

ESP8266 Home Automation
Projects

Leverage the power of this tiny WiFi chip to build exciting
smart home projects

Catalin Batrinu

BIRMINGHAM - MUMBAI

ESP8266 Home Automation Projects
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 2091118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78728-262-9

www.packtpub.com

http://www.packtpub.com

Credits

Author
Catalin Batrinu

Project Coordinator
Kinjal Bari

Reviewer
Constantin Tambrea

Proofreader
Safis Editing

Acquisition Editor
Prachi Bisht

Indexer
Francy Puthiry

Content Development Editor
Eisha Dsouza

Graphics
Tania Dutta

Technical Editor
Naveenkumar Jain

Production Coordinator
Melwyn Dsa

Copy Editor
Safis Editing

About the Author
Catalin Batrinu graduated from the Politehnica University of Bucharest in Electronics,
Telecommunications, and Information Technology. He has been working as a software
developer in telecommunications for the past 16 years. He has worked with old protocols
and the latest network protocols and technologies, so he has experienced all the recent
transformations in the telecommunications industry. He has implemented many
telecommunications protocols, from access adaptations and backbone switches to high-
capacity, carrier-grade switches on various hardware platforms from Wintegra and
Broadcom.

The Internet of Things came as a natural evolution for him and now he collaborates with
different companies to construct the world of tomorrow, which will make our life more
comfortable and secure. Using the ESP8266, he has prototyped devices such as irrigation
controllers, smart sockets, window shutters, digital addressable lighting controls, and
environment controls, all of them controlled directly from a mobile application via the
cloud. An MQTT broker with bridging and a WebSockets server was even developed for
the ESP8266. Soon, these devices will be part of our daily lives, so we will all enjoy their
functionality.

Don't forget to then keep an eye on his blog https://myesp8266.blogspot.com and on
the new platform as a service that you will discover soon at https://iotcentral.eu.

About the Reviewer
Constantin Tambrea has been a senior software engineer at Luxoft Romania for more than
9 years, and has been involved in various projects in the telecommunications field. He
holds master's and bachelor's degrees in Computer Science from University Politehnica in
Bucharest. His main domains of interest are Java Enterprise applications and web
development techniques, but recently he has become passionate about the Internet of
Things domain, in which he is experimenting with a personal home automation project.

I would like to give thanks to Catalin Batrinu, my colleague, and friend, for introducing me to the
IoT world and for encouraging me to review his work on this book.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub. com/ mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon. com/ dp/ 1787282627. If you'd like to join our team of regular
reviewers, you can email us at customerreviews@packtpub.com. We award our regular
reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be
relentless in improving our products!

https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627
https://www.amazon.com/dp/1787282627

Table of Contents
Preface 1

Chapter 1: Getting Started with the ESP8266 7
Starting with the ESP8266 chip 8
Installing Arduino IDE 9

Downloading the Arduino Software IDE 9
Configure Arduino IDE 11
Installing the ESP8266 SDK 13

How to install a library 17
Libraries from the Arduino's repository 18
Library is not in the repository 19

It is time for your first program 20
Seeing the result 22

Connecting ESP8266 to Wi-Fi 24
Getting data from the internet 26
Sending data to the internet 35
Summary 41

Chapter 2: Building and Configuring Your Own MQTT Server 42
Message Queue Telemetry Transport 42

Quality of service 43
Security 43
Retain messages and last will 44
Basic terminology 44
Wildcards on topics 46

Introducing Mosquitto broker 47
ESP8266 and MQTT 51
Publishing data from the ESP8266 53
Receiving MQTT messages in the ESP8266 56
Securing Mosquitto 59
Summary 64

Chapter 3: Building a Home Thermostat with the ESP8266 65
SPIFFS 65

SPIFFS objects 67
Directory object 69
File object 70

Temperature sensor 73
Summary 85

Table of Contents

[ii]

Chapter 4: Control Appliances from the ESP8266 86
Using the WiFiManager library 86

Adding parameters to the WiFiManager setup page and saving them into the
file 94

ESP8266 and Infrared communication 98
Hardware components 99
Software and libraries for this project 100

Summary 104

Chapter 5: Using ESP8266 to Build a Security System 105
Passive infrared sensor 105

How PIRs work 105
Testing the PIR module 109
Connecting the PIR module to the internet 113

The ESP8266 PIR security code 122
Summary 126

Chapter 6: Securing Your Data 127
Enabling encryption on mosquitto 127

Installing the openssl package 127
Generating your own certificates 128

Securing a connection between ESP8266 and an MQTT broker 131
Working offline 135

Saving data on the SD card 140
Summary 143

Chapter 7: Real-Time Communication 144
WebSockets 144

Protocol details 144
Streaming data from ESP8266 145

ADXL345 accelerometer 146
Connection to the ESP8266 147
ESP8266 code 148

Backend code 156
Public web page 158

Summary 159

Chapter 8: Adding a Mobile Application to Your Smart Home 160
Installing Docker and using containers 160

Getting the development image 163
Docker images 164

Setting up the local broker 168
ESP8266 code specifications 171

Summary 177

Index 178

Preface
Since the first house was built, man has made a conscious effort to improve it, to make it
more comfortable and safe. Home automation or domotics has been around since decades
in terms of lighting and simple appliance control and only recently has technology caught
up for the idea of the interconnected world, allowing full control of your home from
anywhere, to become a reality.

ESP8266 is a low-priced chip that allows you to build home automation system effectively.
This book will demonstrate a few easy-to-implement home automation projects ranging
from controlling a relay, to reading all kinds of parameters such as temperature, humidity,
light, or presence. It also allows you to send the values from your ESP8266 modules to your
private cloud. More than that, you will design and build a secure cloud and a mobile
application that can bring comfort and safety at your fingertips. By the end of this book,
you will be capable of building your own interconnected devices for better living.

There are many choices available in the market and you can choose your own ESP8266
module based on your project needs. Some of the widely accepted home automation
projects are building a portable environmental monitor, wireless remote LCD, Air Gesture
AC Dimmer/Switch, Wi-Fi Smart Garage Door, IoT Air Freshener, and internet-enabled
smoke alarm.

Home automation is definitely here to stay as it continues to fill the needs of consumers
who are looking for better ways to access information and control the home environment.
With home automation, you can control your device the way you want.

What this book covers
Chapter 1, Getting Started with the ESP8266, covers the basics of the ESP8266 Wi-Fi chip,
including how to choose a module, and how to configure the ESP8266 chip. You will learn
how to configure the ESP8266 board, so it can be used for the rest of the book. You will
know how to choose the right ESP8266 module as there are many choices available on the
market. After that, you will learn the basics of the ESP8266 Wi-Fi chip, and learn how to
read data from a sensor connected to the chip.

Chapter 2, Building and Configuring Your Own MQTT Server, speaks about building and
configuring an MQTT server to be used with the ESP8266. The chapter will instruct you on
how to get, compile, install, and configure an MQTT server to be used in the chapters as a
central MQTT gateway.

Preface

[2]

Chapter 3, Building a Home Thermostat with the ESP8266, covers how to build a home
thermostat using the ESP8266. You will learn how to measure the temperature in your
home using a thermostat, how to display this temperature on a screen, and also how to
adjust the temperature according to your wishes.

Chapter 4, Control Appliances from the ESP8266, shows how to control home appliances that
are often present in a house, such as lamps, LEDs, and other appliances. You will learn how
to control several home appliances using only the ESP8266 Wi-Fi chip. Thanks to the Wi-Fi
connectivity of the chip, you will be able to control all the appliances remotely.

Chapter 5, Using ESP8266 to Build a Security System, covers how to build a complete
security system based on the ESP8266. You will learn how to connect to your ESP8266
module's elements that are necessary to a security system, such as motion detectors,
cameras, and alarms. You will then be able to build a complete security system based on
these elements.

Chapter 6, Securing Your Data, This chapter is about adding SSL to secure communication
between the ESP8266 modules and broker. You will learn to encrypt the packets in order to
secure the data and make sure that your communication remains private.

Chapter 7, Real-Time communication, there are some use cases where you need to see data
retrieved from the sensors in real time, to log the values in a database or to show them on a
nice graph.

Chapter 8, Adding a Mobile Application to Your Smart Home, to complete the journey in the
smart home world and have your house in control from your phone, you will create an
Android mobile application.

What you need for this book
In order to start working with ESP8266, you will need a series of software and hardware
components.
The ESP8266 chip and its module, sensors like ADXL345, temperature sensors, PIR sensors,
and cables, soldering tools. In every chapter, I've tried to make a good picture and provide
the good description.

For the software, we would require PC with Windows and VirtualBox installed. For
application Arduino IDE with at least 1.5.3 SDK version for the ESP8266, Lubuntu Linux
16.04 installed in Virtual Box, Docker installed in Virtual Box, InfluxDB and Grafana
installed in Virtual Box.

Preface

[3]

Who this book is for
This book is for people who want to build connections and inexpensive home automation
projects using the ESP8266 Wi-Fi chip, and to completely automate their homes. A basic
understanding of the board would be an added advantage.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
following is the setup() function to connect to the Wi-Fi network."

A block of code is set as follows:

#include <ESP8266WiFi.h>
#include <JsonListener.h>
#include "WundergroundClient.h"

Any command-line input or output is written as follows:

sudo openssl rsa -in ca.crt -out newca.pem

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on Sign in to
network."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ /www.
packtpub.com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/ESP8226_ Home_ Automation_ Projects. We also have other code bundles
from our rich catalog of books and videos available at https:/ /github. com/
PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http:/ /www.packtpub. com/ sites/ default/ files/
downloads/ESP8226HomeAutomationProjects_ ColorImages. pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https:/ /www. packtpub. com/ books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/ESP8226_Home_Automation_Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ESP8226HomeAutomationProjects_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Getting Started with the

ESP8266
It is impossible not to hear about the Internet of Things (IoT), which is starting to enter
into our homes and our lives, together with the necessity of consuming and controlling a
huge amount of data every day. We all carry an internet-connected smartphone and we are
able to instantly find and connect with people around the world.

If we are able to connect and discuss with people around the world, why not control our
houses, our cars, and our offices from our smartphone? This is where the IoT comes into the
picture and lets us connect almost any object to the internet.

Currently, there are a few chips that are capable of internet connection in the market but
one little fellow has attracted developers' attention because of its features and price.

This chip is ESP8266, a low-cost TCP/IP and a Wi-Fi enabled microcontroller developed by
EspressIf Systems, a company located in Shanghai, and we will find out more about it in
this book. In this chapter, we will cover the following topics:

Installing Arduino IDE
Configuring the Arduino IDE for ESP8266
Discovering ESP8266
Connecting your ESP to a Wi-Fi network

Getting Started with the ESP8266 Chapter 1

[8]

Starting with the ESP8266 chip
In order to start working with ESP8266, you will need a series of software and hardware
components. ESP8266 is a 32-bit RISC low-cost microcontroller with Wi-Fi connectivity,
capable of running at 80 MHz or 160 MHz. It has 64 KiB of instruction RAM and 96 KiB of
RAM data.

For firmware and other data storage, an external QSPI flash is connected to it and the size
can vary from 512 KiB to 4 MiB. The chip itself exposes 16 General Purpose Input/Output
(GPIO) pins but some of them are used for the QSPI flash connection. The remaining pins
are capable of Serial Peripheral Interface (SPI), I2C, I2S, Universal Asynchronous
Receiver/Transmitter (UART), and one 10-bit Analog to Digital Converter (ADC).

The Wi-Fi capabilities are according to IEEE 80.11 b/g/n and provide WPA/WPA2 and WEP
authentication but can also connect to open networks.

For this chapter, you will need just an ESP8266 module of your choice, since nowadays,
there are many producers and board types available.

A good board can be found on Sparkfun.com or on e-commerce sites, such
as banggood.com, or aliexpress.com but don't stop searching for them at your local
electronics stores.

Now, the form factor of your board depends on your project constraints but for getting
started with this chip, we can use one of the following boards:

Witty ESP12-F board
NodeMCU v1.0
WeeMos D1 mini

Either board will work fine but if you are a beginner, I'd recommend you to start with the
Witty ESP12-F board because it already has:

LDR (Light Dependent Resistor) connected to the analog A0 input
RGB LED connected to GPIO 15, GPIO 12, and GPIO13
A push button connected to GPIO 4

Later, when we add other sensors to ESP8266, this module can be replaced with any of the
other ESP8266 modules.

Getting Started with the ESP8266 Chapter 1

[9]

Installing Arduino IDE
ESP8266 can be used with the official EspressIf's SDKs that contain the NonOS and
FreeRTOS SDKs writing code in C/C++, but other companies and people add other
programming languages to it, such as Lua, Javascript, or MicroPhyton.

This book will use the NonOS SDK and as a development IDE, the Arduino IDE. In this
part you will download the Arduino Software (IDE), configure it and install the ESP8266
SDK.

Downloading the Arduino Software IDE
To download the Arduino IDE, go to https:/ /www. arduino. cc/ en/Main/ Software and
download the latest version:

Now, you can download the version you want depending on your operating system. There
are versions for Windows with and without admin rights, macOS X, and Linux for 32 bits,
64 bits, or ARM processors so that you can install and work, even on a Raspberry Pi.

After you have downloaded the Arduino IDE, you need to install it on your local computer.

If you are on Linux, you need to use the xz and tar command to open the Arduino IDE
archive, then you can go into Arduino-1.8.2 and start it with sudo ./arduino.

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software

Getting Started with the ESP8266 Chapter 1

[10]

In Windows, just launch the Arduino executable file, as follows:

Congratulations! You have installed the Arduino IDE and now it is time to configure it for
ESP8266.

Getting Started with the ESP8266 Chapter 1

[11]

Configure Arduino IDE
To configure the Arduino IDE for ESP8266 you need to go to File | Preferences. The initial
screen looks as follows:

In this screen, you can customize some fields as follows:

Sketchbook location: Here you can choose where your project files are stored.
Editor language: If you prefer another language to the default one, you can
change this field here; but after this, you need to restart the IDE.
Editor font size: This is the font size used in the IDE.
Show verbose output during: compilation and upload: I suggest you check both
of them to have a detailed output during compilation, where you can see files
and their paths and also the upload.
Display line numbers: This field is good to see the line number in the right part
of your IDE number.

Getting Started with the ESP8266 Chapter 1

[12]

Enable Code Folding: This field gives you more space on the screen.
Additional Boards Manager URLs: Here is the field that allows us to get and
install the ESP8266 Xtensagcc compiler, required tools to flash the obtained
firmware into the ESP8266 flash memory along with other board types. In this
field, you need to
add http://arduino.esp8266.com/stable/package_esp8266com_index.json
and the Preferences screen will look as follows:

After you set up your preferences, you can click on the OK button. Don't forget that you are
behind a proxy server; you need to fill in the details required in the Network tab.

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Getting Started with the ESP8266 Chapter 1

[13]

Installing the ESP8266 SDK
After the preferences have been configured, now it is time to actually get the ESP8266 SDK
and tools.

For this, you need to go to the following path and follow these steps:

Go to Tools | Board: "Arduino/Genuino Uno" | Boards Manager... :1.

Subsequently, the Boards Manager will be opened.2.

Getting Started with the ESP8266 Chapter 1

[14]

Go to the end of the list and select the ESP8266 board and click on Install:3.

Now, depending on your internet connection, this can take some time. Sit back4.
and relax, you are about to enter into the IoT world.
Look for the INSTALLED message, as in this picture:5.

Getting Started with the ESP8266 Chapter 1

[15]

Now, go back to Tools | Board: "Arduino/Genuino Uno" and you should see a6.
lot of ESP8266-based boards in the lower section:

Select NodeMCU 1.0 (ESP-12E Module) and go back to the Tools menu, where7.
you will see other configurations that you can perform for ESP8266:

CPU Frequency: "80 MHz": This can be changed from 80 MHz to 160
MHz
The memory size of your module and the size of SPIFFS (1 or 3 MiB)

Getting Started with the ESP8266 Chapter 1

[16]

The upload speed for the UART interface between your computer and
the ESP8266 module. Select from Upload Speed: "115200" so that the
binary file will be flashed 8 times faster than the default value of
115200:

If you now have a module, you can connect it to your computer. Going again to8.
Tools menu now, you will see this from the Port menu and you can go and select
your serial interface connected to the ESP8266 module. For Linux, you can select
/dev/ttyUSB0 and for Windows, one of your COM ports.

Getting Started with the ESP8266 Chapter 1

[17]

Before starting any program, let's look at the IDE buttons:

Let's start from left to right:

Verify: This allows you to compile and check your code for errors
Upload: This does what Verify does plus uploads generated firmware into
ESP8266's flash memory
New: This opens a new window so that you can create another program
Open: This opens an existing program from your local disk
Save: This saves your files on the disk
Serial Monitor: This opens a window where you will be able to see and debug
what you add into your program

How to install a library
In some chapters of this book, different libraries are needed; so let's see how a library can be
installed.

The installed SDK has some basic libraries, but for sure, you will need more libraries to
read various sensors, to parse JSON data, or to send MQTT messages. For the libraries that
are referenced in the SDK repository, you just need to install them but for those that are not,
you need to install them manually.

Getting Started with the ESP8266 Chapter 1

[18]

Libraries from the Arduino's repository
Some libraries exist in the official repository and you can install them in the following steps:

If it exists, then just go to Sketch | Include Library | Manage Libraries:1.

In a new window, delete the "Filter your search..." and write Arduino Json.2.
The Arduino IDE will then search this library for you and if it has found it, you
will be able to install it by clicking on it. You can also use this menu for updating
a previously installed library or to change between versions of a library:

Getting Started with the ESP8266 Chapter 1

[19]

After the library is installed, you will see the following screen:3.

As an exercise, do the same for WiFiManager and PubSubClient libraries.

Library is not in the repository
Sometimes the library you need may not exist in the official repository but you may have
found it on http://github.com as a ZIP archive.

To install the library, in this case, you need to perform the following steps:

Download the ZIP file and install it manually. For this, go to Sketch|Include1.
Library|Add .ZIP Library... and select the downloaded library from your disk
and press Open.
Include an existing library.2.
To include an existing library, go to Sketch | Include Library and select the3.
library you want to include in your sketch.
The .h file will be added to your sketch and now you have access to the function4.
a in this library to use them in your own program:

http://github.com
http://github.com

Getting Started with the ESP8266 Chapter 1

[20]

It is time for your first program
To begin this, let's evaluate the basic input and output of the Witty ESP8266 module.

The definition of pins is Light Dependent Resistor (LDR) on Witty and is attached to A0
(the analog input), the push button is connected to GPIO 4, and the LEDs are connected
to GPIO 12, GPIO 13, and GPIO 15:

Delete everything that is in your Arduino IDE and replace it with the following code:

#define LDR A0
#define BUTTON 4
#define RED 15
#define GREEN 12
#define BLUE 13

The setup section will run only once after the module is reset or powered. The serial UART
is started with 115200 bps, so the messages can be seen in the Serial Monitor window,
where you also need to set the same speed in the lower-right corner of the window;
otherwise, weird characters will be seen.

Getting Started with the ESP8266 Chapter 1

[21]

All pins are defined as INPUT or OUTPUT depending on their usage. The button and LDR
are configured as input pins and all LED connected pins are set as output:

void setup()
{
Serial.begin(115200);

pinMode(LDR, INPUT);
pinMode(BUTTON, INPUT);
pinMode(RED, OUTPUT);
pinMode(GREEN, OUTPUT);
pinMode(BLUE, OUTPUT);
}

The loop() function is continuously running after the setup() and, in it:

The analogRead function reads the value of the ambient light provided as 0-1 V1.
by the LDR.
The digitalRead function reads the value of GPIO 4, that can be either 0 V2.
when the button is pressed or VCC 3.3 V if the button is not pressed.
Show the data to the Serial Monitor with3.
the Serial.print function. Serial.println just adds a new line.
Write a random value between 0 and 1023 to GPIO 15 and GPIO 12 that will 4.
control the red and green LED color intensity. This is Pulse Width
Modulation (PWM).
Turn on the blue LED connected to GPIO 13.5.
Wait 1000 ms (one second).6.
Turn off the blue LED and continue from step 1:7.

void loop()
{
Serial.print("LDR: ");
Serial.println(analogRead(LDR));
Serial.print("BUTTON: ");
Serial.println(digitalRead(BUTTON));

analogWrite(RED, random(0,1023));
analogWrite(GREEN, random(0,1023));
digitalWrite(BLUE, HIGH);
delay(1000);
digitalWrite(BLUE, LOW);
}

Getting Started with the ESP8266 Chapter 1

[22]

In order to compile and flush the binary into the ESP8266 chip you need to press the
Upload button.

Seeing the result
In the Serial Monitor output, as shown in the following image, we can see the values for the
ambient light and the status of the button, where 0 means pressed and 1 means not
pressed:

Getting Started with the ESP8266 Chapter 1

[23]

If you don't have a Witty module, you will need some extra parts such as resistors, LED,
push buttons, and LDR sensors, according to the following schematics:

Let's review now the functions that allow you to control GPIO pins and the function that
will print values in the Serial Monitor:

analogRead(pin): This reads the value on the A0 pin
digitalRead(pin): This reads the value for a specified pin, either LOW or HIGH
digitalWrite(pin, value): This writes a LOW or HIGH value to a digital pin
Serial.println (val): This prints data to a serial port as human-readable
ASCII characters ending with \r and a new line character \n

Using analogWrite(val), where val can be in the 0 to 1023 interval, a
PWM digital output pin will have a voltage between 0 and 3.3V in 1023
steps.

Getting Started with the ESP8266 Chapter 1

[24]

Connecting ESP8266 to Wi-Fi
Until now, you have installed and configured the Arduino IDE for ESP8266 and learned
how to control a LED, read an analog input, and dim a LED.

Now it is time to connect ESP8266 to Wi-Fi. Include ESP8266's Wi-Fi library and set up the
SSID name and the Wi-Fi password:

#include <ESP8266WiFi.h>
const char* ssid = "your_wifi_name";
const char* password = "your_wifi_password";

In the setup section, Serial is started and configured to send data at 115200 bps; a 10 ms
delay is added to allow Serial to finish and the GPIO from 12 to 15 are configured as
output and their value is set to LOW:

void setup() {
Serial.begin(115200);
delay(10);
pinMode(12, OUTPUT);
pinMode(13, OUTPUT);
pinMode(14, OUTPUT);
pinMode(15, OUTPUT);

digitalWrite(12,LOW);
digitalWrite(13,LOW);
digitalWrite(14,LOW);
digitalWrite(15,LOW);

We will start by connecting to a Wi-Fi network:

Serial.println();
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);

WiFi.begin(ssid, password);

Getting Started with the ESP8266 Chapter 1

[25]

We wait until the status indicates that ESP8266 is connected to the Wi-Fi network. After
this, the Wi-Fi connected message is displayed along with the IP address assigned to it by
the router. Your router needs to be DHCP capable and have the DHCP feature enabled:

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
 }

Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}

In the loop section, the code checks to see whether the chip is connected to Wi-Fi and if this
is true, the green LED will light on the Witty module:

void loop()
{
if(WiFi.status() == WL_CONNECTED)
digitalWrite(12, HIGH);
}

As an exercise, you can light the RED led if there is no connectivity to
your router, and the green LED otherwise.

The Serial Monitor will show the IP address assigned by the router, as follows:

Getting Started with the ESP8266 Chapter 1

[26]

Getting data from the internet
Now that we have connected ESP8266 to the Wi-Fi network, we can receive and send data
on the internet. More than this, we can read data from the input or from the sensors
attached to the board and send their values to the internet.

First, let's read some data and what is more interesting than the current weather data? Let's
create an account on http://www.wunderground.com and then, go to
https://www.wunderground.com/weather/api/d/pricing.htm, where you will purchase a
key for $0, as shown in the following image. After filling some data about the project, you
will have your key:

As you can see, with the developer key, you have 10 limited calls per minute that means
you can get data every 6 seconds. Later in the code, we will get the data every 10 seconds.

To check your API_KEY, use it in a browser and check that you get any data.
Replace APY_KEY with your own key:

http://www.wunderground.com
https://www.wunderground.com/weather/api/d/pricing.htm

Getting Started with the ESP8266 Chapter 1

[27]

After this if you navigate to this link in your
browser, http://api.wunderground.com/api/APY_KEY/conditions/q/NL/Eindhoven.json;
you will get the following JSON formatted response from the wunderground.com server:

Include the ESP8266WiFi library and the ESP8266HTTPClient library that will allow you
to do an HTTP GET action to get the same JSON formatted message like you get using a
browser:

#include <ESP8266WiFi.h>
#include <ESP8266HTTPClient.h>

Declare the SSID and the password of your Wi-Fi network:

const char* ssid = "Your_WiFi_Name";
const char* password = "Your_WiFi_Password";

const String WUNDERGROUND_API_KEY = "YOUR_Wunderground_API_KEY";
const String WUNDERGROUND_COUNTRY = "NL";
const String WUNDERGROUND_CITY = "Eindhoven";

http://api.wunderground.com/api/APY_KEY/conditions/q/NL/Eindhoven.json

Getting Started with the ESP8266 Chapter 1

[28]

Construct the URL that will be used to get the data:

const String dataURL =
"http://api.wunderground.com/api/"+WUNDERGROUND_API_KEY+"/conditions/q/"+WU
NDERGROUND_COUNTRY+"/"+WUNDERGROUND_CITY+".json";

As usual, in the setup section, we will connect to the Wi-Fi network:

void setup() {
Serial.begin(115200);
delay(10);
Serial.println();
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
 }

Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());

}

In the loop, if the Wi-Fi status is connected, then you will instantiate an HTTPClient object
named http and start getting data every 10 seconds from the previously constructed link.
In the payload variable, you will have the entire response from the server:

void loop()
{
if(WiFi.status() == WL_CONNECTED)
 {
HTTPClient http;
http.begin(dataURL);
inthttpCode = http.GET();

if(httpCode> 0) {
 // HTTP header has been send and Server response header has
been handled
Serial.printf("[HTTP] GET... code: %d\n", httpCode);

 // file found at server

Getting Started with the ESP8266 Chapter 1

[29]

if(httpCode == HTTP_CODE_OK) {
 String payload = http.getString();
Serial.println(payload);
 }
 }
 }
delay(10000);
}

If getting data every 10 seconds is too often, let's change it to once a minute by replacing the
delay(10000) call that is blocking other code executions.

So, after const String WUNDERGROUND_CITY = "Eindhoven";, add two lines of code:

const long interval = 60 * 1000;
unsigned long previousMillis = 0;

Now, the loop function will change as follows:

void loop()
{
unsigned long currentMillis = millis();
if(currentMillis - previousMillis >= interval)
 {
previousMillis = currentMillis;
if(WiFi.status() == WL_CONNECTED)
 {
HTTPClient http;
http.begin(dataURL);
inthttpCode = http.GET();

if(httpCode > 0) {
 // HTTP header has been send and Server response header has
been handled
Serial.printf("[HTTP] GET... code: %d\n", httpCode);

 // file found at server
if(httpCode == HTTP_CODE_OK) {
 String payload = http.getString();
Serial.println(payload);
 }
 }
 }
 }
}

Getting Started with the ESP8266 Chapter 1

[30]

Now, the Serial Monitor will show a huge JSON with all the information about the weather
from temperature to humidity, wind speed, dew point and much more every minute, as
follows:

Getting Started with the ESP8266 Chapter 1

[31]

But what if you want to get only some specific data from this JSON? Fortunately, there is
a Wunderground library for this. To install it, go to Sketch | Include Library | Manage
Libraries and search for ESP8266 Weather Station. After installing this library, you also
need to install the Json Straming Parser library that will parse the received JSON. You
can follow these steps:

Install the ESP8266 Weather Station library:1.

Also, install the JSON Streaming Parser library:2.

Now, let's get the same data, so the same API_KEY will be used but the data is parsed by
library functions:

Include the headers' files for ESP8266 Wi-Fi.h, JSONListener.h, and1.
WundergroundClient:

#include <ESP8266WiFi.h>
#include <JsonListener.h>
#include "WundergroundClient.h"

Getting Started with the ESP8266 Chapter 1

[32]

Define the API_KEY and set the metric Boolean variable:2.

const String WUNDERGRROUND_API_KEY = "YOUR_API_KEY";
constboolean IS_METRIC = true;

Initialize WundergoundClient for the metric system:3.

WundergroundClientweather_data(IS_METRIC);

Also, initialize the Wi-Fi settings and constants used in getting the weather data:4.

const char* WIFI_SSID = "YOUR_WIFI_SSID";
const char* WIFI_PASSWORD = "YOUR_WIFI_PASSWORD";
const String WUNDERGROUND_LANGUAGE = "EN";
const String WUNDERGROUND_COUNTRY = "NL";
const String WUNDERGROUND_CITY = "Eindhoven";
WiFiClientwifiClient;

Initialize the setup function to connect to the Wi-Fi network:5.

void setup() {
Serial.begin(115200);
delay(10);

WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
delay(20);
Serial.print("Connecting to ");
Serial.println(WIFI_SSID);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
 }
Serial.println("");
Serial.println("WiFi connected!");
Serial.println();
}

In the loop function, get the data from the wunderground.com site every 6.
minute and show it in the Serial Monitor window:

void loop() {

if ((millis() % (60 * 1000)) == 0) {
Serial.println();
Serial.println("\n\nNext Loop-Step: " + String(millis()) + ":");

weather_data.updateConditions(WUNDERGRROUND_API_KEY,
WUNDERGROUND_LANGUAGE, WUNDERGROUND_COUNTRY, WUNDERGROUND_CITY);

https://www.wunderground.com/

Getting Started with the ESP8266 Chapter 1

[33]

Serial.println("wundergroundHours: " + weather_data.getHours());
Serial.println("wundergroundMinutes: " +
weather_data.getMinutes());
Serial.println("wundergroundSeconds: " +
weather_data.getSeconds());
Serial.println("wundergroundDate: " + weather_data.getDate());

Serial.println("wundergroundMoonPctIlum: " +
weather_data.getMoonPctIlum());
Serial.println("wundergroundMoonAge: " +
weather_data.getMoonAge());
Serial.println("wundergroundMoonPhase: " +
weather_data.getMoonPhase());
Serial.println("wundergroundSunriseTime: " +
weather_data.getSunriseTime());
Serial.println("wundergroundSunsetTime: " +
weather_data.getSunsetTime());
Serial.println("wundergroundMoonriseTime: " +
weather_data.getMoonriseTime());
Serial.println("wundergroundMoonsetTime: " +
weather_data.getMoonsetTime());
Serial.println("wundergroundWindSpeed: " +
weather_data.getWindSpeed());
Serial.println("wundergroundWindDir: " +
weather_data.getWindDir());

Serial.println("wundergroundCurrentTemp: " +
weather_data.getCurrentTemp());
Serial.println("wundergroundTodayIcon: " +
weather_data.getTodayIcon());
Serial.println("wundergroundTodayIconText: " +
weather_data.getTodayIconText());
Serial.println("wundergroundMeteoconIcon: " +
weather_data.getMeteoconIcon(weather_data.getTodayIconText()));
Serial.println("wundergroundWeatherText: " +
weather_data.getWeatherText());
Serial.println("wundergroundHumidity: " +
weather_data.getHumidity());
Serial.println("wundergroundPressure: " +
weather_data.getPressure());
Serial.println("wundergroundDewPoint: " +
weather_data.getDewPoint());
Serial.println("wundergroundPrecipitationToday: " +
weather_data.getPrecipitationToday());

Serial.println();
Serial.println("---
/\n");

Getting Started with the ESP8266 Chapter 1

[34]

 }
}

The output for the Serial Monitor is as follows:7.

Getting Started with the ESP8266 Chapter 1

[35]

Now, as an exercise, you can read the temperature and turn on or off an
LED' if there are icing conditions or humidity and the temperature is too
high outside.

Sending data to the internet
Now, let's send the same data to the internet. The first thing to do is to create an account on
http://thingspeak.com and set up a channel. Each channel has eight fields that you can
use to store the data transmitted by ESP8266.

As a free account, you need not send data more often than three times per minute. The
advantage is that your data is stored on their server and you can see them on a nice graphic
or embed them as an IFRAME in another web server.

In Channel Settings, create one field and name it Light, then go to the API key tab and
get Write API KEY. Here, you can also define a read APY KEY if you have an application
that wants to read data written by other modules. It is a rudimentary way of sharing data
between modules.

Since the Witty module has the LDR, let's use it to log the data every minute on
api.thingspeak.com:

#include <ESP8266WiFi.h>

const char* WIFI_SSID = "YOUR_WIFI_SSID";
const char* WIFI_PASSWORD = "YOUR WIFI_PASSWORD";
const char* host = "api.thingspeak.com";
const char* writeAPIKey = "YOUR_WRITE_API_KEY";

#define LDR A0

In the setup() function, which is executed once, the LDR pin is set as an INPUT pin and
will connect the ESP8266 to the Wi-Fi network with the WiFi.begin(WIFI_SSID,
WIFI_PASSWORD) function:

void setup()
{
Serial.begin(115200);
delay(10);
pinMode(LDR, INPUT);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
delay(20);
Serial.print("Connecting to ");

http://thingspeak.com

Getting Started with the ESP8266 Chapter 1

[36]

Serial.println(WIFI_SSID);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
 }
Serial.println("");
Serial.println("WiFi connected!");
Serial.println();
}

In the loop() function every minute the light intensity will be read from the LDR sensor
and post it on the Light field on a channel from https:/ /thingspeak. com/ :

void loop()
{
if ((millis() % (60 * 1000)) == 0) {
// make TCP connections
WiFiClient client;
const int httpPort = 80;
if (!client.connect(host, httpPort)) {
return;
 }

 String url = "/update?key=";
url+=writeAPIKey;
url+="&field1=";
url+=String(analogRead(LDR));
url+="\r\n";
Serial.println(url);
 // Request to the server
client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n\r\n");
 }

}

https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/
https://thingspeak.com/

Getting Started with the ESP8266 Chapter 1

[37]

Let's see how the data looks after a few minutes:

Now, let's combine the sketches that read the weather from wunderground.com and this one
that sends data to thingspeak.com. It will take the temperature, humidity, dew point, and
precipitation and it will store them on thinkspeak.com so that later we can import them.
Basically, this will be a weather logger:

#include <ESP8266WiFi.h>
#include <JsonListener.h>
#include "WundergroundClient.h"

The following are the Wunderground settings:

const String WUNDERGRROUND_API_KEY = "58dfbeb30d02af26";
const Boolean IS_METRIC = true;
WundergroundClient weather_data(IS_METRIC);
const char* WIFI_SSID = "YOUR_WIFI_SSID";
const char* WIFI_PASSWORD = "YOUR_WIFI_PASSWORD";
const String WUNDERGROUND_LANGUAGE = "EN";
const String WUNDERGROUND_COUNTRY = "NL";
const String WUNDERGROUND_CITY = "Eindhoven";
const char* host = "api.thingspeak.com";
const char* writeAPIKey = "YOUR_WRITE_API_KEY";
WiFiClient wifiClient

https://www.wunderground.com/

Getting Started with the ESP8266 Chapter 1

[38]

The following is the setup() function to connect to the Wi-Fi network:

void setup() {

Serial.begin(115200);
delay(10);

WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
delay(20);
Serial.print("Connecting to ");
Serial.println(WIFI_SSID);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
 }
Serial.println("");
Serial.println("WiFi connected!");
Serial.println();
}

In the loop() function, every minute weather data will be retrieved from
wunderground.com and it will post it to thingspeak.com. Along with the temperature,
pressure, precipitation and dew point more information will be printed in the serial output
like moon phase, sunrise or sunset, information that can be used if you plan to add a
display module to visualize all weather conditions:

void loop() {
if ((millis() % (60 * 1000)) == 0) {
Serial.println();
Serial.println("\n\nNext Loop-Step: " + String(millis()) + ":");

weather_data.updateConditions(WUNDERGRROUND_API_KEY, WUNDERGROUND_LANGUAGE,
WUNDERGROUND_COUNTRY, WUNDERGROUND_CITY);

Serial.println("wundergroundHours: " + weather_data.getHours());
Serial.println("wundergroundMinutes: " + weather_data.getMinutes());
Serial.println("wundergroundSeconds: " + weather_data.getSeconds());
Serial.println("wundergroundDate: " + weather_data.getDate());

Serial.println("wundergroundMoonPctIlum: " +
weather_data.getMoonPctIlum());
Serial.println("wundergroundMoonAge: " + weather_data.getMoonAge());
Serial.println("wundergroundMoonPhase: " + weather_data.getMoonPhase());
Serial.println("wundergroundSunriseTime: " +
weather_data.getSunriseTime());
Serial.println("wundergroundSunsetTime: " + weather_data.getSunsetTime());
Serial.println("wundergroundMoonriseTime: " +

Getting Started with the ESP8266 Chapter 1

[39]

weather_data.getMoonriseTime());
Serial.println("wundergroundMoonsetTime: " +
weather_data.getMoonsetTime());
Serial.println("wundergroundWindSpeed: " + weather_data.getWindSpeed());
Serial.println("wundergroundWindDir: " + weather_data.getWindDir());

Serial.println("wundergroundCurrentTemp: " +
weather_data.getCurrentTemp());
Serial.println("wundergroundTodayIcon: " + weather_data.getTodayIcon());
Serial.println("wundergroundTodayIconText: " +
weather_data.getTodayIconText());
Serial.println("wundergroundMeteoconIcon: " +
weather_data.getMeteoconIcon(weather_data.getTodayIconText()));
Serial.println("wundergroundWeatherText: " +
weather_data.getWeatherText());
Serial.println("wundergroundHumidity: " + weather_data.getHumidity());
Serial.println("wundergroundPressure: " + weather_data.getPressure());
Serial.println("wundergroundDewPoint: " + weather_data.getDewPoint());
Serial.println("wundergroundPrecipitationToday: " +
weather_data.getPrecipitationToday());

WiFiClient client;
const int httpPort = 80;
if (!client.connect(host, httpPort)) {
return;
 }

 String url = "/update?key=";
url+=writeAPIKey;
url+="&field1=";
url+=String(weather_data.getCurrentTemp());
url+="&field2=";
url+=String(weather_data.getPressure());
url+="&field3=";
url+=String(weather_data.getDewPoint());
url+="&field4=";
url+=String(weather_data.getPrecipitationToday());
url+="\r\n";
Serial.println(url);
 // Request to the server
client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n\r\n");

Serial.println("---/\n");
 }
}

Getting Started with the ESP8266 Chapter 1

[40]

After a few minutes, you can see the values received by the ESP8266 from
wunderground.com and posted on thingspeak.com displayed on four graphs:

https://www.wunderground.com/
https://thingspeak.com/

Getting Started with the ESP8266 Chapter 1

[41]

Summary
The first step in developing IoT applications has been completed. Now, you have the
knowledge for installing and configuring the Arduino IDE for the ESP8266 development,
and on how to transmit and receive data, to and from the internet. The next step will be to
make the ESP8266 modules talk to each other, no matter where they are located.

2
Building and Configuring Your

Own MQTT Server
Now that you have learned how to use analog and digital outputs, to send and receive data
via Wi-Fi, it is time to move on the next part where you will discover the MQTT protocol
and how to use it.

In the previous chapter the ESP8266 was only communicating with servers: in this chapter,
we will see how ESP8266 modules can communicate with each other through Message
Queue Telemetry Transport (MQTT).

Message Queue Telemetry Transport
Usually, end devices have a limited memory and CPU power, running on batteries, so
connecting them with servers requires a light protocol. Enter MQTT, which was invented in
1999 by Andy Stanford-Clark from IBM and Arlen Nipper from Arcom, a SCADA protocol
design initially for battery operated devices to supervise oil pipelines. Later in 2010, IBM
released it as a royalty-free protocol. In 2014, OASIS announced that the MQTT v.3.1.1 had
become an OASIS standard and a lot of MQTT clients were developed for all programming
languages.

The characteristics of MQTT are listed as follows:

Data agnostic: MQTT can transport all kind of data, from sensor data to images
or over the air updates
Lightweight and bandwidth efficient: Smallest frame is only 2 bytes long

Building and Configuring Your Own MQTT Server Chapter 2

[43]

Provide QoS: Three Quality of Service (QoS) levels
Runs on top of the TCP/IP stack
Simple to develop: Clients exist for all operating systems and programming
languages
Central broker: Can connect different devices without having to worry about
compatibility
Session awareness: Provides an identity-based approach for subscriptions
Flexible subscription topics

Quality of service
The MQTT standard defines three QoS levels:

QoS 0: At most once, a message with QoS 0 will be sent once by the client and
will not be stored or responded to. Use this QoS if your application can afford to
lose a packet once in a while. For example, if you are sending the temperature
every second and one packet is lost, there will be no problem since the
temperature didn't change in one second.
QoS 1: A least once, If you need a confirmation that your message arrived at its
destination, then send it with QoS 1. In this case, the broker is storing the
message until it receives a response from the other client. For example, if your
message needs to open a relay that is starting an air fan or a lamp, you need to be
sure that the message arrived at a destination.
QoS 2: Exactly once, if you have an application that needs to receive messages
only once and doesn't allow duplicates use QoS 2 for your message.

Security
MQTT is a protocol that is running over the TCP/IP so you can use it to encrypt the data
with TLS/SSL and to have a secure connection between clients.

Building and Configuring Your Own MQTT Server Chapter 2

[44]

Retain messages and last will
Let's imagine that we need to build a module that will send the temperature and humidity
every hour to the server and must run on batteries. Because the data is not sent very often
and is running on batteries the module will be put into deep sleep between the sendings. At
a certain point in time if the data is requested every five minutes there is no way to tell the
module to change its update time other than using a retain message. From the web
application, a retain message will be sent and the broker will send that message when the
module transmits for the first time. In this way, when the module wakes up and subscribes
to the server on a configuration topic, the broker will deliver the new update interval. The
message is parsed by the module and from now on will wake up and will transmit every
five minutes instead of every hour.

When you have a use case for an application that depends on some critical values sent by a
sensor, then you can detect when a client has stopped transmitting or loses its power by
using the last will. When the client is connecting to the broker it will also specify the last
will topic and its last message. For example, if there is a network failure on the client or it is
not responding to Keep Alive messages, then the broker will send to all clients that
subscribed to the last will topic, a message from that client. Usually, the Last Will message
is used together with the Retain Message option.

Basic terminology
Until now terms such as a central broker, topic, publish, subscribe terms have been used, so
it is time to explain them using an analogy with a post office and the messages are
newspapers or magazines:

Broker: It is a software application (postal office) that receives messages
(magazines) from clients (editors), and routes the messages according to the
subscriber's requests.
Client: It is a device that can publish a message (magazine) or can receive a
message (magazine) or both.
Topic: It is a string (magazine) that is used by the broker to filter messages for
each connected clients. It is sent by clients to the broker in a subscribe request to
express the desire in receiving messages published by other clients. It is sent by
the clients when publishing messages to any other client that subscribed on the
same topic.

Building and Configuring Your Own MQTT Server Chapter 2

[45]

Publish: Action of sending a message (magazine) to another client on a specific
topic.
Subscribe: Action of informing the broker about an interest in receiving future
messages published by other clients on that topic. A client can subscribe to
multiple topics.
Unsubscribe: Action of a client that is telling the broker not to send messages to
the specified topic.

MQTT Architecture

Since one characteristic of MQTT is flexible subscription topics, let's see how a topic is formed.
Topics consist of a hierarchical level using a / as a topic level separator.

Here are examples of valid topics:

Europe/France/Paris/temperature

62/livingroom/temperature

456733-a55h56-667743/battery

Topics are case-sensitive so Europe/France/Paris/temperature is different than
europe/France/Paris/temperature.

Building and Configuring Your Own MQTT Server Chapter 2

[46]

Wildcards on topics
If publishing data to another client through the broker it is necessary to specify the full
topic name: for receiving messages clients can subscribe using the wildcard level for topics.
Wildcards are single level + and multi-level #:

Single-level +.1.
Using the + in the subscription level for a topic means that instead of + can be2.
any value.
If you want to build a display panel to show the temperature from your house,3.
you build modules that read the temperature from every room and publish it on
topics such as:

myHouse/groundFloor/livingroom/temperature
myHouse/groundFloor/kitchen/temperature

myHouse/firstFloor/bedroom/temperature and the display module will4.
subscribe to:

myHouse/groundFloor/+/temperature

Every time a temperature module located on the ground floor is publishing some5.
message on its topic, the display module will receive it, so it is not necessary to
subscribe on each topic, but it will not receive the data from the following topics:

myHouse/groundFloor/livingroom/humidity
myHouse/groundFloor/kitchen/light

Multi-level #.6.
Using # in the subscribed topic level client will receive all messages from that7.
level down.
If the display panel is subscribing to topic.8.
myHouse/groundFloor/# that means that it will receive all the messages9.
published on topics that start with myHouse/groundFloor.
If a client subscribes to #, the topic will receive all the messages published within10.
that broker.
Special topics $.11.
If you want to monitor internal statistics of the broker then you need to subscribe12.
to the $SYS topics.

Building and Configuring Your Own MQTT Server Chapter 2

[47]

Here are examples of what you can get:13.

$SYS output example

Introducing Mosquitto broker
Eclipse MosquittoTM is an open source MQTT broker that implements the MQTT v3.1 and
MQTT v.3.1.1 standards and provides a lightweight method to transport messages,
allowing publish and subscription for low power sensors, mobile devices, embedded
computers, and micro controllers.

You can install Mosquitto on a Raspberry Pi or on AWS instance or on a VirtualBox Linux
instance directly from your Linux repository distribution; or you can get the source code
and compile it yourself if you want support from websockets.

Building and Configuring Your Own MQTT Server Chapter 2

[48]

Installing from your Linux distribution repository:

First upgrade to the latest version:1.

 sudo apt update && sudo apt upgrade

Then install mosquito:2.

 sudo apt install mosquitto

You should see the following screen:

Installing Mosquitto

After installing the Mosquitto broker verify that the broker is started and install3.
mosquitto-clients as follows:

Verify if Mosquitto is running

Building and Configuring Your Own MQTT Server Chapter 2

[49]

Type the following command:4.

sudo apt install mosquitto-clients

You will get the following screen:

Installing Mosquitto-clients

Mosquitto clients come with three very important utilities:

mosquitto_sub: A simple mqtt client that will subscribe to a single topic and
print all messages it receives
mosquitto_pub: A simple mqtt client that will publish a message on a single
topic and exit
mosquitto_passwd: A tool for managing password files for Mosquitto

Using any of them with the --help options such as mosquitto_sub --help will give a
comprehensive list with all the options you can use to test your broker.

After installation Mosquitto is started as a service and is listening on the port 1883. To test
this initial installation let's subscribe to a topic and publish a message on that topic.

Building and Configuring Your Own MQTT Server Chapter 2

[50]

Subscribing to a topic using the -t option is shown in the following command:

mosquitto_sub-t livingroom/temperature

Run this command as follows:

Subscribing to a topic, Observation: This command assumes that the broker is running on
the local server. When you deploy Mosquitto to an internet Virtual Private Server
(VPS) for subscription add the -h to specify the IP address of your server instance (use
ifconfig to find it) and also the port -p 1884 if you are not using the default 1883 port.
In this case the command will be:

mosquitto_sub -h 46.102.34.87 -t livingroom/temperature

In another terminal let's publish some JSON-formatted message on the same topic
livingroom/temperature. Use the following command a few times and see the
messages:

mosquitto_pub -t livingroom/temperature -m {"t":27.4}

You should see the following output:

First data received on a topic

After sending the message mosquitto_pub will exit. If you want to send the value every
second use the watch utility, where -n 1 is the number of seconds between the commands:

watch -n 1 mosquitto_pub -t livingroom/temperature -m {"t":27.4}

Building and Configuring Your Own MQTT Server Chapter 2

[51]

You can exercise now using the +, # on the subscribing topic mosquitto_sub -t
livingroom/# will give you all the data that are sent with commands:

mosquitto_pub -t livingroom/temperature -m {"t":27.4}
mosquitto_pub -t livingroom/humidity -m {"h":68}

You should see the following:

Receiving data from different sensors

And the using of + in topics, subscribe to all temperature topics:

mosquitto_sub - t myhouse/+/temperature

And sending from other terminal messages such as:

 mosquitto_pub -t myhouse/living/temperature -m {"t":25.6}
 mosquitto_pub -t myhouse/kitchen/temperature -m {"t":27.1}

In the terminal where you subscribed you will see all the following messages:

ESP8266 and MQTT
To use the ESP8266 as a client for sending data to a broker you will need a library that
offers MQTT support. For this you can use the PubSubClient library, which can be
installed like other libraries; see Chapter 1, Getting Started with the ESP8266:

Go to Sketch | Include Library | Manage Libraries..., as follows:1.

Building and Configuring Your Own MQTT Server Chapter 2

[52]

Manage libraries

And search for the PubSubClient library and click Install as in the following2.
screenshot:

Building and Configuring Your Own MQTT Server Chapter 2

[53]

Publishing data from the ESP8266
Start a new sketch via File | New in the Arduino IDE and paste in the following code.
Include the ESP8266WiFi library and the PubSubClient one:

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

Update these with values suitable for your network. Use ifconfig to get the IP address of
the server where the Mosquitto broker is installed. If your server has an FQDN name such
as myiotserver.com and is registered into the DNS, then instead of the IP address in
mqtt_server you can use the FQDN name:

const char* wifi_network = "YOUR_WIFI_SSID";
const char* wifi_pass = "YOUR_WIFI_PASSWORD";
const char* mqtt_serv_address = "192.168.1.116";
const int mqtt_port_number = 1883;

Instantiate a WiFiClient and pass it to the PubSubClient:

WiFiClient espClient;
PubSubClient client(espClient);
long lastMsg = 0;
char msg[50];
int value = 0;

The setup() function will start connecting the ESP8266 to the Wi-Fi network by calling the
setup_wifi() function and set the MQTT server and port to be used via the
client.Setserver() function:

void setup() {
Serial.begin(115200);
setup_wifi();
client.setServer(mqtt_serv_address, mqtt_port_number);
}

void setup_wifi() {

delay(10);
 // We start by connecting to a WiFi network
Serial.println();
Serial.print("Connecting to ");
Serial.println(wifi_network);

WiFi.begin(wifi_network, wifi_pass);

while (WiFi.status() != WL_CONNECTED) {

Building and Configuring Your Own MQTT Server Chapter 2

[54]

WiFi.begin(wifi_network, wifi_pass);

Serial.print(".");
delay(5000);
 }

Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}

If keep alive packets from the MQTT server to the ESP8266 module are lost and the
communication is interrupted, the reconnect() function will try to connect again to the
MQTT server. This reconnect function is also used as a first connection to the server.

After connecting to the MQTT server the ESP8266 will publish a message "Hello world,
I am ESP8266!" on the fromEsp8266 topic:

void reconnect() {
 // Loop until we're reconnected
while (!client.connected()) {
Serial.print("Attempting MQTT connection...");
 // Attempt to connect
if (client.connect("ESP8266Client"))
 {
Serial.println("connected");
 // Once connected, publish an announcement...
client.publish("fromEsp8266", "Hello world, I am ESP8266!");
 } else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
 // Wait 5 seconds before retrying
delay(5000);
 }
 }
}

Building and Configuring Your Own MQTT Server Chapter 2

[55]

The loop function will check for connectivity with the MQTT broker, reconnect to it if there
is a problem with connection, and every two seconds will publish a message on the
fromEsp8266 topic:

void loop() {

if (!client.connected()) {
reconnect();
 }
client.loop();

long now = millis();
if (now - lastMsg> 2000) {
lastMsg = now;
 ++value;
snprintf (msg, 75, "Hello world #%ld", value);
Serial.print("Publish message: ");
Serial.println(msg);
client.publish("fromEsp8266", msg);
 }
}

After compiling and uploading the code to the ESP8266 module, in a terminal window
subscribe to the fromEsp8266 topic. The messages sent by the ESP8266 module will be
shown in the terminal window:

Messages published by ESP8266

Observation: Remember that topic names are case-sensitive. As an exercise you can send
the pin status (HIGH or LOW) as was presented in Chapter 1, Getting Started with the
ESP8266.

Use digitalRead(PIN_NUMER) instead of value.

https://cdp.packtpub.com/esp8266_home_automation_projects/wp-admin/post.php?post=74&post_type=chapter&action=edit&save=save#post_51

Building and Configuring Your Own MQTT Server Chapter 2

[56]

Receiving MQTT messages in the ESP8266
Now let's publish a message using mosquitto_pub and receive it in the ESP8266.

For this the ESP8266 needs to subscribe to the same topic on which mosquitto_pub will
publish the message. Let's call the topic outdoor/light and it will publish on 0 or 1
values. If the ESP8266 receives the value as 1, it will turn on a LED connected to GPIO 12
and if it will receives a 0, it will turn off that LED:

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

Update these with values suitable for your network:

const char* wifi_network= "YOUR_WIFI_SSID";
const char* password = "YOUR_WIFI_PASSWORD";
const char* mqtt_serv_address = "YOUR_MQTT_SERVER_IP";
const int mqtt_port_number = 1883;
#define OUTDOOR_LIGHT 12

WiFiClient espClient;
PubsubClient client(espClient);
long lastMsg; = 0;

Start the connection to the Wi-Fi network and set the name of the function that will be
called when a message is received from the MQTT broker, as follows:

void setup() {
pinMode(OUTDOOR_LIGHT, OUTPUT); // Initialize the BUILTIN_LED pin as an
output
Serial.begin(115200);
setup_wifi();
client.setServer(mqtt_serv_address, mqtt_port_number);
client.setCallback(callback);
}

Connect to the Wi-Fi network:

void setup_wifi() {
delay(10);
 // We start by connecting to a WiFi network
Serial.println();
Serial.print("Connecting to ");
Serial.println(wifi_network);

WiFi.begin(wifi_network, password);

Building and Configuring Your Own MQTT Server Chapter 2

[57]

while (WiFi.status() != WL_CONNECTED) {
WiFi.begin(wifi_network, password);

Serial.print(".");
delay(5000);
 }

Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}

When a message will arrive in the ESP8266 MQTT client the function that will be called is
callback(), with parameters topic containing the name of the topic on which topic the
message arrived, in case that module subscribed to multiple topics, the actual content of the
message, and the length of the message:

void callback(char* topic, byte* payload, unsigned int msg_length) {
Serial.print("Message arrived [");
Serial.print(topic);
Serial.print("] ");
for(int i = 0; i < msg_length; i++) {
Serial.print((char)payload[i]);
 }
Serial.println();

 // Switch on the LED if an 1 was received as first character
if ((char)payload[0] == '0') {
digitalWrite(OUTDOOR_LIGHT, LOW); // Turn the LED off
 } else {
digitalWrite(OUTDOOR_LIGHT, HIGH); // Turn the LED on
 }
}

In the reconnect() function, it will also subscribe to the outdoor/light topic from
which it will get the messages and if the connection with the broker is lost it will try to
connect to it every five seconds:

void reconnect() {
 // Loop until we're reconnected
while (!client.connected()) {
Serial.print("Attempting MQTT connection...");
 // Attempt to connect
if (client.connect("ESP8266Client"))
 {
Serial.println("connected");

Building and Configuring Your Own MQTT Server Chapter 2

[58]

client.subscribe("outdoor/light");
 } else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
 // Wait 5 seconds before retrying
delay(5000);
 }
 }
}

The loop() function will publish the value of the GPIO 12, which is actually the state of the
outdoor light:

void loop() {

if (!client.connected()) {
reconnect();
 }
client.loop();

long now = millis();
if (now - lastMsg> 2000) {
lastMsg = now;
 String light_state;

if(digitalRead(OUTDOOR_LIGHT) == HIGH)
light_state = "ON";
else
light_state = "OFF";

Serial.print("Publish message: ");
Serial.println(light_state);
client.publish("outdoor/light/status", light_state.c_str());
 }
}

Building and Configuring Your Own MQTT Server Chapter 2

[59]

In the Terminal window, you will see ON or OFF depending on the value of the last
message transmitted on the outdoor/light topic. Please note the module is subscribing to
the topic outdoor/light and is publishing the status of the GPIO on the
outdoor/light/status topic:

Sending and receiving messages

Securing Mosquitto
If your Mosquitto MQTT broker is in the cloud it is a good idea to secure it at least with a
user and password.

Mosquitto offers the mosquitto_passwd utility, which allows us to create a user and a
password. You will be invited to enter a password and to confirm it:

sudo mosquito_passwd -c /etc/mosquito/passwd joe

In the /etc/mosquitto directory a file named passwd will be created and in the file will
be a user named joe and its encoded password as in the following screenshot:

Building and Configuring Your Own MQTT Server Chapter 2

[60]

Now let's add the passwd file into the mosquitto.conf. Use your favorite text editor and
change the file /etc/mosquitto.conf to instruct Mosquitto to read and use the
passwd file.

The content of the file will be:

Password file location

allow_anonymous: It is a boolean value that determines whether clients that
connects without providing a username are allowed to connect. If set
to false then another means a connection should be created to control
authenticated client access.
password_file: Sets the path to a password file. If defined, the contents of the
file are used to control client access to the broker. If allow_anonymous is set
to false, only users defined in this file will be able to connect.

After stopping and restarting the Mosquitto service using the commands:

sudo service mosquitto stop && sudo service mosquitto start

If a terminal window will try to connect as you did before, we will receive an error message
like in the following screenshot:

Building and Configuring Your Own MQTT Server Chapter 2

[61]

But subscribing and publishing with the user and the password created before will work.
For subscribing the command is:

sudo mosquitto_sub -t living/temperature -u joe -P joe1234

And for publishing:

sudo mosquitto_pub -t living/temperature -u joe -P joe1234 -m {"t":24.7}

Make sure you use capital a P for the password and not, p which is for
port.

You will get the following result:

Providing username and password

Now let's use ESP8266 to send the username and password to the broker:

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

Update these with values suitable for your network:

const char* wifi_network = "WiFi 176-58";
const char* password = "P6etRUzaRa";
const char* mqtt_serv_address = "192.168.1.116";
const char* mqtt_user = "joe";
const char* mqtt_passwd = "joe1234";
const int mqtt_port_number = 1883;
#define OUTDOOR_LIGHT 12

Building and Configuring Your Own MQTT Server Chapter 2

[62]

The mqtt_user will keep the value of the username and the mqtt_passwd will keep the
user's password. We will use them in the connect method and pass them to the server:

WiFiClient espClient;
PubSubClient client(espClient);
long lastMsg = 0;

void setup() {
pinMode(OUTDOOR_LIGHT, OUTPUT); // Initialize the BUILTIN_LED pin as an
output
Serial.begin(115200);
setup_wifi();
client.setServer(mqtt_serv_address, mqtt_port_number);
client.setCallback(callback);
}

void setup_wifi() {

delay(10);
 // We start by connecting to a WiFi network
Serial.println();
Serial.print("Connecting to ");
Serial.println(wifi_network);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
WiFi.begin(wifi_network, password);

Serial.print(".");
delay(5000);
 }

Serial.println("");
Serial.println("WiFi connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}

void callback(char* topic, byte* payload, unsigned int msg_length) {
Serial.print("Message arrived [");
Serial.print(topic);
Serial.print("] ");
for (int i = 0; i< msg_length; i++) {
Serial.print((char)payload[i]);
 }
Serial.println();

Building and Configuring Your Own MQTT Server Chapter 2

[63]

 // Switch on the LED if an 1 was received as first character
if ((char)payload[0] == '0') {
digitalWrite(OUTDOOR_LIGHT, LOW); // Turn the LED off
 } else {
digitalWrite(OUTDOOR_LIGHT, HIGH); // Turn the LED on
 }
}

void reconnect() {
 // Loop until we're reconnected
while (!client.connected()) {
Serial.print("Attempting MQTT connection...");

Attempt to connect to the MQTT Mosquitto broker using the username and the password
from mqtt_user and mqtt_passwd:

if (client.connect("ESP8266Client", mqtt_user, mqtt_passwd))
{
 Serial.println("connected");
 client.subscribe("outdoor/light");
} else {
 Serial.print("failed, rc=");
 Serial.print(client.state());
 Serial.println(" try again in 5 seconds");
 // Wait 5 seconds before retrying
 delay(5000);
 }
 }
}

void loop() {

if (!client.connected()) {
 reconnect();
}
client.loop();

long now = millis();
if (now - lastMsg> 2000) {
 lastMsg = now;
 String light_state;

 if(digitalRead(OUTDOOR_LIGHT) == HIGH)
 light_state = "ON";
 else
 light_state = "OFF";

Building and Configuring Your Own MQTT Server Chapter 2

[64]

 Serial.print("Publish message: ");
 Serial.println(light_state);
 client.publish("outdoor/light/status", light_state.c_str());
 }
}

Publishing a message with the payload 1 will trigger the GPIO 12 and turn on the
connected LED in a secure way. The ON OFF messages are the state of the GPIO where on
ON will have 3V3 and on OFF 0V:

Receiving ON/OFF messages

Now, sending this message from any place in the world will turn on and off any appliance
from your house, if instead of the LED we will add a relay board:

Until now small messages were used, by default the maximum size allowed by
the PubSubClient is 128 bytes. If your messages are bigger than 128 bytes,
go to the PubSubClient.h file and change the value for
MQTT_MAX_PACKET_SIZE.

Summary
Using an MQTT server such as Mosquitto is very important because it allows you to
communicate machine to machine M2M and you can start to automate many tasks from
turning on the lights in the house if is a cloudy day to automatically controling your house's
climate.

3
Building a Home Thermostat

with the ESP8266
In this chapter, we will build a home thermostat with ESP8266. The thermostat will have
the following functions:

It will read the temperature from a DHT22 temperature sensor
It will compare the temperature with the desired one; if it is above it, it will
trigger a relay OFF and if it is below, it will trigger the relay ON

But first, let's discuss how we can save data in the ESP8266 and retrieve it. Let's make use of
SPIFFS.

SPIFFS
SPI Flash File System (SPIFFS) is a filesystem created for small embedded systems. SPIFFS
has many advantages since it allows you to create files and simulate directories.

The following are the features of SPIFFS:

Designed for low RAM use on microcontrollers
Uses statically sized RAM buffers
Posix-like api: open, close, read, write, seek, stat, and so on
It can run on any NOR flash, not only the SPI flash. Multiple SPIFFS
configurations can run on the same target - and even on the same SPI flash device

Building a Home Thermostat with the ESP8266 Chapter 3

[66]

Implements static wear levelling
Built-in filesystem consistency checks
Highly configurable and can be adapted for a variety of flash types

I highly encourage you to use SPIFFS in your designs to store data in NOR flash since it is
very easy to read and write data, is like a *nix filesystem.

Filesystem size depends on the flash chip size. Depending on the board that is selected in
the IDE, you can select different sizes for SPIFFS. For example, in case if you have selected
the NodeMcu v1.0 as Board type, there are two dimensions for the SPIFFS, one of 1M and
3M as shown in the following screenshot:

Flash size for NodeMcu

Even though the filesystem is stored on the same flash chip as the application program,
flashing a new sketch will not modify the filesystem contents. This allows us to use the
filesystem to store data, configuration files, or content for web servers.

Let's now see what functions are available to manipulate files. First of all they have access
to the SPIFFS function and the FS.h file need to be included in the sketch:

#include "FS.h"

Building a Home Thermostat with the ESP8266 Chapter 3

[67]

After this inclusion we have access to three objects: SPIFFS, File, and Dir. We will learn
about these objects in detail in the following sections.

SPIFFS objects
Let's look at few SPIFFS objects:

begin : Mounts the filesystem. Needs to be called first and returns true for
success or false otherwise:

if(SPIFFS.begin())
{
 Serial.println(F("File systestem mounted.")); //use F function to
store the string in flash and not in RAM memory. This save a lot of
RAM memory
}
else
{
 Serial.println(F("Mounting file system failed."));
}

info: Returns information about the entire filesystem, information that is stored
in the FSInfo structure. The FSInfo structure has the following members:

struct FSInfo {
 size_t totalBytes;
 size_t usedBytes;
 size_t blockSize;
 size_t pageSize;
 size_t maxOpenFiles;
 size_t maxPathLength;
};

Declaring the fs_info and populating it with the info function will allow
us to access information about the filesystem:

FSInfo fs_info;
SPIFFS.info(fs_info);
Serial.print("Used bytes: ");
Serial.println(fs_info.usedBytes);

Building a Home Thermostat with the ESP8266 Chapter 3

[68]

exists: SPIFFS.exists(path) returns true or false if the specified path
(file) exists in the filesystem:

if(SPIFFS.exist("/config.json"))
 Serial.println(F("File config.json exists."));

The path must be an absolute path and starting with a slash.

format: Formats the entire filesystem and returns true or false. Format can be
called before or after the begin function and it takes some tens of seconds to
complete depending on your filesystem size:

SPIFFS.format();

open: This function returns a File object and takes as parameters the absolute
path for the file and the mode for opening the file. Returns true for success or
false otherwise:

SPIFFS.open(path, mode);

File config_file = SPIFFS.open("/config.json", "w");
if (!config_file) {
 Serial.println(F("failed opening config.json file."));
}

In the preceding code the selected mode for opening the file was w (write). The same modes
as the ANSI C function fopen can be used:

r Open text file for reading. The stream is positioned at the beginning of the file.
r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w
Truncate file to zero length or create a text file for writing. The stream is positioned at
the beginning of the file.

w+
Open for reading and writing. The file is created if it does not exist; otherwise it is
truncated. The stream is positioned at the beginning of the file.

a
Open for appending (writing at end of file). The file is created if it does not exist. The
stream is positioned at the end of the file.

a+
Open for reading and appending (writing at end of file). The file is created if it does not
exist. The initial file position for reading is at the beginning of the file, but output is
always appended to the end of the file.

Building a Home Thermostat with the ESP8266 Chapter 3

[69]

remove: Remove the file from the filesystem. It takes as a parameter the absolute
path and returns true for success or false otherwise:

if(SPIFFS.remove("/config.json"))
 Serial.println(F("File config.json was removed"));

rename: Renames the file. Takes two parameters, absolute paths for current
name and new name. Returns true if successful or false otherwise:

If(SPIFFS.rename("/old_file_name.json","/new_file_name.json")
 Serial.println(F("File renamed."));

Directory object
In case you need to iterate on all the files from a directory you can use the Dir (Directory)
object. There are three methods available to iterate next(), get the name of the next file
file Name() and to open the directory openDir(mode):

SPIFFS doesn't support directories. In fact it produces a flat structure.
Creating a file with path /data/log.txt will create a file called
/data/log.txt instead of log.txt under the directory data.

Dir dir = SPIFFS.openDir("/data");
while (dir.next()) {
 Serial.print(dir.fileName());
 File f = dir.openFile("r");
 Serial.println(f.size());
}

From the preceding code we learn that:

mode from openDir can have the same values as the open function from the
SPIFFS object
dir.next() returns true if there are files in the data directory and must be
called before the fileName() and openFile(mode) functions

Building a Home Thermostat with the ESP8266 Chapter 3

[70]

File object
There are two functions that return a File object, SPIFFS.open and dir.OpenFile and
this File object allows us to read bytes, peek into file, and get the current position in file,
get the name of the file or its size. The following are the various functions used by the File
object:

close: Close the file. No other operations should be performed on the File
object after the close() function was called:

file_name.close();

name: Returns the name of the current file:

String name = my_file.name();

position: Returns the current position in the file in bytes. You can use it if you
are storing same size data and iterare in the file.
seek: Allows you to move into a file. It take two parameters; one is the offset in
the file and the other is the mode. Returns true for success and false otherwise:

my_file.seek(offset, mode);

Parameter mode can have the same values as it has in the fseek() C function:

If mode is SeekSet, the position is set to offset bytes from the beginning

If mode is SeekCur, the current position is moved by offset bytes

If mode is SeekEnd, the position is set to offset bytes from the end of the file

size: Get the current file size in bytes:

Serial.println(my_file.size());

As an example let's create a file, write something in it, and read what was written; if the
GPIO 4 is put to GND, it will format the flash.

If you remember, FS.h needs to be included to have access to the SPIFFS object:

#include "FS.h"

Building a Home Thermostat with the ESP8266 Chapter 3

[71]

Set the interruptPin to value 4, and instantiate the interruptCounter to zero:

const byte interruptPin = 4;
volatile byte interruptCounter = 0;

This function will be called if the GPIO is put to GND. In it it will increment the
interruptCounter and will be verifying its value in the loop() function. Try not to
allocate memory at interrupt level; this is a recipe for disaster:

void handleInterrupt() {
 interruptCounter++;
}

In setup(), we will set the GPIO 4 as input pin and use the attacheInterrupt function
for FALLING (VCC to GND) to trigger the handleInterrupt function. Next we open the
my_file.txt and write a message in it. After the file is closed, it will be opened again, but
now it is in read mode and it will read its content:

 void setup() {
 Serial.begin(115200); delay(10);
 //GPIO 4 format SPIFFS
 pinMode(interruptPin, INPUT_PULLUP);
 attachInterrupt(digitalPinToInterrupt(interruptPin), handleInterrupt,
FALLING);

 if(SPIFFS.begin())
 {
 Serial.println(F("File system was mounted."));
 // open file for writing
 File my_file = SPIFFS.open("/my_file.txt", "w+");
 if (!my_file) {
 Serial.println("file open failed");
 }
 Serial.println(F("Writing to SPIFFS "));
 //print something to my_file.txt
 my_file.println("SPIFFS is cool!");
 //close now the file
 my_file.close();

 // open file for reading. Now I can use other File object
 File f = SPIFFS.open("/my_file.txt", "r");
 if (!f)
 {
 Serial.println(F("Failed to open my_file.txt"));
 }
 //now read the file content
 String s=f.readStringUntil('\n');

Building a Home Thermostat with the ESP8266 Chapter 3

[72]

 Serial.println(s);
 //closing the file now
 f.close();
 }
 else
 {
 Serial.println(F("Failed to mount SPIFFS. Restart"));
 ESP.restart();
 }
}

In the loop file we check for the intrruptCounter value and if it is greater than zero it
will format the filesystem and restart the ESP:

void loop()
{
 if(interruptCounter>0)
 {
 interruptCounter--;
 Serial.println(F("Formating the file system... Please wait!"));
 SPIFFS.format();
 Serial.println(F("Done formating the file system."));
 ESP.restart();
 }
}

The Serial output will show what was read from the file, also the formating messages and
the new restart after that, as seen in the following screenshot:

Output for write, read, and format

Building a Home Thermostat with the ESP8266 Chapter 3

[73]

Now that you have managed to understand the SPIFFS I am sure that you will use it in all
your projects since it is a very handy way to keep configuration data or to store all kinds of
information such as readings from sensors, especially if you are running on batteries. You
can store all the readings in a file in JSON format and once a day connect to Wi-Fi, read the
file, and send all the data at once.

After this long but useful introduction, let's go back to our project, a thermostat using the
ESP8266. To complete this, besides the ESP8266 we need:

Temperature sensor
Relay board

Temperature sensor
There are a lot of temperature sensors that can be used, but for this project we will use a
very common one, the DTH22. It can measure temperature and humidity.

The following are the DHT22 characteristics:

Low cost
3 to 5V power and I/O
5mA max current used during conversion (while requesting data)
Good for 0-100% humidity readings with 2-5% accuracy
Good for -40 to 125°C temperature readings ±0.5°C accuracy
No more than 0.5 Hz sampling rate (once every two seconds)
Body size 15.1mm x 25mm x 7.7mm
4 pins with 0.1" spacing

Building a Home Thermostat with the ESP8266 Chapter 3

[74]

DHT22 can be found as a separate sensor or as a breakout. It is preferrable to buy the
breakout version since it has also the pull-up 4k7 resistor and a capacitor. If you prefer the
sensor alone this is the pinout:

DHT22 pinout

Here:

VCC: can be between 3V3 and 5V
GND: is the ground
DATA: is the data pin

Don't forget to add a 4K7 pull-up resistor between the DATA and VCC pin. For the
connection with a gas furnance or other heating element, a relay will be added on the GPIO
12. Make sure that you have a good power supply since the relay will absorb some energy.

Building a Home Thermostat with the ESP8266 Chapter 3

[75]

In this case, our setup will be:

Final circuit for thermostat

Two LEDs were added, one RED LED to show that heating is in progress and one GREEN
LED to show that the system has power. The green LED will light only when the red one is
not on.

On the relay board, the connection between the C (common) and NO (normal open) exists
only when the GPIO 12 is HIGH, and heating is in progress.

Be careful with the 220V electricity and make sure we choose a relay that
can hold your consumed power.

Basically the thermostat will measure temperature and if it is above the desired one it will
turn the relay OFF and if it is below it will turn the relay ON to start heating.

Building a Home Thermostat with the ESP8266 Chapter 3

[76]

If we do our logic like that the thermostat will turn the relay ON and OFF very often so we
need to add an offset (delta) between the start and stop of heating. On commercial
thermostats this offset can be programmed (in 0.1ºC steps up to 1ºC) or can be fixed like
0.5ºC.

In our system the offset will be set to 0.4ºC. This means that, if our desired temperature is
22.0ºC, the heater will start at 21.6ºC and will stop at 22.4ºC.

To set up the desired temperature on our thermostat we will send a MQTT message to the
topic thermostat/set with the content of desired temperature (for instance 23.2); the
system will save the value in a file with the help of SPIFFS and will compare it with the
current temperature read from the DHT22 sensor. In the event of power failure, the desired
temperature will be read from the configuration file so it is not lost.

When the thermostat is powered on for the first time the desired temperature is hardcoded
to 22ºC. Periodically the thermostat will publish on the thermostat/get the currrent
temperature as it is sensed by the DHT22.

In order to use the DHT22 sensor you will need some libraries for it. Install the Adafruit
Unified Sensor and after that the DHT sensor library following the same procedure like in
the Chapter 1, Getting Started with the ESP8266.

For the Adafruit Unified Sensor search in the Library Manager for Adafruit
Unified Sensor:

Building a Home Thermostat with the ESP8266 Chapter 3

[77]

For the DHT22 library search in the Library Manager for DHT22:

After installing both libraries now we have all the necessary headers are as follows:

#include <FS.h>
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include <DHT.h>

Constants that will be used later in our code are as follows. Make sure that you have
the correct values:

const char* ssid = "YOUR_WIFI_SSID";
const char* password = "YOUR_WIFI_PASSWORD";
const char* mqtt_server = "YOUR_MQTT_SERVER";
const char* mqtt_user = "YOUR_MQTT_USER";
const char* mqtt_passwd = "YOUR_MQTT_PASSWORD";
const int mqtt_port = 1883; //YOUR_MQTT_PORT

The relay module is connected to the GPIO 12, DHT22 to pin 4, and LEDs to GPIO 13 and
GPIO 15 are as follows:

#define RELAY_PIN 12
#define DHTTYPE DHT22
#define DHTPIN 4
#define GREEN_LED 15
#define RED_LED 13

Our global objects and default values for offset and desired temperature:

WiFiClient espClient;
PubSubClient client(espClient);
DHT dht(DHTPIN, DHTTYPE, 11);
long lastMsg = 0;
float offset_temp = 0.4;
float desired_temp = 22.0;
float humidity, temp_f; // Values read from sensor

Building a Home Thermostat with the ESP8266 Chapter 3

[78]

gettemperature() is getting the temperature and humidity from the DHT22 sensor and
saves them into the global variables humidity and temp_f. If you need temperatures in
Fahrenheit, call the dht.readTemperature() function with true as a parameter such as
dht.readTemperature(true);:

void gettemperature()
{
 int runs=0;
 do {
 temp_f = dht.readTemperature(false);
 humidity = dht.readHumidity();

 if(runs > 0)
 {
 Serial.println("##Failed to read from DHT sensor! ###");
 }
// Serial.println(String(temp_f).c_str());
// Serial.println(String(humidity).c_str());
 runs++;
 }
 while(isnan(temp_f) && isnan(humidity));
}

The set-up part is where the pins for relay and LEDs are set as OUTPUT and the green LED
is on as the default on power start, as follows:

void setup() {
 pinMode(RELAY_PIN, OUTPUT);
 pinMode(GREEN_LED, OUTPUT);
 pinMode(RED_LED, OUTPUT);
 digitalWrite(RELAY_PIN, LOW);
 digitalWrite(GREEN_LED, HIGH);
 digitalWrite(RED_LED, LOW);

 Serial.begin(115200);
 setup_wifi();
 client.setServer(mqtt_server, mqtt_port);
 client.setCallback(callback);

 if(SPIFFS.begin())
 {
 Serial.println(F("File system was mounted."));
 //check to see if we have a desired temperature other then default one
 File f = SPIFFS.open("/config_temp.txt", "r");
 if (!f)
 {
 //now read the file content

Building a Home Thermostat with the ESP8266 Chapter 3

[79]

 String s=f.readStringUntil('\n');
 Serial.println(s);
 desired_temp = s.toFloat();
 //closing the file now
 f.close();
 }
 else
 Serial.println(F("Failed to open my_file.txt"));
 }
}

Connect to the Wi-Fi network with the provided credentials, as follows:

void setup_wifi() {

 delay(10);
 // We start by connecting to a WiFi network
 Serial.println();
 Serial.print(F("Connecting to "));
 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED)
 {
 WiFi.begin(ssid, password);

 Serial.print(".");
 delay(5000);
 }
 Serial.println(F("WiFi connected"));
 Serial.println(F("IP address: "));
 Serial.println(WiFi.localIP());
}

The following is the callback function that is triggered when a new MQTT message is
received on the subscribed topic thermostart/set:

void callback(char* topic, byte* payload, unsigned int length)
{
 Serial.print(F("Message arrived ["));
 Serial.print(topic);
 Serial.print(F("] "));

 for (int i = 0; i < length; i++) {
 Serial.print((char)payload[i]);
 }
 Serial.println();

Building a Home Thermostat with the ESP8266 Chapter 3

[80]

 char rxj[20];
 int i;
 for(i=0;i<length;i++)
 {
 rxj[i] = payload[i];
 }

 File my_file = SPIFFS.open("/config_temp.txt", "w+");
 if (!my_file) {
 Serial.println("file open failed");
 }
 Serial.println(F("Writing to config_temp.txt "));
 //print something to my_file.txt
 my_file.println(String(rxj).c_str());
 //close now the file
 my_file.close();
 desired_temp = String(rxj).toFloat();
}

Reconnect to the MQTT server in case some keep alive frames are lost, as shown in the
following code:

void reconnect() {
 // Loop until we're reconnected
 while (!client.connected()) {
 Serial.print(F("Attempting MQTT connection..."));
 if (client.connect("ESP8266Client", mqtt_user, mqtt_passwd))
 {
 Serial.println(F("connected"));
 client.subscribe("thermostat/set");
 } else {
 Serial.print(F("failed, rc="));
 Serial.print(client.state());
 Serial.println(F(" try again in 5 seconds"));
 // Wait 5 seconds before retrying
 delay(5000);
 }
 }
}

The loop function is where our logic for triggering the relay and LEDs ON or OFF exists.
Every two seconds it reads the temperature and checks it with our desired one, as follows:

void loop()
{

 gettemperature();
 if (!client.connected()) {

Building a Home Thermostat with the ESP8266 Chapter 3

[81]

 reconnect();
 }
 client.loop();

 long now = millis();
 if (now - lastMsg > 2000) {
 lastMsg = now;

 if((float)desired_temp - offset_temp >= (float)temp_f)
 {
 //Serial.println(F("Start heating..."));
 digitalWrite(RELAY_PIN, HIGH);
 digitalWrite(GREEN_LED, LOW);
 digitalWrite(RED_LED, HIGH);
 }
 else if((float)desired_temp + offset_temp <= (float)temp_f)
 {
 //Serial.println(F("Stop heating..."));
 digitalWrite(RELAY_PIN, LOW);
 digitalWrite(GREEN_LED, HIGH);
 digitalWrite(RED_LED, LOW);
 }
 client.publish("thermostat/get", String(temp_f).c_str());
 }
}

To set up the temperature you can use a local console of your MQTT broker like we did in
Chapter 2, Building and Configuring Your Own MQTT Server:

mosquitto_pub -t "thermostat/set" -m 28.2 -p 1883 -h YOUR_MQTT_SERVE_IP -u
YOUR_MQTT_USER -P YOUR_MQTT_PASSWORD

And if you subscribe to the thermostat/get topic you will get the current temperature in
your room every two seconds, as shown in the following screenshot:

Room temperature received from MQTT broker

Building a Home Thermostat with the ESP8266 Chapter 3

[82]

For Android phones there is an application called MyMQTT and if your broker is accessible
from the Internet, you can set up your desired temperature when you are not at home; you
can see also the current temperature in your house.

The main menu for this MyMQTT application is as follows:

MyMQTT main screen

Building a Home Thermostat with the ESP8266 Chapter 3

[83]

In the Settings menu, set up the MQTT broker IP address, the MQTT port used, and the
user and password.

After saving the configuration, the application will connect to your broker. To see the
messages from your broker you can subscribe to the # topic; in this case you will see all the
messages received by the broker (as shown in the following screenshot), or to the
thermostart/get to receive just the temperature from your home:

Receive the temperature from thermostat

Building a Home Thermostat with the ESP8266 Chapter 3

[84]

If you are away you can remotely set the thermostat by publishing a message with the
desired temperature to your home thermostat on the topic thermostat/set, as shown in
the following screenshot:

Publish desired temperature to control your thermostat

This basic functional thermostat system taught you how to use SPIFFS to store files and
values, to send and receive values from MQTT brokers, and store them in a file to read
temperature and humidity from a sensor. As an exercise, you can improve the thermostat
with the following functionalities:

Publish the humidity as well
Save the config file as an JSON file

Building a Home Thermostat with the ESP8266 Chapter 3

[85]

Add a chronothermostat functionality to heat your home just between
programmed hours
Add a window open functionality to stop heating the house if the temperature
drops very quickly
Publish the temperature, humidity, and desired temperature as a JSON message
over MQTT
Use reverse logic to cool your house in the hot summers.

Summary
In this chapter, you learned how to save your data to the SPIFFS and how to build and
control a thermostat. So far, the credentials for the Wi-Fi have been hard coded in the code;
in the next chapter we will learn how to use the WiFiManager library to expose an Access
Point. Get the Wi-Fi credentials along with other data and save them to the flash, making
use of SPIFFS.

4
Control Appliances from the

ESP8266
If you want to create an IoT module as a commercial product and sell it, you will need to let
the user configure the Wi-Fi credentials themselves as long as the MQTT server, port,
username and password that will be used by user. All the extra information needs to be
stored on the SPIFFS filesystem so when the module will start will be used to connect to
Wi-Fi and to connect to the MQTT server.

In the first part of this chapter, we will discuss how to build a web server to get Wi-Fi
network credentials with the help of the WiFiManager library, save them to the SPIFFS file,
and in the second part, we will build a module that allows you to control a TV using infra-
red.

By the end of this chapter, you will have gained the knowledge to start your first
commercial IoT product.

Using the WiFiManager library
Until now the SSID and password for connecting the ESP8266 to the Wi-Fi network have
been hardcoded in the sketch using these lines:

const char* ssid = "YOUR_WIFI_SSID";
const char* password = "YOUR_WIFI_PASSWORD";

To stop using the hardcoded values we need to first start the ESP8266 in AP mode and
expose the user as a web interface served by an embedded web server hosted inside the
ESP8266.

Control Appliances from the ESP8266 Chapter 4

[87]

We will learn how to use the WiFiManager library to expose a configuration web page; we
will take the data and save it to a SPIFFS like we did in the previous chapter and use it to
start our module in station mode and connect to an MQTT server.

If you didn't install the WiFiManager library in Chapter 1, Getting Started with the ESP8266
you can do it now, going to Sketch | Include Library | Manage libraries and search for
wifimanager, as seen in the following screenshot:

Installing the WiFiManager library

After the installation of the library, let's see how you can use it to set the Wi-Fi network and
Wi-Fi password.

Use the following code to see how it looks and how to use the WiFiManager:

#include "FS.h"
#include <ESP8266WiFi.h>
#include <DNSServer.h>
#include <ESP8266WebServer.h>
#include <WiFiManager.h>

Control Appliances from the ESP8266 Chapter 4

[88]

In case you need to clear the previously saved values in the SPIFFS you can set init_esp
to true to clean the previously stored Wi-Fi credentials and to format the SPIFFS. This can
be the case when you want to move the ESP8266 module to a different WiFi network.After
you flash the code the setup() function will format the SPIFFS. Change then the value
back to false so you will not format the flash every time when the ESP8266 is starting:

boolean init_esp = false;
void setup()
{
 Serial.begin(115200); delay(10);

 if(init_esp)
 {
 SPIFFS.format();
 WiFi.disconnect();
 }

Instantiate the wifiManager object. This will start the ESP in the access Point mode and a
captive portal that will redirect you to a configuration web page:

 WiFiManager wifiManager;

Set the expiration timeout to 240 seconds:

 wifiManager.setConfigPortalTimeout(240);
 if (!wifiManager.autoConnect("ESP_AP", "changeit"))
 {
 Serial.println(F("Failed to connect. Reset and try again..."));
 delay(3000);
 //reset and try again
 ESP.reset();
 delay(5000);
 }

At this point we are connected now to the Wi-Fi network, after we selected the Wi-Fi
network and password from a web browser:

 //if you get here you have connected to the WiFi
 Serial.println(F("Connected to Wifi."));
 Serial.print(F("My IP: "));
 Serial.println(WiFi.localIP());
}

void loop() {
 //add your code for loop()
}

Control Appliances from the ESP8266 Chapter 4

[89]

After you compile and flash the ESP8266 with this code, take your phone and look for
surrounding Wi-Fi networks. You will see a network named ESP_AP. Connect to it, enter
the password changeit, and click on Sign in to network. If you don't see this message, go
to your web browser and try to access any link or enter 192.168.4.1 in the address bar.
You will be redirected to this page:

WiFiManager main screen

Control Appliances from the ESP8266 Chapter 4

[90]

In this page you will see the access point name that was defined, ESP_AP and four buttons,
which are explained in the following list:

Configure WiFi: Scan surrounding Wi-Fi networks around and it will show you
a list of them together with their signal power. If you have multiple Wi-Fi
networks you can choose the one with the most power, as shown in the following
screenshot:

Configure with scan

Control Appliances from the ESP8266 Chapter 4

[91]

Configure WiFi (No Scan): If your Wi-Fi network has a hidden SSID or your Wi-
Fi network is not online you can enter the name of the network and the
password, skipping the scanning feature, as seen in the following screenshot:

Configure without scanning

Control Appliances from the ESP8266 Chapter 4

[92]

Info: As shown in the following screenshot, this page will read the Chip Id, MAC
address for the access point or Station Mode of the ESP8266, and the flash details
such as flash size and flash Id:

Information about ESP and flash

Reset: Pressing the Reset button will reset the ESP8266 chip. In the Serial console
from the Arduino IDE after the ESP is started, you will see some debug
information about WiFiManager. If you want more information, then add the
following line into your sketch:

wifiManager.setDebugOutput(false);

Control Appliances from the ESP8266 Chapter 4

[93]

After the line:

WiFiManager wifiManager;

After the Wi-Fi network selected and the password introduced, the output in the
serial console will show that the ESP is connected to the Wi-Fi; it will and also
will show the IP address assigned by your router, as shown in the following
screenshot:

You can add a hardware button connected to the GPIO and when the
button is pressed the Wi-Fi credentials can be deleted, the flash can be
formatted or some files from it can be deleted; thus, so you are not forced
to flash the sketch if you want to change the Wi-Fi network, or the Wi-Fi
password.

Control Appliances from the ESP8266 Chapter 4

[94]

Adding parameters to the WiFiManager setup
page and saving them into the file
So far, the only parameters saved from the WiFiManager page were the SSID and
password for your network. Let's add other parameters such as the MQTT server, port,
user, password and topic and save them to a configuration file located in the SPIFFS:

#include <FS.h>
#include <ESP8266WiFi.h>
#include <PubSubClient.h>
#include <DNSServer.h>
#include <ESP8266WebServer.h>
#include <WiFiManager.h>
#include <ArduinoJson.h>

Define the CLIENT_ID that will be used to connect to the MQTT broker later:

#define CLIENT_ID "ESP_%06X"

Define your default values here; if there are different values in config.json, they are
overwritten:

char mqtt_server[40];
char mqtt_port[6] = "1883";
char mqtt_user[32];
char mqtt_pass[32];
char mqtt_topic[64];

char dev_name[50];

Set to true if you want to initialize the ESP again:

boolean clean_g = false;

WiFiClient espClient;
PubSubClient client(espClient);

Control Appliances from the ESP8266 Chapter 4

[95]

This function will be triggered when the ESP8266 receives a message from the MQTT
broker:

void mqtt_callback(char* topic, byte* payload, unsigned int length) {
 char rxj[512];
 for (int i = 0; i < length; i++) {
 rxj[i] = payload[i];
 }
 Serial.println(rxj);
}

//flag for saving data
bool saveConfig = false;

//callback notifying us of the need to save config
void saveConfigToFileFn () {
 Serial.println("Should save config");
 saveConfig = true;
}

This setup function is doing all the work; starting the WiFiManager, saving the entered
data into the config.json file on the SPIFFS, reading the content of the file every time the
ESP8266 starts and giving you access to all the saved data:

void setup() {
 // put your setup code here, to run once:
 Serial.begin(115200); delay(10);
 sprintf(dev_name, CLIENT_ID, ESP.getChipId());

 if(clean_g)
 {
 Serial.println(F("\n\nWait...I am formatting the FLASH !!!"));
 SPIFFS.format();
 Serial.println(F("Done!"));
 WiFi.disconnect(true);
 }

If the config.json file exists, read its content, which is JSON formatted, and set the mqtt
variables to their corresponding values:

 if (SPIFFS.begin()) {
 Serial.println("mounted file system");
 if (SPIFFS.exists("/config.json")) {
 //file exists, reading and loading
 Serial.println("reading config file");
 File configFile = SPIFFS.open("/config.json", "r");
 if (configFile) {
 Serial.println("opened config file");

Control Appliances from the ESP8266 Chapter 4

[96]

 size_t size = configFile.size();
 // Allocate a buffer to store contents of the file.
 std::unique_ptr<char[]> buf(new char[size]);

 configFile.readBytes(buf.get(), size);
 DynamicJsonBuffer jsonBuffer;
 JsonObject& json = jsonBuffer.parseObject(buf.get());
 json.printTo(Serial);
 if (json.success()) {
 Serial.println("\nparsed json");

 strcpy(mqtt_server, json["mqtt_server"]);
 strcpy(mqtt_port, json["mqtt_port"]);
 strcpy(mqtt_user, json["mqtt_user"]);
 strcpy(mqtt_pass, json["mqtt_pass"]);
 strcpy(mqtt_topic, json["mqtt_topic"]);

 } else {
 Serial.println("failed to load json config");
 }
 }
 }
 } else {
 Serial.println("failed to mount FS");
 }

Add custom parameters to the WiFiManager so they're available when the user wants to
set them through the web interface:

 WiFiManagerParameter custom_mqtt_server("server", "mqtt server",
mqtt_server, 40);
 WiFiManagerParameter custom_mqtt_port("port", "mqtt port", mqtt_port, 5);
 WiFiManagerParameter custom_mqtt_user("user", "mqtt user", mqtt_user,
32);
 WiFiManagerParameter custom_mqtt_pass("pass", "mqtt pass", mqtt_pass,
32);
 WiFiManagerParameter custom_mqtt_topic("topic", "mqtt topic", mqtt_topic,
64);

 WiFiManager wifiManager;

 wifiManager.setSaveConfigCallback(saveConfigToFileFn);

 wifiManager.addParameter(&custom_mqtt_server);
 wifiManager.addParameter(&custom_mqtt_port);
 wifiManager.addParameter(&custom_mqtt_user);
 wifiManager.addParameter(&custom_mqtt_pass);
 wifiManager.addParameter(&custom_mqtt_topic);

Control Appliances from the ESP8266 Chapter 4

[97]

Start the WiFiManager Access Point with the name ESP_AP.

 if (!wifiManager.autoConnect("ESP_AP"))
 {
 Serial.println(F("failed to connect and hit timeout"));
 delay(3000);
 //reset and try again, or maybe put it to deep sleep
 ESP.reset();
 delay(5000);
 }

 Serial.println(F("WiFi is connected now..."));

Read the updated parameters from the web page:

 strcpy(mqtt_server, custom_mqtt_server.getValue());
 strcpy(mqtt_port, custom_mqtt_port.getValue());
 strcpy(mqtt_user, custom_mqtt_user.getValue());
 strcpy(mqtt_pass, custom_mqtt_pass.getValue());
 strcpy(mqtt_topic, custom_mqtt_topic.getValue());

Now that we have received all necessary parameters from the web page, save them to the
file config.json. This file is read when the ESP8266 starts:

 if (saveConfig) {
 Serial.println("saving config");
 DynamicJsonBuffer jsonBuffer;
 JsonObject& json = jsonBuffer.createObject();
 json["mqtt_server"] = mqtt_server;
 json["mqtt_port"] = mqtt_port;
 json["mqtt_user"] = mqtt_user;
 json["mqtt_pass"] = mqtt_pass;
 json["mqtt_topic"] = mqtt_topic;

 File configFile = SPIFFS.open("/config.json", "w");
 if (!configFile) {
 Serial.println(F("failed to open config file for writing"));
 }

 json.printTo(Serial);
 json.printTo(configFile);
 configFile.close();
 //end save
 }

Control Appliances from the ESP8266 Chapter 4

[98]

Now that the ESP8266 is connected to the Wi-Fi network, the only thing left is to connect to
the MQTT broker with the credentials from the config.json file and subscribe to a topic:

 Serial.println(F("My IP address: "));
 Serial.println(WiFi.localIP());
 //connect to mqtt server
 client.setServer(mqtt_server, atoi(mqtt_port));
 client.setCallback(mqtt_callback);
 if (client.connect(dev_name , mqtt_user, mqtt_pass))
 {
 Serial.println(F("Connected to MQTT broker"));
Serial.println(F("Subscribe to your mqtt_topic now"));
 }

}

void loop() {
 // put your main code to runin loop
client.loop();
}

In conclusion, this is what you can do with the WiFiManager library; create a captive portal
that allows you to set up your ESP8266 with Wi-Fi credentials and custom parameters. You
can use this library in any project where you would like to give users ability to configure
their ESPs with different values.

ESP8266 and Infrared communication
In the previous chapters the ESP866 has been controlling relays, reading temperature and
humidity, but not all the appliances around the house can be controlled with a relay. There
are some of them that can be controlled using the infrared like TV or air-conditioning Now
let's see how we can use ESP8266 to turn on/off a Panasonic TV. This can be extended to
other TV brands by modifying the addresses and values.

Control Appliances from the ESP8266 Chapter 4

[99]

Hardware components
To complete this project you will need:

ESP8266
Infrared LEDs (maybe from an old remote)
Some 100-ohm resistors (depending on the number of your infrared LEDs, one
per LED)
One 1-Kilo Ohm resistor
One 2N2222 NPN transistor

Use the following schematic for the hardware part of this project:

Connect the output pin to the GPIO 12 from the ESP8266 the ground to the GND pin, and
5V to 5V from your ESP.

Control Appliances from the ESP8266 Chapter 4

[100]

Software and libraries for this project
First let's install the library IRremoteESP8266. For that go to Sketch | Include
Library | Manage Libraries... and search for IRremoteESP8266 library like in the
following screenshot:

After the library is installed and the connections to the ESP are done, let's use the following
code to send over an MQTT topic a command to open or close a Panasonic TV. Since the
same Infrared command is used to power on or power off, you just need to receive
something on the MQTT topic to send an infrared command to the TV:

#include <ArduinoJson.h>
#include <ESP8266WiFi.h>
#include <ESP8266mDNS.h>
#include <WiFiUdp.h>
#include <PubSubClient.h>
#include <IRremoteESP8266.h>
#include <IRsend.h>

#define PanasonicAddress 0x4004
#define PanasonicPower 0x100BCBD // Panasonic Power button

Control Appliances from the ESP8266 Chapter 4

[101]

Add your Wi-Fi and MQTT credentials in the next variables:

#define wifi_ssid "YOUR_WIFI_SSID"
#define wifi_password "YOUR_WIFI_PASS"

#define mqtt_server "YOUR_MQTT_SERVER"
#define mqtt_user "YOUR_MQTT_USER"
#define mqtt_password "YOUR_MQTT_PASSWORD"
#define mqtt_port 1883

Set the infrared pin to the GPIO12 or D6 on NodeMCU and WeMos boards and the topic on
which will receive the messages to turn on/off the TV:

#define IR_PIN 12
#define ir_topic "/62/ir/command"

void rx_mqtt_callback(char* topic, byte* payload, unsigned int length);

#define DEBUG false
#define Serial if(DEBUG)Serial
#define DEBUG_OUTPUT Serial

IRsend irsend(IR_PIN); // IR led is connected to GPIO pin
WiFiClient espClient;
PubSubClient client(mqtt_server, mqtt_port, rx_mqtt_callback,espClient);

StaticJsonBuffer<512> jsonDeviceStatus;
JsonObject& jsondeviceStatus = jsonDeviceStatus.createObject();

char dev_name[50];
char json_buffer_status[512];
char my_ip_s[16];

Start the Wi-Fi and connect to the Wi-Fi network:

void setup_wifi()
{
 delay(10);
 // We start by connecting to a WiFi network
 Serial.println();
 Serial.print("Connecting to ");
 Serial.println(wifi_ssid);

 WiFi.mode(WIFI_STA);
 WiFi.begin(wifi_ssid, wifi_password);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");

Control Appliances from the ESP8266 Chapter 4

[102]

 }

 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}

Connect and reconnect to the MQTT broker. In the event of an error try to reconnect every 5
seconds:

void reconnect() {
 // Loop until we're reconnected
 while (!client.connected()) {
 Serial.print("Attempting MQTT connection...");
 if (client.connect(dev_name, mqtt_user, mqtt_password)) {
 Serial.println("connected");
 } else {
 Serial.print("failed, rc=");
 Serial.print(client.state());
 Serial.println(" try again in 5 seconds");
 // Wait 5 seconds before retrying
 delay(5000);
 }
 }
}

This is the function that will be called when a message is received from the MQTT broker.
Get the message and send the infrared commands to the TV:

void rx_mqtt_callback(char* topic, byte* payload, unsigned int length)
{
 //reserve space for incomming message
 StaticJsonBuffer<256> jsonRxMqttBuffer;
 int i = 0;
 char rxj[256];
 Serial.println(dev_name);
Serial.print(F("Topic:"));Serial.println(topic);
 for(i=0;i<length;i++)
 {
 rxj[i] = payload[i];
 }

 Serial.println(rxj);
 JsonObject& root = jsonRxMqttBuffer.parseObject(rxj);
 if (!root.success())
 {
 Serial.println(F("parseObject() failed"));

Control Appliances from the ESP8266 Chapter 4

[103]

 return;
 }

 const char* device_name = root["device_name"];
 const char* type = root["type"];
 const char* value = root["value"];

 Serial.println(device_name);
 Serial.println(type); Serial.println(value);

 sendIR();

 return;
}

Here we send the message code to the TV. If it doesn't work the first time, try going closer
to the TV. It depends on the quality of your IR LEDs, the number of infrared LEDs, and the
ambient light:

void sendIR()
{
 int i = 0;
 Serial.print("sendIR for 2 sec");
 for(i=0;i<20; i++)
 {
 irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should
turn your TV on and off
 delay(100);
 }
}
void setup()
{
 delay(1000);
 irsend.begin();
 Serial.begin(115200);
 sprintf(dev_name, "ESP_%d", ESP.getChipId());
 setup_wifi();
 client.setServer(mqtt_server, mqtt_port);
 client.connect(dev_name, mqtt_user, mqtt_password);
 client.subscribe(ir_topic);
 if (!client.connected())
 {
 reconnect();
 }
}
void loop() {
 client.loop();
}

Control Appliances from the ESP8266 Chapter 4

[104]

Now, using the MyMQTT Android application, try to send a command to the ir_topic to
start or stop the TV.

As you have probably already noticed I didn't use the WiFiManager to set up the ESP8266,
but this is a very good exercise for you to complete the chapter and the project. Study the
LIRC library from Linux and try to find other devices that can be controlled with Infrared
and the ESP8266.

Summary
In this chapter you learned how to use WiFiManager to set up Wi-Fi and add parameters to
the configuration file, saved the received values to the SPIFFS, read the values at startup
time, and used them to connect to a MQTT broker. Finally, you sent infrared commands to
control additional devices such as an air conditioner, TV, and so on.

5
Using ESP8266 to Build a

Security System
We all are interested in knowing what is happening at home when we are not in. Either it is
about security or critical elements such as gas, fire, or water. Knowing in the moment when
something wrong is happening is vital to minimizing the eventual damage. In this chapter,
we will focus on the PIR sensor, but the same principles apply to other sensors, such as
moisture, gas, or smoke sensors.

Passive infrared sensor
PIR is the most common sensor used in the indoor and outdoor alarm systems. It is also
used in automated doors and automated lights systems.

How PIRs work
The functionality of the PIR sensor is based on radiation emitted by human bodies. Objects
generate heat as infrared radiation and those objects include animals and the human body
whose radiation is strongest at a wavelength of 9.4 μm.

When a human passes the front of the sensor, the temperature from the PIR sensor point of
view changes from the background value to the human value. The sensor detects this
change in the infrared radiation and changes its output voltage, signaling the detection.

Using ESP8266 to Build a Security System Chapter 5

[106]

To increase the sensitivity of the PIR sensor, a Fresnel lens is mounted in front of it. A
sensor is in fact a FET transistor with a source pin connected with a pull down to ground.
We can see this setup in the following figure:

In the following image, we can see a Fresnel lens made from plastic:

Using ESP8266 to Build a Security System Chapter 5

[107]

The sensor itself is located under the dome Fresnel lens and it has an infrared filter in front
of it.

Here we can see a DYP-ME003:

The module presented here is DYP-ME003 and it costs you around one dollar per module.
Principal characteristics for this module are:

Angle sensor < 100 degress cone angle
Board dimensions 32 mm x 24 mm
Operating temperature -17 to 70 degrees Celsius

Using ESP8266 to Build a Security System Chapter 5

[108]

Output level High 3.3 V / Low 0 V
Operating voltage 4.5-20 V
Adjustable delay time of 5 to 200 seconds
Selectable trigger repeated / non repeated trigger

On the module there are two variable resistors that allow you to modify two things:

Sensitivity: This is basically the distance from where the sensor will sense a
person. Rotate clockwise to adjust the distance and the sensing range increases
(about 7 meters); rotate anti-clockwise and the sensing range decreases to about 3
meters.
Time: If you rotate a potentiometer clockwise it will increase the time when the
output is held in high delay (about 300 S), the other way and the time decrease to
about five seconds.

Using ESP8266 to Build a Security System Chapter 5

[109]

Testing the PIR module
For now, let's test the PIR module to check that it is working. In order to achieve this you
will need:

An ESP8266 module (NodeMCU, WeMos, or an other board)
A PIR module
A Breadboard
Wires

Using ESP8266 to Build a Security System Chapter 5

[110]

For the software part use the following sketch:

Define the PIR as it will be connected to the D7 pin, set the pirState to LOW
assuming that the PIR is OFF, and set the current state to 0:

#define PIN_PIR D7
int pirState = LOW;
int current_value = 0;

During setup we will declare the D7 pin where the PIR is connected to an input
pin:

void setup() {
 pinMode(PIN_PIR, INPUT);
 Serial.begin(115200);
}

Now continually monitor the PIN_PIR and expect a change to its state. If a change occurs
then print on to the serial console the message: Sensor detected motion! and when it
timeouts the message: Motion ended... and change the pirState to LOW:

void loop(){
 current_value = digitalRead(PIN_PIR);
 if (current_value == HIGH) {
 if (pirState == LOW) {
 Serial.println(F("Sensor detected motion!"));
 // We only want to print on the output change, not state
 pirState = HIGH;
 }
 }
 else
 {
 if (pirState == HIGH){
 Serial.println(F("Motion ended..."));
 pirState = LOW;
 }
 }
}

As we can see, this sketch is just for testing the PIR so you can play and configure the
sensitivity and the timing that you want for your project. To use this sensor just for
triggering on or off a light you need to add a relay.

Using ESP8266 to Build a Security System Chapter 5

[111]

If you want to add a relay to light a lamp on or off when you enter a room, you need to add
a relay and change the code a bit:

Now the code for adding the relay will be:

#define PIN_PIR D7 //GPIO13
#define RELAY_PIN D6 //GPIO12
int pirState = LOW;
int current_value = 0;

Just set the RELAY_PIN as an output pin:

void setup() {
 pinMode(PIN_PIR, INPUT);
 pinMode(RELAY_PIN, OUTPUT);
 Serial.begin(115200);
}

Using ESP8266 to Build a Security System Chapter 5

[112]

If the motion is detected, trigger the relay and turn on the lamp. Stop the lamp through the
relay when motion is ended:

void loop(){
 current_value = digitalRead(PIN_PIR);
 if (current_value == HIGH) {
 if (pirState == LOW) {
 Serial.println(F("Sensor detected motion!"));
 // We only want to print on the output change, not state
 pirState = HIGH;
 digitalWrite(RELAY_PIN,HIGH);
 }
 }
 else
 {
 if (pirState == HIGH){
 Serial.println(F("Motion ended.."));
 pirState = LOW;
 digitalWrite(RELAY_PIN,LOW);
 }
 }
}

After compiling and flashing the software, try to move in front of the sensor. In the serial
monitor you will see messages that the motion was detected and you will also hear the
mechanical relay clicks. If you wired a lamp to the relay, the lamp should go on or off:

Using ESP8266 to Build a Security System Chapter 5

[113]

Connecting the PIR module to the internet
Everything that we did until now can also be achieved with an Arduino, so where is the
value added by the ESP8266? Well, what if you receive a notification as an email and a
sound on your phone when a motion is detected at home. Also, you can later combine the
detected motion with turning on lights, the TV, or turning on an alarm siren.

In order to do this, we will use a library named blynk that can be downloaded from the
following link:

https://github.com/blynkkk/blynk-library or their mobile application.

Now we shall see how to set it up:

First let's download and install the library:1.

https://github.com/blynkkk/blynk-library

Using ESP8266 to Build a Security System Chapter 5

[114]

Click the Download ZIP button. Then go to Sketch | Include Library | Add .ZIP2.
library...:

Locate the downloaded ZIP file and install the library.3.

It's time now to install the Android application so we can use it later:

Go to Google Play Store and search for Blynk - Arduino, ESP8266, Rpi,1.
and install the application:

Using ESP8266 to Build a Security System Chapter 5

[115]

Let's focus first on the Android application. Open the application and create an2.
account in the Blynk application:

Using ESP8266 to Build a Security System Chapter 5

[116]

After that, click on New Project, set the project name, the hardware type to3.
ESP8266, the theme for your application - dark or light, and continue by pressing
the Create button. The project is created and an email with a token is sent to your
email address used for registration. Also, this token can be found later in the
Project Settings tab:

Using ESP8266 to Build a Security System Chapter 5

[117]

Now the project is created, the token is on the email and we are in the main4.
screen application from where we can add LEDs and notifications on to it. In
order to do that press the + icon:

After you have added all the elements, the main screen of your application needs5.
to look like this:

Using ESP8266 to Build a Security System Chapter 5

[118]

Now it is time to configure the LEDs to some virtual pins (V1 and V2), add the6.
email address where the notification will be sent, and set up the sound that will
be played by your phone if the device is going offline or a new notification is sent
by the Blynk cloud server:

Virtual LED 1:

Using ESP8266 to Build a Security System Chapter 5

[119]

The Virtual LED 2:

Using ESP8266 to Build a Security System Chapter 5

[120]

The Email Settings:

Using ESP8266 to Build a Security System Chapter 5

[121]

The Notification Settings:

Using ESP8266 to Build a Security System Chapter 5

[122]

In this moment, the application is ready to be started. If you want to skip all these steps for
creating the elements, you can scan the following QR code that will add and set up
everything for you. You will just need to change the email address in the email notification
element.

The ESP8266 PIR security code
For the ESP8266 and PIR module to work with the defined Blynk application, it includes
the Blynk header, the Simple timer, and defines the BLYNK_PRINT as serial for debugging
purposes. You need to run the following code:

#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
#include <SimpleTimer.h>

Go to the Mobile application and then to Project Settings and email yourself the
app_token:

char app_token[] = "TOKEN_FROM_EMAIL";
SimpleTimer timer;
char ssid[] = "YOUR_WIFI_NETWORK";
char pass[] = "YOUR_PASSWORD";
int state;
int counter=0;
int flag=1;
WidgetLED led1(V1);
WidgetLED pirLED(V2);

Using ESP8266 to Build a Security System Chapter 5

[123]

This is the timer function that will be called every second to check the status of the PIR
pin. All the logic for the ESP8266 application is in this function:

void timer_ev()
{
 counter = counter+1;
 if(counter==5)
 {
 pirLED.off();
 counter=0;
 flag = 1;
 }
 int pirStatus = digitalRead(D7);
 if (pirStatus)
 {
 if (flag == 1)
 {
 Serial.println(F("Sensor detected motion!"));
 Blynk.email("bcatalin@gmail.com","Subject: Security alert!",
"Movement detected!");
 Blynk.notify("Security alert! Someone is in the house!");
 digitalWrite(D4, LOW);
 led1.on();
 pirLED.on();
 flag=2;
 }
 }
}

Set up the Blynk with the mobile application token, and start the Wi-Fi connection with the
ssid and pass for the router. You can modify the Wi-Fi setup using the WiFiManager so
as not to hardcode the values in the code. Also, you can add the
MQTT PubSubClient library and send Mosquitto a JSON message on a specific topic so
that other devices are subscribed to receive the message. For example, you build a siren that
will subscribe to the alarm topic, where the module will publish the alarm event. By
receiving the alarm message the siren can start its horn. If a light system is subscribing to
the alarm topic on receiving the alarm message it can start all the lights in the house:

void setup()
{
 Serial.begin(115200);
 Blynk.begin(app_token, ssid, pass);
 pinMode(D4, OUTPUT);
 timer.setInterval(1000L, timer_ev);
}
BLYNK_WRITE(V0)
{

Using ESP8266 to Build a Security System Chapter 5

[124]

 state = param.asInt();
 if (state == 1){
 digitalWrite(D4, LOW);
 led1.on();
 }
 else {
 digitalWrite(D4, HIGH);
 led1.off();
 }
}

In the loop function, just run the timer and Blynk:

void loop()
{
 Blynk.run();
 timer.run();
}

Now move yourself in front of the sensor and you will start receiving messages from the
Blynk application on your mobile. Also check the Serial Monitor for messages:

Using ESP8266 to Build a Security System Chapter 5

[125]

And the message received on the phone will be:

Please notice that the interval for sending messages on Blynk is 15 seconds and also that the
maximum number of emails for Gmail is 500 per day.

Using ESP8266 to Build a Security System Chapter 5

[126]

Summary
Now you can build a security system in no time, but the security is not limited to PIR
sensors, you can add other sensors to it, such as CO2 or gas, or sensors for detecting water
leaks or smoke, and you can create a dependency between them. For example, if you have a
broken pipe in the house and the water leak sensor detects water you will be notified in the
Blynk application, but also another ESP8266 that is subscribing to the leak topic can close
the main valve so the damage is limited by the time you arrive home.

6
Securing Your Data

In Chapter 2, Building and Configuring Your Own MQTT Server, you have learned about the
MQTT protocol, how a topic is constructed, and how to install and configure a mosquitto
broker. At that time, you used a local configuration file to add a user and a password to be
used as an authentication method for a local broker. How about the time the packets are
travelling from your ESP8266 module to a cloud mosquitto instance? To encrypt the
packets, you need to enable security on mosquitto and send encrypted packets from your
ESP8266.

Enabling encryption on mosquitto
To enable encryption on mosquitto, you need first to have certificates. You can buy them
from a company that is issuing certificates or you can generate them yourself as self-sign
certificates.

Installing the openssl package
First, verify that you have the openssl package installed and it has a newer version
(1.0.2g), as seen in the following screenshot:

Securing Your Data Chapter 6

[128]

If you don't have openssl installed you need to install it first, using the following
command:

sudo apt install openssl on Ubuntu

Or use the following command:

yum install openssl on CentOS/Redhat

Generating your own certificates
First go to /etc/mosquitto/certs and issue the following command:

sudo openssl req -x509 -newkey rsa:1024 -keyout ca.crt -out cert.crt -days
9999

You will then be invited to fill some details, as seen in the following screenshot, about the
owner of the certificate, such as country of residence, state, company, city, email address,
and the most important one is the Fully Qualified Domain Name (FQDN). That needs to
be your server domain or your server IP address if you don't have a domain name for it:

When you are asked about a passphrase you need to enter one that is more than four
characters. Don't worry, in the next step we will delete it from the certificate.

Securing Your Data Chapter 6

[129]

The result of the preceding command should be two files located in the
/etc/mosquitto/certs directory:

The following command removes the previous passphrase and generates a new file:

sudo openssl rsa -in ca.crt -out newca.pem

Input file for this command is the ca.crt and it will produce a file names newca.pem with
the passphrase removed. We can see this in the following screenshot:

In the end, you should have three files in /etc/mosquitto/certs:

Note: In the mosquitto configuration you will need only two of the three
files cert.crt and newca.pem. Make sure that the ca.crt is stored
securely outside of your server. Make sure that the certificates are
accessed only by the mosquitto user. The mosquitto broker in production
should also be started by the mosquitto user and not be the root user.

Securing Your Data Chapter 6

[130]

Now that you have the right files with the certificates let's configure mosquitto to take them
into account. If you want to have two ports unsecure such as 1883 and for the WebSockets
connection 9004, you can add, for example, 8883 as a secure port and 9883 as a
WebSocket Secure (WSS) port.

To configure mosquitto you need to edit the configuration file mosquitto.conf located in
/etc/mosquitto/. The new content of the file should be:

Restart your mosquitto service to start with the new configuration, using the following
command:

sudo service mosquitto restart

Securing Your Data Chapter 6

[131]

Now you can check that mosquitto has been started correctly and you don't have errors in
the mosquitto.conf, by looking to /var/log/mosquitto/mosquitto.log:

If there are no errors, you can proceed to connect your clients to the new secure ports.

Securing a connection between ESP8266
and an MQTT broker
If you don't want to have your own broker, but you want a secure MQTT connection you
can use a cloud MQTT instance, such as http:/ /iotcentral. eu.

First create an account on iotcentral.eu and confirm your email address. After that you
can log in to iotcental.eu and get your private assigned topic. It is an eight character
code, such as c5c05211, and this code needs to precede all of your topics as follows:

c5c05211/living/temperature

No matter if you publish or subscribe. The following code connects to the Wi-Fi and then
establishes a secure connection to the iotcentral.eu cloud MQTT over port 8883. Every
message sent to the iotcentral.eu broker is received back like a loopback.

Included header files are the ESP8266WiFi and the PubSubClient MQTT class:

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

GPIO 12 will be used later to blink a LED every time a message is received and GPIO 13
will be changed to HIGH every time a message with content 1 is received, and to LOW if the
message payload is 0:

#define PIN_12 12
#define PIN_13 13

http://iotcentral.eu
http://iotcentral.eu
http://iotcentral.eu
http://iotcentral.eu
http://iotcentral.eu
http://iotcentral.eu
http://iotcentral.eu

Securing Your Data Chapter 6

[132]

Define here the values for the Wi-Fi network, SSID, and password, along with the MQTT
server used (in this example iotcentral.eu was used, but you can use a local one),
username, password, and base topic (we need to take this from iotcentral.eu in your
account):

const char* ssid = "YOUR_WIFI_SSID";
const char* password = "YOUR_WIFI_PASSWORD";
const char* mqtt_server = "iotcentral.eu";
const char* mqtt_username = "email@email.com"; //email address used on
iotcentral.eu
const char* mqtt_password = "*******"; //your password used on
iotcentral.eu
#define MQTT_CLIENT_ID "ESP_%06X"
#define BASE_TOPIC "c5c05211" //get it from iotcentral.eu
char dev_name[11];

If in the other examples in the book, the WiFiClient class was used for non-secure
connection, here the WiFiClientSecure class will be used to create the espClient object:

WiFiClientSecure espClient;
PubSubClient client(espClient);
long lastMsg = 0;
char msg[50];
int value = 0;

In the setup function, we will connect the ESP8266 to the provided Wi-Fi network and
write into the client object the MQTT server that will be used and the port. In previous
examples, port 1883 was used. The broker is listening on port 8883 for a secure connection
to the 8883 port is provided:

void setup()
{
 pinMode(PIN_12, OUTPUT);
 digitalWrite(PIN_12, LOW);
 pinMode(PIN_13, OUTPUT);
 digitalWrite(PIN_13, LOW);
 sprintf(dev_name, MQTT_CLIENT_ID, ESP.getChipId());
 Serial.begin(115200);
 setup_wifi();
 client.setServer(mqtt_server, 8883);
 client.setCallback(callback);
}

Securing Your Data Chapter 6

[133]

Use the following to start the Wi-Fi connection:

void setup_wifi() {
 delay(10);
 // First connect to WiFi network
 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected. My IP address: ");
 Serial.println(WiFi.localIP());
}

This is the callback function that is called every time a message is received from the
broker. If an LED is connected on the GPIO 12 then it will light for 50 ms every time a
message is received:

void callback(char* topic, byte* payload, unsigned int length) {
 digitalWrite(PIN_12,HIGH);
 delay(50);
 digitalWrite(PIN_12,LOW);
 Serial.print("Message arrived [");
 Serial.print(topic);
 Serial.print("] ");
 for (int i = 0; i < length; i++) {
 Serial.print((char)payload[i]);
 }
 Serial.println("");
 // Switch ON the LED connected to PIN_13 if an '1' message was received
on any topic
 if ((char)payload[0] == '1') {
 digitalWrite(PIN_13, HIGH); // Turn the LED on
 }
 else if ((char)payload[0] == '0')
 {
 digitalWrite(PIN_13, LOW);
 }
}

Securing Your Data Chapter 6

[134]

If the connection with the broker is lost, try to reconnect. If you want to make this more
robust, you can also verify the Wi-Fi connection and try to reconnect to the Wi-Fi router
and then to the MQTT broker:

void reconnect() {
 // Loop until we're reconnected
 while (!client.connected()) {
 Serial.print("Start MQTT connection...");
 if (client.connect(dev_name, mqtt_username, mqtt_password)) {
 Serial.print("connected to MQTT broker");
 Serial.println(mqtt_server);
 client.subscribe(BASE_TOPIC"/#");
 } else {
 Serial.print("Failed to connect. Error code: ");
 Serial.println(client.state());
 Serial.println(" try again in 5 seconds");
 // Disconnect and wait 5 seconds before retrying
 client.disconnect();
 delay(5000);
 }
 }
}

The main loop code checks if the ESP8266 is still connected to the iotcentral.eu MQTT
broker. In case of failure, it will try to reconnect. Every second increment a value and
publish this value in a message to the broker:

void loop() {
 if (!client.connected()) {
 Serial.println("Reconnect to the broker....");
 reconnect();
 }
 client.loop();

 long now = millis();
 if (now - lastMsg > 1000) {
 lastMsg = now;
 ++value;
 snprintf (msg, 75, "Sending message #%ld", value);
 Serial.print("Send to MQTT broker message: ");
 Serial.println(msg);
 client.publish(BASE_TOPIC"/outTopic", msg);
 }
}

Securing Your Data Chapter 6

[135]

Because in the reconnect function, we subscribed to:

client.subscribe(BASE_TOPIC"/#");

and we are publishing to:

client.publish(BASE_TOPIC"/outTopic", msg);

Every time a message is sent the broker will send it back. Open the serial terminal and you
will see the following messages:

Message arrived [c5c05211/outTopic] Sending message #2048
Send to MQTT broker message: Sending message #2049
Message arrived [c5c05211/outTopic] Sending message #2049
Send to MQTT broker message: Sending message #2050
Message arrived [c5c05211/outTopic] Sending message #2050
Send to MQTT broker message: Sending message #2051
Message arrived [c5c05211/outTopic] Sending message #2051
Send to MQTT broker message: Sending message #2052
Message arrived [c5c05211/outTopic] Sending message #2052
Send to MQTT broker message: Sending message #2053
Message arrived [c5c05211/outTopic] Sending message #2053
Send to MQTT broker message: Sending message #2054
Message arrived [c5c05211/outTopic] Sending message #2054

Working offline
If your data is more sensitive and you don't want to share it across the Wi-Fi network or
you don't have Wi-Fi connectivity, a solution is to store your data on an SD card.

Let's see how data can be stored on an SD card.

Securing Your Data Chapter 6

[136]

Necessary hardware that will be used:

Wemos D1 mini:

microSD card shield:

Securing Your Data Chapter 6

[137]

microSD card:

Since the microSD card is a shield for the Wemos D1 mini, it is easy to stack them; you just
need to solder the pins that are coming into the package:

Securing Your Data Chapter 6

[138]

Let's determine the size of the SD card with the following sketch.

Include the SPI.h and the SD library:

#include <SPI.h>
#include <SD.h>

Set up variables using the SD utility library functions:

Sd2Card card;
SdVolume volume;
SdFile root;
const int chipSelect = D8;

In the setup function, we will determine if the card is inserted or not and the card details
will be read over SPI:

void setup()
{
 Serial.begin(115200);
 Serial.print("\nInitializing SD card...");

Use the initialization code from the utility libraries:

 if (!card.init(SPI_HALF_SPEED, chipSelect)) {
 Serial.println("initialization failed. Things to check:");
 Serial.println("* is a card inserted?");
 Serial.println("* is your wiring correct?");
 Serial.println("* did you change the chipSelect pin to match your
shield or module?");
 return;
 } else {
 Serial.println("Wiring is correct and a card is present.");
 }
 // print the type of card
 Serial.print("\nCard type: ");
 switch (card.type()) {
 case SD_CARD_TYPE_SD1:
 Serial.println("SD1");
 break;
 case SD_CARD_TYPE_SD2:
 Serial.println("SD2");
 break;
 case SD_CARD_TYPE_SDHC:
 Serial.println("SDHC");
 break;
 default:
 Serial.println("Unknown");

Securing Your Data Chapter 6

[139]

 }
 // Now we will try to open the 'volume'/'partition' - it should be FAT16
or FAT32
 if (!volume.init(card)) {
 Serial.println("Could not find FAT16/FAT32 partition.\nMake sure you've
formatted the card");
 return;
 }
 // print the type and size of the first FAT-type volume
 uint32_t volumesize;
 Serial.print("\nVolume type is FAT");
 Serial.println(volume.fatType(), DEC);
 Serial.println();
 volumesize = volume.blocksPerCluster(); // clusters are collections of
blocks
 volumesize *= volume.clusterCount(); // we'll have a lot of
clusters
 volumesize *= 512; // SD card blocks are
always 512 bytes
 Serial.print("Volume size (bytes): ");
 Serial.println(volumesize);
 Serial.print("Volume size (Kbytes): ");
 volumesize /= 1024;
 Serial.println(volumesize);
 Serial.print("Volume size (Mbytes): ");
 volumesize /= 1024;
 Serial.println(volumesize);
 Serial.println("\nFiles found on the card (name, date and size in bytes):
");
 root.openRoot(volume);
 // list all files in the card with date and size
 root.ls(LS_R | LS_DATE | LS_SIZE);
}

In the loop function there is nothing to do, since determining the card type and its
properties has been done in the setup function:

void loop()
{
 // nothing happens after setup
}

Securing Your Data Chapter 6

[140]

The output of the serial console will show the card type, card size in bytes, kilobytes and
megabytes, and if there are some files on the card, the name and the size of them:

You can also use a bigger SDHC card or a FAT32 card:

Saving data on the SD card
Let's assume that now you need to save data to the SD card, data that can be used later
offline in a PC.

Let's attach a DHT22 like we did in Chapter 3, Building a Home Thermostat with the ESP8266,
and read its value and log it in file on the microSD card.

Using the same libraries for the SPI and SD card:

#include <SPI.h>
#include <SD.h>
#include <DHT.h>
const int chipSelect = D8;

Securing Your Data Chapter 6

[141]

Define the DHT type, since the library can work with DHT11 and DHT22:

#define DHTTYPE DHT22
#define DHTPIN 4
#define DEV_TYPE "dht"
DHT dht(DHTPIN, DHTTYPE, 11);
float humidity, temp_f; // Values read from sensor

Define the function that will read the temperature and update the global variables
humidity and temp_f with the humidity and temperature:

void gettemperature()
{
 int runs=0;
 do {
 delay(2000);
 temp_f = dht.readTemperature(false);
 humidity = dht.readHumidity();

 if(runs > 0)
 Serial.println("##Failed to read from DHT sensor! ###");
 runs++;
 }
 while(isnan(temp_f) && isnan(humidity));
}

Initialize the SD card and do the first reading for humidity and temperature:

void setup()
{
 // Open serial communications and wait for port to open:
 Serial.begin(115200);
 Serial.print("Initializing SD card...");
 // see if the card is present and can be initialized:
 if (!SD.begin(chipSelect)) {
 Serial.println("Card failed, or not present");
 // don't do anything more:
 return;
 }
 Serial.println("card initialized.");
 gettemperature();
}

Securing Your Data Chapter 6

[142]

Every three seconds, read the temperature and humidity, opening an existing file and
appending the temperature in the DATALOG.TXT file. At the end, close the file:

void loop()
{
 // make a string for assembling the data to log:
 String dataString = "";
 gettemperature();
 dataString += String(temp_f);
 // open the file. note that only one file can be open at a time,
 // so you have to close this one before opening another.
 // to write to file you need FILE_WRITE as second parameter.
 // to read from the file SD.open(file_name) should be used.
 File dataFile = SD.open("datalog.txt", FILE_WRITE);
 // if the file is available, write to it:
 if (dataFile)
 {
 dataFile.println(dataString);
 dataFile.close();
 // print to the serial port too:
 Serial.println(dataString);
 }
 // if the file isn't open, pop up an error:
 else {
 Serial.println("error opening datalog.txt");
 }
 delay(3000);
}

Check that the microSD card on a PC shows the created file:

Securing Your Data Chapter 6

[143]

Open the file to view the logged data:

If your data is sensitive you can encrypt the data and then write it to the SD card. In case
the SD card is lost, no one will be able to see your data.

Summary
Now you can transmit encrypted MQTT messages to an MQTT broker, and from there to
another ESP8266 or to a database or a server. Doing this, no one can intercept and alter your
data, so your home or your data are secure. Security in IoT is very important nowadays,
since there are a lot of devices that are not secured even with a user and a password. If you
need to work offline, now you have an entire microSD card to write or read data from it.
Using a battery-powered ESP8266 and deep sleep features, now you can log data to a
microSD card up to few a months. Encrypt them to be sure that you are the only one that
has access to them.

In the next chapter will see how to stream data over a WebSocket connection, data that can
be stored in a time series database or displayed as a real-time graphic.

7
Real-Time Communication

All the communication that has been presented until now was based on a request response
method, in which one entity was sending a request and an other entity was sending back a
response. But there are situations when you need real-time communications between the
ESP8266 module and a server, not just transactions. To achieve real-time communication,
we will use WebSockets to stream the acceleration values from an acceleration sensor to a
server to display them in a real-time graphic, and also to store them in a time-series
database.

WebSockets
WebSockets is a communication protocol, providing full-duplex messages, streaming on
top of a Transport Control Protocol (TCP). It is standardized by the W3 organizations and
it is present on all major browsers (Internet Explorer must be at version 11+). WebSockets
enables the communication between a browser and a server and between our module and a
server. Through the server, the data from the ESP8266 can arrive in a browser. Another big
advantage for WebSockets is the bidirectional communication without creating a new
request. Every communication is done on the opened TCP connection.

Protocol details
A WebSocket connection starts as an HTTP connection with the request to upgrade to
a websocket protocol.

Real-Time Communication Chapter 7

[145]

In this case, the client is sending:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: t3JJHjbGL5EzHkh8GBMXGw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13
Origin: http://example.com

And if the server is websocket protocol capable, it will respond with:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: ADnfv8rNkTYjSFnn5OPpH2HaGWj=

Note that the value for the Sec-WebSocket-Key is a random value base64 encoded to
avoid caching. The server appends the fixed value 258EAFA5-E914-47DA-95CA-
C5AB0DC85B11 on the received value of Sec-WebSocket-Key and is doing a SHA1. The
result is added to the Sec-WebSocket-Accept and sent back to the client. From now on,
the communication is established, and server and client can exchange messages.

Streaming data from ESP8266
To stream data from ESP8266 we need first to establish a WebSocket connection between
the ESP8266 and a server; data that will be streamed over the WebSocket connection will be
the acceleration values for the X, Y and Z axes. ESP8266 will read them from an ADXL345
chip and will send them to a nodeJS server. From the server, data can be sent to a
connected browser on the same server or can be written to a database for further analysis:

Real-Time Communication Chapter 7

[146]

The final circuit can also include a time-series database such as InfluxDb, for storing the
values transmitted by the ADXL345.

Adding a database can let you collect various data from multiple acceleration sensors, store
them in the database, retrieve them on request to compare them with the current values, or
draw nice graphs with the current and historical data.

A server can also react to some values and send alerts (email, SMS) and send data to other
ESP8266 modules to react, or to other servers.

ADXL345 accelerometer
Produced by the Analog Devices (AD), it is an ultra-low power 3 axis-accelerometer being
capable of high-resolution measurements up to ± 16g. If you plan to measure just the
Earth’s gravity then ± 2g can be enough for you. For a car movement, ± 4g will be fine but if
you want to track an object that suddenly stops you will need ± 16g:

Real-Time Communication Chapter 7

[147]

The ADXL345 can be connected to the ESP8266 over SPI or I2C lines. In our case, we will
use the I2C connection. The bus address on which the accelerometer will respond is 0x53.

Pin Description
GND Connect to the ground
VCC VCC 3V3. Some modules accept 5V since they have a voltage drop to 3V3
CS Chip select. High for I2C and LOW for SPI connection to ESP8266
INT1 Programmable interrupt
INT2 Programmable interrupt
SDO Serial data out for SPI. For I2C select the bus address
SDA Serial data for I2C
SCL Serial clock signal

Connection to the ESP8266
ADXL345 will be connected to the ESP8266 on the I2C bus, which means that only four
wires will be used, VCC, GND, SDA, and SCL:

Real-Time Communication Chapter 7

[148]

ESP8266 code
Since the sketch has also some extra classes for the WebSocket connection, here the essential
part of the .ino file will just be shown. For the entire project, please see the following
GitHub address:

https://github.com/bcatalin/esp8266-book/tree/master/Chapter7.

Necessary included files are:

#include "Wire.h"
#include <Adafruit_Sensor.h>
#include <Adafruit_ADXL345_U.h>
#include <FS.h>
#include <ESP8266WiFi.h>
#include "SocketIOClient.h"
#include <DNSServer.h>
#include <ESP8266WebServer.h>
#include <WiFiManager.h>
#include <ArduinoJson.h>
#include <Wire.h>
#include <ESP8266HTTPClient.h>
#include <ESP8266httpUpdate.h>
#include <SPI.h>

Instantiate an accel object and create a unique identification as a parameter for the class
constructor:

Adafruit_ADXL345_Unified accel = Adafruit_ADXL345_Unified(121212);

Allocate space for the server name or its IP address, and set the default port to 1234. Later,
users will be able to select one during the Wi-Fi setup procedure:

char acc_server[40];
char acc_port[6] = "1234";

Declare global variables that will be used:

#define ACC_CLIENT_ID "RAM_%06X"
#define INFO Serial.printf
char dev_name[50];

Set the clean_g to 1 if you want to format the SPIFFS and flash the sketch once again to
ESP8266:

int clean_g = 0;
//flag for saving data
bool shouldSaveConfig = false;

https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7

Real-Time Communication Chapter 7

[149]

The client object will be used to send and receive data over the websocket protocol. Class
implementation is external to this file and will be found in the SocketIOClient.cpp and
SocketIOClient.h files:

SocketIOClient client;
StaticJsonBuffer<300> jsonBuffer;
extern String RID;
extern String Rname;
//extern String Rcontent;
unsigned long previousMillis = 0;
long interval = 100;
unsigned long lastreply = 0;
unsigned long lastsend = 0;

The Callback function for notifying us of the need to save the configuration to
config.json file on SPIFFS is:

void saveConfigCallback () {
 Serial.println("Should save config");
 shouldSaveConfig = true;
}

In the setup() function, it will initialize and set up the ADXL345 chip:

void setup()
{
 // put your setup code here, to run once:
 Serial.begin(115200); delay(10);
 Serial.println();
 pinMode(A0, INPUT);
 pinMode(SIGNAL_PIN, OUTPUT); digitalWrite(SIGNAL_PIN, LOW);

Initialize the sensor. If the sensor is not connected to the ESP8266 board then wait for it:

 if(!accel.begin())
 {
 /* There was a problem detecting the ADXL345 ... check your connections */
 Serial.println("Ooops, no ADXL345 detected ... Check your wiring!");
 while(1);
 }

Set the range to whatever is appropriate for your project. ADXL345 can support up to ±16g.
Depending on your application, you can choose a different value by changing the
SetRange function’s parameter:

 accel.setRange(ADXL345_RANGE_16_G);
 // accel.setRange(ADXL345_RANGE_8_G);

Real-Time Communication Chapter 7

[150]

 // accel.setRange(ADXL345_RANGE_4_G);
 // accel.setRange(ADXL345_RANGE_2_G);
Just for
 if(clean_g)
 SPIFFS.format();

Next, read the configuration from the SPIFFS config.json file. If the configuration file is
not found, then ESP8266 assumes that it is not configured, so it will start itself in access
point mode and will wait for the user to set up the Wi-Fi SSID, Wi-Fi password, server
name, and server's port, that will be used to connect to:

 if (SPIFFS.begin())
 {
 Serial.println(F("mounted file system"));
 if (SPIFFS.exists("/config.json"))
 {
 //file exists, reading and loading
 Serial.println("reading config file");
 File configFile = SPIFFS.open("/config.json", "r");
 if (configFile) {
 Serial.println("opened config file");
 size_t size = configFile.size();
 // Allocate a buffer to store contents of the file.
 std::unique_ptr<char[]> buf(new char[size]);

 configFile.readBytes(buf.get(), size);
 DynamicJsonBuffer jsonBuffer;
 JsonObject& json = jsonBuffer.parseObject(buf.get());
 json.printTo(Serial);
 if (json.success()) {
 Serial.println(F("\nparsed json"));

 strcpy(acc_server, json["acc_server"]);
 strcpy(acc_port, json["acc_port"]);
 } else {
 Serial.println(F("failed to load json config"));
 }
 }
 }
 } else {
 Serial.println(F("failed to mount FS"));
 }

Real-Time Communication Chapter 7

[151]

Configure the WiFiManager with custom fields such as server name and server port, along
with the Wi-Fi SSID and Wi-Fi password that will be saved to the SPIFFS in order to
connect automatically every time ESP8266 is restarted:

 WiFiManagerParameter custom_acc_server("server", "RAM IP", acc_server,
40);
 WiFiManagerParameter custom_acc_port("port", "RAM port", acc_port, 5);
 WiFiManager wifiManager;
 wifiManager.setSaveConfigCallback(saveConfigCallback);
 wifiManager.addParameter(&custom_acc_server);
 wifiManager.addParameter(&custom_acc_port);

 if(clean_g)
 wifiManager.resetSettings();
 sprintf(dev_name, ACC_CLIENT_ID, ESP.getChipId());
 INFO("..DEV:%s \n",dev_name);
 if (!wifiManager.autoConnect(dev_name))
 {
 Serial.println(F("failed to connect and hit timeout"));
 delay(3000);
 //reset and try again, or maybe put it to deep sleep
 ESP.reset();
 delay(5000);
 }

 //if you get here you have connected to the WiFi
 Serial.println("connected...yeey :)");
 //read updated parameters
 strcpy(acc_server, custom_acc_server.getValue());
 strcpy(acc_port, custom_acc_port.getValue());

Now we have all the information that will be saved to the SPIFFS. This part will only be
called the first time the ESP8266 is configured. Information introduced will be persistent
since it is now saved and retrieved on every boot:

 if (shouldSaveConfig)
 {
 Serial.println("saving config");
 DynamicJsonBuffer jsonBuffer;
 JsonObject& json = jsonBuffer.createObject();
 json["acc_server"] = acc_server;
 json["acc_port"] = acc_port;
 File configFile = SPIFFS.open("/config.json", "w");
 if (!configFile) {
 Serial.println("failed to open config file for writing");
 }

Real-Time Communication Chapter 7

[152]

 json.printTo(Serial);
 json.printTo(configFile);
 configFile.close();
 }

Now we'll connect to the server, and after that we will send a connection message that
contains our unique identification derived from the MAC address of the ESP8266.

The server can use this message to identify the ESP8266 and to dynamically construct some
web interface. In this case, if the server receives a connection message it will construct a
graphic that will show the received values for all the three axes in real time:

 if (!client.connect(acc_server, atoi(acc_port)))
 {
 Serial.println(F("connection failed"));
 return;
 }
 if (client.connected())
 {
 client.sendJSON("connection", "{\"acc_id\":\"" + String(dev_name) + "\"
}");
 }
}

In the main loop we'll:

Read the values for the acceleration every interval and will construct a JSON
message that will be sent to the server.
Check for any incoming messages from the server. Remember that the
websocket is a duplex protocol. You can also control the ESP8266 from the
server; you can set some parameters, reboot the ESP8266, trigger a certain GPIO,
or even reset the ESP8266 to its default values by formatting the SPIFFS.
Check the state of the connection and if it is necessary, reconnect to the server.

Also, in the loop() function will check the state of the connection and if necessary,
reconnect to the server if the connection has been lost:

void loop()
{
 unsigned long currentMillis = millis();
 if (currentMillis - previousMillis > interval)
 {
 previousMillis = currentMillis;

 sensors_event_t event;
 accel.getEvent(&event);

Real-Time Communication Chapter 7

[153]

 String acc_data;
 StaticJsonBuffer<100> jsonDeviceStatus;
 JsonObject& jsondeviceStatus = jsonDeviceStatus.createObject();
 jsondeviceStatus["device_name"] = dev_name;
 jsondeviceStatus["x"] = event.acceleration.x;//x;
 jsondeviceStatus["y"] = event.acceleration.y;//y;
 jsondeviceStatus["z"] = event.acceleration.z;//z;

 jsondeviceStatus.printTo(acc_data);
 client.sendJSON("JSON", acc_data);
 }

Check for any incoming messages from the server:

 if(client.monitor())
 {
 lastreply = millis();

If the ESP8266 receives a message named welcome, it will respond with a message named
connection and with its unique ID:

if(strcmp(String(RID).c_str(), "welcome") == 0)
{
 client.sendJSON("connection", "{\"acc_id\":\"" + String(dev_name) + "\"
}");
}
if(RID != "")
{
 Serial.print(F("Message: ")); Serial.println(RID);

If the received message is resetModule, then the EPS8266 will reset itself. A lot of
messages can be added here, to change the status of a GPIO, to read a GPIO status, to read
the value from A0, or to write a PWM to a GPIO:

if(strcmp(String(RID).c_str(), "resetModule") == 0)
{ //reset the module delay(1000); ESP.reset();
 } }
}

Check the connection with the server and if it is necessary, reconnect to it:

 if (!client.connected())
 {
 Serial.println("LOOP: Client not connected, try to reconnect");
 client.connect(acc_server, atoi(acc_port));
 while(!client.connected())
 {
 client.connect(acc_server,atoi(acc_port));

Real-Time Communication Chapter 7

[154]

 delay(1000);
 }
 client.sendJSON("connection", "{\"acc_id\":\"" + String(dev_name) +
"\" }");
 }
}

Server for the WebSocket connection? for the server part, I've chosen Node.JS and
ExpressJS. The code for the server can be found at this link: https:/ /github. com/
bcatalin/esp8266- book/ tree/ master/ Chapter7.

The steps to start the server are:

Install Node.js and npm. Verify that both are present on your system:1.

Install a server's dependencies using the command npm -v:2.

Edit the file websocketserver/public/services/wsDataService.js with3.
your IP address of the server and the port used:

https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7
https://github.com/bcatalin/esp8266-book/tree/master/Chapter7

Real-Time Communication Chapter 7

[155]

Start the server with the command node server.js issued in the4.
websocketserver directory:

In the preceding screenshot, you can see two connections: one from the web with the Web
Socket ID HgmjiF_fAE3XE_3AAAAA and another one from the ESP8266 module with the
socket id: 7- xIcezugppEdDXgAAAB.

Open a browser and point it to your server's IP address and port and you will see the
acceleration on a nice graph provided by smoothieJS:

Real-Time Communication Chapter 7

[156]

Pressing Reboot ESP8266 will remotely reboot your module, and if you press the
Reinit ESP8266 button from the web page, the ESP8266 will reset all the data for Wi-Fi
credentials, IP address, and port number.

You can add multiple modules on the same server, for each new connection, the server will
add a new graphic and new buttons for it. In this way, you can monitor multiple sensors in
the same page without refreshing it, or taking any action. This is very good if you want to
provide a nice dashboard for your home automation platform.

As an improvement, you can add a time-series database such as InfluxDB (https:/ /www.
influxdata.com/) to store the received value, with your own desired persistence. To create
a more elaborate dashboard, you can use Grafana (https:/ / grafana. com/):

The server code consists of two parts:

Backend code that is responsible for receiving the connections from ESP82661.
modules and web pages.
Frontend code that connects to the server and shows the nice graphs.2.

Backend code
The entire backend code is written in JavaScript and it is in the server.js file.

To create the server, the module provided by socket.io is used because socket.io
provides real-time bi-directional event-based communication:

var server = http.createServer(app);
var io = require('socket.io').listen(server);

https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://www.influxdata.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://grafana.com/

Real-Time Communication Chapter 7

[157]

To receive messages, it is necessary to add a handler for them. In the 'connection' event,
when a message is received it means that a new ESP8266 acceleration module wants to
connect to the server. Values for the ID and socket are retrieved from the 'data' and
added to the local list of previously connected ESP8266 acceleration modules:

socket.on('connection', function (data)
 {
 var acc_ram = new Object();
 acc_ram.socket_id = socket.id;
 var data_json = ParseJson(JSON.stringify(data));
 acc_ram.acc_id = data_json.acc_id;
 acc_ram.socket = socket;
 addACCObject(acc_ram);
 printACC();
 for(var webBrowsers = 0; webBrowsers < webConnections.length;
webBrowsers++)
 {
 var sessionID = webConnections[webBrowsers].socket;
 sessionID.emit('acc_ram', { acc_ram: data })
 }
 });

To inform all the connected browsers that a new ACC is ready to send data, the backend
server code sends an acc_ram message to them and forwards the data object that contains
the module ID.

On receipt of the message, the browser will construct dynamically graphical elements
(canvas for drawing, buttons) for the new module.

When the JSON message type that contains values for the measured acceleration is received
by the backend, the message is forwarded to all the browsers, and the values will become
input data for the smoothie.js graphics:

socket.on('JSON', function (data)
 {
 for(var webBrowsers = 0; webBrowsers < webConnections.length;
webBrowsers++)
 {
 //send data to all connected browsers
 var sessionID = webConnections[webBrowsers].socket;
 sessionID.emit('acc_data', { acc_data: data });
 }
 });

Real-Time Communication Chapter 7

[158]

For the messages received from the web page that are addressed to a specific ESP8266
module, we need to identify first the destination module based on the socket ID and send
that message to the right module. Otherwise a reset command will be sent to all ESP8266
modules and I am sure that this is not what you intended to do:

socket.on('resetModule' , function (data)
 {
 for(var j=0; j< accConnections.length; j++)
 {
 var acc_m = accConnections[j];
 if(acc_m.acc_id == data.acc_id)
 {
 var s = acc_m.socket; //Get the socket
 s.emit("resetModule", {message: data});
 return; //======>
 }
 }
 });

Public web page
The web page served by your Node.js server is a simple SPA developed with the
BoostrapJS and AngularJS. The web page will try to connect to the server with a WebSocket
connection, and after that it will send its own registration message, so the server can add its
socket into its database.

The entry point for the acceleration values from ESP8266 but forwarded by the backend
server is:

socket.on('acc_data', function(data)
 {
 for(var i=0; i < $scope.myacc_collection.length; i++)
 {
 if(data.acc_data.device_name == $scope.myacc_collection[i].acc_id)
 {
 $scope.myacc_collection[i].x = Number(data.acc_data.x);
 $scope.myacc_collection[i].y = Number(data.acc_data.y);
 $scope.myacc_collection[i].z = Number(data.acc_data.z);
 var currentDate = new Date().getTime();
 $scope.myacc_collection[i].axeX.append(currentDate,
Number(data.acc_data.x));
 $scope.myacc_collection[i].axeY.append(currentDate,
Number(data.acc_data.y));
 $scope.myacc_collection[i].axeZ.append(currentDate,
Number(data.acc_data.z));
 return;

Real-Time Communication Chapter 7

[159]

 }
 }
 });

This function is receiving the actual data from the server and adding the values for the X, Y,
and Z acceleration to the smoothie.js, using the append function.

Summary
In this chapter, we completed another important functionality that can be accomplished
with ESP8266, real-time communication. You have learned how to stream real-time
acceleration from an ADXL345 3 axes accelerometer to a backend Node.js server that will
forward the received data to connected browsers. Data is drawn nicely in real time with
smoothie.js. As a continuation of this chapter, I encourage you to store the received data
in a time-series database, use Grafana as a display tool for your values, and why not send
them over MQTT to an MQTT broker. Adding the database and a nice tool for displaying
the values can turn this solution into a commercial one. You can develop a platform for
storing and showing real-time data for other companies or private users.

8
Adding a Mobile Application to

Your Smart Home
In previous chapters we discussed Blynk as a digital dashboard for your project. If you
want to build your own mobile application that connects to your MQTT cloud you will find
in this chapter an application starter code that allows you to have a basic mobile application
in just a few minutes. Current mobile application code allows you to log in to http:/ /
iotcentral.eu and control your registered devices.

In this chapter we will address the following topics:

Installing Docker
Getting a development image for the Single Page application
Getting the demo code for the mobile application
Getting the application smart socket code for ESP8266
Installing an existing firmware for an ESP8266 MQTT broker
Producing the APK for Android devices

Installing Docker and using containers
A container image is a lightweight, standalone, executable package of a piece of software
that includes everything needed to run it: code, runtime, system tools, system libraries, and
settings. In this way you don't need to install lots of libraries and software, you can use an
existing image and start a container from it.

http://iotcentral.eu
http://iotcentral.eu
http://iotcentral.eu
http://iotcentral.eu
http://iotcentral.eu
http://iotcentral.eu

Adding a Mobile Application to Your Smart Home Chapter 8

[161]

We will use a container with Ionic and Android SDK that will allow you to develop and
test a mobile application. At the end, you will have an APK file that needs to be signed
using Google Play Console and after that you can roll it out to millions of people.

In the same Ubuntu 16.04 in the Virtual Box used before, we will install and configure
Docker:

Install the GPG key in your system:1.

 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key
 add -

Add a Docker repository to APT sources:2.

 sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu
 $(lsb_release -cs) stable"

Update the package database with the new added repository:3.

 sudo apt-get update

Install Docker Community Edition from the Docker repository instead of the4.
Ubuntu repository:

 apt-cache policy docker-ce

The output indicates that there are several versions available:

 docker-ce:
 Installed: (none)
 Candidate: 17.09.0~ce-0~ubuntu
 Version table:
 17.09.0~ce-0~ubuntu 500
 500 https://download.docker.com/linux/ubuntu xenial/stable
 amd64 Packages
 17.06.2~ce-0~ubuntu 500
 500 https://download.docker.com/linux/ubuntu xenial/stable
 amd64 Packages
 17.06.1~ce-0~ubuntu 500
 500 https://download.docker.com/linux/ubuntu xenial/stable
 amd64 Packages
 17.06.0~ce-0~ubuntu 500
 500 https://download.docker.com/linux/ubuntu xenial/stable
 amd64 Packages
 17.03.2~ce-0~ubuntu-xenial 500
 500 https://download.docker.com/linux/ubuntu xenial/stable
 amd64 Packages

Adding a Mobile Application to Your Smart Home Chapter 8

[162]

 17.03.1~ce-0~ubuntu-xenial 500
 500 https://download.docker.com/linux/ubuntu xenial/stable
 amd64 Packages
 17.03.0~ce-0~ubuntu-xenial 500
 500 https://download.docker.com/linux/ubuntu xenial/stable
 amd64 Packages

Now install Docker:5.

 sudo apt-get install -y docker-ce

Verify your installed Docker version:6.

 sudo docker version
 Client:
 Version: 17.09.0-ce
 API version: 1.32
 Go version: go1.8.3
 Git commit: afdb6d4
 Built: Tue Sep 26 22:42:18 2017
 OS/Arch: linux/amd64
 Server:
 Version: 17.09.0-ce
 API version: 1.32 (minimum version 1.12)
 Go version: go1.8.3
 Git commit: afdb6d4
 Built: Tue Sep 26 22:40:56 2017
 OS/Arch: linux/amd64
 Experimental: false

Start Docker daemon on every boot:7.

 sudo systemctl status docker
 docker.service - Docker Application Container Engine
 Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor
preset: enabled)
 Active: active (running) since Mon 2017-10-23 20:41:43 CEST; 46min
ago
 Docs: https://docs.docker.com
 Main PID: 12117 (dockerd)
 CGroup: /system.slice/docker.service
 ├─12117 /usr/bin/dockerd -H fd://
 └─12141 docker-containerd -l
unix:///var/run/docker/libcontainerd/docker-containerd.sock --metrics-
interval=0 --start-timeout 2m --state-dir /var/run/docker/libcontainerd

Adding a Mobile Application to Your Smart Home Chapter 8

[163]

In order to run docker commands without the sudo in front of them we need to8.
add our user in the Docker group:

 sudo usermod -aG docker ${USER}

Now you need to log out and re-login to be able to run docker commands9.
without sudo. Instead of that you can run this command:

 su - ${USER}

Verify that your user is in the Docker group with:10.

 id

The Docker group should be in the command output:

uid=1000(catalin) gid=1000(catalin)
groups=1000(catalin),4(adm),20(dialout),
24(cdrom),26(tape),27(sudo),29(audio),30(dip),44(video),46(plugdev),
109(netdev),119(scanner),120(lpadmin),121(sambashare),998(docker)

Now Docker is installed and configured to run every time the virtual machine is started. To
complete our setup for the mobile application we need to get the image that will be used to
build and develop the mobile app and some starting code for the mobile application.

Getting the development image
To get the development image from the Docker repository issue the command:

sudo docker pull agileek/ionic-framework

This will take some time, so be patient, but the time consumed to install all dependencies
and all the required packages, compared to correcting errors is greater than this download.

At the end the image will be in the local repository. You can see what images are in your
current repository by running the command as shown here:

Adding a Mobile Application to Your Smart Home Chapter 8

[164]

Docker images
From the development image you can start how many containers you want. In each
container, you can develop one application totally separate to another. The code for the
application resides externally to the container, but it is accessible by the container to
compile it and run it inside the container. The result of this phase will be an application that
will run in your browser. At the end you can create a *.apk file and test it on your mobile
phone:

Now that we have the infrastructure built, let's get some code from GitHub and start a
container with it:

 mkdir ~/PROJECTS
 cd ~/PREOJECTS
 git clone https://github.com/bcatalin/Homy4

Now, in the directory Homy4 there is some code that allows a user to enter its credentials for
an http://iotcentral. eu account. After authentication, the application will get the
connection details assigned for this account and will connect to the iotcentral.eu over
WebSockets.

Start the container using the existing code. Basically, the directory where the code resides is
internally mapped to the container by using the volume mapping:

 docker run -it -p 8100:8100 -p 35729:35729 --name espbook -v
/home/catalin/PROJECTS/Homy4/:/myApp:rw agileek/ionic-framework

http://iotcentral.eu/
http://iotcentral.eu/
http://iotcentral.eu/
http://iotcentral.eu/
http://iotcentral.eu/
http://iotcentral.eu/
http://iotcentral.eu/
http://iotcentral.eu/

Adding a Mobile Application to Your Smart Home Chapter 8

[165]

The switches that are used in the command are:

run: This instructs Docker to start a new container.
-p 8100: 8100: The container internal port 8100 is mapped externally to port
8100. It will be accessed later by the browser. If you want to run multiple
containers, change the external port to a different one. In this case the command
will become -p 8101:8100.
-p 35729:35729: This port is used for live reloads. If you modify the code
(externally to the container) the application that runs inside the container will
automatically reload itself. Again, if you need to run multiple instances of
containers from the same image, don't forget to change the port.
--name: You can give the container a name with numbers such as
5961e5e90592. It is better to give an explicit name so that later you can
remember what it was used for.
/home/catalin/PROJECTS/Homy4/: This path, on the host machine, is where
the downloaded code from Git exists.
/myApp: This is the directory from the container where the code will be seen by
the application in the container.
rw: The mounting between the host system and the container is read and write.
agileek/ionic-framework: This is the name of the image from your local
repository.

After the creation of the container you can see its state with this command:

docker ps

To view all the containers which have started and stopped, you can use the following
command:

docker ps -a

Adding a Mobile Application to Your Smart Home Chapter 8

[166]

Now that the container has been started, open a browser in the host and navigate to
http://localhost:8100. You should see a web page loaded into the browser inviting
you to introduce a username and a password:

Now the size of the application is formatted for the browser, but since you are developing a
mobile application it would be nice to see exactly how it looks on a mobile phone. For this
you need to enter it in the Developer Tools mode. There are many modes to do that:

Right-click with your mouse on the browser and choose Inspect
Use the keyboard combination Ctrl + Shift + I
From the menu choose More Tools and then select Developer Tools

After you are in Developer Tools you can go and change the look of the page using the
Ctrl + Shift + M combination or you can click the image that looks like a phone and a tablet
in the left corner.

Adding a Mobile Application to Your Smart Home Chapter 8

[167]

Now the layout should be like this:

From the top bar you can select to see how it looks on a Nexus 5X, Nexus P, or iPhone, or
you can change orientation of the screen and many other options.

Adding a Mobile Application to Your Smart Home Chapter 8

[168]

Setting up the local broker
Now that the setup is in place, let's discuss what we want to achieve in this chapter. Later
in this chapter, we will come back to the mobile application:

You have enough knowledge now to complete the entire system from ESP8266 code to your
local broker and to the mobile application. To complete this chain we can start with the
ESP8266. Let's create a simple plug code and let's use the PaaS service offered
by iotcentral.eu as an authorization and cloud MQTT service:

Create an account and validate your email address on iotcentral.eu:1.

http://iotcentral.eu/
http://iotcentral.eu/

Adding a Mobile Application to Your Smart Home Chapter 8

[169]

Get the bondar.bin binary image of a local MQTT broker and write it to a2.
nodeMcu 4Mb board. Power off and then on the board:

Use your mobile application to search for an Access Point named3.
Bondar_XXXXXXX where XXXXXX are the latest six digits from the MAC address.
Connect to it and use the password 12345678 if it is requested. Navigate with4.
your phone browser to address 192.168.4.1 and in the web page enter the
same credentials that you have used for the iotcentral.eu account. The local
broker will connect to the iotcentral.eu platform and will register itself.

http://iotcentral.eu/
http://iotcentral.eu/

Adding a Mobile Application to Your Smart Home Chapter 8

[170]

On your devices page on iotcentral.eu you should be able to see your newly registered
local broker. Using the local broker on an ESP8266 is not mandatory, but it simplifies your
code on ESP. If you choose not to use a local broker, you need to connect directly to the
cloud MQTT broker on iotcentral.eu. In this case we need to get your allocated topic and
add more logic in your code to handle this:

On https://github/ bcatalin/ demoapp is the code that we will use as the ESP8266 code.
Get the code and write it to the ESP8266.

After the ESP8266 is rebooted, go to your phone and search for on Access Point named
ESPap. Connect to it and navigate with your browser to the address http://192.168.4.1
like you did for the local EP8266 MQTT broker. In the page presented by the ESP8266, fill
the Wi-Fi credentials, the username, and password used for iotcetral.eu, the Amazon
Alexa name you want to call your module to turn something ON or OFF, and your time
zone (this is not implemented, you can just do it as an exercise):

http://iotcentral.eu/
http://iotcentral.eu/
http://iotcentral.eu/

Adding a Mobile Application to Your Smart Home Chapter 8

[171]

ESP8266 code specifications
The requests for the ESP8266 code and you need to subscribe to topics:

/<TOPIC>/plug/command or <TOPIC>/plug/command

In this case you connect the ESP directly to iotcentral.eu.

The required message to be received by the ESP8266 in order to trigger its GPIO 12 is:

{"device_name":"ESP_3A9108", "type":"plug", "state":1}

Here:

Device_name: Is the device's name that we want to trigger.
Type: Is the type of device. In this case it is plug.
State: Is the desired state of the GPIO 12. In this case, we want to change the
state to ON.

/<TOPIC> /status/update or <TOPIC>/status/update

In this case, there is direct connection to iotcentral.eu without a local broker. Receiving
any message on this topic will trigger ESP8266 to send its status and its device status
messages. The mobile application is sending the message:

{"1":"1"}

On this topic, when it starts, in order to get a status and state from all your devices. You
will need to publish messages on the se topics:

/<TOPIC>/plug/status or <TOPIC>/plug/status

The content of the message published needs to have this format:

{"device_name":"ESP_3A9108", "type":"plug", "state":1}

Here:

Device_name: Is the name created by the application based on a MAC address.
Type: Is the device type. In this case, it is a plug.
State: Is the current state of the GPIO 12 pin. In this case, 1 means ON.

/<TOPIC>/device/status or <TOPIC>/device/status without local broker.

http://iotcentral.eu/
http://iotcentral.eu/

Adding a Mobile Application to Your Smart Home Chapter 8

[172]

The message that is published on this topic is describing the status for this device (IP
address, SDK version, uptime, and more):

{"device_name":"ESP_3A9108","type":"plug","ipaddress":"192.168.8.222","alex
a":"Coffee
maker","bgn":3,"sdk":"1.5.3(aec24ac9)","version":"1039","uptime":"0 days
00:40:12"}

Based on the received messages the mobile application is constructing its interface and
displays devices, grouping them by type:

A mobile application is connected to iotcentral.eu and has discovered four devices
having the same types of Plug. Clicking on the Plug types will show all the devices found
for this type.

http://iotcentral.eu/

Adding a Mobile Application to Your Smart Home Chapter 8

[173]

If you see a message in the console saying that the access has been blocked because of the
cross-origin header, install a Chrome plugin that allows you to have cross-origin calls. For
this find the extension named Allow-Control-Allow-Origin. The cross-origin problems will
not exist on your mobile phone:

In the extended list for all devices that have the type plug, there is also our device Coffee
Maker. Here at the beginning, the name of the device is shown as ESP_ followed by the last
six digits from the MAC address, but you can give it a friendly name by swapping the
desired plug to the left and seeing the Edit alias button:

Adding a Mobile Application to Your Smart Home Chapter 8

[174]

You can change the encoded name to a friendlier name:

Adding a Mobile Application to Your Smart Home Chapter 8

[175]

Clicking Save will save the new alias name in the local storage of the application and will
be shown every time this device is seen by the application.

If you are selecting from all devices, with the same type being Coffee Maker, the mobile
application will show the action page from where you can trigger the ON or OFF plug (in
fact the GPIO 12):

Adding a Mobile Application to Your Smart Home Chapter 8

[176]

In the lower part of the screen you will see two tabs, one is for the device status and the
other is for device details:

You can see the content of the message published on the topic <TOPIC>/device/status,
the connected IP address of the ESP8266, its up time, software version, SDK version with
which it was compiled, and the friendly name assigned during the initial setup.

After you change the mobile application to add new devices, or to look and feel differently,
you need to create the .apk application that needs to be installed to your phone.

In order to do this, first you need to log in to the container with the following command:

docker exec -it espbook bash

Adding a Mobile Application to Your Smart Home Chapter 8

[177]

This command will log in to a container named espbook and will start the bash shell.

Navigate to /myApp/www and issue the command that will produce the APK:

ionic cordova build android

After 30 seconds you will have your APK, ready for you to test it on a real phone at the
location: /myApp /platforms/android/build/outputs/apk

The apk file needs to be signed in order to be used. There are a lot of tutorials on the
internet on how to do it and how to publish your mobile application on Google Play.

This demo mobile application is now on Google Play. Search for Homy4 and install it. Don’t
forget to create an account on iotcentral.eu first and to use the demoapp on an ESP8266.

Summary
In this chapter, you have learned how to use Docker to create a development environment
for creating and using a mobile application. On the ESP8266 side you have learned the
topics and messages that the module needs to have in order to be able to integrate into a
system composed from a cloud MQTT and a mobile application. The code for ESP8266 in
the demo app is too big to be presented here, but it covers all the ESP8266 chapters of the
book: how to connect to Wi-Fi, how to store data in SPIFFS, how to connect to an MQTT
broke, and how to subscribe and publish messages on topics. It can be a good start for a
Smart Plug device since it is a fully functional example.

On the mobile part, code that exists in the GitHub example is fully operational with the
iotcentral.eu platform and with the demo app. Looking to the code a learning more on
how to develop and mobile application with Ionic and Cordova, you will be able to easily
add new devices such as temperature monitoring, controlling air conditioner units, and
controlling intra red equipment.

You now have all the knowledge to change your house to a smart house. Using the ESP8266
as the fog computing, you can now create a multitenant MQTT cloud and even a smart
mobile application. with all this knowledge you can even start to build your own product
and sell it on the market since you don't depend on any other platform and everything is in
your own domain of knowledge.

http://iotcentral.eu/
http://iotcentral.eu/

Index

A
ADXL345 accelerometer 146
Analog Devices (AD) 146
Analog to Digital Converter (ADC) 8
Arduino IDE
 configuring 11, 12
 download link 9
 downloading 9, 10
 installing 9

B
blynk library
 URL, for downloading 113

C
certificates
 generating 128, 131
command
 switches, used in 165
containers
 using 160

D
data
 publishing, from ESP8266 53, 55
 saving, on SD card 140, 143
 streaming, from ESP8266 145
DHT22
 characteristics 73
directory object 69
Docker
 development image, obtaining 163
 ESP8266 code, specifications 171, 177
 images 164
 installing 160
 local broker, setting up 168

DYP-ME003 module 107

E
encryption
 enabling, on mosquitto 127
ESP8266 chip
 about 7, 8
ESP8266 Code
 about 148, 151, 153, 155
 back-end code 156
 public web page 158
 specifications 171, 177
ESP8266 module
 program, writing 20, 21
 results, viewing 22
ESP8266 SDK
 installing 13, 14, 16
ESP8266
 ADXL345 accelerometer 146
 and Message Queue Telemetry Transport

(MQTT) 51
 and MQTT broker, connection securing 131,

134, 135
 connecting, to Wi-Fi 24
 connection to 147
 data, obtaining from Internet 26, 27, 28, 30, 31,

32

 data, publishing from 53, 55
 data, sending to Internet 35, 37, 38, 40
 data, streaming 145
 hardware components 99
 IRremoteESP8266 library, installing 100
 MQTT messages, receiving in 56
 reference link 148, 170
 software, used 100
 using 98

[179]

F
File object
 about 70
 close function 70
 name function 70
 position function 70
 seek function 70
 size function 70
Fully Qualified Domain Name (FQDN) 128

G
General Purpose Input/Output (GPIO) pins 8
Grafana
 reference link 156

I
InfluxDB
 reference link 156
infrared communication
 about 98
 hardware components 99
 IRremoteESP8266 library, installing 100
 software, used 100
Internet of Things (IoT) 7
internet
 PIR module, connecting to 113, 115, 116, 122
iotcentral.eu
 reference link 131

L
libraries, in Arduino's repository
 installing 18
libraries, not in repository
 installing 19
libraries
 installing 17
Light Dependent Resistor (LDR) 8, 20
local broker
 setting up 168

M
Message Queue Telemetry Transport (MQTT)
 about 42
 broker 44

 characteristics 42
 client 44
 last will 44
 publish 45
 Quality of Service (QoS) 43
 retain message 44
 security 43
 subscribe 45
 topic 44
 unsubscribe 45
 wildcards, on topics 46
Mosquitto broker
 about 47
 installing 48
Mosquitto clients 49
mosquitto
 certificates, generating 128, 131
 encryption, enabling 127
 openssl package, installing 127
 securing 59, 60, 63
MQTT broker
 and ESP8266, connection securing 131, 134,

135

MQTT messages
 receiving, in ESP8266 56

O
offline
 data, saving on SD card 140, 143
 working 135, 138, 140
openssl package
 installing 127

P
passive infrared sensor (PIR)
 about 105
 ESP8266 security code 122, 123, 125
 module, connecting to internet 113, 115, 116,

122

 module, testing 109, 111
 working 105, 107
Pulse Width Modulation (PWM) 21

Q
Quality of Service (QoS) 42

S
SD card
 data , saving 140
 data, saving 143
Serial Peripheral Interface (SPI) 8
server code
 reference link 154
SPI Flash File System (SPIFFS)
 about 65
 directory object 69
 features 65
 File object 70
SPIFFS objects
 begin 67
 exists 68
 format 68
 info 67
 open 68
 remove 69
 rename 69

T
temperature sensors 73, 77, 79, 80, 83, 84, 85
Transport Control Protocol (TCP) 144

U
Universal Asynchronous Receiver/Transmitter

(UART) 8

V
Virtual Private Server (VPS) 50

W
WebSocket Secure (WSS) 130
WebSocket
 about 144
 protocol details 144
Wi-Fi
 ESP8266, connecting to 24
WiFiManager library
 parameters, adding to setup page 94, 98
 parameters, saving into file 94
 using 86, 88, 90, 92

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1:Getting Started with the ESP8266
	Starting with the ESP8266 chip
	Installing Arduino IDE
	Downloading the Arduino Software IDE
	Configure Arduino IDE
	Installing the ESP8266 SDK

	How to install a library
	Libraries from the Arduino's repository
	Library is not in the repository

	It is time for your first program
	Seeing the result

	Connecting ESP8266 to Wi-Fi
	Getting data from the internet
	Sending data to the internet
	Summary

	Chapter 2:Building and Configuring Your Own MQTT Server
	Message Queue Telemetry Transport
	Quality of service
	Security
	Retain messages and last will
	Basic terminology
	Wildcards on topics

	Introducing Mosquitto broker
	ESP8266 and MQTT
	Publishing data from the ESP8266
	Receiving MQTT messages in the ESP8266
	Securing Mosquitto
	Summary

	Chapter 3:Building a Home Thermostat with the ESP8266
	SPIFFS
	SPIFFS objects
	Directory object
	File object

	Temperature sensor
	Summary

	Chapter 4:Control Appliances from the ESP8266
	Using the WiFiManager library
	Adding parameters to the WiFiManager setup page and saving them into the file

	ESP8266 and Infrared communication
	Hardware components
	Software and libraries for this project

	Summary

	Chapter 5:Using ESP8266 to Build a Security System
	Passive infrared sensor
	How PIRs work
	Testing the PIR module
	Connecting the PIR module to the internet
	The ESP8266 PIR security code

	Summary

	Chapter 6:Securing Your Data
	Enabling encryption on mosquitto
	Installing the openssl package
	Generating your own certificates

	Securing a connection between ESP8266 and an MQTT broker
	Working offline
	Saving data on the SD card

	Summary

	Chapter 7:Real-Time Communication
	WebSockets
	Protocol details

	Streaming data from ESP8266
	ADXL345 accelerometer
	Connection to the ESP8266
	ESP8266 code
	Backend code
	Public web page

	Summary

	Chapter 8:Adding a Mobile Application to Your Smart Home
	Installing Docker and using containers
	Getting the development image
	Docker images

	Setting up the local broker
	ESP8266 code specifications

	Summary

	Index
	Humble bundle_Ad_CDP.pdf
	Table of Contents
	Humble Bundle
	Index

