network Chapter 4

[84]

Now create two participants for your blockchain network. The first participant is9.
shown here:

Use the following code to create the first participant:

{
 "$class": "org.example.basic.SampleParticipant",
 "participantId": "1",
 "firstName": "Joao",
 "lastName": "Dow"
 }

Creating Your Own Blockchain Network Chapter 4

[85]

The second participant is shown here:

Use the following code to create the second participant:

{
 "$class": "org.example.basic.SampleParticipant",
 "participantId": "2",
 "firstName": "Sarah",
 "lastName": "Barbosa"
 }

Creating Your Own Blockchain Network Chapter 4

[86]

Now let's create an asset for participant 1. Remember to10.
add participantId, assetId, and value:

Use the following code to create an asset for participant 1:11.

{
 "$class": "org.example.basic.SampleAsset",
 "assetId": "0744",
 "owner": "resource:org.example.basic.SampleParticipant#1",
 "value": 1000
 }

Creating Your Own Blockchain Network Chapter 4

[87]

Repeat the approach used for participant 1 with participant 2:12.

Use the following code to create an asset for participant 2:13.

{
 "$class": "org.example.basic.SampleAsset",
 "assetId": "4010",
 "owner": "resource:org.example.basic.SampleParticipant#2",
 "value": 1000
 }

Creating Your Own Blockchain Network Chapter 4

[88]

We're now ready to submit a transaction between the participants. Click on the14.
Submit button and send an amount from participant 2 to participant 1. In the
following example, the value of the transaction is 300:

Use the following code to transfer an amount between the participants:15.

{
 "$class": "org.example.basic.SampleTransaction",
 "origin": "resource:org.example.basic.SampleAsset#0744",
 "target": "resource:org.example.basic.SampleAsset#4010",
 "txTransferAmount": 300
 }

Creating Your Own Blockchain Network Chapter 4

[89]

Great job! You can see all of the transaction details by clicking on the records in the two
following screenshots. The first one shows a list of all created assets:

Creating Your Own Blockchain Network Chapter 4

[90]

This second screenshot shows the history of transactions that have run on the blockchain
network:

Now that you have validated a use case, you're ready to make a new proof of concept and
present the full potential of the Hyperledger blockchain for members in the business
network.

Installing your own blockchain network
using Hyperledger Fabric and Composer
In the previous section, we saw how easy it's to work with Hyperledger Composer using
Playground. Now we'll install Composer in your own (local) machine.

We'll start with the three most important stages of installing a blockchain network:

Installing the prerequisites1.
Installing Hyperledger Composer (the development environment)2.
Updating the environment3.

Creating Your Own Blockchain Network Chapter 4

[91]

We can install the blockchain network using Hyperledger Fabric by many means, including
local servers, Kubernetes, IBM Cloud, and Docker. To begin with, we'll explore Docker and
Kubernetes.

Setting up Docker
Docker can be installed using information provided on https:/ ​/ ​www.​docker. ​com/ ​get-
started.

Hyperledger Composer works with two versions of Docker:

Docker Composer version 1.8 or higher
Docker Engine version 17.03 or higher

If you already have Docker installed but you're not sure about the version, you can find out
what the version is by using the following command in the terminal or command prompt:

docker –version

Be careful: many Linux-based operating systems, such as Ubuntu, come
with the most recent version of Python (Python 3.5.1). In this case, it's
important to get Python version 2.7. You can get it here: https:/ ​/ ​www.
python. ​org/ ​download/ ​releases/ ​2. ​7/​.

Installing Hyperledger Composer
We're now going to set up Hyperledger Composer and gain access to its development tools,
which are mainly used to create business networks. We'll also set up Hyperledger Fabric,
which can be used to run or deploy business networks locally. These business networks can
be run on Hyperledger Fabric runtimes in some alternative places as well, for example, on a
cloud platform.

Make sure that you've not installed the tools and used them before. If you
have, you'll them using this guide.

https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.docker.com/get-started
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/

Creating Your Own Blockchain Network Chapter 4

[92]

Components
To successfully install Hyperledger Composer, you'll need these components ready:

CLI Tools
Playground
Hyperledger Fabric
An IDE

Once these are set up, you can begin with the steps given here.

Step 1 – Setting up CLI Tools
CLI Tools, composer-cli, is a library with the most important operations, such as
administrative, operational, and developmental tasks. We'll also install the following tools
during this step:

Yeoman: Frontend tool for generating applications
Library generator: For generating application assets
REST server: Utility for running a REST server (local)

Let's start our setup of CLI Tools:

 Install CLI Tools:1.

npm install -g composer-cli@0.20

Install the library generator:2.

npm install -g generator-hyperledger-composer@0.20

Install the REST server:3.

npm install -g composer-rest-server@0.20

This will allow for integration with a local REST server to expose your business
networks as RESTful APIs.

Install Yeoman: 4.

npm install -g yo

Creating Your Own Blockchain Network Chapter 4

[93]

Don't use the su or sudo commands with npm to ensure that the current
user has all permissions necessary to run the environment by itself.

Step 2 – Setting up Playground
Playground can give you a UI in your local machine if using your browser to run
Playground. This will allow you to display your business networks, browse apps to test
edit, and test your business networks.

Use the following command to install Playground:

npm install -g composer-playground@0.20

Now we can run Hyperledger Fabric.

Step 3 – Hyperledger Fabric
This step will allow you to run a Hyperledger Fabric runtime locally and deploy your
business networks:

Choose a directory, such as ~/fabric-dev-servers.1.
Now get the .tar.gz file, which contains the tools for installing Hyperledger2.
Fabric:

mkdir ~/fabric-dev-servers && cd ~/fabric-dev-servers

curl -O
https://raw.githubusercontent.com/hyperledger/composer-tools/master
/packages/fabric-dev-servers/fabric-dev-servers.tar.gz
tar -xvf fabric-dev-servers.tar.gz

You've downloaded some scripts that will allow the installation of a local
Hyperledger Fabric v1.2 runtime.

To download the actual environment Docker images, run the following3.
commands in your user home directory:

cd ~/fabric-dev-servers
export FABRIC_VERSION=hlfv12
./downloadFabric.sh

Well done! Now you have everything required for a typical developer environment.

Creating Your Own Blockchain Network Chapter 4

[94]

Step 4 – IDE
Hyperledger Composer allows you to work with many IDEs. Two well-known ones are
Atom and VS Code, which both have good extensions for working with Hyperledger
Composer.

Atom lets you use the composer-atom plugin (https:/ ​/​github. ​com/ ​hyperledger/
composer-​atom-​plugin) for syntax highlighting of the Hyperledger Composer Modeling
Language. You can download this IDE at the following link: https:/ ​/​atom. ​io/​. ​ Also, you
can download VS Code at the following link: https:/ ​/​code. ​visualstudio. ​com/ ​download.

Installing Hyperledger Fabric 1.3 using Docker
There are many ways to download the Hyperledger Fabric platform; Docker is the most
used method. You can use an official repository. If you're using Windows, you'll want to
use the Docker Quickstart Terminal for the upcoming terminal commands.

If you're using Docker for Windows, follow these instructions:

Consult the Docker documentation for shared drives, which can be found at1.
https:/​/ ​docs. ​docker. ​com/ ​docker- ​for- ​windows/ ​#shared- ​drives, and use a
location under one of the shared drives.
Create a directory where the sample files will be cloned from the Hyperledger2.
GitHub repository, and run the following commands:

$ git clone -b master
https://github.com/hyperledger/fabric-samples.git

To download and install Hyperledger Fabric on your local machine, you have to3.
download the platform-specific binaries by running the following command:

$ curl -sSl https://goo.gl/6wtTN5 | bash -s 1.1.0

The complete installation guide can be found on the Hyperledger site: https:/ ​/
hyperledger-​fabric. ​readthedocs. ​io/ ​en/ ​release- ​1. ​3/​install. ​html.

https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://github.com/hyperledger/composer-atom-plugin
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/docker-for-windows/#shared-drives
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/install.html

Creating Your Own Blockchain Network Chapter 4

[95]

Deploying Hyperledger Fabric 1.3 to a
Kubernetes environment
This step is recommended for those of you who have the experience and skills to work with
Kubernetes, a cloud environment, and networks and would like an in-depth exploration of
Hyperledger Fabric 1.3.

Kubernetes is a container orchestration platform and is available on major cloud
providers such as Amazon Web Services, Google Cloud Platform, IBM, and Azure. Marcelo
Feitoza Parisi, one of IBM's brilliant cloud architects, has created and published a guide on
GitHub on how to set up a Hyperledger Fabric production-level environment on
Kubernetes.

The guide is available at https:/ ​/ ​github. ​com/ ​feitnomore/ ​hyperledger- ​fabric-
kubernetes.

Our special thanks to Marcelo!

Summary
In this chapter, we explored an online cloud deployment of Hyperledger Composer
through Composer Playground. By using the online network editor, we saw how to create
definitions of the network, run tests on the network, and access the historian, where we
were able to visualize all of the transactions that were run on the blockchain network.

We also ran the installation of a local development environment and gave you a resource to
use to set up a production-level Hyperledger setup running on Kubernetes.

In the next chapter, we'll explore the main actors in the modern food chain and their
current challenges. We'll then discuss how IoT and blockchain technology can help to solve
these challenges.

https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes

Creating Your Own Blockchain Network Chapter 4

[96]

Further reading
For more information about Composer, visit https:/ ​/​hyperledger. ​github. ​io/
composer/ ​latest/ ​tutorials/ ​tutorials.
If you want to install the full stack of Hyperledger Fabric, follow the
recommendations at this link: https:/ ​/​github. ​com/ ​feitnomore/ ​hyperledger-
fabric-​kubernetes.
All installation processes and architecture for Hyperledger can be found
here: https:/ ​/ ​github. ​com/ ​feitnomore/ ​hyperledger- ​fabric- ​kubernetes.
A step-by-step guide to installing Hyperledger Composer can be found here:
https:/​/ ​medium. ​com/ ​kago/ ​tutorial- ​to-​install- ​hyperledger- ​composer- ​on-
windows- ​88d973094b5c.

https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://hyperledger.github.io/composer/latest/tutorials/tutorials
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://github.com/feitnomore/hyperledger-fabric-kubernetes
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c
https://medium.com/kago/tutorial-to-install-hyperledger-composer-on-windows-88d973094b5c

5
Addressing Food Safety -

Building around the Blockchain
In this chapter, we'll explore the main challenges of the food chain and understand the
parties involved by reviewing the following:

Current processes and problems
The importance of product tracking
Issues and concerns of governments and regulatory agencies

We will also see how IoT and blockchain are key technologies for addressing these
concerns, as well as reviewing the certifications and regulations that are being put into
place to ensure that the entire chain is compliant with food safety policies.

Regulations, challenges, and concerns in
the modern food chain
Can you imagine acquiring a credit letter from a bank in a few hours, and sharing it with
your providers in a few minutes? How about you receive an update from the customs
department about the status of your goods with no bureaucracy and complete security?

Addressing Food Safety - Building around the Blockchain Chapter 5

[98]

Yes, this is all possible, and it is a fact that such information (product status updates, credit
approval letters, and so on), gathered by using IoT and blockchain technologies, is
important. However, the benefits brought by blockchain technologies go much further than
the ones we've just mentioned.

Before exploring these additional benefits, let's go through some of the challenges that are
faced by this industry and the regulations that are put in place to try and implement food
safety.

Challenges regarding food safety
The CDC (Center for Disease Control and Prevention) estimates that each year 48 million
people fall sick from a food-borne illness, 128,000 people get hospitalized, and 3,000 people
die.

In a real-world case of a food safety concern, E. coli was discovered in spinach in the USA
in 2006. As a result, spinach was pulled from every store across the country. It took two
weeks to trace the source: 1 day's shipment of 1 lot from 1 supplier. In the meantime, there
were at least 199 people who fell ill and 3 people died.

More recently, in March 2017, there was a huge scandal in Brazil involving the largest meat
processing companies in the country. In an operation by Brazil's Federal Police called Carne
Fraca, these companies were accused of tampering with the meat and selling it locally and
outside the country. The corporations took weeks to respond to these accusations because
of the difficulty accessing the data that was necessary to provide answers.

Food safety regulations – ISO 22000
As a result of globalization, many kinds of food come and go from different countries.
There are a lot of serious consequences that can be brought about by unsafe food. This
makes it necessary for there to be international standards to make sure that food is safe and
that the food chain is in order.

ISO has a food safety management certification that can help to prevent such
consequences. The purpose of ISO 22000 is to set down the requirements needed to make
sure that all food is certified, and to guarantee that products are safe. It maps out what is
needed from an organization, and it ensures that food meets requirements and is safe for
consumers. It can be used by any type of organization, regardless of its position within the
food chain or its size.

Addressing Food Safety - Building around the Blockchain Chapter 5

[99]

There are multiple reasons for improving the entire food chain. Despite several actions
being taken to get better results in terms of higher standards of products, better
storage, and higher production, little has been done in recent years to really solve these
issues and be compliant with regulations such as ISO 22000.

The challenges are enormous in terms of achieving effectiveness in this complex chain, but
we believe that the union of IoT and blockchain technology will mitigate many of these
challenges and efficiently address the problems of this complex food chain.

How blockchain and IoT can help in a food
chain
To achieve transparency across the ecosystem, we need to connect all entities that are part
of it. This does not just pertain to retailers or manufacturers, but to everyone within the
system; every member that composes it, from farm to fork, including the final member in
this chain, the consumers.

Nowadays, there are a lot of companies in the process of adopting IoT and blockchain
technologies. They have become aware that there are a variety of problems throughout the
food chain, but each party focuses on their business results, not on the issues plaguing the
entire chain.

Any solution that can solve this problem even partially will provide value to the entire food
chain. However, it will still not solve every problem for all parties involved.

To implement an effective solution, let's review a set of needs based on market
segmentation. Needs can change based on many aspects, such as company size, geography,
and so on. Our goal here is to ensure that everyone sees the value of adopting IoT and
blockchain technology and therefore becomes interested in participating in this kind of
chain and its benefits. This will help us get the full set of data to provide end-to-end
transparency across the food ecosystem.

Addressing Food Safety - Building around the Blockchain Chapter 5

[100]

Food ecosystem
In this section, we'll explore the participants involved in a food chain, and look at their
activities and the regulations applied to each part of the process. We will look at the
following participants in more detail:

Farmers
Food manufacturers
Warehouses and distribution centers
Transporters (transportation companies)
Food retailers and supermarkets
Consumers
Regulatory agencies
Certification and compliance

The following diagram shows all the actors in this complex food chain. The main purpose
of this chapter is to identify how IoT and blockchain can be used together to increase the
confidence in the veracity of information being shared, to reduce human error, and to
ensure provenance with immutable data:

High-level food chain process

Addressing Food Safety - Building around the Blockchain Chapter 5

[101]

From a technological perspective, IoT is the icing on the solution's cake. Nowadays, there
are a lot of asset-tracking sensors that can connect and transfer data via bluetooth, ultra-
wide band (UWB), Wi-Fi, LPWA, LTE, NB-IoT, 5G, satellite, infrared, ultrasound, NFC,
and RFID. This combination of multiple connections allows for asset tracking that provides
instant information.

Now that you are able to access data by using IoT, think about storing this information in a
blockchain network. Let's revisit the concept of the blockchain. First, we can say that a
blockchain provides us with the trust needed for a reliable process, which was not
previously present. But now, with blockchain technology, we are able to share many types
of information across many ecosystems.

It also provides enough trust to allow us to truly solve the problems that we mentioned
previously so that we can serve our customers in a better way. In addition to this, by
creating this important trust, blockchain allows us to use the assets that we have already
invested in. These are represented by the data that we've built up over decades and new
types of analytics: cognitive, machine learning, predictive, big data, and many other similar
ones. Moreover, we can say that blockchain represents the missing puzzle piece that brings
these all together.

Some important things that our blockchain solutions need to achieve are as follows:

Providing the transparency that the food industry needs
Creating trustworthy connections so that everyone in the food ecosystem can
participate
Improving interoperability so that the industry can drive usability and access
Monitoring livestock and grain monitoring
Identifying the location of livestocks
Greenhouse monitoring (temperature and irrigation)

Later in this chapter, we will look at how we can achieve all of this.

Opportunities and challenges in a food
ecosystem
Let's explore each of the components of this ecosystem and identify the opportunities and
challenges that come with them.

Addressing Food Safety - Building around the Blockchain Chapter 5

[102]

Farmers
Technology and agriculture work in concert and can be disruptive. Farmers are great at
adopting new technology, especially when it helps productivity and delivers more
efficiency in farming operations. These improvements are the motivation for adopting new
technologies, and the reason is quite simple: the FAO (Food and Agriculture Organization)
predicts that there will be 9.6 billion people on the planet by 2050, and food production will
have to increase by 70 percent.

Agribusiness is the business of agricultural production. It focuses on the processing,
warehousing, distribution, marketing, and retailing of products that are used in farming.
Agribusiness popularized IoT solutions and put this technology on a different level.

Today, there are a lot of huge companies in this segment, such as Dow AgroSciences,
DuPont, Monsanto, and Syngenta; AB Agri (part of Associated British Foods); ADM; John
Deere; Ocean Spray; and Purina Farms. It is getting difficult to earn market share and make
good deals in today's globalized world.

Farmers experience more pressure than ever to be productive. Therefore, they need to be
concerned about topics such as the following:

Keeping track of a production lot
Creating a strategy for production warehousing
Getting information about a commodity's market
Identifying certain plagues in a faster way
Guaranteeing a good environment, routine, and slaughterhouse for their animals
so that all animals are well-cared for and well-prepared

These are the main challenges that farmers face. They rely on sensors; data collectors for
measuring temperature, time, and the area to harvest; faster harvesting machines; GPS;
predictive models supporting decision making; and blockchains to guarantee the storage of
information in a precise and transparent way.

Food manufacturers
Food manufacturers play an important role in this chain; they are at the heart of this
process. Because they are involved in everything from the beginning of the process (right
from the early days of the animal's life) to the end (when the animal is slaughtered), they
are also involved in the process of meat preparation and the packaging of consumer food
products. Here's a glimpse into such a factory operation:

Addressing Food Safety - Building around the Blockchain Chapter 5

[103]

We have heard many times about constant problems related to food manufacturers,
especially with animals such as chickens, cows, and pigs. These problems are often related
to animal slaughtering operations, which have the highest number of incidents in the food
manufacturing industry. Moreover, the food chain and the processes that take place inside
of it need to go through several security gates, such as temperature analysis, visual
approval, packaging machines, storage, and transportation.

Inside this complex market, no producer wants to have their products related to an incident
that could give them a bad reputation. There are a lot of actors inside this chain that can
directly influence a clients' perceptions. The challenges facing food manufacturers are as
follows:

The need to further automate the handling of food, reducing or removing human
contact altogether, and ensuring high sanitation standards in the process
Earning loyalty from suppliers and guaranteeing high quality levels
Effectively controlling stock and the dispatch of goods
Data about the location of storage and about where an action was taken
How to register boxes, pallets, and the like

The industry has realized that IoT with blockchain technology can be a strong ally to
guarantee transparency, traceability, quick resolutions for problems, and to reach a
consensus, not just in internal departments but also with external partners and associates.

Addressing Food Safety - Building around the Blockchain Chapter 5

[104]

Regulators
For the food manufacturing sector of regulators, IoT and blockchain can provide more
transparency in data, quick responses to data analysis, and other improvements, such as
food origin certification:

In July 2018, the Food Standards Agency (FSA), an independent government department
working across England, Wales, and Northern Ireland to protect public health and
consumers' wider interests with regard to food, successfully completed a blockchain pilot.

Sian Thomas, Head of Information Management at the FSA, said the following:

“This is a really exciting development. We thought that blockchain technology might add
real value to a part of the food industry, such as a slaughterhouse, whose work requires a
lot of inspection and collation of results. Our approach has been to develop data standards
with industry that will make theory reality and I'm delighted that we've been able to show
that blockchain does indeed work in this part of the food industry. I think there are great
opportunities now for industry and government to work together to expand and develop
this approach.”

The government's role is to be the one that regulates. It is clear that other organizations that
act in this area, alongside the government, now have trouble clearing inspections. Even
though there are several control mechanisms, such as visual analysis and lab data that
needs to be obtained by producers, inspections are still susceptible to corruption and do not
have complete information regarding origin control.

However, as is obvious, the chain is long, and finding the actual responsible party for any
deviation in a quick and objective way is not an easy task. In addition, the corruption that is
always present in this kind of activity also affects the whole chain.

From this information, we can conclude that the following challenges in this link of the
chain need to be addressed:

Guaranteeing that the formulation of products follows the rules specified for
those products
Ensuring that information is reliable and auditable

Let's move on to the next link: transporters.

Addressing Food Safety - Building around the Blockchain Chapter 5

[105]

Transporters (transportation companies)
When we talk about food transportation, we should first talk about perishable products.
Their handling requires special controls for temperature and delivery times, among other
factors. There are also special licenses for transporting perishable goods. Special product
inspections of goods at their destination and place of departure, and packing and
unpacking, all need controlling and tracking.

Today, transportation companies have an arsenal of technologies that can help to address
the control and tracking of products. Distribution centers and warehouses can control the
arrival and dispatch of pallets with scanners, barcodes, and even by using robots.

Additional important facilitators are analytics solutions and the automation of invoices to
track where an item was ordered from, supplied from, dispatched from, delivered to, and
its arrival date. Image recognition, for example, can help register an item that has similar
parts.

Without a doubt, IoT-powered sensors are a robust framework for these new technologies.
These sensors can track temperature, humidity, and the tampering of containers for
perishables and other goods. The devices issue auto-alerts to supply chain managers as
soon as any given condition is violated so that food safety issues are immediately
actionable.

It is at this point that blockchain technology can be of great help in tracking and registering
products, and bringing trust and consensus between all parties with a single trackable
shared ledger.

Stores and supermarkets
These actors in the chain are the first to get feedback when there is something wrong with a
product. They (stores and supermarkets) are also often blamed for problems with
merchandise, because they are sometimes responsible for storage, transportation, and
product handling. These problems can happen inside a store or during distribution to other
stores.

The operations performed at supermarkets and stores are as complex as the ones that are
performed at food factories. They both have strong handling operations and responsibilities
regarding storage. It is not unusual to have issues regarding spoiled food, and the question
that arises is: “Was this product already rotten or did it become rotten here?”

Addressing Food Safety - Building around the Blockchain Chapter 5

[106]

Usually, each product owner has their own quality control process, and that make things a
lot harder. When an incident occurs, parties provide evidence that absolves them of any
blame, but that evidence is generally related to their internal processes. The process while
transferring the product to another party is left unaddressed.

In addition, we have the distribution of products to bigger stores, where the same handling
issues occur. However, these kinds of problems can happen at the store itself.

This gives us the current challenges that are faced by supermarkets:

Managing and controlling the receipt and delivery of products
Effectively controlling stock and the dispatch of goods between stores
Collecting data about the product's physical location and storage
Unpacking and transporting products to the shelves
Controlling and being aware of product expiration dates

The majority of big and medium-sized supermarkets already have their own e-commerce
networks. This results in the further adoption of technologies and software in their daily
routines. As examples of technology used by these companies, we can mention stock
control, the massive use of IoT to control boxes and pallets, the use of QR codes, integrated
data systems to handle stock and sales, predictive models, tracking client loyalty, and so on.
This shows us the increasing use of technology in this area.

Customer
In a competitive market, the customer is the protagonist. They will decide what the best
product is out of the ones available on the market. Besides looking at the product itself,
they will also decide the best place to buy the product and the best manufacturer.

Today, apart from providing great packaging, it is important for a store to have a perfect
layout and to provide easy-to-read descriptions of products and items. Information about
the origins of a product, whether it meets the standards required, and whether it has the
necessary certifications is also of huge importance to customers. Some differential factors
for customers when choosing their products are having easy access to all of this
information, reading QR codes, and being able to listen to product details using an
augmented reality solution.

Customers are more selective before buying a product that they will eat, have more
opportunities to interact with products, and know more about how food impacts on their
bodies, said a pair of futurists at a July U.S. Chamber of Commerce event. You can find out
more about this here: https:/ ​/ ​www. ​fooddive. ​com/ ​news/ ​what- ​will- ​grocery- ​shopping-
look-​like-​in-​the- ​future/ ​447503/ ​.

https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/
https://www.fooddive.com/news/what-will-grocery-shopping-look-like-in-the-future/447503/

Addressing Food Safety - Building around the Blockchain Chapter 5

[107]

The challenges within this chain are not easy to overcome. The possible impact of problems
can result in much more than financial loss; they can lead to health issues for customers, or
even death.

Technology can be a great ally to solve these issues. It's certain that, when we talk about IoT
and blockchain, this combination can revolutionize this sector by bringing transparency
between members in shared process chains, allowing them to control data more efficiently,
increasing security, making processes automatic and dynamic, removing middlemen, and
making the chain less complex.

We can also see that all of the members within the chain have huge challenges of their own
and that the use of IoT and blockchain technologies can bring positive results. A better
product position or brand equity for the customer can result in more power in their choices
and an awareness of what they are consuming.

Is the food chain a good use case for IoT and
blockchain technology?
Let's recall an important item that was mentioned in Chapter 3, Explaining Blockchain
Technology and Working with Hyperledger. Here are a few questions that can be used to
identify a good use case for blockchain:

Is there a business network?1.

Yes—producers, manufactures, transportation companies, and retail stores.

Is there a transaction that needs validation or consensus?2.

Yes—recording who owns what, and when and where an asset is in the supply
chain.

Are audit trails important (showing provenance)? 3.

Yes—customer requests, regulatory agency requirements.

Is there any need to track data changes (data immutability and finality)? 4.

Yes—it involves different companies, and asset(s) are passed on from one party to
another, which has different levels of control.

So, our food chain example meets all the pertinent requirements for being a suitable use
case for blockchain. But how does IoT feature in this scenario?

Addressing Food Safety - Building around the Blockchain Chapter 5

[108]

In more ways than one. For example, smart farming based on IoT will enable growers and
farmers to reduce unnecessary waste and enhance productivity, ranging from the quantity
of fertilizer utilized to the number of journeys farm vehicles make for a harvest. Food
contamination and its consequences can be prevented by detecting potential trouble before
it happens.

IoT allows for such real-time monitoring; it not only checks historical data checks but also
provides cost savings as sensors allow maintenance engineers to notice changes to
equipment in near real-time.

Summary
We have seen how complex a food chain is. Many actors are involved with high
interdependence. We also observed that the food industry has many challenges in its chain,
which causes risks for customers when an issue is found in any part of the food
manufacturing process.

Moreover, we are moving past the time where workers need to be physically present to
monitor every piece of equipment through which our food passes. By using internet-
enabled devices, maintenance engineers are empowered to have better visibility of what is
happening with equipment, inventories, and people.

Blockchain technology can offer a trusted connection with shared value for all ecosystem
participants, including end customers. IoT use in the food industry, with technology such
as sensors, barcode readers, and QR codes, is at the heart of this solution, and IoT
integrated with blockchain can not only mitigate a lot of issues but can transform the
industry.

Internet-enabled sensors fastened onto equipment provide critical insights into
maintenance and food safety issues, including real-time system-generated alerts and
notifications. Maintenance engineers are able to access this real-time data from anywhere
via a smartphone or tablet. The capabilities of an IoT system for food safety include
providing real-time insights into the status of food processing equipment, sending
automated alerts as soon as any problems arise, and providing the recommended next steps
for troubleshooting and resolving a problem.

In the next chapter, we will link the challenges of the food chain with the technologies that
can mitigate them.

Addressing Food Safety - Building around the Blockchain Chapter 5

[109]

Further reading
CDC is one of the major operating components of the Department of Health and
Human Services: https:/ ​/​www. ​cdc. ​gov/​

Scandal in Sao Paulo: https:/ ​/​www.​brasildefato. ​com. ​br/​2018/ ​05/ ​10/ ​as-
gestoes- ​tucanas- ​e- ​o-​roubo- ​da-​merenda- ​escolar/ ​ and https:/ ​/​www.
gazetadopovo. ​com. ​br/ ​politica/ ​republica/ ​desvio- ​na- ​merenda- ​escolar- ​pf-
desvenda- ​escandalo- ​de- ​r- ​16- ​bilhao- ​4zr4w5xhhy18ja0skldd83cmf

https://www.cdc.gov/
https://www.cdc.gov/
https://www.cdc.gov/
https://www.cdc.gov/
https://www.cdc.gov/
https://www.cdc.gov/
https://www.cdc.gov/
https://www.cdc.gov/
https://www.cdc.gov/
https://www.cdc.gov/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.brasildefato.com.br/2018/05/10/as-gestoes-tucanas-e-o-roubo-da-merenda-escolar/
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf
https://www.gazetadopovo.com.br/politica/republica/desvio-na-merenda-escolar-pf-desvenda-escandalo-de-r-16-bilhao-4zr4w5xhhy18ja0skldd83cmf

6
Designing the Solution

Architecture
In this chapter, we'll review the architecture of our IoT- and blockchain-based solution for
the food logistics network, exploring the following topics:

The business side: We'll review the business components and the main actors on
the business side of things, as well as the processes that take place between
production and the consumer.
The technology: We'll present a diagram of the technological solutions that we'll
be engineering.
Software: We'll present a diagram detailing the solution at the software level,
examining layers and integration.

We'll also review some concepts and architecture involved in our IoT- and blockchain-
based solution in more detail.

The business of food
The modern food chain is very large and complex. There are numerous actors involved that
influence the making of the product and its delivery, whether directly or indirectly.

Designing the Solution Architecture Chapter 6

[111]

We'll be looking at this modern food production process, learning about the challenges of
the modern chain and proposing a new one based on blockchain and IoT:

The business process shown in the preceding diagram is a simplified version of the modern
food chain. The chain can be much bigger than the one represented here. For example,
many supermarkets have their own distribution centers. However, since our main goal
is simplification, we didn't represent other factors, such as ports and customs.

For our use case, we'll seek to account for the product from the time it's delivered to the
manufacturer. This product could be any item, but we'll use chicken drumsticks for our
example.

The asset to be managed in our chain will be a box full of chicken drumsticks, and our other
asset will be a pallet full of boxes containing chicken drumsticks. In the food chain, we'll be
looking at the processes of the following actors: the manufacturer, distribution center, and
retailers.

As stated previously, there are a lot of actors in the modern food chain. Remember that
we're following a more simplified process, not necessarily the actual process followed in
real life. Our goal Here's understanding how IoT and blockchain can help the parties and
processes inside the food chain.

Challenges of the process
The part of the food chain we have chosen to focus on has many challenges. We're listing
them briefly here:

Challenges from the farmer's perspective: Securing documentation of key
information on raw materials, such as product descriptions, dates of inspections,
date of abatement, and stock information

Designing the Solution Architecture Chapter 6

[112]

Challenges from the manufacturer's perspective: Ensuring product origin and
safe delivery and receipt of products, packaging products with electronics, using
barcode/QR code informational labeling for regulators and consumers, and
aggregating products into packages
Challenges from the retailer's perspective: Checking package integrity and
maintaining visibility of product packages across the transport lines with dates,
warehouse validation, and quality control
Challenges from the consumer's perspective: Having confidence in the origin of
the product and the information contained in its packaging, as well as identifying
goods quickly and, if necessary, removing suspect products from the shelves and
consumption

The process at the food factory
Let's start from the beginning of our target process. In our use case, the product arrives at
the factory in large pieces, where it'll be cut, packed, and put in boxes for sale. This product
is stored and the boxes are put onto pallets before delivery.

A pallet is a wooden, metallic, or plastic platform used for moving goods, as we can see in
the following diagram:

Designing the Solution Architecture Chapter 6

[113]

Next, we'll see the important data that must be registered about the product before it
proceeds to the next stage. When the product arrives, the following data is captured and
recorded:

Stock Keeping Unit (SKU)
Animal origin
Name of producer
Animal information
Quality control
Date of abatement
Freezing
Technical supervisor details
Shipment date
Temperature and transport details

The following details are captured during the registration of a box or pallet:

SKU
Date
Factory address
Freezing temperature
Quality record
Pallet code

Now let's check the process for the next actor in the chain.

The process at the distribution center
After being cut, packed, and delivered, the product arrives at the distribution center, where
it's received and checked for storage. Depending on the process, it might go to a bigger
pallet that suits it better for transportation, which could be by train or truck:

Designing the Solution Architecture Chapter 6

[114]

To avoid any issues with the product, the distribution center reviews the data sent by the
factory. If there's any additional movement, such as pallet transfer, new information needs
to be added to the package:

For the product, it's the following:
Received date
Pallet number
Temperature received at
Temperature for storage
Transport company
Quality seal

For the pallet, it's the following:
Destination code
Pallet code
Date
Temperature for dispatch
Transport company

After inspection, the products are sent to the retailers.

Designing the Solution Architecture Chapter 6

[115]

The process at supermarkets and stores
The store will receive the product and check the goods to see whether they fit the
requirements. If they do, the pallets are disassembled and the boxes are opened. This
concludes the monitoring of our assets:

The following important data must be registered at this stage for the product to reach the
consumer:

Received date
Pallet number
Temperature received at
Temperature for storage
Transport company
Quality seal

Now it's the store's responsibility to put a label on the product, after which, it may or may
not be taken straight to the shelf.

Designing the Solution Architecture Chapter 6

[116]

The technological approach
Now that we have a better understanding of our process and potential problems, let's see
how technology can be useful to us. Here's a representation of a standard blockchain
Hyperledger Fabric architecture:

The preceding diagram shows us three important layers: frontend applications (on the left),
API/SDK (in the center), and Hyperledger Fabric and the IoT platforms (on the right).

Let's review each layer in more detail.

Designing the Solution Architecture Chapter 6

[117]

Frontend applications
This layer is responsible for data input and can be a packet, such as one from SAP,
Salesforce, or Siebel, or a custom application. It can also interact with IoT devices, collecting
data and registering in the blockchain ledger. The modern architecture for developing
frontend applications consists of these layers:

Okay, I know there are a lot of other tools for each layer than those
presented here, but I just used the ones I'm more familiar with.

Designing the Solution Architecture Chapter 6

[118]

This type of frontend architecture allows us to separate our services from a single interface.
By doing so, we can expand the User Experience (UX) to several platforms without the
need to rebuild the whole application.

IoT-based asset tracking
IoT plays an important role in the food chain. IoT devices can track assets, and there's an
arsenal of models available that can do that. There are sensors for measuring temperature,
and location can be determined using GPS, beacons, SigFox, Wi-Fi, 4G, and Sub1Ghz. These
devices and networks can be used by farms, factories, transportation companies,
distribution centers, and retail outlets, covering all actors in the food chain.

The major challenge in the food chain is transportation. Many foods require special care,
and temperature is one of the most important concerns. Since many foods are perishable,
and temperature control is vital for preventing contamination and damage.

Let's take a look at how we can mitigate this challenge using an IoT-enabled device. The
Particle Electron Asset Tracker (pictured in the following diagram) can be used to collect
temperature and environmental data and identify GPS location and cellular triangulation,
among other things:

This tracker allows us to connect with a u-blox M8 GNSS GPS receiver and Adafruit
LIS3DH Triple-Axis Accelerator. We can connect Grove sensors to it as well.

Designing the Solution Architecture Chapter 6

[119]

Let's look at a high-level architecture of this kind of IoT solution:

This diagram shows us some important components of the solution. Let's see what they are:

Message Queuing Telemetry Transport (MQTT): This refers to a publish-
subscribe-based messaging protocol that works over TCP. It's designed for
connections with remote locations where a small code footprint is required or the
network bandwidth is limited. The publish-subscribe messaging pattern requires
a message broker.
Node-RED: Node-RED is a programming tool for wiring together hardware
devices, APIs, and online services in an easy way using a flow editor that can
create JavaScript functions.
IBM Cloud: This is a set of cloud computing services for business.
Bosch IoT Rollouts: This is a cloud service in the Bosch IoT Suite that enables
users to manage the rollout of software updates to edge devices, controllers, and
gateways.

So, how do these components come together to assist in the various processes in the food
chain? Here's how:

The Node-RED control panel dashboard enables us to select an asset tracker and
check the location, data, device status, and other information
The asset tracker device can be either activated or updated over a cellular
network

Designing the Solution Architecture Chapter 6

[120]

Geolocation data can be transmitted periodically and can be followed by a
dashboard in Node-RED, for example
The asset tracker device queries the temperature data and then may query for
location or velocity data
Node-RED can write the temperature, location, and velocity data to Hyperledger
Fabric
The Node-RED dashboard queries Hyperledger Fabric for various tasks and
information, such as transaction histories, date and time data, and geo-sensor
data

API/SDK
The SDK or API is an integration layer responsible for connection in the blockchain
network. It's normally developed using Node.js and plays an important role in the calling
of smart contracts. Today, we can find API/SDK documentation covering Go and Java, with
documentation for Python on the horizon.

You can refer to this link for more information on how to use APIs/SDKs
to integrate your application with a blockchain network: https:/ ​/
hyperledger- ​fabric. ​readthedocs. ​io/​en/ ​release- ​1. ​3/​fabric- ​sdks.
html.

The following diagram shows an application integrated with an API/SDK that interacts
with Hyperledger Fabric:

https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/fabric-sdks.html

Designing the Solution Architecture Chapter 6

[121]

Composer JavaScript SDK is derived from Node.js, and it allows developers to integrate
your application with their business networks.

There are two npm modules:

composer-client: This module is usually installed as a local dependency of an
application. It provides the API that's used by business applications to connect to
a business network in order to access assets and participants and
submit transactions. When in production, this is the only module that needs to be
added as a direct dependency of the application.
composer-admin: This module is usually installed as a local dependency of
administrative applications. This API permits the creation and deployment of
business network definitions.

Now let's move on to the last layer in our solution.

Hyperledger Composer – a high-level overview
Hyperledger Composer is an easy way to create your blockchain network, integrated with a
full-stack working solution, as provided by the Hyperledger Composer architecture site.

At a high level, Hyperledger Composer is made up of the following components:

Execution runtimes
JavaScript SDK
Command Line Interface (CLI)
REST server
LoopBack connector
Playground web user interface
Yeoman code generator
VS Code and Atom editor plugins

It would be outside the scope of this book to review each of these in detail. You can visit
this link to explore these components briefly: https:/ ​/​hyperledger. ​github. ​io/ ​composer/
latest/​introduction/ ​solution- ​architecture.

https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture
https://hyperledger.github.io/composer/latest/introduction/solution-architecture

Designing the Solution Architecture Chapter 6

[122]

Software components
Now we'll look at the software components of our solution for an architect's perspective.
This is a good way to get familiarized with all of the components and have a better
understanding of how they are integrated.

To start, let's explore one of the most important components: the authentication process.

How we can guarantee that each member of the blockchain has the correct access
permission in our frontend application? After answering this question, we'll delve into the
most important components of Hyperledger Composer: the modeling language and the
transaction processor functions.

Composer REST server
To authenticate clients, we'll need to set up a REST server. With this option available, the
clients should be authenticated before they are permitted a call in the REST API.

The REST server uses an open source software named PASSPORT, an authentication
middleware for Node.js. It's flexible and modular and supports authentication via
username and password, Facebook, Twitter, Google, and Lightweight Directory Access
Protocol (LDAP), among others. In Chapter 7, Creating Your Blockchain and IoT Solution,
we'll have more details about this. For now, let's review how the components will work.

In the following diagram, we can see a high-level authentication architecture using a
Composer REST server:

Designing the Solution Architecture Chapter 6

[123]

The following components have been described in the diagram: a frontend application, a
composer REST server, LDAP, and Cloudant, a NoSQL database.

If you're working on a test or need to create a proof of concept quickly, I
strongly recommend using Facebook, Google, or Twitter for
authentication. It'll be easier and faster than other methods.

To use the previous approach to use the composer REST server as custom implementation,
we need to do some customization. Perform the following steps:

There's a following line the composer-rest-server installation that needs to1.
be executed before the line:

apk del make gcc g++ python git

Make sure you have a clean environment before using this approach by cleaning
all previous installations.

To customize our composer REST server Dockerfile, add the following2.
command in the RUN statements:

su -c "npm install -g passport-ldapauth" - composer && \

Create the following environment variables:3.

export COMPOSER_CARD=admin@interbancario
export COMPOSER_NAMESPACES=require
export COMPOSER_AUTHENTICATION=true
export COMPOSER_MULTIUSER=true

If you're checking the API call and receive 404, it means you're not logged on:4.

export COMPOSER_PROVIDERS='{
 "ldap": {
 "provider": "ldap",
 "authScheme": "ldap",
 "module": "passport-ldapauth",
 "authPath": "/auth/ldap",
 "successRedirect": “<redirection URL. will be overwritten by
the property 'json: true'>”,
 "failureRedirect": "/?success=false",
 "session": true,
 "json": true,
 "LdapAttributeForLogin": “< CHANGE TO LOGIN ATTRIBUTE >",
 "LdapAttributeForUsername": "<CHANGE TO USERNAME ATTRIBUTE>",

Designing the Solution Architecture Chapter 6

[124]

 "server": {
 "url": “<URL DO LDAP>",
 "bindDN": “<DISTINGUISHED USER NAME FOR A SEARCH>",
 "bindCredentials": “<USER PASSWORD FOR A SEARCH>",
 "searchBase": “<PATH WITH USERS LIST WILL BE STORED>",
 "searchFilter": "(uid={{username}})"
 }
 }
}'

 Check whether we have an API in our Wallet:5.

TestValideteLastProcess:A Transaction named TestValideteLastProcess
UpdateOpportunityStatus: A Transaction named
UpdateOpportunityStatus
Wallet:Business network cards for the authenticated user

To understand the process authentication better, let's explore this execution flow:

Each API call of composer-rest-server must include access_token, which is
brought back by the authentication. For more information, see https:/ ​/
hyperledger. ​github. ​io/ ​composer/ ​v0. ​16/ ​integrating/ ​enabling- ​rest-
authentication.

https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication

Designing the Solution Architecture Chapter 6

[125]

Some examples using curl are:

curl -v http://localhost:3000/api/system/ping?access_token=xxxxx

Here's another example:

curl -v -H 'X-Access-Token: xxxxx'
http://localhost:3000/api/system/ping

This is the final step in setting up your composer-rest-server: creating a6.
business card with Cloudant.

Create member cards with the following attributes:

ID: wallet-data/admin@system name
Key: wallet-data/admin@system name
Value: {"rev" : "5-1af3gs53gwh...."}

Upload the attachment as shown in the following screenshot:

In Chapter 7, Creating Your Blockchain and IoT Solution, we'll deploy this implementation.

Designing the Solution Architecture Chapter 6

[126]

Hyperledger Composer model
There are many ways to identify a blockchain use case. Let's remember some important
indicators of a good use case described in Chapter 3, Explaining Blockchain Technology and
Working with Hyperledger:

Is there a business network involved?
If yes, is there a transaction that needs validation and is auditable?
Are transparency and data immutability important?

After determining the answers to these questions, brainstorm sessions are also a good way
to detail the solution and identify the best solution platform (such as IBM Food Safety), or
to start creating a custom development for the use case.

Using Hyperledger Composer Modeling Language can be an easy way to define the
structure of the resource that'll be processed as a transaction and stored on the ledger.

The CTO file creates the domain model for a business network definition with three major
elements:

A single namespace that contains all resource declarations within the file
A set of resource definitions encompassing assets, transactions, participants, and
events
Optional import declarations that import resources from other namespaces

In Chapter 7, Creating Your Blockchain and IoT Solution, we created a business network. Let's
explore the code we used in more detail:

A namespace is the base definition of an asset, event, participant, and transaction, as you
can see here:

// **
 * Sample business network definition.
 */
 namespace org.example.basic

The declaration of resources and enumerated types is shown in the following code:

 asset SampleAsset identified by assetId {
 o String assetId
 --> SampleParticipant owner
 o Double value
 }

 participant SampleParticipant identified by participantId {

Designing the Solution Architecture Chapter 6

[127]

 o String participantId
 o String firstName
 o String lastName
 }

Transaction process functions are automatically invoked by the runtime when transactions
are submitted using the Business Network Connection API:

transaction SampleTransaction {
 --> SampleAsset origin
 --> SampleAsset target
 o Double txTransferAmount
 }

 event SampleEvent {
 --> SampleAsset origin
 --> SampleAsset target
 o Double txTransferAmount
 }

For more information about Hyperledger Composer Modeling Language, you can visit
the following links:

https:/​/ ​hyperledger. ​github. ​io/​composer/ ​v0. ​16/​reference/ ​cto_ ​language.
html

https:/​/ ​hyperledger. ​github. ​io/​composer/ ​v0. ​16/​reference/ ​js_ ​scripts. ​html

The Hyperledger Composer access control
language
Hyperledger Composer has an access control file (.acl) with which you can program
business access control and network access control. Business access control is for resources
within a business network, whereas network access control refers to control over
administrative network changes.

Here's an example of network access control being granted:

rule networkControlPermission {
 description: "networkControl can access network commands"
 participant: "org.acme.foodchain.auction.networkControl"
 operation: READ, CREATE, UPDATE
 resource: "org.hyperledger.composer.system.Network"
 action: ALLOW
}

https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html

Designing the Solution Architecture Chapter 6

[128]

Here's another example:

rule SampleConditionalRuleWithTransaction {
 description: "Description of the ACL rule"
 participant(m): "org.foodchain..SampleParticipant"
 operation: ALL
 resource(v): "org.example.SampleAsset"
 transaction(tx): "org.example.SampleTransaction"
 condition: (v.owner.getIdentifier() == m.getIdentifier())
 action: ALLOW
}

You can get further information about the Hyperledger Composer access control language
by accessing the following link: https:/ ​/​hyperledger. ​github. ​io/ ​composer/ ​v0. ​16/
reference/​acl_​language. ​html.

Hyperledger Composer transaction processor
functions
A Hyperledger Composer business network definition is composed of a set of model files
and a set of scripts. The scripts may contain transaction processor functions that implement
the transactions defined in the business network definition's model files.

Here's an example of a script file with a transaction:

Sample transaction processor function.
 * @param {org.example.basic.SampleTransaction} tx The sample transaction
instance.
 * @transaction
 */
 async function sampleExchange(tx) {
 // Get the asset registry for the asset.
 const assetRegistry = await
getAssetRegistry('org.example.basic.SampleAsset');

 //Ensure the balance is greather than the amount to be transfered
 if(tx.origin.value > tx.txTransferAmount) {

 //charge from receiver account
 tx.origin.value = (tx.origin.value - tx.txTransferAmount);
 //add to receiver account
 tx.target.value = (tx.target.value + tx.txTransferAmount);
 // Update the asset in the asset registry.
 await assetRegistry.update(tx.origin);
 await assetRegistry.update(tx.target);

https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html

Designing the Solution Architecture Chapter 6

[129]

 // Emit an event for the modified asset.
 let event = getFactory().newEvent('org.example.basic', 'SampleEvent');
 event.origin = tx.origin;
 event.target = tx.target;
 event.txTransferAmount = tx.txTransferAmount;

 emit(event);

 }else{
 throw Error(`You do not have enough balance for this transaction:
 Balance US$: ${tx.origin.value}
 Transfer Amount: ${tx.txTransferAmount}`);
 }
 }

As we can see, transaction processor functions are automatically invoked by the runtime
when transactions are submitted using the BusinessNetworkConnection API. Decorators
within documentation comments are used to annotate the functions with the metadata
required for runtime processing, and each transaction type has an associated registry for
storing the transactions.

Summary
The architecture described in this chapter involves many components, and the
implementation may seem a little complex. By now, we've established that the combination
of IoT and blockchain can mitigate several issues and transform the workings of the
modern food chain. For example, such an implementation can bring transparency between
members, allowing them to control data more efficiently; increase their security; make the
process automatic and dynamic; remove middlemen; and make the chain less complex
overall.

We also saw that IoT works as the extension of computing and network capabilities for
devices and sensors, enabling them to make machine-to-machine interactions with minimal
or no human input. These technological components bring advantages such as
unprecedented automation, cost reduction for provisioning, energy savings, value-added
services, and efficient management.

Blockchain's integration with IoT will make possible data exchange between edge devices
such as sensors, barcode and QR code scan events, and RFID-based assets. Assets
connected with sensors will be able to record sensitive information, such as the location and
temperature of a particular warehouse, and this information could be automatically logged
or updated on a blockchain.

Designing the Solution Architecture Chapter 6

[130]

With a better understanding of the architecture and the elements that comprise its technical
components, we'll be able to fully implement a solution with IoT and blockchain for the
modern food chain.

In the next chapter, we'll see how to create our own blockchain with IoT.

Questions
Q. How can a lack of IoT security compromise data in a blockchain network?

A. Sometimes, companies don't focus on security when they work with IoT. Perhaps
because it's a new technology, they don't believe it comes with imminent risk. The fact is,
however, that businesses are bringing insecure devices into their networks and then failing
to update the software. Not applying security patches isn't a new phenomenon, but
insecure IoT devices with a connection to the internet is a disaster waiting to happen; think
hackers and DDoS attacks. A strong security plan should be developed for IoT devices,
similar to the one for internet services. Strong device identification and updates can help
mitigate most problems.

Q. Is blockchain technology mature enough for this application?

A. Today, there're a number of blockchain platform providers available on the market.
Carrefour, Walmart, and others are already members of these platforms. So, this indicates
that big companies are already running their businesses on a blockchain platform, and that
such a platform is suited to this kind of application.

Q. How complex is it to implement a solution using IoT and blockchain?

A. Most of the technologies described in this chapter are open source and are used by a
huge number of companies. This shows that we're not talking about something that's that
complicated, but something that can be used by most developers.

Q. How complex is it to have a solution that covers the entire food chain?

 A. Yes, it's not an easy task. You can start by validating the use case; a good use case is
essential. Also, check whether there's a business network involved; remember, IoT
also plays an important role in tracking the assets, and you should have a security plan for
asset tracking as well.

Designing the Solution Architecture Chapter 6

[131]

Q. Should I be concerned about using an open source tool such as Hyperledger Fabric or
Composer?

A. Hyperledger is part of the Linux Foundation, which has more than 250 companies as
members, including leaders in finance, banking, supply chain, manufacturing, and
technology. For example, IBM, Cisco, American Express, Fujitsu, Intel, and JP Morgan all
use technology by the Linux Foundation. In other words, these tools are safe to use
provided you employ standard security measures on your devices.

Further reading
A better description of Hyperledger Composer can be found on the Composer
website: https://hyperledger.github.io/composer/v0.19/introduction/solu
tion-architecture.
The main focus in this chapter was Hyperledger Composer. If you want to
explore the architecture of Hyperledger Fabric, you can find further information
here: https:/ ​/ ​hyperledger- ​fabric. ​readthedocs. ​io/ ​en/ ​release- ​1. ​3/​arch-
deep-​dive. ​html.
Yeoman is an open source framework that creates your frontend structure. For
further information, visit https:/ ​/ ​yeoman. ​io/ ​.
Passport is an authentication middleware for Node.js. For further information, go
to http:/ ​/ ​www. ​passportjs. ​org/​.
You can have further information about the Hyperledger Composer access
control language by accessing the following link: https:/ ​/​hyperledger. ​github.
io/​composer/ ​v0. ​16/ ​reference/ ​acl_ ​language. ​html.
You can have further information about Hyperledger Composer Modeling
Language by accessing the following links:

https:/ ​/ ​hyperledger. ​github. ​io/​composer/ ​v0. ​16/​reference/
cto_ ​language. ​html

https:/ ​/ ​hyperledger. ​github. ​io/​composer/ ​v0. ​16/​reference/
js_ ​scripts. ​html

Information about composer-rest-server can be found at https:/ ​/ ​hyperledger.
github.​io/ ​composer/ ​v0. ​16/ ​integrating/ ​enabling- ​rest- ​authentication.

https://hyperledger.github.io/composer/v0.19/introduction/solution-architecture
https://hyperledger.github.io/composer/v0.19/introduction/solution-architecture
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://yeoman.io/
https://yeoman.io/
https://yeoman.io/
https://yeoman.io/
https://yeoman.io/
https://yeoman.io/
https://yeoman.io/
https://yeoman.io/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
http://www.passportjs.org/
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/acl_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/cto_language.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/reference/js_scripts.html
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication
https://hyperledger.github.io/composer/v0.16/integrating/enabling-rest-authentication

7
Creating Your Blockchain and

IoT Solution
With a correct understanding of the project objectives that were presented in the previous
chapter, it's time to get the solution to work. In this chapter, I will guide you through
creating a blockchain network using Hyperledger Composer.

In this chapter, we will cover the following topics:

Creating a blockchain network
Defining assets, participants, transactions, and access control lists using
Hyperledger Composer
Publishing the network to a Hyperledger environment

We will also borrow code from Chapter 2, Creating Your First IoT Solution, to create a device
that will monitor shipments and interact with the blockchain network.

Technical requirements
To access the complete code, you will have to install the Hyperledger Fabric/Composer
environment on your machine, including prerequisites, and an IDE that's capable of
developing Node.js applications (Visual Studio Code is recommended).

The code listed in this chapter is available at https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​IoT-​Solutions- ​with- ​Blockchain/ ​tree/ ​master/ ​ch7/ ​hands- ​on- ​iot- ​blockchain. ​

https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain
https://github.com/PacktPublishing/Hands-On-IoT-Solutions-with-Blockchain/tree/master/ch7/hands-on-iot-blockchain

Creating Your Blockchain and IoT Solution Chapter 7

[133]

Solution overview
Here, we will be dealing with one of the most important parts of the farm-to-fork food life
cycle: moving products from the food factory to the grocery store.

The following diagram shows the solutions that should be implemented for each of the
given stages:

Let's look at the preceding diagram in detail. We will start with the four participants:

Factory: This is the starting point of this food safety solution. It is responsible for
gathering raw materials from farms and creating a box that is sent to the
warehouse. The actions allowed for this participant are adding a new box and
transferring the box to the transporter.
Transporter: This is the company that's responsible for handling transportation
from the factory to the warehouse and from the warehouse to the grocery store in
controlled temperatures. The actions defined for the transporter are adding
temperature measurements to an asset that is under its control and transferring
assets to a warehouse or grocery store.

Creating Your Blockchain and IoT Solution Chapter 7

[134]

Grocery Store: This is a company that sells the food box to the consumer. The
grocery store is the end of the chain, and it's where the consumer can retrieve
information from the food box. Grocery stores can check pallets and box data.
Consumer: They are the target of the food box. The consumer is interested in
tracking the box chain, so there's a mapped action of viewing the information for
a box.

We will create an instance of the Composer REST server using a business card for each
participant, and so we will have four Composer REST server instances in total. There's also
the box and the pallet. The definitions for these assets are as follows:

FoodBox: It represents the product that is produced at the factory and is handled
throughout the entire chain
Pallet: This represents a set of boxes that are grouped together to be sent from
the warehouse to the grocery store

Let's start with our blockchain network solution.

Creating a blockchain network
To develop a blockchain network, we will first have to create a business network project
using the Yeoman command line, and then name the business network:

$ yo hyperledger-composer
Welcome to the Hyperledger Composer project generator
? Please select the type of project: Business Network
You can run this generator using: 'yo hyperledger-composer:businessnetwork'
Welcome to the business network generator
? Business network name: food-safety-b10407
? Description: Hands-on IoT solutions with Blockchain
? Author name: Maximiliano and Enio
? Author email: max.santos@gmail.com
? License: Apache-2.0
? Namespace: com.packtpublishing.businessnetwork.foodsafety
? Do you want to generate an empty template network? Yes: generate an empty
template network
 create package.json
 create README.md
 create models/com.packtpublishing.businessnetwork.cto
 create permissions.acl
 create .eslintrc.yml

Creating Your Blockchain and IoT Solution Chapter 7

[135]

The Yeoman generator creates a folder with a basic empty structure for a Hyperledger
Composer business network.

The .cto file contains the business network definitions: assets, participants, transactions,
and queries, whereas the .acl file contains the access control list for the assets and
transactions.

In later sections, we're going to code the business network definition, so start Visual Studio
Code and open the folder that was created by Yeoman.

To start developing a blockchain solution, open
the models/com.packtpublishing.businessnetwork.cto file and start coding.

Concepts and enumerations
It's a good practice to create combined data types that are common among assets,
participants, and transactions by creating more readable structures in Hyperledger
Composer. These structures are concepts and enumerations.

We will use the following structures in the solution:

// Tracking information when an asset arrives or leaves a location
enum LocationStatus {
 o ARRIVED
 o IN_TRANSIT
 o LEFT
}

// Location Types
enum LocationType {
 o FACTORY
 o WAREHOUSE
 o TRANSPORTER
 o STORE
}

// A measurement sent by the transporter sensor
concept Measurement {
 o DateTime date
 o Double value
}

// Check if it's in the factory, warehouse
concept Location {
 o DateTime date

Creating Your Blockchain and IoT Solution Chapter 7

[136]

 o LocationType location
 o String locationIdentifier
 o LocationStatus status
}

Next, we will look at how to define assets in the business network.

Asset definitions
After defining the common structures of the blockchain network, let's define the assets that
will be used in it. In our solution, we will have the FoodBox and FoodBoxPallet assets.

The following code defines them:

// Definition of a food box
asset FoodBox identified by foodBoxIdentifier {
 o String foodBoxIdentifier
 o Location[] assetTrackingInformation
 o Measurement[] measureTrackingInformation
 --> FoodSafetyParticipant owner
}

// Definition of a pallet that groups food boxes
asset FoodBoxPallet identified by foodBoxPalletIdentifier {
 o String foodBoxPalletIdentifier
 --> FoodBox foodBoxInPallet
 o Location[] assetTrackingInformation
 o Measurement[] measureTrackingInformation
 --> FoodSafetyParticipant owner
}

Participants
The participants are the actors that interact with the blockchain network. Each participant
definition is for a different role in the business network and their permissions are defined in
access control lists, as shown here:

abstract participant FoodSafetyParticipant identified by identifier {
 o String identifier
 o String name
}

participant FoodFactory extends FoodSafetyParticipant {
}

Creating Your Blockchain and IoT Solution Chapter 7

[137]

participant Warehouse extends FoodSafetyParticipant {
}

participant Transporter extends FoodSafetyParticipant {
}

participant Store extends FoodSafetyParticipant {
}

participant Consumer extends FoodSafetyParticipant {
}

Deploying and testing the business network for
Hyperledger
For testing purposes, we will grant all participants full access to all of resources of the
blockchain network:

To achieve this, we will add the following lines to the permissions.acl file1.
(without deleting any existing rules):

rule Default {
 description: "Allow all participants access to all resources"
 participant: "ANY"
 operation: ALL
 resource: "com.packtpublishing.businessnetwork.foodsafety.**"
 action: ALLOW
}

With this rule defined, we will be able to deploy and test the ledger without any
other extra permissions.

After defining the network, we will generate a Business Network Archive (.bna2.
file) and deploy it to the Hyperledger environment. Make sure that your
environment is up and running before that. To create the .bna file, go into the
root directory for the project and run the following command:

$ composer archive create -t dir -n .
Creating Business Network Archive
Looking for package.json of Business Network Definition
 Input directory: /hands-on-iot-solutions-with-
blockchain/ch7/food-safety-b10407
Found:
 Description: Hands-on IoT solutions with Blockchain

Creating Your Blockchain and IoT Solution Chapter 7

[138]

 Name: food-safety-b10407
 Identifier: food-safety-b10407@0.0.1
Written Business Network Definition Archive file to
 Output file: food-safety-b10407@0.0.1.bna
Command succeeded

If you haven't generated the PeerAdminCard yet, it's time to do so and import it3.
with the createPeerAdminCard.sh script inside the directory where we have
downloaded the fabric-dev servers:

$ ~/fabric-dev-servers/createPeerAdminCard.sh
Development only script for Hyperledger Fabric control
Running 'createPeerAdminCard.sh'
FABRIC_VERSION is unset, assuming hlfv12
FABRIC_START_TIMEOUT is unset, assuming 15 (seconds)
Using composer-cli at v0.20.4
Successfully created business network card file to
 Output file: /tmp/PeerAdmin@hlfv1.card
Command succeeded
Successfully imported business network card
 Card file: /tmp/PeerAdmin@hlfv1.card
 Card name: PeerAdmin@hlfv1
Command succeeded
The following Business Network Cards are available:
Connection Profile: hlfv1
┌─────────────────┬───────────┬─────────
─────────┐
│ Card Name │ UserId │ Business Network │
├─────────────────┼───────────┼─────────
─────────┤
│ PeerAdmin@hlfv1 │ PeerAdmin │ │
└─────────────────┴───────────┴─────────
─────────┘

Issue composer card list --card <Card Name> to get details a
specific card
Command succeeded
Hyperledger Composer PeerAdmin card has been imported, host of
fabric specified as 'localhost'

When you have everything set up, install the .bna file into the environment and4.
start the network by running the following commands:

$ composer network install --card PeerAdmin@hlfv1 --archiveFile
food-safety-b10407\@0.0.1.bna
√ Installing business network. This may take a minute...
Successfully installed business network food-safety-b10407, version
0.0.1

Creating Your Blockchain and IoT Solution Chapter 7

[139]

Command succeeded
$ composer network start --networkName food-safety-b10407 --
networkVersion 0.0.1 --networkAdmin admin --
networkAdminEnrollSecret adminpw --card PeerAdmin@hlfv1 --file
networkadmin.card
Starting business network food-safety-b10407 at version 0.0.1

Processing these Network Admins:
userName: admin
√ Starting business network definition. This may take a minute...
Successfully created business network card:
Filename: networkadmin.card

Command succeeded

Finally, import the network administrator card that was generated by the start5.
process and ping the network to ensure it's running in the environment:

$ composer card import --file networkadmin.card
Successfully imported business network card
 Card file: networkadmin.card
 Card name: admin@food-safety-b10407

Command succeeded

$ composer network ping --card admin@food-safety-b10407
The connection to the network was successfully tested: food-safety-
b10407
 Business network version: 0.0.1
 Composer runtime version: 0.20.4
 participant: org.hyperledger.composer.system.NetworkAdmin#admin
 identity:
org.hyperledger.composer.system.Identity#f48a787ac40102cc7753336f8b
15dd20fa3765e7b9049b2aeda4dcc3816d30c1

Command succeeded

At this point, we have created the first version of our network; generated the package for
deployment (the .bna file); created the PeerAdminCard; installed the network to the
Hyperledger Fabric environment; generated the NetworkAdminCard, which is responsible
for managing the blockchain network; and started the network.

With the Admin cards, we will send a ping command to ensure that the network is up and
running. Now, let's improve our network.

Creating Your Blockchain and IoT Solution Chapter 7

[140]

Manipulating assets via transactions in the
blockchain
Transactions are atomic operations that are performed on objects inside a Hyperledger
Composer-defined business network. They run on the scope of the Hyperledger Fabric
environment and the defined business network.

In the use case that's demonstrated here, the transaction that we've created will update both
the pallet and the nested food boxes with the information provided by the IoT device.

It is composed of two structures. The first one is the definition of the transaction and is
created in the business network definition model (the .cto file):

transaction updateTransportationData {
 --> FoodBoxPallet pallet
 o Location locationInformation
 o Measurement measurementInformation
}

The next structure is the function that implements the transaction that was defined
previously and is created in a JavaScript ES5 compliant script (a .js file):

/**
 * Update pallets and boxes with measurements function.
 * @param
{com.packtpublishing.businessnetwork.foodsafety.UpdateTransportationData}
tx Update pallets and boxes with measurements.
 * @transaction
 */
async function updateTransportationData(tx) {

 // Get transaction parametes
 let newValue = tx.asset;
 let location = tx.locationInformation;
 let measurement = tx.measurementInformation;

 // Update Pallet data with measurements
 if(!newValue.assetTrackingInformation ||
newValue.assetTrackingInformation == undefined)
 newValue.assetTrackingInformation = [];
 if (!newValue.measureTrackingInformation ||
newValue.measureTrackingInformation == undefined)
 newValue.measureTrackingInformation = [];

 newValue.assetTrackingInformation.push(location);
 newValue.measureTrackingInformation.push(measurement);

Creating Your Blockchain and IoT Solution Chapter 7

[141]

 // Update Boxes data with measurements
 let foodBox = newValue.foodBoxInPallet;
 if(!foodBox.assetTrackingInformation || foodBox.assetTrackingInformation
== undefined)
 foodBox.assetTrackingInformation = [];

 if (! foodBox.measureTrackingInformation ||
foodBox.measureTrackingInformation == undefined)
 foodBox.measureTrackingInformation = [];

 foodBox.assetTrackingInformation.push(location);
 foodBox.measureTrackingInformation.push(measurement);

// Get the asset registry for both assets.
 let assetRegistryFoodBoxPallet = await
getAssetRegistry('com.packtpublishing.businessnetwork.foodsafety.FoodBoxPal
let');
 let assetRegistryFoodBox = await
getAssetRegistry('com.packtpublishing.businessnetwork.foodsafety.FoodBox');

 // Update the assets in the asset registry.
 await assetRegistryFoodBoxPallet.update(newValue);
 await assetRegistryFoodBox.update(foodBox);
}

Generating and exporting participant business
cards
To use the network properly, we will create one participant for each class (Factory,
Warehouse, Transporter, Store, and Consumer), generate their respective business
cards, and import them into a Composer CLI Wallet:

First, we will create the participants:1.

$ composer participant add -c admin@food-safety-b10407 -d
'{"$class":"com.packtpublishing.businessnetwork.foodsafety.Consumer
","identifier":"5","name":"Consumer"}'
Participant was added to participant registry.

Command succeeded

$ composer participant add -c admin@food-safety-b10407 -d
'{"$class":"com.packtpublishing.businessnetwork.foodsafety.Store","
identifier":"4","name":"Store"}'
Participant was added to participant registry.

Creating Your Blockchain and IoT Solution Chapter 7

[142]

Command succeeded

$ composer participant add -c admin@food-safety-b10407 -d
'{"$class":"com.packtpublishing.businessnetwork.foodsafety.Transpor
ter","identifier":"2","name":"Transporter"}'
Participant was added to participant registry.

Command succeeded

$ composer participant add -c admin@food-safety-b10407 -d
'{"$class":"com.packtpublishing.businessnetwork.foodsafety.Warehous
e","identifier":"3","name":"Warehouse"}'
Participant was added to participant registry.

Command succeeded

$ composer participant add -c admin@food-safety-b10407 -d
'{"$class":"com.packtpublishing.businessnetwork.foodsafety.FoodFact
ory","identifier":"1","name":"Factory"}'
Participant was added to participant registry.
Command succeeded

Then, we will issue an identity and import their respective business cards with2.
the following command:

composer identity issue -c admin@food-safety-b10407 -f <name of the output
file for the card> -u <participant name> -a <participant class# Participant

id>

Repeat this command for each participant: Transporter 1, Store 1,3.
Warehouse 1, and Factory 1.

$ composer identity issue -c admin@food-safety-b10407 -f
consumer.card -u "Consumer" -a
"resource:com.packtpublishing.businessnetwork.foodsafety.Consumer#1
"
Issue identity and create Network Card for: Consumer

√ Issuing identity. This may take a few seconds...

Successfully created business network card file to
 Output file: consumer.card

Command succeeded

Creating Your Blockchain and IoT Solution Chapter 7

[143]

Import each card into the Composer CLI wallet for each participant/card4.
generated and check that all cards have been imported successfully:

$ composer card import -f consumer.card
Successfully imported business network card
 Card file: consumer.card
 Card name: Consumer 1@food-safety-b10407

Command succeeded

$ composer card list
The following Business Network Cards are available:
Connection Profile: hlfv1
┌──────────────────────────────────┬────
───────────┬────────────────────┐
│ Card Name │ UserId │ Business
Network │
├──────────────────────────────────┼────
───────────┼────────────────────┤
│ Factory 1@food-safety-b10407 │ Factory │ food-safety-
b10407 │
├──────────────────────────────────┼────
───────────┼────────────────────┤
│ Warehouse 1@food-safety-b10407 │ Warehouse │ food-safety-
b10407 │
├──────────────────────────────────┼────
───────────┼────────────────────┤
│ Store 1@food-safety-b10407 │ Store │ food-safety-
b10407 │
├──────────────────────────────────┼────
───────────┼────────────────────┤
│ Consumer 1@food-safety-b10407 │ Consumer │ food-safety-
b10407 │
├──────────────────────────────────┼────
───────────┼────────────────────┤
│ Transporter 1@food-safety-b10407 │ Transporter │ food-safety-
b10407 │
├──────────────────────────────────┼────
───────────┼────────────────────┤
│ admin@food-safety-b10407 │ admin │ food-safety-
b10407 │
├──────────────────────────────────┼────
───────────┼────────────────────┤
│ PeerAdmin@hlfv1 │ PeerAdmin │
│
└──────────────────────────────────┴────
───────────┴────────────────────┘

Creating Your Blockchain and IoT Solution Chapter 7

[144]

Issue composer card list --card <Card Name> to get details a
specific card

Command succeeded

Defining access control lists (ACLs)
To enforce permissions on the network, we will define some access control for participants
over assets with the following rules:

Only factories can create FoodBoxes:1.

rule FoodBoxFactoryCreation {
 description: "Factories can create FoodBoxes"
 participant:
"com.packtpublishing.businessnetwork.foodsafety.FoodFactory"
 operation: CREATE
 resource: "com.packtpublishing.businessnetwork.foodsafety.FoodBox"
 action: ALLOW
}

Since a food factory can also see what their FoodBoxes are and transfer them to a2.
transporter, we can use a conditional rule to define these restrictions:

rule FoodBoxFactoryUpdateAndRead {
 description: "Factories can update and read owned FoodBoxes"
 participant(p):
"com.packtpublishing.businessnetwork.foodsafety.FoodFactory"
 operation: UPDATE, READ
 resource(b):
"com.packtpublishing.businessnetwork.foodsafety.FoodBox"
 condition: (p == b.owner)
 action: ALLOW
}

The next rule refers to Transporters. These can read and update their3.
own FoodBoxes. We will do the same thing for FoodBoxPallets:

rule FoodBoxTransportersUpdateAndRead {
 description: "Transporters can update and read owned FoodBoxes"
 participant(p):
"com.packtpublishing.businessnetwork.foodsafety.Transporter"
 operation: UPDATE, READ
 resource(b):

Creating Your Blockchain and IoT Solution Chapter 7

[145]

"com.packtpublishing.businessnetwork.foodsafety.FoodBox"
 condition: (p == b.owner)
 action: ALLOW
}

rule FoodBoxPalletTransportersUpdateAndRead {
 description: "ransporters can update and read owned FoodBoxes"
 participant(p):
"com.packtpublishing.businessnetwork.foodsafety.Transporter"
 operation: UPDATE, READ
 resource(b):
"com.packtpublishing.businessnetwork.foodsafety.FoodBoxPallet"
 condition: (p == b.owner)
 action: ALLOW
}

Warehouses can also read and update their FoodBoxes, as well as creating,4.
updating, and reading FoodBoxPallets:

rule FoodBoxPalletWarehouseCreate {
 description: "Warehouses can create FoodBoxPallets"
 participant:
"com.packtpublishing.businessnetwork.foodsafety.Warehouse"
 operation: CREATE
 resource:
"com.packtpublishing.businessnetwork.foodsafety.FoodBoxPallet"
 action: ALLOW
}

rule FoodBoxWarehouseUpdateAndRead {
 description: "Warehouses can update and read owned FoodBoxes"
 participant(p):
"com.packtpublishing.businessnetwork.foodsafety.Warehouse"
 operation: UPDATE, READ
 resource(b):
"com.packtpublishing.businessnetwork.foodsafety.FoodBox"
 condition: (p == b.owner)
 action: ALLOW
}

rule FoodBoxPalletWarehouseUpdateAndRead {
 description: "Warehouses can update and read owned FoodBoxes"
 participant(p):
"com.packtpublishing.businessnetwork.foodsafety.Warehouse"
 operation: UPDATE, READ
 resource(b):
"com.packtpublishing.businessnetwork.foodsafety.FoodBoxPallet"

Creating Your Blockchain and IoT Solution Chapter 7

[146]

 condition: (p == b.owner)
 action: ALLOW
}

Finally, stores can read the FoodBoxes they own, while consumers can read all5.
FoodBoxes:

// Store Rules
rule StoreCanReadFoodBoxes {
 description: "Stores can update and read owned FoodBoxes"
 participant(p):
"com.packtpublishing.businessnetwork.foodsafety.Store"
 operation: READ
 resource(b):
"com.packtpublishing.businessnetwork.foodsafety.FoodBoxPallet"
 condition: (p == b.owner)
 action: ALLOW
}

// Consumer Rules
rule ConsumersCanReadFoodBoxes {
 description: "Factories can update and read owned FoodBoxes"
 participant:
"com.packtpublishing.businessnetwork.foodsafety.Consumer"
 operation: READ
 resource: "com.packtpublishing.businessnetwork.foodsafety.FoodBox"
 action: ALLOW
}

After applying these rules, the network is ready to be tested.

Upgrading the business network to a newer
version
There are only four steps that are necessary to upgrade a deployed business network:

Open the package.json file and update the version number for the application.1.
In our case, it will update to 0.0.2 and will look like this:

{
 "engines": {
 "composer": "^0.20.4"
 },
 "name": "food-safety-b10407",

Creating Your Blockchain and IoT Solution Chapter 7

[147]

 "version": "0.0.2",
...

Create a new BNA file by running the composer archive create -t dir -n2.
. command:

$ composer archive create -t dir -n .
Creating Business Network Archive

Looking for package.json of Business Network Definition
 Input directory: /projects/hands-on-iot-solutions-with-
blockchain/ch7/food-safety-b10407
Found:
 Description: Hands-on IoT solutions with Blockchain
 Name: food-safety-b10407
 Identifier: food-safety-b10407@0.0.2
Written Business Network Definition Archive file to
 Output file: food-safety-b10407@0.0.2.bna

Command succeeded

Install the new archive file in the Hyperledger environment:3.

$ composer network install --card PeerAdmin@hlfv1 --archiveFile
food-safety-b10407\@0.0.2.bna
√ Installing business network. This may take a minute...
Successfully installed business network food-safety-b10407, version
0.0.2

Command succeeded

Finally, upgrade the network version to the new one:4.

$ composer network upgrade --card PeerAdmin@hlfv1 --networkName
food-safety-b10407 --networkVersion 0.0.2
Upgrading business network food-safety-b10407 to version 0.0.2

√ Upgrading business network definition. This may take a minute...

Command succeeded

If all of the commands have run successfully, the business network will now be
running on the new version, including the transactions and ACLs that were
created in the preceding sections.

Creating Your Blockchain and IoT Solution Chapter 7

[148]

Setting up Composer REST servers for each
participant
As part of the prerequisites for the installation of the Hyperledger Composer development
environment, you would have also installed the Composer REST server.

This component is an API server based on the Loopback framework (http:/ ​/​loopback. ​io)
and includes a loopback-connector-composer to connect to the Hyperledger Composer
environment and a script that dynamically gather assets, participants, and transactions
models.

The easiest way of starting a Composer REST server is by running the cli commands and
filling the startup questionnaire correctly. For our convenience, we will be running it using
the following command:

composer-rest-server -c "<business card name>" -n never -u true -w true -p
<port defined for the participant server>

Open a terminal window for each participant to start a dedicated Composer REST server
for it:

composer-rest-server -c "Factory@food-safety-b10407" -n never -u true -w
true -p 3000

composer-rest-server -c "Warehouse@food-safety-b10407" -n never -u true -w
true -p 3001

composer-rest-server -c "Store@food-safety-b10407" -n never -u true -w true
-p 3002

composer-rest-server -c "Consumer@food-safety-b10407" -n never -u true -w
true -p 3003

composer-rest-server -c "Transporter@food-safety-b10407" -n never -u true -
w true -p 3004

Each running instance is related to a single user, meaning that all operations that were
invoked through the Composer REST server that is listening on port 3003 are related to the
Consumer with identifier 5. For example, if a new Consumer participant is created (let's say
ID 6), then a new business card must be issued to the participant, and another instance of a
Composer REST server must be started using the new card.

http://loopback.io
http://loopback.io
http://loopback.io
http://loopback.io
http://loopback.io
http://loopback.io
http://loopback.io

Creating Your Blockchain and IoT Solution Chapter 7

[149]

In most use cases, a single business card is enough for an entire organization. Other rules
for issuing business cards can be defined by governance, such as a business card per
branch/subsidiary, or each user must have their own business card.

At this point, you should have five instances of the Composer REST server running on your
computer, and each one should be capable of being accessed through a browser at the
following address: http://localhost:<port>.

Creating the IoT part of the solution
After defining the entire blockchain network and getting everything up and running, we
will now set up and develop the device that's going to update the ledger with box and
pallet measurements.

To complete that, we're going to create a new device, using the same approach as Chapter
2, Creating Your First IoT Solution, and create an application that receives events from
measurements and updates the blockchain ledger using the API that was exposed by the
Composer REST server.

Hardware setup
To assemble this monitoring device, we will apply a couple of assumptions that might be
pertinent to a production environment:

The transporting vehicle has a Wi-Fi connection available so that the device can
connect to the internet
The monitoring device time is synchronized with the application time, including
the time zone
All boxes are transported at the same time, using the same vehicle, so that the
same conditions and measurements apply to all boxes in a pallet

In a production-level application, these restrictions/assumptions have to be handled with
techniques such as caching non-published events and using different network providers
(Sigfox, LoRAWan, mobile connections, and so on), and the actual time must be
synchronized with the device's location.

Creating Your Blockchain and IoT Solution Chapter 7

[150]

The parts that are used in this project are shown here:

This image was created with Fritzing and is licensed under CC BY-SA 3.0; see https://creativecommons.org/licenses/by-sa/3.0/

Creating Your Blockchain and IoT Solution Chapter 7

[151]

The description of each component is given in the following table. You should be familiar
with them, given that they are a subset of what was used in Chapter 2, Creating Your First
IoT Solution:

Quantity Component

1 Intel Edison module

1 Intel Edison Arduino breakout board

1 Grove Base Shield v2

1 Grove Temperature Sensor v1.2

1 Grove universal 4-pin cable

Given these assumptions, the device that's used in this application is connected, as shown
in the following diagram. Here, we have attached the Grove Temperature Sensor to
the A3 connection jack in the Base Shield:

Creating Your Blockchain and IoT Solution Chapter 7

[152]

This image was created with Fritzing and is licensed under CC BY-SA 3.0; see https://creativecommons.org/licenses/by-sa/3.0/

This completes the device that will monitor food box transportation.

Firmware development
The following code has been borrowed from Chapter 2, Creating Your First IoT
Solution, since it has the same hardware characteristics and the same objectives.

The only modification is in the published JSON: we have to remove the soilMoisture
property and add the box ID when transporting from the factory to the warehouse, and add
the pallet ID when transporting from the warehouse to the store.

It retrieves the temperature of the Grove sensor and publishes it to the Watson IoT
platform:

var iotf = require("ibmiotf");
var mraa = require('mraa');
var config = require("./device.json");
var deviceClient = new iotf.IotfDevice(config);
var temperatureSensor = new mraa.Aio(3);

var RESISTOR = 100000;
var THERMISTOR = 4250;

Creating Your Blockchain and IoT Solution Chapter 7

[153]

var getTemperature = function() {
 var sensorReading = temperatureSensor.read();
 var R = 1023 / sensorReading - 1;
 R = RESISTOR * R;
 var temperature = 1 /
(Math.log(R/RESISTOR)/THERMISTOR+1/298.15)-273.15;
 return temperature;
};

deviceClient.connect();
deviceClient.on('connect', function(){
 console.log("connected");
 setInterval(function function_name () {
// When transporting from Factory to Warehouse
 deviceClient.publish('status','json','{ "foodBoxId":"1",
"temperature":+ getTemperature()}', 2);

// When transporting from Warehouse to Store
// deviceClient.publish('status','json','{ "palletId":"1", "temperature":+
// getTemperature()}', 2);

 },300000);
});

Application development
Since we are running the Hyperledger environment locally, the application being
developed here has to run on the same network as Hyperledger. Given that we're not
running it in IBM Cloud/Bluemix, the configuration will be stored in a JSON file, in the
same directory that the main .js file of the application will run in.

The content structure of the configuration JSON file is listed here and must be updated
with the details that were defined in Chapter 2, Creating Your First IoT Solution:

{
 "org": "<your IoT organization id>",
 "id": "sample-app",
 "auth-key": "<application authentication key>",
 "auth-token": "<application authentication token>"
}

Creating Your Blockchain and IoT Solution Chapter 7

[154]

The application code receives all of the events that were published by the device and
updates the FoodBoxes in the pallet with the temperature gathered:

// Composer Rest Server definitions
var request = require('request');
var UPDATE_BOX_URL = "http://<composer rest server
url>:3004/api/UpdateFoodBoxTransportationData"
var UPDATE_PALLET_URL = "http://<composer rest server
url>:3004/api/UpdateTransportationData"

// Watson IoT definitions
var Client = require("ibmiotf");
var appClientConfig = require("./application.json");
var appClient = new Client.IotfApplication(appClientConfig);

appClient.connect();]

appClient.on("connect", function () {
 appClient.subscribeToDeviceEvents();
});

appClient.on("deviceEvent", function (deviceType, deviceId, eventType,
format, payload) {
 // update food box
 // updateFoodBox(payload.temperature);
 // update pallet
 // updatePallet(payload.temperature);
 });

The following code calls the defined transaction in the blockchain network through the
Composer REST server:

var updateFoodBox = function (temperature) {
 var options = {
 uri: UPDATE_BOX_URL,
 method: 'POST',
 json: {
 "$class":
"com.packtpublishing.businessnetwork.foodsafety.UpdateFoodBoxTransportation
Data",
 "asset":
"resource:com.packtpublishing.businessnetwork.foodsafety.FoodBox#<YOUR
FOODBOX ID>",
 "locationInformation": {
 "$class": "com.packtpublishing.businessnetwork.foodsafety.Location",
 "date": "2018-12-24T15:08:27.912Z",
 "location": "<LOCATION TYPE>",
 "locationIdentifier": "<LOCATION ID>",

Creating Your Blockchain and IoT Solution Chapter 7

[155]

 "status": "<LOCATION STATUS>"
 },
 "measurementInformation": {
 "$class": "com.packtpublishing.businessnetwork.foodsafety.Measurement",
 "date": "2018-12-24T15:08:27.912Z",
 "value": 0
 }
}
 };
}

var updatePallet = function (temperature) {
 var options = {
 uri: UPDATE_BOX_URL,
 method: 'POST',
 json: {
 "$class":
"com.packtpublishing.businessnetwork.foodsafety.UpdateTransportationData",
 "asset":
"resource:com.packtpublishing.businessnetwork.foodsafety.FoodBoxPallet#<YOU
R PALLET ID>",
 "locationInformation": {
 "$class": "com.packtpublishing.businessnetwork.foodsafety.Location",
 "date": "2018-12-24T15:09:02.944Z",
 "location": "<LOCATION TYPE>",
 "locationIdentifier": "<LOCATION ID>",
 "status": "<STATUS>"
 },
 "measurementInformation": {
 "$class": "com.packtpublishing.businessnetwork.foodsafety.Measurement",
 "date": "2018-12-24T15:09:02.944Z",
 "value": 0
 }
}
 };
}

End-to-end testing
For testing purposes, we are going to use the Hyperledger Composer Playground for most
of the operations, except transporter updates. So, at this point, you can stop all of the
Composer REST servers that were started in the previous section, except the one that was
started for the transporter participant (listening on port 3004).

Creating Your Blockchain and IoT Solution Chapter 7

[156]

If your Hyperledger Composer Playground was installed during the development
environment setup, all you have to do is run the composer-
playground command, or install it using npm (npm install -g composer-
playground).

Your default browser will open the Composer-Playground web application, as shown in
the following screenshot:

Composer playground landing page

You can see the same participants that were created earlier.

Creating Your Blockchain and IoT Solution Chapter 7

[157]

Creating a FoodBox
As per the permissions we've granted, factories can create FoodBoxes. Let's see how:

Find the Factory 1 @food-safety-b10407 business card and select the Connect1.
now option. Then, click on Test at the top left of the screen.
In the left-hand panel, select Assets -> FoodBox, and in the upper-right corner,2.
click on + Create New Asset:

Fill up the JSON with the following content and create the asset using the Create3.
New button:

{
 "$class":
"com.packtpublishing.businessnetwork.foodsafety.FoodBox",
 "foodBoxIdentifier": "2015",
 "assetTrackingInformation": [],
 "measureTrackingInformation": [],
 "owner":
"resource:com.packtpublishing.businessnetwork.foodsafety.FoodFactor
y#1"
}

Creating Your Blockchain and IoT Solution Chapter 7

[158]

Transferring the asset to the transporter
To transfer an asset of the food safety network using the Hyperledger Composer
Playground, take the following steps:

In the top-right corner of the application, select the My business networks1.
option and connect as transporter.
If you select Test, Assets → FoodBox, you will see that there are no assets2.
available:

Return to the Factory identity, select the Edit button on the right-hand side of3.
the asset data, and update the JSON file with the following data:

{
 "$class":
"com.packtpublishing.businessnetwork.foodsafety.FoodBox",
 "foodBoxIdentifier": "1",
 "assetTrackingInformation": [],
 "measureTrackingInformation": [],
 "owner":
"resource:com.packtpublishing.businessnetwork.foodsafety.Transporte
r#2"
}

Creating Your Blockchain and IoT Solution Chapter 7

[159]

Save the asset; it will disappear from the Factory view. When you return to the4.
Transporter view, you will find that the transporter can now see the asset.

Measuring the temperature while transporting
At this point, we will simulate temperature measurements during transportation.

We created the following commented code in the IoT application code because we are
handling transportation gathering data at two different points in time.

The first is when a FoodBox is transported from the Factory to the Warehouse, which is
implemented by the updateFoodBox function, while the updatePallet function is aimed
at processing the transportation from the Warehouse to the store:

appClient.on("deviceEvent", function (deviceType, deviceId, eventType,
format, payload) {
 // update food box
 // updateFoodBox(payload.temperature);
 // update pallet
 // updatePallet(payload.temperature);
 });

At this point, we are handling the transportation from the Factory to the Warehouse, so
uncomment line 19 of the code—updateFoodBox(payload.temperature);— and then
update lines 30, 34, 35, and 36, providing the correct values for the data.

Ensure that the Composer REST server for the transporter is up and running and that the
URLs defined in lines 2 and 3 of the device code are pointing to the correct Composer REST
server host.

Start the device application.

Transferring the asset to the warehouse
The same thing happens when the asset is transferred to the transporter. Go to the asset
view of the transporter, edit the JSON file, and change the owner with the respective value:

"owner":
"resource:com.packtpublishing.businessnetwork.foodsafety.Warehouse#3"

Creating Your Blockchain and IoT Solution Chapter 7

[160]

Creating a pallet and adding the box to it
To create a pallet, we need to follow the same process as that for a FoodBox:

In the left-hand panel, select Assets → FoodBoxPallet, and in the upper-right1.
corner, click on + Create New Asset.
Then, fill the JSON with the following data. Make sure that you were using the2.
same FoodBox ID in the foodBoxInPallet field and the Warehouse ID (3) in the
owner field:

{
 "$class": "org.hyperledger.composer.system.AddAsset",
 "resources": [
 {
 "$class":
"com.packtpublishing.businessnetwork.foodsafety.FoodBoxPallet",
 "foodBoxPalletIdentifier": "3485",
 "foodBoxInPallet":
"resource:com.packtpublishing.businessnetwork.foodsafety.FoodBox#24
73",
 "assetTrackingInformation": [],
 "measureTrackingInformation": [],
 "owner":
"resource:com.packtpublishing.businessnetwork.foodsafety.Warehouse#
3"
 }
],
 "targetRegistry":
"resource:org.hyperledger.composer.system.AssetRegistry#com.packtpu
blishing.businessnetwork.foodsafety.FoodBoxPallet",
 "transactionId":
"0dfe3b672a78dd1d6728acd763d125f813ed0ca74450a2596b9cf79f47f054ad",
 "timestamp": "2018-12-24T14:43:34.217Z"
}

After creating the pallet, transfer both the pallet and box to the transporter, as3.
before. The owner value of the JSON should be as follows:

 "owner":
"resource:com.packtpublishing.businessnetwork.foodsafety.Transporte
r#2"

Creating Your Blockchain and IoT Solution Chapter 7

[161]

Measuring the temperature while transporting a
pallet
This follows the same rules as the measurements for the FoodBox transportation, but you
have to comment line 19 and uncomment line 20 of the device code, as well as update lines
53, 57, 58, and 59 with the correct values for your pallet.

At the end of the transportation, transfer the asset to the store by using the owner of the
pallet and the box with the following line:

 "owner": "resource:com.packtpublishing.businessnetwork.foodsafety.Store#4"

Tracking the FoodBox
To track the food box as a consumer, we're going to use the Hyperledger Composer
Historian through composer-playground.

To access the history of actions that have been applied to an asset, connect to the
Hyperledger environment using the Consumer business card and select the All
Transactions option from the left-hand panel of the playground.

We will be able to see all of the transactions that have been performed on an asset, from its
creation to the arrival of the pallet and its inner boxes to the store:

Composer playground - Historian

Creating Your Blockchain and IoT Solution Chapter 7

[162]

We can also see the transaction details by clicking on the view record link, as shown here:

Creating Your Blockchain and IoT Solution Chapter 7

[163]

Summary
In this chapter, we learned how to create a business network using Hyperledger Composer
and the Watson IoT Platform.

In the process of developing the solution, we were able to create a Hyperledger Composer
project using Yeoman; define shared data structures; create assets, participants transactions,
and access control lists; as well as create the first version of a network and upgrade it to a
newer version.

We were also able to create a device that is responsible for reading temperatures from the
hypothetical transport of a food box from a factory to a warehouse, and later, from the
warehouse to a store, and added that information to the food box asset in the shared ledger
of the blockchain network.

The consumer of that food box was also able to track the information related to that box
from the very beginning of the production chain.

Even though Hyperledger Composer and Watson IoT development are quite simple, the
solution that we've created addresses a huge problem regarding safety in the food chain.

The following chapters will give you the author's point of view about lessons learned,
practices, and patterns used in real-world projects, and how IoT and blockchain are
necessary tools for creating business models and addressing new challenges in the current
Industry 4.0 scenario.

8
The IoT, Blockchain, and

Industry 4.0
The IoT and blockchain are not the only sets of technologies that are driving the evolution
of a new economic and manufacturing revolution. Industry 4.0 is a concept that takes place
in an era of new methods, technologies, and unprecedented computing capabilities that can
be used by anyone who has internet access.

In this chapter, we will explore the role of key technologies such as the IoT, blockchain, and
cloud computing, focusing on how these factors are driving the evolution of Industry 4.0.

The following topics will be covered in this chapter:

The role of cloud computing in the new economy model
How the IoT can help innovate industries
Blockchain as a business platform for Industry 4.0

Industry 4.0
Industry 4.0, also known as Economy 4.0, is the name given to a new manufacturing model
where connectivity and data collection and processing are widely applied throughout an
entire manufacturing chain.

The IoT, Blockchain, and Industry 4.0 Chapter 8

[165]

Smart factories differentiate themselves from automated factories because they are not
simply automated; they are connected, monitorable, and cooperative.

It’s important to know that Industry 4.0 is not only related to manufacturing; it can be
understood as the creation of new manufacturing models designed to create more
personalized and engaging experiences. The new model emphasizes that having data is a
key factor for success, and new business models are being created at the intersection of
current business models. Cloud computing, the IoT, cognitive computing, and blockchain
are some of the technologies that have been driving this new model.

Cloud computing as an innovation platform
Cloud computing is providing opportunities to create new business models, as well as
providing tooling to redesign existing ones. Cloud computing creates simple, self-service,
flexible, and low-cost infrastructure for a highly technological and innovative ecosystem of
services. More than processing capability, the role of cloud computing is to become an
innovation platform. Let's dive into the world of cloud computing to understand its
relation and importance to Industry 4.0 development.

The cloud computing model
Cloud computing is the concept of sharing computational resources, including memory,
calculation, networking, and storage capabilities, to run applications. The characteristics
that define a computing model as a cloud model include self-service resource allocation,
software-defined resources, and pay-as-you-go monetization. These are usually presented
in three models of commercialization: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). Furthermore, they can be delivered
into public and private models of deployment:

The IoT, Blockchain, and Industry 4.0 Chapter 8

[166]

Looking at the delivery models in the preceding diagram, it's possible to understand which
capabilities the service consumer should care about:

In the IaaS model, as the name says, the cloud service provider is responsible for
maintaining networking, storage, servers, and virtual machine components.
Every layer above that, including its licenses, backups, updates, and upgrades,
are the responsibility of the party that contracted the service.
PaaS provides three more layers: operating system, middleware, and runtime
capabilities, giving the service consumer more abstraction on infrastructure and
software license management; the only layers they have to deal with are the
application code and binaries and data used by it.
SaaS takes computing to a higher level of abstraction: all the service consumer
has to do is to use the subscribed solution.

IBM Cloud Public (also known as Bluemix) provides all of the capabilities described here.
IaaS, PaaS, and SaaS solutions are available through its console. You can instantiate
physical or virtual machines and application runtimes, and subscribe to any of the services
available through the service catalog, including the IBM Watson IoT and IBM Blockchain
platforms.

When these models are deployed in a multi-tenant environment in a public network such
as the internet, it's called a public cloud—a place where a person and a company share the
same resources. When a company or a person uses any of these models in a single-tenant
environment in a private or public network, it is called a private cloud.

The IoT, Blockchain, and Industry 4.0 Chapter 8

[167]

The importance of cloud computing to Industry 4.0
Before the cloud computing model, IT departments had a long, expensive, and hard path to
follow to make a solution available to its customers. They had to buy servers; wait for
delivery; provision space in their data centers; prepare networking and virtualization;
install operation systems, middleware, databases, and runtimes; and then develop
applications and deploy them to the production environment.

When cloud computing takes place in the same scenario as presented above, provisioning
the same computing capabilities and start developing applications happens in a matter of
minutes. You will only need to pay for the use of the resource.

When developing innovative solutions minimum viable products (MVPs) may not have
expected results leading to constant changes in infrastructure, platform software and
attached services. What if the MVP created does not fit target users need? In the first
scenario, you already paid for all the resources you needed, so even if you shut down the
solution, you already spent capex. However, in the second scenario (cloud), you paid for
the service, so it's just opex. What if the solution had a great fit and people are using it a lot?
In the first scenario, you have to follow an easier (but still hard) path to provision more
resources, while in cloud computing, you can scale the solution resources whenever they
are needed, not all the time.

Cloud computing also provides the ability to test new services and create new applications
using best-of-breed services and technologies such as the IoT, cognitive computing,
blockchain, and other services that are created and delivered on the internet. Those services
are powerful tools to create new solutions and business models, providing a differentiated
experience to clients whether there are 1, 10, 100, or 1 million people using the same service.

The IoT
As previously described, data is a key factor in the success of Industry 4.0. The more data
collected and analyzed, the more assertive predictions and recommendations become.

More than an automation framework technology, the IoT is a great way to collect a huge
amount of data from connected devices. By combining different data sources (machine and
robot sensors, security cameras, heart-rate monitors, environment and meteorological data),
it is possible to define and analyze domains to understand the current reality of business
contexts and have a more reasoned analysis of it. It is also possible to have insights on how
to become more productive, more predictable, and more flexible, because you can process
the data as it is collected in real time, as shown in the following diagram:

The IoT, Blockchain, and Industry 4.0 Chapter 8

[168]

The results of the processing can also become a trigger to change the actions machines and
robots are running at the moment, even to fix a defect in the product that is being created to
perform self-healing tasks before continuing a process.

Blockchain – simplifying business chains
As business models evolve, they tend to have a leaner approach. In this context, a lean
industry is meant to focus only on things that have value to the target client of the product.
Whatever procedure, part of the product, or process that creates it that does not provide
value to the product is considered useless and must be removed or changed so it adds more
value to the end-to-end solution. With the same approach, smart business models tend to
only have steps that add value and knowledge to the business model, which means that
outsourcing is still a big deal in this area. Becoming lean is not easy and cheap if you don't
know how to integrate the end-to-end service chain into the business.

The IoT, Blockchain, and Industry 4.0 Chapter 8

[169]

Blockchain comes into action when outsourcing or decentralizing business tasks are vital to
the model, by giving the opportunity to decentralize tasks. Let's take a look at a traditional
car sales process in the following diagram:

Whenever a customer buys a car, a new entry for that car is created in the dealer's ledger
and an order is placed to the carmaker, which creates another entry into its ledger and
orders parts from its suppliers, and this also creates order entries in their ledgers.
Blockchain simplifies the process by using a shared ledger for all stakeholders of the
process:

The IoT, Blockchain, and Industry 4.0 Chapter 8

[170]

The process itself is now auditable by design and the final product can be tracked end to
end, giving the new car's owner knowledge about the origin of the product.

Blockchain enables a product-driven business process that is both lean and auditable.

Summary
In this chapter, you gained an understanding of the importance of key technologies such as
cloud computing, the IoT, and blockchain in the context of Industry 4.0.

Cloud computing is a computing model that provides low-cost, scalable, and self-service
technology adoption, creating an environment that is suitable for creating innovative
business models.

The IoT is more than an automation toolkit, and can be placed as a framework for data
collection and creating a digital context that is similar to the real-world context; it creates a
digitized reality context, simulating the same conditions as the real world.

Blockchain enables lean production lines by simplifying the process of decentralization and
helps companies to focus on their strengths, without spending time and money on tasks
that do not generate aggregated value for the final product.

In the next chapter, we will look at best practices and lessons learned from previous
projects that address some problems we faced and how those issues were addressed.

9
Best Practices for Developing
Blockchain and IoT Solutions

As is the case for every emerging technology, being an early adopter is full of challenges
and lessons that need to be learned. The focus of this chapter is to present some solutions
that we can apply to real-world projects in order to avoid getting into trouble.

The following topics will be covered in this chapter:

Reference architecture for cloud applications
How to create cloud-native applications using the 12-factor application
development model
Serverless computing
Using Hyperledger Composer as an accelerator for application development

Developing cloud applications
There are many potential pitfalls related to cloud applications, ranging from the simple
misuse of resources to unsolvable problems. Applying a concise architecture and using the
12-factor application development pattern ensures you won't get into trouble when the
application scales up or down.

Best Practices for Developing Blockchain and IoT Solutions Chapter 9

[172]

A container is a standardized way to package an application with all its dependencies,
including its code, runtimes, middleware, libraries, and operating system. Docker and
Garden are containers that can be run in the IBM Cloud Platform, but there are other
container types that can also be used, such as Rockt. Using containers increases the
portability of an application, so it doesn't matter if the host operating system is one
particular distribution of Linux and your application was built on a different distribution,
because the operating system is a layer of the containerized application and both
distributions are shipped together.

The following diagram demonstrates the structure of a containerized application:

Cloud platforms use containerized applications and deploy them into a set of servers. We
can move these applications inside the flexible computing environment to make better use
of the existing infrastructure and to keep track of the containers deployed in the service
discovery component.

Best Practices for Developing Blockchain and IoT Solutions Chapter 9

[173]

Each platform has its own way of using the containerized model of application
deployment, as shown in the following diagram:

A container is deployed based on a container image, which is a read-only definition of the
base image, the dependencies, and the application. Each container of the same application
is deployed based on that image, and any changes made to the container during runtime
exist only while that container is active, and only apply to to that instance of the container.

Best Practices for Developing Blockchain and IoT Solutions Chapter 9

[174]

Reference architecture
Cloud computing creates an abstract environment for deploying applications; we use
virtual runtimes. This means that we have no location awareness and no assurance that our
application will stay in the same data center or virtual machine. We cannot even trust that
the IP address of the application will remain the same after 10 minutes. The following
diagram shows a successfully applied reference architecture for cloud applications using
IBM Cloud Public (Bluemix):

Cloud-native applications should scale horizontally, which means that whenever the
workload demand increases, the application should increase the number of instances of
that application to handle new requests. Similarly, if the workload decreases, the number of
application instances should be decreased.

Development using the 12–factor application
model
The 12-factor application model is a set of practices that should be followed in order to
make cloud applications scalable. It provides support for hostile cloud environment
changes.

Best Practices for Developing Blockchain and IoT Solutions Chapter 9

[175]

The 12 principles of the model are as follows:

Code base: Our codebase is tracked in revision control and is deployed many
times
Dependencies: We should explicitly declare and isolate dependencies
Configuration: We should store the application configuration parameters in the
environment
Backing services: We should treat backing services as attached resources
Build, release, run: We should strictly separate build and run stages
Processes: We should execute the app as one or more stateless processes
Port binding: We should export services via port binding
Concurrency: We should scale out via the process model
Disposability: We should maximize robustness with fast startup and graceful
shutdown
Development/production parity: We should keep development, staging, and
production as similar as possible
Logs: We should treat logs as event streams
Admin processes: We should run administration and management tasks as one-
off processes

These principles decrease the number of simple errors related to cloud computing.

You don't have to apply all these concepts to all cloud-native applications that you develop.
For example, if you don't need a script to preload a database, you do not need to apply the
admin processes principle. However, if you are using an application that needs to keep a
state or share the state with different applications (such as sessions), using backing services
is essential because you never know what physical or virtual computer host the container
that responds to the user requests is located.

Serverless computing
Serverless computing is a model of deployment in which an application is deployed in an
environment but is not necessarily running all the time. Its container is started when it is
first executed and is kept alive while requests demand its execution. After a period of
inactivity, the container for that application is quiesced. It is important to note that stopped
containers will take time to get started, so real-time responsiveness is not a strength of a
serverless application.

Best Practices for Developing Blockchain and IoT Solutions Chapter 9

[176]

A serverless application (or, as many cloud service providers call it, a cloud function) is a
microservice that is deployed and attached to a trigger, which is responsible for starting the
container with the function and running it. A trigger might be a database change, a
message delivered to a broker, an HTTP request, or another type of request.

Cloud providers usually charge the execution of cloud functions based on the duration of
their execution and their resource allocation (usually memory). For example, a cloud
function might take 500 milliseconds and use 256 MB of memory.

A successful cloud function is not computing-intensive and does not have a large number
of requests (scheduled procedures). To facilitate the process of building and deploying
serverless applications, the serverless framework is a good choice since it supports Google
Cloud, AWS, IBM Cloud, and Microsoft Azure implementations of serverless computing.

Blockchain development using Hyperledger
Composer
Hyperledger Composer is a project hosted by the Linux Foundation under the Hyperledger
brand. The project aims to create a framework and toolset to accelerate the development of
blockchain applications using Hyperledger Fabric, and simplify integration with other
applications. It is important to bear in mind that any framework intends to simplify an
aspect of a solution by abstracting some of its complexity, but that it also restricts control
over the abstraction applied.

The Hyperledger Composer toolkit
Hyperledger Composer is not a universal solution to all the complexities presented by
Hyperledger Fabric. It takes away some of the flexibility over tasks that could be
customized without it. What it does do, however, is supply a toolkit to create chaincode
projects, build blockchain application packages (.bna files), and deploy them to
Hyperledger Fabric.

The development of a business network using Hyperledger Composer is focused on
creating assets, participants, transactions, queries, and access control lists using a project
structure and a common language. After creating the business network definition,
Composer has tools to package and deploy the application to a Hyperledger Fabric
platform.

Best Practices for Developing Blockchain and IoT Solutions Chapter 9

[177]

The Hyperledger Composer REST server
To simplify integration with other applications, Hyperledger Composer provides the
Composer REST server, an API server built on top of a LoopBack framework that connects
to the business network defined. It retrieves information on assets, transactions, and
participants, and provides a REST API server and and the service contract described in
swagger format to interact with the business network out of the box.

The Composer REST server ships with many useful features. The ones that are most worth
taking a look at are authentication, multiuser mode, and data source configuration.

Authentication and multiuser mode
It's not unusual to request authentication when you are creating business applications. The
Composer REST server provides the means to connect to many authentication and
authorization providers, using Passport middleware. While the project claims that Passport
has over 300 strategies for authentication and authorization, our experience has shown that
not all of these work out of the box; sometimes, you have to create custom code in order to
make them work. We have, however, successfully implemented Google, GitHub, Auth0,
and LDAP authentication strategies out of the box.

Multiuser mode allows the use of a single Composer REST server for multiple participants,
instead of deploying a distinct Composer REST server for each participant. In this mode,
the API is retrieved using a master business card, but the interaction with the business
network is done using its own business card. This mode requires user authentication to be
enabled.

Data source configuration
The Composer REST server uses data sources to store user session data. This doesn't mean
that it has to have an explicit data source configured; if no data source is configured, the
Composer REST server uses an out-of-the box memory connector.

When using multiple instances of the Composer REST server for high availability or load
balancing, the instances do not share memory, so a data source is required. Any data source
that has a loopback connector available can be used. In our experience, MongoDB,
Cloudant, and Redis work out of the box; we just need to install the connector and
configure the environment variables by following the steps provided by the Hyperledger.

Best Practices for Developing Blockchain and IoT Solutions Chapter 9

[178]

Summary
In this chapter, we have looked at the implications of developing and deploying
applications to a cloud environment. We have considered how containers work, how to
deploy containerized applications to a cloud platform, and an alternative model: serverless
computing. We also presented the 12-factor model principles for the development of cloud-
native applications.

We then looked at Hyperledger Composer as an accelerator for developing blockchain
solutions. We explored various features, including using authentication, multiuser mode,
and data source configuration.

This book provides information on creating simple applications using IBM Watson IoT
Platform and Hyperledger Compose. These are far from being the only platforms and tools
that support IoT and blockchain solutions, but the concepts are the same and can be
applied. If you are interested in extending capabilities with the explained tools, both
Watson IoT and Hyperledger Fabric / Composer, provide extensive documentation on how
to use them as well as a large number of community provided articles through out the
internet but, our thought is that practice is the best way to understand whether they fit or
not to a given solution so, even if you do want to learn how to use the toolkit, just try,
simple use cases are good teachers.

Further reading
The topics presented by this chapter are an overview and if you need more depth on any
topics we recommend reading the following references:

The 12-factor application methodology : https:/ ​/​12factor. ​net/ ​

The serverless framework: https:/ ​/ ​serverless. ​com/ ​

Hyperledger Composer: https:/ ​/​hyperledger. ​github. ​io/​composer

https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://serverless.com/
https://serverless.com/
https://serverless.com/
https://serverless.com/
https://serverless.com/
https://serverless.com/
https://serverless.com/
https://serverless.com/
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer
https://hyperledger.github.io/composer

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Cybersecurity with Blockchain
Rajneesh Gupta

ISBN: 9781788990189

Understand the cyberthreat landscape
Learn about Ethereum and Hyperledger Blockchain
Program Blockchain solutions
Build Blockchain-based apps for 2FA, and DDoS protection
Develop Blockchain-based PKI solutions and apps for storing DNS entries
Challenges and the future of cybersecurity and Blockchain

https://www.packtpub.com/networking-and-servers/hands-cybersecurity-blockchain

Other Books You May Enjoy

[180]

Practical Internet of Things with JavaScript
Arvind Ravulavaru

ISBN: 9781788292948

Integrate sensors and actuators with the cloud and control them for your Smart
Weather Station.
Develop your very own Amazon Alexa integrating with your IoT solution
Define custom rules and execute jobs on certain data events using IFTTT
Build a simple surveillance solutions using Amazon Recognition & Raspberry Pi
3
Design a fall detection system and build a notification system for it.
Use Amazon Rekognition for face detection and face recognition in your
Surveillance project

https://www.packtpub.com/hardware-and-creative/advanced-iot-javascript

Other Books You May Enjoy

[181]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

1
12-factor application model
 principles 174

A
Access Control List (ACL) 81
analog-to-digital converter (ADC) 9
analytics 16
API/SDK
 reference 120
application protocols
 about 15
 Message Queuing Telemetry Transport (MQTT)

15

artificial intelligence (AI) 16
Atom
 about 94
 reference 94
authentication
 reference 124

B
backend application, gardening solution
 Cloud Foundry application, creating in IBM Cloud

Platform 52, 53
 code, uploading 53, 54, 55, 56
 creating 51
blockchain network, shipment monitoring solution
 access control lists (ACLs), defining 144
 asset, definitions 136
 assets, manipulating via transactions 140
 business network, deploying for Hyperledger

137

 business network, testing for Hyperledger 137
 business network, upgrading to newer version

146

 Composer REST servers, setting up for
participants 148, 149

 concepts 135
 creating 134, 135
 enumerations 135
 participant business cards, exporting 141, 143
 participant business cards, generating 141, 143
 participants 136
blockchain network
 creating, with Hyperledger Composer 74
 installing, with Hyperledger Fabric and

Composer 90, 91
 structure, exploring 78, 80, 82, 83, 84, 85, 86,

87, 88, 89, 90
blockchain
 about 59, 61
 business chains, simplifying 168, 169, 170
 consensus 60
 finality 60
 food chain, as use case 107, 108
 food tracking use case 70
 Hyperledger 61
 immutability 60
 in food chain 99
 provenance 60
 use case, selecting 69
Bluemix CLI
 reference 29
Bosch IoT Rollouts 119
Business Network Archive (.bna file) 137

C
cabled network 10
cellular/mobile network 11
Certificate Authority (CA) 67
CLI Tools
 Library generator 92

[183]

 REST server 92
 setting up 92
 Yeoman 92
cloud applications
 developing 171, 172, 173
 developing, with 12-factor application model 174
 reference architecture 174
 serverless computing 175
cloud computing
 about 165
 importance 167
 model 165, 166
Cloud Foundry application
 creating, in IBM Cloud Platform 52, 53
Cloud Foundry CLI
 reference 29
Command Line Interface (CLI) 121
Composer Playground
 reference 75
composer REST server
 setting up 122, 123, 125
composer-atom plugin
 reference 94
customer
 challenges 107
 opportunities 106

D
device firmware, gardening solution
 actions, subscribing 49, 50, 51
 coding 37
 environment temperature, measuring 39
 events, monitoring 42, 43, 45, 46, 48, 49
 events, publishing 41
 relay, turning on 40
 soil moisture, measuring 37, 38, 39
devices 9
do-it-yourself (DIY) 34
Docker
 Hyperledger Fabric, installing 94
 reference 91, 94
 setting up 91

E
Economy 4.0 164
edge computing 9
end-to-end testing, shipment monitoring solution
 about 155, 156
 asset, transferring to transporter 158
 asset, transferring to warehouse 159
 box, adding 160
 FoodBox, creating 157
 FoodBox, tracking 161, 162
 pallet, creating 160
 temperature, measuring while pallet

transportation 161
 temperature, measuring while transportation 159
ESP-32 modules 10
ExpressIf ESP-8266 10

F
FAO (Food and Agriculture Organization) 102
farmers
 challenges 102
 opportunities 102
food chain
 as use case, for IoT and blockchain technology

107, 108
 challenges 97, 98
 concerns 97, 98
 optimizing, with blockchain and IoT 99
 regulations 97, 98
food ecosystem, components
 customer 106, 107
 farmers 102
 food manufacturers 102, 103
 regulators 104
 stores and supermarkets 105, 106
 transporters (transportation companies) 105
food ecosystem
 about 100, 101
 challenges 101
 opportunities 101
food logistics network
 business 110, 111
 distribution center, process 113, 114
 process, at food factory 112, 113

[184]

 process, challenges 111, 112
 supermarkets and stores, process 115
food manufacturers
 challenges 103
 opportunities 102
food safety
 challenges 98
 regulations 98, 99
Food Standards Agency (FSA) 104
food tracking use case 70

G
Galileo 11
gardening solution
 Arduino breakout board, using 34
 backend application, creating 51
 creating 30
 device, wiring 36
 equipment, selecting 31, 32
 Grove system, using 34
 Intel Edison, using 33
 overview 30, 31
 requisites 30
Grove sensors
 reference 39
Grove system
 about 34
 Grove button 35
 Grove relay 35
 Grove sensors 34

H
HealthKit 7
HomeKit 7
Hyperledger Composer access control language
 reference 128
Hyperledger Composer Modeling Language
 reference 127
Hyperledger Composer REST server
 about 177
 authentication 177
 data source, configuration 177
 multiuser mode 177
Hyperledger Composer
 access control language 127

 accessing 75, 76, 77
 blockchain network, creating 74
 CLI Tools, setting up 92
 components 121
 Hyperledger Fabric, executing 93
 IDE, setting up 94
 installing 91
 model, creating 126
 overview 121
 Playground, setting up 93
 prerequisites 92
 reference 121
 toolkit 176
 transaction processor functions 128
 used, for blockchain development 176
Hyperledger Fabric, components
 Certificate Authority (CA) 67
 member or peer 67
 Ordering Cluster 67
 SDK/API 68, 69
Hyperledger Fabric
 about 65, 66
 chaincode 65
 deploying, to Kubernetes environment 95
 features 68, 69
 installing, with Docker 94
 ledger 65
 membership services 66
 privacy 66
 reference 94
 security 66
Hyperledger projects
 exploring 62
 Hyperledger Burrow framework 64
 Hyperledger Composer tool 63
 Hyperledger Iroha framework 62
 Hyperledger Sawtooth framework 62
Hyperledger
 about 61
 reference 61

I
IBM Cloud 119
IBM Cloud Platform
 Cloud Foundry application, creating 52, 53

[185]

IBM Watson IoT Platform
 applications 17
 dashboard 17
 devices 17
 features 16
 gateways 17
 security 18
Industry 4.0
 about 164
 cloud computing, importance 167
Infrastructure as a Service (IaaS) 165, 166
Intel Edison 11
Internet of Things (IoT)
 about 7, 8, 167, 168
 connected car, as use case 8
 connected person, as use case 8
 food chain, as use case 107, 108
 in food chain 99
IoT part, shipment monitoring solution
 application development 153, 154
 creating 149
 firmware development 152
 hardware, setting up 149, 150, 151, 152
IoT solution
 application, creating 22, 23, 24
 creating 18, 19
 device, creating 24, 25, 26, 27, 28
 setting up 20, 21, 22
IoT- and blockchain-based solution, for food

logistics network
 API/SDK 120, 121
 frontend applications 117, 118
 Hyperledger Composer 121
 IoT-based asset tracking 118, 119, 120
 software components 122
 technological approach 116

K
Kubernetes
 about 95
 Hyperledger Fabric, deploying 95
 reference 95

L
Lightweight Directory Access Protocol (LDAP) 122
Loopback framework
 reference 148
LoRa 14
LoRaWAN 14
low-power wide-area network (LPWAN) 12

M
Message Queuing Telemetry Transport (MQTT)
 about 15, 119
 Broker 15
 publisher 15
 subscriber 15
Microchip ATSAMW25 11

N
networking
 cabled network 10
 cellular/mobile network 11
 LoRa 14
 LoRaWAN 14
 low-power wide-area network (LPWAN) 12
 network summary 14
 wireless (Wi-Fi) 10
Node-RED 119
npm modules
 composer-admin 121
 composer-client 121

O
ordering services (OS) 67

P
peer 67
Platform as a Service (PaaS) 165, 166
Playground
 setting up 93
proof of concept (POC) 63
Python
 reference 91

R
regulators
 challenges 104
 opportunities 104

S
SDK/API 68
serverless computing 175
shipment monitoring solution
 blockchain network, creating 134, 135
 end-to-end testing 155, 156
 IoT part, creating 149
 overview 133, 134
Software as a Service (SaaS) 165, 166
software components, for food logistics network

solution
 about 122
 composer REST server, setting up 122, 123,

125

 Hyperledger Composer access control language
127

 Hyperledger Composer model, creating 126
 Hyperledger Composer transaction processor

functions 128
Stock Keeping Unit (SKU) 113
stores and supermarkets

 challenges 106
 opportunities 105
system-on-a-chip (SoC) 7, 33

T
technologies, Internet of Things (IoT)
 analytics 16
 application protocols 15
 artificial intelligence (AI) 16
 devices 9
 edge computing 9
 networking 10
Texas Instruments CC3200 11
transporters (transportation companies)
 challenges 105
 opportunities 105

U
ultra-wide band (UWB) 101
User Experience (UX) 118

V
VS Code
 reference 94

W
wireless (Wi-Fi) 10

	Cover

	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Understanding IoT and Developing Devices on the IBM Watson IoT Platform
	What is IoT?
	Common business use cases of IoT
	Connected car
	Connected persons

	Technical elements in IoT
	Devices
	Edge computing
	Networking
	Wireless (Wi-Fi) or cabled network
	Cellular/mobile network
	Low-power wide-area network (LPWAN)
	LoRa or LoRaWAN
	Network summary

	Application protocols
	MQTT

	Analytics and AI

	IBM Watson IoT Platform features
	Features
	Dashboard
	Devices, gateways, and applications
	Security

	Creating your first IoT solution
	Creating a gateway
	Creating an application
	Creating a device

	Summary
	Further reading

	Chapter 2: Creating Your First IoT Solution
	Technical requirements
	The first IoT solution – the gardening solution
	Requirements overview
	Solution overview
	Selecting the equipment
	Intel Edison
	Arduino breakout board
	Grove system
	Grove base shield for Arduino
	Grove sensors
	Grove button
	Grove relay

	Wiring the device

	Coding the device firmware
	Measuring soil moisture
	Measuring environmental temperature
	Turning on the relay
	Publishing events
	Monitoring the events
	Subscribing to actions

	Creating the backend application
	Creating a Cloud Foundry application in the IBM Cloud Platform
	Uploading the code

	Summary
	Further reading

	Chapter 3: Explaining Blockchain Technology and Working with Hyperledger
	What is blockchain?
	Blockchain and Hyperledger
	Hyperledger projects
	Hyperledger Sawtooth framework
	Hyperledger Iroha framework
	Hyperledger Composer tool
	Hyperledger Burrow framework

	Hyperledger Fabric
	Member or peer
	Certificate Authority (CA)
	Ordering Cluster
	SDK/API

	Selecting a good use case
	Blockchain – food tracking use case

	Summary
	Questions
	Further reading

	Chapter 4: Creating Your Own Blockchain Network
	Prerequisites
	Creating your own blockchain network with Hyperledger Composer
	Accessing Hyperledger Composer
	Exploring the structure of a sample blockchain network

	Installing your own blockchain network using Hyperledger Fabric and Composer
	Setting up Docker
	Installing Hyperledger Composer
	Components
	Step 1 – Setting up CLI Tools
	Step 2 – Setting up Playground
	Step 3 – Hyperledger Fabric
	Step 4 – IDE

	Installing Hyperledger Fabric 1.3 using Docker
	Deploying Hyperledger Fabric 1.3 to a Kubernetes environment

	Summary
	Further reading

	Chapter 5: Addressing Food Safety - Building around the Blockchain
	Regulations, challenges, and concerns in the modern food chain
	Challenges regarding food safety
	Food safety regulations – ISO 22000

	How blockchain and IoT can help in a food chain
	Food ecosystem
	Opportunities and challenges in a food ecosystem
	Farmers
	Food manufacturers
	Regulators
	Transporters (transportation companies)
	Stores and supermarkets
	Customer

	Is the food chain a good use case for IoT and blockchain technology?

	Summary
	Further reading

	Chapter 6: Designing the Solution Architecture
	The business of food
	Challenges of the process
	The process at the food factory
	The process at the distribution center
	The process at supermarkets and stores

	The technological approach
	Frontend applications
	IoT-based asset tracking
	API/SDK
	Hyperledger Composer – a high-level overview

	Software components
	Composer REST server
	Hyperledger Composer model
	The Hyperledger Composer access control language
	Hyperledger Composer transaction processor functions

	Summary
	Questions
	Further reading

	Chapter 7: Creating Your Blockchain and IoT Solution
	Technical requirements
	Solution overview
	Creating a blockchain network
	Concepts and enumerations
	Asset definitions
	Participants
	Deploying and testing the business network for Hyperledger
	Manipulating assets via transactions in the blockchain
	Generating and exporting participant business cards
	Defining access control lists (ACLs)
	Upgrading the business network to a newer version
	Setting up Composer REST servers for each participant

	Creating the IoT part of the solution
	Hardware setup
	Firmware development
	Application development

	End-to-end testing
	Creating a FoodBox
	Transferring the asset to the transporter
	Measuring the temperature while transporting
	Transferring the asset to the warehouse
	Creating a pallet and adding the box to it
	Measuring the temperature while transporting a pallet
	Tracking the FoodBox

	Summary

	Chapter 8: The IoT, Blockchain, and Industry 4.0
	Industry 4.0
	Cloud computing as an innovation platform
	The cloud computing model
	The importance of cloud computing to Industry 4.0

	The IoT
	Blockchain – simplifying business chains
	Summary

	Chapter 9: Best Practices for Developing Blockchain and IoT Solutions
	Developing cloud applications
	Reference architecture
	Development using the 12–factor application model
	Serverless computing

	Blockchain development using Hyperledger Composer
	The Hyperledger Composer toolkit
	The Hyperledger Composer REST server
	Authentication and multiuser mode
	Data source configuration

	Summary
	Further reading

	Other Books You May Enjoy
	Index
	Humble bundle_Ad_CDP.pdf
	Table of Contents
	Humble Bundle
	Index

