Practical Internet
of Things with
JavaScript

Build standalone exciting loT projects with
Raspberry Pi 3 and JavaScript (ES5/ES6)

Ll

Practical Internet of Things with
JavaScript

Build standalone exciting loT projects with Raspberry Pi 3
and JavaScript (ES5/ES6)

Arvind Ravulavaru

BIRMINGHAM - MUMBAI

Practical Internet of Things with JavaScript

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1211217

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78829-294-8

www.packtpub.com

http://www.packtpub.com

OFF ANY PACKT

Internat Internet
of Things Robotics of Things
for Ar:ﬁims using Python Programming

31
&

it

L ek

GCo to
and use this code in the checkout:

Authors
Arvind Ravulavaru

Reviewers
Vijaya Kumar Suda

Commissioning Editor
Vijin Boricha

Acquisition Editor
Reshma Raman

Content Development Editor
Eisha Dsouza

Technical Editor
Varsha Shivhare

Credits

Copy Editor
Safis Editing

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Graphics
Kirk D'Penha

Production Coordinator
Shantanu Zagade

About the Author

Arvind Ravulavaru is a platform architect at Ubiconn IoT Solutions, with over 9 years of
experience in software development and 2 years in hardware and product development.
For the last 5 years, he has been working extensively on JavaScript, both on the server side
and the client side, and for the last couple of years in IoT, building a platform for rapidly
developing IoT solutions, named the IoT Suitcase. Prior to this, he has worked on big data,
cloud computing, and orchestration.

Arvind has already written couple of books named Learning lonic and Learning Ionic - Second
Edition, which talks about building Mobile Hybrid applications using Ionic framework v1,
v2, and v3.

First off, I would like to thank all the people who have purchased my Learning Ionic and
Learning lonic second edition books. The support from you guys has been tremendous. I
really appreciate it. I would like to thank the Packt team for doing an amazing job in
releasing and promoting the book. A very special thanks to my 4-month-old lab, Dexter for
letting me write my book without bothering much to play with him at nights. Thanks to
the team at Ubiconn IoT Solutions who were behind me in getting this book out. Special
thanks to Ramesh Noothi, for helping me set up the hardware as well Nagesh Adicharla,
who has also created all the schematic images for the book.

Last but not the least, thanks to the entire team at Packt for supporting me. I sincerely
thank my content development editor, Eisha Dsouza and technical editor, Varsha Shivhare
for their awesome support. Thanks to Reshma Raman and the production team for taking
the book to press. Special thanks to my family, without whose support this book wouldn't
have been possible. Thank you.

About the Reviewer

Vijay Suda has over 17 years of experience in the IT industry. He works as a solution
architect for a major consulting firm in the USA, operating in the Java, cloud, IoT, big data,
and machine learning spaces. He worked for Tata Consultancy Services and Wipro
Technologies in solution architecture, design and development of enterprise level systems
with Java/J2EE, and SOA-related technologies. He has experience with various clients in the
banking, telecom, and retail domains in Switzerland, Belgium, Mexico, Bahrain, India, and
the USA.

He is passionate about implementing Al and machine learning algorithms to make a
positive impact on society. He has recently been working on deep learning technologies
such as TensorFlow, scikit-learn, and pandas for machine learning.

I would like to thank my father, Koteswara Rao Suda, and my mother, Rajyalakshmi Suda,
for watching my first steps and supporting me in every step to reach here; my dear wife
Radhika for everything she has done for me; my lovely son Chandra; and my cute daughter
Akshaya for her warming smile.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788292944.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944
https://www.amazon.com/dp/1788292944

Fear lies in the unknown

Table of Contents

Preface 1
Chapter 1: The World of loT 7
The world of loT 7
What is l0T? 8

A bit of history 9
loT use cases 10
Technology overview 11
Product engineering 12
Summary 12
Chapter 2: IoTFW.js - | 13
Designing a reference architecture 13
Architecture 14
Smart device 14
Gateway 16

MQTTS broker 16

APl engine 16
MongoDB 17

Web app 17

Mobile app 17

Desktop app 17

Data flow 18
Smart device to the apps 18

App to the smart device 19
Building the reference architecture 19
Installing Node.js on the server 20
Installing nodemon 20
MongoDB 20
Local installation 20

Using mLab 22
MQTTS broker - Mosca 25
API engine - Node.js and Express 28
Authorization 30

MQTT client 32

API engine testing 33
Communication between broker and API engine 36
Raspberry Pi software 39

Table of Contents

Setting up Raspberry Pi 39
Raspberry Pi MQTTS client 40
Communication between the broker and the Raspberry Pi 42
Troubleshooting 43
Communication between the Raspberry Pi, the broker and the API
engine 43
Web app 48
Setting up the app 48
Project structure 49
App module 51
Web app services 53
Web app components 54
Launching the app 55
Summary 58
Chapter 3: IoTFW.js - I 59
Updating the API engine 59
Integrating web app and API engine 68
Testing an end-to-end flow using DHT11 and LED 70
Setting up and updating the Raspberry Pi 71
Updating the APl engine 76
Updating the web app 79
Building the desktop app and implementing an end-to-end flow 86
Building the mobile app and implementing an end-to-end flow 94
Troubleshooting 104
Summary 104
Chapter 4: Smart Agriculture 105
Agriculture and loT 105
Designing a smart weather station 106
Setting up Raspberry Pi 3 108
Raspberry Pi and MCP3208 109
Moisture sensor and MCP3208 109
Raspberry Pi and DHT11 109
Setting up the API engine 120
Setting up the web app 123
Setting up the desktop app 129
Setting up the mobile app 131
Summary 136
Chapter 5: Smart Agriculture and Voice Al 137
Voice Al 138

[ii]

Table of Contents

Test drive 140
Building a smart socket 140
Setting up relay with Raspberry Pi 141
Managing relay in an API engine 148
Updating the web app template 150
Updating the desktop app 157
Updating the mobile app template 160
Developing Alexa skill 165
Creating skill 166
Training the voice model 168
ngrok the APl engine 174
Defining the lambda function 176
Deploying and testing 187
Summary 189
Chapter 6: Smart Wearable 190
loT and healthcare 190
Smart wearable 191
Setting up smart wearable 192
Updating the API engine 199
Updating the web app 201
Updating a desktop app 207
Updating the mobile app template 209
Summary 213
Chapter 7: Smart Wearable and IFTTT 214
IFTTT and loT 214
Fall detection 215
Updating Raspberry Pi 217
Building the IFTTT rules engine 224
Updating the web app 228
Updating the desktop app 230
Updating the mobile app 233
Summary 236
Chapter 8: Raspberry Pi Image Streaming 237
MJPEG 237
Setting up Raspberry Pi 238
Setting up the camera 239
Testing the camera 240

[iii]

Table of Contents

Developing the logic 241
Updating the API engine 243
Updating the web app 247
Updating the desktop app 251
Updating the mobile app 254
Motion-based video capture 257

Updating the Raspberry Pi 257

Testing the code 261
Summary 262

Chapter 9: Smart Surveillance 263
AWS Rekognition 263
Setting up smart surveillance 264

Setting up AWS credentials 264

Seeding the authorized faces 265

Testing the seed 269
Deploying to Raspberry Pi 271
Summary 275

Index

276

[iv]

Preface

We are part of a generation where people have already started adapting to IoT products.
There is a lot of hype about IoT. This book will focus on building IoT-based applications
that will help you to achieve a higher level of understanding when it comes to IoT. It will
follow a project-based approach that will teach you to build standalone exciting,
applications and will also teach you to extend your project to another level. We are going to
use JavaScript as our programming language and Raspberry Pi 3 as our hardware to build
interesting IoT solutions.

What this book covers

Chapter 1, The World of IoT, introduces you to the world of IoT. We will be looking at the
history of IoT, identifying a few use cases, and getting a technical overview of what were
are going to cover in this book.

Chapter 2, [oTFW.js - I, walks you through how to build a reference framework for
developing IoT solutions using JavaScript. In this chapter, we cover the high-level
architecture and get started with installing the required software. We will start with
downloading the base application and stitching the Raspberry Pi together with the MQTTS
broker and API engine.

Chapter 3, IoTFW.js - II, continues from where we left off in the previous chapter and
completes the implementation of the API engine, web app, desktop app, and mobile app. At
the end of this chapter, we implement a simple example with an LED and a temperature
sensor, where instructions from the apps will turn the LED on/off and the value of the
temperature sensor updates in real time.

Chapter 4, Smart Agriculture, talks about building a simple weather station using the
reference architecture we have built. The weather station consists of four sensors, and using
these we can monitor farm conditions. We will be making the required changes to the API
engine, web app, desktop app, and mobile app.

Chapter 5, Smart Agriculture and Voice Al, shows how we can leverage the power of voice
Al technology to build interesting IoT solutions. We are going to work with the smart
weather station and add a one-channel mechanical relay to this setup. Then, using voice
commands and Amazon Alexa, we are going to manage the weather station.

Preface

Chapter 6, Smart Wearable, talks about an interesting use case in the healthcare sector,
postoperation patient care. Using a smart wearable device equipped with a simple
accelerometer, one can easily detect whether a patient has fallen down. In this chapter, we
build the required setup comment to gather the accelerometer values from the sensor.

Chapter 7, Smart Wearable and IFTTT, explains how the data collected from the
accelerometer can be used to detect falls and at the same time notify the API engine. Using a
popular concept named If This Then That (IFTTT)—we will be building our own rules
engine, which will process predefined rules and take action accordingly. In our example, we
are going to send an email to the patient's carer if a fall is detected.

Chapter 8, Raspberry Pi Image Streaming, shows how to take advantage of the Raspberry Pi
camera module to build a real-time image streaming (MJPEG technology) solution to
monitor your surroundings from anywhere in the world. We will also implement motion-
based video capture to capture video when motion is detected.

Chapter 9, Smart Surveillance, walks you through the process of image recognition using
Amazon's Rekognition platform. We will be capturing an image when motion is detected
using the Raspberry Pi 3 camera module. Then, we will send this image to Amazon
Rekognition platform to detect whether the image we have taken is of an intruder or of
someone we know.

What you need for this book

To start building IoT solutions using JavaScript, you need to have the following:

¢ Medium to advanced knowledge of JavaScript — ES5 and ES6

¢ Medium to advanced knowledge of MEAN stack application development
e Medium to advanced knowledge of Angular 4

¢ Medium to advanced knowledge of Electron Framework

e Medium to advanced knowledge of Ionic Framework 3

¢ Novice to medium knowledge of digital electronic circuits

¢ Novice to medium knowledge of Raspberry Pi

¢ Novice to medium knowledge on sensors and actuators

[2]

Preface

Who this book is for

It is for readers who are already well versed with JavaScript and want to extend their
JavaScript knowledge to building hardware solutions in the field of IoT. IoT enthusiasts
interested in creating exciting projects will also find this book useful. This book is also
useful for readers who are good at developing standalone solutions using Raspberry Pi; this
book will help them add IoT capabilities to their existing projects using the world's most
misunderstood programming language.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "Now,
inside the broker folder, create another folder named certs and cd into that folder." A
block of code is set as follows:

// MongoDB connection options
mongo: {
uri: 'mongodb://admin:adminl23@ds241055.mlab.com:41055/iotfwjs’
b

mgtt: {
host: process.env.EMQTT_HOST || '127.0.0.1"',
clientId: 'API_Server_Dev',
port: 8883

bi
Any command-line input or output is written as follows:

openssl req —newkey rsa:2048 —-nodes -keyout key.pem -x509 —-days 365 -out
certificate.pem

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Once logged in, click on the
Create New button to create a new DB."

[31]

Preface

0 Warnings or important notes appear like this.
9 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk =

[4]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip [/ PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-

Javascript. We also have other code bundles from our rich catalog of books and videos
available at nttps://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/PracticallnternetofThingswithJavaScript_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https://www.packtpub.com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[5]

https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/PracticalInternetofThingswithJavaScript_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[6]

The World of loT

Welcome to advanced IoT with JavaScript. In this book, we will look at building IoT
solutions using JavaScript as our programming language. Before we start with the technical
deep dive, I would like to talk about the world of IoT, the solutions offered by it, and what
responsibilities fall on bestows on us developers who make these products. In this chapter,
we will look at the following topics:

e The world of IoT
History of IoT
IoT uses cases

Technology overview

Product engineering

The world of loT

Imagine a scenario where you have run out of milk; you have noticed it and put it on your
shopping list. But due to unforeseen reasons, you forgot to buy milk; well, you don't have
milk for the next day.

Now imagine another scenario: you have a smart fridge, and it noticed that you are running
out of milk, puts milk on your shopping list, and then updates your GPS route to come
home via the supermarket, but you still forget it.

You have to now face the wrath of your refrigerator.

Now that things are getting real, imagine another situation where your fridge has skipped
the middleman, you, and now directly places an order on Amazon, and Amazon delivers it
by the time you need your breakfast the next day.

The World of IoT Chapter 1

Scenario three is what is we are after. Let one machine talk to another machine and take
decisions accordingly; things such as the type of milk, quantity, and expiry date are
automatically validated before purchase.

We humans are now using the world of connected devices and smart devices to make our
lives better.

What is loT?

If you have been breathing for at least a decade, you must have heard terms such as smart
living, smart spaces, and intelligent devices. All these refer to a parent concept called the
Internet of Things (IoT).

In simple words, IoT is when we have our electronic, electrical, or electro-mechanical
devices connect to the internet and talk to each other.

Smart devices primarily revolve around two things:

e Sensors
e Actuators

Any solution in the IoT space is either sensing something or actuating something.

With this technology, we have found the solution for Sheldon Cooper (from the Big Bang
theory, CBS TV series), where he wants to know who sits on his spot as soon as someone
sits on it:

Source: http://bigbangtheory.wikia.com/wiki/Sheldon%27s_Spot

[81]

The World of IoT Chapter 1

All we do is place a weight sensor underneath the cushion, and if the weight increases, the
sensor will trigger the camera pointing at the sofa to take a picture and send a push
notification to him with the picture. How about that?

I know I have pushed the examples a bit, but you get the point, right?

A bit of history

IoT has existed in various forms for more than 35 years. The earliest example I found was a
Coke machine at Carnegie Mellon University in 1982. Developed by four graduate students,
Mike Kazar, David Nichols, John Zsarnay, and Ivor Durham, they hooked up the Coke
machine to the internet so that they could check from their desks whether the machine was
loaded with cold Coke. Source (https://www.cs.cmu.edu/~coke/).

Sir Timothy John Berners-Lee invented the first webpage in 1991.

Another example is the internet toaster by John Romkey. He connected his toaster to the
internet using the TCP/IP protocol. He created one control to turn on the toaster and one
control to turn it off. Of course, someone had to put the bread in the toaster:

Source: http://ieeexplore.ieee.org/document/7786805/

[91]

https://www.cs.cmu.edu/~coke/

The World of IoT Chapter 1

Another interesting IoT example is the Trojan Room coffee pot. This was created by
Quentin Stafford-Fraser and Paul Jardetzky in 1993. A camera was located in the Trojan
Room in the computer laboratory of the University of Cambridge. It monitored the coffee
pot levels, with an image being updated about three times a minute and sent to the
building's server:

—| xcoffee |=|_|

Source: https://en.wikipedia.org/wiki/Trojan_Room_coffee_pot

As mentioned previously, we can see that even before we could imagine the possibilities,
people had already worked on internet-related solutions.

Over the past 2 years, there was one thing that I kept on seeing and started believing
strongly:

"Laziness is the mother of Invention.”

Not necessity, not boredom, but laziness. In this day and age, nobody wants to do mundane
things such as grocery shopping, walking up to a switch, and turning on a light or AC. So,
we are searching for new and innovative ways to solve these problems.

loT use cases

Now that you have a feel for IoT, you can imagine the literally infinite possibilities that can
be built using this piece of technology.

[10]

The World of IoT Chapter 1

Based on my observations, IoT use cases can be crudely classified into three parts:

e Problem solving
e Convenience

e Showing off

The problem solving part comes in where IoT is used to solve a real-world problem, for
instance, a farmer whose farm is located half a kilometre from their home, and they have to
walk all the way to the farm to turn on their water pumps/motors . Another scenario is
where a post-operation patient's vital statistics can be sent to the hospital periodically after
his/her discharge, to monitor the patient for any abnormalities. This is where IoT fits in
pretty well.

Convenience is where you can turn on your air conditioner 30 mins before you reach your
home so you can chill as you enter or unlock your door from your work if someone you
know knocks at your door and you are not nearby.

showing off is where you go to another country just to turn on or off your porch light, just
to show that IoT works.

All of them are forms of consumption of this technology.

In this book, we will look at covering a few solutions that fall into previous use cases.

Technology overview

Now that we know what IoT is, we can start defining the technology stack. In this book, we
will build a generic framework using JavaScript for developing IoT applications.

We will follow the approach of cloud computing, where we have a bunch of devices that
are connected to the cloud, compared to a fog computing approach, where there is a
gateway that can do almost all the things a cloud can but is locally available in the on-
premises.

Our smart devices will be powered by Raspberry Pi 3, which has the ability to talk to the
cloud over Wi-Fi and also, using its GPIO pins, talk to the sensors and actuators. Using this
simple piece of hardware, we will connect sensors and actuators and build some real-world
solutions in this book.

Another alternative to Raspberry Pi 3 is Raspberry Pi Zero W, which is a miniature version
of Raspberry Pi 3, in case you are looking to build a compact solution.

[11]

The World of IoT Chapter 1

We will walk through each piece of technology in chapter 2, IoTFW.js - [and Chapter 3,
I0TFW.js - 11, and from there on use these technologies to build IoT solutions in various
domains.

Product engineering

Unlike software development, hardware development is well hard. The time taken, the
complexity, and the execution are expensive. Imagine a syntax error in a JavaScript console;
all we need to do is go to the specific line number, make the changes, and then refresh the
browser.

Now compare this with hardware product development. From the time a piece of hardware
is identified to when it is put on a supermarket shelf as a shrink-wrapped product takes at
least 8 months, with at least four iterations of the product being made to validate and test it
in the real world.

To give another example, the positioning of components on a product makes or breaks it.
Imagine if there were no ridges or grip on a charger plug; your hand will always slip while
pulling the charger out of the socket. This is value engineering.

Putting together a Proof Of Concept (POC) is very simple, as you will see in the rest of this
book. Turning this POC into a shrink-wrapped product is a different ball game altogether.
The difference is the same as between singing in your bathroom and singing on a stage with
millions of people watching you.

Remember that the examples that we will build in this book are all POCs, and none of them
are remotely close to being used in the production of a product. You can always use the
solutions we will work on in this book to gain a better understanding of implementation
and then design your own solution around them.

Summary

In this chapter, we looked at what IoT is and a bit of history about it. Next, we saw a couple
of use cases, a high-level technology overview, and a bit about product engineering.

In chapter 2, [oTFW.js - I, we will get started with building the IoT framework on which we
will build our solutions.

[12]

IoTFW.js - |

In this chapter and chapter 3, [oTFW.js - II, we are going to develop a reference architecture
for building various IoT solutions. The reference architecture or the IoT framework will be
serving as a base for our future IoT solutions that we are going to be working on in this
book. We will be calling this reference architecture or framework as IoTFW.js. We will be
working on the following topics to bring IoTFW js to life:

¢ Designing an IoTFW.js architecture

¢ Developing a Node.js based server-side layer

¢ Developing an Angular 4 based web app

¢ Developing an Ionic 3 based mobile app

¢ Developing an Angular 4 and Electron.js desktop app

e Setting up and installing the required dependencies on a Raspberry Pi 3
¢ Integrating all the pieces

We are going to cover some of the previous topics in this chapter and some in chapter 3,
I0TFW.js - I1.

Designing a reference architecture

As we have seen in Chapter 1, The World of IoT, all the examples we are going to work on
have a common setup. That would be the hardware, firmware (software running on the
hardware), broker, API engine and the user apps.

We will be expanding on the relevant pieces of framework as we come across it.

As and when we need to, we will be expanding on the hardware, or mobile app, or the API
engine.

IoTFW.js -1 Chapter 2

With this reference architecture, we are going to establish a pipeline between the devices
present in the real world to the cloud in the virtual world. In other words, 10T is a last mile
solution between devices and the internet.

Architecture

A simple reference architecture with Raspberry Pi, Wi-Fi gateway, the cloud engine, and the
user interface apps stitched together would look as shown in the following diagram:

IoTFW.js
Reference Architecture

-
Mongo

@ API Engine

P

‘Web App
(Angular)

Gateway
(Wi-Fi Router)

Mobile App Desktop App
Raspberry Pi 3 (Tonic) (Electron)

Sensors &
Actuators

Smart Devices

At a very high level, we have smart devices on the left-hand side and the user devices on
the right-hand side. All of the communication between them happens through the cloud.

Following is a description of each key entity in the previous architecture. We are going to
start from the left-hand side and move towards the right.

Smart device

Smart devices are hardware entities that consist of a sensor, or actuator, or both, any micro
controller or micro processor, in our case, a Raspberry pi 3.

[14]

IoTFW.js -1 Chapter 2

A sensor is an electronic component that can sense or measure a physical property and
relay it back to a microcontroller or a microprocessor. The data relayed back can be periodic
or event-driven; event-driven as in when there is change in data only. A temperature sensor
such as an LM35 or DHT11 is an example of a sensor.

An actuator is also an electro-mechanical component that can trigger actions in the real
world. Generally, the actuators do not act by themselves. A microcontroller, a
microprocessor, or an electronic logic sends signals to the actuator. An example of an
actuator is a mechanical relay.

The micro-processor we were referring would be a Raspberry Pi 3 for this book.

The Raspberry Pi 3 is a single-board computer, designed and developed by the Raspberry
Pi foundation. The Raspberry Pi 3 is the third-generation Raspberry Pi.

In this book, we are going to use a Raspberry Pi 3 model B for all the examples. Some of the
specifications of the Raspberry Pi 3 model B are as follows:

Feature Specification

Generation 3

Release date February 2016

Architecture ARMVS-A (64/32-bit)

System on a Chip (SoC) | Broadcom BCM2837

CPU 1.2 GHz 64-bit quad-core ARM Cortex-A53

Memory (SDRAM) 1 GB (shared with GPU)

USB 2.0 ports 4 (via the on-board 5-port USB hub)

On-board network 10/100 Mbit/s Ethernet, 802.11n wireless, Bluetooth 4.1

Low-level peripherals |17x GPIO plus the same specific functions, and HAT ID bus

Power ratings 300 mA (1.5 W) average when idle, 1.34 A (6.7 W) maximum
under stress (monitor, keyboard, mouse, and Wi-Fi connected)

Power source 5V via MicroUSB or GPIO header

For more information on the specifications, please refer to the
0 specifications of Raspberry Pi:

https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications.

[15]

https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications

IoTFW.js -1 Chapter 2

Gateway

The next piece in our architecture is the Wi-Fi router. A common household Wi-Fi router
will act as a gateway for us. As we have seen in chapter 1, The World of IoT, in the Clustered
devices versus standalone devices section, we are following the approach of standalone
devices, where each device is self-sufficient and has a radio of its own to communicate with
the outside world. All the projects we are going to build consist of a Raspberry Pi 3, which
has a microprocessor as well as the radio to interface with the sensors, and actuators with
the internet.

MQTTS broker

The next important piece in our reference framework is the secure communication channel
between the device and the cloud. We are going to use MQTT as our communication
channel. MQTT is described in the following quote from http://mqtt.org/faq:

MQTT stands for MQ Telemetry Transport. It is a publish/subscribe, extremely simple
and lightweight messaging protocol, designed for constrained devices and low-bandwidth,
high-latency or unreliable networks. The design principles are to minimise network
bandwidth and device resource requirements whilst also attempting to ensure reliability
and some degree of assurance of delivery.

We are going to use the MQTT over SSL or MQTTS. In our architecture, we are going to use
Mosca (http://www.mosca.io/) as our MQTTS broker. Mosca is a Node.js MQTT broker.
We will talk more about Mosca when we start working with it.

API engine

An APl engine is a web server application, written on Node.js, Express with persistence
layer as MongoDB. This engine is responsible for communicating with Mosca as a MQTT
client, persisting data into MongoDB as well as to expose APIs using Express. These APIs
are then consumed by the apps to display the data.

We will also be implementing a socket-based API for user interfaces to get notified in real
time from the devices between the apps and the server.

[16]

http://mqtt.org/faq
http://www.mosca.io/

IoTFW.js -1 Chapter 2

MongoDB

We are going to use MongoDB as our data persistence layer. MongoDB is a NoSQL
document database that allows us to save documents with different schemas in one
collection. This kind of database is well suited for dealing with sensor data from various
devices, as the data structure or the parameters vary from solution to solution. To know
more about MongoDB, refer to https://www.mongodb.com/.

Web app

The web app is a simple web/mobile web interface, which will implement the APIs exposed
by the API engine. These APIs will include authentication, access a particular smart device,
get the latest data from the smart device, and send data back to the smart device over APIs.
We are going to use Angular 4 (https://angular.io/) and Twitter Bootstrap 3
(http://getbootstrap.com/) technologies to build the web app.

Mobile app

We are going to follow a mobile hybrid approach for building our mobile app. The mobile
app implements the APIs exposed by the API engine. These APIs will include
authentication, access a particular smart device, get the latest data from the smart device
and send data back to the smart device over APIs. We are going to use Ionic 3
(http://ionicframework.com/), which is powered by Angular 4, to build the mobile app.

Desktop app

We are going to follow a desktop hybrid approach for building our desktop app. The
desktop app will implement the APIs exposed by the API engine. These APIs will include
authentication, access a particular smart device, get the latest data from the smart device,
and send data back to the smart device over APIs. We are going to use Electron
(https://electron.atom.io/) as the shell for building the desktop app. We will be using
Angular 4 and Twitter Bootstrap 3 (http://getbootstrap.com/) technologies to build the
desktop app. We try and reuse as much code as possible between the web and desktop

apps.

[17]

https://www.mongodb.com/
https://angular.io/
http://getbootstrap.com/
http://ionicframework.com/
https://electron.atom.io/
http://getbootstrap.com/

IoTFW.js -1 Chapter 2

Data flow

Now that we have an understanding of the various pieces of the architecture, we will now
look at the data flow between the components. We are going to talk about the data flow
from the smart device to the apps and vice versa.

Smart device to the apps

A simple flow of data from a sensor to a user device will be as follows:

Data Flow from Sensor to Apps

| Sensor Raspbery Pi | | Wi-Fi Router | ‘ MQTTS Broker | API Engine Database | ‘ Web App | ‘ Mobile App | ‘ Desktop App

' ' ' ' ' ' i i '
1 Send Data !

e 1 1 1 1 1 1 1
1 1 1 1 1 1 1
' 1 Publish Data ! ! ' ' | I '
1 ' > 1 1 1 1 1 1
| | | Transmit Data__ | i | i i |
1 1 —h 1 1 1 1 1
1 1 1 ' 1 1 1 1 1
! ! ! | Authenticate & Accept Data ! ! ! ! !
| | | | i | | | |
! ! ! ' 1 Persist Data Il ! ! !
1 1 1 1 1 | 1
i i i i :' Data Persisted | 1

1

i i i i | | | i
| | | ! Data Persist Ack! | ! ! |
i i i — i | | i
i i i) | i i | | i
! ! 1, Data Persist Ack! ! ! | | !
i i b | i i | | i
1 |, Data Persist Ack, 1 i i | | i
| — | | | | | |

| | | | | | | | |
' b1 ' ' ' ' | | '
' ' ' ' ' ' | | '
' ' ' ' ' | | '
H Mo ack needed
| | | | | | | |
' ' ' ' ' | | '
' ' ' ' | '

i
| Send the new data record (web sockets) i
Lé

]

i i
| Send the new data record (web sockets) | N
h T T »
H H H H i | | | H
i ! ! ! ! Send the new data record (web sockets) ! ! N
i i i i I i i "
| Sensor | | Raspberry Pi | | Wi-Fi Router | ‘ MQTTS Broker | API Engine | Database | ‘ Web App | ‘ Mobile A | ‘ Desktop App |

As you can see from the previous figure, the data originates at the sensor; this data is read
by the Raspberry Pi 3 and published to the MQTTS broker (Mosca) via the Wi-Fi router.
Once the broker receives the data, it will send the same to the API engine, which will persist
the data to the DB. Once the data has been successfully saved, the API engine will send the
new data to our app, to show the data in real time.

An important thing to notice here is that the API engine will act as an MQTT client and
subscribe to topics on which the device publishes the data. We will look at these topics
when we go over the implementation.

Generally, the data in this flow would be a typical sensor transmitting data.

[18]

IoTFW.js -1

Chapter 2

App to the smart device

The following diagram shows how the data flows from an app to the smart device:

Data Flow from Apps to Actuators

App APl Engine

i
Send Data over API
¥

App APl Engine

Database MQTTE Broker Wi-Fi Router Raspberry Pi Actuator

i i i i i

I 1 1 I 1

| 1 1 | 1

I 1 1 I 1
I I 1 1 I 1
1 Persist Data II ! ! ! !
I I 1 1 I 1
|, Persisted Data | ' g i i
I“—| 1 1 I 1
I I 1 1 I 1
i Publish Data | % i i i
i i " | i |
! ! 1 Transmit Data II ! !
I I 1 1 I 1
i i g | Send Data i g
| | 1 l—h 1
I I 1 1 I 1
i i i i i React to Data |
1 1 1 1 :—H

Database MQTTE Broker Wi-Fi Router Raspberry Pi Actuator

As we can see from the previous diagram, if the app wishes to send an instruction to the
smart device, it sends that message to the API engine. The API engine then persists that
data into the database and publishes the same to the MQTTS broker, to be passed on to the
device. The device then reacts to that data on the actuator.

Do note that in both the flows, the MQTTS broker manages the devices and the API engine

manages the apps.

Building the reference architecture

In this section, we are going to start putting together all the pieces and stitch together the
required setup. We are going to start with Node.js installation, then the database, and after
that, move on to other pieces.

[19]

IoTFW.js -1 Chapter 2

Installing Node.js on the server

Before we continue with our development, we need Node.js on our server. The server here
could be your own desktop, laptop, an AWS machine, or a digitalocean instance, which
may or may not have a public IP
(https://www.iplocation.net/publicfvsfprivatefipfaddress)

To install Node.js, navigate to https://nodejs.org/en/ and download the appropriate
version for your machine. Once installation is completed, you can test the installation by
running the from a command prompt/terminal:

node -v
v6.10.1

and

npm -v
3.10.10

You may have a later version than the one shown previously.

Now that we have the required software, we will continue.

Installing nodemon

Now that we have Node.js installed, we will install nodemon. This will take care of auto
restarting our node application. Run:

npm install —-g nodemon

MongoDB

You can follow one of the following two ways listed to set up the database.

Local installation

We can set up MongoDB on our server as a stand-alone installation. This way, the DB is
running on the server and the data is persisted there.

[20]

https://www.iplocation.net/public-vs-private-ip-address
https://nodejs.org/en/

IoTFW.js -1

Chapter 2

Depending on your OS, you can follow the instructions provided at
https://docs.mongodb.com/manual/installation/tosetuf)ﬂufdatabase

Once you have installed the DB, to test whether everything is working fine, you can open a
new terminal and start the Mongo daemon by running the following:

mongod

You should see something similar to the following;:

-+ ~ mongod

2017-04-29T17:31:59.987+08530
2017-04-29T17:31:59.987+08530
b
2017-04-29T17:31:59.987+08530
2017-04-29T17:31:59.987+08530
2017-04-29T17:31:59.987+08530
2017-04-29T17:31:59.987+08530
2017-04-29T17:31:59.987+08530
2017-84-29T17:31:59.987+@530
2017-04-29T17:31:59.987+08530
2017-84-29T17:31:59.987+@5380
vl' storage engine, so settinm
2017-84-29T17:31:59.997+@5380
2017-04-29T17:31:59.997+@8530
ed
2017-04-29T17:32:00.013+0530
2017-84-20T17:32:00.813+@5380
2017-04-29T17:32:00.013+0530
2017-04-29T17:32:00.013+0530
tabase.
2017-04-29T17:32:00.013+0530
uration is unrestricted.
2017-04-29T17:32:00.013+0530
2017-04-29T17:32:00.013+0530
2017-04-29T17:32:00.013+0530
256, should be at least 10ee
2017-04-29T17:32:00.197+0530

I
I

H @

HoH

I

I

2017-04-29T17:31:59.986+0853@ I CONTROL [initandlisten] MongoDB starting : pid=27884 port=27@17 dbpath=/data
/fdb 64-bit host=Arvinds-MacBook-Pro.local

CONTROL [initandlisten] db version v3.4.2
CONTROL [initandlisten] git version: 3f76ed4@cl@5fc223b3e5aac3e28dcd@26b83b38

CONTROL [initandlisten] OpenSSL version: OpenSSL 1.8.2k 26 Jan 2@17

CONTROL [initandlisten] allocator: system

CONTROL [initandlisten] modules: none

CONTROL [initandlisten] build environment:

CONTROL [initandlisten] distarch: x86_64

CONTROL [initandlisten] target_arch: x86_64

CONTROL [initandlisten] options: {}

- [initandlisten] Detected data files in /data/db created by the 'mmap
the active storage engine to ‘mmapvl'.

JOURNAL [initandlisten] journal dir=/data/db/journal

JOURNAL [initandlisten] recover : no journal files presemt, no recovery need

JOURNAL [durability] Durability thread started

JOURNAL [journal writer] Journal writer thread started

CONTROL [initandlisten]

CONTROL [initandlisten] == WARNING: Access control is not enabled for the da

CONTROL [initandlisten] s Read and write access to data and config
CONTROL [initandlisten]
CONTROL [initandlisten]
CONTROL [initandlisten] s WARNING: soft rlimits too low. Number of files is

FTDC [initandlisten] Initializing full-time diagnostic data capture with

directory '/data/db/diagnostic.data’
2017-04-29T17:32:00.2@5+853@ I NETWORK [threadl] waiting for connections on port 27@17

I am running the database on the default port 27017.

Now we will interact with the database using the mongo shell. Open a new command
prompt/terminal and run the following:

mongo

[21]

https://docs.mongodb.com/manual/installation/

IoTFW.js -1

Chapter 2

This will take us to the mongo shell, using which we can interface with the MongoDB. The
following are a few handy commands:

Description

Command

Show all databases

show dbs

Use a specific database

use local

Create a database

use testdb

Check database in use

db

Create a collection

db.createCollection ("user");

Show all collections in a DB

show collections

(Create) insert a document
in a collection

db.user.insert ({"name" :"arvind"});

(Read) query a collection

db.user.find ({});

(Update) modify a
document in collection

db.user.update ({"name": "arvind"}, {"name"

"arvind2"}, {"upsert":true});

(Delete) Remove a
document

db.user.remove ({"name": "arvind2"});

Using the previous commands, you can get acquainted with the Mongo shell. In our API
engine, we are going to use Mongoose ODM (http://mongoosejs.com/) to manage from
the Node.js/Express--API engine.

Using mLab

If you don’t want to go through the hassle of setting up the DB locally, you can use a
MongoDB as a service such as mLab (https://mlab.com/) for this. In this book, I am going
to follow this approach. Instead of having a local database, I will be using an instance of

mLab.

To setup an mLab MongoDB instance, first navigate to https://mlab.com/login/ and
login. If you do not have an account, you can create one by navigating to https://mlab.

com/signup/.

[22]

http://mongoosejs.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/login/
https://mlab.com/login/
https://mlab.com/login/
https://mlab.com/login/
https://mlab.com/login/
https://mlab.com/login/
https://mlab.com/login/
https://mlab.com/login/
https://mlab.com/login/
https://mlab.com/login/
https://mlab.com/signup/
https://mlab.com/signup/
https://mlab.com/signup/
https://mlab.com/signup/
https://mlab.com/signup/
https://mlab.com/signup/
https://mlab.com/signup/
https://mlab.com/signup/
https://mlab.com/signup/

IoTFW.js -1 Chapter 2

mLab has a free tier, which we are going to leverage to build our reference architecture. The
free tire is perfect for development and prototyping projects like ours. Once we are done
with the actual development and we are ready for a production grade application, we can
look at some more reliable plans. You can get an idea of pricing at https://mlab.com/
plans/pricing/.’

Once you are logged in, click on the Create New button to create a new DB. Now, select
amazon web services under Cloud Provider and then select the Plan Type as FREE, as
shown in the following screenshot:

Cloud Provider New Deployment Creator

PLAN TYPE
© Google CloudPlatform Sandbox

PROVIDER
Amazon Web Services

Plan Type

SANDBOX SHARED / DEDICATED

For learning, developing, or prototyping. For small datasets and light production For demanding production workloads.
Up to 0.5 GB storage. workloads. Up to 8 GB storage. Supports unlimited vertical and
horizontal scaling (via sharding)

AVAILABLE AWS REGIONS
« US East (Virginia) (us-east-1)
® Europe (Ireland) (eu-west-1)

[23]

https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/
https://mlab.com/plans/pricing/

IoTFW.js -1 Chapter 2

And finally, name the database as iot fwjs and click on CREATE. And in a few seconds, a
new MongoDB instance should be created for us.

Once the database has been created, open the iot fwjs DB. We should see a couple of
warnings: one stating that this sandbox database should not be used for production, which
we are aware of, and the second one that there is no database user present.

So, let's go ahead and create one. Click on the Users tab and click on the Add database user
button and fill in the form with the username as admin and password as admin123 as
follows:

for more info.
b and click the

Collections Backups

Database Users

Add new database user

[None at this time]
Database username®

| admin

Database password*

Make read-only

You can choose your own username and password and update it accordingly in the
remaining part of the book.

Now to test the connection to our database, use the section at the top of the page to connect
using the mongo shell. In my case, it is as follows:

To connect using the mongo shell:

1055/iotfwj

[24]

IoTFW.js -1 Chapter 2

Open a new command prompt and run the following (after updating the mLab URL and
credentials accordingly):

mongo ds241055.mlab.com:41055/iotfwjs —u admin -p adminl23

We should be able to log in to the shell and we can run queries from here as follows:

+ o~ mongo dsZ241855.mlab.com:41@55/iotfwjs -u admin -p adminl23
MongoDE shell version v3.4.2
connecting to: mongodb://ds241855.mlab. com:41855/io0tfwjs
MongoDB server version: 3.4.9
rs—-ds241855: PRIMARY> db
iotfwis
rs-ds2410855: PRIMARY> db.stats();
{
“db" @ "iotfwjs",
"collections" : B,
"wiews" : B,
"objects" : @,
"avgObjSize" : @,
"dataSize" : @,
“"storageSize" : B,
"numExtents" : @,
"indexes" : B,
"indexSize" : B8,
"fileSize" : B,
"ok" : 1
}
rs—ds241855: PRIMARY> I

This completes our setup of MongoDB.

MQTTS broker - Mosca

In this section, we are going to put together the MQTTS broker. We are going to use Mosca
(http://www.mosca.io/) as a standalone service

(https://github.com/mcollina/mosca/wiki/Mosca-as—a-standalone-service).

Create a new folder named chapter2. Inside the chapter2 folder, create a new folder
named broker and open a new command prompt/terminal inside the folder. Then run the
following;:

npm install mosca pino -g

[25]

http://www.mosca.io/
https://github.com/mcollina/mosca/wiki/Mosca-as-a-standalone-service

IoTFW.js -1 Chapter 2

This will install Mosca and Pino globally. Pino (https://github.com/pinojs/pino)is a
Node.js logger, which logs all the messages to the console thrown by Mosca.

Now, the default version of Mosca implements MQTT. But we want to secure our
communication between the smart device and cloud to avoid man-in-the-middle attacks.

So, for us to set up MQTTS, we would need an SSL key and SSL certificate. To create the
SSL key and certificate locally, we will use openss1.

To check whether openss1 is present on your machine, run openssl version -aand
you should see the information about your local installation of openss1.

If you don't have openss1, you can download the same from

https://www.openssl.org/source/.

Now, inside the broker folder, create another folder named certs and cd into that folder.
Run the following to generate the required key and certificate file:

openssl req —newkey rsa:2048 —-nodes -—-keyout key.pem -x509 —-days 365 -out
certificate.pem

This will prompt a few questions and you can fill in the same along the following lines:

- certs openssl reg -newkey rsa:2@4B8 -nodes -keyout Key.pem -x589 —-days 365 —out certificate.pem
Generating a 2048 bit RSA private key

writing new private key to 'key.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished MName or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Mame (2 letter code) [AU]:IN

State or Province Name {full name) [Some-State]:TG

Locality Mame (eg, city) []:HYD

Organization Mame (eg, company) [Internet Widgits Pty Ltd]:UBICONN
Organizational Unit Name (eg, section) []:THE IOT SUITCASE

Commen Mame (e.g. server FODM or YOUR name) []:TIS

Email Address []:arvind.ravulavaru@gmail.com

[26]

https://github.com/pinojs/pino
https://www.openssl.org/source/

IoTFW.js -1 Chapter 2

This will create two new files inside the certs folder named key .pem and
certificate.pem. We will be using these in our Mosca setup.

Next, at the root of the broker folder, create a new file named index. js and update it as
follows:

let SSL_KEY = __dirname + '/certs/key.pem';
let SSL_CERT = __dirname + '/certs/certificate.pem';
let MONGOURL = 'mongodb://admin:adminl23@ds241055.mlab.com:41055/iotfwjs"’;
module.exports = {

id: 'broker',

stats: false,

port: 8443,

logger: {

name: 'iotfwis',

level: 'debug'

}I

secure: {
keyPath: SSL_KEY,
certPath: SSL_CERT,

}I

backend: {
type: 'mongodb',
url: MONGOURL

}I

persistence: {
factory: 'mongo',
url: MONGOURL

bi

The previous code is the configuration with which we are going to launch Mosca. The
config here loads the SSL certificates and keys and sets Mongo as our persistence layer.

Save index.js and head back to the terminal/prompt and cd into the location where we
have the index. js file. Next, run the following:

mosca —-c¢ index.js -v | pino

[27]

IoTFW.js -1 Chapter 2

And we should see the following:

+ broker mosca —c¢ index.js —-v | pino

4+ s+t +++; B aa +++.
++ .+t e I e =
A T N TS T S T T S S o
R R T = - S T +.
R +! 'y + +.
+ 0+l o+ 4+ T+ HE '+ +++++.
R ++ 'y A+,
+ 0+l o+ 4+ T+ ++ '+ + +
R S e e T R S + o+ +
T o T S S S A P S +.
+' . H I 't ++'+' o+ +
+ .+l +++ +++. , ! + +.
[2017-18-31T11:82:21.546Z] INFO (iotfwjs/12441 on Arvinds-MacBook-Pro.locall): server started

mgtts: BBE3

As you can see from the previous, we are connected to the iot fwjs database and the
broker is going to listen to port 8883 for connections.

This wraps up our setup of the MQTTS broker using Mosca.

In the next step, we will implement the API engine and at that point, we are going to test
the integration of the MQTTS broker with the API engine.

API engine - Node.js and Express

In this section, we are going to build the API engine. This engine interfaces with our apps
and cascades the information from and to the smart device, connecting as an MQTT client
with the broker.

To get started, we are going to clone a repository that we have created using a Yeoman
(http://yeoman.io/) generator named generator-node-express-mongo
(https://www.npmjs.com/package/generator—node—express—mongo).VVe]lavetakenthe
code scaffolded by generator-node-express-mongo and modified it a bit for our needs.

Somewhere on your machine, download the complete code base of this book using the
following command:

git clone
https://github.com/PacktPublishing/Practical-Internet—-of-Things-with-JavaSc
ript.git

[28]

http://yeoman.io/
https://www.npmjs.com/package/generator-node-express-mongo

IoTFW.js -1 Chapter 2

Or, you can download the zip file from
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

as well.

Once the repository has been downloaded, cd into the base folder and make a copy of
api-engine-base folder into chapter2 folder.

This will download the api-engine boilerplate code. Once the repo is cloned, cd into the
folder and run the following;:

npm install
This will install the needed dependencies.

If we open the cloned folder, we should see the following:

—— package.json
L— server
— api
| b— user
| —— index.js
| —— user.controller.js
| b—— user.model.js
F— app.js
— auth
| B—— auth.service.js
| —— index.js
| b— local
| —— index.js
| Lb—— passport.is
—— config
| —— environment
| | B— development.ijs
| | B— index.js
| | B— production.ijs
| | b— test.js
| b—— express.is
| b—— socketio.js
F— mqgtt
| b—— index.js
L— routes.js

This folder has all the bare bones needed for us to get started with our API engine.

[29]

https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

IoTFW.js -1 Chapter 2

As you can see from the previous structure, we have a package. json at the root of the
folder. This file consists of all the dependencies needed. We have also defined our startup
script here.

All our application files are present inside the server folder. Everything starts at api-
engine/server/app.js. We initialize mongoose, express, socketio, config, routes,
and mgtt. And finally, we start our server and listen to port 9000 on localhost with the
help of server.listen().

api-engine/server/config/express. js has the required setup to initialize the Express
middleware. api-engine/server/config/socketio. js consists of the logic needed to
manage web sockets.

We will be using api-engine/server/config/environment to configure the
environment variables. For most of the book, we are going to work with the development
envﬂonnuﬂﬂ.H‘NeOpenapi—engine/server/config/environment/development.j&
we should see the configuration for mongo and mgtt. Update them as follows:

// MongoDB connection options
mongo: {
uri: 'mongodb://admin:adminl23@ds241055.mlab.com:41055/iotfwjs’
b

mgtt: {
host: process.env.EMQTT_HOST || '127.0.0.1",
clientId: 'API_Server_Dev',
port: 8883

}i

Update the mongo URL as per your setup (mLab or local). Since we are
going to connect to the Mosca broker running on our local machine, we
are using 127.0.0.1 as the host.

Authorization

Next, we are going to look at out-of-the-box auth. We will be using JSON Web Tokens
(JWTs) to authenticate the clients that are going to communicate with our API engine. We
will be using Passport (http://passportjs.org/) for authentication.

[30]

http://passportjs.org/

IoTFW.js -1 Chapter 2

Open api-engine/server/auth/index. js and we should see the Passport setup using
require('./local/passport') .setup (User, config);andwveaneafaﬁngarmmr
route for authentication.

The routes are configured in api-engine/server/routes. js. If we open api-
engine/server/routes.js, we should see app.use (' /auth',

require ('./auth'")) ;. This will create a new endpoint named /auth and inside the
api-engine/server/auth/index.js, we have added router.use ('/local’,
require ('./local')); now, if we wanted to access the POST method inside api-
engine/server/auth/local/index. js, we would make a HTTP POST request to
/auth/local.

In the api-engine, we are using the passport local authentication strategy
(https://github.com/jaredhanson/passport-local) to authenticate the user using
MongoDB for persistence.

To create a new user, we are going to use the user API. If we open api-
engine/server/routes.js, we should see a route defined to access the users collection
app.use ('/api/vl/users', require('./api/user'));.We have prefixed with
/api/v1/users so we can version our API layer later on.

If we open api-engine/server/api/user/index. js, we should the see the following
six routes defined:

e router.get ('/', auth.hasRole('admin'), controller.index);

e router.delete('/:1d', auth.hasRole('admin'),
controller.destroy);

e router.get ('/me', auth.isAuthenticated(), controller.me);

e router.put ('/:id/password', auth.isAuthenticated(),
controller.changePassword) ;

e router.get ('/:id', auth.isAuthenticated(), controller.show);

e router.post('/', controller.create);

[31]

https://github.com/jaredhanson/passport-local

IoTFW.js -1 Chapter 2

The first route is for fetching all the users in the database and, using the auth.hasRole
middleware defined in api-engine/server/auth/auth.service.js, we will be
checking whether the user is authenticated and has the admin role.

The next route is to delete a user with an ID; after that, we have a route to get a user's
information based on the token. We have a PUT route to update the user's information; one
GET route to get a user's information based on the user ID; and finally, a POST route to
create a user. Do note that the POST route doesn't have any authentication or authorization
middleware, as the user accessing this endpoint will be using our app for the first time (or is
trying to register with us).

Using the POST route, we will be creating a new user; this is how we register a user: api-
engine/server/api/user/user.model. js consists of the Mongoose schema for the
user and api-engine/server/api/user/user.controller. js consists of the logic for
the routes we have defined.

MQTT client

Finally, we are going to look at the MQTT client integration with our api-engine. If we
open api-engine/server/mgtt/index.js, we should see the default setup of the
MQTTS client.

We are using the following configuration to connect to the Mosca broker over MQTTS:

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

[32]

IoTFW.js -1 Chapter 2

And we are subscribing to two events: one when the connection is established and the other
when we receive a message. On the connect event, we subscribe to a topic named greet
and we are publishing a simple message to that topic in the next line. And on the message
event, we are listening for any messages from the broker and we are printing the topic and
the message.

With this, we are aware of most of the pieces of code needed to work with api-engine. To
start the api-engine, cd into the chapter2/api-engine folder and run the following:

npm start

This will start a new Express server application on port 9000.

API engine testing

To quickly check out the API that we have created, we will be using a Chrome extension

named Postman. You can set up the Chrome extension from here:
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddo

mop?hl=en.

Once Postman is set up, we will be testing two API calls to validate the register and login
methods.

Open Postman and enter the requested URL as http://localhost:9000/api/vl/users.
Next, select the method type as POST. Once that is done, we will set the headers. Add a new
header with key as content-type and value as application/json.

Now we will construct the request body/payload. Click on the Body tab, next to Headers,
and select Raw request. And update it with the following:

{

"email" : "arvind@myapp.com",
"password" : "123456",
"name" : "Arvind"

[33]

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en

IoTFW.js -1 Chapter 2

You can update the data as applicable. And then click on Send. This makes a request to the
API engine, which will in turn save the data to the database and respond with the new user
object, along with the auth token.

Our output should be as follows:

No Environment
http://localhost:2000/
POST http://localhost:9000/api/vl fusers Params Send v Save
(1) Body @ Code
form-data wwww-form-urlencoded @ raw binary JSON (application/json)
1- 1
2 "email” : "arvind@myapp.com",
3 "password™ : *123456",
4 “name” : “Arvind"
S0 Y
Body 15) Status: 2000K Tima: 595 ms
Pretty JSON =
i I
2- Muser': {
£ "email”: “arvind@myapp.com”,
4 "password”: "123456",
L "nome": “Arvind",
6 “role": “"user”
7 1,
8 "token": "eylhbGciOiJIUzIINiISINRScCIBLkpXVCI9
.eyJfaWQi01iT10TE3ZDQyYZGQWMTAYNjESMTkZMDCAMAULLCIpYXQi0;EROTO3MzMANZASTmV4cCIEMTQSNDgyMDT3MH
.LcbyqLWBESVE7tal IeSVO4Vx3EIZDAIw-UBRSCYpyl"”
9

[34]

IoTFW.js -1

Chapter 2

Now, if we hit the Send button again with the same data, we should see a validation error

something the same as the following:

http://localhost:0000/
POST http://localhost:9000/apifv1/users
(1 Body @
form-data x-www-form-urlencoded ® raw binary JSON (application/json)
1-{)
2 "email” : "arvind@myapp.com”,
3 "password™ : “1Z3456",
4 “name” : "Arvind"
54 H
Body (15)
Pretty JSON =
Iz
2~ “errors": {
3~ "email": {
4 "message": "The specified email address is already in use.",
5 “name”: “ValidaterError®,
b~ "properties”: {
7 "type": "user defined",
8 "message”: “The specified email address is already in use.”,
9 "path”: “"email”,
10 "value": "arvind@myapp.com”
11
12 "user defined",
13 'email”,
14 "arvind@myapp.com”
15 }
16 3,
17 “message”: “User validation failed",
18 "name": "ValidationError"
19 }

No Environment

Farams “ save

Code

Status: 500 Internal Server Error Time: 323 ms.

[35]

IoTFW.js -1 Chapter 2

Now, to validate the newly registered user, we will fire a request to
http://localhost:9000/auth/local with only the email and password. And we
should see something the same as the following:

No Environment
http://lacalhost:9000/

POST http://local host:9000/auth/local Params Send v Save
m Body @ Code
form-data x-www-form-urlencoded ® raw binary JSON (application/json)
1-{
2 "email” : "arvind@myapp.com”,
3 "password” : "123456"
40 H
Body (15) Status: 2000K Time: 320 ms
Pretty JSON =

1

2

3 5917d42dd@1826191960781e",
4 "email"”: “arvind@myapp.com",
5

6

7

8

"name": “Arvind",
"role": "user”
1,
“token": "eylhbGciOiJIUzIINLISINRScCIBLkpXVCI2
.ey]faWQi0iI10TE3ZDQyZGQWMTAYN] ESMTkZMDCAMIULLCIpYXQi07EROTQ3MZMSMZY s ImV4cC IBMTQSNDgYMDMZNN® . wHMs 1aUnGOoK173QC] _
-TKazZRIgA3Uh4T4gt 1dWPT@R"

This validates the API we have created.

With this, we complete the walk-through of the API engine. In the next section, we are
going to integrate the api-engine with the broker and test the connectivity between them.

Communication between broker and API engine

Now that we are done with the two pieces of software on the cloud, we will be interfacing
them. In api-engine/server/config/environment/development.js, we have
defined the broker IP and port that the api-engine needs to connect to.

Later on, if we deploy these two pieces on different machines, this is the place where we
update the IP and port so the api-engine refers to the broker.

[36]

IoTFW.js -1

Chapter 2

Now, to test the communication, cd into chapter2/broker folder and run the following:

mosca —-c index.js -v | pino

And we should see the following:

-+ broker mosca -c index.js -v
+++, -+ e +++3
++ .+, ++ na R o N o L
A S T I
+° 4.+ o+ T+ o+ 4
+ .+, T+ +!
+° 4.+ 4+ T+ T+,
+1 4+l o+ 4+ T+ ++
+° 4.+ 4+ T+ ++
e . L
S N T T
S I S e
+' .+ 4+ e+,

[2B17-18-31T11:46:11.441Z] INFO

mqtts: BEBB3

| pino

B +++,
B s
v '+ +"
'+ i+ 4+ +a
'+ + +.
'+ 4+
'+ +++++,
'+ + +
'+ i+ 4+ +.
'+ '+ 4+ +

++'+! + +

! + +.
{iotfwjs/17167 on Arvinds-MacBook-Pro.local): server started

Next, open a new command prompt/terminal, cd into chapter2/api-engine folder, and
run the following;:

npm start

And we should see the following:

[nodemon]

starting “node serverfapp.js
Express server listening on 9008,
Connected to Mosca at 127.8.8.1 on port BEBE3
toplc ==> greet
message »»= Hello IoTFWjs

in development mode

[37]

IoTFW.js -1 Chapter 2

The API engine connected to the mLab MongoDB instance, post that it started a new
Express server and finally, it connected to the Mosca broker and the posted a message to the
greet topic.

Now, if we look at the Mosca terminal, we should see the following;:

-+ broker mosca -c¢ index.js -v | pino

+++. +++ +++] '+ +++.
.

r
++. e T +! ot
R S N e T T T
+ 4. 4D L+ T+ o+ '+ g+ o+ +.
+ 4. 4+ T+ +! '+ + +.
R S e '+ +++++.
+ 4. 4+ T+ ++ '+ R
+ 4. 4+ T+ ++ + +
+7 4. 4+ T+ 4+ o+ '+ g+ o+ +.
+" +. 41 .+ W+ +r 4+ '+ '+ o+ +
+" +. +I e+ ++ "'+ + +
+° 4.+ +++ +++. ! + +.
[2B17-10-31T11:46:11.4412] INFO (iotfwjs/17167 on Arvinds-MacBook-Pro.local): server started
mgtts: BBE3
[2017-10-31T11:46:58.472Z] INFO (iotfwjs/17167 on Arvinds-MacBook-Pro.locall: client connected
client: "API_Server_Dev"
[2B17-18-31T11:46:58.492Z] INFO (iotfwjs/17167 on Arvinds-MacBook-Pro.local): subscribed to topic
topic: "greet"
gos: @

client: "API_Server_Dew"

The broker logged the activity that has happened so far. A client connected with username
API_Server_Dev and subscribed to a topic named greet with Quality of Service (QoS) as
0.

With this, our integration between the broker and API engine is complete.

Next, we are going to move towards the Raspberry Pi 3 and start working on an MQTTS
client.

If you are new to MQTT protocol, you can refer to MQTT Essentials: Part 1
- Introducing MQTT
(http://www.hivemq.com/blog/mqttfessentialsfpartflfintroducingfm
gtt) and the subsequent parts. To know more about QoS, refer to MQTT
Essentials Part 6: Quality of Service 0, 1 & 2 (https://www.hivemq.com/
blog/mqtt—essentials—part—6—mqtt—quality—of—service—levels)

[38]

http://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt
http://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels

IoTFW.js -1 Chapter 2

Raspberry Pi software

In this section, we are going to build the required software to make the Raspberry Pi a client
to our Mosca broker via the Wi-Fi router.

We have already seen in the data flow diagram how the Raspberry Pi stands between the
sensor and the Mosca broker. Now we are going to set up the required code and software.

Setting up Raspberry Pi

In this section, we will look at installing the required software on the Raspberry Pi.

A Raspberry Pj, installed with Raspbian OS
(https://www.raspberrypi.org/downloads/raspbian/), is a prerequisite. The Wi-Fi should
have already been set up and connected before we continue.

If you are new to setting up a Raspberry Pi 3, refer to the Beginner’s Guide
to Installing Node.js on a Raspberry Pi
(http://thisdavej.com/beginners—guide-to-installing-node-js-on-a
-raspberry-pi/). We will, however, cover the Node.js part, you can refer
until you bring up the Pi and configure the Wi-Fi.

Once the OS is installed, boot up the Raspberry Pi and log in to it. At this point in time, it
will be connected to the internet over your own access point and you should be able to
browse the internet without issues.

I am accessing my Raspberry Pi 3 from my Apple MacBook Pro using
VNC Viewer. This way, I am not always connected to the Raspberry Pi 3.

We will start off by downloading Node.js. Open a new terminal and run the following
commands:

$ sudo apt update
$ sudo apt full-upgrade

This will upgrade all the packages which need upgrades. Next, we will install the latest
version of Node.js. At the time of writing, Node 7.x is the latest:

$ curl -sL https://deb.nodesource.com/setup_7.x | sudo -E bash -
$ sudo apt install nodejs

[39]

https://www.raspberrypi.org/downloads/raspbian/
http://thisdavej.com/beginners-guide-to-installing-node-js-on-a-raspberry-pi/
http://thisdavej.com/beginners-guide-to-installing-node-js-on-a-raspberry-pi/

IoTFW.js -1 Chapter 2

This will take a moment to install and once your installation is done, you should be able to
run the following commands to see the version of Node.js and npm:

node -v
npm —-v

With this, we are done with setting up the required software for running our MQTTS client
on the Raspberry Pi 3.

Raspberry Pi MQTTS client

Now we are going to work with the MQTTS client of Node.js.

On the desktop of the Raspberry Pi 3, create a folder named pi-client. Open a terminal
and cd into the pi-client folder.

The first thing we are going to do is create a package. json file. From inside the pi-
client folder, run the following:

$ npm init

Then answer the question as applicable. Once you are done with that, next we will install
MQTT,js (https://www.npmjs.com/package/mgtt) on the Raspberry Pi 3. Run the following:

$ npm install mgtt -save
Once this installation is also done, the final package . json will look the same as this:

{

"name": "pi-client",
"version": "0.1.0",
"description": "",
"main": "index.js",
"scripts": {

"start": "node index.]js"
}I
"keywords": ["pi", "mgtts"],
"author": "Arvind Ravulavaru",
"private": true,
"license": "ISC",
"dependencies": {

"mgtt": ""2.7.1"
}

[40]

https://www.npmjs.com/package/mqtt

IoTFW.js -1 Chapter 2

Do note that we have added a start script to launch our index. js file. We will be creating
the index. js file in a moment.

Next, at the root of the pi-client folder, create a file named config. js. Update
config. js as follows:

module.exports = {
mgtt: {
host: '10.2.192.141"',
clientId: 'rPI_3',
port: 8883

bi

Do notice the host property. This is set to the IP address of my MacBook
and my MacBook is where I am going to run the Mosca broker API engine.
Make sure all three (Mosca broker, API engine, and Raspberry Pi 3) of
them are on the same Wi-Fi network.

Next, we will write the required MQTT client code. Create a file named index. js at the
root of the pi-client folder and update it as follows:

var config = require('./config.js');
var mgtt = require('mgtt')
var client = mgtt.connect ({

port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

)i

client.on('connect', function() {
client.subscribe ('greet')
client.publish('greet', 'Hello, IoTjs!')

)i

client.on('message', function(topic, message) {
// message is Buffer
console.log('Topic >> ', topic);
console.log('Message >> ', message.toString())

)i

[41]

IoTFW.js -1 Chapter 2

This is the same test code we have written on the API engine to test the connectivity. Save
all the files and move towards your Mosca broker.

Communication between the broker and the
Raspberry Pi

In this section, we are going to communicate between the broker and the Raspberry Pi over
MQTTS.

Navigate to the broker folder and run the following;:
mosca —-c index.js -v | pino

Next, head over to the Raspberry Pi, cd into the pi-client folder, and run the following:
$ npm start

And we should see the following message on the Raspberry Pi:

File Edit Tabs Help

pi@raspberrypi: npm start

p/pi-client

[42]

IoTFW.js -1 Chapter 2

And when we look at the console of Mosca, we should see the following:

- mosca —c index.js -v | pino

. L +++3 "ttt +++.

alhanlhai D o A = P

T e T
T N = e e +.
+° 4. 41+ T4 +1 + + +.
+1 4. 4+ T4 T+, 'y ——
+1 4. 4+ T4 ++ 'y ——
+1 4. 4+ T4 ++ '+ + +.
A e L T T e +
T - I e R TR LS +
R T I = S e e S B S ++ '+ + +.
+' 4+ +: 4+ 4, ! + +

[2817-B5-85T13:36:21.4972Z] INFO (iotjs/BE@@4 on Arvinds-MacBook-Pro.local):
mgtts: BBE3

[2817-B5-85T13:37:29.805Z] INFO (iotjs/BE6@@4 on Arvinds-MacBook-Pro.local):
client: "rPI_3"

[2817-B5-85T13:37:29.B851Z] INFO {(iotjs/BE6@@4 on Arvinds-MacBook-Pro.locall):
topic: "greet"
gos: B
client: "rPI_3"

This wraps up our connectivity test between the Raspberry Pi 3 and the Mosca broker.

Troubleshooting

If you are not able to see the previous messages, check the following:

e Check whether the Raspberry Pi and the machine running the broker are on the
same Wi-Fi network

¢ Cross-check the IP address of the machine running the broker

Communication between the Raspberry Pi, the
broker and the API engine

Now we are going to integrate the Raspberry Pi, the broker, and the API engine and pass
the data from the Pi to the API engine.

The way we are going to achieve this is that we are going create a topic named api-engine
and another topic named rpi.

[43]

IoTFW.js -1 Chapter 2

To send data from the Raspberry Pi to the API engine, we will be using the api-engine
topic and when we need to send data from the API engine to the Raspberry Pi, we will use
the rpi topic.

In this example, we are going to get the MAC address of the Raspberry Pi and send that to
the API engine. The API engine will acknowledge the same by sending the same MAC
address back to the Raspberry Pi. The communication between the API engine and
Raspberry Pi will happen over the two topics mentioned previously.

So first, we will update the api-engine/server/mgtt/index. js as follows:

var mgtt = require('mgtt');
var config = require('../config/environment');

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

P

client.on('connect', function() {
client.subscribe ('api-engine');

)i

client.on('message', function(topic, message) A
// message is Buffer
// console.log('Topic >> ', topic);
// console.log('Message >> ', message.toString());

if (topic === 'api-engine') {
var macAddress = message.toString();
console.log('Mac Address >> ', macAddress);
client.publish('rpi', 'Got Mac Address: ' + macAddress);
} else {

console.log('Unknown topic', topic);

[44]

IoTFW.js -1 Chapter 2

Here, once the MQTT connection is established, we are subscribing to the api-engine
topic. When we receive any data from the api-engine topic, we will send back the same to
the rpi topic.

From inside the broker folder, run the following:
mosca —-c index.js -v | pino

Next, from inside the api-engine folder, run the following:
npm start

Next, head back to the Raspberry Pi. We are going to install the getmac module
(https://www.npmjs.com/package/getmac) that will help us to get the MAC address of a
device.

From inside the pi-client folder, run the following:
$ npm install getmac --save

Once this is done, update /home/pi/Desktop/pi-client/index. js as follows:

var config = require('./config.js');
var mgtt = require('mgtt');
var GetMac = require('getmac');

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

P

client.on('connect', function() {
client.subscribe('rpi'");
GetMac.getMac (function (err, macAddress) {
if (err) throw err;
client.publish('api-engine', macAddress);
)i
)i

client.on('message', function(topic, message) {

[45]

https://www.npmjs.com/package/getmac

IoTFW.js -1 Chapter 2

// message is Buffer
// console.log('Topic >> ', topic);
// console.log('Message >> ', message.toString());

if (topic === 'rpi') {
console.log('API Engine Response >> ', message.toString());
} else {

console.log ('Unknown topic', topic);

)i

In the previous code, we have waited for the connection to establish between the Raspberry
Pi and the broker. Once that is done, we have subscribed to the rpi topic. Next, we fetched
the MAC address of the Raspberry Pi using GetMac.getMac () and published the same to
the api-engine topic.

In the message event callback, we are listening for the rpi topic. If we receive any data
from the server, it will be printed here.

Save the file and from inside the pi-client folder, run the following:
$ npm start

Now, if we look at the broker terminal/prompt, we should see the following:

+ broker mosca —-¢ index.js -v | pino

SR n R o S H e+ +4++ Y+ ++.
A+ e T e = =
S T I T
A e T = T T S S +.
I T o +! '+ + +.
I P o A Tt '+ +H+++,
A ++ 't o,
A ++ '+ + +.
A e e T - TR S S +
+' 4. D L+ a4 4 't '+ +.
T G = R = S ++'+' o+ +
+" o+ +3 +++ e+, ! + +.

[2017-85-05T14:00:46.2532Z] INFD (iotjs/BTET8 on Arvinds-MacBook-Pro.local): server started
mgtts: BBB3

[2017-B5-085T14:08:47.4962] INFD (iotjs/B7E678 on Arvinds-MacBook-Pro.locall: client connected
client: "API_Server_Dew"

[2017-85-05T14:0@:47.5092Z] INFD (iotjs/B7678 on Arvinds-MacBook-Pro.local): subscribed to topic
topic: "api-engine"
gos: @
client: "API_Server_Dew"

[2017-85-05T14:00:47.6102Z] INFD (iotjs/B7678 on Arvinds-MacBook-Pro.local): client connected
client: "rPI_3"

[2017-B5-85T14:08:47.6652] INFD (iotjs/ 87678 on Arvinds-MacBook-Pro.local): subscribed to topic
topic: "rpi"
gqos: @

client: "rPI_3"

[46]

IoTFW.js -1 Chapter 2

Both the devices are connected and subscribed to the topic of interest.

Next, if we look at the api-engine terminal/prompt, we should see the following;:

- npm start

> api-engine@B.l.® start fUsers/arvindravulavaru/Arvind/Books/Advanced IoT with J5/code/chapter2/api-engine
= nodemon server/app.js

Express server listening on QBBB,-in-deuelopment mode
Mac Address >> bB:27:eb:f3:2d:4a

And finally, the Raspberry Pi terminal should look the same as this:

File Edit Tabs Help

pi@raspberrypi: npm start

yi-client

API Engine

With this, we conclude the integration of the Raspberry Pi with the broker and API engine.

In the next section, we will implement a web application that can send and receive data
from the Raspberry Pi through the broker and API engine.

[47]

IoTFW.js -1 Chapter 2

Web app

In this section, we are going to build a web app that interfaces with our API engine. The
web app is the primary interface with which we will be interacting with our smart devices.

We are going to build the web app using Angular (4) and Twitter Bootstrap (3). There is no
rule that the interface should be built with Angular and Bootstrap; it can be built using
jQuery or React.js as well. All we will be doing is interfacing with the APIs of the API
engine using JavaScript from the browser. The only reason we are using Angular is to keep
the framework consistent across all our apps. Since we will be using the Ionic framework,
which also follows the Angular approach, things will be easy for us to manage as well as
reuse.

To get started with the web application, we are going to install Angular CLI
(https://github.com/angular/angular-cli).

On the machine that was running our broker and API engine, we will be setting up the web
app as well.

Setting up the app

From inside the chapter2 folder, open a new command prompt/terminal and run the
following;:

npm install -g @angular/cli

This will install the Angular CLI generator. If you run ng -v after the installation is done,
you should see a version number greater than or equal to 1.0.2.

If you are facing any issues while setting up and running the IoTFW js,

feel free to drop your comment here:
https://github.com/PacktPublishing/Practical-Internet-of-Things-
with-JavaScript/issues/1

For the web app, we have already created a base project using Angular CLI and have added
the essential pieces to integrate with the API engine. We will clone the project as is and then
start working on top of it.

To get started, we need the web app base. If you have not already cloned the book's code
repository, you can do so using the following command-line (anywhere on your machine):

git clone git@github.com:PacktPublishing/Practical-Internet-of-Things-with-
JavaScript.git

[48]

https://github.com/angular/angular-cli
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript/issues/1

IoTFW.js -1 Chapter 2

Or you can download the zip file from
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

as well.

Once the repository has been downloaded, cd into the base folder and make a copy of
web-app-base folder into chapter2 folder.

Once the base has been copied, cd into the web-app folder, and run the following
command:

npm install

This will install the needed dependencies.

Project structure

If we open the cloned folder, we should see the following:

—— README.md

F— e2e
| b—— app.e2e-spec.ts
| —— app.po.ts

| b—— tsconfig.e2e.json

—— karma.conf.js

—— package.json

—— protractor.conf.js

— src

| F—— app

—— add-device

—— add-device.component.css
—— add-device.component.html
—— add-device.component.spec.ts
L— add-device.component.ts
app.component.css
app.component.html
app.component.spec.ts
app.component.ts
app.global.ts
app.module.ts

device
device.component.css
device.component.html
device.component.spec.ts
L— device.component.ts

—— device-template

'O '0 '8 '8 T

TTTTTTT

T

[49]

https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

IoTFW.js -1

Chapter 2

| F——— devic
| F——— devic
| F——— devic
| L— devic
F——— guard

| F——— auth.

e—-template.
e—-template.
e—template.
e—-template.

guard.spec.
.guard.ts

.component.
.component
.component.
.component

.component.
.component.
.component.
.component.

component.
component.
component.
component.

ts

Css

.html

spec.ts

.ts

css
html
spec.ts
ts

F— nav-bar.
F— nav-bar.
F— nav-bar.

L— nav-bar.

component.c

SS

component .html
component.spec.ts

component.t

S

1!

— register.
— register.
— register.

L— register.

register

services

auth.service.
auth.service.
data.service.
data.service.

component.css
component .html
component.
component.ts

spec.ts
ts
spec.ts
ts

spec.ts

TITTTTTTTTTT

______%%__

F___
F___
F___
F___

M

assets
environments

favicon.ico
index.html
main.ts
polyfills.ts

devices.service.ts
http-interceptor.service.spec.ts
http-interceptor.service.ts
loader.service.
loader.service.ts
socket.service.
socket.service.ts

environment.prod.ts
L—— environment.ts

devices.service.spec.ts

spec.ts

spec.ts

[50]

css
html
spec.ts
ts

IoTFW.js -1 Chapter 2

| I— styles.css

| I— test.ts

| I— tsconfig.app.json
| I— tsconfig.spec.json
| L— typings.d.ts

—— tsconfig.json
L— tslint.json

Now, for the walk-through of the project structure and code setup.

At a high level, we have an src folder, where we will have all the source code and unit test
code, and an e2e folder, which consists of the end-to-end test.

We will be spending most of the time inside the src/app folder. Before we go into this
folder, open web-app/src/main.ts and this is where everything begins. Next, we have
added the Twitter Bootstrap Cosmos theme (https://bootswatch.com/cosmo/) here and
defined a few layout styles.

Now, the app/src folder: here, we have defined the root component, the root module, and
the required components and services.

App module

Open web-app/src/app/app.module.ts. This file consists of the @NgModule declaration,
which defines all the components and services that we are going to use.

We have created the following components:

e AppComponent: Application root component that holds the router outlet

® NavBarComponent: This is the navigation bar component that appears on the all
the pages. This component automatically detects the authentication state and
shows the menu bar accordingly

e LoginComponent: This deals with the login feature

® RegisterComponent: To work with registration with the API engine

e HomeComponent: This component displays all the devices attached to the current
logged-in user

® DeviceComponent: This component displays information about one device

e AddDeviceComponent: This component lets us add a new component to our
device list

® DeviceTemplateComponent: A common template that is used to represent a
device in our application

[51]

https://bootswatch.com/cosmo/

IoTFW.js -

I Chapter 2

Apart from the previous, we have also added the required modules to the imports:

RouterModule: To manage the routing

LocalStorageModule: To manage the user data within the browser, we are
going to use LocalStorgae

SimpleNotificationsModule : To show the notifications using Angular 2
notifications (https://github.com/flauc/angular2-notifications)

And for the services, we have the following;:

AuthService: To manage the authentication APIs exposed by the API engine
DevicesService: To manage the device API exposed by the API engine
DataService: To manage the Data API exposed by the API engine
SocketService: To manage web sockets that send data from the API engine in
real time

AuthGuard: An Angular Guard that protects routes which need authentication.
Read Protecting Routes using Guards in Angular
(https://blog.thoughtram.io/angular/ZOl6/07/18/guards—in—angular—Z.htm
1) for more information on Guards

LoaderService: That shows and hides a loader bar when an activity is going on
Http: The HTTP service that we use to make HTTP requests. Here, we have not

used the HTTP service as is, but extended the class and added our logic in
between to manage the HTTP request experience better using the loader service

Do note that at this point, the API engine does not have APIs for devices and data, and
sockets are not set up for the data. We will be implementing in the API engine, once we are
done with the web app completely.

In this web application, we are going to have the following routes:

login: To let the user log in to the application

register: To register with our application

home: A page that displays all the devices in a user account

add-device: A page to add a new device to the user's device list
view-device/:1id: A page to view one device, identified by the id parameter in
the URL

**: The default route is set to login

' ': If no route matches, we redirect the user to the login page

[52]

https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://github.com/flauc/angular2-notifications
https://blog.thoughtram.io/angular/2016/07/18/guards-in-angular-2.html
https://blog.thoughtram.io/angular/2016/07/18/guards-in-angular-2.html

IoTFW.js -1 Chapter 2

Web app services

Now that we understand at a high level all that is present in this web app, we will walk
through the services and components.

Open web-app/src/app/services/http-interceptor.service.ts; in this class, we
have extended the Ht tp class and implemented the class methods. We have added two
methods of our own named requestInterceptor () and responseInterceptor (),
which intercept the request and response respectively.

When the request is about to be sent, we call the requestInterceptor () to show a loader,
indicating the HTTP activity, and we use the responseInterceptor () to hide the loader
once the response arrives. This way, the user is clearly aware if there is any background
activity going on.

Next is the LoaderService class; open web—
app/src/app/services/loader.service.ts and, as we can see from here, we have
added a class property named status of the type BehaviorSubject<boolean> (to know

more about Behaviour subject, refer to
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behavi

orsubject.md). And we have a method, which will be called by the HTTP service or any
other component if they would like to show or hide the loader bar and then set the value as
true or false.

The required HTML for the loader service is present in web-
app/src/app/app.component .html and the required styles are present in web-
app/src/app/app.component.css.

We are going to use web sockets for streaming data in real time between the web app and
the API engine. Open web-app/src/app/services/socket.service.ts and we should
see the constructor and the getData () method. We are using socket.io-client
(https://github.com/socketio/socket.io-client) to manage web sockets in our web

app.

In the constructor, we have created a new socket connection to our API engine and passed
the auth token as a query parameter. We are going to validate the incoming connections via
web sockets as well. And only if the token is valid will we allow the connection, else we
close the web socket.

[53]

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client
https://github.com/socketio/socket.io-client

IoTFW.js -1 Chapter 2

Inside getData (), we subscribe to the data: save topic for a device. This is how we get
notified from the API engine when there is new data available from a device.

Now we will look at the three API services with which we authenticate the user, get the
user's devices and get data for a device:

e AuthService: Open web-app/src/app/services/auth.service.ts. Here,
we have defined the register (), login (), and logout (), which takes care of
managing the authentication state and we have isAuthenticated (), which
returns the current state of authentication, as in whether the user is logged in or
logged out.

e DevicesService: Open web-app/src/app/services/devices.service.ts.
Here, we have implemented three methods: one to create, one to read, and one to
delete. With this, we manage our devices for a user.

® DataService: Open web-app/src/app/services/data.service.ts, which
manages the data for a device. We have only two methods here: one to create a
new data record and one to fetch the last 30 records of a device.

Do notice that we are using web-app/src/app/app.global.ts to save all our constant
global variables.

Now that we are done with the required services, we will walk through the components.

Web app components

We will start with the app component. The app component is the root component, which
holds the router outlet, loader service HTML, and notification service HTML. You can find
the same here: web-app/src/app/app.component .html. In web—
app/src/app/app.component . ts, we have defined showLoader that decides whether
the loader should be shown or not. We have also defined notification options, which stores
the notification service configurations.

Inside the constructor, we are listening for route change events on the router, so we can
show a loading bar on page change. We are also listening to the loader service status
variable. If this changes, we show or hide the loader.

[54]

IoTFW.js -1 Chapter 2

The first page that the user lands on is the login page. The login page/component, web-
app/src/app/login/login.component.ts, has only one method, the takes the user's
email and password from web-app/src/app/login/login. component.html and
authenticates the user.

Using the register button on the home page, the user registers themself. Inside the
RegisterComponent class, web-app/src/app/register/register.component.ts, we
have defined register (), which takes the user's information and, using the Authservice,
registers a user.

Once the user has been successfully authenticated, we redirect the user to the
LoginComponent. In the HomeComponent, web—

app/src/app/home/home.component .ts, we fetch all the devices associated with the
user and display them on load. This page also has a button for adding a new device using
the AddDeviceComponent.

To view one device, we use the DeviceComponent to view one device.

As of now, we do not have any APIs available to work with devices and data. We will
revisit this page once we finish the API engine update in the next section.

Launching the app

To run the app, open a terminal/prompt inside the web-app folder and run the following:

ng serve

Make sure the API engine and Mosca are running before you run the
previous command.

[55]

IoTFW.js -1 Chapter 2

Once the webpack compilation is successful, navigate to http://localhost:4200/login
and we should see the login page, this is the first page:

&« () |® localhost:4200/login L ﬁl 3

Web App
Login to Web App

SignIn

E-mail

Register with the Web App

We can use the account we have created while testing the API engine, using Postman, or we
can create a new account by clicking on Register with Web App as follows:

&« () | @ localhost:4200/register L o]

Web App

Register with Web App

Register
Arvind2
arvind2@myapp.com

Login to the Web App

[56]

IoTFW.js -1

Chapter 2

If the registration is successful, we should be redirected to the home page as follows:

&« C | @ localhost:4200/home

Logout

Loading!

[w ﬂ Memory Elements GConsole Sources Application Network Performance Security Audits

® | top v Filter Info v
Angular is running in the development mode. Call enableProdMode() to enable the production mode.

User Auth State: Logged In
@ Failed to load resource: the server responded with a status of 484 (Not Found

called
@ Failed to load resource: the server responded with a status of 484 (Not Found

> |

Augury AdBlock » o2 : x
o

vendor.bundle.{s:38081
nav-bar.component.ts:23
19880/ /api/vl/devices
nav-bar.component.ts:32
:9080/api/vl/devices

If we open the developer tools, we should see the previous message. The API engine does
not have APIs for devices implemented, hence the previous 404s. We will fix that in

Chapter 3, IOTFW.jS -11.

We will also walk through the remaining part of the web app in chapter 3, [oTFW.js - II,

once we are done with the API engine update.

[57]

IoTFW.js -1 Chapter 2

Summary

In this chapter, we have gone through the process of setting up a frame to work with
internet of Things solutions. We have built most of the framework using only JavaScript as
our programming language.

We started by understanding the architecture and data flow from a Raspberry Pi to an end
user device such as a web app, desktop app, or mobile app. Then we started working on the
broker using Mosca, after setting up the MongoDB. Next, we designed and developed the
API engine and completed the basic Raspberry Pi setup.

We have worked on the web app and set up the necessary templates to work with the
remaining part of the application. In chapter 3, [oTFW.js - II, we will complete the entire
framework and also integrate a DHT11 (temperature and humidity) sensor and an LED to
validate the two-way data flow end to end.

[58]

loTFW.js - i

In the previous chapter, we have seen the basic setup among Raspberry Pi, broker, API
engine, and the web app. In this chapter, we will work on the remaining part of the
framework. We will also build a simple example that involves sensing and actuating. We
will read temperature and humidity using a temperature and humidity sensor and also turn
on/off an LED connected to our Raspberry Pi using web, desktop, or mobile app.

We will cover the following topics in this chapter:

e Updating the API engine
Integrating the API engine with web app
Building an end-to-end example using DHT11 and LED

Building a desktop app
Building a mobile app

Updating the API engine

Now that we are done with the web app development, we will update the API engine to
add the device's API and data service, along with web sockets.

Open api-engine/server/routes. js; we will add two routes here. Update api-
engine/server/routes. js, as follows:

'use strict';
var path = require('path');

module.exports = function (app) {
// Insert routes below

IoTFW.js - 11 Chapter 3

app.use ('/api/vl/users', require('./api/user'));
app.use ('/api/vl/devices', require('./api/device'));
app.use('/api/vl/data', require('./api/data'));

app.use ('/auth', require('./auth'));
}i

Now, we will add the definitions for these routes. Inside the api-engine/server/api
folder, create a new folder named device. Inside the device folder, create a new file
named index. js. Update api-engine/server/api/device/index. js, as follows:

'use strict';

var express = require('express');

var controller = require('./device.controller');
var config = require('../../config/environment');
var auth = require('../../auth/auth.service');

var router = express.Router();

router.get ('/', auth.isAuthenticated(), controller.index);
router.delete('/:1id', auth.isAuthenticated(), controller.destroy);

router.put ('/:id', auth.isAuthenticated(), controller.update);
router.get ('/:id', auth.isAuthenticated(), controller.show);
router.post ('/', auth.isAuthenticated(), controller.create);
module.exports = router;

Here, we have added five routes, as follows:

e Get all devices
Delete a device

Update a device
Get one device

Create a device

Next, create another file inside the api—-engine/server/api/device/ folder named
device.model. js. This file will consist of the mongoose schema for the device collection.
Update api-engine/server/api/device/device.model. js, as follows:

'use strict';

var mongoose = require ('mongoose');
var Schema = mongoose.Schema;

[60]

IoTFW.js - 11 Chapter 3

var DeviceSchema = new Schema ({
name: String,
macAddress: String,
createdBy: {
type: String,
default: 'user'
}I
createdAt: {
type: Date
}I
updatedAt: {
type: Date

)i

DeviceSchema.pre('save', function (next) {
var now = new Date();
this.updatedAt = now;
if (!this.createdAt) {
this.createdAt = now;
}
next () ;

P
module.exports = mongoose.model ('Device', DeviceSchema);

Finally, the controller logic. Create a file named device.controller. js inside the api-
engine/server/api/device folder and update api-
engine/server/api/device/device.controller. js, as follows:

'use strict';
var Device = require('./device.model');

/**
* Get list of all devices for a user
*/
exports.index = function(req, res) {
var currentUser = reqg.user._id;
// get only devices related to the current user
Device.find ({
createdBy: currentUser
}, function(err, devices) {
if (err) return res.status(500).send(err);
res.status (200) . json (devices) ;
P) i
bi

[61]

IoTFW.js - 11 Chapter 3

/**
* Add a new device
*/
exports.create = function(req, res, next) {
var device = req.body;
// this device is created by the current user
device.createdBy = reqg.user._id;

Device.create (device, function(err, device) {
)i

if (err) return res.status(500).send(err
res.json (device);
)i
bi

/**
* Get a single device
*/
exports.show = function(req, res, next) {

var deviceld = reg.params.id;

// the current user should have created this device

Device.findOne ({
_id: deviceld,
createdBy: reg.user._id

}, function(err, device) {
if (err) return res.status(500).send(err);
if (!device) return res.status (404) .end();
res.json (device);

P i

bi

/**
* Update a device
*/
exports.update = function(req, res, next) {
var device = req.body;
device.createdBy = reqg.user._id;

Device.findOne ({
_id: deviceld,
createdBy: reg.user._id
}, function(err, device) {
if (err) return res.status(500).send(err);
if (!device) return res.status(404) .end();

device.save (function (err, updatedDevice) {
if (err) return res.status(500).send(err);
return res.status (200).Jjson (updatedDevice);
)i
)i

[62]

IoTFW.js - 11 Chapter 3

}i

/**
* Delete a device
*/
exports.destroy = function(req, res) {
Device.findOne ({
_id: req.params.id,
createdBy: reg.user._id
}, function(err, device) {
if (err) return res.status(500).send(err);

device.remove (function (err) {
if (err) return res.status(500).send(err);
return res.status(204) .end();
)i
)i
bi

Here, we have defined the logic for the routes.

The device API manages the device for us. To manage the data for each device, we will use
this collection.

Now, we will define the data APIs. Create a new folder named data inside the api-
engine/server/api folder. Inside the api-engine/server/api/data folder, create a
new file named index. js and update api-engine/server/api/data/index. js, as
follows:

'use strict';

var express = require('express');
var controller = require('./data.controller');
var auth = require('../../auth/auth.service');

var router = express.Router();

router.get ('/:deviceId/:1imit', auth.isAuthenticated(), controller.index);
router.post ('/', auth.isAuthenticated(), controller.create);

module.exports = router;

[63]

IoTFW.js - 11 Chapter 3

We have defined two routes here: one to view data based on a device ID and another to
create data. The view data route returns the data from a device that is limited to the number
passed in as part of the request. If you remember, in the web-

app/src/app/services/data.service.ts, we have defined the dataLimit class
variable as 30. This is the number of records we get, at a given time, from the APL

Next, for the mongoose schema, create a new file named data.model. js inside the api-
engine/server/api/data folder and update api-
engine/server/api/data/data.model. s, as follows:

'use strict';

var mongoose = require ('mongoose');
var Schema = mongoose.Schema;

var DataSchema = new Schema ({
macAddress: {
type: String
}I
data: |
type: Schema.Types.Mixed
}I
createdBy: {
type: String,
default: 'raspberrypi3'
}I
createdAt: {
type: Date
}I
updatedAt: {
type: Date

)i

DataSchema.pre('save', function (next) {
var now = new Date();
this.updatedAt = now;
if (!this.createdAt) {

this.createdAt = now;
}

next ();

[64]

IoTFW.js - 11 Chapter 3

DataSchema.post ('save', function (doc) {
//console.log('Post Save Called', doc);
require ('./data.socket.js') .onSave (doc)

P i

module.exports = mongoose.model ('Data', DataSchema);

Now, the controller logic for the data APL Create a file named data.controller.js
inside api-engine/server/api/data and update api-
engine/server/api/data/data.controller. js, as follows:

'use strict';
var Data = require('./data.model');

/**
* Get Data for a device
*/
exports.index = function(req, res) {
var macAddress = reqg.params.deviceld;
var limit = parselnt (reqg.params.limit) || 30;
Data.find ({
macAddress: macAddress
}).1limit (1imit) .exec (function (err, devices) {
if (err) return res.status(500) .send(err)
res.status (200) . json (devices);

4

)i
bi

/**
* Create a new data record
*/
exports.create = function(req, res, next) {
var data = reqg.body;
data.createdBy = reqg.user._id;

Data.create(data, function(err, _data) {
if (err) return res.status(500).send(err);
res.json (_data);
if (data.topic === 'led"') {
require('../../mgtt/index.js') .sendLEDData (data.data.l);// send
led value
}
)i
bi

[65]

IoTFW.js - 11 Chapter 3

Here, we have defined two methods: one for getting data for a device and one for creating a
new data record for a device.

For the data API, we will implement sockets as well, so when a new record comes from the

Raspberry Pi, we immediately notify the web app, desktop app, or mobile app so that the
data can be displayed in real time.

As we see from the preceding code, if the incoming topic is LED, we will call the
sendLEDData (), which in turns publishes the data to the device.

Create a file named data.socket . js inside the api-engine/server/api/data folder
and update api-engine/server/api/data/data.socket. js, as follows:

/**
* Broadcast updates to client when the model changes

*/

'use strict';

var data = require('./data.model');

var socket = undefined;

exports.register = function(_socket) {
socket = _socket;

}
function onSave (doc) |

// send data to only the intended device
socket.emit ('data:save:' + doc.macAddress, doc);

module.exports.onSave = onSave;

This will take care of sending a new data record as it successfully gets saved in the
database.

Next, we need to add the socket to the socket configuration. Open api-
engine/server/config/socketio.js and update it, as follows:

'use strict';
var config = require('./environment');

// When the user disconnects.. perform this
function onDisconnect (socket) {}

[66]

IoTFW.js - 11 Chapter 3

// When the user connects.. perform this
function onConnect (socket) {
// Insert sockets below

require('../api/data/data.socket') .register (socket);
}
module.exports = function (socketio) {

socketio.use (require ('socketio—-jwt') .authorize ({

secret: config.secrets.session,
handshake: true
)i

socketio.on('connection', function (socket) {
var socketId = socket.id;

var clientIp = socket.request.connection.remoteAddress;
socket.address = socket.handshake.address !== null ?
socket .handshake.address.address + ':' +

socket .handshake.address.port
process.env.DOMAIN;

socket.connectedAt = new Date();

// Call onDisconnect.
socket.on ('disconnect', function() {
onDisconnect (socket) ;
// console.info (' [%s] DISCONNECTED', socket.address);

)i

// Call onConnect.
onConnect (socket) ;
console.info('[%s] Connected on %s', socketId, clientIp);

)i
bi

Note that we are using socketio-jwt to validate the socket connection to see if it has JWT.
If a valid JWT is not provided, we do not allow the client to connect.

With this, we are done with the required changes to the API engine. Save all the files and
launch the API engine by running the following command:

npm start

This will launch the API engine. In the next section, we will test the integration between the
web app and API engine and continue our walk through from the previous section.

[67]

IoTFW.js - 11 Chapter 3

Integrating web app and API engine

Launch the broker, API engine, and web app. Once all of them are successfully launched,
navigate to http://localhost:4200/. Log in with the credentials we have created. Once

we have successfully logged in, we should see the following screen:

T o

< C | ® localhost:4200/home :
Web App Logout

No Devices

Which is true, as we do not have any devices in our account. Click on Add Device and we

should see something as follows:

&« C | @ localhost:4200/add-device

Web App Logout

Add New Device
Pil

b8:27:eb:39:92:0d

[68]

IoTFW.js - 11 Chapter 3

Add a new device by giving it a name. I named my device Pi 1 and added the mac
address. We will use the mac address of the device as a unique way of identifying the
device.

Click on Create and we should see a new device created, it will redirect us to the home page
and display the newly created device, which can be seen in the following screenshot:

C | @ localhost:4200/home P i

Web App Logout

Pil

ba:27:eb:39:92:0d

Last Update: May 20, 2017, 12:24:26 PM

Now, when we click on the View button, we should see the following page:

€« C | ® localhost:4200/view-device/5911e822b8e8414524a18d12 T | i

Web App Logout

Data & controls Will appear here!

In the examples across this book, we will keep updating this template and keep modifying
it as we need to. For now, this is a dummy template represented by web-
app/src/app/device/device.component.html.

[69]

IoTFW.js - 11 Chapter 3

If we open the developer tools and look at the network tab WS section, as shown in the
following screenshot, we should be able to see that a web socket request is sent to our server
with the JWT token:

& C | ® localhost:4200/view-device/591feB22b8e8414524a18d12

Logout

Web App

Data & controls Will appear here!

® @] | Memory Elements Console Sources Applicaon Network Performance Securty Audis Auguy AdBlock Anguiar)S Ember EditThisCookie

® © | ™ ¢ |Vew = = | () Preservelog [Disable cache | (] Offline No throttiing v
[Fiter |7 Regex [HidedataURLs All | XHR JS CSS Img Media Font Doc ({5 Manifest Other
Name X | Headers Frames GCookies Timing

|| websocket v General

Request URL: ws://localhost:9860/socket. i0/?7token=eyIhbGC101ITUzTINI TSINRSCCT6TkpXVCIS. ey IfaW010iT10TFNZGISZGN Y] B10DM2Y Tz 13jM il CIpYXQ10 EBOTUYN] MWMDYs ImV4c CIGMTQSNTMOOTQWNNG. XCguzv7 1Zkg_RHL_WeyUpHc18v7Y3
K5

[Ztoken=eyJhbGCIOWIUZI...

Request Method: GET
Status Code: ® 101 Switching Protocols

v Response Headers view source
Connection: Upgrade
Sec-WebSocket-Accept: IVb/ZelKYsWURHLF |Skzsunkio=
Sec-WebSocket-Extensions: permessage-deflate
Upgrade: websocket

v Request Headers view source
Accept-Encoding: gzip, deflate, sdch, br
Accept-Language: en-G&, en; a=0.8, en-US;q=0. 6,5r4=0.4, nb3a=0.2
Cache-Control: no-cache
Connection: Upgrade
Cookle: _cle=accepted; io=HvaMgRzS0B3pXACBAAAA
Host: localhost: 9000
Origin: http://localhost:4200
Pragma: no-cache
‘Sec-WebSocket-Extensions: pernessage-deflate; client_max_window bits
‘Sec-WebSocket-Key: tZncF3400WHOYCKDKZNTHG==
Sec-WebSocket-Version: 13
Upgrade: websacket
2/29requests| 0B/33MB .| ger-Agent: Mozilla/5.8 (Macintosh; Intel Mac 05 X 10_12_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36

With this, we are done with stitching the Raspberry Pi with the broker, the broker with the
API engine, and the API engine with the web app. To complete the entire round trip of data
from the device to the web app, we will implement a simple use case in the next section.

Testing an end-to-end flow using DHT11 and
LED

Before we start working on the desktop and mobile app, we will implement an end-to-end
data flow for the Raspberry Pi to the web app and back.

The example that we will work on implements an actuator and a sensor use case. We will
connect an LED to the Raspberry Pi and turn the LED on/off from the web app, and we will
also connect a DHT11 temperature sensor to the Raspberry Pi and view its values in real
time on the web app.

[70]

IoTFW.js - 11

Chapter 3

We will get started with the Raspberry Pi, implement the required logic there; next, work
with the API engine, make the required changes, and finally the web app to represent the

data.

Setting up and updating the Raspberry Pi

First, we will set up the circuit, as follows:

RASPBERRY Pl 3

(R (R (R [N (N S SR SR S R ol [l [l [l [I

DHT11
L VCC
2 DATA
3 GND
Ut

3.3V 5 ==
GPI002 5V et
GPI003 onp L2
GPIOL GPIOLA |t
GND GPIOLS
GPIO17 GPIOL8
GPI027 onp =
GPI022 GPID23 |ebe
3.3V crio2s P&
GPI010 cnp 2
6PI009 GPI025 2=
cPI011 GPioos P
GND crioo7 P
ID_SD osc 2B
GPI00S onp B
CPID06 GPIDL2 2=
GPI013 oo =
GPIO1D GPID1E |pole
GPID26 GPID20 |eoim
GND cPio21 =
UL

R1

[71]

IoTFW.js - 11

Chapter 3

Now, we will make the following connections:

Source pin

Component pin

Raspberry Pi pin 1 - 3.3V

Breadboard + railing

Raspberry Pi pin 6 - Ground

Breadboard - railing

Raspberry Pi pin 3 - GPIO 2

Temperature sensor signal pin

Raspberry Pi pin 12 - GPIO 18

LED anode pin

LED cathode pin

Breadboard - railing

Temperature sensor + pin

Breadboard + railing

Temperature sensor - pin

Breadboard - railing

We have used a current limiting resistor of 220 ohms between pin 12/GPIO
18 and the anode of a LED pin.

Once this connection has been set up, we will write the required logic. On the Raspberry Pi,
open the pi-client/index. js file and update it, as follows:

var config = require('./config.js');
var mgtt = require('mgtt');
var GetMac = require ('getmac');
var rpiDhtSensor = require ('rpi-dht-sensor');
var rpio = require('rpio');
var dhtll = new rpiDhtSensor.DHT11 (2);
var temp = 0,
prevlemp = 0;
var humd = 0,

prevHumd = 0;
var macAddress;
var state = 0;

// Set pin 12 as output pin and to low
rpio.open (12, rpio.OUTPUT, rpio.LOW);

var client = mgtt.connect ({
port: config.mgtt.port,

protocol: 'mgtts',

host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,

[72]

IoTFW.js - 11 Chapter 3

username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

P

client.on('connect', function() {
client.subscribe('rpi'");
client.subscribe('led');
GetMac.getMac (function (err, mac) {
if (err) throw err;
macAddress = mac;
client.publish('api-engine', mac);
P i
P i

client.on('message', function(topic, message) A
message = message.toString();

if (topic === 'rpi') {

console.log('API Engine Response >> ', message);
} else if (topic === 'led') {

state = parselnt (message)

console.log('Turning LED', state ? 'On' : 'Off');

// If we get a 1 we turn on the led, else off

rpio.write (12, state ? rpio.HIGH : rpio.LOW);
} else {

console.log('Unknown topic', topic);

)i

// infinite loop, with 3 seconds delay

setInterval (function () {
getDHT11Values () ;
console.log('Temperature: ' + temp + 'C, ' + 'humidity: ' + humd +

') ;
// if the temperature and humidity values change
// then only publish the values
if (temp !== prevTemp || humd !== prevHumd) {
var data2Send = {
data: {
t: temp,
h: humd,
1l: state
}I
macAddress: macAddress
}i
console.log('Data Published');
client.publish('dht11', JSON.stringify(data2Send));

[73]

IoTFW.js - 11 Chapter 3

// reset prev values to current
// for next loop
prevlemp = temp;
prevHumd = humd;
} // else chill!

}, 3000); // every three second

function getDHT11Values () {
var readout = dhtll.read();
// update global variable
temp = readout.temperature.toFixed(2);
humd = readout.humidity.toFixed(2);
}

In the preceding code, we have added a couple of node modules, as follows:

e rpi—-dht-sensor: https://www.npmjs.com/package/rpi-dht-sensor; this
module will help us in reading the values of the DHT11 sensor

® rpio:https://www.npmjs.com/package/rpio; this module will help us manage
GPIOs on the board, using which we will manage the LED

We have written a set Interval () that keeps running forever, every 3 seconds. Inside the
callback, we call the getDHT11Values () that read the temperature and humidity from
the sensor. If there is any change in the temperature and humidity values, we publish this
data to the broker.

Also, notice the client.on ('message"'); here, we have added another i f condition and
are listening for the LED topic. If the current message is from the LED topic, we know that
we will receive either a 1 or 0 indicating to switch on or switch off the LED.

Now, finally we will install the two modules, run:

npm install rpi-dht-sensor -save
npm install rpio —-save

Save all the files and run npm start; this should connect the Raspberry Pi to the broker
and subscribe to the LED topic, as follows:

[74]

https://www.npmjs.com/package/rpi-dht-sensor
https://www.npmjs.com/package/rpio

IoTFW.js - 11 Chapter 3

- mosca —-c index.js -v | pino
4.+t R a +++3 B +++,
L+ e e e = e = P
+ 4, D Wt o+ o+ e e+ 4
+ s D L T e 4 T i+ +.
+ 4.+ T+ +! '+ + +.
+ .+ L+ T+ T+, '+ ++ttt.
+ .+ L+ T+ ++ s bttt
+ 4.+ T+ ++ '+ + +.
+ 4. L+ T+ 4 4 '+ 4+ +
+" +. + L+ + +: '+ '+ o+ +.
+' 4.+ ++i++ '+ ++'+' o+ +
+' 4. i +++ +++. ,++! + +.
[2017-85-20TRB: @4:55.600Z] INFO (iotjs/22822 on Arvinds-MacBook-Pro.locall:
mgtts: BBEB3
[2B17-B5-20TRR: B4:56.3BBZ] INFO (iotjs/22822 on Arvinds—MacBook-Pro.local)
cliept: "rPI_3"
[2817-85-20TBE:B4:56.435Z] INFO (iotjs/22822 on Arvinds-MacBook-Pro.locall:
topic: "rpi"
gos: @
client: "rPI_3"
[2B17-B5-20TRR:B4:56.435Z7] INFO (iotjs/22822 on Arvinds—-MacBook-Pro.local)
topic: "led"
gos: @
cliept: "rPI_3"

Additionally, if we see the console out from the Raspberry Pi, we should see something as
follows:

File Edit Tabs Help

[75]

IoTFW.js - 11 Chapter 3

Whenever there is a change in the data, the data is published to the broker. We have not yet
implemented the logic for reacting to this data on the API engine, which we will do in the
next section.

Updating the API engine

Now, we will add the required code to the MQTT client running on the API engine to
handle the data from the device. Update api-engine/server/mgtt/index. js, as
follows:

var Data = require('../api/data/data.model');
var mgtt = require('mgtt');
var config = require('../config/environment');

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

P

client.on('connect', function() {

console.log('Connected to Mosca at ' + config.mgtt.host + ' on port ' +
config.mgtt.port);

client.subscribe ('api-engine');

client.subscribe ('dhtl1l'");
}) i

client.on('message', function(topic, message) {
// message is Buffer
// console.log('Topic >> ', topic);
// console.log('Message >> ', message.toString());

if (topic === 'api-engine') {
var macAddress = message.toString();
console.log('Mac Address >> ', macAddress);
client.publish('rpi', 'Got Mac Address: ' + macAddress);
} else if (topic === 'dhtl11l') {
var data = JSON.parse (message.toString());

// create a new data record for the device
Data.create (data, function(err, data) {

[76]

IoTFW.js - 11 Chapter 3

if (err) return console.error (err);

// if the record has been saved successfully,

// websockets will trigger a message to the web-app
console.log('Data Saved :', data.data);

P i
} else {
console.log ('Unknown topic', topic);

)i

exports.sendLEDData = function (data) {
console.log('Sending Data', data);
client.publish('led', data);

Here, we have subscribed to a topic named dht 11, to listen for a message published by the
Raspberry Pi about the temperature and humidity values. We have also exposed another
method named sendLEDData that will accept the data that needs to be sent to the device.

If we save all the files and restart the API engine, we should see something as follows:

-+ api-engine npm start

= api-engine@d.l1.® start fUsersfarvindravulavaru/Arvind/Books/Advanced IoT with JS5/code/chapter2/api-engine
> nodemon server/app.js

[nodemon] starting “node server/fapp.js’

Express server listening on 9028, in development mode
Connected to Mosca at 127.8.8.1 on port BBB3

Mac Address == bB:27:eb:39:92:8d
[iMjm1lGgKGLvrOdVsAAAA] Connected on 127.8.8.1

Data Saved : { t: '25.88', h: '31.88', 1: 8 }

Data Saved : { t: '26.00', h: '31.0808', 1: @ }

[77]

IoTFW.js - 11 Chapter 3

From the preceding screenshot, we can see that the data comes from the Raspberry Pi and
gets saved to MongoDB. To validate if the data is saved, we can head over to the m1ab DB
and look for a collection named datas and it should look as follows:

Documents Indaxes

Documents Delets all documents in collection

—- Start new search — %

All Documents

Display mode: © list @ table (e

"2017-05-20T09:36:44.3227"

+

"macAddress”: "b8:27:eb:39:92:0d",
"¢date": "2017-05-20T09:36:47.762Z"

1

1

e

"macAddress”: "b8:27:eb:39:92:0d",
“§aate”: "LUL/-UD-2U01UYI3/I08.908L7

27.’ED.’_39:92:0d”,

"$date": 7-05-20T09:37:12.644Z"
3

e
"data": {
"hU; *33.00°,
"21.00"
1

)
"macAddress": "b8:27:eb:3 od",
"$date": "2017-05-20T09:37:23.0162"
e
"data":
"hes "34,00",
"t": *21.00"

e
"macAddress": "b8:27:eb:39:92:0d",

"t:.IEtE"

Whenever the data is saved successfully, the same copy will be sent to the web app as well.
In the next section, we will display this data in real time on the web dashboard.

[78]

IoTFW.js - 11 Chapter 3

Updating the web app

In this section, we will develop the code needed to display the data in real time inside the
web app, as well as provide an interface, using which we can turn on/off the LED.

We will get started by adding a toggle switch component. We will use the ngx—ui-switch
(https://github.com/webcat12345/ngx-ui-switch) for the same

From inside the web-app-base folder, run the following command:
npm install ngx-ui-switch -save

We will use the ng2-charts https://valor—software.com/ngZ—Charts/forFﬂOtﬁng
charts of our temperature and humidity values. We will install this module as well by
running the following command:

npm install ng2-charts —--save
npm install chart.js —--save

This will install the toggle switch and ng2-charts modules. Next, we need to add this to
@NgModule. Open web-app/src/app/app.module.ts and add the following command
to the imports:

import { UiSwitchModule } from 'ngx-ui-switch';
import { ChartsModule } from 'ng2-charts';

Then, add UiswitchModule and ChartsModule to the imports array:

// snipp snipp
imports: [
RouterModule. forRoot (appRoutes),
BrowserModule,
BrowserAnimationsModule,
FormsModule,
HttpModule,
LocalStorageModule.withConfig ({
prefix: 'web-app',
storageType: 'localStorage'
)y
SimpleNotificationsModule.forRoot (),
UiSwitchModule,
ChartsModule
J 14
// snipp snipp

[79]

https://github.com/webcat12345/ngx-ui-switch
https://valor-software.com/ng2-charts/

IoTFW.js - 11 Chapter 3

Once this is done, we need to import chart . js into our application. Open web-
app/.angular-cli.json and update the scripts section, as follows:

// snipp snipp
"scripts": [
"../node_modules/chart.js/dist/Chart.js"
I
// snipp snipp

Save all the files and restart the web app, if it is already running.
Now, we can use this directive in the device component.

In our current use case, we have to display the temperature and humidity values as well as
provide a toggle switch to turn the LED on/off. For this, our template in web-
app/src/app/device/device.component .html will be as follows:

<div class="container">

<div *ngIf="!device">
<h3 class="text-center">Loading!</h3>
</div>
<div class="row" *nglf="lastRecord">
<div class="col-md-12">
<div class="panel panel-info">
<div class="panel-heading">
<h3 class="panel-title">
{{device.name}}
</h3>

<i class="fa fa-chevron-circle-up"></i>

</div>
<div class="clearfix"></div>
<div class="table-responsive">
<table class="table table-striped">
<tr>
<td>Toggle LED</td>
<td>
<ui-switch [(ngModel)]="toggleState"
(change) ="toggleChange ($event) "></ui-switch>
</td>
</tr>
<tr *ngIf="lastRecord">
<td>Temperature</td>
<td>{{lastRecord.data.t}}</td>
</tr>

[80]

IoTFW.js - 11 Chapter 3

<tr *ngIf="lastRecord">
<td>Humidity</td>
<td>{{lastRecord.data.h}}</td>
</tr>
<tr *ngIf="lastRecord">
<td>Received At</td>
<td>{{lastRecord.createdAt | date:
'medium’'}}</td>
</tr>
</table>
<div class="col-md-10 col-md-offset-1"
*nglf="1ineChartData.length > 0">
<canvas baseChart [datasets]="lineChartData"
[labels]="1lineChartLabels" [options]="lineChartOptions"
[legend]="lineChartLegend" [chartType]l="1lineChartType"></canvas>
</div>
</div>
</div>
</div>
</div>
</div>

The required code for the DeviceComponent class: web—
app/src/app/device/device.component .ts will be as follows:

import { Component, OnInit, OnDestroy } from 'Q@angular/core';
import { DevicesService } from '../services/devices.service';
import { Params, ActivatedRoute } from '@angular/router';
import { SocketService } from '../services/socket.service';
import { DataService } from '../services/data.service';

import { NotificationsService } from 'angular2-notifications';

@Component ({
selector: 'app-device',
templateUrl: './device.component.html',
styleUrls: ['./device.component.css']
})
export class DeviceComponent implements OnInit, OnDestroy {
device: any;
data: Array<any>;
toggleState: boolean = false;
private subDevice: any;
private subData: any;
lastRecord: any;

// line chart config
public lineChartOptions: any = {

[81]

IoTFW.js - 11 Chapter 3

responsive: true,
legend: {
position: 'bottom',
}, hover: {
mode: 'label'
}, scales: {
xAxes: [{
display: true,
scaleLabel: {
display: true,
labelString: 'Time'

Hy

yAxes: [{
display: true,
ticks: {
beginAtZero: true,
steps: 10,
stepVvalue: 5,
max: 70
}
}]
}I
title: {
display: true,
text: 'Temperature & Humidity vs. Time'

i
public lineChartLegend: boolean = true;

public lineChartType: string = 'line';
public lineChartData: Array<any> = [];
public lineChartLabels: Array<any> = [];

constructor (private deviceService: DevicesService,
private socketService: SocketService,
private dataService: DataService,
private route: ActivatedRoute,
private notificationsService: NotificationsService) { }

ngOnInit () {

this.subDevice = this.route.params.subscribe ((params) => {
this.deviceService.getOne (params['id']) .subscribe ((response)
:>{
this.device = response.json();

this.getDatal();
this.socketInit();

[82]

IoTFW.js - 11 Chapter 3

getData () A
this.dataService.get (this.device.macAddress) .subscribe ((response)
:>{
this.data = response.json();
this.genChart () ;
this.lastRecord = this.data[0]; // descending order data
if (this.lastRecord) {
this.toggleState = this.lastRecord.data.l;

)i

toggleChange (state) {
let data = {
macAddress: this.device.macAddress,
data: {
t: this.lastRecord.data.t,
h: this.lastRecord.data.h,
1l: state 2 1 : O
}I
topic: 'led'

this.dataService.create (data) .subscribe ((resp) => {
if (resp.json()._id) {
this.notificationsService.success ('Device Notified!'");
;
}, (err) => {

console.log(err);
this.notificationsService.error ('Device Notification Failed.
Check console for the error!');

})

socketInit () A
this.subData =
this.socketService.getData (this.device.macAddress) .subscribe ((data) => {
if (this.data.length <= 0) return;
this.data.splice(this.data.length - 1, 1); // remove the
last record
this.data.push(data); // add the new one
this.lastRecord = data;
this.genChart () ;

[83]

IoTFW.js - 11 Chapter 3

ngOnDestroy () {
this.subDevice.unsubscribe () ;
this.subData ? this.subData.unsubscribe() : '';

genChart () {
let data = this.data;

let _dtArr: Array<any> = [];
let _1blArr: Array<any> = [];

|
~

let tmpArr: Array<any> =
let humArr: Array<any>

Il
~

for (var i = 0; i < data.length; i++) {
let _d = datalil]l;
tmpArr.push(_d.data.t);
humArr.push(_d.data.h);
_1blArr.push(this.formatDate (_d.createdAt));

// reverse data to show the latest on the right side
tmpArr.reverse () ;

humArr.reverse();

_l1blArr.reverse();

_dtArr = [
{
data: tmpArr,
label: 'Temperature'
by
data: humArr,
label: '"Humidity %'
by
]
this.lineChartData = _dtArr;
this.lineChartLabels = _1blArr;

private formatDate (originalTime) {

var d = new Date(originalTime);
var datestring = d.getDate() + "-" + (d.getMonth() + 1) + "-" +
d.getFullYear() + " " +
d.getHours () + ":" + d.getMinutes();

return datestring;

[84]

IoTFW.js - 11 Chapter 3

}
The key methods to notice are as follows:

e getData () : This method is used to get the last 30 records on page load. We are
sending the data in the descending order from the API engine; hence we extract
the last record and save it as the last record. We can use the remaining records to
plot a chart if needed

e toggleChange (): This method will get fired when the toggle switch is clicked.
This method will send the data to the API engine to save it

e socketInit (): This method keeps listening to the data save event on the device.
Using this, we update the 1astRecord variable with the latest data from the
device

e genChart (): This method takes the data collection and then plots a graph. When
a new data arrives over the socket, we remove the last record in the data array
and push the new record, keeping the total size of 30 records at all times

With this, we are done with the development of the template needed to process this setup.

Save all files, launch the broker, API engine, and the web app and then log in to the
application and then navigate to the device page.

If everything is set up correctly, we should see the following screen:

C - C | O localhost:4200/view-device/501 fe822bBeB4fA524218d12 e

Web App Logout

Toggle LED

Temperature 24.00
Humidity 32.00

Received At May 21,2017, 11:52:18 AM

Temperature & Humidity vs. Time

e m——

Time
] Termperature [l Humicity %

[85]

IoTFW.js - 11 Chapter 3

Now, whenever the data comes via sockets, the chart updates automatically!

Now to test the LED, toggle the LED button to on and you should see that the LED that we
have set up on the Raspberry Pi will light up and similarly if we turn it off, it will turn off
the LED.

Building the desktop app and implementing
an end-to-end flow

Now that we are done with an end-to-end flow with the web app, we will extend the same
to the desktop and mobile apps. We will start off by building a desktop client for the same
API engine. So, if a user is more comfortable in using a desktop app over a web or mobile
app, he/she could use this.

This desktop app, we will have all the same features as the web app.

For building the desktop app, we will use the electron (https://electron.atom.io/)
framework. Using a Yeoman (http://yeoman.io/) generator named generator—-electron
(https://github.com/sindresorhus/generator—-electron), we will scaffold the base
application. Then, we will build our web app and use the dist folder from that build as an
input to the desktop app. All this will be more clear once we start working.

To get started, run the following command:

npm install yo generator-electron -g

This will install the yeoman generator and the electron generator. Next, inside the
chapter?2 folder, create a folder named desktop-app and then, open a new command
prompt/terminal and run the following command:

yo electron

[86]

https://electron.atom.io/
http://yeoman.io/
https://github.com/sindresorhus/generator-electron

IoTFW.js - 11 Chapter 3

This wizard will ask a few questions and you can answer them accordingly:

7 What do you want to name your app? deskiop-app
7 What is your GitHub username? arvind
7 What is the URL of your website? h
create package.json
create index.css
create index.html
create index.js
create license
readme.md
.editorconfig
.gitattributes
.gitignore

I'm all done. Running for you to install the required dependencies. If this fails, try running the command yourself.

This will go ahead and install the required dependencies. Once the installation is
completed, we should see a folder structure, as follows:

index.css
index.html
index.js
license

package. json

T

readme .md
With the node_modules folder present at the root.

Everything starts with desktop-app/package. json start script, which launches the
desktop-app/index.js. desktop-app/index. js creates a new browser window and
launches the desktop-app/index.html page.

To quickly test drive from inside the desktop-app folder, run the following command:

npm start

[87]

IoTFW.js - 11

Chapter 3

As a result, we should see the following screen:

Electron boilerplate

—lectron bollerplate

Now, we will add the required code. At the root of the desktop-app folder, create a file

named freeport.js and update desktop-app/freeport. js, as follows:

var net = require('net')

module.export
var serve
port
server.on
port
serve
P
server.on
cb (nu
})
server.on
cb (er
})

server.li

s = function(cb) {
r net.createServer (),

= 0;

('"listening', function() {
= server.address () .port
r.close()

('"close', function() {

11, port)

('error', function(err) {
r, null)

sten(0, '127.0.0.1")

[88]

IoTFW.js - 11 Chapter 3

With the preceding code, we will find a free port on the end user's machine and launch our
web app inside the electron shell.

Next, create a folder named app at the root of the desktop-app folder. We will dump files
into this in a moment. Next, at the root of the desktop-app folder, create a file named
server.js. Update server. js, as follows:

var FreePort = require('./freeport.js');
var http = require('http'),

fs = require('fs'),

html = '';
module.exports = function(cb) {

FreePort (function (err, port) {
console.log (port);
http.createServer (function (request, response) {

if (request.url === "'/") {
html = fs.readFileSync('./app/index.html");
} else {

html = fs.readFileSync('./app' + request.url);

}
response.writeHeader (200, { "Content-Type": "text/html" });
response.write (html);
response.end() ;

}) .listen (port);

cb (port);

P
}

Here, we listen to a free port and launch index.html. Now, all we need to do is update
createMainWindow () in desktop-app/index. js, as follows:

// snipp snipp
function createMainWindow () {
const { width, height } =
electron.screen.getPrimaryDisplay () .workAreaSize;
const win = new electron.BrowserWindow ({ width, height })
const server = require("./server") (function (port) A
win.loadURL ('http://localhost:' + port);
win.on('closed', onClosed);
console.log('Desktop app started on port :', port);
)i

return win;

t
// snipp snipp

[89]

IoTFW.js - 11 Chapter 3

That is all the setup we need.

Now, head back to the terminal/prompt of the web-app folder (yes web-app, not desktop-
app) and run the following command:

ng build --env=prod

This will create a new folder inside the web app folder named dist. The contents of the
dist folder should be on the following lines:

favicon.ico
index.html
inline.bundle.js
inline.bundle. js.map
main.bundle.js
main.bundle. js.map
polyfills.bundle.js
polyfills.bundle.js.map
scripts.bundle. js
scripts.bundle. js.map
styles.bundle.js
styles.bundle.js.map

vendor.bundle.js

O

vendor.bundle. js.map

[90]

IoTFW.js - 11 Chapter 3

All code we have written in the web app is finally bundled into the preceding files. We will
grab all the files (not the dist folder) present inside the dist folder and then paste it inside
the desktop-app/app folder. The final structure of the desktop app after the preceding
changes will be as follows:

F—— app
—— favicon.ico
—— index.html
| B— inline.bundle.js
I inline.bundle.js.map
—— main.bundle.js
| B—— main.bundle.js.map
| B— polyfills.bundle.js
polyfills.bundle.js.map
scripts.bundle.js
scripts.bundle.js.map

styles.bundle.]js

CTTTTTT

styles.bundle.js.map

vendor.bundle. js

vendor.bundle. js.map
—— freeport.js

index.css

index.html

index.js

license

Tt

[91]

IoTFW.js - 11 Chapter 3

—— package.json
F——— readme.md
L— server.js

From now on, we are just going to paste the contents of the web—app/dist folder into the
app folder of the desktop-app.

To test drive, run the following command:

npm start

This will bring up the log in screen, as follows:

Desktop App

Login to Web App

Do you want the application “Electron.app”
E-mail to accept incoming network connections?
Clicking Deny may limit the application’s behavior.
This setting can be changed in the Firewall pane of

N Security & Privacy preferences.
Passworl

b

Deny Allow

Register with the Web App

If you see a pop up as shown previously, allow it. Once you have successfully logged in,
you should be able to see all the devices in your account, as follows:

[92]

IoTFW.js - 11 Chapter 3

Desktop App

Logout

Pi1

b8:27:eb:39:92:0d

Last Update: May 20, 2017, 12:24:26 PM

And finally, the device information screen:

[ogoNo] Desktop App

Logout

Toggle LED (

Temperature 24.00
Humidity 31.00
Received At May 21, 2017, 12:50:14 PM
Temperature & Humidity vs. Time
70
60
50
40
30 T e e et T T e, e et S, e
—
20
10
® ©® ® © ©® 9 © ® © & o 9o & oo o0
AV AV o o o o A A A g g g g o o
o Q(\ (S:\ (S:\ (S:\ (S:\ CS:\ CS:\ CS:\ (S:\ (S:\ (S:\ (S:\ 6:\ (S:\
in)
ﬁgﬂ» ’ﬂ» ’EL ?JEL ?JEL ’EL ﬁdﬂ» ’ﬂ» ﬁdﬂ» ,CL fOCL ,CL ,CL ’ﬂ» ?JEL
T T b b b b o o LA Lol Lol Lol T b
Time

1 temperature [Humidity %

[93]

IoTFW.js - 11 Chapter 3

Now we can turn the LED on/off and it should react accordingly.
With this, we are done with the desktop app.

In the next section, we will build a mobile app using the Ionic framework.

Building the mobile app and implementing
an end-to-end flow

In this section, we will build our mobile companion app using the Ionic framework
(http://ionicframework.com/). The output or the example would be the same as what we
have done for the web and desktop app.

To get started, we will install the latest version of ionic and cordova by running the
following command:

npm install —-g ionic cordova

Now, we need the mobile app base. If you have not already cloned the book's code
repository, you can do so using the following command (anywhere on your machine):

git clone git@Rgithub.com:PacktPublishing/Practical-Internet-of-Things-with-
JavaScript.git

or you can download the zip file from
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

as well.

Once the repository has been downloaded, cd into the base folder and make a copy of
mobile-app-base folder into chapter?2 folder.

Once the copy is completed, cd into the mobile-app folder and run the following
command:

npm install

And then

ionic cordova platform add android

Or

jonic cordova platform add ios

[94]

http://ionicframework.com/
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

IoTFW.js - 11 Chapter 3

This will take care of installing the required dependencies and adding Android or iOS
platforms.

If we look at the mobile-app folder, we should see the following:

—— README.md

—— config.xml
F—— hooks

| L—— README.md

—— ionic.config.json

—— package.json

—— platforms

| —— android

| b—— platforms.json

— plugins

| B—— android.json
cordova-plugin-console
cordova-plugin-device
cordova-plugin-splashscreen
cordova-plugin-statusbar
cordova-plugin-whitelist

fetch.json

CTTTTTT

ionic-plugin-keyboard
—— resources
| —— android

[95]

IoTFW.js - 11 Chapter 3

| B— icon.png

| B—— ios

| L splash.png

F— src

| F— app

| F——— assets

| B— declarations.d.ts
| b—— index.html

| B— manifest.json

| F—— pages

— service-worker.js

F— services

L—— theme

— tsconfig.json

— tslint.json

WwWw
assets
build

index.html

Frrhd

manifest.json
L— service-worker.js

In our mobile-app folder, the most important file is mobile-app/config.xml. This file
consists of the definitions needed by cordova to convert the HTML/CSS/JS application into a
hybrid mobile app.

[96]

IoTFW.js - 11 Chapter 3

Next, we have the mobile-app/resources, mobile-app/plugins, and mobile-
app/platforms folder that will consist of the cordova wrapped code for the app we are
developing.

And finally, the mobile-app/src folder, this folder is where we have all our source code.
The setup for the mobile is similar to what we had for the web app and the desktop app. We
have a service folder that has the mobile-app/src/services/auth.service.ts for
authentication, mobile-app/src/services/device.service.ts for interfacing with

the devices API, mobile-app/src/services/data.service.ts for fetching the latest
data from the device, mobile-app/src/services/socket.service.ts to set up web
sockets in our mobile app, and finally, mobile-app/src/services/toast.service.ts
to show notifications, tailored to a mobile. mobile-
app/src/services/toast.service.ts is similar to the notification service we have
used in the web and desktop apps.

Next, we have the needed pages. The mobile app implements only the login page. We are
forcing the user to use the web or desktop app to create a new account. mobile-
app/src/pages/login/login.ts consists of the authentication logic. mobile-
app/src/pages/home/home. ts consists of the list of all devices that a user is registered
with. mobile-app/src/pages/add-device/add-device.ts has the logic needed to add
anew device and mobile-app/src/pages/view—device/view—device.ts to view the
device information.

Now, from inside the mobile-app folder, run the following command:
ionic serve

This will launch the app in the browser. If you would like to test it on an actual app, you
can run the following command:

ionic cordova run android

Alternatively, you can run the following command:

jonic cordova run ios

[971]

IoTFW.js - 11 Chapter 3

This will launch the app on the device. In either case, the app will behave the same.

Once the app is launched, we will see the login page:

Mobile App

EFma arvind2@myapp.com

oooooo

[98]

IoTFW.js - 11 Chapter 3

Once we have successfully logged in, we should see the home page as follows. We can add
a new device using the + icon in the header:

& Mobile App

Pi 2 Test

12:45:ac:57:da

CREATE

[99]

IoTFW.js - 11 Chapter 3

The newly created device should reflect on our home screen, as follows:

N © v.4 10817

Mobile App + O

Device Name : Pi 1
Mac Address : b8:27:€b:39:92:0d

Created At : May 20,2017, 12:24:26 PM

© VIEW DEVICE @ DELETE DEVICE

Device Name : Pi 2 Test
Mac Address : 12:45:ac:57:da

Created At : May 24,2017,8:17:11 AM

© VIEW DEVICE W DELETE DEVICE

[100]

IoTFW.js - 11 Chapter 3

If we click on VIEW DEVICE, we should see the device information, as follows:

N O 9.4 o817

< Mobile App
Name Pi1
Toggle LED .
Temperature 23.00
Humidity 32.00
Received At May 24,2017, 8:16:11 ...

[101]

IoTFW.js - 11 Chapter 3

When we toggle the button on/off, the LED on the Raspberry Pi should turn on/off:

[102]

IoTFW.js - 11 Chapter 3

Another view of the same setup is shown as follows:

The preceding is the setup of the Raspberry Pi 3 with a DHT11 sensor and LED.

With this, we have successfully established an end-to-end architecture for executing out the
Internet of Things examples. From now on, we will work with the web app, mobile app,
desktop app, Raspberry Pi, and a bit of API engine for our next examples. The changes we
will make are minimal. We will focus on the use case rather than building the setup again
and again.

[103]

IoTFW.js - 11 Chapter 3

Troubleshooting

In case you do not see the expected output, check the following;:

e Check if the broker, API engine, web app, and Raspberry Pi app are running
¢ Check the IP address of the broker provided to the Raspberry Pi
e Check the IP address of the API engine provided to the mobile app

Summary

In chapter 2, IoTFW.js - I and in this chapter, we went through the entire process of setting
up an entire frame to work with the Internet of Things solutions. We built the entire
framework using only JavaScript as our programming language.

We started with understanding the architecture and data flow from Raspberry Pi to an end
user device, such as a web app, desktop app, or a mobile app. Then we started working on
the broker using Mosca, after setting up MongoDB. Next we designed and developed the
API engine and completed the basic Raspberry Pi setup.

We worked on the web app and desktop app and integrated a simple LED and a DHT11
temperature and humidity sensor with the Raspberry Pi, and saw a simple flow from one
end to another. We streamed the temperature and humidity in real time to the web app and
desktop app, and using the toggle button, we turned on the LED.

And finally, we built a mobile app and implemented/validated the LED and DHT11 setup.

In the chapter 4, Smart Agriculture, using the current setup as a base, we will build a smart
agriculture solution.

[104]

Smart Agriculture

In this chapter, we are going to take our framework which we built in chapter 2, 0'TFW.js -
I and chapter 3, [oTFW.js - II, and start working on various use cases. We are going to start
with the agricultural sector and build a smart weather station in this chapter.

A simple requirement for any farmer is to have the ability to understand the environmental
factors near and around their farm. So, we are going to build a prototype of a portable
weather station. We are going to work on the following topics in this chapter:

e Agriculture and IoT

¢ Designing a smart weather station

¢ Developing the code for Raspberry Pi 3

Updating MQTT code in the API engine

Modifying the templates for web apps, desktop apps, and mobile apps

Agriculture and loT

A report by Beecham Research predicts that the world population will reach 8 billion by
2025 and 9.6 billion by 2050, and in order to keep pace, food production must increase by
70% by 2050. Here is the report:

https://www.beechamresearch.com/files/BRL%20Smart%20Farming%20Executive%20Summa
ry.pdf

This means that we need to find quicker and more productive ways of farming. Land and
resources are going to get scarcer as we keep moving toward 2050. This is when, given the
resources, we would need to feed more mouths than ever before, unless a zombie
apocalypse comes and all of us get eaten up by other zombies!

https://www.beechamresearch.com/files/BRL%20Smart%20Farming%20Executive%20Summary.pdf
https://www.beechamresearch.com/files/BRL%20Smart%20Farming%20Executive%20Summary.pdf

Smart Agriculture Chapter 4

This is a very good opportunity for technology to provide solutions to make this happen.
IoT has almost always been about smart homes, smart offices, and convenience, but it can
do more than that. That is what we are going to cover in this chapter. We are going to build
a smart weather station that a farmer can deploy in their farm to get real-time metrics such
as temperature, humidity, soil moisture, and rain detection.

Other sensors can be added based on availability and need.

Designing a smart weather station

Now that we have an idea of what we are building and why, let us get started with the
design. The first thing we are going to do is identify the sensors needed. In this smart
weather station, we are going to use the following;:

e A temperature sensor

A humidity sensor
A soil moisture sensor

A rain detector sensor

I have picked sensors that are available off the shelf, to showcase the proof of concept. Most
of them will work well for testing, and validating an idea, or as a hobby, but are not suitable
for production.

We are going to connect these sensors to our Raspberry Pi 3. We are going to use the
following models for the sensors:

e Temperature and humidity:
https://www.amazon.com/Gowoops-Temperature-Humidity-Digital-Raspberry/
dp/BO01H3J3H82/ref=sr_1_5

¢ Soil moisture sensor:
https://www.amazon.com/Hygrometer-Humidity-Detection-Moisture-Arduino/
dp/BO1FDGUHBM/ref=sr_1_4

¢ Rain detector sensor:
https://www.amazon.com/Uxcell-al3082300uxl1431-Rainwater-Detection-3-3V
-5V/dp/BO0GN707JE

You can buy these sensors elsewhere as well.

[106]

https://www.amazon.com/Gowoops-Temperature-Humidity-Digital-Raspberry/dp/B01H3J3H82/ref=sr_1_5
https://www.amazon.com/Gowoops-Temperature-Humidity-Digital-Raspberry/dp/B01H3J3H82/ref=sr_1_5
https://www.amazon.com/Hygrometer-Humidity-Detection-Moisture-Arduino/dp/B01FDGUHBM/ref=sr_1_4
https://www.amazon.com/Hygrometer-Humidity-Detection-Moisture-Arduino/dp/B01FDGUHBM/ref=sr_1_4
https://www.amazon.com/Uxcell-a13082300ux1431-Rainwater-Detection-3-3V-5V/dp/B00GN7O7JE
https://www.amazon.com/Uxcell-a13082300ux1431-Rainwater-Detection-3-3V-5V/dp/B00GN7O7JE

Smart Agriculture Chapter 4

As we have seen in Chapter 3, [0TFW.js - 1], the temperature and humidity sensor is a
digital sensor, and we are going to use the node-dht-sensor module to read the
temperature and humidity values. The soil moisture sensor is an analog sensor, and
Raspberry Pi 3 does not have any analog pins. For this, we are going to use a 12-bit A/D IC
from Microchip named MCP3208, to convert the analog output from the sensor and feed it
to Raspberry Pi over the SPI protocol.

Wikipedia defines the SPI protocol in the following way:

The Serial Peripheral Interface (SPI) bus is a synchronous serial communication
interface specification used for short distance communication, primarily in embedded
systems. The interface was developed by Motorola in the late 1980s and has become a de
facto standard.

For more information on SPI, refer to: https://en.wikipedia.org/wiki/

Serial_Peripheral_Interface_Bus.

The rain detector sensor can be read as both analog and digital. We are going to use the
analog output to detect the level of rain, and not just whether it is raining or not.

Going back to MCP3208, it is a 16-pin package that can read eight analog inputs at once and
can convert them and feed to Raspberry Pi over the SPI protocol. You can read more about
MCP3208 IC here:
http://wwl.microchip.com/downloads/en/DeviceDoc/21298c.pdf. You can

purchase it from here:
https://www.amazon.com/Adafruit-MCP3008-8-Channel-Interface-Raspberry/dp/BOONAY

3RB2/ref=sr_1_1.

We are going to connect the temperature and humidity sensor directly to Raspberry Pi 3,
and the moisture sensor and the rain sensor to MCP3208, and MCP3208 will connect to
Raspberry Pi 3 over SPL

And on the broker, we are not going to change anything. In the API engine, we are going to
add a new topic to the MQTT client named weather-status, and then send the data from
Raspberry Pi 3 to this topic.

On the web app, we are going to update the template for viewing the weather metrics. The
same goes for the desktop app and mobile app.

[107]

https://cdp.packtpub.com/b07286advancediotwithjavascripteas/wp-admin/post.php?post=266&action=edit#post_235
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://ww1.microchip.com/downloads/en/DeviceDoc/21298c.pdf
https://www.amazon.com/Adafruit-MCP3008-8-Channel-Interface-Raspberry/dp/B00NAY3RB2/ref=sr_1_1
https://www.amazon.com/Adafruit-MCP3008-8-Channel-Interface-Raspberry/dp/B00NAY3RB2/ref=sr_1_1

Smart Agriculture

Chapter 4

Setting up Raspberry Pi 3

Let us get started with the schematics.

Set up Raspberry Pi 3 and the sensors as shown here:

RASPBERRY PI 3
cDinNn _cri
L= L " ==) =~
cDIN_AMNCI
I TTTNVJT
1 2
L= - Bav , MCP 3208
GP1002 5V f— CHON VDD
=1 Gri0o3 oNp |2 2 21 Ch1 o ovrer |R2
L] crioos cpiots | = chz acnp B2
9 10 4 13
—— GND GPI015 = GND | A1 — cH3 us K
241 Grio17 epio1s 2= = cHs “pout |22
231 epio27 oND A L1 cus pin AL
231 crio22 cpiozs R 2 cus cs S
A say cpio24 & 81 ch7 penp L’
:i GPI010 GND % [
GPIO09 GPI025 ==
23 24 MOI%TJRE_SENSOR
GPIO11 GPIO08 = ® o s
21 oo cpi007 |2 2| 0
224 ip_sp msc 2 ® 31 oo
221 cpioos onp B
S Grioos cPiot2 B RAIN_SENSOR
=31 6pio1s oND 2 O LIvee | s
23] crio1g cpiots |2 21 40
N| =14 Grio2s GPi020 [P~ =0, M
(@) 39 40
T =24 GND GPIO21 |—) DHT11
G vee Jus
U1 2
DATA
GND

Here is a table showing these connections:

[108]

Smart Agriculture

Chapter 4

Raspberry Pi and MCP3208

Refer to the following table:

Raspberry Pi pin number - pin name | MCP3208 pin number - pin name
1-3.3V 16 - VDD

1-3.3V 15 - AREF

6-GND 14 - AGND

23 - GPIO11, SPI0_SCLK 13 - CLK

21 - GPIO09, SP10_MISO 12 - DOUT

19 -GPIO10, SPI0_MOSI 11 - DIN

24 - GPIO08, CEO 10-CS

6-GND 9-DGND

Moisture sensor and MCP3208

Refer to the following table:

MCP3208 pin number - pin name | Sensor name - pin number
1-A0 Rain sensor - A0
2-Al Moisture sensor - A0

Raspberry Pi and DHT11

Refer to the following table:

Raspberry Pi number - pin name | Sensor name - pin number

3 - GPIO2 DHT11 - Data

All grounds and all 3.3V are connected to a common point.

[109]

Smart Agriculture Chapter 4

Once we have connected the sensors as shown previously, we will write the code needed to
interface with the sensors.

Before we go further, we are going to copy the entire chapter 2, 0TFW.js - I, and Chapter
3, IoTFW.js - I1, code into another folder named chapter4.

The chapter4 folder should look as shown here:

—— api-engine

| —— package.json
| L—— server

—— broker

| F— certs

| L—— index.js
—— desktop-app

| —— app

| B—— freeport.js
| —— index.css

| —— index.html

| F— index.js

| B—— license

| —— package.json
| —— readme.md

| b—— server.js
F—— mobile-app

| B—— config.xml

| F— hooks

[110]

Smart Agriculture Chapter 4

%

ionic.config.json
package.json
platforms

plugins

resources

—
—
—
—

F— src
F——— tsconfig.json

— tslint.json

[E—

Www

web—-app
README .md
ele
karma.conf.js
package. json

protractor.conf.js

Frrrrrd

src
—— tsconfig.json
L— tslint.json

We will head back to the Raspberry Pi and inside the pi-client folder, we will update the
index. js file. Update pi-client/index. js, as shown here:

var config = require('./config.js');
var mgtt = require('mgtt');

var GetMac = require('getmac');

var async = require('async');

[111]

Smart Agriculture Chapter 4

var rpiDhtSensor = require('rpi-dht-sensor');
var McpAdc = require ('mcp-adc');
var adc = new McpAdc.Mcp3208();

var dhtll = new rpiDhtSensor.DHT11(2);

var temp = O,
prevTlemp = 0;
var humd = 0,
prevHumd = O;

var macAddress;

var state = 0;

var moistureval = 0,
prevMoistureVal = 0;
var rainval = 0,
prevRainvVal = 0;

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',

host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,

rejectUnauthorized: false

[112]

Smart Agriculture Chapter 4

P

client.on('connect', function() {
client.subscribe('rpi'");

GetMac.getMac (function (err, mac) {

if (err) throw err;

macAddress = mac;

client.publish('api-engine', mac);

P

P

client.on('message', function(topic, message) A
message = message.toString();

if (topic === 'rpi') {

console.log('API Engine Response >> ', message);
} else {

console.log('Unknown topic', topic);

P

// infinite loop, with 3 seconds delay
setInterval (function () {
readSensorValues (function (results) |

console.log('Temperature: ' + temp + 'C, ' + 'humidity: ' + humd + '%, ' +

))

' Rain level (%):' + rainval + ', ' + 'moisturevVal (%): ' + moistureVal);
// if the temperature and humidity values change
// then only publish the values

if (temp !== prevTemp || humd !== prevHumd || moisturevVal !==

[113]

Smart Agriculture Chapter 4

prevMoisturevVal || rainvVal != prevRainVal) {

var data2Send = {

data: {
t: temp,
h: humd,

r: rainval,

m: moistureVal

b

macAddress: macAddress

bi

// console.log('Data Published');
client.publish ('weather-status', JSON.stringify(data2Send));
// reset prev values to current
// for next loop

prevlemp = temp;

prevHumd = humd;

prevMoistureVal = moistureVal;

prevRainvVal = rainVal;

P

}, 3000); // every three second
// ~CB' expects {

// dhtllValues: val,

// rainLevel: val,

[114]

Smart Agriculture Chapter 4

// moistureLevel: val

/7Y

function readSensorValues (CB) {
async.parallel ({

dhtllValues: function(callback) {

var readout = dhtll.read();

// update global variable

temp = readout.temperature.toFixed(2);

humd = readout.humidity.toFixed(2);

callback (null, { temp: temp, humidity: humd });
b

rainLevel: function(callback) {

// we are going to connect rain sensor

// on channel 0, hence 0 is the first arg below
adc.readRawValue (0, function(value) {

// update global variable

rainvVal = value;

rainvVal = (100 - parseFloat ((rainval / 4096) * 100)) .toFixed(2);
callback (null, { rain: rainval });

P

b

moisturelLevel: function(callback) {

// we are going to connect moisture sensor

// on channel 1, hence 1 is the first arg below

[115]

Smart Agriculture Chapter 4

adc.readRawValue (1, function(value) {

// update global variable

moisturevVal = value;

moisturevVal = (100 - parseFloat ((moisturevVal / 4096) * 100)).toFixed(2);
callback (null, { moisture: moistureval });
P

}

}, function done(err, results) {

if (err) {

throw err;

}

// console.log(results);

if (CB) CB(results);

P

}

In the preceding code, we have left the MQTT setup as is. We have added the mcp-adc
(https://github.com/anhal/mcp—adc)and,async(https://github.com/caolan/async)
modules. mcp-adc manages the SPI protocol interface exposed by MCP3208, and we are
using the async module to read data from all sensors in parallel.

We have started off by establishing a connection with the broker over MQTTS. Then, we
have set up an infinite loop using set Interval () with a time delay of 3 seconds between
executions. Inside the callback of setInterval (), we have invoked
readSensorValues () to get the latest sensor values.

readSensorValues () uses async.parallel () to read the three sensors in parallel and
update the data in the global variables we have defined. Once all the sensor data is
gathered, we are passing the results to the callback function as an argument.

[116]

https://github.com/anha1/mcp-adc
https://github.com/caolan/async

Smart Agriculture Chapter 4

Once we receive the sensor data, we are going to check whether something has changed
between the temperature, humidity, rain, and moisture values. If nothing has changed, we
chill; otherwise, we will publish this data to the broker on the weather-status topic.

Save all the files. Now, we will start the Mosca broker from our desktop machine:
mosca —-c index.js -v | pino

Once you have started the Mosca server, check the IP address of the server
on which Mosca is running. Update the same IP in your Raspberry Pi
config. js file. Otherwise, Raspberry Pi cannot post data to the broker.

Once Mosca has started successfully and we have validated the IP, run this on Raspberry Pi:

sudo node index.js

This will start the server, and we should see the following;:

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
i

When I started the Raspberry Pi, the rain sensor was dry and the moisture sensor was
placed inside dry soil. Initially, the value of the rain sensor was 1 .86% and the moisture
sensor value was 4.57%.

When I added water to the plant/moisture sensor, the percentage increased to 98.83%;
similarly, when I simulated rainfall on the rain sensor, the value went up to 89.48%.

[117]

Smart Agriculture Chapter 4

Here is my prototype setup of the smart weather station:

[118]

Smart Agriculture Chapter 4

The blue chip is DHT11, the moisture sensor is plotted inside my desk-side
plant, and the rain sensor is placed inside a plastic tray for collecting
rainwater. The breadboard has the MCP3208 IC and the required
connections.

[119]

Smart Agriculture Chapter 4

Lots of wires!

With this, we complete the code needed for Raspberry Pi 3. In the next section, we are going
to set up the code needed for the API engine.

Setting up the APl engine

In this last section, we have seen how to set up the components and code needed to set up
our smart weather station using Raspberry Pi 3. Now, we will work on managing the data
that we receive on the API engine from the Raspberry Pi 3.

Open api-engine/server/mgtt/index.js and update it, as shown here:

var Data = require('../api/data/data.model’);
var mgtt = require('mgtt');
var config = require('../config/environment');

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',

host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

1)

client.on('connect', function() {

console.log('Connected to Mosca at ' + config.mgtt.host + ' on port ' +
config.mgtt.port);

client.subscribe ('api-engine');

client.subscribe ('weather—-status');

}) i

client.on('message', function(topic, message) {
// message is Buffer
// console.log('Topic >> ', topic);
// console.log('Message >> ', message.toString());
if (topic === 'api-engine') {
varmacAddress = message.toString();
console.log('Mac Address >> ', macAddress);
client.publish('rpi', 'Got Mac Address: ' + macAddress);
} else if (topic === 'weather-status') {

[120]

Smart Agriculture Chapter 4

var data = JSON.parse (message.toString());
// create a new data record for the device
Data.create (data, function(err, data) {
if (err) return console.error (err);
// if the record has been saved successfully,
// websockets will trigger a message to the web-app
console.log('Data Saved :', data.data);
P i
} else {
console.log('Unknown topic', topic);
}
P i

Here, we are waiting for a message on the weather-status topic, and when we receive the
data from the Raspberry Pi, we save it to our database and that pushes the data to the web
app, mobile app, and desktop app.

Those are all the changes we need to make to absorb the data from the Raspberry Pi 3 and
pass it on to the web, desktop, and mobile apps.

Save all the files and run the following code:

npm start

This will start the API engine and connect to Mosca, along with Raspberry Pi:

+ broker mosca -c¢ index.js -v | pino
D e e LR et

s e T el o T R
T S R A S S S
I e = T T
R N S +' + + +.
+ e, T+, '+
R N s ++ + e,
A R ++ '+ + 4.
R e N S A T +a
T S S T S T T +.
R R e B s ke S = S L
+ +++ e L+ + o+

[2017-26-18TR7:59:82.1282] INFO (iotjs/21185 on Arvinds-MacBook-Pro.lecal): server started
mgtts: BBB3
[2017-06-10TOB: 0@: 84.988Z] INFO (iotjs/21185 o
client: "API_Server_Dev"
[2017-06-10TO8: 0@: 85.001Z] INFO (iotjs/21185 o
topic: "api-engine"
gos: B
client: “"API_Server_Dev"
[2017-26-10TBB: BB: B5.0047] INFO (iotjs/21185 o
topic: "weather-status"
gos: @
client: "API_Server_Dev"
[2017-06-10T@B: @B:12.4987] INFO (iotjs/21185 o
client: "rPI_3"
[2017-26-10T@B: @B:12.7472Z] INFOD (iotjs/21185 o
topic: "rpi"
gos: @
client: "rPI_3"

Arvinds-MacBook-Pro.locall: client connected

>

Arvinds-MacBook-Pro.locall: subscribed to topic

]

>

Arvinds-MacBook-Pro.local): subscribed to topic

Arvinds-MacBook-Pro.local): client connecte

>

>

Arvinds-MacBook-Pro.local): subscribed to topic

[121]

Smart Agriculture Chapter 4

And if we leave the API engine running for a while, we should see the following;:

+ api-engine npm start

> api-engine@@.l1.® start JUsers/arvindravulavaru/Arvind/Books/Advanced IoT with JS/code/chapterd/api-engine
= nodemon server/fapp.js

[nodemon] starting “node server/app.js

Express server listening on 9888, in development mode
Connected to Mosca at 127.8.8.1 on port BBB3
[hatcFRcIgPBZkIvrAAAA] Connected on 192.168.10.11

Mac Address == bB:27:eb:39:92:0d

Data Saved : { t: '21.8@', h: '19.88', r: '1.B6', m: '4.57' }

Data Saved : { t: '21.8@', h: '19.88', r: '1.78', m: '4.59' }

Data Saved : { t: '21.88', h: '18.@8', r: '00,B3', m: '8.25' }
Data Saved : { t: '21.00', h: '19.88', r: '99.8@', m: '72.73' }
Data Saved : { t: '21.88', h: '19.88', r: '99.73', m: '895.14' }
Data Saved : { t: '21.88', h: '189.@@8', r: '00,B3', m: '80.18' }
Data Saved : { t: '21.00', h: '19.88', r: '98.87', m: 'B9.18' }
Data Saved : { t: '21.88', h: '19.88', r: '96.46', m: '85.21' }
Data Saved : { t: '21.88', h: '189.@8', r: '06.05', m: '89.26' }
Data Saved : { t: '21.88', h: '19.@08', r: '97.29',6 m: '89.28' }
Data Saved : { t: '21.88', h: '18.@0@', r: '07,53', m: 'B0.28' }
Data Saved : { t: '21.8@', h: '19.88', r: '97.75', m: 'B0.33' }
Data Saved : { t: '21.88', h: '19.@08', r: '97.92',6 m: '89.36' }
Data Saved : { t: '21.88', h: '18.@0@', r: 'OB.B7', m: 'BO0.38' }
Data Saved : { t: '21.0@', h: '19.88', r: '98.22', m: 'B0.43' }
Data Saved : { t: '21.80', h: '19.88', r: '9B.34', m: 'B0.48' }
Data Saved : { t: '21.88', h: '189.@@8', r: 'OB.44', m: '89.55' }
Data Saved : { t: '21.0@', h: '19.88', r: '98.51', m: 'B9.53' }
Data Saved : { t: '21.88', h: '195.88', r: 'GB.58', m: '85.55' }
Data Saved : { t: '21.88', h: '189.@@8', r: 'OB.E6', m: '80.55' }
Data Saved : { t: '21.80', h: '19.88', r: '98.73', m: 'B9.58' }
Data Saved : { t: '21.88', h: '18.@0@', r: 'OB.7B', m: '80.60"' }

The data from the device is logged here.

In the next section, we are going to update the web app so it can represent the data from the
API engine.

[122]

Smart Agriculture

Chapter 4

Setting up the web app

Now that we are done with the API engine, we are going to develop the interface needed to
show the weather output from the Raspberry Pi 3.

Open web-app/src/app/device/device. component . html and update it, as shown

here:

<div class="container">

<div *ngIf="!device">
<h3 class="text-center">Loading!</h3>
</div>
<div class="row" *ngIf="lastRecord">
<div class="col-md-12">
<div class="panel panel-info">
<div class="panel-heading">
<h3 class="panel-title">
{{device.name}}
</h3>

<i class="fa fa-chevron-circle-up"></i>

</div>
<div class="clearfix"></div>
<div class="table-responsive">
<table class="table table-striped">
<tr *ngIf="lastRecord">
<td>Temperature</td>

<td>{{lastRecord.data.t}}</td>

</tr>
<tr *ngIf="lastRecord">
<td>Humidity</td>

<td>{{lastRecord.data.h}} %</td>

</tr>
<tr *ngIf="lastRecord">
<td>Rain Level</td>

<td>{{lastRecord.data.r}} %</td>

</tr>
<tr *ngIlf="lastRecord">
<td>Mositure Level</td>

<td>{{lastRecord.data.m}} %</td>

</tr>
<tr *ngIf="lastRecord">
<td>Received At</td>
<td>{{lastRecord.createdAt
medium'}}</td>

[123]

Smart Agriculture Chapter 4

</tr>

</table>

<div class="col-md-6" *nglf="tempHumdData.length > 0">
<canvas baseChart [datasets]="tempHumdData"

[labels]="1lineChartLabels" [options]="lineChartOptions"
[legend]="lineChartLegend" [chartType]l="1lineChartType"></canvas>
</div>

<div class="col-md-6" *ngIlIf="rainMoisData.length > 0">
<canvas baseChart [datasets]="rainMoisData"

[labels]="1lineChartLabels" [options]="lineChartOptions"
[legend]="lineChartLegend" [chartType]l="1lineChartType"></canvas>

</div>

</div>
</div>
</div>
</div>

</div>

In the preceding code, we have added four rows in a table that displays temperature,
humidity, rain level, and moisture level. We have also set up the canvas to display the
values in the chart.

Next is the class definition for DeviceComponent, present in web-
app/src/app/device/device.component.ts. Update web-
app/src/app/device/device.component.ts, as shown here:

import { Component, OnInit, OnDestroy } from 'Q@angular/core';
import { DevicesService } from '../services/devices.service';
import { Params, ActivatedRoute } from '@angular/router';
import { SocketService } from '../services/socket.service';
import { DataService } from '../services/data.service';

import { NotificationsService } from 'angular2-notifications';

@Component ({

selector: 'app-device',
templateUrl: './device.component.html',
styleUrls: ['./device.component.css']

})
export class DeviceComponent implements OnInit, OnDestroy {
device: any;
data: Array<any>;
toggleState: boolean = false;
privatesubDevice: any;
privatesubData: any;
lastRecord: any;

[124]

Smart Agriculture Chapter 4

// line chart config
publiclineChartOptions: any = {
responsive: true,
legend: {
position: 'bottom',
}, hover: {
mode: 'label'
}, scales: {
xAxes: [{
display: true,
scaleLabel: {
display: true,
labelString: 'Time'

}
o
yAxes: [{
display: true,
ticks: {
beginAtZero: true,
// steps: 10,
// stepValue: 5,
// max: 70
}
}]
}I
title: {
display: true,
text: 'Sensor Data vs. Time'

i
publiclineChartLegend: boolean = true;
publiclineChartType: string = 'line';
publictempHumdData: Array<any> = [];
publicrainMoisData: Array<any> [1;
publiclineChartlLabels: Array<any> =

[1;

constructor (private deviceService: DevicesService,
privatesocketService: SocketService,
privatedataService: DataService,
private route: ActivatedRoute,
privatenotificationsService: NotificationsService) { }

ngOnInit () {

this.subDevice = this.route.params.subscribe ((params) => {
this.deviceService.getOne (params['id']) .subscribe ((response)
:>{
this.device = response.json();

this.getDatal();

[125]

Smart Agriculture Chapter 4

this.socketInit ();

)i

getData () A
this.dataService.get (this.device.macAddress) .subscribe ((response)

this.data = response.json();
this.lastRecord = this.data[0]; // descending order data
this.genChart () ;

)i

socketInit () A
this.subData =
this.socketService.getData (this.device.macAddress) .subscribe ((data) => {
if (this.data.length<= 0) return;
this.data.splice(this.data.length - 1, 1); // remove the
last record
this.data.push(data); // add the new one
this.lastRecord = data;
this.genChart () ;
b i

ngOnDestroy () {
this.subDevice.unsubscribe () ;
this.subData ? this.subData.unsubscribe() : '';

genChart () {
let data = this.data;
let _thArr: Array<any> =
let _rmArr: Array<any> ;
let _1lblArr: Array<any> = [];

Il
~

lettmpArr: Array<any> = []
lethumArr: Array<any> = [];
letraiArr: Array<any> = []
letmoiArr: Array<any> = []

for (vari = 0; i<data.length; i++) {
let _d = datalil;
tmpArr.push(_d.data.t);
humArr.push(_d.data.h);
raiArr.push(_d.data.r);
moiArr.push(_d.data.m);

[126]

Smart Agriculture Chapter 4

_1blArr.push(this.formatDate (_d.createdAt));

// reverse data to show the latest on the right side
tmpArr.reverse ()

humArr.reverse();

raiArr.reverse();

moiArr.reverse () ;
_l1blArr.reverse();

4

_thArr = [
{
data: tmpArr,
label: 'Temperature'
by
data: humArr,
label: 'Humidity %'
}
]
_rmArr = [
{
data: raiArr,
label: 'Rain Levels'
by
{
data: moiArr,
label: 'Moisture Levels'
}
]
this.tempHumdData = _thArr;
this.rainMoisData = _rmArr;
this.lineChartLabels = _1blArr;

privateformatDate (originalTime) A

var d = new Date(originalTime);
vardatestring = d.getDate() + "-" + (d.getMonth() + 1) + "-" +
d.getFullYear() + " " +
d.getHours () + ":" + d.getMinutes();

returndatestring;

[127]

Smart Agriculture

Chapter 4

In the preceding code, we have used the ngonInit hook and have made a request to get the
device data. Using socketInit (), along with the data, we are going to register for socket

data events for the current device.

In getData (), we fetch the data from the server, extract the latest record, and set it to the
lastRecord property. And finally, we call genChart () to draw a chart.

Now, we are done with the required changes. Save all the files and run the following:

ng server

If we navigate to http://localhost:4200, login, and click on VIEW DEVICE, we

should see the following:

< C | ® localhost:4200/view-device/591e822b8e8414524a18d12
Web App
Pil
Temperature 21.00
Humidity 19.00 %
Rain Level 99.83 %
Mositure Level 90.99 %
Received At Jun 10, 2017, 1:38:28 PM
Sensor Data vs. Time

30

20

10

o 1 1
P & & © & & & &
& R & & o K L K
3 \ 3 v 3 \ \
g F pH F F F S &
& IS & & # & & 5
& & & & & o & o
Time
[temperature. [0 Humidity %

Sensor Data vs. Time
100 =

Logout

Time

= Rain Levels 2 Moisture Levels

Whenever there is change in the data, we should see the UI update automatically.

In the next section, we are going to build the same app and show it inside the electron shell.

[128]

Smart Agriculture Chapter 4

Setting up the desktop app

In the last section, we developed the template and interface for the web app. In this section,
we are going to build the same thing and dump it inside the desktop app.

To get started, head back to the terminal/prompt of the web-app folder, and run the
following;:

ng build --env=prod

This will create a new folder inside the web-app folder named dist. The contents of the
dist folder should consist of:

—— favicon.ico
—— index.html
inline.bundle. js
[— j
inline.bundle.js.ma
J p
F—— main.bundle.js
main.bundle.js.ma
[— j p
polyfills.bundle.js
polyfills.bundle. js.map
scripts.bundle. js
[— P j
scripts.bundle.js.ma
P J P
styles.bundle.js
F— sty j
styles.bundle.js.ma
Yy J p
vendor.bundle. js
[— j

L—— vendor.bundle.js.map

[129]

Smart Agriculture Chapter 4

All the code we have written is finally bundled into the preceding files. We will grab all the
files (not the dist folder) present inside the dist folder and then paste them inside the
desktop-app/app folder. The final structure of desktop-app after the preceding changes
will be as follows:

F—— app

| B— favicon.ico
—— index.html

I inline.bundle.js

I inline.bundle.js.map
—— main.bundle.js

| B—— main.bundle.js.map

| B— polyfills.bundle.js
polyfills.bundle.js.map
scripts.bundle.js

scripts.bundle.js.map

styles.bundle.]js

CTTTTTT

styles.bundle.js.map

vendor.bundle. js

vendor.bundle. js.map
—— freeport.js

index.css

index.html

index.js

Tt

license

[130]

Smart Agriculture Chapter 4
—— package.json
I— readme.md
L— server.js
To test drive the process, run the following:
npm start
Navigate to the VIEW DEVICE page, and we should see the following:
| & Electron Edit View Window Help &M@ T W) %% Sat10Jun 1341:23 Q @ = |
[X X] WebApp
Web App Logout
Pil
Temperature 21.00
Humidity 19.00%
Rain Level 99.88 %
Mositure Level 91.58%
Received At Jun 10,2017, 1:41:20 PM
Sensor Data vs. Time Sensor Data vs. Time
30 100
J e p—— @
10 \./ 40
20
I ®) > s PR . © o -
Time Time
= Temperature [Humidity % = Rain Levels [T Moisture Levels

Whenever there is a change in the data, we should see the Ul update automatically.

With this, we are done with the development of the desktop app. In the next section, we

will update the mobile app.

Setting up the mobile app

In the last section, we saw how to build and run the desktop app for the smart weather
station. In this section, we are going to update the template of the mobile app to show the

weather station data.

[131]

Smart Agriculture

Chapter 4

Openmobile-app/src/pages/view-device/view-device.html and update it, as

shown here:

<ion—-header>
<ion—-navbar>
<ion-title>Mobile App</ion-title>
</ion—-navbar>
</ion-header>
<ion-content padding>
<div *ngIf="!lastRecord">
<h3 class="text-center">Loading!</h3>
</div>
<div *ngIf="lastRecord">
<ion-list>
<ion-item>
<ion-label>Name</ion-label>
<ion—-label>{{device.name}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Temperature</ion-label>
<ion—-label>{{lastRecord.data.t}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Humidity</ion-label>

<ion—-label>{{lastRecord.data.h}} %</ion-label>

</ion-item>
<ion-item>
<ion-label>Rain Level</ion-label>

<ion-label>{{lastRecord.data.r}} %</ion-label>

</ion-item>
<ion-item>
<ion-label>Moisture Level</ion-label>

<ion—-label>{{lastRecord.data.m}} %</ion-label>

</ion-item>
<ion-item>
<ion-label>Received At</ion-label>

<ion—-label>{{lastRecord.createdAt | date: 'medium'}}</ion-

label>
</ion-item>
</ion-list>
</div>
</ion-content>

[132]

Smart Agriculture

Chapter 4

In the preceding code, we have created four items inside the list view to display the
temperature, humidity, rain level, and moisture level. And the required logic for
ViewDevicePage class would be present in mobile-app/src/pages/view-
device/view-device.ts. Update mobile-app/src/pages/view-device/view-

device.ts, as shown here:

NavParams } from 'ionic-angular';

./../services/device.service"';

./../services/data.service';

./../services/toast.service';

import { Component } from '@angular/core';
import { IonicPage, NavController,

import { DevicesService } from '.

import { DataService } from '.

import { ToastService } from '.

import { SocketService } from '.

./../services/socket.service';

@IonicPage ()
@Component ({
selector: 'page-view-device',

templateUrl: 'view-device.html'
})
export class ViewDevicePage {
device: any;
data: Array<any>;
toggleState: boolean
privatesubData:
lastRecord:

= false;

any;
any;

constructor (private navCtrl:
privatenavParams:
privatesocketService:
privatedeviceService:
privatedataService:
privatetoastService:
this.device
console.log(this.device);

ionViewDidLoad () {

this.deviceService.getOne (this.device._id) .subscribe ((response)

this.device
this.getDatal();
this.socketInit ();

[133]

’

NavController,
NavParams,
SocketService,
DevicesService,
DataService,
ToastService) {
navParams.get ("device");

response.json () ;

=>

Smart Agriculture Chapter 4

this.dataService.get (this.device.macAddress) .subscribe ((response)

this.data = response.json();
this.lastRecord = this.data[0]; // descending order data
)i

socketInit () A
this.subData =
this.socketService.getData (this.device.macAddress) .subscribe ((data) => {
if (this.data.length<= 0) return;
this.data.splice(this.data.length - 1, 1); // remove the
last record
this.data.push(data); // add the new one
this.lastRecord = data;

)i

ionViewDidUnload () {
this.subData&&this.subData.unsubscribe&&this.subData.unsubscribe () ;
//unsubscribe if subData is defined

;
}

In the preceding code, we are getting the latest data from the API engine using getData ().
Then, using socketInit (), we are subscribing to the latest changes to the data.

Check the IP address of the server on which the API engine is running.
Update the same IP in your mobile app's mobile-
app/src/app/app.globals.ts file. Otherwise, the mobile app cannot
communicate with the API engine.

Now, save all the files and run the following:
ionic serve
Or, you can deploy the same to your device as well, by running the following:

ionic run android

Or

ionic run ios

[134]

Smart Agriculture Chapter 4

Once the app is launched, and when we navigate to the VIEW DEVICE page, we should
see the following on our screen:

N O o4 11343

< Mobile App

Name Pi1

Temperature 21.00

Humidity 19.00 %

Rain Level 99.90 %

Moisture Level 91.46 %

Received At Jun 10,2017, 1:43:17 ...

As we can see from the image, we are able to view the data updating in real time.

[135]

Smart Agriculture Chapter 4

Summary

In this chapter, we used the knowledge we gained in chapters two and three and built a
prototype of a smart weather station. We started by identifying the sensors needed to build
the weather station. Next, we set them up on the Raspberry Pi 3. We wrote the code needed
to interface with the sensors. Once this was done, we updated the API engine to read the
data from the Raspberry Pi 3 on the new topic. Once the API engine received the data, we
saved it in the database and then sent it to the web, desktop, and mobile apps over web-
sockets. Finally, we updated the presentation templates on the web, desktop, and mobile
apps; then, we displayed the data from the Raspberry Pi on the web, desktop, and mobile

apps.

In chapter 5, Smart Agriculture and Voice Al, we are going to work with voice artificial
intelligence, using Alexa from Amazon and the smart weather station we built.

[136]

Smart Agriculture and Voice Al

In chapter 4, Smart Agriculture, we have seen one of the mainstream areas in which IoT can
create an impact; the agriculture sector. In this chapter, we are going to take that to a new
level. Using a voice Al engine such as Amazon Alexa, we are going to talk to the smart
weather station that we have built.

For example, a farmer can ask Alexa “Alexa, ask smarty app the moisture level in my farm, and
Alexa would go the moisture level in your farm is 20%. Consider watering now. Then, the farmer
would go, Alexa, ask smarty app to turn on my motor and Alexa would turn it on. Fascinating,
isn't it?

Generally, voice Al based IoT is more common in the concepts of smart home and smart
office. I wanted to implement it with smart agriculture.

In this chapter, we are going to work on the following:

Understand Amazon Alexa

Build an IoT.js controlled water motor
Understand AWS lambda
Develop a skillset for Amazon Alexa

Test the weather station as well as the water motor

Smart Agriculture and Voice Al Chapter 5

Voice Al

There was a time when turning something on/off using a smart phone was exciting. Times
have changed and things have evolved quite a bit since in the space of voice Al. A lot of
people use their voice to do a lot of things, right from making notes, building their grocery
lists, to searching the internet. We no longer use hands for mundane activities.

"Look Ma, No hands!”

What's next? Think of it and it happens? I would love to be alive to see that, as I could do
things at the speed of thought.

If you are new to the world of Voice Al, you can start looking up Amazon Alexa, Google
Now/Google Assistant, Apple Siri, or Windows Cortana to see what I am talking about.
Since we are going to work with Amazon Alexa in this chapter, we will explore only that.

Amazon recently launched a couple of devices named Amazon Echo and Amazon Echo Dot
(recently made available in India too), which are smart speakers, enabled by Alexa,
Amazon's voice Al software. If you want to experience Alexa for yourself, without buying

buying echo products, download the reverb app for Android:
https://play.google.com/store/apps/details?id=agency.rain.android.alexa&hl=en

or iOS:
https://itunes.apple.com/us/app/reverb-for-amazon-alexa/i1d1144695621?mt=8 and
launch the app.

[138]

https://play.google.com/store/apps/details?id=agency.rain.android.alexa&hl=en
https://itunes.apple.com/us/app/reverb-for-amazon-alexa/id1144695621?mt=8

Smart Agriculture and Voice Al Chapter 5

You should see an interface with a microphone icon. Press and hold the microphone and
you should see the text Listening... on the top, as shown in the following screenshot:

O o4 &12:05

Listening...

Now say, Alexa, tell me a joke and get entertained by Alexa!

[1391]

Smart Agriculture and Voice Al Chapter 5

Test drive

To test what we are going to build, press the microphone icon in the reverb app and say,
Alexa, ask smarty app for the weather report and you should hear the latest data that is
persisted in the database for the smart weather station. And then you can say, Alexa, ask
smarty app to turn on the motor, or Alexa, ask smarty app to turn off the motor; if my device is
online, it will turn it off.

Along with smart weather station, we are going to build a smart socket, which can be
connected to a motor in a farm. And using Alexa, we are going to turn on/off the motor.

Now, if you have an Amazon echo or echo dot, you can test the skill we are going to build.
Or, you can do the same using the reverb app. You can also use https://reverb.ai/ or
https://echosim.io/ for the same.

Till your Alexa skill is published, it will be only accessible on devices that
are linked with your Amazon account only. If you have enabled beta
testing, then you can allow multiple people to access this skill on their
Amazon account linked Alexa powered devices.

If you are facing issues to explore the demo, check out this video recording:
/videos/chapter5/alexa_smarty_app_demo.mov

So, let's get started!

Building a smart socket

In this section, we are going to build a smart socket. The setup is going to be quite similar to
what we had in chapter 4, Smart Agriculture. Create a new folder named chapter5 and
copy the contents of the chapter4 folder into it. The chapter4 folder has the code for the
smart weather station, and now, we are going to add the required code for smart socket.

The smart socket is a simple electrical socket that can be controlled over the internet. That is,
turn on the socket and turn off the socket. We are going to use a mechanical relay to
achieve this.

[140]

https://reverb.ai/
https://reverb.ai/
https://reverb.ai/
https://reverb.ai/
https://reverb.ai/
https://reverb.ai/
https://reverb.ai/
https://reverb.ai/
https://echosim.io/

Smart Agriculture and Voice Al Chapter 5

We are going to start off by setting up the relay with the other sensors on the Raspberry Pi. I
am going to use one Raspberry Pi to demonstrate the smart weather station as well as the
smart socket. You can use two Raspberry Pis as well for this.

We are going to add the appropriate MQTT client code to the API engine; next, update the
web, desktop, and mobile app to have a toggle switch to turn on/off the relay.

We are going to create a new topic named socket on, which we would send either 1 or 0 to
turn on/off the relay, thus turning the load on the other end of the relay on/off.

Do remember that we are exploring the various solutions that can be built with IoT and we
are not building the final product itself.

Setting up relay with Raspberry Pi

As of now, Raspberry Pi has the smart weather station sensors attached to it. Now, we are
going to add a relay to the setup.

A relay is an electrical switch that is driven by an electronic signal. That is, triggering the
relay with logic high 1 will turn on the relay and logic low 0 will turn off the relay.

Some relays work the other way around, depending on the component. To know more
about types of relay and how they work, refer to, https://www.phidgets.com/docs/

Mechanical_Relay_Primer

You can purchase a simple 5V driven relay from Amazon: (https://www.amazon.com/
DAOKI%CZ%AE*Arduinoflndicatorfchannel*Official/dp/BOOXTOOSUQ/refzsr_1_3)

Relays deal with AC current, and in our examples, we are not going to
connect any AC power supply to the relay. We are going to power it using
a 5V DC supply from Raspberry Pi and using the LED indicator on the
relay identify if the relay has been turned on or off. In case you want to
connect it to an actual power supply, please take adequate precaution
before doing so. The results might be shocking if proper care is not taken.

[141]

https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.phidgets.com/docs/Mechanical_Relay_Primer
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3
https://www.amazon.com/DAOKI%C2%AE-Arduino-Indicator-Channel-Official/dp/B00XT0OSUQ/ref=sr_1_3

Smart Agriculture and Voice Al

Chapter 5

Along with the weather station, we are going to connect the relay as well to the Raspberry
Pi 3. Connect the relay, as shown in the following figure.

Connection of Raspberry Pi with the smart weather station:

RASPBERRY PI 3

GPI102

1 2
L= - . MCP 3208
GPIDO2 EY CHOSVDD
=2d cpioo3 GND b 3 24 ck1 vref
= GPI004 CPIOLA |l =S cr2 oacno =
=2 oo criots e ND |A1—1' cHs ok 2
=L cri017 criots i == chs Cpout 2
L2 cpioz7 GND it =S ks oo P
L2 cpio22 criozz L& = s cs P8
A crio2s 28 1 =2 cn7 oeno —’9
2 crioto AT [4
21 22
GPIOOS GPID25 e
<
231 pio11 crioos ® M0|§T B;cc EU';ISOR
224 oo crigo7 |2Sa 2| .
2L 1550 Dsc 2L ® 3] oo
22 cpioos onn 2
% GPIOOE GPIDL2 % Rlikl SOR
==l cPI013 GND 9 vee | ue
=2 Gpi018 cPIoLe |t 24 10
=1 criozs criozo - . 3 oo
= oo cpio21 =S HT1
LI=0Ce Jus
Ui 2
DATA
34 o

[142]

Smart Agriculture and Voice Al

Chapter 5

Connection of Raspberry Pi with a relay (module):

F,
>
W
%
®
m
p.
e
-<
T
w

3.3V
GPIDO2
GPIOO3
GPIOOY
GND
GPID17
GPID27
GPID22
3.3V
GPID10
GPIO0Y9
GPIO11
GND
1D_SD
GPIDOS
GPID0B
GPIO13
GPIO19
GPID26
GND

(R [V (VR (VN R LSE LS SR SR VR Dol ol [l [l [

=

5V

GND
GPIO14
GPIO15
GPIO18
GND
GPID23
GPI024
GND
GPI025
GPlODE
GPIODT
1D_S5C
GND
GPIO12
GND
GPIO16
GPI020
GPI021

[y
o

[
ra

-
=

-
an

(=N
(=N [--]

ra
ra

L¥]
-

ra
an

(]
@

(=]
=1

(=]
ra

(]
S

[
t=

el
@

=
=]

ui

IN4OO7

>4

D1

cC

=
1 | Ne
ot~
pa

| NO

k1l
RELAY

GND

shown previously. And, if you have purchased the relay module, you
need to connect pin 18/GP1024 to the trigger pin, after powering the relay.

0 If you purchased a standalone relay, you need to set up the circuit, as

To reiterate the previous connection, please see the tables shown, as follows:

e Raspberry Pi and MCP3208:

Raspberry Pi number - Pin name

MCP 3208 pin number - Pin name

1-3.3V 16 - VDD
1-3.3V 15 - AREF
6 - GND 14 - AGND
23 - GPIO11, SPIO_SCLK 13 - CLK

[143]

Smart Agriculture and Voice Al

Chapter 5

21 - GPIO09, SPI0_MISO 12 - DOUT
19 - GPIO10, SPI0_MOSI 11 - DIN
24 - GPIO08, CEO 10-CS

6 - GND 9-DGND

e Moisture sensor and MCIP’3208:

MCP 3208 pin number - Pin name | Sensor pin
1-A0 Rain sensor - A0
1-A1 Moisture sensor - AQ

¢ Raspberry Pi and DHT11:

Raspberry Pi number - Pin name | Sensor pin

3 - GPIO2 DHT11 - data

¢ Raspberry Pi and relay:

Raspberry Pi number - Pin name | Sensor pin

12 - GPIO18 Relay - trigger pin

All grounds and all 3.3V pins are connected to a common point. All the relay needs is a 5V

power supply from the Raspberry Pi, which is pin 2.

Once we have connected the sensors as shown previously, we will write the required code

needed to interface with the sensors.

Head towards the pi-client folder inside Raspberry Pi 3, open pi-
client/index.js, and update it as follows:

var config = require('./config.js');

var mgtt = require('mgtt');

var GetMac = require('getmac');

var async = require('async');

var rpiDhtSensor = require ('rpi-dht-sensor');
var McpAdc = require ('mcp-adc');

var adc = new McpAdc.Mcp3208();

var rpio = require('rpio');

[144]

Smart Agriculture and Voice Al

Chapter 5

// Set pin 12 as output pin and to low

rpio.open(12, rpio.OUTPUT, rpio.LOW);

var
var

var

var
var

var

var

var

)i

dhtl1ll = new rpiDhtSensor.DHT11(2);

temp = 0,
prevTemp = O;
humd = 0O,

prevHumd = O;
macAddress;

state = 0;

mositureval = 0,
prevMositureVal = 0;
rainval = 0,
prevRainvVal = 0;

client = mgtt.connect ({

port: config.mgtt.port,
protocol: 'mgtts',

host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

client.on('connect', function() {

)i

client.subscribe('rpi');
client.subscribe ('socket');
GetMac.getMac (function (err, mac)
if (err) throw err;
macAddress = mac;
client.publish('api-engine',
P i

client.on('message', function (topic,

message = message.toString();
if (topic === 'rpi') {

{

mac) ;

message) A

console.log('API Engine Response >> ', message);

} else if (topic === 'socket') {
state = parselnt (message)
console.log('Turning Relay',

!'state ? 'On' 'Off'");

// Relays are almost always active low

//console.log(!state ? rpio.HIGH

rpio.LOW) ;

// If we get a 1 we turn on the relay, else off

[145]

Smart Agriculture and Voice Al Chapter 5
rpio.write (12, !state ? rpio.HIGH rpio.LOW) ;
} else {
console.log('Unknown topic', topic);
}
P i
// infinite loop, with 3 seconds delay
setInterval (function () {
readSensorValues (function (results) |
console.log('Temperature: ' + temp + 'C, + 'humidity: ' + humd +
'S, + ' Rain level (%):' + rainval + ', ' + 'mositureval (%): ' +

mositureval) ;
// if the temperature and humidity values change

// then only publish the values

if (temp !== prevTemp || humd !== prevHumd

prevMositureVal || rainvVal != prevRainVal) {

}

’

var data2Send = {

data: {
temp,
humd,
rainval,
mositureval,
state

nw 3 8 o

I
macAddress: macAddress

}i

// console.log('Data Published');

client.publish ('weather—-status',

// reset prev values to current

// for next loop
prevlemp = temp;
prevHumd = humd;

prevMositureVal = mositureVal;

prevRainvVal = rainVal;

)i
3000); // every three second

function readSensorValues (CB) {

async.parallel ({

dhtll1lValues: function (callback) {
var readout = dhtll.read();
// update global variable
temp = readout.temperature.toFixed(2);

humd = readout.humidity.toFixed(2);
humidity: humd });

callback (null, { temp: temp,
I

[146]

mositureval

JSON.stringify (data2Send));

Smart Agriculture and Voice Al Chapter 5

rainLevel: function(callback) {
// we are going to connect rain sensor
// on channel 0, hence 0 is the first arg below
adc.readRawValue (0, function(value) {
// update global variable
rainvVal = value;
rainVal = (100 - parseFloat ((rainval / 4096) *
100)) .toFixed(2);
callback (null, { rain: rainval });
P i
}I
moisturelLevel: function(callback) {
// we are going to connect mositure sensor
// on channel 1, hence 1 is the first arg below
adc.readRawValue (1, function(value) {
// update global variable
mositurevVal = value;
mositurevVal = (100 - parseFloat ((mositureval / 4096) *
100)) .toFixed(2);
callback (null, { moisture: mositureval });
P i
}
}, function done(err, results) {
if (err) {
throw err;
}
// console.log(results);
if (CB) CB(results);
P i
}

To the Weather Station code, we have added the rpio module and using the
rpio.open (), we have made pin 12 as an output pin. We are also listening to the topic
named socket. And, when we get a response from the broker on this topic, we set pin 12 to
high or low based on the data.

Now, we will install the rpio module inside the Raspberry Pi pi-client folder, and run
the following command:

npm install rpio -save
Save all, the files. Now, we will start the Mosca broker from our desktop/machine:

mosca —-c index.js -v | pino

[147]

Smart Agriculture and Voice Al Chapter 5

Once you have started Mosca server, do check the IP address of the server
on which Mosca is running. Update the same IP in your Raspberry Pi
config. s file or else Raspberry Pi cannot post data to the broker.

Once Mosca has started successfully and we have validated the IP on the Raspberry Pi, run:
sudo node index.js
This will start the server and keep sending the weather information to the broker.

In the next section, we are going to write the required logic needed for the API engine to
process the relay.

Managing relay in an APl engine

Now that the relay is connected to the Raspberry Pi, we will write the logic that will send
the on/off command to the socket topic. Open api-engine/server/mgtt/index.js and
update it, as follows:

var Data = require('../api/data/data.model’);
var mgtt = require('mgtt');
var config = require('../config/environment');

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

1)

client.on('connect', function() {

console.log('Connected to Mosca at ' + config.mgtt.host + ' on port ' +
config.mgtt.port);

client.subscribe ('api-engine');

client.subscribe ('weather—-status');
}) i

client.on('message', function(topic, message) {
// message is Buffer

[148]

Smart Agriculture and Voice Al

Chapter 5

// console.log('Topic >> ', topic);
// console.log('Message >> ', message.toString());

if (topic === 'api-engine') {
var macAddress = message.toString();
console.log('Mac Address >> ', macAddress);
client.publish('rpi', 'Got Mac Address: ' + macAddress);
} else if (topic === 'weather-status') {
var data = JSON.parse (message.toString());

// create a new data record for the device
Data.create (data, function(err, data) {
if (err) return console.error (err);
// if the record has been saved successfully,
// websockets will trigger a message to the web-app

console.log('Data Saved :', data.data);
P
} else {
console.log('Unknown topic', topic);
}
P
exports.sendSocketData = function (data) {

console.log('Sending Data', data);
client.publish('socket', JSON.stringify(data));
}

We have added a method named sendSocketData and exported it. We are going to call
this method in the api-engine/server/api/data/data.controller.jscreate

method, as follows:

exports.create = function(req, res, next) {
var data = reqg.body;
data.createdBy = reqg.user._id;

Data.create (data, function(err, _data) {
if (err) return res.status(500).send(err);
if (data.topic === 'socket') {

require('../../mgtt/index.js') .sendSocketData (_data.data.s); //

send relay value

}

return res.json(_data);
)i
}i

Save all, the files and run:

npm start

[149]

Smart Agriculture and Voice Al Chapter 5

You should get the following on your screen:

+ api-engine npm start

> api-engine@d.1.® start fUsersfarvindravulavarufArvind/Books/Advanced IoT with J5/code/chapterS/api-engine
= nodemon serverfapp.js

[nodemon] starting 'node server/app.js’

Express server listening on S@08, in development mode
Connected to Mosca at 127.2.8.1 on port BBB3
[WvB®9_05Ij-KqLO-BAAMA] Connected on 127.0.8.1
[X3TOwABvwWXe7aNsYAAAB] Connected on 102.168.18.11

Mac Address »> bB:27:eb:38:92:8d

Data Saved : { t: 'B.88', h: '8.88', r: '4B.36', m: '68.65', s: @ }

Data Saved : { t: '26.88', h: '26.88', r: '4B.29', m: '69.63', s: @ }
Data Saved : { t: '26.88', h: '27.0@', r: '4B.49', m: '69.65', s: @ }
Data Saved : { t: '26.8@', h: '26.8@', r: '4B.27', m: '69.63', s: B }
Data Saved : { t: '26.8@', h: '26.8@', r: '4E8.87', m: '69.60', s: B }
Data Saved : { t: '23.80', h: '1B.8@8', r: '47.85', m: '69.68', s: 0 }
Data Saved : { t: 'Z6.808', h: '26.88', r: '48.85', m: '69.65', s: @ }
Data Saved : { t: '26.86', h: '26.88', r: '47.82', m: '69.68', =: B }
Data Saved : { t: '26.88', h: '26.88', r: '47.71', m: '69.68', s: @ }
Data Saved : { t: '26.88', h: '26.8@', r: '47.92', m: '69.58', s: @ }
Data Saved : { t: '26.00', h: '27.2@', r: '47.90', m: '69.58', s: @ }
Data Saved : { t: '26.8@8', h: '26.8@', r: '47.90', m: '69.58', s: @ }
Data Saved : { t: '26.80', h: '26.88', r: '47.85', m: '69.58', s: @ }
Data Saved : { t: 'Z6.@88', h: '27.8@8', r: '47.75', m: '69.58', s: @ }
Data Saved : { t: '26.86', h: '26.8@8', r: '47.66', m: '69.56', =: B }
Data Saved : { t: '26.88', h: '26.88', r: '47.68', m: '69.36', s: B }
Data Saved : { t: '26.88', h: '26.8@', r: '47.63', m: '69.53', s: @ }

Do note, the last value in the data string printed in the console; s, we are sending the status
of the relay as well to display in the U], if the relay is on/off.

With this, we are done with the code needed to develop the API engine. In the next section,
we are going to work on the web app.

Updating the web app template

In this section, we are going to update the web app template to have a toggle button, quite
similar to what we had in chapter 2, [oTFW.js - I, and Chapter 3, [0TFW.js - II. Using the
toggle button, we are going to turn on/off the relay manually. In the later sections, we are
going to automate them.

Open, web-app/src/app/device/device.component . html and update it, as follows:

<div class="container">

<div *ngIf="!device">

[150]

Smart Agriculture and Voice Al Chapter 5

<h3 class="text-center">Loading!</h3>
</div>
<div class="row" *nglf="lastRecord">
<div class="col-md-12">
<div class="panel panel-info">
<div class="panel-heading">
<h3 class="panel-title">
{{device.name}}
</h3>

<i class="fa fa-chevron-circle-up"></i>

</div>
<div class="clearfix"></div>
<div class="table-responsive">
<table class="table table-striped">
<tr>
<td>Toggle Socket</td>
<td>
<ui-switch [(ngModel)]="toggleState"
(change) ="toggleChange (Sevent) "></ui-switch>
</td>
</tr>
<tr *ngIf="lastRecord">
<td>Temperature</td>
<td>{{lastRecord.data.t}}</td>

</tr>

<tr *ngIf="lastRecord">
<td>Humidity</td>
<td>{{lastRecord.data.h}} %</td>

</tr>

<tr *ngIf="lastRecord">
<td>Rain Level</td>
<td>{{lastRecord.data.r}} %</td>
</tr>
<tr *ngIf="lastRecord">
<td>Mositure Level</td>
<td>{{lastRecord.data.m}} %</td>
</tr>
<tr *ngIf="lastRecord">
<td>Received At</td>
<td>{{lastRecord.createdAt | date:
'medium’'}}</td>

</tr>

</table>

<div class="col-md-6" *nglf="tempHumdData.length > 0">
<canvas baseChart [datasets]="tempHumdData"

[labels]="1lineChartLabels" [options]="lineChartOptions"

[151]

Smart Agriculture and Voice Al Chapter 5

[legend]="lineChartLegend" [chartType]l="1lineChartType"></canvas>

</div>
<div class="col-md-6" *ngIlf="rainMoisData.length > 0">
<canvas baseChart [datasets]="rainMoisData"

[labels]="1lineChartLabels" [options]="lineChartOptions"
[legend]="lineChartLegend" [chartType]l="1lineChartType"></canvas>
</div>
</div>
</div>
</div>
</div>
</div>

All we have done is added a new row that shows a toggle button, and using this, we turn
on/off the socket. Next, the required logic to manage the toggle button, open web-
app/src/app/device/device.component.ts and update it, as follows:

import { Component, OnInit, OnDestroy } from '@angular/core';
import { DevicesService } from '../services/devices.service';
import { Params, ActivatedRoute } from '@angular/router';
import { SocketService } from '../services/socket.service';
import { DataService } from '../services/data.service';

import { NotificationsService } from 'angular2-notifications';

@Component ({

selector: 'app-device',
templateUrl: './device.component.html',
styleUrls: ['./device.component.css']

})
export class DeviceComponent implements OnInit, OnDestroy {
device: any;
data: Array<any>;
toggleState: boolean = false;
private subDevice: any;
private subData: any;
lastRecord: any;

// line chart config
public lineChartOptions: any = {
responsive: true,
legend: {
position: 'bottom',
}, hover: {
mode: 'label'
}, scales: {
xAxes: [{
display: true,

[152]

Smart Agriculture and Voice Al Chapter 5

scaleLabel: {
display: true,
labelString: 'Time'

Hy

yAxes: [{
display: true,
ticks: {
beginAtZero: true,
// steps: 10,
// stepValue: 5,
// max: 70
}
}]
}I
title: {
display: true,
text: 'Sensor Data vs. Time'

i
public lineChartLegend: boolean = true;
public lineChartType: string = 'line';
public tempHumdData: Array<any> = [];
public rainMoisData: Array<any> [1;
public lineChartLabels: Array<any> =

[1;

constructor (private deviceService: DevicesService,
private socketService: SocketService,
private dataService: DataService,
private route: ActivatedRoute,
private notificationsService: NotificationsService) { }

ngOnInit () {

this.subDevice = this.route.params.subscribe ((params) => {
this.deviceService.getOne (params['id']) .subscribe ((response)
:>{
this.device = response.json();

this.getDatal();
this.socketInit();

)i

getData () A
this.dataService.get (this.device.macAddress) .subscribe ((response)
:>{
this.data = response.json();
this.lastRecord = this.data[0]; // descending order data

[153]

Smart Agriculture and Voice Al Chapter 5

this.toggleState = this.lastRecord.data.s;
this.genChart ();
1)

socketInit () {
this.subData =
this.socketService.getData (this.device.macAddress) .subscribe ((data) => {
if (this.data.length <= 0) return;
this.data.splice(this.data.length - 1, 1); // remove the
last record
this.data.push(data); // add the new one
this.lastRecord = data;
this.toggleState = this.lastRecord.data.s;
this.genChart () ;
b i

toggleChange (state) {
let data = {
macAddress: this.device.macAddress,

data: {
t: this.lastRecord.data.t,
h: this.lastRecord.data.h,
m: this.lastRecord.data.m,
r: this.lastRecord.data.r,
s: state 2 1 : 0
}I
topic: 'socket'
;
this.dataService.create (data) .subscribe ((resp) => {
if (resp.json()._id) {
this.notificationsService.success ('Device Notified!'");
;
}, (err) => {

console.log(err);
this.notificationsService.error ('Device Notification Failed.
Check console for the error!');

H)

ngOnDestroy () {
this.subDevice.unsubscribe () ;
this.subData ? this.subData.unsubscribe() : '';

genChart () {

[154]

Smart Agriculture and Voice Al Chapter 5

let data = this.data;

let _thArr: Array<any> =
let _rmArr: Array<any> ;
let _1lblArr: Array<any> = [];

Il
~

let tmpArr: Array<any> = []
let humArr: Array<any> = [];
let raiArr: Array<any> = []
let moiArr: Array<any> = []

for (var i = 0; i < data.length; i++) {
let _d = datal[il]l;
tmpArr.push(_d.data.t);
humArr.push(_d.data.h);
raiArr.push(_d.data.r)
moiArr.push(_d.data.m);
_1blArr.push(this.formatDate (_d.createdAt));

4

// reverse data to show the latest on the right side
tmpArr.reverse();
humArr.reverse();
)
)

raiArr.reverse();
moiArr.reverse (

7
_l1blArr.reverse();

_thArr = [
{
data: tmpArr,
label: 'Temperature'
}I
{
data: humArr,
label: '"Humidity %'
}
]
_rmArr = [

data: raiArr,
label: 'Rain Levels'

data: moiArr,
label: 'Moisture Levels'

[155]

Smart Agriculture and Voice Al Chapter 5

this.tempHumdData = _thArr;
this.rainMoisData = _rmArr;
this.lineChartLabels = _1blArr;

private formatDate (originalTime) {
var d = new Date(originalTime);
var datestring = d.getDate() + "-" + (d.getMonth() + 1) + "-" +
d.getFullYear() + " " +
d.getHours () + ":" + d.getMinutes();
return datestring;

}

All we have done here is manage the toggle button state. Save all the files and run the
following;:

ng serve

Navigate to http://localhost:4200 and then navigate to the device page. Now, using

the toggle button on the page, we can turn the relay on/off, as shown in the following
screenshot:

< C | @ localhost:4200/view-device/591fe822b8e84f4524a18d12 *
Web App Logout
Toggle Socket (
Temperature 26.00
Humidity 26.00 %
Rain Level 47.19%
Mositure Level 69.36 %
Received At Jun 10, 2017, 2:53:59 PM
Sensor Data vs. Time Sensor Data vs. Time
30 — — — 80
20 A.,f 60
40
10 0 |
o o
» > > 5 & & & o > > > % 9 9 5 o
K o K K & & K K K K K K & & K K
§f & & &5 5 & & & f & & &5 5 & & &
o o & o & & @ & o & 5 & & & & el
& & & & & & & & & & N & & & & &
Time Time
[0 temperature [Humidity % == Rain Levels [Moisture Levels

[156]

Smart Agriculture and Voice Al Chapter 5

If everything is set up correctly, you should see the relay LED turn on/off on the relay, as
shown in the following photograph:

Wires! Duh!

With this, we are done with the web app. In the next section, we are going to build the same
web app and deploy it inside our desktop app.

Updating the desktop app

Now that the web app is done, we are going to build the same and deploy it inside our
desktop app.

To get started, head back to the terminal/prompt of the web-app folder and run:

ng build --env=prod

[157]

Smart Agriculture and Voice Al

Chapter 5

This will create a new folder inside the web—app folder named dist. The contents of the

dist folder should be on the lines of:

favicon.ico
index.html
inline.bundle.js

inline.bundle.js.map

Frrnd

main.bundle.js

—— main.bundle.js.map

—— polyfills.bundle.qjs
polyfills.bundle.js.map
scripts.bundle.js
scripts.bundle. js.map
styles.bundle. js
styles.bundle. js.map

vendor.bundle. js

Tl

vendor.bundle. js.map

All, the code we have written is finally bundled into the preceding files. We will grab all of
the files (not the dist folder) present inside the dist folder and then paste it inside the
desktop-app/app folder. The final structure of the desktop-app after the previous

changes will be as follows:

F— app
| —— favicon.ico
| b index.html

| —— inline.bundle.js

[158]

Smart Agriculture and Voice Al Chapter 5

inline.bundle.js.map
main.bundle.js
main.bundle.js.map
polyfills.bundle.js
polyfills.bundle.js.map
scripts.bundle.js

scripts.bundle. js.map

CTTTTTTITTTT

styles.bundle. js

styles.bundle.js.map

vendor.bundle.js

vendor.bundle. js.map
—— freeport.js

index.css

index.html

index.js

license

package. json

readme .md

PP

server.js

To test drive, run the following command:

npm start

[159]

Smart Agriculture and Voice Al Chapter 5

Then, when we navigate to the VIEW DEVICE page, we should see the following:

| & Etectron Edit View Window Help & @ 7 d) oxm Sati0Jun 153642 Q @ = |
[XX) WebApp

Web App Logout

Pil

Toggle Socket

Temperature 24.00
Humidity 18.00%
Rain Level 5237%
Mositure Level 67.33%

Received At Jun 10,2017, 3:36:36 PM

Using the toggle button, we should be able to turn the relay on/off.

With this, we are done with the development of the desktop app. In the next section, we
will update the mobile app.

Updating the mobile app template

In the last section, we have updated the desktop app. In this section, we are going to update
the mobile app template with the toggle switch component. So, using this toggle switch, we
can turn the smart socket on/off.

First, we are going to update the view-device template. Update mobile-
app/src/pages/view—-device/view—device.html, as follows:

<ion-header>
<ion-navbar>
<ion-title>Mobile App</ion-title>
</ion-navbar>
</ion-header>
<ion-content padding>

<div *ngIf="!lastRecord">
<h3 class="text-center">Loading!</h3>
</div>

<div *ngIf="lastRecord">

[160]

Smart Agriculture and Voice Al Chapter 5

<ion-list>
<ion-item>
<ion-label>Name</ion-label>
<ion-label>{{device.name}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Toggle LED</ion-label>
<ion-toggle [(ngModel)]="toggleState"
(click)="toggleChange ($event) "></ion-toggle>
</ion-item>
<ion-item>
<ion-label>Temperature</ion-label>
<ion-label>{{lastRecord.data.t}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Humidity</ion-label>
<ion-label>{{lastRecord.data.h}} %</ion-label>
</ion-item>
<ion-item>
<ion-label>Rain Level</ion-label>
<ion-label>{{lastRecord.data.r}} %</ion-label>
</ion-item>
<ion-item>
<ion-label>Moisture Level</ion-label>
<ion-label>{{lastRecord.data.m}} %</ion-label>
</ion-item>
<ion-item>
<ion-label>Received At</ion-label>
<ion-label>{{lastRecord.createdAt | date: 'medium'}}</ion-
label>
</ion-item>
</ion-list>
</div>
</ion-content>

Next, we are going to add the required logic to manage the toggle button. Update mobile—
app/src/pages/view-device/view—device.ts, as follows:

import { Component } from '@angular/core';
import { IonicPage, NavController, NavParams } from 'ionic-angular';

import { DevicesService } from '../../services/device.service';
import { DataService } from '../../services/data.service';
import { ToastService } from '../../services/toast.service';
import { SocketService } from '../../services/socket.service';

@IonicPage ()

[161]

Smart Agriculture and Voice Al Chapter 5

@Component ({
selector: 'page-view-device',
templateUrl: 'view-device.html',
})
export class ViewDevicePage {
device: any;
data: Array<any>;
toggleState: boolean = false;
private subData: any;
lastRecord: any;

constructor (private navCtrl: NavController,
private navParams: NavParams,
private socketService: SocketService,
private deviceService: DevicesService,
private dataService: DataService,
private toastService: ToastService) {
this.device = navParams.get ("device");
console.log(this.device);

ionViewDidLoad () |
this.deviceService.getOne (this.device._id) .subscribe ((response) =>
{
this.device = response.json();
this.getDatal();
this.socketInit ();
b i
;
getData () A
this.dataService.get (this.device.macAddress) .subscribe ((response)
:>{

this.data = response.json();
this.lastRecord = this.data[0]; // descending order data
if (this.lastRecord) {

this.toggleState = this.lastRecord.data.s;

b i
;
socketInit () {
this.subData =
this.socketService.getData (this.device.macAddress) .subscribe ((data) => {
if (this.data.length <= 0) return;
this.data.splice(this.data.length - 1, 1); // remove the
last record
this.data.push(data); // add the new one

[162]

Smart Agriculture and Voice Al Chapter 5

this.lastRecord = data;
)i

toggleChange (state) {
let data = {
macAddress: this.device.macAddress,
data: {
t: this.lastRecord.data.t,
h: this.lastRecord.data.h,
m: this.lastRecord.data.m,
r: this.lastRecord.data.r,
s: l!state
}I
topic: 'socket'

console.log(data);

this.dataService.create (data) .subscribe ((resp) => {
if (resp.json()._id) {
this.toastService.toggleToast ('Device Notified!"'");
;
}, (err) => {

console.log(err);
this.toastService.toggleToast ('Device Notification Failed.
Check console for the error!');

})

ionViewDidUnload () A
this.subData && this.subData.unsubscribe &&
this.subData.unsubscribe (); //unsubscribe if subData is defined
;
}

Here, we have added the required logic to manage the toggle button. Save all, the files and
run:

ionic serve

[163]

Smart Agriculture and Voice Al Chapter 5

Or, you can deploy the same to your device as well, by running;:

ionic run android

Or:

ionic run ios

Once the app is launched, and when we navigate to VIEW DEVICE page, we should see
the following;:

N O 94 71613

< Mobile App
Name Pi1
Toggle LED O
Temperature 24.00
Humidity 18.00 %
Rain Level 4712 %
Moisture Level 100.00 %
Received At Jun 10,2017, 4:13:26 ...

[164]

Smart Agriculture and Voice Al Chapter 5

We should be able to control the socket using the toggle button on the mobile app.
With this, we are done with the set up of smart motor.

In the next section, we are going to build a new skill for Amazon Alexa.

Developing Alexa skill

In the last section, we have seen how to build a smart socket and integrate it with our
existing smart weather station. In this section, we are going to build a new skill for
interfacing our smart devices with Amazon Alexa.

We are going to create a new skill named smarty app and then add two voice models to it:

¢ To get the latest weather status
e To turn on/off the socket

If you are new to Alexa and its skill development, I would recommend
watching the following series before you continue: Developing Alexa

skills:
https://www.youtube.com/playlist?1ist=PL2KJmkHeYQTO6ci5KF08mvHYd

AZu2jgkd
To give a quick overview of our skill creation, we are going to follow these steps:

1. Log in to the Amazon developer portal and create and set up a new skill
2. Train the voice model

3. Write the required business logic in AWS lambda service

4. Deploy and test the setup

So, let's get started.

[165]

https://www.youtube.com/playlist?list=PL2KJmkHeYQTO6ci5KF08mvHYdAZu2jgkJ
https://www.youtube.com/playlist?list=PL2KJmkHeYQTO6ci5KF08mvHYdAZu2jgkJ

Smart Agriculture and Voice Al Chapter 5

Creating skKkill

The first thing we are going to do is log in to https://developer.amazon.com Once we are
logged in, click on Alexa on the top section of the page. You should land on a page that

should look as follows:

< al]lq!l)l‘l DEVELOPER

DASHBOARD APPS REPORTING SUPPORT DOCUMENTATION SETTINGS

Add new voice-enabled capabilities using the Alexa Skills Kit, or add voice-powered experiences fo your connected devices with the Alexa Voice Service.

O 9

Alexa Skills Kit Alexa Voice Service

Easily add new skills to Alexa

Get Started > Get Started >

Click on Get Started > below Alexa Skills Kit and you should be redirected to a page
where you can view your existing skill sets or create a new one. Click on the golden button

on the top right-hand corner named Add a new skill.

[166]

https://developer.amazon.com

Smart Agriculture and Voice Al

Chapter 5

You should be redirected to a page, as follows:

DEVELOPE]

<amazon

DASHBOARD REPORTING MENTATION

ARVIND

ARVIND R

< Back to All Skills

Skill Information Skill Type
Define a custc
fined skil

© Custom Interaction Model
- Smart Home Skill AP

- Flash Briefing Skill API

- Video Skill API

. Is. Learn more
Interaction Model

SSL Certificate Language English (U.S.) 4
Test Name

dar th ill that is di d 1o €U Advanced loT with JavaScript
Publishing Information

Privacy & Compliance Invocation Name
he name custemers use Lo activate the skil. For

smarty app

€ For successiul Alexa Skills Gertification, please review and follow our Invocation Name Guidelines as well as our Certification Requirements.

Global Fields

Audio Player
Does this skill use the audio player directl
Leam more

[167]

Smart Agriculture and Voice Al Chapter 5

I'have given the preceding information. You can configure it as you please. Click Save and
then click on Interaction Model on the left menu, and you should be redirected to the
Interactive Model settings, as follows:

< Back to All Skills

English (U.S.) (] Add a New Language

Skill Inf i - - - e - =Tl
Il Information o : Try the skill builder (beta), an intuitive interface for building your
Interaction Model E = interaction model and creating dialog prompts.
Test
Publishing Information Intent Schema

| Intent Schema.
. . built-In slot bullt-in intents
Privacy & Compliance built-in slots built-in intent

Skills Beta Testing

Status: Not yet eligible €}

We are going to use the skill builder, which is still in beta at the time of writing. Skill
builder is an easy interface to train our voice model.

Click on the Launch Skill Builder button.

Training the voice model

Once we are inside the skill builder, we are going to start training the models. In our
application, we are going to have two intents:

e WeatherStatusIntent: To get the values of all four sensors
e ControlMotorIntent: To turn the motor on/off

Apart from this, you can also add other intents based on your requirements. You can add a
moisture sensor only intent to get the values of moisture sensor only or rain sensor intent
for only rain sensor values.

[168]

Smart Agriculture and Voice Al Chapter 5

Now, we will go ahead and set up these intents and create slots.

Once you are inside the skill builder, you should see something similar to the following:

ALEXASKILLS KIT | SKILL BUILDER BETA

Advanced loT with JavaScript (©] ‘:\/‘ e |_- lﬂ A Eﬁ
Z= English (US) ¥ i

SaveModel Build Model Skill Information Interaction Model Configuration Test Publishing

- ot Dashboard

Q ntents 3) g Intents @ Slot Types @
M AMAZON.Cancellntent (required) 3 built-ins 0 built-ins
X AMAZON. Helpintent (required) 0] 0 o

X AMAZON Stopintent (required)
O total slot values
9" slot Types (0) ADD

No slot types defined Add an Intent + Add a Slot Type +

Now, using Add + next to the intents on the left-hand side, create a new custom intent and
name it WeatherStatusIntent, as follows:

AL SKILLS KT | SXILL BUILDER BETA

Advanced loT with JavaScript o .- %ﬂ

B Engleh (V) ¥ SaveModel | Build Model Skillinformation interaction Model Configuration
7\ Dashboard Add intent

</> Code Editor

Q ineens) A ® Create a new custom intent

WeatherStatusintent Create Intent
N AMAZON.Cancelintent [required)

N AMAZON.Helpintent (required)

A AMAZON Stopintent (required) Use an existing intent from the built-in library

“g" slot Types (0)

No slot types defined

[169]

Smart Agriculture and Voice Al Chapter 5

Now, we are going to train the voice model. Once the intent has been created, click on the
intent name on the left menu. Now, we should see a section named Sample Utterances. We
are going to feed the sample utterances of how the user is going to invoke our service.

To keep things simple, I have added only three samples:
Alexa, ask smarty app:

¢ The weather report
e The weather status
e The field conditions

You can see this in the following screenshot:

ALSKASKILLS KIT | SKILL BUILDER BETA

Advanced loT with JavaScript LJ 1=l
£ English (US) ¥ e = i 3 5

SaveModel Build Model Skill Information Interaction Model Configuration Test Publishing

¢\ Dashboard WeatherStatusintent

<> Code Editor
Sample Utterances (s Intent Slots ()
Q intents (@) ADD

ORDER REQ SLOT
W AMAZON.Cancelintent (required)

X AMAZON.Helpintent (required) he field conditions

X AMAZON Stoplntent (requirec)

WeatherStatusintent

<" Slot Types (0) ADD
No slot types defined Intent confirmation (optional)

Does this intent require confirmation?

Next, we are going to create another intent named ControlMotorIntent using the same
process. Click on ControlMotorIntent on the left-hand side menu and we should see the
sample utterances section.

For this intent, we are going to do something different; we are going to create something
called slots. We are going to take the sample utterance that the user would utter and extract
a piece of it as a variable.

For example, if the user says, Alexa, ask smarty app to turn on the motor, or Alexa, ask smarty
app to turn off the motor, everything is the same except for turn on or turn off, so we want to
convert these to variables and handle each instruction differently.

[170]

Smart Agriculture and Voice Al Chapter 5

If the slot is turned on, we turn on the motor and if the slot is turned off, we are going to
turn off the motor.

So, once you have entered the sample utterance such as to turn on the motor, select the text
turn on, as shown in the following screenshot:

ALEXASKILLSKIT | SIOLL BULDER BETA

Advanced loT with JavaScript
== English (uS) ¥

(o Bz ControlMotorintent -]
</> Code Editor
=) Sample Utterances (0 @ Q 2 Intent Slots () @
© intents (5) ADD 3
toj l |the motor ORDER REQ SLOT

A AMAZON.C; d) |

W AMAZON.Helpintent (required) Select an intent slot

W AMAZON.Stopintent (required) No options avallable ‘ P ——— ‘

Controliotorinte motorAction +

WeatherStatusintent
*F" slot Types (0) ADD This intent has no sample utterances

No slot types defined A sample utterance is a phrase a user might speak to invoke the intent.

Provde feedoack o7 the ASK Developer Forum
© 2010-2017, Amazoncam, Inc. or its affiliates.
AL Rt Reserved Terms of Use - -
] Intent confirmation (sptona) @

Does this intent require confirmation?

Once you have selected the text, enter a custom intent slot name motorAction and click on
the plus icon.

We will have only one utterance for this intent. Next, we need to configure the motorAction
intent slot.

On the right-hand side of the page, you should see the newly created intent slot. Check the
checkbox under the REQ column. This means that this value is required for the intent to be
called. Next, click on Choose a slot type below the slot name.

[171]

Smart Agriculture and Voice Al Chapter 5

Here, we have to define a custom intent slot type. Add motorActionIntentSlot, as
follows:

ControlMotorintent ~ i
:_{\ Sample Utterances (1) @ Q 6%%\ Intent Slots (1 @
I What might a user say to invoke this intent? I ORDER REQ sLoT

g1 motorAction ,

‘ “to [motorAction} the motor” ‘ Chanse a Slot tune

Select an option

@ Intent confirmation (eptional) @

i i ?
Does this intent require confirmation? NO AMAZON Fictional

motorActionintentSiof +

Next, we have to set up the values. Click on motorActionIntentSlot from the left-hand
side menu and add two values; turn on and turn off, as follows:

ALSKASKILLS KIT | SKILLBUILDER BETA

- ; 151 =)
Ag::r:iidu\:Twﬂh JavaScript 6 l.- L) A Eﬁ =)
ZE English (Us) v SaveModel Build Model Skill Information Interaction Model Configuration Test Publishing Privacy & Compliance

Dashboard i
() Bt motorActionintentSlot
</> Code Editor
Slot Values (2) Slots using motorActionintentSlot (1
©Q intents (5) ADD
N AMAZON Cancelintent (raquired) SLOTNAME INTENT
§ AMAZON Helpintent (equired) motorAction ControlMotorintent
um o
N AMAZON.Stopintent (required) o
um or

~ ControlMotorintent
motorAction

‘WeatherStatusintent
7" Slot Types (1) ADD

= motorActionintentSlot

Developer Forum
e ot a¥ilates.

Use

[172]

Smart Agriculture and Voice Al Chapter 5

Once this is done, we need to set up the prompt that will be spoken when the user doesn't
utter the two slot values we have defined. Click on {motorAction} under
ControlMotorIntent and below Dialog Model, and enter a prompt such as Do you want
me to turn on or turn off the motor?, as follows:

ALFXA SKILLS KIT | SXILL BUILDER BETA

Advanced loT with JavaScript [] - i .
EE English {US) ¥ Save Modsl Model Skillinformation Interaction Medel Configuration Test
fon E=te ControlMotorintent
/> Code Editor
BACK TO SAMPLE UTTERANCES ntent Slots

Q mens)

N AMAZON.Cancelintent {required)

{motorAction}
omoER REQ sLOT

1 motorAction
A AMAZON.Helpintent (required) Slot Type motorActionintentSiot
sotorctionIntentSlat

N AMAZON.Stopintent (required)

-~ ControlMotorintent Dialog Model m

maotorAction Slot i ﬂQ
Wieatherstatusintent i
Is this slot required to fulFl the intent? [@]
" sior Types [
3 Sloviypes (1) Prompts
matarActionintentslot
Utterances

Slot confirmation (optional

Does this slot require confirmation?

With this, we are done with defining our voice model.

[173]

Smart Agriculture and Voice Al Chapter 5

Now, we need to ask the Alexa skill engine to build our voice model and add it to its skill

engine. Using the Save Model button at the top of the page, save the model and then Build
Model:

ALFXA SKILLS KIT | SXILL BUILDER BETA

Advanced loT with JavaScript
£5 English (US) ¥

Skillinformatien Interaction Model

Dashboard

/> Code Editor

tions you m

al ved in the
you will need torebu ol

Q mens) B Intents @ Slot Types @ your model

0 built-ins

"] custom

N AMAZON.Cancellntent requiced) 3 built-ins

N AMAZON.Helpintent (requiced)
: 2 custom

N AMAZON.Stopintent (required)
2 total slot values

» ControlMotorintent

WeatherStatusintent

Add an Intent + Add a Slot Type +

“o" slot Types (1)

motorActionintentSlot

How to get started

mersatienal interfac

e ASK Develzpes Faru

Skill Builder - Part 1 o kill Builder - Part 2.. Al «ill Builder - Part 3

> » Tt >

PART 1: AN INTRODUCTION TO DIALOG PART 2: USING INTENTS, BUILT-INS, AND PART 3: SIMPLIFVING CODE FOR MULTI-
DIRECTIVES UTTERANCES TURN DIALOGS

The build generally takes five minutes or less to complete.

ngrok the API engine

Before we go ahead and start working on the lambda service, we need to first expose our
API engine to be available with a public URL, as in http://iotfwjs.com/api, so when the
user asks the Alexa skill service a question or issues a command, the Alexa skill service can
contact us via the lambda service.

So far, we have been using a local IP-based configuration to interact with the API engine,
broker, web app, or Raspberry Pi. But, that doesn't work when we want, Alexa skill service
to find us.

[174]

http://iotjs.com/api

Smart Agriculture and Voice Al Chapter 5

Hence, we are going to use a service named ngrok (https://ngrok.com/) to temporarily
host our local code with a public URL that Amazon Alexa service can use to find us via
lambda service.

To set up ngrok, please follow these steps:

1.

Download the ngrok installer from here: https://ngrok.com/download for your
OS, which is running the API engine

. Unzip and copy the contents of the ngrok downloaded ZIP file at the root of the

api-engine folder
Start Mosca from the root of the broker folder, by running the following
command:

mosca —-c index.js -v | pino
Start the API engine from the root of api-engine folder, by running;:
npm start

Start tunneling with ngrok now. From the root of the api-engine folder, where
we have copied the ngrok executable, run:

./ngrok http 9000

Running . /ngrok http 9000 will start a new tunnel between the local host and a public
instance of ngrok server, and we should see the following:

by

ersion 2.2.4

Region

eb Interface

Forwarding L «ngrok.io => localhost:9888
Forwarding d.ngrok.io -> localhost:9088

Connections rtl rts p5a poa

@.08 @.ee @.08 @.08

[175]

https://ngrok.com/
https://ngrok.com/download

Smart Agriculture and Voice Al Chapter 5

The forwarding URL changes every time you kill and restart ngrok. In the preceding case,
the public URL of ngrok: http://add7231d.ngrok.io is mapped to my local server:
http://localhost:9000.Isn't this easy?

To quickly test the public URL, open web-app/src/app/app.global.ts and update it, as
follows:

export const Globals = Object.freeze ({
// BASE_API_URL: 'http://localhost:9000/"',
BASE_API_URL: 'https://add7231d.ngrok.io/"',
APT_AUTH_TOKEN: 'AUTH_TOKEN',
AUTH_USER: 'AUTH_USER'

}) i

Now, you can launch your web app from anywhere and it will talk to the API engine using
the public URL.

Do read the terms of service (https://ngrok.com/tos) and privacy policy
(https://ngrok.com/privacy) of ngrok before proceeding further.

Defining the lambda function

Now that the voice model is trained and we have a public URL to access the API engine, we
are going to write the required service to respond to the user's interactions.

When a user goes, Alexa, ask smarty app the weather report, Alexa will make a request to the
AWS lambda function and the lambda function will call the API engine for appropriate
activity.

Quoting from AWS: https://aws.amazon.com/lambda/details/

The AWS Lambda is a serverless compute service that runs your code in response to events
and automatically manages the underlying compute resources for you. You can use AWS
Lambda to extend other AWS services with custom logic, or create your own back-end
services that operate at AWS scale, performance, and security.

To know more about AWS lambda, refer to: https://aws.amazon.com/lambda/details/.

[176]

https://ngrok.com/tos
https://ngrok.com/privacy
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/
https://aws.amazon.com/lambda/details/

Smart Agriculture and Voice Al Chapter 5

To get started, head to AWS console: https://console.aws.amazon.com/ and select the
region as North Virginia. As of today, AWS lambda services hosted in North America and
Europe are only allowed to be linked with the Alexa Skill.

Next, from the Service menu on top, select Lambda under the Compute section. This will
take us to the Functions screen of the lambda service. Click on Create a Lambda function
and we will be asked to select a blueprint. Select Blank Function. Next, you will be asked to
select a trigger; select Alexa Skill Set, as follows:

Configure triggers

You can choose to add a trigger that will invoke your function.

i

> ﬂ Lambda

Filter integrations

(L El
'1‘ API Gateway Cancel Previous m
@ Aawsior

QO Alexa sills kit

O Alexa Smart Home

ol

e CloudFront

,! CloudWatch Events - Schedule
,! CloudWatch Logs

‘ CodeCommit

[177]

https://console.aws.amazon.com/

Smart Agriculture and Voice Al Chapter 5

Click on Next. Now, we need to configure the function. Update it, as follows:

L\" Anind v N.Virginia v Support ~

Lambda > New function

Seleot blusprint Configure function
Configure triggers A Lambda function consists of the custom code you want to execute. Learn more about Lambda functions.

| configure function
Name* | smarty-app

Description ~ Smarty App Service

Runtime* Nodejs 6.10 -

Lambda function code
Provide the code for your function. Use the editor if your code does not require custom libraries (other than the aws-sdk). If you need custom
libraries, you can upload your code and libraries as a .ZIP file. Learn more about deploying Lambda functions.

Code entrytype | Edit code inline -
1 ‘use strict’;
2
3 // Route the incoming request based on type (LaunchRequest, IntentRequest,
4 /7 etc.) The JSON body of the request is provided in the event parameter.
5- exports.handler = function(event, context) {
6- try {
7 console.log("event. session.application.applicationId=" + event.session.application.applicat
8
9~ if Cevent.session.new) {
10 onSessionStarted({ requestld: event.request.requestId }, event.session);
1
12

For Lambda function code, enter the following code:
'use strict';

// Route the incoming request based on type (LaunchRequest, IntentRequest,
// etc.) The JSON body of the request is provided in the event parameter.
exports.handler = function (event, context) {

try {
console.log("event.session.application.applicationId=" +

event.session.application.applicationId);

if (event.session.new) {
onSessionStarted({ requestId: event.request.requestId },
event .session);

}

if (event.request.type === "LaunchRequest") {
onLaunch (event .request,

event .session,
function callback (sessionAttributes, speechletResponse) {

context.succeed (buildResponse (sessionAttributes,

speechletResponse));

}) i
} else if (event.request.type === "IntentRequest") {

onIntent (event.request,

[178]

Smart Agriculture and Voice Al Chapter 5

event .session,
function callback (sessionAttributes, speechletResponse) {
context.succeed (buildResponse (sessionAttributes,
speechletResponse)) ;
P) i
} else if (event.request.type === "SessionEndedRequest") {

onSessionEnded (event.request, event.session);
context.succeed();

}
} catch (e) {
context.fail ("Exception: " + e);
}
bi
/**
* Called when the session starts.
*/

function onSessionStarted(sessionStartedRequest, session) {
console.log("onSessionStarted requestId=" +
sessionStartedRequest.requestId + ", sessionId=" + session.sessionId);

// add any session init logic here

/**
* Called when the user invokes the skill without specifying what they
want.
*/
function onLaunch (launchRequest, session, callback) {
console.log("onLaunch requestId=" + launchRequest.requestId + ",
sessionId=" + session.sessionId);

var cardTitle = "Smarty App"
var speechOutput = "Hello, What would you like to know about your farm
today?"

callback (session.attributes,
buildSpeechletResponse (cardTitle, speechOutput, "", true));

/**
* Called when the user specifies an intent for this skill.
*/
function onIntent (intentRequest, session, callback) {
console.log("onIntent requestId=" + intentRequest.requestId + ",
sessionId=" + session.sessionId);

var intent = intentRequest.intent,
intentName = intentRequest.intent.name;

[179]

Smart Agriculture and Voice Al

Chapter 5

// dispatch custom intents to handlers here

if (intentName == 'WeatherStatusIntent') {
handleWSIRequest (intent, session, callback);
} else if (intentName == 'ControlMotorIntent') {
handleCMIRequest (intent, session, callback);
} else {
throw "Invalid intent";
}
}
/**

* Called when the user ends the session.

* Is not called when the skill returns shouldEndSession=true.

*/

function onSessionEnded (sessionEndedRequest, session) {

console.log("onSessionEnded requestId=" + sessionEndedRequest.requestId

+ ", sessionId=" + session.sessionId);

// Add any cleanup logic here

function handleWSIRequest (intent, session, callback) {
getData (function (speechOutput) {
callback (session.attributes,
buildSpeechletResponseWithoutCard (speechOutput,
P i

}
function handleCMIRequest (intent, session, callback) {
var speechOutput = 'Got ';
var status;
var motorAction = intent.slots.motorAction.value;
speechOutput += motorAction;
if (motorAction === 'turn on') {
status = 1;
}
if (motorAction === 'turn off') {
status = 0;
}

setData (status, function (speechOutput) |
callback (session.attributes,
buildSpeechletResponseWithoutCard (speechOutput,
P i

"true"));

"true"));

[180]

Smart Agriculture and Voice Al Chapter 5

function getData (cb) |
var http = require('http');
var chunk = '';
var options = {
host: '31d664cf.ngrok.io’,
port: 80,
path: '/api/vl/data/b8:27:eb:39:92:04/30",
agent: false,
timeout: 10000,
method: 'GET',
headers: {

'AlexSkillRequest': true,

'authorization': 'Bearer
eyJhbGciOiJIUzZIINiIsInR5cCI6IkpXVCI9.eyJfaWQiOiI10TFMZGISZGN1YjBiODM2Y jIzMm
I3MJMiLCIpYXQiOjFEOOTcxNJE4AMTUsImV4cCIOMTQ5NZIOODIxXNXO . ua-SXAgLb—
XUEtbgY55TX_pKdD2Xj50SM7b9Iox_Rd8'"

}
bi

var req = http.request (options, function(res) {
res.on('data', function (_chunk) {
chunk += _chunk;
P i

res.on('end', function() {
var resp = chunk;
if (typeof chunk === 'string') {
resp = JSON.parse (chunk) ;
}
if (resp.length === 0) {
cb('Looks like we have not gathered any data yet! Please
try again later!');
}

var d = resp[0].data;

if (!d) |
cb ('Looks like there is something wrong with the data we

got! Please try again later!');

}

var temp = d.t || 'invalid';

var humd = d.h || 'invalid';

var mois = d.m || 'invalid';

var rain = d.r || 'invalid';

cb ('The temperature is ' + temp + ' degrees celsius, the

[181]

Smart Agriculture and Voice Al

Chapter 5

humidity is ' + humd + ' percent, The moisture level is
percent and the rain level is ' + rain + ' percent!');
P i
res.on('error', function() {
console.log(arguments);
cb('Looks like something went wrong.');

)i
)i
reqg.end() ;

function setData (status, cb) {
var http = require('http');

var chunk = '';
var data = {
'status': status,
'macAddress': 'b8:27:eb:39:92:0d"'

}i

data = JSON.stringify (data);

var options = {
host: '31d664cf.ngrok.io’,
port: 80,

path: '/api/vl/data',

agent: false,

timeout: 10000,

method: 'POST',

headers: {
'AlexSkillRequest': true,

'Content-Type': 'application/json',
'Content-Length': Buffer.bytelength (data),
'authorization': 'Bearer

+

eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCIY.eyJfaWQiOiTI10TFMZGISZGN1YjBiODM2Y jIzMm

I3MIMiLCIpYXQiOJEOOTcxNJjE4MTUSImV4cCI6MTQ5NZzI00ODIxXNXO . ua-SXAgLb—

XUEtbgY55TX_pKdD2Xj50SM7b9Tox_Rd8'
}
}i

var req = http.request (options, function(res) {
res.on('data', function (_chunk) {
chunk += _chunk;
P i

res.on('end', function() {
var resp = chunk;

[182]

Smart Agriculture and Voice Al Chapter 5

if (typeof chunk === 'string') {
resp = JSON.parse (chunk) ;
}
cb ('Motor has been successfully ' + (status ? 'turned on'
'turned off'));
P i
res.on('error', function() {
console.log(arguments);
cb ('Looks like something went wrong.');

)i
)i

// post the data
reqg.write (data);
reqg.end() ;

// === Helper functions to build responses ——————-

function buildSpeechletResponse (title, output, repromptText,
shouldEndSession) {
return A
outputSpeech: {
type: "PlainText",
text: output
}I
card: {
type: "Simple",
title: title,
content: output
}I
reprompt: {
outputSpeech: {
type: "PlainText",
text: repromptText

Fy
shouldEndSession: shouldEndSession

}i

function buildSpeechletResponseWithoutCard (output, repromptText,
shouldEndSession) {
return {

[183]

Smart Agriculture and Voice Al Chapter 5

outputSpeech: {
type: "PlainText",
text: output
}I
reprompt: {
outputSpeech: {
type: "PlainText",
text: repromptText
}
}I
shouldEndSession: shouldEndSession

}i
}

function buildResponse (sessionAttributes, speechletResponse) {
return A
version: "1.0",
sessionAttributes: sessionAttributes,
response: speechletResponse
bi
}

There is a lot going on in the code. exports.handler () is the default function that we
need to set up for lambda to work. Inside that, we have defined the type of incoming
request. And, if the incoming is an IntentRequest, we call onIntent (). Inside
onIntent (), we fetch the intentName and invoke the appropriate logic.

If the intentName is WeatherStatusIntent, we invoke handleWSIRequest (), or else if
the intentName is ControlMotorIntent, we call handleCMIRequest ().

Inside handleWSIRequest () we invoke the getData (), which will make a HTTP GET
request to our ngrok URL. Once the data arrives, we construct a response and return it to
the skill service.

And, handleCMIRequest () does the same, except it first gets the motorAction slot value
and then calls setData (), which will call or either turn the motor on/off.

[184]

Smart Agriculture and Voice Al Chapter 5

Once the code has been copied, you should find additional configuration at the bottom. We
are going to leave the handler as-is. For the role, click on Create a custom role, and set it up,
as follows:

AWS Lambda requires access to your resources

AWS Lambda uses an IAM role that grants your custom code permissions to access AWS resources it needs.

« Hide Details

Role Summary @

Role Description Lambda execution role permissions

IAM Role Create a new |1AM Role v
Role Name lambda_basic_execution

w Hide Policy Document
Edit
i
"Version®: "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"logs:CreateLogGroup”,
"logs:CreatelLogStream”,
"logs:PutLogEvents®
l

"Resource”: "arn:aws:logs:*:*:*" p

[185]

Smart Agriculture and Voice Al Chapter 5

And click on Allow. This will create a new role that will get populated in Existing role*, as
follows:

You can define Environment Variables as key-value pairs that are accessible from your function code. These are useful to store configuration
settings without the need to change function code. Learn more. For storing sensitive information, we recommend encrypting values using KMS

and the console's encryption helpers.

Enable encryption helpers

Environment variables Kay Value x
Lambda function handler and role
Handler* index.handler (]
Role* = Choose an existing role - O
Existing role* lambda_basic_execution - O

» Tags
» Advanced settings

* These fields are required.

e | [0

Cancel

Once this is done, click on Next. Verify the summary and click on Create function at the
bottom of the page.

If everything goes well, you should see the following screen:

WF Services v

Resource Groups v % [\® Awind~ N.Virginia v Support v

AWS Lambda Lambda > Functions > smarty-app ARN - arn:aws:lambda:us-east-1:678714624781:function:smarty-app
«
Dashboard Quaiifiers > | [MRCEM | Actions ~
Functions
x
‘ Congratulations! Your Lambda function "smarty-app" has been successfully created and configured with as a trigger. You can now click on the *Test" button to input a test event and test your function,
Code Configuration = Triggers | Tags Monitoring Q

O Alexa Skills Kit
I © To configure the Alexa service to work with your Lambda function, go to the Alexa Developer portal.

© Addtrigger & Refresh triggers

» View function policy

[186]

Smart Agriculture and Voice Al

Chapter 5

Do notice the ARN in the top right corner. This is the Amazon Resource Name (ARN) for

our lambda function. We need to provide this as an input to the Alexa Skills Kit.

Deploying and testing

Now that we have all the pieces, we will configure the ARN in the Alexa skill we have
created. Head back to Alexa skill and click on Configuration, and update the configuration

as follows:

English (U.S.) @ Add a New Language

Skill Information GIObal Flelds

Interaction Model : y all languag
ly to Juages

Builder

Configuration

Endpoint

Service Endpoint Type:

00 00

Test
Publishing Information

Privacy & Compliance

Skills Beta Testing

Status: Not yet eligibie €))

Account Linking

Do you allow users to create an account or
link to an existing account with you?
Learn more

Permissions

Request users to access resources and
capabilities
Plea: Jermissions to r UrCes anc
I
perience d d by
Learn More

Save

© AWS Lambda ARN (Amazon Resource Name) [i} HTTPS
Recommended

AWS Lam

Bss compute sarvice that runs
your code svents and automatically
manages ying compute Fesources for you
More info about AWS Lambda

How to integrats AWS Lambda with Alexa

Pick a geographical region that is closest to your target customers: @)
North America —| Europe

North America

arn:aws:lambda:us-east-1:678714624781:function:s

- Yes @ No

“| Device Address

Fui

Country & P
| Lists Read ¥
| Lists Write)

See Certification Requirements in our technical documentation as you develop your skills and prepare to submit to Amazon,

Click Next. If everything is set up correctly, we can test the setup.

[187]

Smart Agriculture and Voice Al Chapter 5

Towards the bottom of the Test page, we should see a section named Service Emulator.
You can test it, as follows:

Text JSON

Enter Utterance

Alexa ask smarty app the weather report

Ask Advanced loT with JavaScript H Reset
Lambda Request Lamhbda Response
1A 14
2 "session”: { 2 “wersion”: "1.07,
"sessionId": "Sessionld.e742431d-dbd5-466 E "response”: {
4 "application”: { 4 "outputSpeech”: {
"applicationId”": "amznl.ask.skill.a3f06 "type”: "PlainText",
Y. "text”: "The temperature is 22.00 deg
"attributes": {}, 7 T
"user": { E: "reprompt™: {
"userId”: "amznl.ask.account.AGW7EMBGMS "outputSpeech": {
1¢ Yo 1t "type”: "PlainText”,
11 "new": true 11 “texe”: "7
12 ¥ 12 ¥

13 "reguest": { 13 Y.
14 "type": "IntentRequest”, 14 —

1 "reguestId": "EdwReguestId.7ebfcied-fi88-
Hlman 1A Nan nEn Listen >

[188]

Smart Agriculture and Voice Al

Chapter 5

The following screenshot shows the request received by lambda from Alexa:

Text JSON

Enter Utterance

Alexa ask smarty app to turn on the motor

Ask Advanced loT with JavaScript Reset

Lambda Request

"reguest": {
"type": "IntentRegquest”,
"requestId”": "EdwRequestId.c24108ld-efdf=
"locale": "en-us",
"timestamp": "2017-06-11T08:13:03E27,
"intent": {
"name"”: "ControlMotorIntent”,
20 "slots™: {
21 "motorAction”: {

22 "name”: "motoriction”,
2 "value": "turn on”

2 }

2 }

r }

2 be

2 “version": "1.07

Lambda Response

LA
2 "version": "1.07,
"response”: {
"outputSpeech”: {
"type”: "FlainText”,
"text": "Motor has been successfully
b
"reprompt”: {
"oputputspeech": {
“type”: "PlainText”,
“text”: "7

Listen >

With this, we are done with integrating Alexa with our IoT.js framework.

Summary

In this chapter, we have explored how to integrate a voice Al service such as Alexa with the
IoTFW js framework we have developed. We continued with the same example from
Chapter 4, Smart Agriculture, and started off this chapter by setting up the relay that can
turn the motor on/off. Next, we have understood how Alexa works. We have created a new
custom skill and then set up the required voice model. After that, we have written the
required business logic in AWS lambda, which will get the latest weather status as well as

control the motor.

We have finally tested everything using the reverb app and also validated everything.

In chapter 6, Smart Wearable, we are going to look at IoT and healthcare.

[189]

Smart Wearable

In this chapter, we are going to look at a simple healthcare application that can be created
using Raspberry Pi 3. We are going to build a smart wearable with a 16x2 LCD that displays
the location of the user, and also displays an accelerometer's values on the
web/desktop/mobile interface. The target audience for this product would primarily be
elderly people and the main use case being fall detection, which we are going to work with
in chapter 7, Smart Wearable and IFTTT .

We are going to look at the following in this chapter:

e IoT and healthcare
e Set up the required hardware
e Integrate the accelerometer and view live data

loT and healthcare

Imagine a patient who successfully underwent a heart transplant surgery and is being sent
home after post operational care in the hospital. The amount of attention on this patient
would significantly reduce, as the facilities in the home would be minimal compared to a
hospital. This is where IoT comes in with its real-time capability.

IoT and healthcare is a match made in heaven. The risks and rewards are equally high.
Ability to monitor a patient's health in real time and get information about their pulse rate,
body temperature, and other vital statistics, diagnose and act on it is quite precious. At the
same time, if the connectivity was lost for two minutes, a life would be at stake.

Smart Wearable Chapter 6

In my opinion, to realize the full potential of IoT in healthcare, we may need to wait for
another 5 - 10 years, where the connectivity is absolutely seamless and packet loss is a word
of ancient history.

Smart wearable

As mentioned in the preceding section, we are going to do one of the critical things in
healthcare using IoT. The main purpose of the smart wearable we are going to build is to
identify fall detection. Once fall detection is identified, we notify the cloud about it. This is a
very precious feature when we have elderly or sick people around who collapse due to
unexpected reasons. Identifying the fall immediately and taking an action on it can be life
saving at times.

To detect falls, we are going to use an accelerometer. Quoting from Wikipedia:

"An accelerometer is a device that measures proper acceleration. Proper acceleration,
being the acceleration (or rate of change of velocity) of a body in its own instantaneous rest
frame, is not the same as coordinate acceleration, being the acceleration in a fixed
coordinate system. For example, an accelerometer at rest on the surface of the Earth will
measure an acceleration due to Earth’s gravity, straight upwards (by definition) of g ~
9.81 m/s2. By contrast, accelerometers in free fall (falling toward the centre of the Earth at
a rate of about 9.81 m/s2) will measure zero.”

To know more about an accelerometer and how it works, refer to How an accelerometer works
at: https://www.youtube.com/watch?v=12U49usFo10.

In this chapter, we are going to implement the basic system that gathers the X, Y, and Z axis
acceleration raw values and gets displayed on web, desktop, and mobile apps. In Chapter
7, Smart Wearable and IFTTT, we are going to implement fall detection using these values.

Along with gathering the accelerometer values in real time, we are going to use the 16x2
LCD display to show the current time and the geolocation of the user. If needed, we can
add other texts to this display as well. 16x2 is a simple interface to display content. This can
be extended with Nokia 5110 LCD
(http://www.amazon.in/inch-Nokia-5110-KG075-KitsGuru/dp/B01CXNSJOA) to have a
more advanced display with graphics.

In the next section, we are going to put together the required hardware and then update the
Raspberry Pi code. After that we are going to start working on the API engine and the Ul
templates.

[191]

https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
https://www.youtube.com/watch?v=i2U49usFo10
http://www.amazon.in/inch-Nokia-5110-KG075-KitsGuru/dp/B01CXNSJOA

Smart Wearable

Chapter 6

Setting up smart wearable

The first thing to note about the hardware setup is that it is big and bulky. This is only a
POC and is not even a remotely close production setup. The hardware setup would consist

of an accelerometer connected to Raspberry Pi 3 and a 16X2 LCD.

The accelerometer ADXL345 gives the acceleration of X, Y, and Z axis over I2C protocol.

Connect the hardware as follows:

RASPBERRY Pl 3

16*2_LCD

3.3V
GPI0O2
GPI0O3
GPIOO4
GND
GPIO17
GPI027
GPID22
3.3V
GPI010
GPI0O9
GPIO11
GND
1D_SD
GPI00S
GPI0OS
GPI013
GPI019
GPI026
GND

ol flenl fom foa fea o fro o fro o = = e e e
e Js Je b e e s e e B B B B e e |- m|m|~

5V
5V

Immblm

GND

u3

GPIDLA
GPIDLS
GPIDL8

N
o

= =
=N

GND
GPID23
GPID24

GND
GPID25
GPID0E
GRIDOT

ID_SC

GND
GPIDL2

GND
GPIDLi6
GPID20
GPID21

N
=)

i
@

o
o

o
o

o
B

[
o

o
@

[
o

e e feu e
@ o |- o

=
o

1 ;
I 1 L1 vee
> GND 2 oen
vCC 3 GND U4

3 cs
A INT1
z N2 Uz 1k_ohm_potentiometer

sho

z SDA
8 SCL
||: ADXL345

L=
[y

As you can see in the preceding schematic, we have made the following connections:

¢ Raspberry Pi and LCD:

Raspberry Pi number - Pin name

16x2 LCD Pi name

6 - GND - Breadboard rail 1

1-GND

2 -5V - Breadboard rail 2

2-VCC

1 k Ohm potentiometer

3-VEE

[192]

Smart Wearable

Chapter 6

32-GPIO 12 4-RS

6 - GND - Breadboard rail 1 5-R/W
40 - GPIO 21 6 - EN
NC 7 - DBO
NC 8 - DB1
NC 9-DB2
NC 10 - DB3
29 - GPIO 5 11 - DB4
31-GPIO 6 12 - DB5
11 - GPIO 17 13 - DB6
12 - GPIO 18 14 - DB7
2 - 5V - Breadboard rail 2 15 - LED+
6 - GND - Breadboard rail 1 16 - LED-

e Raspberry Pi and ADXL345:

Raspberry Pi number - Pin name

ADXL345 pin number - Pin name

1-3.3V

VCC

6 - GND - Breadboard rail 1 GND
5 - GPIO3/SCL1 SCL

3 - GPIO2/SDA1 SDA
6 - GND - Breadboard rail 1 SDO

We will add the required code:

1. First create a folder named chapter6 and then copy the contents of chapter4
into it. We will update this code as we go along

[193]

Smart Wearable Chapter 6

2. Now, we will start with the pi-client. On the Raspberry Pi, open pi-
client/index. js and update it as follows:

var config = require('./config.js"');

var mgtt = require('mgtt');

var GetMac = require('getmac');

var request = require('request');

var ADXL345 = require('adx1l345-sensor');

require ('events') .EventEmitter.prototype._maxListeners = 100;

var adxl1345 = new ADXL345(); // defaults to i2cBusNo 1,
i2cAddress 0x53

var Lcd = require('lcd'),
lcd new Lcd ({
rs: 12,
e: 21,
data: [5, 6, 17, 18],
cols: 8,
rows: 2

)i

var aclCtr = 0,
locCtr 0;

var x, prevX, y, prevY, z, previ;
var locationG; // global location variable

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

)i

client.on('connect', function() {
client.subscribe('rpi');
client.subscribe ('socket');
GetMac.getMac (function (err, mac) {
if (err) throw err;
macAddress = mac;
displayLocation();

[194]

Smart Wearable Chapter 6

initADXL345();
client.publish('api-engine', mac);
I N
)i

client.on('message', function (topic, message) {
message = message.toString();

if (topic === 'rpi') {
console.log ('API Engine Response >> ', message);
} else {

console.log('Unknown topic', topic);
I N

function initADXL345() {
adx1345.init () .then (function () {

console.log ('ADXL345 initialization succeeded');
// init loop after ADXL345 has been setup
loop () ;

})

.catch (function(err) {
console.error ('ADXL345 initialization failed: ',

err);

i

function loop() {
// infinite loop, with 1 seconds delay
setInterval (function () {
// wait till we get the location
// then start processing
if (!locationG) return;

if (aclCtr === 3) { // every 3 seconds
aclCtr = 0;
readSensorValues (function (acclVals) {

var x = acclVals.x;
var y = acclVals.y;
var z = acclVals.z;

var data2Send = {
data: {
acclVals: acclVvals,
location: locationG
}I
macAddress: macAddress
}i

[195]

Smart Wearable Chapter 6

// no duplicate data
if (x !== prevX || y !== prevY || z !== previZ)

console.log('data2Send', data2Send);

client.publish('accelerometer',
JSON.stringify (data2Send));

console.log('Data Published');

prevX = X;
prevY = y;
prevZz = z;
}
P
}
if (locCtr === 300) { // every 300 seconds

locCtr = 0;
displayLocation();

aclCtr++;
locCtzr++;
}, 1000); // every one second

function readSensorValues (CB) <
adx1345.getAcceleration(true) // true for g-force units,
else false for m/s?
.then (function (acceleration) {
if (CB) CB(acceleration);
})
.catch((err) => {
console.log ('ADXL345 read error: ', err);
i

function displayLocation () A
request ('http://ipinfo.io', function (error, res, body) {
var info = JSON.parse (body) ;
// console.log(info);

locationG = info;

var text2Print = '"';

text2Print += 'City: ' + info.city;

text2Print += ' Region: ' + info.region;
text2Print += ' Country: ' + info.country + ' ';

lcd.setCursor (16, 0); // lst row
lcd.autoscroll();
printScroll (text2Print);

b

[196]

Smart Wearable

Chapter 6

}

// a function to print scroll
function printScroll (str, pos) {

}

// If ctrl+c is hit,

pos = pos || 0;
if (pos === str.length) {
pos = 0;

lcd.print (str[pos]);
//console.log('printing', str[pos]);
setTimeout (function () {

return printScroll (str, pos + 1);
}, 300);

process.on ('SIGINT', function() {

P

lcd.clear () ;
lcd.close();
process.exit ();

free resources and exit.

As you can see from the preceding code, we are displaying the location,
using displayLocation (), every one hour, as we are assuming that the
location would not change frequently. We are using the http://ipinfo.io/
service to get the user's location.

3. Finally, using readSensorValues () we get the value of accelerometer every

3 seconds and publish this data to a topic named accelerometer

4. Now, we will install the required dependencies. From inside the pi-client
folder, run the following command:

npm install async getmac adxl345-sensor mqgtt request —--save

5. Save all the files and start the mosca broker on the server or our desktop machine

by running;:

mosca —c index.js -v | pino

6. Next, run the code on Raspberry Pi:

npm start

[197]

http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/
http://ipinfo.io/

Smart Wearable Chapter 6

This will start the pi-client and will start collecting the accelerometer and display the
location on the LCD display as follows:

File Edit Tabs Help
i@raspberrypi:

My setup is shown as follows:

W7/
[

Next, we will work with the API engine.

[1981]

Smart Wearable Chapter 6

Updating the API engine

Now that we have the smart wearable running and sending the three axis data, we will now
implement the required logic needed to accept that data in the API engine and send the
data to the web/desktop/mobile app:

Open api-engine/server/mgtt/index.js and update it as follows:

var Data = require('../api/data/data.model’);
var mgtt = require('mgtt');
var config = require('../config/environment');

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

P i

client.on('connect', function() {

console.log('Connected to Mosca at ' + config.mgtt.host + ' on port ' +
config.mgtt.port);

client.subscribe ('api-engine');

client.subscribe ('accelerometer');

P i

client.on('message', function(topic, message) {
// message is Buffer
// console.log('Topic >> ', topic);
// console.log('Message >> ', message.toString());

if (topic === 'api-engine') {
var macAddress = message.toString();
console.log('Mac Address >> ', macAddress);
client.publish('rpi', 'Got Mac Address: ' + macAddress);
} else if (topic === 'accelerometer') {
var data = JSON.parse (message.toString());

// create a new data record for the device
Data.create (data, function(err, data) {
if (err) return console.error (err);
// if the record has been saved successfully,
// websockets will trigger a message to the web-app
console.log('Data Saved :', data.data);

P

[1991]

Smart Wearable Chapter 6

} else {
console.log ('Unknown topic', topic);

)i

Here, we are subscribing to a topic named accelerometer and listening for changes on it.
Next, we update api-engine/server/api/data/data.controller. js as follows:

'use strict';

var Data = require('./data.model');

/xx
* Get Data for a device
*/
exports.index = function(req, res) {
var macAddress = reqg.params.deviceld;
var limit = parselnt (reqg.params.limit) || 30;
Data
.find ({
macAddress: macAddress
)
.sort ({ 'createdAt': -1 })
Jlimit (1imit)
.exec (function(err, data) {
if (err) return res.status(500).send(err);
res.status (200) . json (data) ;
1) i
ti

/xx
* Create a new data record
*/
exports.create = function(req, res, next) {
var data = req.body || {};
data.createdBy = reqg.user._id;

Data.create (data, function(err, _data) {
if (err) return res.status(500) .send(err);
return res.json(_data);
)i
ti

The preceding code is used to save the data to database and fetch the data from database
when requested from web, desktop, and mobile apps.

[200]

Smart Wearable Chapter 6

Save all the files and run the API engine:

npm start

This will start the API engine, if needed we can restart the smart wearable and we should
see the following:

+ api-engine npm start

> api-engine@®.1.® start fUsers/arvindravulavaru/Arvind/Books/Advanced ToT with J5/FD/codef/chapter6/api-engine
= nodemon server/app.js

[nodemon] starting “node server/app.js’
Express server listening on 9828, in development mode
Connected to Mosca at 127.8.8.1 on port BEE3
Mac Address => bB:27:eb:309:02:0d
data => { data:
{ acclvals: { x: -98.016, y: -B.BA4, z: -0.936, units: 'g' },
location:
{ ip: '183.B2.5.11',
hostname: 'broadband.actcorp.in',
city: 'Hyderabad',
region: 'Telangana',
country: 'IN',
loc: '17.3753,7B.4744°,
org: 'AS1B209 Atria Convergence Technologies pvt ltd' } },
macAddress: 'bB:27:eb:32:02:08d' }

In the next section, we will work on the web app to display the data.

Updating the web app

Now that we are done with the API engine, we will update the template in the web app to
display the three axis data. Open web-app/src/app/device/device.component .html
and update it as follows:

<div class="container">

<div *ngIf="!device">
<h3 class="text-center">Loading!</h3>
</div>
<div class="row" *ngIf="lastRecord">
<div class="col-md-12">
<div class="panel panel-info">
<div class="panel-heading">
<h3 class="panel-title">
{{device.name}}
</h3>

[201]

Smart Wearable Chapter 6

<i class="fa fa-chevron-circle-up"></i>

</div>
<div class="clearfix"></div>
<div class="table-responsive">
<table class="table table-striped">
<tr *ngIf="lastRecord">
<td>X-Axis</td>
<td>{{lastRecord.data.acclVals.x}}
{{lastRecord.data.acclVals.units}}</td>
</tr>
<tr *ngIf="lastRecord">
<td>Y-Axis</td>
<td>{{lastRecord.data.acclVals.y}}
{{lastRecord.data.acclVals.units}}</td>
</tr>
<tr *ngIf="lastRecord">
<td>Z-Axis</td>
<td>{{lastRecord.data.acclVals.z}}
{{lastRecord.data.acclVals.units}}</td>

</tr>
<tr *ngIf="lastRecord">
<td>Location</td>

<td>{{lastRecord.data.location.city}},
{{lastRecord.data.location.region}},
{{lastRecord.data.location.country}}</td>
</tr>
<tr *ngIf="lastRecord">
<td>Received At</td>
<td>{{lastRecord.createdAt | date : 'medium'}}</td>
</tr>
</table>
<hr>
<div class="col-md-12" *ngIf="acclVals.length > 0">
<canvas baseChart [datasets]="acclVals"
[labels]="1lineChartLabels" [options]="lineChartOptions"
[legend]="lineChartLegend" [chartType]l="1lineChartType"></canvas>
</div>
</div>
</div>
</div>
</div>
</div>

[202]

Smart Wearable Chapter 6

The required logic will be inside device.component .ts. Open web-
app/src/app/device/device.component.ts and update it as follows:

import { Component, OnInit, OnDestroy } from '@angular/core';
import { DevicesService } from '../services/devices.service';
import { Params, ActivatedRoute } from '@angular/router';
import { SocketService } from '../services/socket.service';
import { DataService } from '../services/data.service';

import { NotificationsService } from 'angular2-notifications';

@Component ({
selector: 'app-device',
templateUrl: './device.component.html',
styleUrls: ['./device.component.css']

})

export class DeviceComponent implements OnInit,
device: any;
data: Array<any>;
toggleState: boolean =
private subDevice: any;
private subData: any;
lastRecord: any;

OnDestroy {

false;

// line chart config
public lineChartOptions:
responsive: true,
legend: {
position:
hover: {
mode: 'label'
scales: {
xAxes: [{
display: true,
scaleLabel: {
display: true,
labelString: 'Time'

any = {

'bottom',
I

Iy

}
Py
yAxes: [{
display:
ticks: {
beginAtZero:
// steps: 10,
// stepValue:
// max: 70

true,

true,

5,

[203]

Smart Wearable

Chapter 6

zAxes: [{
display: true,
ticks: {
beginAtZero: true,
// steps: 10,
// stepValue: 5,
// max: 70
}
]
}I
title: {
display: true,
text: 'X,Y,Z vs. Time'
}
bi

public lineChartLegend: boolean = true;

public lineChartType: string = 'line';
public acclVals: Array<any> = [];
public lineChartLabels: Array<any> = [];

constructor (private deviceService: DevicesService,
private socketService: SocketService,
private dataService: DataService,
private route: ActivatedRoute,
private notificationsService: NotificationsService) { }

ngOnInit () A
this.subDevice = this.route.params.subscribe ((params) => {
this.deviceService.getOne (params['id']) .subscribe ((response)
this.device = response.json();
this.getDatal();
)i
)i

getData () |

= {

this.dataService.get (this.device.macAddress) .subscribe ((response) => {

this.data = response.json();
this.lastRecord = this.data([0]; // descending order data
this.toggleState = this.lastRecord.data.s;
this.genChart ();
this.socketInit ();

P i

socketInit () {
this.subData =

[204]

Smart Wearable

Chapter 6

this.socketService.getData(this.device.macAddress) .subscribe ((data)
if (this.data.length <= 0) return;

this.
this.
this.

this

)i

data.splice(this.data.length - 1, 1); // remove the last
data.push(data); // add the new one
lastRecord = data;

.toggleState = this.lastRecord.data.s;
this.

genChart () ;

ngOnDestroy () A
this.subDevice.unsubscribe () ;

this.subData ? this.subData.unsubscribe() : '';

genChart () {
let data = this.data;

let _acclVals: Array<any> = [];
let _l1blArr: Array<any> = [];
let xArr: Array<any> = [];

let yArr: Array<any>
let zArr: Array<any>

([l
~e .

for (var 1 = 0; 1 < data.length; i++) {

let

_d = datalil];

xArr.push(_d.data.acclVals.x);
yArr.push(_d.data.acclVals.y);
zArr.push(_d.data.acclVals.z);
_1blArr.push(this.formatDate (_d.createdAt));

// reverse data to show the latest on the right side
xArr.reverse () ;

yArr.reverse();

zArr.reverse () ;

_1blArr.reverse();

_acclvVals = [

{

data: xArr,
label: '"X-Axis'

o

data: yArr,
label: 'Y-Axis'

o

data: zArr,

= {

record

[205]

Smart Wearable

Chapter 6

label: 'Z-Axis'

this.acclvals =

this.lineChartLabels =

_acclVvals;

_1blArr;

private formatDate (originalTime) {

var d =

var datestring =

d.getFullYear() + " " +

d.getHours () + ":
return datestring;

"o

}

new Date (originalTime);
d.getDate ()

4+ w_n 4

d.getMinutes () ;

Save all the files and run the following command:

npm start

Navigate to http://localhost:4200 and view the device and we should see the

following;:

(d.getMonth ()

+ 1)

+

X-Axis -0272¢g
Y-Axis -036g
Z-Axis -0.8200000000000001 g
Location Kachiguda, INDIA, IN
Received At 2017-11-13T11:54:42.635Z
X,Y,Z vs. Time
01
01 ’
- -
03 / 9
04
05
06
o7
08
09
& & & & & & & & & A v g & & s
Q & & & & & Q& & & Q Q & A 3
&) & & &) CA &) &) & 3
£ £ & £ £ & & & & & 7 5 5 E
Time
[xevis [VoA 2-is

n

n

+

Web App Logout

[206]

Smart Wearable

Chapter 6

With this,

we are done with the web app.

Updating a desktop app

Now that the web app is done, we are going to build the same and deploy it inside our
desktop app.

To get started, head back to the terminal/prompt of the web-app folder and run:

ng build --env=prod

And this will create a new folder inside the web-app folder named dist. The contents of

the dist folder should be similar to the following:

Frrrd

l_
l_

T

favicon.ico
index.html
inline.bundle.js
inline.bundle. js.map
main.bundle.js
main.bundle. js.map
polyfills.bundle.js
polyfills.bundle.js.map
scripts.bundle. js
scripts.bundle. js.map
styles.bundle.js
styles.bundle.js.map
vendor.bundle.js

vendor.bundle. js.map

[207]

Smart Wearable Chapter 6

All the code we have written is finally bundled into the preceding files. We will grab all the
files (not the dist folder) present inside the dist folder and then paste it inside the
desktop-app/app folder. The final structure of the desktop app after the preceding
changes will be as follows:

F—— app

| B— favicon.ico
—— index.html

I inline.bundle.js

I inline.bundle.js.map
—— main.bundle.js

| B—— main.bundle.js.map

| B— polyfills.bundle.js
polyfills.bundle.js.map
scripts.bundle.js

scripts.bundle.js.map

styles.bundle.]js

CTTTTTT

styles.bundle.js.map

vendor.bundle. js

vendor.bundle. js.map
—— freeport.js

index.css

index.html

index.js

Tt

license

[208]

Smart Wearable Chapter 6

—— package.json

I— readme.md

L— server.js

To test drive, run the following:

npm start

And then when we navigate to the VIEW DEVICE page, we should see the following

screen:

| & Etectron Edit View window Help

& B 2 o 100% B Mon13Nov 17:49:21 Q @& =

Web App

V-Axis

-0.30a¢g
-0.368¢g

08045

WebApp

Logout

Smart Wearable

X-Axis

Location Hyderabad, Telangana, IN

Received At Nov 13,2017, 5:49:20 PM

XVZvs. Time

' — e —

With this we are done with the development of the desktop app. In the next section, we will
update the mobile app.

Updating the mobile app template

In the last section, we have updated the desktop app. In this section, we are going to update
the mobile app template to display the three axis data.

[209]

Smart Wearable Chapter 6

First we are going to update the view-device template. Update mobile-
app/src/pages/view-device/view—-device.html as follows:

<ion-header>
<ion-navbar>
<ion-title>Mobile App</ion-title>
</ion-navbar>
</ion-header>
<ion-content padding>
<div *ngIf="!lastRecord">
<h3 class="text-center">Loading!</h3>
</div>
<div *ngIf="lastRecord">
<ion-list>
<ion-item>
<ion-label>Name</ion-label>
<ion-label>{{device.name}}</ion-label>
</ion-item>
<ion-item>
<ion-label>X-Axis</ion-label>
<ion-label>{{lastRecord.data.acclVals.x}}
{{lastRecord.data.acclVals.units}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Y-Axis</ion-label>
<ion-label>{{lastRecord.data.acclVals.y}}
{{lastRecord.data.acclVals.units}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Z-Axis</ion-label>
<ion-label>{{lastRecord.data.acclVals.z}}
{{lastRecord.data.acclVals.units}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Location</ion-label>
<ion-label>{{lastRecord.data.location.city}},
{{lastRecord.data.location.region}},
{{lastRecord.data.location.country}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Received At</ion-label>
<ion-label>{{lastRecord.createdAt | date: 'medium'}}</ion-
label>
</ion-item>
</ion-list>
</div>
</ion-content>

[210]

Smart Wearable Chapter 6

Next, we update mobile-app/src/pages/view-device/view—device.ts as follows:

import { Component } from 'Qangular/core';
import { IonicPage, NavController, NavParams } from 'ionic-angular';

import { DevicesService } from '../../services/device.service';
import { DataService } from '../../services/data.service';
import { ToastService } from '../../services/toast.service';
import { SocketService } from '../../services/socket.service';

@IonicPage ()

@Component ({
selector: 'page-view-device',
templateUrl: 'view-device.html',

})

export class ViewDevicePage {
device: any;
data: Array<any>;
toggleState: boolean = false;
private subData: any;
lastRecord: any;

constructor (private navCtrl: NavController,
private navParams: NavParams,
private socketService: SocketService,
private deviceService: DevicesService,
private dataService: DataService,
private toastService: ToastService) {
this.device = navParams.get ("device");
console.log(this.device);

ionViewDidLoad () A
this.deviceService.getOne (this.device._id) .subscribe ((response) =>
{
this.device = response.json();
this.getDatal();
this.socketInit ();
)i
}
getData () A
this.dataService.get (this.device.macAddress) .subscribe ((response)
=>{

this.data = response.json();
this.lastRecord = this.data[0]; // descending order data

[211]

Smart Wearable

Chapter 6
)i
;
socketInit () {
this.subData =
this.socketService.getData (this.device.macAddress) .subscribe ((data) => {

if (this.data.length <= 0) return;

this.data.splice(this.data.length - 1, 1);

// remove the
last record

this.data.push(data); // add the new one
this.lastRecord = data;
)i

ionViewDidUnload () A

this.subData && this.subData.unsubscribe &&
this.subData.unsubscribe (); //unsubscribe if subData is defined
;

}

Save all the files and run the mobile app either by using ionic serve or ionic cordova
run android.

And we should see the following:

J, 8 W 59% @ 17:39

< Mobile App

Name Smart Wearable

X-Axis 0.076g
Y-Axis 06289
Z-Axis 07169
Location Hyderabad, Telangana, IN

Received At Nov 13,2017, 5:30:15 PM

[212]

Smart Wearable Chapter 6

With this we are done with displaying the data from the smart wearable on the mobile app.

Summary

In this chapter, we have seen how to build a simple smart wearable using Raspberry Pi 3.
We have set up a LCD and a three-axis accelerometer and we displayed the location
information on the display. We have posted the accelerometer data in real time to the cloud
and displayed it on the web, desktop, and mobile apps.

In chapter 7, Smart Wearable and IFTTT, we are going to take the smart wearable to the next
level by implementing IFTTT rules on top of it. We are going to perform actions such as
making a phone call or sending an SMS to the patience emergency contact so that
immediate care can be given.

[213]

Smart Wearable and IFTTT

In chapter 6, Smart Wearable, we looked at how to build a simple wearable that displays a
user's location and also reads accelerometer values. In this chapter, we are going to take that
application to the next level by implementing fall detection logic on the device and then
adding If This Then That (IFTTT) rules on top of the data to execute actions when certain
events happen. We will look at the following topics:

e What is IFTTT
IFTTT and IoT
Understanding fall detection

Accelerometer-based fall detection

Building an IFTTT rules engine

IFTTT and loT

This reactive pattern can be easily applied to certain situations. For example, if a patient
falls down, then call an ambulance, or if the temperature goes below 15 degrees, then turn
off the AC, and so on. These are simple rules that we define that can help us automate a lot
of processes.

In IoT, rules engines are key to automating most monotonous tasks. In this chapter, we are
going to build a simple hardcoded rules engine that will continuously monitor the
incoming data. If the incoming data matches any of our rules, it will execute a response.

Smart Wearable and IFTTT Chapter 7

What we are building is a similar concept to i fttt.com
(https://ifttt.com/discover), butis very specific to IoT devices that are
present inside our framework. IFTTT (https://ifttt.com/discover) has
no relation to what we are building in our book.

Fall detection

In chapter 6, Smart Wearable, we gathered three axis values from the accelerometer. Now,
we are going to make use of this data to detect falls.

I would recommend watching the video Accelerometer in Freefall
(https://www.youtube.com/watch?v=—om0eTXsgnY), which explains how an accelerometer
behaves both when it is stationary and in motion.

Now that we understand the basic concept of fall detection, let's talk about our specific use
case.

The biggest challenge in fall detection is to distinguish falling from other activities, such as
running and jumping. In this chapter, we are going to keep things simple and work on very
basic conditions, where a user at rest or in constant motion suddenly falls down.

To identify whether the user has fallen down, we use the signal magnitude vector or SMV.
SMV is the root mean square of the values of the three axes. That is:

SMV = 1,/xz+y2+z2

If we start plotting the SMV over Time for a user who is standing idle and then falls down,
we will end up with a graph, as follows:

[215]

https://ifttt.com/
https://ifttt.com/discover
https://ifttt.com/discover
https://www.youtube.com/watch?v=-om0eTXsgnY

Smart Wearable and IFTTT Chapter 7

SMV vs Time
1.8
=
= 1.2
7]
0.6
0.0
0 40 B0 120 160
Time

Note the spike at the end of the chart. This is the point at which the user actually fell.

Now, when we gather the accelerometer values from ADXL345, we will calculate the SMV.
Based on multiple iterations using the smart wearable we have built, I was consistently able
to detect falls at an SMV value of 1 g. For anything less than 1 g SMV, the user is almost
always considered to be stationary and anything greater than 1 g SMV is considered a fall.

Do note that I have placed the accelerometer in such a way that the y-axis is perpendicular
to the ground.

Once we put the setup together , you can see for yourself how the SMV values change with
a change in the accelerometer's position.

Do note that if you are performing other activities, such as jumping or squatting, the fall
detection might be triggered. You can play around with the threshold value of 1 g SMV to
get consistent fall detection.

[216]

Smart Wearable and IFTTT Chapter 7

You can also refer to Detecting Human Falls with a 3-Axis Digital
AﬁcdeﬂﬁnewriGmtp://www.analog.com/en/analogfdialogue/articles/
detectingffalls73faxisfdigitalfaccelerometer.html),Or
Accelerometer-based on-body sensor localization for health and medical
monitoring applications (https://www.ncbi.nlm.nih.gov/pmc/articles/
pMC3279922/), and Development of the Algorithm for Detecting Falls during

Daily Activity using 2 Tri-Axial Accelerometers (http://waset.org/
publications/2993/development-of-the-algorithm-for-detecting-

falls—during—daily—activity—using—Z—tri—axial—accelerometers)tO
get a greater understanding of this topic and improve the efficiency of the
system.

Updating Raspberry Pi
Now that we know what needs to be done, we will get started with the code.

Before we proceed, create a folder named chapter7 and make a copy of the chapter6
code in the chapter7 folder.

Next, open the pi/index. js file. We will update the ADXL345 initialization setup and
then start working with the values. Update pi/index. js, as follows:

var config = require('./config.js');

var mgtt = require('mgtt');

var GetMac = require('getmac');

var request = require('request');

var ADXL345 = require('adxl345-sensor');

require ('events') .EventEmitter.prototype._maxListeners = 100;

var adx1345 = new ADXL345(); // defaults to i2cBusNo 1, i2cAddress 0x53

var Lcd = require('lcd'),
lcd = new Lcd ({
rs: 12,
e: 21,
data: [5, 6, 17, 18],
cols: 8,
rows: 2

)i

var aclCtr = 0,
locCtr = 0;

[217]

http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
http://www.analog.com/en/analog-dialogue/articles/detecting-falls-3-axis-digital-accelerometer.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279922/
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers
http://waset.org/publications/2993/development-of-the-algorithm-for-detecting-falls-during-daily-activity-using-2-tri-axial-accelerometers

Smart Wearable and IFTTT Chapter 7

var prevX, prevY, prevZ, prevSMV, prevFALL;
var locationG; // global location variable

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

P

client.on('connect', function() {
client.subscribe('rpi');
client.subscribe ('socket');
GetMac.getMac (function (err, mac) {
if (err) throw err;
macAddress = mac;
displayLocation();
initADXL345();
client.publish('api-engine', mac);
P i
P i

client.on('message', function(topic, message) A
message = message.toString();

if (topic === 'rpi') {
console.log('API Engine Response >> ', message);
} else {

console.log('Unknown topic', topic);

)i

function initADXL345() {
adx1345.init ()

.then(() => adx1345.setMeasurementRange (ADXL345.RANGE_2_G()))

.then(() => adxl345.setDataRate (ADXL345.DATARATE_100_HZ()))

.then(() => adx1345.setOffsetX(0)) // measure for your particular
device

.then(() => adx1345.setOffsetY(0)) // measure for your particular
device

.then(() => adx1345.setOffsetZ(0)) // measure for your particular
device

.then(() => adx1345.getMeasurementRange ())
.then ((range) => {

[218]

Smart Wearable and IFTTT

Chapter 7

console.log('Measurement range:',
ADXL345.stringifyMeasurementRange (range)) ;
return adxl345.getDataRate();

})

.then ((rate) => {
console.log('Data rate: ', ADXL345.stringifyDataRate (rate));
return adxl1345.getOffsets();

})

.then((offsets) => {
console.log('Offsets: ', JSON.stringify(offsets,
console.log ('ADXL345 initialization succeeded');
loop () ;

})

2));

.catch((err) => console.error ('ADXL345 initialization failed:',

err));

}

function loop () {
// infinite loop, with 3 seconds delay
setInterval (function () {
// wait till we get the location
// then start processing
if (!locationG) return;

readSensorValues (function (acclVals) {
var x = acclVals.x;
var y = acclVals.y;
var z = acclVals.z;
var fall = 0;
var smv = Math.sqgrt(x * x, vy * vy, 2 * z);

if (smv > 1

) A
fall = 1;

acclVals.smv = smv;
acclvals.fall = fall;

var data2Send = {
data: {
acclvals: acclvals,
location: locationG
}I
macAddress: macAddress
bi

// no duplicate data
if (fall === 1 && (x !== prevX || y !== prevyY ||

[219]

== prevZ ||

Smart Wearable and IFTTT

Chapter 7

smv !== prevSMV || fall !== prevFALL)) {
console.log('Fall Detected >> '
client.publish('accelerometer',
console.log('Data Published');
prevX = Xx;
prevY = vy;
prevz = z;
}
)i
if (locCtr === 600) { // every 5 mins
locCtr = 0;
displayLocation();
}
aclCtr++;
locCtr++;
}, 500); // every one second
}

function readSensorValues (CB) {
adx1345.getAcceleration (true)

m/ s?
.then (function (acceleration) {
if (CB) CB(acceleration);
})
.catch ((err) => {
console.log ('ADXL345 read error: ',
P i
}
function displayLocation() {

request ('http://ipinfo.io', function(error,
var info JSON.parse (body) ;
// console.log(info);

// true for g-force units,

, acclvals);
JSON.stringify (data2Send)) ;

else false for

err);

res, body) {

locationG = info;

var text2Print = '';

text2Print += 'City: ' + info.city;

text2Print += ' Region: ' + info.region;
text2Print += ' Country: ' + info.country + ' ';

lcd.setCursor (16, // 1st row
lcd.autoscroll () ;

printScroll (text2Print);

0);

)i

// a function to print scroll
function printScroll (str, pos) {

[220]

Smart Wearable and IFTTT Chapter 7

pos = pos || 0;
if (pos === str.length) {
pos = 0;

}

lcd.print (str[pos]);
//console.log ('printing', str[posl);

setTimeout (function () {
return printScroll (str, pos + 1);
}, 300);

}

// If ctrl+c is hit, free resources and exit.
process.on ('SIGINT', function() {
lcd.clear () ;
lcd.close () ;
process.exit ();

)i

Note initADXL345 (). We define the measurement range as 2_G, clear the offsets, and then
we invoke the infinite loop function. In this scenario, we run the set Interval () every 500
ms instead of every 1 second. readSensorValues () is invoked every 500 ms instead of
every 3 seconds. This is to make sure that we capture falls without much delay.

In the readSensorvalues (), once the x, y, and z values are available, we calculate the
SMV. Then, we check whether the SMV value is greater than 1: if it is, then we have
detected a fall.

Along with the x, y, and z values, we send the SMV value as well as the fall value to the
API engine. Also, do note that in this example, we are not sending all values as we collect
them. We send data only if the fall is detected.

Save all of the files. Start the broker by running the following command from the
chapter7/broker folder:

mosca —-c index.js -v | pino

[221]

Smart Wearable and IFTTT Chapter 7

Next, start the API engine by running the following command from the chapter7/api-
engine folder:

npm start

We are yet to add the IFTTT logic to the API engine, which we will do in the next section.
For now, to validate our setup, let's run the index. js file on the Raspberry Pi by executing:

npm start

If everything goes well, the accelerometer should be initialized successfully and the data
should start coming in.

If we simulate a free fall, we should see our first piece of data going to the API engine, and
it should look something like the following screenshot:

File Edit Tabs Help

As you can see, the simulated free fall gave an SMV of 2.048 g.

[222]

Smart Wearable and IFTTT Chapter 7

My hardware setup is as shown here:

I have glued the entire setup to a Styrofoam sheet, so I can comfortably test the fall
detection logic.

I removed the 16 x 2 LCD from the setup while I was identifying the SMV
for free fall.

In the next section, we are going to read the data that we received from the device and then
execute rules based on it.

[223]

Smart Wearable and IFTTT Chapter 7

Building the IFTTT rules engine

Now that we are sending the required data to the API engine, we will be doing two things:

1. Showing data that we got from the smart wearable on the web, desktop, and
mobile apps
2. Executing rules on top of the data

We will get started with the second objective first. We will be building a rules engine to
execute rules based on the data we have received.

Let's get started by creating a folder named ifttt at the root of the api-engine/server
folder. Inside the i fttt folder, create a file named rules. json. Update api-
engine/server/ifttt/rules.json, as follows:

[{

"device": "b8:27:eb:39:92:0d4",
"rules": [
{
"if":
{
"prop": "fall",
chond": "eq",
"valu": 1
I
"then":
{
"action": "EMAIL",
"to": "arvind.ravulavaru@gmail.com"

H
H

As you can see from the preceding code, we are maintaining a JSON file with all of our
rules. In our scenario, we have only one rule for one device, and the rule has two parts: the
if part and the then part. The if refers to the property, which needs to be checked against
the incoming data, the checking condition, and the value against which it needs to be
checked. The then part refers to the action that needs to be taken if the i f matches. In the
preceding case, this action involves sending an email.

[224]

Smart Wearable and IFTTT Chapter 7

Next, we are going to build the rules engine itself. Create a file named ifttt.js inside the
api-engine/server/ifttt folder and update api-engine/server/ifttt/ifttt.Js,
as follows:

var Rules = require('./rules.json');
exports.processData = function(data) {
for (var i = 0; 1 < Rules.length; i++) {
if (Rules[i].device === data.macAddress) {
// the rule belows to the incoming device's data
for (var j = 0; Jj < Rules[i].rules.length; j++) {

// process one rule at a time
var rule Rules[i].rules[J];
var data = data.data.acclVals;
if (checkRuleAndData (rule, data)) |
console.log('Rule Matched', 'Processing Then.');
if (rule.then.action === 'EMAIL') {
console.log('Sending email to', rule.then.to);
EMAIL (rule.then.to);
} else {
console.log('Unknown Then! Please re-check the

rules');
}
} else {
console.log('Rule Did Not Matched', rule, data);
}
}
}
}
}
/* Rule process Helper */
function checkRuleAndData (rule, data) {
var rule = rule.if;
if (rule.cond === '1lt') {
return rule.valu < datal[rule['prop']l];
} else if (rule.cond === 'lte') {
return rule.valu <= datalrule['prop']l];
} else if (rule.cond === 'eq') {
return rule.valu === datal[rule['prop'll;
} else if (rule.cond === 'gte') {
return rule.valu >= datalrule['prop']l];
} else if (rule.cond === 'gt') {
return rule.valu > datal[rule['prop']l];

} else if (rule.cond === 'ne') {
return rule.valu !== datalrule['prop'll;

[225]

Smart Wearable and IFTTT Chapter 7

} else {
return false;

/*Then Helpers*/
function SMS () {
/// AN EXAMPLE TO SHOW OTHER THENs

function CALL() A
/// AN EXAMPLE TO SHOW OTHER THENs

function PUSHNOTIFICATION () {
/// AN EXAMPLE TO SHOW OTHER THENs

function EMAIL (to) {

/// AN EXAMPLE TO SHOW OTHER THENs

var email = require('emailjs');

var server = email.server.connect ({
user: 'arvind.ravulavaru@gmail.com',
password: "XXXXXXXXXX',
host: 'smtp.gmail.com',
ssl: true

P i

server.send ({
text: 'Fall has been detected. Please attend to the patient',
from: 'Patient Bot <arvind.ravulavaru@gmail.com>',
to: to,
subject: 'Fall Alert!!'
}, function(err, message) {
if (err) {
console.log('Message sending failed!', err);

)i
}

The logic is quite simple. processData () gets called when a new data record comes to the
API engine. Then, we load all of the rules from the rules. json file and we iterate over
them to check whether or not the current rule is meant for the incoming device.

[226]

Smart Wearable and IFTTT Chapter 7

If yes, then checkRuleAndData () is called by passing the rule and incoming data to check
whether the current data set matches any of the predefined rules. If it does, we check the
action, which in our case is the sending of an email. You can update the appropriate email
credentials in the code.

Once this is done, we need to invoke processData () from api-

engine/server/mgtt/index.js client.on('message') with the topic equaling
accelerometer.

Update client.on ('message"'), as follows:

client.on('message', function(topic, message) {
// message is Buffer
// console.log('Topic >> ', topic);

// console.log('Message >> ', message.toString());
if (topic === 'api-engine') {
var macAddress = message.toString();
console.log('Mac Address >> ', macAddress);
client.publish('rpi', 'Got Mac Address: ' + macAddress);
} else if (topic === 'accelerometer') {
var data = JSON.parse (message.toString());

console.log('data >> ', data);

// create a new data record for the device

Data.create(data, function(err, data) A
if (err) return console.error (err);
// if the record has been saved successfully,
// websockets will trigger a message to the web-app
// console.log('Data Saved :', data.data);
// Invoke IFTTT Rules Engine
RulesEngine.processData (data);

)i

} else {
console.log ('Unknown topic', topic);

1)

That is it. We have all the pieces needed for the IFTTT engine to run.

[227]

Smart Wearable and IFTTT Chapter 7

Save all of the files and restart the API engine. Now, simulate a fall and we should see an
email coming our way, which should look something like this:

Fall Alert!! Inbox x =
] Patient Bot <arvind.ravulavaru@gmail.com> 7:24 PM (3 hours ago) « ~
to me |~

Fall has been detected. Please attend to the patient

Now that we are done with the IFTTT engine, we will update the interfaces to reflect the
new data we have gathered.

Updating the web app

To update the web app, open web-app/src/app/device/device.component . html and
update it, as follows:

<div class="container">

<div *ngIf="!device">
<h3 class="text-center">Loading!</h3>
</div>
<div class="row" *ngIlf="lastRecord">
<div class="col-md-12">
<div class="panel panel-info">
<div class="panel-heading">
<h3 class="panel-title">
{{device.name}}
</h3>

<i class="fa fa-chevron-circle-up"></i>

</div>
<div class="clearfix"></div>
<div class="table-responsive">
<table class="table table-striped">
<tr *ngIf="lastRecord">
<td>X-Axis</td>
<td>{{lastRecord.data.acclVals.x}}
{{lastRecord.data.acclVals.units}}</td>
</tr>
<tr *ngIf="lastRecord">

[228]

Smart Wearable and IFTTT Chapter 7

<td>Y-Axis</td>
<td>{{lastRecord.data.acclVals.y}}
{{lastRecord.data.acclVals.units}}</td>
</tr>
<tr *ngIf="lastRecord">
<td>Z-Axis</td>
<td>{{lastRecord.data.acclVals.z}}
{{lastRecord.data.acclVals.units}}</td>
</tr>
<tr *ngIf="lastRecord">
<td>Signal Magnitude Vector</td>
<td>{{lastRecord.data.acclVals.smv}}</td>
</tr>
<tr *ngIf="lastRecord">
<td>Fall State</td>
<td>{{lastRecord.data.acclVals.fall ? 'Patient Down' : 'All
is well!'}}i</td>
</tr>
<tr *ngIf="lastRecord">
<td>Location</td>
<td>{{lastRecord.data.location.city}},
{{lastRecord.data.location.region}},
{{lastRecord.data.location.country}}</td>
</tr>
<tr *ngIf="lastRecord">
<td>Received At</td>

<td>{{lastRecord.createdAt | date : 'medium'}}</td>
</tr>
</table>
<hr>
<div class="col-md-12" *ngIf="acclVals.length > 0">
<canvas baseChart [datasets]="acclVals"

[labels]="1lineChartLabels" [options]="lineChartOptions"
[legend]="1lineChartLegend" [chartTypel="lineChartType"></canvas>
</div>
</div>
</div>
</div>
</div>
</div>

[229]

Smart Wearable and IFTTT Chapter 7

Save the file and run:

npm start

We should see the following once we navigate to the device page:

<« C | ® localhost:4200/vi 520987091492257295855b5 w| e O @

Web App Logout

1568
Y-Axis 0.332¢g

Z-Axis 1344g

Signal Magnitude Vector 1,568

Fall State Patient Down
Location Kachiguda, INDIA, IN

Received At Nov 13,2017, 7:24:38 PM

XYZvs. Time

.

YN

In the next section, we will update the desktop app.

Updating the desktop app

Now that the web app is done, we are going to build the same and deploy it inside our
desktop app.

To get started, head back to the terminal/prompt of the web-app folder and run:

ng build --env=prod

[230]

Smart Wearable and IFTTT Chapter 7

This will create a new folder inside the web—app folder named dist. The contents of the
dist folder should be along the lines of:

favicon.ico
index.html
inline.bundle.js

inline.bundle.js.map

Frrnd

main.bundle.js

—— main.bundle.js.map

—— polyfills.bundle.qjs
polyfills.bundle.js.map
scripts.bundle.js
scripts.bundle. js.map
styles.bundle. js
styles.bundle. js.map

vendor.bundle. js

Tl

vendor.bundle. js.map

All the code we have written is finally bundled into the preceding files. We will grab all of
the files (not the dist folder) present inside the dist folder and then paste them inside the
desktop-app/app folder. The final structure of the desktop app after these changes will be
as follows:

F— app
| —— favicon.ico
| b index.html

| —— inline.bundle.js

[231]

Smart Wearable and IFTTT Chapter 7

inline.bundle.js.map
main.bundle.js
main.bundle.js.map
polyfills.bundle.js
polyfills.bundle.js.map
scripts.bundle.js

scripts.bundle. js.map

CTTTTTTITTTT

styles.bundle. js

styles.bundle.js.map

vendor.bundle.js

vendor.bundle. js.map
—— freeport.js

index.css

index.html

index.js

license

package. json

readme .md

PP

server.js

To test drive, run:

npm start

[232]

Smart Wearable and IFTTT Chapter 7

Then, when we navigate to the VIEW DEVICE page, we should see the following:

| @ Electron Edit View Window Help @@ =T o 100%EF Mon13Nov 1925557 Q @ =

[X X WebADp

Web App Logout

X-Axis 1568 g

V-xis 0332¢g

Z-Axis -l1344g

signal Magnitude Vector 1.568

Fall State Patient Down
Location Kachiguda, INDIA, IN

Received At Nov 13,2017, 7:24:38 PM

X,Y,Zvs. Time

. 2\ i [\ {
- =T ;:i XZ\]‘ \][SV[

Now that we are done with the desktop app, we will work on the mobile app.

Updating the mobile app

To reflect the new template in the mobile app, we will update mobile-
app/src/pages/view-device/view—device.html, as follows:

<ion-header>
<ion-navbar>
<ion-title>Mobile App</ion-title>
</ion-navbar>
</ion-header>
<ion-content padding>

<div *ngIf="!lastRecord">
<h3 class="text-center">Loading!</h3>
</div>

<div *ngIf="lastRecord">
<ion-list>
<ion-item>
<ion-label>Name</ion-label>
<ion-label>{{device.name}}</ion-label>

[233]

Smart Wearable and IFTTT Chapter 7

</ion-item>
<ion-item>
<ion-label>X-Axis</ion-label>
<ion-label>{{lastRecord.data.acclVals.x}}
{{lastRecord.data.acclVals.units}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Y-Axis</ion-label>
<ion-label>{{lastRecord.data.acclVals.y}}
{{lastRecord.data.acclVals.units}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Z-Axis</ion-label>
<ion-label>{{lastRecord.data.acclVals.z}}
{{lastRecord.data.acclVals.units}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Signal Magnitude Vector</ion-label>
<ion-label>{{lastRecord.data.acclVals.smv}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Fall State</ion-label>
<ion-label>{{lastRecord.data.acclVals.fall ? 'Patient Down' : 'All
is well!'}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Location</ion-label>
<ion-label>{{lastRecord.data.location.city}},
{{lastRecord.data.location.region}},
{{lastRecord.data.location.country}}</ion-label>
</ion-item>
<ion-item>
<ion-label>Received At</ion-label>
<ion-label>{{lastRecord.createdAt | date: 'medium'}}</ion-label>
</ion-item>
</ion-list>
</div>
</ion-content>

Save all of the files and run the mobile app by using;:
ionic serve

You could also use:

ionic cordova run android

[234]

Smart Wearable and IFTTT Chapter 7

We should see the following:

e 8 W 11 94% W 22:45
< Mobile App
Name Smart Wearable
X-Axis 1.568 g
Y-Axis 0.332¢g
Z-Axis -1.344 4

Signal Magnitude Vector 1.568

Fall State Patient Down
Location Kachiguda, INDIA, IN
Received At Nov 13,2017, 7:24:38 PM

[235]

Smart Wearable and IFTTT Chapter 7

Summary

In this chapter, we worked with the concept of fall detection and IFTTT. Using the smart
wearable we built in chapter 6, Smart Wearable, we added the fall detection logic. Then, we
posted the same data to the API engine, and in the API engine, we built our own IFTTT
rules engine. We defined one rule for sending an email when a fall was detected.

As well as this, we also updated the web, desktop, and mobile apps to reflect the new data
we collected.

In chapter 8, Raspberry Pi Image Streaming, we are going to work with video surveillance
using Raspberry Pi.

[236]

Raspberry Pi Image Streaming

In this chapter, we are going to look at live video streaming with Raspberry Pi 3 and
Raspberry Pi camera. We are going to stream live video from Raspberry Pi 3 to our web
browser and access this feed from anywhere in the world. As a next step, we are going to
add a motion detector to the current setup and if the motion is detected, we then start
streaming the video. In this chapter, we will go through the following topics:

¢ Understanding MJPEGs

e Setting up Raspberry Pi with Raspberry Pi camera

e Stream the images from the camera to the dashboard in real time
¢ Capturing video in motion

MJPEG

Quoting from Wikipedia, https://en.wikipedia.org/wiki/Motion_JPEG.

In multimedia, Motion [PEG (M-]JPEG or MJPEG) is a video compression format in which
each video frame or interlaced field of a digital video sequence is compressed separately as a
JPEG image. Originally developed for multimedia PC applications, M-JPEG is now used
by video-capture devices such as digital cameras, IP cameras, and webcams, as well as by
non-linear video editing systems. It is natively supported by the QuickTime Player, the
PlayStation console, and web browsers such as Safari, Google Chrome, Mozilla Firefox and
Microsoft Edge.

As described previously, we are going to capture a series of images, every 100ms apart and
stream the image binary data on a topic to the API engine, where we override an existing
image with the latest image.

https://en.wikipedia.org/wiki/Motion_JPEG

Raspberry Pi Image Streaming Chapter 8

This streaming system is very simple and old-fashioned. There are no rewinds or pauses
while streaming. We can always see the last frame.

Now that we have a high level of understanding of what we are going to achieve, let us get
started.

Setting up Raspberry Pi

Raspberry Pi 3 set up with Raspberry Pi camera is quite simple. You can purchase a
Raspberry Pi 3 camera (https ://www.raspberrypi.org/products/camera-module-v2/)
from any of the popular online vendors. Then you can follow this video to setup: camera
board setup: https://www.youtube.com/watch?v=GImeVgHQzsE.

My camera setup is as follows:

I have used a stand and hoisted my camera on top of it.

[238]

https://www.raspberrypi.org/products/camera-module-v2/
https://www.youtube.com/watch?v=GImeVqHQzsE

Raspberry Pi Image Streaming Chapter 8

Setting up the camera

Now that we have the camera connected and powered by the Raspberry Pi 3, we will set up
the camera, as shown in the following steps:

1. From inside the Raspberry Pi, launch a new terminal and run:

sudo raspi-config

2. This will launch the Raspberry Pi configuration screen. Select Interfacing
options:

File Edit Tabs Help

—— Raspberry Pi Software Configuration Tool (raspi-config) ——

1 Change User Password Change password for the default u

2 Hostname Set the wvisible name for this P1

3 Boot Options Configure options for start-up

4 Localisation Options Set up la oe and regional sett

5 Interfacing Options Configure eripher

6 Overclock Configure overclocking for your P

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest ve

9 About raspi-config Information about this configurat
<Select> <Finish>

[239]

Raspberry Pi Image Streaming

Chapter 8

3. On the next screen, select P1 Camera and enable it:

Eile Edit Tabs Help

—— Raspberry Pi Software Configuration Tool

P1 Camera Enable/Disable
P2 SSH EnablesDisable
P3 VNC Enable/sDisable

P4 SPI Enable/Disable
P5s I2C EnablesDisable
P& Serial Enable/sDisable
P7 1-Wire Enable/Disable

P8 Remote GPIO EnablesDisable

<Select> <Back>

(raspi-config) —

connection to the
remote command lin
graphical remote a
automatic loading
automatic loading
shell and kernel m
one-wire interface
remote access to G

4. This will trigger a reboot, complete the reboot and log back into the Pi.

Once your camera is set up, we will test it.

Testing the camera

Now that the camera is set up and powered, let's test it. Open a new terminal and cd on the

desktop. Then run the following:

raspistill -o test.jpg

[240]

Raspberry Pi Image Streaming Chapter 8

This will take a screenshot in the present working directory, Desktop. The screen will look
something like the following:

i‘ O ‘)_’ @ Ipl@raspberrypl ~/D.. “@tes{]pg (2592x1944).. | DE:EB
AT O e

. -~
m i

i
I

File Edit Tabs Help

As you can see, test . jpg is created on the Desktop and when I double-click it shows a
picture of the glass wall of my office.

Developing the logic

Now that we are able to test the camera, we will integrate this setup with our IoT platform.
We are going to stream these images 100ms apart continuously to our API engine and then
through web sockets update the UI on the web.

To get started, we will make a copy of chapter4 and dump it into a folder named
chapters. Inside the chapters folder, open pi/index. js and update it as follows:

var config = require('./config.js');

var mgtt = require('mgtt');

var GetMac = require ('getmac');

var Raspistill = require('node-raspistill') .Raspistill;
var raspistill = new Raspistill ({

[241]

Raspberry Pi Image Streaming

Chapter 8

noFileSave: true,
encoding: 'jpg',
width: 640,
height: 480

var crypto = require("crypto");
var fs = require('fs');

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

P

client.on('connect', function() {
client.subscribe('rpi');
GetMac.getMac (function (err, mac)
if (err) throw err;
macAddress = mac;
client.publish('api-engine',
startStreaming () ;

)i
client.on('message', function (topic,

message = message.toString();
if (topic === 'rpi') {

console.log('API Engine Response >> ', message);

} else {
console.log('Unknown topic',

)i

function startStreaming() {
raspistill

.timelapse (100, 0, function (image)

var data2Send = {
data: {
image: image,

{

mac) ;

message) A

topic);

{ // every 100ms

~~FOREVER~~

id: crypto.randomBytes (8) .toString ("hex")

[242]

Raspberry Pi Image Streaming Chapter 8

I
macAddress: macAddress

}i

client.publish('image', JSON.stringify(data2Send));
console.log('[image]', 'published');

})

.then (function () A
console.log('Timelapse Ended')

})

.catch (function(err) {
console.log('Error', err);

P i

}

As we can see from the preceding code, we are waiting for the MQTT connection to be
completed, once the connection is completed, we call startStreaming () to start
streaming. Inside startStreaming (), we are calling raspistill.timelapse () passing
in 100ms, as time difference between each click and 0 indicates that the capture should
continue perpetually.

Once the image is captured, we construct the data2Send object with a random ID, the
image buffer, and the device macAddress. Before publishing to the image topic, we
stringify the data2send object.

Now, move this file to Raspberry Pi's pi-client folder, present on the desktop. And from
inside Raspberry Pi's, pi~client folder, run:

npm install && npm install node-raspistill --save

These two commands will install the node-raspistill and other node modules present
inside the package. json file.

With this, we are done with the setup of the Raspberry Pi and the camera. In the next
section, we will update the API engine to accept the live streaming of images.

Updating the API engine

Now that we are done with the Raspberry Pi setup, we will update the API engine to accept
the incoming data.

[243]

Raspberry Pi Image Streaming Chapter 8

The first thing we are going to do is update api-engine/server/mgtt/index.js as
follows:

var Data = require('../api/data/data.model’);
var mgtt = require('mgtt');

var config = require('../config/environment');
var fs = require('fs');

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',
host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

1)

client.on('connect', function() {

console.log('Connected to Mosca at ' + config.mgtt.host + ' on port ' +
config.mgtt.port);

client.subscribe ('api-engine');

client.subscribe ('image');

client.on('message', function(topic, message) {
// message is Buffer
// console.log('Topic >> ', topic);
// console.log('Message >> ', message.toString());
if (topic === 'api-engine') {
var macAddress = message.toString();
console.log('Mac Address >> ', macAddress);

client.publish('rpi', 'Got Mac Address: ' + macAddress);
} else if (topic === 'image') {
message = JSON.parse (message.toString());

// convert string to buffer
var image = Buffer.from(message.data.image, 'utf8');
var fname = 'stream_' + ((message.macAddress) .replace(/:/g, '_')) +
'.Jpg'i
fs.writeFile(__dirname + '/stream/' + fname, image, { encoding:
'binary' }, function(err) {
if (err) {

console.log('[image]', 'save failed', err);
} else {
console.log('[image]', 'saved');

[244]

Raspberry Pi Image Streaming Chapter 8

)i

// as of now we are not going to

// store the image buffer in DB.

// Gridfs would be a good way

// instead of storing a stringified text
delete message.data.image;
message.data.fname = fname;

// create a new data record for the device
Data.create (message, function(err, data) {
if (err) return console.error (err);
// if the record has been saved successfully,
// websockets will trigger a message to the web-app
// console.log('Data Saved :', data);

P i
} else {
console.log('Unknown topic', topic);

)i

As we can see from the preceding code, inside the message event of MQTT, we have added
a new topic named image. Inside this topic, we extract the string format of the image buffer
and convert it back to the image binary data. Then using the £s module, we overwrite the
same image again and again.

We also keep saving the data simultaneously to MongoDB and this will trigger a socket
emit.

As the next step, we need to create a folder named st ream inside the mgtt folder. And

inside this folder, drop an image present here:
http://www.iconarchive.com/show/small-n-flat-icons-by-paomedia/sign-ban

—icon.html. This image will be shown if there is no feed available for a camera.

All the images will be saved inside the st ream folder and the same image will be updated
for the same device, as mentioned earlier, there will not be any rewinds or replays.

Now, the images get saved inside the st ream folder and we need to expose an end point to
send this image to the request clients. For that, open api-engine/server/routes. js and
add the following to the module.exports function:

app.get ('/stream/:fname', function(req, res, next) {
var fname = req.params.fname;
var streamDir = __dirname + '/mgtt/stream/';
var img = streamDir + fname;
console.log(img) ;

[245]

Raspberry Pi Image Streaming Chapter 8

fs.exists (img, function (exists) {
if (exists) {
return res.sendFile (img);

} else {

//
http://www.iconarchive.com/show/small-n-flat-icons-by-paomedia/sign-ban-ico
n.html

return res.sendFile(streamDir + '/no-image.png');

}
P
P

This will take care of dispatching the image to the client (web, desktop, and mobile).
With this, we are done with setting up the API engine.

Save all the files and start the broker, API engine, and the pi-client. If everything is
successfully set up, we should see the data being posted from the Raspberry Pi:

File Edit Tabs Help

pi@raspberrypi: npm start

p/pl-client

ubl
h1
h1
1
1
1
1
h1
1
b1
h1
h1
1
1
h1
h1
h1

1s

[246]

Raspberry Pi Image Streaming

Chapter 8

And the same data appearing in the API engine:

[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]
[image]

[® @ @

api-engine — npm start — node « npm TERM_PROGRAM=Apple_Terminal SHELL=/binfzsh — 107=25

mosca node jusrflocal.. npm node « npm T..d& npm

[nodemon] starting “node server/app.js’
Express
Connected to Mosca at 127.8.8.1 on port BBE3
Mac Address == DbB:27:eb:389:92:8d

server listening on 9288, in development mode

saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved
saved

At this point, the images are being captured and sent to the API engine over MQTTs. The
next step is to view these images in real time.

Updating the web app

Now that the data is streaming to the API engine, we will show it on the web app. Open
web—-app/src/app/device/device.component.html and update it as follows:

<div class="container">

<div *ngIf="!device">
<h3 class="text-center">Loading!</h3>

</div>
<div class="row" *nglf="!lastRecord">

<h3 class="text-center">No Data!</h3>
</div>

<div class="row" *nglf="lastRecord">
<div class="col-md-12">
<div class="panel panel-info">
<div class="panel-heading">
<h3 class="panel-title">

[247]

Raspberry Pi Image Streaming Chapter 8

{{device.name}}
</h3>

<i class="fa fa-chevron-circle-up"></i>

</div>
<div class="clearfix"></div>
<div class="table-responsive" *nglf="lastRecord">
<table class="table table-striped">
<tr>
<td colspan="2" class="text-center"></td>
</tr>
<tr class="text-center" >
<td>Received At</td>
<td>{{lastRecord.createdAt | date:
'medium’'}}</td>
</tr>
</table>
</div>
</div>
</div>
</div>
</div>

Here, we are displaying the image that we have created in real time. Next, update web-
app/src/app/device/device.component.ts as follows:

import { Component, OnInit, OnDestroy } from 'Q@angular/core';
import { DevicesService } from '../services/devices.service';
import { Params, ActivatedRoute } from '@angular/router';
import { SocketService } from '../services/socket.service';
import { DataService } from '../services/data.service';

import { NotificationsService } from 'angular2-notifications';
import { Globals } from '../app.global';

@Component ({
selector: 'app-device',
templateUrl: './device.component.html',
styleUrls: ['./device.component.css']
H)
export class DeviceComponent implements OnInit, OnDestroy {
device: any;
data: Array<any>;
toggleState: boolean = false;
private subDevice: any;
private subData: any;

[248]

Raspberry Pi Image Streaming Chapter 8

lastRecord: any;
// line chart config

constructor (private deviceService: DevicesService,
private socketService: SocketService,
private dataService: DataService,
private route: ActivatedRoute,
private notificationsService: NotificationsService) { }

ngOnInit () {

this.subDevice = this.route.params.subscribe ((params) => {
this.deviceService.getOne (params['id']) .subscribe ((response)
:>{
this.device = response.json();

this.getDatal();
)i
)i

getData () A
this.dataService.get (this.device.macAddress) .subscribe ((response)
:>{
this.data = response.json();
let d = this.datal[0];
d.data.fname = Globals.BASE_API_URL + 'stream/' +
d.data.fname;
this.lastRecord = d; // descending order data
this.socketInit ();
b i

socketInit () {
this.subData =
this.socketService.getData(this.device.macAddress) .subscribe ((data: any) =>
{
if (this.data.length <= 0) return;
this.data.splice(this.data.length - 1, 1); // remove the
last record
data.data.fname = Globals.BASE_API_URL + 'stream/' +
data.data.fname + '?t=' + (Math.random() * 100000); // cache busting
this.data.push(data); // add the new one
this.lastRecord = data;
b i

[249]

Raspberry Pi Image Streaming Chapter 8

ngOnDestroy () {
this.subDevice.unsubscribe () ;
this.subData ? this.subData.unsubscribe() : '';

}

Here we are constructing the image URL and pointing it to the API engine. Save all the files
and launch the web app by running the following command from inside the web-app
folder:

npm start

If everything works as expected, upon navigating to the VIEW DEVICE page, we should
see the video stream very slowly. I am monitoring a cup placed in front of my chair as
follows:

Web App Logout

Pil

Received At Aug 5, 2017, 1:24:44 PM

[250]

Raspberry Pi Image Streaming Chapter 8

Updating the desktop app

Now that the web app is done, we are going to build the same and deploy it inside our
desktop app.

To get started, head back to the terminal/prompt of the web-app folder and run the
following;:

ng build --env=prod

This will create a new folder inside the web-app folder named dist. The contents of the
dist folder should be along the lines of:

—— favicon.ico
—— index.html
inline.bundle. js
[— j
inline.bundle.js.ma
J p
F—— main.bundle.js
main.bundle.js.ma
[— j p
polyfills.bundle.js
polyfills.bundle. js.map
scripts.bundle. js
[— P j
scripts.bundle.js.ma
P J P
styles.bundle.js
F— sty j
styles.bundle.js.ma
Yy J p
vendor.bundle. js
[— j

L—— vendor.bundle.js.map

[251]

Raspberry Pi Image Streaming Chapter 8

All the code we have written is finally bundled into the preceding files. We will grab all the
files (not the dist folder) present inside the dist folder and then paste it inside the
desktop-app/app folder. The final structure of the desktop-app after the preceding
changes will be as follows:

F—— app

| B— favicon.ico
—— index.html

I inline.bundle.js

I inline.bundle.js.map
—— main.bundle.js

| B—— main.bundle.js.map

| B— polyfills.bundle.js
polyfills.bundle.js.map
scripts.bundle.js

scripts.bundle.js.map

styles.bundle.]js

CTTTTTT

styles.bundle.js.map

vendor.bundle. js

vendor.bundle. js.map
—— freeport.js

index.css

index.html

index.js

Tt

license

[252]

Raspberry Pi Image Streaming Chapter 8

—— package.json
I— readme.md
L— server.js
To test drive, run the following:
npm start

And then when we navigate to the VIEW DEVICE page, we should see:

| & Etectron Edit View Window Help &M@ T W) 00%ED Sat5Aug 133558 Q @ = |
[XX) WebApp

Web App Logout

Pil

Received At AUg 5, 2017, 1:35:5T PM

With this we are done with the development of the desktop app. In the next section, we will
update the mobile app.

[253]

Raspberry Pi Image Streaming Chapter 8

Updating the mobile app

In the last section, we have updated the desktop app. In this section, we are going to update
the mobile app template to stream images.

First we are going to update the view-device template. Update mobile-
app/src/pages/view-device/view—device.html as follows:

<ion-header>
<ion-navbar>
<ion-title>Mobile App</ion-title>
</ion-navbar>
</ion-header>
<ion-content padding>
<div *ngIf="!lastRecord">
<h3 class="text-center">Loading!</h3>
</div>
<div *ngIf="lastRecord">
<ion-list>
<ion-item>

</ion-item>
<ion-item>
<ion-label>Received At</ion-label>
<ion-label>{{lastRecord.createdAt | date: 'medium'}}</ion-—
label>
</ion-item>
</ion-list>
</div>
</ion-content>

The logic for displaying the image stream on a mobile is the same as web/desktop. Next,
update mobile-app/src/pages/view-device/view-device.ts as follows:

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';
import { Globals } from '../../app/app.globals';

import { DevicesService } from '../../services/device.service';
import { DataService } from '../../services/data.service';

import { ToastService } from '../../services/toast.service';

import { SocketService } from '../../services/socket.service';

@IonicPage ()

@Component ({
selector: 'page-view-device',
templateUrl: 'view-device.html',

H)

[254]

Raspberry Pi Image Streaming Chapter 8

export class ViewDevicePage {
device: any;
data: Array<any>;
toggleState: boolean = false;
private subData: any;
lastRecord: any;

constructor (private navCtrl: NavController,
private navParams: NavParams,
private socketService: SocketService,
private deviceService: DevicesService,
private dataService: DataService,
private toastService: ToastService) {
this.device = navParams.get ("device");
console.log(this.device);

;
ionViewDidLoad () |
this.deviceService.getOne (this.device._id) .subscribe ((response) =>
{
this.device = response.json();
this.getDatal();
b i
;
getData () |
this.dataService.get (this.device.macAddress) .subscribe ((response)
:>{

this.data = response.json();
let d = this.datal[0];
d.data.fname = Globals.BASE_API_URL + 'stream/' +
d.data.fname;
this.lastRecord = d; // descending order data
this.socketInit ();
b i

socketInit () {
this.subData =

this.socketService.getData(this.device.macAddress) .subscribe ((data: any) =>
{

if (this.data.length <= 0) return;

this.data.splice(this.data.length - 1, 1); // remove the
last record

data.data.fname = Globals.BASE_API_URL + 'stream/' +
data.data.fname + '?t=' + (Math.random() * 100000);

this.data.push(data); // add the new one

[255]

Raspberry Pi Image Streaming

Chapter 8

this.lastRecord = data;

)i

ionViewDidUnload () A

this.subData && this.subData.unsubscribe &&
this.subData.unsubscribe (); //unsubscribe if subData is defined

}
}

Save all the files and run the mobile app either by using:

ionic serve

Or by using the following code:

ionic cordova run android

And we should see the following:

< Mobile App

Received At

[256]

30 W4 @ 13:44

Aug 5,2017, 1:44:19 ...

Raspberry Pi Image Streaming Chapter 8

With this we are done with displaying the data from the camera on the mobile app.

Motion-based video capture

As we could see that the stream was kind of choppy, slow, and not real time, another
probable solution is to put a motion detector along with our Raspberry Pi and camera. Then
when a motion is identified, we start taking a video for 10 seconds. Then we email this
video to the user as an attachment.

Now, we will start updating our existing code.

Updating the Raspberry Pi

To get started, we will update our Raspberry Pi setup to accommodate an HC-SR501 PIR
sensor. You can find a PIR sensor here: https://www.amazon.com/Motion-HC-SR501~
Infrared-Arduino-Raspberry/dp/BOOMIH7KBW/ref=sr_1 4 _a_it.

We will connect the PIR sensor to the Raspberry Pi on pin 17 and the camera to the camera
slot as we have seen earlier.

Once the connections are made as previously discussed, update pi/index. js as follows:

var config = require('./config.js');

var mgtt = require('mgtt');

var GetMac = require('getmac');

var Raspistill = require('node-raspistill').Raspistill;
var crypto = require("crypto");

var fs = require('fs');

var Gpio = require('onoff') .Gpio;

var exec = require('child_process') .exec;

var pir = new Gpio (17, 'in', 'both');
var raspistill = new Raspistill ({
noFileSave: true,
encoding: 'jpg',
width: 640,
height: 480

var client = mgtt.connect ({
port: config.mgtt.port,
protocol: 'mgtts',

[257]

https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it
https://www.amazon.com/Motion-HC-SR501-Infrared-Arduino-Raspberry/dp/B00M1H7KBW/ref=sr_1_4_a_it

Raspberry Pi Image Streaming Chapter 8

host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,
rejectUnauthorized: false

P

client.on('connect', function() {
client.subscribe('rpi'");
GetMac.getMac (function (err, mac) {
if (err) throw err;
macAddress = mac;
client.publish('api-engine', mac);
// startStreaming();

)i

client.on('message', function(topic, message) A
message = message.toString();

if (topic === 'rpi') {
console.log('API Engine Response >> ', message);
} else {
console.log ('Unknown topic', topic);
}
P i
function startStreaming() {
raspistill

.timelapse (100, 0, function (image) { // every 100ms ~~FOREVER~~
var data2Send = {
data: {
image: image,
id: crypto.randomBytes (8) .toString ("hex")
}I
macAddress: macAddress
bi

client.publish('image', JSON.stringify(data2Send));

console.log (' [image]', 'published');
})
.then (function () A
console.log('Timelapse Ended')
})

.catch (function(err) {
console.log('Error', err);

[258]

Raspberry Pi Image Streaming Chapter 8

)i

var isRec = false;

// keep watching for motion
pir.watch (function(err, value) {
if (err) exit();
if (value == 1 && !isRec) {
console.log('Intruder detected')

7
console.log('capturing video.. '");

isRec = true;

var videoPath = _ _dirname + '/video.h264';

var file = fs.createWriteStream(videoPath);

var video_path = './video/video' + Date.now() + '.h264';
var cmd = 'raspivid -o ' + video_path + ' -t 5000';

exec (cmd, function(error, stdout, stderr) {
// output is in stdout

console.log('Video Saved @ : ', video_path);
require('./mailer') .sendEmail (video_path, true, function (err,
info) |
setTimeout (function () {
// isRec = false;

}, 3000); // don't allow recording for 3 sec after

function exit () {
pir.unexport () ;
process.exit () ;

}

As we can see from the preceding code, we have marked GPIO 17 as an input pin and
assigned it to a variable named pir. Next, using pir.watch (), we keep looking for a
change in value on the motion detector. If the motion detector has detected some change,
we will check if the value is 1, which indicates that a motion is triggered. Then using
raspivid we record a 5 second video and email it.

For the logic needed to send an email from Raspberry Pi 3, create a new file named
mailer. js at the root of the pi-client folder and update it as follows:

var fs = require('fs');
var nodemailer = require ('nodemailer');

[259]

Raspberry Pi Image Streaming

var transporter = nodemailer.createTransport ({
service: 'Gmail',
auth: {
user: 'arvind.ravulavaru@gmail.com',
paSS: Thkk,k,kkkkhkkhkkxx!
}

)i

var timerId;

module.exports.sendEmail = function(file, deleteAfterUpload, cb) {
if (timerId) return;

timerId = setTimeout (function () {
clearTimeout (timerId) ;
timerId = null;

}, 10000);

console.log('Sendig an Email.."');

var mailOptions = {
from: 'Pi Bot <pi.intruder.alert@gmail.com>',
to: 'user@email.com',

subject: '[Pi Bot] Intruder Detected',
html: 'Intruder Detected. Please check the video attached.

 Intruder Detected At : ' + Date(),
attachments: [{
path: file
H
bi

transporter.sendMail (mailOptions, function(err, info) {
if (err) {
console.log(err);
} else {
console.log('Message sent: ' + info.response);
if (deleteAfterUpload) {
fs.unlink (path);

}
}
if (cb) {

cb(err, info);
}

[260]

Raspberry Pi Image Streaming Chapter 8

We are using nodemailer to send an email. Update the credentials as applicable.
Next, run the following command:

npm install onoff -save

In the next section, we are going to test this setup.

Testing the code

Now that we are done with the setup, let us test it. Power Raspberry Pi, upload the code if
not done already, and run the following:

npm start

Once the code is running, trigger a motion. This will start the camera recording and save the
video for five seconds. Then this video will be emailed to the user. The following is a list of
the output:

‘ Q E i,’ @ ‘Epi@raspbewpl:rvlll__ ||Dwdm Ty /oTune Sarver - File Tra | - = a %l naon
ﬁ'. File Edit View Bookmarks Go Tools Help 7

= v 3 /home/pi/Desktop/pi-client/video

Directory Tree a4

video15019
File Edit Tabs Help 93478865.h
264

i:n

Free space:

[261]

Raspberry Pi Image Streaming Chapter 8

The received email would be as follows:

[Pi Bot] Intruder Detected inbox x

u]
]

] Pi Bot @ 9:54 AM (2 minutes ago) -
to me [~

Intruder Detected. Please check the video attached.

Intruder Detected At : Sun Aug 06 2017 04:24:44 GMT+0000 (UTC)

video1501993478... | 4

This is an alternative of using Raspberry Pi 3 for surveillance.

Summary

In this chapter, we have seen two methods of surveillance using Raspberry Pi. The first
approach is where we have streamed images to the API engine and then visualized the
same on the mobile web and desktop applications using MJPEG. The second approach is to
detect a motion and then start recording a video. Then email this video as an attachment.
The two approaches can be combined together as well and the MJPEG streaming can be
started if a motion is detected in approach one.

In chapter 9, Smart Surveillance, we are going to take this to the next level, we are going to
add face recognition on top of our captures and perform face recognition (not face
detection) using the AWS Rekognition platform.

[262]

Smart Surveillance

In chapter 8, Raspberry Pi Image Streaming, we learned how to connect a Raspberry Pi
camera module to Raspberry Pi 3, grab a picture or video, and then upload/stream it in real
time. In this chapter, we are going to take this logic to the next level. We are going to take a
picture when there is an intrusion detected, and then send that image to the Amazon
Rekognition platform and compare the image against a set of images.

In this chapter, we are going to cover the following points:

¢ Understanding AWS Rekognition
¢ Seeding an AWS Rekognition collection with authorized faces

¢ Taking pictures from Raspberry Pi 3 upon intrusion and comparing them with
the seed faces

AWS Rekognition

The following quote is from Amazon Rekognition
(https://aws.amazon.com/rekognition/):

"Amazon Rekognition is a service that makes it easy to add image analysis to your
applications. With Rekognition, you can detect objects, scenes, faces; recognize celebrities;
and identify inappropriate content in images. You can also search and compare faces.
Rekognition’s API enables you to quickly add sophisticated deep learning-based visual
search and image classification to your applications.”

In this chapter, we are going to leverage the AWS Rekognition feature to help us set
conditional surveillance based on face recognition, not face detection.

https://aws.amazon.com/rekognition/

Smart Surveillance Chapter 9

Let's say that you had set up a camera at your house entrance using Raspberry Pi, and
programmed it to keep taking pictures of intruders and sending them to you. In this setup,
you will be receiving images of everyone who comes to your door, for instance, your
family, neighbors, and so on. But what if you are notified only if the intruder is an unknown
person? Now, that is what I call smart surveillance.

In chapter 8, Raspberry Pi Image Streaming, we built a setup that captured images when
intrusion is detected and which then send an email and updated the apps in real time.

In this chapter, we are going seed AWS Rekognition with a set of faces that are trusted.
Then, when there is an image captured by the camera, upon intrusion detection, we send it
to AWS Rekognition to perform facial recognition. If the image matches one of the trusted
images, nothing happens; otherwise, an email notification is sent.

To understand more about AWS Rekogniton and how it works, take a look at Announcing
Amazon Rekognition - Deep Learning-Based Image Analysis
(https://www.youtube.com/watch?v=b6gN9jCmg3w).

Setting up smart surveillance

Now that we have an understanding of what we are going to do, we will get started with
the setup of Raspberry Pi.

We are going to set up the camera and a motion detector, as we did in chapter 8, Raspberry
Pi Image Streaming. Next, we will be adding the logic required to capture an image upon the
detection of motion and then send it for processing.

Before we do that, we need to seed the Rekognition collection with authorized faces.

This script can be an API as part of the API engine, and using the web dashboard we can
upload and seed the images. But to keep things simple, we are going to run this standalone
script from a machine.

Setting up AWS credentials

Before we get started with development, we need to set up our local machine with the AWS
CLI and AWS credentials.

[264]

https://www.youtube.com/watch?v=b6gN9jCmq3w

Smart Surveillance Chapter 9

First, we need to install the AWS CLI. Head over to https://aws.amazon.com/cli and
follow the instructions on the page. To test the installation from the command prompt, run:

aws —-version
You should see something like:
aws—-cli/1.7.38 Python/2.7.9 Darwin/16.1.0

Once the setup is complete we need to configure the AWS credentials, so that as long as we
are using this machine, we need not enter any credentials within the code.

Run the following:

aws configure

You should be presented with four questions; fill them with the appropriate information:

+ =~ aws configure

AWS Access Key ID [ssesksksksrsksrsorsorsorot KWNA] 1 skl oo
AWS Secret Access Key [sseksesorsorsorsobokook 106] 1 sorskookeoksoksoksokoorsokoosoksokookg
Default region name [ap-southeast-1]: ap-southeast-1

Default output format [Monel: jsonf]

If you are facing issues when configuring AWS credentials, refer to
http://docs.aws.amazon.com/cli/latest/userguide/cli—-chap—-getting—started.html#c

li-quick-configuration

Another option is to add the accessKeyId and secretAccessKey in the code itself. But
we would still need the accessKeyId and secretAccessKey to continue.

Once the configuration is done, we will get started interfacing with AWS Rekognition.

Seeding the authorized faces

Create a folder named chapter?9, and inside this folder, create a folder named
rekogniton_seed. Inside this folder, create a file named seed. js.

[265]

https://aws.amazon.com/cli
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration

Smart Surveillance Chapter 9

Update seed. js as follows:

var config = {
collectionName: 'AIOWJS-FACES',
region: 'eu-west-1"',

// If the credentials are set using "aws configure', below two properties
are not needed.

accessKeyId: 'YOUR-ACCESSKEYID',

secretAccessKey: YOUR-SECRETACCESSKEY'

bi

var AWS = require('aws-sdk');

var fs = require('fs-extra');

var path = require('path');

var klawSync = require('klaw-sync')
AWS.config.region = config.region;

var rekognition = new AWS.Rekognition ({
region: config.region,
// accessKeyId: config.accessKeyId, // uncomment as applicable
// secretAccessKey: config.secretAccessKey // uncomment as applicable

P

function createCollection() |
rekognition.createCollection ({
'CollectionId': config.collectionName
}, (err, data) => {
if (err) {
console.log(err, err.stack); // an error occurred
} else {
console.log(data); // successful response

P

function indexFaces () {
var paths = klawSync('./faces', {
nodir: true,
ignore: ['*.json']

P

paths.forEach((file) => {
var p = path.parse(file.path);
var name = p.name.replace(/\W/g, '');
var bitmap = fs.readFileSync (file.path);

rekognition.indexFaces ({

[266]

Smart Surveillance Chapter 9

'CollectionId': config.collectionName,

'DetectionAttributes': ['ALL'],
'ExternalImageId’': name,
'Image': {

'Bytes': bitmap
}

}, (err, data) => {
if (err) {
console.log(err, err.stack); // an error occurred
} else {
console.log(data.FaceRecords); // successful response
fs.writedson(file.path + '.json', data, (err) => {

if (err) return console.error (err)

createCollection();
indexFaces () ;

Please refer to the source code for the additional comments: https://
github.com/PacktPublishing/Practical-Internet-of-Things-with-

JavaScript.

As we see from the preceding code snippet, we are creating a new collection named
ATIOWJS-FACES in the eu-west~1 region. You can either use the accessKeyId and
secretAccessKey from within the code, or you can use the ones from AWS CLI configure.
If you are using the key and secret from AWS CLI configure, you can comment these two
lines out while initializing a new instance of rekognition.

We call the createCollection () to create a new collection and this needs to be run only
once.

You can seed data as many times as you want, but collection creation
should happen only once.

Once the collection is created, we will index a few images from a folder named faces,
which we will create now. Create a folder named faces at the root of the
rekogniton_seed folder. Inside this folder, upload clear images with faces. The better the
quality and clarity of the image is, the better chance it has of being recognized.

[267]

https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript
https://github.com/PacktPublishing/Practical-Internet-of-Things-with-JavaScript

Smart Surveillance Chapter 9

I'have dumped a couple of pictures of mine inside the faces folder. Before we start the
seeding, we need to install the required dependencies:

1. Open command prompt/terminal inside the rekogniton_seed folder and run:
npm init --yes

2. Next, run:
npm install aws-sdk fs-extra klaw-sync —--save

3. Once the installation is complete, create the collection and seed the faces by
running:

node seed.js
4. We should see an output something like the following for each uploaded image:

[{ Face:
{ FacelId: '2d7ac2b3-fa84-5al6-ad8c-7fa670b8ec8c’',
BoundingBox: [Object],
ImageId: '61a299b6-3004-576d-b966-31fb6780£f1c7"',
ExternalImageId: 'photo',
Confidence: 99.96211242675781 1},
FaceDetail:
{ BoundingBox: [Object],
AgeRange: [Object],
Smile: [Object],
Eyeglasses: [Object],
Sunglasses: [Object],
Gender: [Object],
Beard: [Object],
Mustache: [Object],
EyesOpen: [Object],
MouthOpen: [Object],
Emotions: [Object],
Landmarks: [Object],
Pose: [Object],
Quality: [Object],
Confidence: 99.96211242675781 } }]

This object will consist of information about the image that was analyzed by Rekognition.

[268]

Smart Surveillance Chapter 9

You can look up the *. json files inside the faces folder once the seeding is complete.
These JSON files will consist of more information about the image.

Testing the seed

Now that the seed is completed, let's validate the seed. This step is totally optional; you can
skip this step if you want to.

Create a new folder named rekogniton_seed_test at the root of the chapter? folder.
Then create a folder named faces at the root of rekogniton_seed_test and dump the
image that you would like to test into this folder. In my case, the picture is of me at a
different location.

Next, create a file named seed_test. js and update it, as shown here:

var config = {
collectionName: 'AIOWJS-FACES',
region: 'eu-west-1"',

accessKeyId: 'ACCESSKEYID',
secretAccessKey: SECRETACCESSKEY'
bi

var AWS = require('aws-sdk');

var fs = require('fs-extra');

var path = require('path');

var klawSync = require('klaw-sync')
AWS.config.region = config.region;

var rekognition = new AWS.Rekognition ({
region: config.region,
// accessKeyId: config.accessKeyId, // uncomment as applicable
// secretAccessKey: config.secretAccessKey // uncomment as applicable

}) i

// Once you've created your collection you can run this to test it out.
function FaceSearchTest (imagePath) {
var bitmap = fs.readFileSync (imagePath);

rekognition.searchFacesByImage ({
"CollectionId": config.collectionName,
"FaceMatchThreshold": 80,
"Image": {
"Bytes": bitmap,
}!

[269]

Smart Surveillance Chapter 9

"MaxFaces": 1
}, (err, data) => {
if (err) {
console.error (err, err.stack); // an error occurred
} else {
// console.log(data); // successful response
console.log(data.FaceMatches.length > 0 ?
data.FaceMatches[0] .Face : data);
}
P i

FaceSearchTest (_ _dirname + '/faces/arvind_2.3jpg');

In the preceding code, we pick up the image from the faces folder and submit it for
recognition, and then we print the appropriate response.

Once that is done, we will install the required dependencies:

1. Open command prompt/terminal inside the rekogniton_seed_test folder and
run:

npm init --yes
2. Then run:
npm install aws-sdk fs-extra path --save

3. Now, we are all set to run this example. From inside the
rekogniton_seed_test folder, run:

node seed_test.js
4. We should see something like the following:

{ FacelId: '2d7ac2b3-fa84-5al6-ad8c-7fa670b8ec8c"’,
BoundingBox:
{ Width: 0.4594019949436188,
Height: 0.4594019949436188,
Left: 0.3076919913291931,
Top: 0.2820509970188141 1},
ImageId: '61a299b6-3004-576d-b966-31fb6780£f1c7"',
ExternalImageId: 'photo',
Confidence: 99.96209716796875 }

[270]

Smart Surveillance Chapter 9

There are a couple of things to note from the preceding response:

e FacelId: This is the ID against which the current face has been matched
e ImageId: This is the image against which the current face has been matched

With this, we can even tag users from the images that we have indexed/seeded.

You can do a negative test by putting an image that doesn't match our seed data and
updating the last line in the preceding code as follows:

FaceSearchTest (_ _dirname + '/faces/no_arvind.jpg');
We should see something like the following:
{ SearchedFaceBoundingBox:
{ Width: 0.5322222113609314,
Height: 0.5333333611488342,
Left: 0.2777777910232544,
Top: 0.12444444745779037 },
SearchedFaceConfidence: 99.76634979248047,
FaceMatches: [] }
As you can see, there were no matches found.

We are going to use the preceding method in our Raspberry Pi, once we have captured an
image.

Deploying to Raspberry Pi

Now that we have seeded a Rekognition collection, as well as tested it (an optional step), we
are now going to start setting up the Raspberry Pi code.

We will be using all the other code pieces from the chapters8 folder as is and only
modifying the Raspberry Pi client in the chapter9 folder.

[271]

Smart Surveillance

Chapter 9

Copy the entire code from the chapters8 folder into the chapter9 folder. Then, open the
pi-client folder either on your desktop or on the Raspberry Pi itself, and update it as

follows:

var
var
var
var
var
var
var

var

var
var

1)

config = require('./config.js");

mgtt = require('mgtt');

GetMac = require('getmac');

Raspistill = require('node-raspistill') .Raspistill;
crypto = require("crypto");

Gpio = require('onoff') .Gpio;

exec = require('child_process') .exec;

AWS = require('aws-sdk');

pir = new Gpio (17, 'in', 'both');

raspistill = new Raspistill ({
noFileSave: true,

encoding: 'bmp',

width: 640,

height: 480

// Rekognition config

var

bi

AWS.

var

var

config = {
collectionName: 'AIOWJS-FACES',
region: 'eu-west-1"',

accessKeyId: 'ACCESSKEYID',
secretAccessKey: 'SECRETACCESSKEY'

config.region = config.region;
rekognition = new AWS.Rekognition ({

region: config.region,
accessKeyId: config.accessKeyId,

secretAccessKey: config.secretAccessKey

client = mgtt.connect ({

port: config.mgtt.port,
protocol: 'mgtts',

host: config.mgtt.host,
clientId: config.mgtt.clientId,
reconnectPeriod: 1000,
username: config.mgtt.clientId,
password: config.mgtt.clientId,
keepalive: 300,

[272]

Smart Surveillance Chapter 9

rejectUnauthorized: false
P

client.on('connect', function() {
client.subscribe('rpi'");
GetMac.getMac (function (err, mac) {
if (err) throw err;
macAddress = mac;
client.publish('api-engine', mac);
// startStreaming();

)i

client.on('message', function(topic, message) A
message = message.toString();
if (topic === 'rpi') {
console.log('API Engine Response >> ', message);
} else {
console.log('Unknown topic', topic);

)i

var processing = false;
// keep watching for motion
pir.watch (function(err, value) {
if (err) exit();
if (value == 1 && !processing) {
raspistill.takePhoto ()
.then ((photo) => {
console.log('took photo');
checkForMatch (photo, function(err, authorizedFace) {
if (err) {
console.error (err);
} else {
if (authorizedFace) {
console.log('User Authorized');
} else {
// unauthorized user,
// send an email!
require('./mailer') .sendEmail (photo,
function(err, info) {
if (err) {
console.error (err);
} else {
console.log('Email Send Success',

[273]

Smart Surveillance Chapter 9

info);

P
})
.catch((error) => {

console.error ('something bad happened', error);
P i

)i

function checkForMatch (image, cb) {
rekognition.searchFacesByImage ({
'CollectionId': config.collectionName,
'FaceMatchThreshold': 80,

'Image': {
'Bytes': image,

}I

'MaxFaces': 1

}, (err, data) => {

if (err) {
console.error (err, err.stack); // an error occurred
cb(err, null);

} else {

// console.log(data); // successful response

console.log(data.FaceMatches.length > 0 ?
data.FaceMatches[0] .Face : data);

cb(null, data.FaceMatches.length >= 1);

)i

function exit () {
pir.unexport ();
process.exit ();

}

In the preceding code, we have the required configuration to make a request to AWS
Rekognition, and then we run checkForMatch (), which will take the raw photo and check
for matches. If any matches are found, we will not get an email, and if no matches are
found, we will get an email.

[274]

Smart Surveillance Chapter 9

Next, we will install the required dependencies.

Run the following:

npm install getmac mgtt node-raspistill aws-sdk —--save

Once the installation is done, start the broker, api-engine, and web dashboard. Then run
the following:

node index.js

Trigger a motion to capture the image. If the captured image matches one of the faces we
indexed, we will not get an email; if it does, we will get an email.

Simple isn't it? This is a very powerful setup that we have built to provide surveillance at
our homes or offices, where simple false alarms can be identified easily.

This example can be extended further to send push notifications or call neighbours using
cloud-based calling services such as Twilio.

Summary

In this chapter, we have seen how to set up a smart surveillance system with Raspberry Pi
and the AWS Rekognition platform.

We started by understanding the AWS Rekognition platform and then indexing/seeding a
collection with our images. Next, we updated the Raspberry Pi code to take a picture when
motion is detected and then send that image to AWS Rekognition to identify whether the
face in the current photo matches any of the indexed images. If it does, we ignore the image;
if it does not, we send an email with that image.

With this, we complete, Practical Internet of Things with JavaScript. hope you have learned a
few ways to leverage JavaScript and Raspberry Pi to build simple yet powerful IoT
solutions.

[275]

A

accelerometer
about 191
reference link 191
Alexa skill
creating 166, 167, 168
deploying 187, 188, 189
developing 165
lambda function, defining 176, 177, 178, 185,
186, 187
ngrok APl engine 174,175,176
testing 187, 188, 189
voice model, training 168, 169, 170, 171, 172,
173,174
Amazon Resource Name (ARN) 187
Angular CLI
URL, for installing 48
API engine
about 28, 29, 30
authorization 30, 31, 32
integrating 68, 69, 70
MQTT client 32, 33
relay, managing 148, 150
settingup 120, 122
testing 33, 34, 35, 36
updating 59, 64, 76, 78,199, 201, 243, 244
authorized faces
seeding 265, 267, 268
AWS credentials
reference link 265
settingup 265
AWS Rekognition
about 263
reference link 264

Index

B

broker
communication, between APl engine 36, 37, 38

C

code
testing 261, 262

D

data flow
about 18
app, to smart device 19
smart device, to app 18
desktop app
building 86, 87, 88, 89, 90, 91, 93
settingup 129, 130
updating 157, 158, 160, 207, 208, 230, 233,
251, 252

E

Electron
reference link 17

end-to-end data flow
API engine, updating 78
implementing 86, 87, 88, 89, 90, 91, 92, 94, 95,

97, 98,99, 100,101, 102, 103

Raspberry Pi, settingup 71, 72, 75, 76
Raspberry Pi, updating 71, 72, 75, 76
testing, DHT11 used 70, 71
testing, LED used 70, 71
web app, updating 79, 80, 85

F

fall detection 215, 216

IFTTT 214
IFTTT rules engine
building 224, 226
Internet of Things (loT)
about 7, 8,105,106,190,191, 214
history 9
use cases 10
lonic 3
reference link 17

J

JSON Web Tokens (JWTs) 30

L

lambda function
defining 176,177,178, 185, 186

MJPEG 237, 238
mLab
URL 22
mobile app template
updating 160, 164, 165, 209, 212
mobile app
building 94, 95, 97, 98, 99, 100, 101, 102, 103
settingup 131, 132, 134, 135
updating 233, 234, 254
MongoDB
about 17, 20
local installation 20, 21, 22
mLab, using 22, 23, 24, 25
Mosca
URL 16
motion-based video capture
about 257
code, testing 261, 262
Raspberry Pi, updating 257, 261
MQTT
reference link 16
MQTTS broker 25, 26, 27, 28

[277]

N

ngrok APl engine 174,175,176
Node.js
installing, on server 20

P

Pino

reference link 26
PIR sensor

reference link 257
product engineering 12
Proof Of Concept (POC) 12

Q

Quality of Service (QoS) 38

R

Raspberry Pi 3
DHT11 109, 110,117,118, 120
MCP3208 109
moisture sensor 109
settingup 108
Raspberry Pi MQTTS client 40, 41, 42
Raspberry Pi software
about 39
settingup 39, 40
Raspberry Pi, specifications
reference link 15
Raspberry Pi
about 109,110,117,118, 120
camera, setting up 239, 240
camera, testing 240, 241
deploying 271, 274, 275
logic, developing 241, 243
relay, settingup 141, 142, 143
settingup 71, 72, 75, 76, 238
updating 71, 72, 75, 76,217,221, 222, 257,
261
Raspbian OS
reference link 39
reference architecture
about 14
APl engine 16, 28,29, 30

building 19

communication, between broker and API engine
36,37, 38, 43, 44, 45, 47

communication, between broker and Raspberry
Pi 42, 43, 44, 45, 47

data flow 18

designing 13, 14

desktop app 17

gateway 16

mobile app 17

MongoDB 17, 20

MQTTS broker 16, 25, 26,27, 28

Node.js, installing on server 20

Raspberry Pi software 39

smart device 14, 15

web app 17, 48

relay
managing, in APl engine 148, 150
setting up, with Raspberry Pi 141, 142, 143

S

Serial Peripheral Interface (SPI)
about 107
reference link 107
smart socket
building 140, 141
mobile app template, updating 160, 164, 165
relay, managing in APl engine 148, 150
relay, setting up with Raspberry Pi 141, 142,
143
web app template, updating 150, 152, 157
smart surveillance
authorized faces, seeding 265, 267, 268
AWS credentials, setting up 264
seed, testing 269, 271
settingup 264
smart wearable

about 191
API engine, updating 199, 201
desktop app, updating 207, 208
mobile app template, updating 209, 210, 212
settingup 192, 197
web app, updating 201, 203
smart weather station
designing 106, 107
Styrofoam sheet 223

T

technology
overview 11

troubleshooting 104

Twitter Bootstrap 3
reference link 17

\'

Voice Al
about 138, 139
test drive 140
voice model
training 168,169,170,171,172,173,174

w

web app template
updating 150, 152, 157
web app
about 48
app module 51, 52
components 54, 55
integrating 68, 69, 70
launching 55, 56, 57
project structure 49, 51
services 53, 54
settingup 48, 49, 123
updating 65, 66, 79, 80, 85, 201, 203, 228, 247

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Dedication
	Table of Contents
	Preface
	Chapter 1: The World of IoT
	The world of IoT
	What is IoT?
	A bit of history
	IoT use cases

	Technology overview
	Product engineering
	Summary

	Chapter 2: IoTFW.js - I

	Designing a reference architecture
	Architecture
	Smart device
	Gateway
	MQTTS broker
	API engine
	MongoDB
	Web app
	Mobile app
	Desktop app

	Data flow
	Smart device to the apps
	App to the smart device

	Building the reference architecture
	Installing Node.js on the server
	Installing nodemon
	MongoDB
	Local installation
	Using mLab

	MQTTS broker - Mosca
	API engine - Node.js and Express
	Authorization
	MQTT client
	API engine testing

	Communication between broker and API engine
	Raspberry Pi software
	Setting up Raspberry Pi
	Raspberry Pi MQTTS client

	Communication between the broker and the Raspberry Pi
	Troubleshooting

	Communication between the Raspberry Pi, the broker and the API engine
	Web app
	Setting up the app
	Project structure
	App module
	Web app services
	Web app components
	Launching the app

	Summary

	Chapter 3: IoTFW.js - II

	Updating the API engine
	Integrating web app and API engine
	Testing an end-to-end flow using DHT11 and LED
	Setting up and updating the Raspberry Pi
	Updating the API engine
	Updating the web app

	Building the desktop app and implementing an end-to-end flow
	Building the mobile app and implementing an end-to-end flow
	Troubleshooting
	Summary

	Chapter 4: Smart Agriculture

	Agriculture and IoT
	Designing a smart weather station
	Setting up Raspberry Pi 3
	Raspberry Pi and MCP3208
	Moisture sensor and MCP3208
	Raspberry Pi and DHT11

	Setting up the API engine
	Setting up the web app
	Setting up the desktop app
	Setting up the mobile app
	Summary

	Chapter 5: Smart Agriculture and Voice AI

	Voice AI
	Test drive

	Building a smart socket
	Setting up relay with Raspberry Pi
	Managing relay in an API engine
	Updating the web app template
	Updating the desktop app
	Updating the mobile app template

	Developing Alexa skill
	Creating skill
	Training the voice model
	ngrok the API engine
	Defining the lambda function
	Deploying and testing

	Summary

	Chapter 6: Smart Wearable

	IoT and healthcare
	Smart wearable
	Setting up smart wearable
	Updating the API engine
	Updating the web app
	Updating a desktop app
	Updating the mobile app template

	Summary

	Chapter 7: Smart Wearable and IFTTT

	IFTTT and IoT
	Fall detection
	Updating Raspberry Pi
	Building the IFTTT rules engine
	Updating the web app
	Updating the desktop app
	Updating the mobile app
	Summary

	Chapter 8: Raspberry Pi Image Streaming�
	MJPEG
	Setting up Raspberry Pi
	Setting up the camera
	Testing the camera
	Developing the logic

	Updating the API engine
	Updating the web app
	Updating the desktop app
	Updating the mobile app
	Motion-based video capture
	Updating the Raspberry Pi
	Testing the code

	Summary

	Chapter 9: Smart Surveillance

	AWS Rekognition
	Setting up smart surveillance
	Setting up AWS credentials
	Seeding the authorized faces
	Testing the seed

	Deploying to Raspberry Pi
	Summary

	Index
	Humble bundle_Ad_CDP.pdf
	Table of Contents
	Humble Bundle
	Index

