
Information Technology / Security & Auditing

The rapidly increasing sophistication of cyber intrusions makes them nearly
impossible to detect without the use of a collaborative intrusion detection network
(IDN). Using overlay networks that allow an intrusion detection system (IDS) to
exchange information, IDNs can dramatically improve your overall intrusion
detection accuracy.

Intrusion Detection Networks: A Key to Collaborative Security focuses on the
design of IDNs and explains how to leverage effective and efficient collaboration
between participant IDSs. Providing a complete introduction to IDSs and IDNs, it
explains the benefits of building IDNs, identifies the challenges underlying their
design, and outlines possible solutions to these problems. It also reviews the full
range of proposed IDN solutions—analyzing their scope, topology, strengths,
weaknesses, and limitations.

•	 Includes a case study that examines the applicability of collaborative
intrusion detection to real-world malware detection scenarios

•	 Illustrates distributed IDN architecture design

•	Considers trust management, intrusion detection decision making,
resource management, and collaborator management

The book provides a complete overview of network intrusions, including their
potential damage and corresponding detection methods. Covering the range of
existing IDN designs, it elaborates on privacy, malicious insiders, scalability, free-
riders, collaboration incentives, and intrusion detection efficiency. It also provides
a collection of problem solutions to key IDN design challenges and shows how you
can use various theoretical tools in this context.

The text outlines comprehensive validation methodologies and metrics to help you
improve efficiency of detection, robustness against malicious insiders, incentive
compatibility for all participants, and scalability in network size. It concludes by
highlighting open issues and future challenges.

ISBN: 978-1-4665-6412-1

9 781466 564121

90000

Intrusion D
etection N

etw
orks

A Key to Collaborative Security

Carol Fung and Raouf Boutaba

Intrusion Detection
Networks

Fung
B

outaba

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

www.auerbach-publications.com

K16024

K16024 cvr mech.indd 1 10/15/13 10:27 AM

Intrusion Detection
Networks

A Key to Collaborative Security

This page intentionally left blankThis page intentionally left blank

Intrusion Detection
Networks

A Key to Collaborative Security

Carol Fung and Raouf Boutaba

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131108

International Standard Book Number-13: 978-1-4665-6413-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Figures . xiii

List of Tables . xvii

Preface . xix

About the Authors . xxi

SECTION I: INTRODUCTION 1

SECTION II: CYBER INTRUSIONS AND INTRUSION
DETECTION 7

2 Cyber Intrusions . 9
2.1 Introduction . 9
2.2 Overview of Cyber Intrusions . 10

2.2.1 Malware . 10
2.2.2 Vulnerabilities Exploitation 11
2.2.3 Denial-of-Service Attack 12
2.2.4 Web-Based Attacks . 13
2.2.5 DNS Attack . 14
2.2.6 Organized Attacks and Botnets 15
2.2.7 Spam and Phishing . 15
2.2.8 Mobile Device Security 17
2.2.9 Cyber Crime and Cyber Warfare 17

2.3 A Taxonomy of Cyber Intrusions 18
2.4 Summary . 18

v

vi � Contents

3 Intrusion Detection . 21
3.1 Intrusion Detection Systems . 22

3.1.1 Signature-Based and Anomaly-Based IDSs 22
3.1.2 Host-Based and Network-Based IDSs 22
3.1.3 Other Types of IDSs . 24
3.1.4 Strength and Limitations of IDSs 24

3.2 Collaborative Intrusion Detection Networks 25
3.2.1 Motivation for IDS Collaboration 25
3.2.2 Challenges of IDS Collaboration 25

3.3 Overview of Existing Intrusion Detection Networks 26
3.3.1 Cooperation Topology . 26
3.3.2 Cooperation Scope . 27
3.3.3 Collaboration Type . 27
3.3.4 Specialization . 28
3.3.5 Cooperation Technologies and Algorithms 28

3.3.5.1 Data Correlation 28
3.3.5.2 Trust Management 29
3.3.5.3 Load Balancing 29

3.3.6 Taxonomy . 29
3.4 Selected Intrusion Detection Networks 29

3.4.1 Indra . 29
3.4.2 DOMINO . 30
3.4.3 DShield . 31
3.4.4 NetShield . 31
3.4.5 CIDS . 32
3.4.6 Gossip . 33
3.4.7 Worminator . 34
3.4.8 ABDIAS . 34
3.4.9 CRIM . 35
3.4.10 ALPACAS . 35
3.4.11 CDDHT . 35
3.4.12 SmartScreen Filter . 35
3.4.13 CloudAV . 36
3.4.14 FFCIDN . 36
3.4.15 CMDA . 36

3.5 Summary . 37

SECTION III: DESIGN OF AN INTRUSION DETECTION
NETWORK 39

4 Collaborative Intrusion Detection Networks Architecture Design . . . 41
4.1 Introduction . 42
4.2 Collaboration Framework . 42

4.2.1 Network Join Process . 44
4.2.2 Consultation Requests . 45

Contents � vii

4.2.3 Test Messages . 46
4.2.4 Communication Overlay 46
4.2.5 Mediator . 46
4.2.6 Trust Management . 46
4.2.7 Acquaintance Management 47
4.2.8 Resource Management . 47
4.2.9 Feedback Aggregation . 47

4.3 Discussion . 48
4.3.1 Privacy Issues . 48
4.3.2 Insider Attacks . 48

4.4 Summary . 49

5 Trust Management . 51
5.1 Introduction . 52
5.2 Background . 53
5.3 Trust Management Model . 55

5.3.1 Satisfaction Mapping . 55
5.3.2 Dirichlet-Based Model . 56
5.3.3 Evaluating the Trustworthiness of a Peer 57

5.4 Test Message Exchange Rate and Scalability of Our System 59
5.5 Robustness against Common Threats 60

5.5.1 Newcomer Attacks . 60
5.5.2 Betrayal Attacks . 60
5.5.3 Collusion Attacks . 61
5.5.4 Inconsistency Attacks . 61

5.6 Simulations and Experimental Results 61
5.6.1 Simulation Setting . 61
5.6.2 Modeling the Expertise Level of a Peer 62
5.6.3 Deception Models . 63
5.6.4 Trust Values and Confidence Levels for Honest Peers 63
5.6.5 Trust Values for Dishonest Peers 64
5.6.6 Robustness of Our Trust Model 66
5.6.7 Scalability of Our Trust Model 69
5.6.8 Efficiency of Our Trust Model 69

5.7 Conclusions and Future Work . 71

6 Collaborative Decision . 73
6.1 Introduction . 74
6.2 Background . 75
6.3 Collaborative Decision Model . 75

6.3.1 Modeling of Acquaintances 77
6.3.2 Collaborative Decision . 79

6.4 Sequential Hypothesis Testing . 80
6.4.1 Threshold Approximation 83

6.5 Performance Evaluation . 84

viii � Contents

6.5.1 Simulation Setting . 85
6.5.1.1 Simple Average Model 85
6.5.1.2 Weighted Average Model 86
6.5.1.3 Bayesian Decision Model 86

6.5.2 Modeling of a Single IDS 86
6.5.3 Detection Accuracy and Cost 88

6.5.3.1 Cost under Homogeneous Environment 89
6.5.3.2 Cost under Heterogeneous Environment 89
6.5.3.3 Cost and the Number of Acquaintances 90

6.5.4 Sequential Consultation 92
6.5.5 Robustness and Scalability of the System 95

6.6 Conclusion . 96

7 Resource Management . 97
7.1 Introduction . 97
7.2 Background . 98
7.3 Resource Management and Incentive Design 100

7.3.1 Modeling of Resource Allocation 100
7.3.2 Characterization of Nash Equilibrium 103
7.3.3 Incentive Properties . 105

7.4 Primal / Dual Iterative Algorithm 107
7.5 Experiments and Evaluation . 110

7.5.1 Nash Equilibrium Computation 110
7.5.2 Nash Equilibrium Using Distributed Computation 111
7.5.3 Robustness Evaluation . 114

7.5.3.1 Free-Riding . 114
7.5.3.2 Denial-of-Service (DoS) Attacks 115
7.5.3.3 Dishonest Insiders 115

7.5.4 Large-Scale Simulation . 117
7.6 Conclusion . 117

8 Collaborators Selection and Management 119
8.1 Introduction . 120
8.2 Background . 121
8.3 IDS Identification and Feedback Aggregation 122

8.3.1 Detection Accuracy for a Single IDS 123
8.3.2 Feedback Aggregation . 124

8.4 Acquaintance Management . 126
8.4.1 Problem Statement . 126
8.4.2 Acquaintance Selection Algorithm 128
8.4.3 Acquaintance Management Algorithm 130

8.5 Evaluation . 132
8.5.1 Simulation Setting . 132
8.5.2 Determining the Test Message Rate 132
8.5.3 Efficiency of Our Feedback Aggregation 134

Contents � ix

8.5.4 Cost and the Number of Collaborators 135
8.5.5 Efficiency of Acquaintance Selection Algorithms 136
8.5.6 Evaluation of Acquaintance Management Algorithm 137

8.5.6.1 Convergence . 137
8.5.6.2 Stability . 139
8.5.6.3 Incentive Compatibility 141
8.5.6.4 Robustness . 141

8.6 Conclusion and Future Work . 142

SECTION IV: OTHER TYPES OF IDN DESIGN 145

9 Knowledge-Based Intrusion Detection Networks and Knowledge Prop-
agation . 147
9.1 Introduction . 148
9.2 Background . 150
9.3 Knowledge Sharing IDN Architecture 151

9.3.1 Network Topology . 151
9.3.2 Communication Framework 152
9.3.3 Snort Rules . 153
9.3.4 Authenticated Network Join Operation 154
9.3.5 Feedback Collector . 154
9.3.6 Trust Evaluation and Acquaintance Management 155
9.3.7 Knowledge Propagation Control 156
9.3.8 An Example . 157

9.4 Knowledge Sharing and Propagation Model 157
9.4.1 Lower Level – Public Utility Optimization 159
9.4.2 Upper Level – Private Utility Optimization 161
9.4.3 Tuning Parameter Ri j . 162
9.4.4 Nash Equilibrium . 164
9.4.5 Price of Anarchy Analysis 165
9.4.6 Knowledge Propagation 166

9.5 Bayesian Learning and Dynamic Algorithms 167
9.5.1 Bayesian Learning Model for Trust 168

9.5.1.1 Dirichlet Learning Model for Knowledge Quality 168
9.5.1.2 Credible-Bound Estimation of Trust 168

9.5.2 Dynamic Algorithm to Find the Prime NE at Node 169
9.6 Evaluation . 171

9.6.1 Simulation Setup . 172
9.6.2 Trust Value Learning . 172
9.6.3 Convergence of Distributed Dynamic Algorithm 176
9.6.4 Scalability and Quality of Information (QoI) 176
9.6.5 Incentive Compatibility and Fairness 177
9.6.6 Robustness of the System 179

9.7 Conclusion . 180

x � Contents

10 Collaborative Malware Detection Networks 181
10.1 Introduction . 182
10.2 Background . 184

10.2.1 Collaborative Malware Detection 184
10.2.2 Decision Models for Collaborative Malware Detection . . . 184

10.2.2.1 Static Threshold 185
10.2.2.2 Weighted Average 185
10.2.2.3 Decision Tree 185
10.2.2.4 Bayesian Decision 185

10.3 Collaboration Framework . 185
10.3.1 Architecture Design . 187
10.3.2 Communication Overhead and Privacy Issue 188
10.3.3 Adversaries and Free-Riding 189

10.4 Collaborative Decision Model . 189
10.4.1 Problem Statement and RevMatch Model 189
10.4.2 Feedback Relaxation . 192
10.4.3 Labeled History Update 193

10.5 Evaluation . 194
10.5.1 Data Sets . 194
10.5.2 Experiment Setting . 196
10.5.3 Ranking of AVs . 196
10.5.4 Static Threshold . 197
10.5.5 Weighted Average . 197
10.5.6 Decision Tree . 197
10.5.7 Bayesian Decision . 200
10.5.8 RevMatch . 200
10.5.9 Comparison between Different Decision Models 201
10.5.10 Robustness against Insider Attacks 203
10.5.11 Acquaintance List Length and Efficiency 205

10.6 Discussion . 206
10.6.1 Runtime Efficiency on Decision 206
10.6.2 Partial Feedback . 206
10.6.3 Tuning Flexibility . 207
10.6.4 Comparison . 207
10.6.5 Zero-Day Malware Detection 207
10.6.6 Historical Data Poisoning Attack 207

10.7 Conclusion and Future Work . 208

SECTION V: CONCLUSION 209

SECTION VI: APPENDICES 213

A Examples of Intrusion Detection Rules and Alerts 215
A.1 Examples of Snort Rules . 215
A.2 Example of an Intrusion Alert in IDMEF Format 216

Contents � xi

B Proofs . 219
B.1 Proof of Proposition 9.4.3 . 219
B.2 Proof of Theorem 9.2 . 220
B.3 Proof of Proposition 9.4.4 . 221
B.4 Proof of Proposition 9.4.5 . 221
B.5 Proof of Proposition 9.4.6 . 221

References . 223

Index . 237

This page intentionally left blankThis page intentionally left blank

List of Figures

2.1 The DNS spoofing attack. 14
2.2 The life cycle of a bot node. 16
2.3 A taxonomy of cyber intrusions. 19

3.1 An example of host-based IDS and network-based IDS. 23
3.2 Indra architecture. 31
3.3 DOMINO architecture. 32
3.4 NetShield architecture. 33
3.5 ABDIAS architecture. 34
3.6 Topology design for collaborative malware detection on Android. . 37

4.1 Topology of a consultation-based collaborative intrusion detection
network. 43

4.2 Communication protocol design for IDN. 44
4.3 Architecture design of an IDN. 45

5.1 Satisfaction level for feedback (r = 0.5, c1 = 2, c2 = 1). 56
5.2 Decision density function for expertise levels. 63
5.3 Feedback curves for different deception strategies. 64
5.4 Convergence of trust values for different expertise levels. 65
5.5 Confidence levels of estimation for different test message rates. . . 65
5.6 Trust values of deceptive peers with different deception strategies. . 66
5.7 Trust values of newcomers under different trust models. 67
5.8 Trust of malicious peers under betrayal attack. 68
5.9 Impact on accuracy of betrayal attack. 69
5.10 Comparison of average test message rates under different models. . 70
5.11 Aggregated feedback under inconsistency attack. 70
5.12 Intrusion detection success rate under inconsistency attack. 71

6.1 Expertise level and detection rate. 87

xiii

xiv � Intrusion Detection Networks: A Key to Collaborative Security

6.2 FP and FN versus expertise level l. 88
6.3 FP and FN versus threshold τp. 89
6.4 Average cost versus threshold τp. 90
6.5 Average costs for three different aggregation models. 91
6.6 Comparison of three aggregation models. 91
6.7 Average cost versus number of acquaintances consulted (Ug is the

cost goal). 92
6.8 Cost versus C01 for the three models. 93
6.9 FP, TP versus number of acquaintances. 93
6.10 Number of acquaintances versus expertise. 94
6.11 False positive and true positive of single IDS under betrayal attack. 94
6.12 False decision cost under betrayal attack. 95

7.1 Helping resources versus time—first approach. 110
7.2 Helping resource received varies with trust value—first approach. . 111
7.3 Helping resource received varies with resource contribution—first

approach. 112
7.4 Helping resources versus time—second approach. 113
7.5 Helping resource received varies with trust value—second ap-

proach. 113
7.6 Helping resource received varies with resource contribution—

second approach. 114
7.7 Resource received versus exchanged upper-bound. 115
7.8 Resource received after free-riding attack. 116
7.9 Resource received for peers with different trust values. 116
7.10 Resource received for peers with different resource capacities. . . . 117

8.1 Bayes risk for optimal decisions when C f p = 1 and C f n = 5. 127
8.2 The convergence of learning speed and the test message rate. . . . 133
8.3 The distribution of estimated FN rate (R = 10/day). 134
8.4 Comparison of cost using threshold decision and Bayesian decision. 135
8.5 The average cost under different collaborator quality. 136
8.6 The cost using different acquaintance selection algorithms. 137
8.7 The running time using different acquaintance selection algorithms. 138
8.8 Acquaintances distribution on day 25. 138
8.9 Acquaintances distribution on day 200. 139
8.10 The average cost for collaboration. 140
8.11 The collaboration time span. 140
8.12 The converged cost distribution. 141
8.13 The FP and FN of betrayal node. 142
8.14 The cost of an IDS under a betrayal attack. 143

9.1 Topology of a knowledge-based intrusion detection network, where
IDSs are connected to a peer-to-peer network and share intrusion
detection knowledge with others. 152

List of Figures � xv

9.2 SMURFEN design of eight nodes on a Chord ring. 153
9.3 An example Snort rule. 154
9.4 An example of dependent Snort rules. 154
9.5 Feedback collection in SMURFEN. 155
9.6 An example of knowledge propagation path. 156
9.7 An illustration of the rule propagation protocol. 159
9.8 An illustrative example of a three-person system involving the set

of nodes {i,1,2}. Node i solves (PPi) while nodes 1 and 2 solve
(P1i) and (P2i), respectively. 163

9.9 The comparison of information quality. 173
9.10 Incentive on expertise level. 173
9.11 Incentive of contribution rate. 174
9.12 The influence from a betrayal attack. 174
9.13 Compatibility under different learning methods. 175
9.14 The credible-bound compatibility versus sample rate. 175
9.15 The convergence of dynamic algorithm. 176
9.16 The comparison of scalability. 178
9.17 The influence versus sending rate. 178

10.1 Topology design of collaborative malware detection network. . . . 186
10.2 Architecture desgin of a trader node in CMDN. 188
10.3 An example of the RevMatch decision algorithm for CMDNs. . . . 192
10.4 True positive rate and false positive rate of AVs. 197
10.5 TP, FP, and quality scores of static threshold-based model with dif-

ferent thresholds (based on data set S3, S6). 199
10.6 TP, FP, and quality scores of weighted average model with different

thresholds (based on data set S3, S6). 199
10.7 The optimal decision tree generated by Weka J48 Algorithm (top 5

levels). 200
10.8 The iImpact from τc in RevMatch model. 201
10.9 The impact from C f n in RevMatch model. 202
10.10 Quality scores of all models with different C f n. 202
10.11 RevMatch model under three different attacks. 204
10.12 The quality scores versus the number of attackers. 204
10.13 The quality scores versus number of collaborators. 205

A.1 Structure of a Snort Rule. 216
A.2 Example of an intrusion alert in IDMEF format. 217

This page intentionally left blankThis page intentionally left blank

List of Tables

3.1 Classification of Cooperative Intrusion Detection Networks. 30

5.1 Acquaintance Categorization . 60
5.2 Simulation Parameters . 62

6.1 Summary of Notations . 76
6.2 Simulation Parameters . 85

7.1 Summary of Notations . 100

8.1 Summary of Notations . 123
8.2 Simulation Parameters . 133

9.1 Summary of Notations . 158
9.2 Simulation Parameters . 172

10.1 Summary of Notations . 190
10.2 Data Sets . 195
10.3 Antiviruses Used for Evaluation (presented in alphabetical order) . 196
10.4 Quality Ranking for Antiviruses 198
10.5 Quality Scores among Different Decision Models 203
10.6 Performance Summary of Collaborative Decision Models 206

xvii

This page intentionally left blankThis page intentionally left blank

Preface

The Internet has experienced explosive growth. Along with the widespread deploy-
ment of new emerging services, billions of computers and devices are connected
to the Internet and are accessible worldwide. At the same time, the growing size
and complexity of computer software leave thousands of software vulnerabilities ex-
posed for malicious exploitations. Millions of attacks and billions of dollars of loss
are reported every year as the result of cyber crimes. In this context, cyber intrusions
are becoming an increasingly global and urgent problem. As a countermeasure, In-
trusion Detection Systems (IDSs) are designed to identify intrusions by comparing
observable behavior against suspicious patterns, and notify administrators by raising
intrusion alarms. An IDS can be broadly defined as software or a device capable of
monitoring network or computer activities and raising alerts when suspicious activ-
ities are observed. Examples of IDS can be antivirus software, network-based IDS
(e.g., Snort, Bro), host-based IDS (e.g., OSSEC, Tripwire), honeynets, and firewalls.

Traditional IDSs work in isolation and can be easily compromised by threats
that are new or unknown to their providers. An Intrusion Detection Network (IDN)
is an overlay network composed of a number of IDSs. It intends to overcome the
weakness of isolated IDSs by allowing them to share their intrusion information
and detection knowledge with others, this way improving the overall accuracy of
intrusion assessment. However, building an effective IDN is a challenging task. For
example, adversaries may compromise some IDSs in the network and then leverage
the compromised nodes to send false information, spam, or even attack other nodes
in the network, which can compromise the efficiency of the IDN. It is, therefore,
important for an IDN to detect and isolate malicious insiders. Another challenge is
how to make efficient intrusion detection assessment based on the collective infor-
mation and knowledge from other IDSs. Appropriate selection of collaborators and
incentive-compatible resource management in support of IDS interaction with other
peers are also key challenges in IDN design.

This book presents the IDN concept and discusses IDN design with an emphasis
on the following questions: Why build intrusion detection networks; what are the
problems underlying the design of intrusion detection networks; and what are the

xix

xx � Intrusion Detection Networks: A Key to Collaborative Security

solutions to those problems? We present an overview of existing IDN designs and
elaborate on the underlying challenges, including privacy, malicious insiders, scala-
bility, free-riders, collaboration incentives, and intrusion detection efficiency.

Privacy is important because IDN users may be discouraged to participate in
IDNs if there is potential information breaching during collaboration. We categorize
existing IDNs into information based, consultation based, and knowledge based. We
then analyze the privacy concerns in each of them.

In an IDN, participating IDSs can be malicious. A trust management framework
is required to identify dishonest or malicious insiders. In Chapter 4 we discuss the
Bayesian learning based trust management model where each participant IDS eval-
uates the trustworthiness of its collaborators through past experiences with them. A
Dirichlet model is presented as a means to integrate past experiences and calculate
trust values as well as the confidence levels in the trust estimation.

While IDSs provide intrusion detection opinions of their own, how IDSs use the
collective opinions to make a decision whether an intrusion is detected or not is an-
other challenge. Chapter 5 first discusses how Bayesian decision models can be used
to make optimal intrusion decisions that have minimal false decision cost, and how
sequential hypothesis models can be used to decide the minimum list of collabora-
tors to consult in order to achieve a decision satisfying a given confidence level. The
optimal decision model is used to compare the expected cost of whether or not to
raise an intrusion alarm, and choose the decision which bears the lowest cost. The
sequential hypothesis model is used to find the minimal number of collaborators to
consult before a confident decision is made, which can effectively reduce the amount
of communication overhead between IDSs.

Once collaboration connections are established, how much resource to allocate
for each collaborator in order to maintain a fair, incentive-compatible, and with no-
free-rider collaboration environment is the main topic discussed in Chapter 6. The
nodes in the IDN are modeled as a set of uncooperative game players and all the
nodes follow a predefined strategy to play the game. The game strategy is for each
node to decide how to allocate resources to their neighbors fairly. It is proved that the
game has a Nash Equilibrium (NE), and under the NE the amount of help received
by each node is proportional to the amount of its contribution to others. Free-riding is
thus not practical under this resource allocation design. In Chapter 7, a collaborator
management model is discussed to allow each IDS to select a best combination of
collaborators that minimizes cost. Because the optimal selection of collaborators is
an NP hard problem, heuristic approaches are sought to find near-optimal solutions.

As discussed above, this book not only discusses efficient IDN design, but also
provides a collection of problem solutions to key IDN design challenges and shows
how various theoretical tools can be used in this context. Another highlight of this
book is the evaluation of IDN designs, including comprehensive validation method-
ologies and evaluation metrics (e.g., efficiency of intrusion detection, robustness
against malicious insiders, fairness and incentive compatibility for all participants,
and scalability in network size).

Carol Fung and Raouf Boutaba

About the Authors

Carol Fung is an assistant professor of computer science at Virginia Common-
wealth University (USA). She earned her bachelor’s and master’s degrees in com-
puter science from the University of Manitoba (Canada), and her PhD in computer
science from the University of Waterloo (Canada). Her research interests include
collaborative intrusion detection networks, social networks, security issues in mo-
bile networks and medical systems, location-based services for mobile phones, and
machine learning in intrusion detection. She was the recipient of the best disserta-
tion awards in IM2013, the best student paper award in CNSM2011 and the best
paper award in IM2009. She has received numerous prestige awards and scholar-
ships including the Google Anita Borg Scholarship, NSERC Postdoc Fellowship,
David Cheriton Scholarship, NSERC Postgraduate Scholarship, and the President’s
Graduate Scholarship. She has been a visiting scholar at POSTECH (South Korea),
a software engineer at Google, and a research staff member at BlackBerry.

xxi

xxii � Intrusion Detection Networks: A Key to Collaborative Security

Raouf Boutaba is a professor of computer science at the University of Water-
loo (Canada) and a distinguished visiting professor at POSTECH (South Korea).
He served as a distinguished speaker of the IEEE Communications Society and the
IEEE Computer Society. He is the founding chair of the IEEE Communications Soci-
ety Technical Committee on Autonomic Communications, and the founding editor in
chief of the IEEE Transactions on Network and Service Management (2007–2010).
He is currently on the advisory editorial board of the Journal of Network and Systems
Management, and on the editorial board of IEEE Transactions on Mobile Computing,
IEEE Communication Surveys and Tutorials, KICS/IEEE Journal of Communica-
tions and Networks, International Journal on Network Management (ACM/Wiley),
Wireless Communications and Mobile Computing (Wiley), and the Journal on Inter-
net Services and Applications (Springer). His research interests include resource and
service management in networked systems. He has published extensively in these ar-
eas and received several journal and conference best paper awards such as the IEEE
2008 Fred W. Ellersick Prize Paper Award, the 2001 KICS/IEEE Journal on Com-
munications and Networks Best Paper Award, the IM 2007 and 2009, and the CNSM
2010 Best Paper Awards, among others. He also received several recognitions, such
as the Premier’s Research Excellence Award, Nortel Research Excellence Awards,
a fellowship of the faculty of mathematics, David R. Cheriton faculty fellowships,
outstanding performance awards at Waterloo and the NSERC Discovery Accelerator
Award. He has also received the IEEE Communications Society Hal Sobol Award
and the IFIP Silver Core in 2007, the IEEE Communications Society Joe LociCero
Award and the IFIP/IEEE Dan Stokesbury Award in 2009, and the IFIP/IEEE Salah
Aidarous Award in 2012. He is a fellow of the IEEE and the EIC.

INTRODUCTION I

2 � Intrusion Detection Networks: A Key to Collaborative Security

In November 2008, a new type of computer worm started to spread quickly. It
used three different types of attack on Windows R© hosts: exploiting vulnerabilities,
guessing passwords, and infecting removable devices [20]. In three months it took
over about 9 million Microsoft R© Windows systems around the world and formed a
massive botnet [5]. The estimated economic loss brought by this worm was USD 9.1
billion [33]. The worm was named “Conficker,” and it was only one of the thousands
of worms that appear every year.

Nowadays the vast majority of computers are connected to the Internet. A number
of applications used by billions of users on a day-to-day basis including email, Web
browsing, video/audio streaming, social networking, online gaming, e-commerce,
and online chatting rely on the Internet. At the same time, network intrusions have
become a severe threat to the privacy and safety of computer users. Each year, mil-
lions of malicious cyber attacks are reported [64, 145]. Attacks are becoming more
sophisticated and stealthy, driven by an “underground economy” [65]. By defini-
tion, network intrusions are unwanted traffic or computer activities that may be mali-
cious or destructive, including viruses, worms, trojan horses, port scanning, password
guessing, code injection, and session hijacking. The consequences of a network in-
trusion can be user identity theft (ID theft), unwanted advertisement and commercial
emails (spam), the degradation or termination of the host service (denial of service),
or using fraudulent sources to obtain sensitive information from users (phishing).
Network intrusions are usually accomplished with the assistance of malicious code
(a.k.a. malware). In recent years, network intrusions have become more sophisticated
and organized. Attackers can control a large number of compromised hosts/devices
to form botnets [5], and then launch organized attacks, such as distributed denial of
service.

As a countermeasure, intrusion detection systems (IDSs) are used to identify in-
trusions by comparing observable behavior against suspicious patterns. Based on
the technology used for detection, IDSs can be categorized as signature-based or
anomaly-based. Based on the targets they are monitoring, they can be host-based
or network-based. Examples of IDSs include antivirus software [26, 4], Snort [24],
Bro [7], Tripwire [29], OSSEC [19], and HoneyNets [27]. Traditional IDSs moni-
tor computer activities on a single host, or monitor network traffic in a sub-network.
They do not have a global (i.e., Internet-wide) view of intrusions and are not effec-
tive in detecting fast-spreading attacks. In addition, traditional IDSs acquire detection
rules only from their corresponding vendors. Various security vendors usually em-
ploy distinct intrusion detection technologies and knowledge. In practice, not a single
security vendor has the entire knowledge to detect all types of intrusions. Therefore,
traditional IDSs are not effective in detecting unknown or new threats. In turn, they
can achieve better detection accuracy through collaboration. A good example of this
is antivirus software, where it is common knowledge that a malware file that has
not been detected by one antivirus software may be detected by another. However,
if IDSs are allowed to communicate with each other and exchange intrusion infor-
mation, each IDS can benefit from the collective expertise of the others. Therefore,
collaboration between IDSs is envisioned to be a promising approach to improve
intrusion detection.

Introduction � 3

Some early works on IDS collaboration include Indra [84] and DOMINO [149],
where IDSs shared information to prevent fast-spreading attacks. However, their col-
laboration was limited to selected nodes that followed predefined communication
protocols such as DOMINO. Later, in 2008, standardized models and communica-
tion protocols provided a method for various IDSs to communicate with each other.
The two important standards are IDMEF (Intrusion Detection Message Exchange
Format) [15] and CIDSS (Common Intrusion Detection Signatures Standard) [9].
IDMEF provides a communication standard enabling different intrusion detection
analyzers from different origins (commercial, open-source, and research systems) to
report to a managing entity for data analysis, aggregation, correlation, etc. It is XML
based and includes two types of messages: heartbeat messages sent periodically to
state that an IDS in the distributed system is still alive, and alert messages sent when
a suspicious event occurs. Those events can be augmented with additional informa-
tion in the form of XML compound classes such as the scanner type, timestamps, and
classifications in the case of an alert, or even self-defined attributes (see Appendix
A). The IDMEF is specified in RFC4765 [22] and implemented by many IDSs such
as Snort and OSSEC. CIDSS defines a common XML-based data format for stor-
ing signatures from different intrusion detection systems and shares the signatures
among them. In this way, it is primarily aimed at IDS administrators to exchange,
evaluate, and criticize signatures. Also, a future scenario is considered in which in-
dependent contributors exist, enabling the provision of signatures independent of a
particular product or software.

The standardization of communication protocols between different IDSs allows
each IDS to obtain intrusion information and detection knowledge from other IDSs
in the network. An intrusion detection network (IDN) is such a collaboration net-
work, allowing IDSs to exchange information with each other and to benefit from
the collective knowledge and experience shared by others. IDNs enhance the overall
accuracy of intrusion assessment as well as the ability to detect new intrusion types.
There are two types of IDNs in the literature: information-based and consultation-
based. In an information-based IDN, nodes share observations and detection knowl-
edge with other nodes in the network, such as knowledge related to new attacks. This
type of IDN is effective in detecting fast-spreading attacks such as worms. However,
it may generate large communication overhead, and all exchanged information may
not be useful to others. In a consultation-based IDN, when an IDS detects suspicious
activities but does not have enough confidence to make a decision, it may send con-
sultation requests to others in the network. Feedback from the collaborators can be
used to make a final decision as to whether or not it is an intrusion. Consultation-
based IDNs have much lower communication overhead, are more effective in terms
of communication efficiency, and are the focus of this book.

Although communication and collaboration among IDSs is feasible, building an
effective IDN is a challenging task. For example, adversaries may compromise some
IDSs in the network and then leverage the compromised nodes to send false informa-
tion and spam, to free-ride, or even to attack other nodes in the network, which can
compromise the efficiency of the IDN. It is therefore important for an IDN to detect
and isolate malicious insiders. Another challenge is how to make efficient intrusion

4 � Intrusion Detection Networks: A Key to Collaborative Security

detection assessments based on the collective information and knowledge from other
IDSs. Appropriate selection of IDN participants and incentive-compatible resource
management in support of IDS interactions with peers are also key challenges in IDN
design.

This book focuses on the design of IDNs leveraging effective and efficient collab-
oration between participant IDSs. We emphasize “collaboration” from the perspec-
tive of an IDS to provide a systematic approach for determining who to collaborate
with and how to make intrusion detection decisions based on collective knowledge.
The book will answer the following questions: why build intrusion detection net-
works; what are the problems underlying the design of intrusion detection networks;
and what are the solutions to those problems? We overview existing IDN designs and
discuss the underlying challenges, including privacy, malicious insiders, scalability,
free-riders, collaboration incentives, and intrusion detection efficiency.

Privacy is important because IDN users may be discouraged to participate in
IDNs if there is potential information breaching during collaboration. How to de-
sign communication protocol among IDSs to minimize information breach during
collaboration is also a challenging problem. This is particularly true when some par-
ticipants are malicious. A malicious IDN participant can not only gather information
from other peers and turn it against others, but can also send false information or
spam to other IDSs to compromise the efficiency of the IDN. Therefore, a trust man-
agement framework is required to identify dishonest or malicious insiders. Research
results [69, 72, 74] show that an efficient trust management system can effectively
identify malicious/dishonest or incompetent IDSs in the network, thus improving the
quality of collaboration by eliminating the impact of malicious IDSs. In particular,
we present in Chapter 5 a Bayesian-learning-based trust management model where
each participating IDS evaluates the trustworthiness of its collaborators through past
experiences with them. A Dirichlet model is presented as a means to integrate past
experiences and calculate trust values as well as the confidence levels in the trust
estimation.

Another important problem pertaining to IDS collaboration in an IDN is how
IDSs use other’s opinions to make a decision. The problem for IDSs in the IDN is
to determine whether or not to raise an intrusion alarm, based on the feedback from
collaborators. Two types of false decision cost are considered in the literature [75]:
false positive cost and false negative cost. Bayesian hypothesis modeling can be used
to model the risk cost of decisions and to choose the decision that has the lower
risk cost. An interesting question here is how to determine the minimum amount of
feedback an IDS needs to achieve a low enough cost [159]. Chapter 6 first discusses
how Bayesian decision models can be used to make optimal intrusion decisions that
have minimal false decision cost, and how sequential hypothesis models can be used
to decide the smallest list of collaborators to consult in order to achieve a decision
satisfying a given confidence level. The optimal decision model is used to compare
the expected costs of raising or not raising an intrusion alarm, and then to choose the
decision that bears the lowest cost. .

Once collaboration connections are established, determining how much resources
are required for each collaborator in order to maintain a fair, incentive-compatible,

Introduction � 5

and with no-free-rider collaboration environment is another interesting research
question. Game theoretic approaches can be used to model the resource allocation
strategy of IDN participants [162, 163]. Specifically, as shown in Chapter 7, the
nodes in the IDN can be modeled as a set of uncooperative game players, and all
the nodes follow a predefined strategy to play the game. The game strategy is for
each node to decide how to allocate resources to their neighbors fairly. It is proved
that the game has a Nash Equilibrium (NE), and under the NE the amount of help
received by each node is proportional to the amount of its contribution to others.
Free-riding is thus not practical under this resource allocation design.

In a dynamic IDS collaboration environment, participating IDSs may join, leave
the network, or become compromised. How to select and maintain collaborators ef-
fectively is of paramount importance. This is referred to, in this book, as the ac-
quaintance selection problem, which can be formulated as an optimization prob-
lem [70, 71] where an optimal collaborator set should lead to minimal false decision
and maintenance costs. In Chapter 8 we describe a collaborator management model
that allows each IDS to select the best combination of collaborators to minimize its
cost. Because the optimal selection of collaborators is an NP-hard problem, heuristic
approaches are sought to find near-optimal solutions.

In addition to the design of a consultation-based IDN, we also discuss the design
of a knowledge-based IDN. Knowledge sharing and propagation is an important fea-
ture for knowledge-based IDNs because IDSs can effectively exchange intrusion de-
tection information such as new intrusion alerts, black lists, emerging intrusion detec-
tion rules or malware signatures, etc., in a collaborative environment. Chapter 9 dis-
cusses effective information propagation mechanisms for IDSs in knowledge-based
IDNs to select appropriate peers to propagate their knowledge to. For instance, a two-
level game-theoretic formulation for the knowledge propagation control is employed,
leading to a prime Nash equilibrium solution that provides a scalable, incentive- com-
patible, fair, efficient, and robust outcome. The chapter also presents an analysis, at
equilibrium, of the macroscopic knowledge propagation properties on a large collab-
orative network.

To demonstrate the applicability of collaborative intrusion detection to real-world
scenarios, we also use a study case to show the effectiveness of collaboration in mal-
ware detection, which is described in Chapter 10. In the collaborative malware de-
tection network (CMDN), participants send suspicious files or their digests to their
acquaintances for consultation. We especially focus on the decision algorithm design
where possibly correlated feedbacks are aggregated to make a final decision. We
show that the decision algorithm is efficient and robust to malicious insiders com-
pared to many other existing collaborative decison methods in the literature. We use
real malware and goodware data to evaluate the efficiency, scalability, flexibility, and
robustness of the collaborative malware detection network.

As discussed above, this book does not only discuss efficient IDN design, but also
provides a collection of powerful solutions to key IDN design challenges and shows
how various theoretical tools can be used in this context. Another highlight of this
book is the comprehensive evaluation of IDN designs, including various evaluation
metrics (e.g., efficiency of intrusion detection, robustness against malicious insiders,

6 � Intrusion Detection Networks: A Key to Collaborative Security

fairness and incentive-compatibility for all participants, and scalability in network
size).

This book is organized as follows. Chapter 2 presents an overview of network
intrusions, their potential damage, and corresponding detection methods. We then
have a survey of existing intrusion detection systems and intrusion detection net-
works in Chapter 3. Chapter 4 discusses our decentralized IDN topology design and
architecture design. Chapter 5 and Chapter 6 are, respectively, dedicated to trust man-
agement and intrusion detection decision making. Resource management and collab-
orator management are discussed in Chapter 7 and Chapter 8, respectively. We also
discuss knowledge propagation mechanism design in Chapter 9 and then we have
a IDN study case in Chapter 10. Finally, we summarize and conclude this book in
Section V.

CYBER
INTRUSIONS AND
INTRUSION
DETECTION

II

This page intentionally left blankThis page intentionally left blank

Chapter 2

Cyber Intrusions

CONTENTS
2.1 Introduction . 9
2.2 Overview of Cyber Intrusions . 10

2.2.1 Malware . 10
2.2.2 Vulnerabilities Exploitation . 11
2.2.3 Denial-of-Service Attack . 12
2.2.4 Web-Based Attacks . 13
2.2.5 DNS Attack . 14
2.2.6 Organized Attacks and Botnets . 15
2.2.7 Spam and Phishing . 15
2.2.8 Mobile Device Security . 17
2.2.9 Cyber Crime and Cyber Warfare . 17

2.3 A Taxonomy of Cyber Intrusions . 18
2.4 Summary . 18

2.1 Introduction
Since the first computer virus Creeper appeared in 1971, cyber attacks have been
growing explosively and became a serious problem these days. Throughout the
1990s, the rise of commercial interest on the Internet has propelled information in-
frastructure as the core component of a global economy. Government agencies and
businesses have become increasingly dependent on information technology for daily
operations to increase their productivity. However, the increasing number of cyber
threats and attacks has become a serious issue for the entire economy and government
systems. Millions of attacks have been reported and hundreds of millions of nodes are

9

10 � Intrusion Detection Networks: A Key to Collaborative Security

compromised every year [32]. Sophisticated cyber attackers not only compromise the
connected Internet computers for identity theft and information harvesting, but also
use the compromised computers for criminal purposes, such as launching distributed
denial-of-service (DDoS) attacks on some businesses or agencies. Cyber wars, as de-
fined by Richard A. Clarke “...actions by a nation-state to penetrate another nation’s
computers or networks for the purposes of causing damage or disruption” [47], have
become frequent and caused significant damage in recent years.

“America must . . . face the rapidly growing threat from cyber-
attacks..”

—U.S. President Barack Obama
February 2013

Cyber attacks, by definition, are computer activities generally seen as targeting
vulnerable computers and making them malfunction or resulting in disrupted flows
of data that disable businesses, financial institutions, medical institutions, and gov-
ernment agencies. For example, cyber attacks can alter credit card transaction data
at e-commerce websites and can cause the altered information to spread into bank-
ing systems. They can also disrupt the normal operation of information systems and
bring down critical infrastructures. Cyber attacks can cause tremendous economic
damage at a relatively low cost of initiating the attacks.

There are many different ways to launch cyber attacks, including malware infec-
tion, software/service vulnerability exploitation, denial of service, and phishing. In
this chapter we discuss different cyber attacks based on their propagation properties,
types of crime, and magnitude.

2.2 Overview of Cyber Intrusions
2.2.1 Malware
A network intrusion accomplishes its goal by executing malicious software/code on
the victim machine. Malware is a term for all software or code designed to cause
damage to a device or a network. There are many different types of malware, such as
computer viruses, worms, trojans, and spyware.

A computer virus is a computer program that can insert/copy itself into one or
more files without the permission or knowledge of the user, and then perform some
(possibly null) operations [41]. Malicious viruses may cause a program to run in-
correctly or corrupt a computer’s memory, while nonmalicious viruses may do no
harm. A computer can be infected with a virus when copying data from other com-
puters or when using an infected external drive such as a flash memory or removable

Cyber Intrusions � 11

disk. As their name suggests, viruses can replicate themselves to infect other hosts,
but typically do so after user interaction. For instance, a virus received as an email
attachment infects the user host when opened by the user and eventually spreads to
other hosts by sending the same email to contacts in the user’s address book.

In general, most computer viruses do not actively search for victims through
a network. Malware that actively searches for victims is known as worm. A com-
puter worm is a program that propagates itself through the network automatically
by exploiting security flaws in widely used services [143]. Worms can cause the
most extensive and widespread damage of all types of computer attacks because of
their automatic spreading capability. A large number of different worms have been
documented over the years. Some of the most famous ones include Morris (1988),
CodeRed (2001), SQL Slammer (2003), the Witty worm (2004), the Conficker worm
(2009), and Stuxnet (2010).

A distinguishing characteristic of computer viruses and worms is their ability to
self-replicate and spread within networks. There are some other types of harmful
software/code which do not self-replicate, such as trojan horses (trojans). A trojan
(also called a backdoor) is a program with an overt (documented or known) effect
and a covert (undocumented or unexpected) effect [41]. For many years, trojans have
been the most widely used source of malware by hackers [115]. Trojans appear to
perform desirable functions, but in fact facilitate unauthorized access to users’ com-
puters. A typical trojan requires interactions with a hacker. Hackers can access the
infected hosts and manipulate them using commands.

The most difficult to detect type of malware is Rootkit, which is designed to hide
the existence of certain processes or programs from normal methods of detection
and enables continued privileged access to a computer. Once a Rootkit is installed, it
becomes possible to hide the intrusion as well as to maintain privileged access. The
key is the root/administrator access. Full control over a system means that existing
software can be modified, including software that might otherwise be used to detect
or circumvent it. Rootkits are usually malicious and allow attackers to access and
control the compromised system.

Finally, spyware is a type of malware that is installed surreptitiously on a personal
computer to collect information about the user without their informed consent, such
as their browsing habits. Spyware can report user information to the attacker, such
as email addresses, credit card information, bank account information, passwords,
and other sensitive information. The difference between spyware and trojans is that
spyware aims at collecting information from users and a trojan allows hackers to
access the infected host.

2.2.2 Vulnerabilities Exploitation
In the past few years, a plethora of services and applications has become available
online and accessible by users worldwide. However, due to the increasing size and
complexity of these services and applications, design and implementation flaws are
commonplace, making them vulnerable to attackers. A software vulnerability is a
weakness in a computer program that can be exploited by an attacker and used to gain

12 � Intrusion Detection Networks: A Key to Collaborative Security

unauthorized access or to degrade service performance. There are thousands of soft-
ware vulnerabilities discovered and documented each year in vulnerability databases
such as the National Vulnerability Database [18] and US-CERT [30]. An exploitable
vulnerability is the combination of three elements: a system flaw, attackers’ access
to the flaw, and attackers’ capability to exploit the flaw. To exploit a vulnerability,
an attacker must have at least one applicable tool or technique that allows him to
connect to a system weakness.

A vulnerability that is unknown or freshly discovered and not yet patched by
system developers is called a zero-day vulnerability. Attacks that are targeted at a
zero-day vulnerability are called zero-day attacks. Zero-day attacks occur during the
vulnerable time window that exists between the time the vulnerability is known to
attackers and when software developers start to patch and publish a countermeasure.

A typical example of a vulnerability is the buffer overflow, where attackers can
manipulate an already-running program to overrun the buffer’s boundary and over-
write its adjacent memory, and eventually cause the program to execute the attacker’s
code. A buffer overflow can be triggered by injecting malicious code through inputs
when running the program. Attackers can take advantage of the buffer overflow vul-
nerability of a service to crash the service or run malware.

2.2.3 Denial-of-Service Attack
A denial-of-Service attack (DoS attack) is a type of cyber attack with the intention to
render a machine or network service unavailable to its intended users. Although there
are various attack techniques, motivations, and targets of a DoS attack, it generally
consists of efforts to interrupt or suspend the services of an Internet host, such as
banking services. A distributed denial-of-service attack (DDoS attack) occurs when
multiple computers launch a DoS attack against a targeted Internet host simulta-
neously, usually under the control of the same attacker. These attacker computers
are usually compromised nodes from a botnet. They flood the victim with intense
traffic or service requests. When a host is overloaded with connections, new con-
nections can no longer be accepted. The damage resulting from a DoS/DDoS attack
is typically measured in time and money loss due to service downtime and loss of
productivity.

There are typically two types of DoS attacks: operating system (OS) attacks and
network attacks. In the former, attackers exploit the OS vulnerabilities and bring
down the service using techniques such as buffer overflow. In the latter, attackers
overwhelm the target host with an excessive number of external communications re-
quests or amount of traffic, so that the victim cannot respond to legitimate requests,
or responds too slowly to be acceptable. Such attacks usually lead to a server or band-
width overload. In general, DoS attacks either force the target to reset, or consume
enough of its resources so that it cannot provide intended service to legitimate users,
or obstruct the communication media between the legitimate users and the victim so
that they can no longer communicate adequately. For example, in a SYN flood attack,
the attacker sends a large number of TCP/SYN packets, often with a forged sender
address. Each packet initiates a connection request, causing the server to open a con-

Cyber Intrusions � 13

nection by sending back a TCP/SYN-ACK packet (Acknowledgment) and wait for a
response from the sender address (response to the ACK Packet). However, because
the sender address is forged, the response never comes. These half-open connections
saturate all the available connections of the server, keeping it from responding to
legitimate requests.

Early occurrences of DoS attacks include the DoS attacks in February 2000,
where the attackers managed to bring down the websites of large companies like
ebay, Yahoo, and Amazon after a series of DoS attacks [10]. A recent well-known
DDoS attack occurred in late 2012, when a series of DoS attacks were launched
against the American financial sector, leading to a cost of $30,000 per minute when
the attacked websites were down [12]. A more recent DDoS attack in March 2013 tar-
geted the largest spam filtering system, Spamhaus, was considered the largest DDoS
attack in history. It generated 300 Gbps of traffic which slowed down the Internet
around the world for about a week [11].

2.2.4 Web-Based Attacks
Although malware is a very popular way to attack computers or devices on the In-
ternet, it usually requires victims to receive and run malicious code [53], which can
be avoided by careful Internet users. Web-based attacks are another type of attack
on Internet users and Web services. Typical examples of Web-based attacks include
SQL-injection and cross-site-scripting.

SQL-injection is a way to exploit a type of vulnerability known as a command in-
jection vulnerability. Typically, SQL-injection arises when untrusted data is inserted
for malicious purposes into a query or command to a Web service. SQL-injection
attacks can be used to retrieve information from compromised Web services and
thereby cause information breaches. Information such as social security numbers,
dates of birth, and maiden names are collected by hackers as part of identity theft.
Another popular target of this type of attack is unprotected credit card information.
Massive credit card information loss can cause significant damage to an organiza-
tion’s most valued asset, its customers. Solutions to mitigate the impact of SQL-
injection attacks include applying data validation, encrypting sensitive data in the
database, and limiting privileges [53], among others. SQL-injection attacks can be
detected through anomaly detection methods (see Section 3.1) employed by intru-
sion detection systems (IDSs).

Cross-site-scripting (XSS) lies in the category of cross-domain security is-
sues [53]. This type of attack takes advantage of security vulnerabilities found in Web
applications, such as Web browsers. It allows attackers to inject client-side script into
Web pages and retrieve the session data of the user. A cross-site scripting vulnera-
bility may be used by attackers to bypass access controls such as the same origin
security policy. Cross-site scripting carried out on websites accounted for roughly
84% of all security vulnerabilities documented by Symantec, as of 2007 [136]. So-
lutions to prevent XSS attacks include input validation and output sanitization, the
usage of HTTP-only cookies, and binding session cookies to IP addresses [53].

14 � Intrusion Detection Networks: A Key to Collaborative Security

(4) 222.2.2.2

(1) W
hat

(2) What is the IP of

is the IP of

m
ybank.com

?

intended site to visit

Figure 2.1: The DNS spoofing attack.

2.2.5 DNS Attack
A DNS attack (or DNS spoofing) is a cyber attack targeting a Domain Name System
(DNS) server’s cache database, causing the name server to return an incorrect IP
address, and thereby diverting traffic to another computer (often the attacker’s).

A domain name system server translates a human-readable domain name (such
as example.com) into a numerical IP address that is used to route communications
between nodes. Normally, if the server does not know a requested translation offhand,
it will ask another server, and the process continues recursively.

As shown in Figure 2.1, to perform a DNS spoofing attack, the attacker exploits
a flaw in the DNS software and fakes the response from a legitimate DNS server
to a DNS cache server. If the DNS cache server does not correctly validate DNS
responses to ensure that they are from an authoritative source (for example, by using
DNSSEC), the server will end up caching the incorrect entry locally and serve them
to other users and lead them to fake websites.

This technique can be used to direct users of a website to another site of the
attacker’s choosing. For example, an attacker spoofs the IP address DNS entries for a

Cyber Intrusions � 15

target website on a given DNS server, replacing them with the IP address of a server
he controls. He then creates files on the server he controls with names matching those
on the target server. These files could contain malicious content, such as a computer
worm or a computer virus. A user whose computer has referenced the poisoned DNS
server would be tricked into accepting content coming from a nonauthentic server
and unknowingly download malicious content.

2.2.6 Organized Attacks and Botnets
Recent network intrusions have evolved to be more sophisticated and organized. At-
tackers are able to control a group of compromised computers/devices to launch dis-
tributed attacks; for example, the DDoS attack. Compromised nodes that are infected
with malware communicate with a master through a command and control (C&C)
server [141] or a peer-to-peer network. A group of compromised nodes and a mas-
ter together form a botnet. The compromised nodes are called “bot nodes,” and the
master is called a “bot master.”

The life cycle of a bot node is shown in Figure 2.2. In the beginning, the victim
machine was infected by malware. At this stage, a bot seed is planted into the victim
machine. In the next step, the infected machine sends a request to a bot code host
server and downloads bot binary and executes it. At this stage, the victim machine
turns into a bot node. The bot node then initiates contact with the bot master and
receives control commands from the bot master. Bot nodes can be used to commit
cyber crimes such as DDoS attacks, spam propagation, ID theft, or phishing.

2.2.7 Spam and Phishing
Spam is the activity of using electronic messaging systems to send unsolicited bulk
messages indiscriminately to users, especially for advertising products or services.
While the most well-known spam is email spam, the term also applies to similar
abuses in other media, such as instant messaging spam, social network spam, and
spam in blogs.

Spam is a widely used method for spreading malware, delivering advertisements,
and posting phishing links. For example, the famous “Love Letter” computer virus
(2000) was spread by sending emails with the subject line “I Love You” and the
attachment “Love-Letter-For-You.txt.vbs”. When the receivers opened the attached
executable file, it then activated the attached script and infected the host machine.
The “Love Letter” worm infected more than 50 million users in 10 days and caused
at least a USD 2 billion loss worldwide [82].

Another usage of spam emails is to post phishing weblinks. Phishing is a crimi-
nal activity consisting of stealing users’ personal identity data and financial account
credentials. Phishing attacks typically use two mechanisms. The first mechanism,
known as social engineering, makes use of spoofed emails appearing to be from
legitimate businesses and agencies in order to lead consumers to counterfeit web-
sites designed to trick recipients into divulging personal data such as usernames and
passwords. The second mechanism, known as technical subterfuge, plants crimeware

16 � Intrusion Detection Networks: A Key to Collaborative Security

Infect the victim

H
a
cke

r co
n
tro

ls

b
o
t m

a
ste

r

Figure 2.2: The life cycle of a bot node.

onto user computers to steal credentials directly through intelligent keyloggers and/or
by corrupting browser navigation in order to mislead customers to counterfeit web-
sites. Gartner estimated an increase in the cost of identity theft from USD 2 billion
to USD 3.2 billion in 2007 in the United States alone [83].

Like any large-scale online service, large-scale phishing websites rely on online
availability. Phishing sites, however, may be relatively easy to bring down if they
use fixed IP addresses. This is not only specific to phishing sites. In fact, any illegal
online organization that targets victims on a large scale requires high availability for
the continuation of its operation. Recently, Fast-Flux Service Networks [34] have
appeared to fulfill this requirement, ensuring a high availability yet evasiveness of
illegal sites. Fast-Flux Service Network (FFSN) is a term coined by the anti-spam
community to describe a decentralized botnet used to host online criminal activities.
FFSNs employ DNS techniques to establish a proxy network on the compromised
machines. These compromised machines are used to host illegal online services, like
phishing websites, malware delivery sites, etc., with very high availability. An FFSN
generally has hundreds or even thousands of IP addresses assigned to it. These IP
addresses are swapped in and out of flux with extremely high frequency, using a
combination of round-robin IP addresses and a very short Time-To-Live (TTL) for
any given particular DNS Resource Record (RR).

Website hostnames may be mapped to a new set of IP addresses as often as ev-
ery 3 minutes [34]. This makes it extremely hard to take down the actual service

Cyber Intrusions � 17

launcher, as the control node (mothership) is not known. The proxy agents do the
work for the control node, and they also change rapidly. ATLAS is a system from
Arbor Networks that identifies and tracks new Fast-Flux Networks [110]. In an in-
vestigation conducted in 2008, ibank-halifax.com was the largest detected fast flux
domain, with a size of 100,379 hosts and a DNS entry life of 2 months. When an
FFSN is detected, the domain registrars can be contacted to shut down the corre-
sponding domain, hence removing the FFSN. Although this mitigation technique
sounds doable, it is often a tedious and time-consuming task given the fact that not
all registrars respond to abuse complaints [1].

2.2.8 Mobile Device Security
With the rapid advances in the so-called “Internet of Things,” desktop computers are
no longer the dominant form of computing. For example, smartphone usage has been
growing exponentially and is replacing desktop usage to become the next popular
tool for email, news, chatting, and Internet access. Following the growth of smart-
phone use, smartphone exploitation techniques are also growing. A key feature of
modern smartphone platforms is a centralized service for downloading third-party
applications. The convenience to users and developers of such an “app market” has
led to an explosion in the number of apps available. Apple’s App Store served nearly
3 billion application downloads after only 18 months [35]. Many of these applica-
tions combine data from remote cloud services with information from local sources,
such as a GPS receiver, camera, microphone, or accelerometer. Applications often
have legitimate reasons for accessing this privacy-sensitive data, but users may not
be aware of whether or not their data is used properly. Many incidents have occurred
where developers relayed private information back to the cloud [54, 108], and the
privacy risks illustrate the danger [63].

In addition to the risk of downloading malware, mobile phone vulnerabilities are
also targets for exploitation. Hundreds of vulnerabilities were discovered in the years
2009 and 2010. While it may be difficult to exploit many of these vulnerabilities
successfully, there were two vulnerabilities affecting Apple’s iPhone iOS operating
system that allowed users to “jailbreak” their devices. The process of jailbreaking
a device through exploits is to install malicious code, which can gain the user root
privileges through exploiting a vulnerability in the iOS.

2.2.9 Cyber Crime and Cyber Warfare
Computer crime refers to any crime that involves a computer and a network. The
computer may have been used in the commission of a crime, or it may be the tar-
get. Cyber crimes are defined as “Offences that are committed against individuals or
groups of individuals with a criminal motive to intentionally harm the reputation of
the victim or cause physical or mental harm to the victim directly or indirectly, using
modern telecommunication networks such as Internet (Chat rooms, emails, notice
boards and groups) and mobile phones (SMS/MMS)” [80]. Issues surrounding this
type of crime are usually high profile, including cracking, copyright infringement,

18 � Intrusion Detection Networks: A Key to Collaborative Security

child pornography, and child grooming. They also include problems of privacy inva-
sion when confidential information is lost or intercepted, lawfully or otherwise.

Some cyber crimes may threaten a nation’s security and may be used as attack-
ing tools for military purposes across nations. Cyberwar, also known as “information
warfare,” became known first in 1994 when Winn Schwartau published a book en-
titled Information Warfare [123], when the computer security community was just
starting to wake up to the fact that the critical infrastructure we have built was vul-
nerable to certain attacks that could potentially lead to loss of life or tremendously
expensive damage. Cyber warfare involves the actions by a nation-state or interna-
tional organization to attack and attempt to damage another nation’s computers or
information networks through, for example, malware or denial-of-service attacks.
The objectives of cyber wars are usually political (e.g., to bend the other side to
one’s will) by causing damage. It is not inconceivable that a successful cyberwar can
overthrow the adversary’s government and replace it with a more malleable one. A
few well-known cyber warfare incidents in recent years include the StuxNet (2010),
the Titan Rain (2005), and the Georgian cyber war (2008).

2.3 A Taxonomy of Cyber Intrusions
In this section we summarize the above-mentioned cyber intrusions and provide a
taxonomy based on their malware types, attack targets, and attack methods. The tax-
onomy is shown in Figure 2.3.

2.4 Summary
Cyber intrusion has become an increasingly serious and global problem. This chapter
provided an overview of cyber intrusions and categorized cyber intrusions based on
their propagation properties, types of crime, and magnitude. Many types of cyber
attacks and their corresponding defense techniques are described. We then provided
a taxonomy of cyber intrusions based on the type of used malware, attack target, and
attack method.

To protect computers from cyber attacks, intrusion detection systems (IDSs) are
used to monitor computer/network activities, and detect and terminate cyber attacks.
An intrusion detection network is an overlay that allows IDSs to communicate and
make collaborative intrusion detection. In the next chapter we provide a survey of
intrusion detection systems and intrusion detection networks.

C
yberIntrusions

�
19

Figure
2.3:A

taxonom
y

ofcyber
intrusions.

This page intentionally left blankThis page intentionally left blank

Chapter 3

Intrusion Detection

CONTENTS
3.1 Intrusion Detection Systems . 22

3.1.1 Signature-Based and Anomaly-Based IDSs 22
3.1.2 Host-Based and Network-Based IDSs . 22
3.1.3 Other Types of IDSs . 24
3.1.4 Strength and Limitations of IDSs . 24

3.2 Collaborative Intrusion Detection Networks . 25
3.2.1 Motivation for IDS Collaboration . 25
3.2.2 Challenges of IDS Collaboration . 25

3.3 Overview of Existing Intrusion Detection Networks 26
3.3.1 Cooperation Topology . 26
3.3.2 Cooperation Scope . 27
3.3.3 Collaboration Type . 27
3.3.4 Specialization . 28
3.3.5 Cooperation Technologies and Algorithms 28

3.3.5.1 Data Correlation . 28
3.3.5.2 Trust Management . 29
3.3.5.3 Load Balancing . 29

3.3.6 Taxonomy . 29
3.4 Selected Intrusion Detection Networks . 29

3.4.1 Indra . 29
3.4.2 DOMINO . 30
3.4.3 DShield . 30
3.4.4 NetShield . 31
3.4.5 CIDS . 32
3.4.6 Gossip . 32

21

22 � Intrusion Detection Networks: A Key to Collaborative Security

3.4.7 Worminator . 33
3.4.8 ABDIAS . 34
3.4.9 CRIM . 34
3.4.10 ALPACAS . 35
3.4.11 CDDHT . 35
3.4.12 SmartScreen Filter . 35
3.4.13 CloudAV . 36
3.4.14 FFCIDN . 36
3.4.15 CMDA . 36

3.5 Summary . 36

3.1 Intrusion Detection Systems
Intrusion detection systems (IDSs) are software/hardware systems designed to mon-
itor network traffic or computer activities and emit alerts/alarms to administrators
when suspicious intrusions are detected. IDSs are different from firewalls. A fire-
wall is a device that filters all traffic between a protected or “internal” network and
a less trustworthy or “external” network, while IDSs sniff or monitor network traffic
or computer activities but do not drop or block them. A firewall can be used along
with an IDS to block identified malicious traffic in order to protect internal comput-
ers from being further exploited. Based on the technology used for detection, IDSs
can be divided into signature-based and anomaly-based types. Also, based on data
sources, they can be host-based or network-based.

3.1.1 Signature-Based and Anomaly-Based IDSs
Signature-based IDSs compare data packets with the signatures or attributes of
known intrusions to decide whether or not the observed traffic is malicious. A
signature-based IDS is efficient in detecting known intrusions with monomorphic
signatures. However, it is not efficient in detecting unknown intrusions or intrusions
with polymorphic signatures. Anomaly-based IDSs observe traffic or computer activ-
ities and detect intrusions by identifying activities distinct from a user’s or system’s
normal behavior. Anomaly-based IDSs can detect unknown intrusions or new intru-
sions. However, they usually suffer from a high false positive rate. Most current IDSs
employ both techniques to achieve better detection capability.

3.1.2 Host-Based and Network-Based IDSs
A host-based IDS (HIDS) runs on an individual host or device in the network (Fig-
ure 3.1). It monitors inbound/outbound traffic to/from a computer as well as internal
activities such as system calls. A HIDS views an individual device only, and may
not be aware of the overall network environment. Examples of HIDSs include OS-
SEC [19] and Tripwire [29].

Intrusion Detection � 23

Host-based IDS

Host-based IDS

Host-based IDS

Host-based IDS

WWW Server

Network-based IDS

Internal Firewall External Firewall

Router

Figure 3.1: An example of host-based IDS and network-based IDS.

Tripwire is a brand of software used to ensure the integrity of critical system files
and directories by identifying all changes made to them. Tripwire configuration op-
tions include the ability to receive alerts via email if particular files are altered, and
automated integrity checking. Using Tripwire for intrusion detection and damage as-
sessment helps in keeping track of system changes and can speed up the recovery
from a break-in by reducing the number of files that must be restored to repair the
system. Tripwire compares files and directories against a baseline database of file lo-
cations, dates modified, and other data. It generates the baseline by taking a snapshot
of specified files and directories in a known secure state. After creating the base-
line database, Tripwire compares the current system to the baseline and reports any
modifications, additions, or deletions.

Network-based IDSs (NIDS) monitor network traffic to/from the network. A
NIDS contains sensors to sniff packets, and a data analyzer to process and corre-
late data. Alarms are raised whenever suspected intrusions are found. However, a
NIDS does not have knowledge about the internal activities of individual computers.
Examples of NIDSs include Snort [24] and Bro [7].

Snort is a free and open-source NIDS, created in 1998 and developed by Source-
fire. Snort has the ability to perform real-time traffic analysis and packet logging on
IP networks. Snort performs protocol analysis, content searching, and content match-
ing. It relies on a set of predefined policies called “Snort rules” to detect suspicious

24 � Intrusion Detection Networks: A Key to Collaborative Security

traffic. The rules specify the patterns of potential attacks, including IP addresses, port
numbers, protocols, and pattern strings. Snort rules need to be updated frequently to
keep up with new attacks. Snort can also be used to detect probes or attacks, includ-
ing but not limited to operating system fingerprinting attempts, common gateway
interfaces, buffer overflows, server message block probes, and port scans.

3.1.3 Other Types of IDSs
Early intrusion detection systems, such as [55, 57] and [98], relied on logging the
system activities to spot potential misuses that had occurred. The administrator re-
views the outputs of the IDS to find attacks, remove threats, and patch vulnerabilities
of the system. Modern IDSs analyze network traffic and/or system logs and perform
correlations in real-time before sending alerts/alarms to administrators. Besides the
traditional IDSs we listed in previous sections such as Snort, Bro, and OSSEC, other
applications/devices can be used as intrusion detection systems. In this section we
briefly describe honeypots and antiviruses.

Honeypots are systems set up for the purpose of trapping attackers/hackers and
collecting traces for security analysis. A honeypot generally consists of a computer,
data, or a network site that appears to be part of a network but is actually isolated
and monitored, and which seems to contain information or a resource of value to
attackers. Based on their level of interaction with attackers, honeypots can be di-
vided into low-interaction honeypots and high-interaction honeypots [128]. Low-
interaction honeypots are usually emulated services that are frequently requested by
attackers. They have limited interaction with attackers because they are not real ser-
vices. Most emulated services are only restricted to the first few interactions. Exam-
ples of such honeypots include Honeyd [14], Spector [25], and KFsensor [13]. High-
interaction honeypots imitate real operating systems that host a variety of services
and applications. Therefore, an attacker may be allowed to perform many types of
attacks on this type of honeypot. An example of such a honeypot is Honeynets [27].

Antivirus systems are software systems that monitor, prevent, detect, and remove
malware such as computer worms, viruses, adware, trojan horses, rootkits, and key-
loggers. A variety of strategies are employed by antivirus systems. There is signature-
based detection, which involves searching for known patterns of data within exe-
cutable code, and heuristic-based detection, which can identify new viruses or vari-
ants of existing viruses by looking for known malicious code, or slight variations of
such code, in files. Some antivirus software also uses anomaly detection techniques
to identify malware by running it in a sandbox and analyzing the behavior of a file
under execution in order to detect any malicious actions. Examples of antivirus soft-
ware include Symantec [26], Avira [4], and Avast [3].

3.1.4 Strength and Limitations of IDSs
Intrusion detection systems are constantly evolving. Research on IDSs began in the
1980s, and products appeared in the 1990s. As new vulnerabilities and attack types
become known, IDSs evolve and become more and more sophisticated. Indeed, IDSs

Intrusion Detection � 25

are improving continuously and are able to detect an ever-growing number of attacks
by including more and more attack signatures and attack models. Recall that IDSs
look for known vulnerabilities and weaknesses, either through patterns of known
attacks (signature-based) or models of normal behavior (anomaly-based). Whenever
new attacks are discovered, the corresponding detection rules/signature are created
by the IDS manufacturer and distributed to users’ IDSs. Many commercial IDSs are
quite effective in identifying new attacks.

However, it is difficult for IDSs to detect all potential attacks. Indeed, attackers
only need to evade the IDS once to successfully compromise the system, while IDSs
need to know all possible attacks to guarantee a successful defense. In practice, an
IDS vendor has knowledge about some attacks, but no single one knows all.

Another limitation of IDSs is their sensitivity control. It is typically the case that a
sensitive IDS raises too many intrusion alerts (most of them are false positive alerts),
which makes it difficult for administrators to handle. However, when an IDS is less
sensitive, it may miss critical attacks (false negatives) and hence fail to protect net-
works and hosts. Determining the optimal sensitivity of IDSs is a difficult problem.

3.2 Collaborative Intrusion Detection Networks
A collaborative intrusion detection network (CIDN) is an overlay network that con-
nects IDSs so that they can exchange information, such as intrusion alerts, black-
lists, signatures, suspicious files, and intrusion detection rules. Several IDNs have
been proposed in the past few years. In an IDN, IDSs collect data from distributed
peer IDSs and use it to achieve better intrusion detection. In this section we catego-
rize IDNs using three features, namely cooperation topology, cooperation scope, and
specialization. We also provide a taxonomy of some of the most prominent IDNs.

3.2.1 Motivation for IDS Collaboration
Isolated intrusion detection systems rely strictly on security updates from their re-
spective vendors and are vulnerable to new or unknown attacks. Collaboration be-
tween IDSs allows each IDS to use collective knowledge from other IDSs to achieve
more accurate intrusion detection, which is particularly useful for preventing new at-
tacks. For example, when one IDS detects a new attack, it can alert its collaborators,
which then can block similar attacks when they occur. Through knowledge-sharing,
collaboration between IDSs intuitively benefits each participating IDS and allows the
creation of an IDN with a much stronger intrusion detection capability. Building an
effective collaborative IDN, however, raises a number of challenges, which we will
discuss next.

3.2.2 Challenges of IDS Collaboration
Collaboration among intrusion detection systems has the potential to improve the ef-
fectiveness of intrusion detection, as IDSs leverage the collective intrusion detection
information received from their collaborators. As such, participating IDSs are less

26 � Intrusion Detection Networks: A Key to Collaborative Security

likely to be compromised by threats unknown to them. However, IDS collaboration
introduces communication overhead in the network. Because collaboration is based
on information exchange, each participant receives help from others in the network
but also has to spend resources (e.g., CPU, memory, network) to help others in return.
Therefore, IDSs with low resource capacity may be constrained in collaboration.

Another challenge for IDNs is that the participant IDSs may become the target
of malicious attacks. For example, adversaries may compromise some IDSs in the
network and then leverage the compromised nodes to send false information or spam,
or even to attack other nodes in the network, which can compromise the efficiency of
the collaboration network. Therefore, it is important for an IDN to detect and isolate
malicious insiders in order to eliminate their negative impact. In addition, how to
make efficient intrusion detection assessments based on the collective information
and knowledge from other peers is another challenge. In the following we discuss
some of the key challenges in IDN design including privacy, malicious insiders, free-
riders, scalability, incentives, and intrusion detection efficiency. Then we overview
some of the most prominent IDN designs in the literature.

Privacy is a primary issue, as IDN users can be discouraged from participating in
the IDN if there is potential information breaching during collaboration. To address
this issue, a trust management model can be used to identify dishonest and malicious
nodes. An effective trust management model should be able to distinguish honest
nodes from dishonest ones, and high-expertise nodes from low-expertise ones. Free-
riding the IDN is another important problem, where selfish nodes (a.k.a., free-riders)
exploit the network seeking knowledge from others but do not contribute themselves.
To handle this problem, an incentive-compatible resource allocation design can re-
ward active participants and discourage free-riders. A scalable IDN can accommo-
date a large number of nodes in the network without overburdening any single node.
A scalable IDN architecture design is necessary for a large-scale collaboration net-
work. Although IDS collaboration can improve overall intrusion detection accuracy,
its efficiency is limited by the quality of the individual intrusion detection systems.
Collaboration cannot detect an intrusion that no single IDS in the network can detect.
Therefore, improving the intrusion detection accuracy of each IDS is still an essential
problem to solve. In our work, we will demonstrate the effectiveness of IDS collabo-
ration and the amount of improvement in terms of detection accuracy over individual
IDSs.

3.3 Overview of Existing Intrusion Detection Networks
In this section we give a survey of existing intrusion detection networks in the lit-
erature and summarize them based on their topologies, scopes, specializations, and
technologies.

3.3.1 Cooperation Topology
The cooperation topology of an IDN can be centralized or decentralized. In a cen-
tralized system, all the intrusion data from end nodes is forwarded to a central server

Intrusion Detection � 27

for analyzing and processing. In general, a centralized system (e.g., DShield [137]
and CRIM [49]) has the advantage of having complete data and can potentially make
more accurate detection. However, the disadvantage is that it may cause traffic clog
close to the analyzing center, and the server is a single point of failure. On the other
side, in a decentralized system, intrusion data is sent to different places for processing
and analyzing. A decentralized system can be fully distributed or partially decentral-
ized. In a fully distributed system (e.g., Indra [84], NetShield [44], and HBCIDS
[72]), all nodes in the network play equal roles in cooperation as both data contrib-
utors and analyzers. The failure of a single node will have little impact on the func-
tionality of the cooperation network. However, the lack of full data in each analyzer
may lead to less accurate intrusion detection. In a partially decentralized system,
some nodes may take the responsibility of analyzing data, and therefore have heavier
workloads than peers which only contribute with data. The network structure may be
clustered (e.g., ABDIAS[77]) or hierarchical (e.g., DOMINO[149]). A partially de-
centralized system targets to find a balanced solution between the centralized system
and the fully distributed system.

3.3.2 Cooperation Scope
Another feature that can be used to categorize IDNs is the cooperation scope. The co-
operation scope of a IDN can be local, global, or hybrid. In a local-scope IDN (e.g.,
Indra[84] and Gossip[52]), peers in the IDN are usually assumed to be fully trusted.
The privacy concern of exchanging packet payload is usually neglected because all
nodes lie in the same administrative boundary. Therefore, data packets can be in full
disclosure and exchanged freely among peers. In a global IDN (e.g., DShield [137]
and NetShield [44]), peers exchange intrusion information with other IDSs outside
administration boundaries. Therefore, only limited information can be shared be-
cause privacy is a concern. In this case, data payload (or IP addresses, etc.) is ei-
ther digested or removed in the exchanged information. In a hybrid system (e.g.,
DOMINO [149] and ABDIAS [77], the network is divided into different trust zones.
Different data privacy policies are applied inside different zones, depending on the
level of trust inside the zone.

3.3.3 Collaboration Type
Divided by collaboration type, existing IDNs can be information-based, knowledge-
based, or consultation-based. In an information-based IDN, IDSs share intrusion
observations with others, such as intrusion alerts, source IPs, ports, suspicious attack
strings, or traffic volume, with other nodes to assist other IDSs in the network for
intrusion detection. Examples of information-based IDNs are DOMINO [149] and
NetShield [44]. Information-based IDNs are particularly effective in detecting epi-
demic worms and attacks, and zero-day attacks. In a consultation-based IDN, suspi-
cious data samples are sent to expert collaborators for diagnosis. Feedback from the
collaborators is then aggregated to help the sender IDS detect intrusions. Examples
of such IDNs include CloudAV [114] and CMDA [122]. Consultation-based IDNs

28 � Intrusion Detection Networks: A Key to Collaborative Security

are designed for collaboration among different security vendors and are effective in
detecting some intrusion types such as malware and spam. In a knowledge-based
IDN, peers share intrusion detection knowledge such as intrusion detection rules,
malware signatures, firewall rules, and black lists with other peers. Compared to the
other two types of IDNs, knowledge-based IDN has the least privacy concern because
observations are not shared with others.

3.3.4 Specialization
An IDN can be dedicated to a specific intrusion such as worms (e.g., NetShield [44],
Gossip [52] and Worminator [97]), Spam (e.g., ALPACA [154]), Botnet detection
(e.g., FFCIDN [155]), malware (e.g., CloudAV [114] and CMDA [122]), or can be
used to detect general intrusions (e.g., Indra [84], CRIM [49], and HBCIDS [72]).

3.3.5 Cooperation Technologies and Algorithms
There are several components essential to IDNs, namely data correlation, trust man-
agement, and load balancing. In this section we briefly describe each component and
give some examples of solutions.

3.3.5.1 Data Correlation

IDSs are known to generate large amounts of alerts with many false positives. In
practice, it is not uncommon to have several thousand alerts per day in a reasonably
sized organization. With the sheer number of alerts to deal with, it becomes hard to
decide in a timely way about which alert to deal with first. Tuning IDSs by individu-
ally tuning their detection thresholds to reduce the overall number of generated alerts
down to human scale is, however, not a solution as it may lead to the non-detection
of some important attacks. Moreover, recent attacks have become more complicated
and make use of a number of phases before carrying out the actual attack. The early
phase of a multi-phase attack may appear to be benign but when correlated with
later-stage alerts, can have a strong input in detecting the actual attack. The need for
alert correlation becomes more apparent in the presence of cooperative attacks as it
helps in linking together different alerts that may be spaced in time and place. Alert
correlation is hence about the combination of fragmented information contained in
the alert sequences and interpreting the whole flow of alerts. It is the process that
analyzes alerts produced by one or more IDSs and provides a more succinct and
high-level view of occurring or attempted intrusions [139]. In doing so, some alerts
may get modified or cleared, and new alerts may be generated and others delayed,
depending on the security policy in use.

Alert correlation techniques can be put into three broad categories. Alert clus-
tering is used to group alerts into clusters (or threads) based on some similarity
measure, such as IP addresses or port numbers [138]. The second category relies
on the pre-specification known attack sequences [56, 109]. The third category uses
logical dependencies between alerts by matching prerequisites (of an attack) with its

Intrusion Detection � 29

consequences [49, 113]. Attack graphs [126] are used in this regard to simplify the
identification of attack patterns that are made up of multiple individual attacks.

3.3.5.2 Trust Management

Trust management is an important component for intrusion detection cooperation,
especially when the participants cross administration boundaries. Without a trust
model, dishonest nodes may degrade the efficiency of the IDN by providing false
information. A trust management system can help to identify dishonest nodes by
monitoring the past behavior of participating nodes. Some existing IDNs that have
trust management system are simple voting model [77] and simple linear model [72].

3.3.5.3 Load Balancing

When an IDN needs to deal with a large amount of data and over the capacity of a sin-
gle IDS processor, it is necessary to distribute the workload into multiple servers to
speed up the detection. Load-balancing algorithms help to distribute workload evenly
on each IDS processor, and therefore improve the overall efficiency of the system.
Some examples of load-balancing algorithms are signature distributing among col-
laborative IDSs group [96], data flow distributing among an IDS group [92], and data
packets distributing among distributed IDSs [44].

3.3.6 Taxonomy
Based on the features provided above, we categorize a list of selected IDNs using a
taxonomy as in Table 3.1.

3.4 Selected Intrusion Detection Networks
In the previous section we have described several criteria that we use to distinguish
different IDNs and their taxonomy. In this section we select some aforementioned
IDNs in the literature and describe in more detail their designs, purposes, and which
categories they belong to.

3.4.1 Indra
Indra [84] was one of the first to propose a cooperative intrusion detection system.
In the proposed system, host-based IDSs in a local area network take a proactive
approach and send warnings to other trusted nodes about the intruder through a peer-
to-peer network. For example, as shown in Figure 3.2, if an attacker compromises
node B and then launches attacks from B to hosts in the trusted network, then node C
detects the attack from B and multicasts a security warning to its trusted neighbors.
Subsequently, if B tries to attack other nodes in the network, it will be repelled right

30 � Intrusion Detection Networks: A Key to Collaborative Security

Table 3.1 Classification of Cooperative Intrusion Detection Networks.

IDN Topology Scope Type Specification Technology
and Algorithm

Indra Distributed Local Information Worm —
DOMINO Decentralized Hybrid Information Worm —
DShield Centralized Global Information General Data correlation
NetShield Distributed Global Information Worm Load-balancing
Gossip Distributed Local Information Worm —
Worminator — Global Information Worm —
ABDIAS Decentralized Hybrid Information General Trust management
CRIM Centralized Local Information General Data correlation
CIDS Distributed Global Knowledge General Load-balancing
ALPACAS Distributed Global Information Spam Load balancing
CDDHT Decentralized Local Information General —
SmartScreen Centralized global Information Phishing —
CloudAV Centralized global Consultation Malware —
FFCIDN Centralized global Information Botnet Data correlation
CMDA Decentralized Local Consultation Malware —

away by the forewarned nodes. Indra is a fully distributed system that is targeted
toward local area networks.

3.4.2 DOMINO
DOMINO [149] is an IDS collaboration system that aims at monitoring Internet out-
breaks at large scale. In DOMINO (Figure 3.3), heterogeneous IDSs located at di-
verse locations share their intrusion information with each other. There are typically
three types of nodes: axis nodes, satellite nodes, and terrestrial contributors. Satellite
nodes are organized hierarchically and are responsible for gathering intrusion data
and sending it to parent nodes in the hierarchy. Parent nodes aggregate intrusion data
and further forward data up the hierarchy until they reach axis nodes. Axis nodes
analyze intrusion data, generate digested summary data, and then multicast them to
other axis nodes. Network-based IDSs and active sink nodes (such as Honeypot [50])
are integrated into axis nodes to monitor unused IP addresses for incoming worms.
Terrestrial contributors do not follow DOMINO protocols but can contribute to the
system through DOMINO access points. In DOMINO, heterogeneous nodes are in-
volved in the cooperation overlay. Information from axis nodes, satellite nodes, and
terrestrial contributors is distinguished by different trust levels. This feature enables
DOMINO to handle inter-administration-zone cooperation. DOMINO is a decentral-
ized system organized in a hierarchical structure for better scalability.

Intrusion Detection � 31

C

D FE

B

Attacker

A

Text

(1)

(2)

Figure 3.2: Indra architecture. (Adapted from [84].)

3.4.3 DShield
DShield [137] is a community-based firewall log correlation system. The central
server receives firewall logs from worldwide volunteers and then analyzes attack
trends based on the information collected. Similar systems include myNetWatchMan
[17] and CAIDA [8]. DShield is used as a data collection engine behind the SANS
Internet Storm Center (ISC) [23]. Analysis provided by DShield has been used in
the early detection of several worms, such as “Code Red” and “SQL Snake.” Due
to the number of participants and the volume of data collected, DShield is a very
attractive resource, and its data is used by researchers to analyze attack patterns.
However, DShield is a centralized system and does not provide real-time analysis or
rule generation. Also, due to privacy issues, payload information and some headers
cannot be shared, which makes classification of attacks often impossible.

3.4.4 NetShield
NetShield [44] is an IDN that uses the Chord DHT [131] to reduce communication
overhead. In this system, however, within the system architecture (Figure 3.4), IDSs
contribute and retrieve information from the system through a P2P overlay (the Chord
DHT). Each IDS maintains a local prevalence table to record the number of occur-
rences of each content block signature locally as well as its corresponding source
address and destination address. An update will be triggered if the local prevalence
of the content block exceeds a local threshold (for example, site A in Figure 3.4). If
the global prevalence is higher than a given threshold, and the address dispersion ex-

32 � Intrusion Detection Networks: A Key to Collaborative Security

A

A

A

AA

S S S

S
S

S S

S

PAxis Node

P

Terestrial Nodes

Data In

Data Out

Access Point

Satalites

External

Firewalls

Figure 3.3: DOMINO architecture. (Adapted from [149].)

ceeds a certain threshold, then an alarm is raised regarding the corresponding content
block. Netshield targets epidemic worm outbreaks or DoS attacks. However, using
content blocks as attack identification is not effective against polymorphic worms.
Also, NetShield assumes all IDN participants are honest, which makes it vulnerable
to collusion attacks and malicious nodes.

3.4.5 CIDS
Another collaborative intrusion detection system (CIDS) proposed by Zhou et al.
[157] also uses the Chord DHT system to organize IDSs into a peer-to-peer network.
Each IDS shares its blacklist with others through a fully distributed P2P overlay. If
a suspicious IP address is reported more than a threshold N, then all the IDSs that
reported it will be notified. CIDS is considered scalable and robust because it is built
on a P2P overlay. However, the limitation of this system is that it only identifies
potential intruders by IP addresses. Thus, it is not effective against worms having
a spreading degree of less than N. Also, the system can be vulnerable to colluding
malicious nodes. Because this IDN utilizes blacklists sharing, it can be categorized
into a knowledge-based IDN.

Intrusion Detection � 33

Site E

Site A

Site B

Site D

Site C

Chord ID Content

block

Local

prevalence

Address

(src,dest)

215 s4 6 S4(C),D4(C)

180 s5 4 S5(C),D5(C)

Chord ID Content

block

Local

prevalence

Address

(src,dest)

215 s4 5 S4(A),D4(A)

76 s1 1 S1(A),D1(A)

Chord ID Content

block

Global

prevalence

Address

dispersion

...

215 s4 11 18

U
p
d
a
te

P
re

va
le

n
ce

 (
2
1
5
,s

4
,5

,S
4
(A

),
D
4
(A

))
A
LA

R
M

(s
4)

ALARM
 (s4)

Figure 3.4: NetShield architecture. (Adapted from [44].)

3.4.6 Gossip
Denver et al. [52] proposed a gossip-based collaborative worm detection system
(Gossip) for enterprise-level IDNs for host-based IDSs. A fully distributed model
is adopted to avoid a single point of failure. In their system, host-based IDSs (lo-
cal detectors) raise alerts only if the number of newly created connections per unit
time exceeds a certain threshold. The alert will then be propagated to neighbors
for aggregation. A Bayesian-network-based alert aggregation model is used for alert
aggregation at global detectors. Their proposed system is aimed at detecting slow-
propagating worms in a local area network. However, their system only uses the new
connection rate as a sign of possible worm spread. This is not effective for worms
that are spread in a connectionless manner, such as UDP worms.

34 � Intrusion Detection Networks: A Key to Collaborative Security

3.4.7 Worminator
Worminator [97] was proposed to enable IDSs to share alert information with each
other to detect worm propagation. Alert correlation is used to gain better detection
accuracy. Different from most other systems, Worminator is concerned with the pri-
vacy of exchanging alerts, and uses a bloom filter to encode IP addresses and port
numbers in the alerts in order to preserve the privacy of collaborators. The authors
claimed that the system topology can be either centralized or decentralized, depend-
ing on the size of the network.

3.4.8 ABDIAS
Ghosh et al. proposed an agent-based distributed intrusion alert system (ABDIAS)
[77]. In the architecture design (Figure 3.5), IDSs (agents) are grouped into com-
munities (neighborhoods). Each agent collects information inside its neighborhood
and uses a Bayesian network analysis model to diagnose possible threats. Inter-
neighborhood communication only happens if a consensus cannot be reached within
a neighborhood. This system supports early warnings for pre-attack activities in or-
der to gain time for administrators to respond to potential attacks. This system also
supports a simple majority-based voting system to detect compromised nodes.

A1

A2

A8

A7
A6

A3
A4

A5

Inter-communication

Intra-communication

Figure 3.5: ABDIAS architecture. (Adapted from [77].)

Intrusion Detection � 35

3.4.9 CRIM
CRIM [49] is a cooperative IDS where alerts from individual IDSs are sent to a
central analyzer for clustering and correlation. A set of correlation rules are generated
offline by security administrators by analyzing attack descriptions. These correlation
rules are then used to analyze alerts collected from IDSs in order to recognize global
attack scenarios. CRIM is a semi-automatic alert correlation system, as it relies on
human interactions to define attack descriptions. It is also a centralized system.

3.4.10 ALPACAS
ALPACAS [154] is a cooperative spam filtering system aimed at preserving the pri-
vacy of emails as well as maintaining the scalability of the system. The system is
built on a peer-to-peer overlay to avoid the deficiency of a centralized system. Spam
mails and Ham mails are distributed to agents based on the range of their feature
signatures. An email is divided into feature trunks, and trunks are digested into fea-
ture fingerprints to preserve the content privacy of emails. The fingerprints of an
email are then sent to corresponding agents to compare with stored spam emails and
Ham emails by estimating the maximum signature overlap with spam (MOS) and the
maximum signature overlap with Ham (MOH). An email is labeled as spam if the
difference between MOS and MOH exceeds a certain threshold. ALPACAS is a fully
distributed system.

3.4.11 CDDHT
The Cyber Disease Distributed Hash Table (CDDHT) [94] was proposed as a dis-
tributed data fusion center. In its architecture, each node is a local intrusion detection
system that attempts to locally detect attacks and generate corresponding alerts. Each
alert is assigned a disease key based on the related intrusions. The alert is then sent
to a corresponding sensor fusion center (SFC) using a DHT-based P2P system. SFCs
are selected among nodes based on their capacity and resources. The goal of this sys-
tem is to avoid the bottleneck problem inherent to a centralized fusion center and to
use alert categorization techniques for balancing the load among the SFCs. CDDHT
is a decentralized system.

3.4.12 SmartScreen Filter
SmartScreen Filter [31] is a tool in MicrosoftTM Internet Explorer 8 that helps users
avoid socially engineered malware phishing websites and online fraud when brows-
ing the Web. A centralized mechanism is used to maintain a list of phishing sites and
malicious websites URLs. Users browsing listed phishing sites or malicious web-
sites will receive warnings to prevent them from being defrauded. Users are allowed
to report suspicious websites to the central server through a secure channel. Users’
feedback is analyzed together with input from the SmartScreen spam filter and input

36 � Intrusion Detection Networks: A Key to Collaborative Security

from other trusted sources to generate the URLs blacklist. Other similar phishing
filters are provided by EarthLink and eBay.

3.4.13 CloudAV
CloudAV [114] was proposed by Oberheide et al. in 2008. It is a centralized collabo-
rative malware scanning system, where antivirus software is organized into a cloud-
based malware scanning service. In such a system, service consumers (for example,
mobile phones) send suspicious files to the CloudAV system for scanning. A central
service dispatches the files to all participating antivirus scanners and aggregates their
scanning results using a simple threshold-based decision method. Then the central
service replies to service requesters with the aggregated scanning results. CloudAV
is able to provide a higher malware detection rate while maintaining a low false pos-
itive rate, compared to a single antivirus service. It is especially useful for end users
with less powerful intrusion detection engines, such as mobile phones. CloudAV is a
consultation-based IDN.

3.4.14 FFCIDN
Fast-flux service networks (FFSN) are one type of botnet that uses compromised
nodes to form a robust phishing domain. To detect fast-flux networks and prevent
them from causing further damage, Zhou et al. [155, 156], proposed a collaborative
IDN to detect FFSNs. The work is based on an observation that the number of IP
addresses returned after a DNS request is larger than usual. The collaboration system
collects query results from nodes from different locations and correlates them to ob-
tain the number of unique IP addresses and the number of unique fast-flux domains.
The relationship between the number of DNS queries and the number of unique IP
addresses and domains is traced. A corresponding DNS query threshold is derived
to speed up FFSN detection. Zhou et al.’s results showed that detecting FFSNs using
collaboration from nodes in different name domains is more efficient than detecting
them from a single node. This system is a centralized system.

3.4.15 CMDA
Collaborative Malware detection on Android (CMDA) [122] was proposed by
Schmidt et al., wherein Android phones assist each other when suspicious files are
detected but the host device does not have enough confidence in malware decision.
Then the host device sends the suspicious executable to its neighbors for diagnosis.
Each neighbor evaluates the received executable based on its own knowledge and
trained classifier and then sends the diagnosis results back to the host device. A final
decision is made based on the aggregated feedback from all neighbor nodes. CMDA
is a decentralized system and a consultation-based IDN.

Intrusion Detection � 37

Malicious

Server

Malware

S1

Neighbor 1

Neighbor 2

Neighbor 3

S1

S1

S1

Diagnosis report 3

Diagnosis report 2

Diagnosis re
port 1

Figure 3.6: Topology design for collaborative malware detection on Android.

3.5 Summary
IDSs are important countermeasures to cyber attacks. However, a single IDS is vul-
nerable to attacks that are unknown to its security vendors of system administrators.
Intrusion detection networks (IDNs) allow IDSs to exchange intrusion information
and detection knowledge, hence improving the intrusion detection accuracy by using
the collective knowledge from others. Several IDNs have been proposed in the lit-
erature. However, most of them focused on designing efficient and scalable network
overlays for the exchange of intrusion information. Some IDNs investigated infor-
mation aggregation, but only few have addressed the problems of malicious insiders
and free-riders. Malicious insiders pose a significant challenge to IDNs because ad-
versaries have high motivation to attack and compromise the IDSs in the network.
Designing IDNs that are robust to malicious insiders is therefore of paramount im-
portance. Free-riders also pose a significant challenge to collaboration in an IDN.
They are self-interested, do not share their resources, and try to take advantage of
the resources shared by others in the network. To address the free-rider problem, an
incentive mechanism design should be in place to discourage selfish behaviors. It is
therefore necessary to provide an IDN design that is not only scalable and efficient
in intrusion detection, but is also robust against malicious insiders and discourages
free-riding.

This page intentionally left blankThis page intentionally left blank

DESIGN OF AN
INTRUSION
DETECTION
NETWORK

III

This page intentionally left blankThis page intentionally left blank

Chapter 4

Collaborative Intrusion
Detection Networks
Architecture Design

CONTENTS
4.1 Introduction . 42
4.2 Collaboration Framework . 42

4.2.1 Network Join Process . 44
4.2.2 Consultation Requests . 45
4.2.3 Test Messages . 45
4.2.4 Communication Overlay . 46
4.2.5 Mediator . 46
4.2.6 Trust Management . 46
4.2.7 Acquaintance Management . 47
4.2.8 Resource Management . 47
4.2.9 Feedback Aggregation . 47

4.3 Discussion . 48
4.3.1 Privacy Issues . 48
4.3.2 Insider Attacks . 48

4.4 Summary . 49

41

42 � Intrusion Detection Networks: A Key to Collaborative Security

4.1 Introduction
A intrusion detection network (IDN) is an overlay network that enables IDSs to ex-
change intrusion information and knowledge in order to improve the overall detection
accuracy. IDSs in an IDN network can have a more global view of cyber intrusions
by receiving alerts from other IDSs in the networks. IDSs can also send consultation
requests to their collaborators when suspicious activities are detected but the local
IDS does not have enough confidence to make a decision. For example, an IDS may
receive a new file that can be flagged by the anomaly detection process. However,
anomaly detection commonly results in a high false positive rate. The IDS can send
the suspicious file to other IDSs for consultation. The collected feedback from other
IDSs can be used to make a more confident intrusion decision.

In Chapter 3 we surveyed a number of existing IDNs where IDSs share infor-
mation with others in order to detect intrusions that otherwise would not be detected
by a single IDS. Most of them are information-based IDNs. However, information-
based IDNs cause large communication overhead because they exchange observa-
tions and not all exchanged observations are useful to others in the network. In turn,
consultation-based IDNs only exchange observations when the host IDS cannot make
a confident decision, which leads to lower communication overhead. In addition, ex-
isting IDNs focus on the efficiency of information exchange and the aggregation of
collected information to make intrusion decisions. Only few studies have addressed
the problems of malicious insiders, free-riders, and how to select and maintain IDN
participants.

In the remainder of this book, we focus on consultation-based IDNs and de-
sign solutions to address the problems of malicious insiders and free-riders. An IDN
framework that is scalable, efficient, and robust to attacks is discussed in this chapter.
We first describe a modular-based IDN architecture design consisting of seven com-
ponents. We then briefly describe the functionality of each component addressing the
solutions mentioned above.

4.2 Collaboration Framework
As discussed in the introduction, IDN scalability can be achieved through completely
decentralized topology design and IDN efficiency through consultation-based IDN
design. In this perspective, we focus here on IDN design where IDSs from different
vendors or open-source providers are connected in a peer-to-peer overlay. We also
focus on IDN design, where IDSs send consultation requests to collaborators to ask
for a diagnosis when suspicious activities are detected but the host IDS does not have
enough confidence to make a correct decision. For this purpose, each IDS maintains
a list of “good” collaborators. For example, IDSs may choose to collaborate with
other IDSs with which they had good experience in the past (e.g., have been help-
ful in identifying intrusions). We consider the case where the IDN participants have
differing detection expertise levels and may act dishonestly or selfishly in collabora-

Collaborative Intrusion Detection Networks Architecture Design � 43

tion. For collaboration to be sustainable and efficient, we identify the following IDN
design requirements:

1. IDN nodes should have an effective trust evaluation capability to reduce the
negative impact of dishonest and incompetent nodes.

2. Allocation of IDN node resources for collaboration should be incentive-
compatible to discourage selfish behavior and encourage active collaboration.

3. IDN nodes should possess an efficient feedback aggregation capability to min-
imize the cost of false intrusion detections.

4. The IDN should be robust against insider attacks.

5. The IDN should be scalable in network size.

To satisfy the above requirements, we describe a collaborative intrusion detection
network (CIDN) architecture design similar to a social network. The IDN topology,
as shown in Figure 4.1, consists of IDSs (nodes), which may be network-based IDSs
(NIDSs) or host-based IDSs (HIDSs). IDN nodes are connected if they have a col-
laborative relationship. Each node maintains a list of other nodes that it currently
collaborates with. We call such nodes acquaintances. Each node in the IDN has the

Figure 4.1: Topology of a consultation-based collaborative intrusion detection net-
work.

44 � Intrusion Detection Networks: A Key to Collaborative Security

Figure 4.2: Communication protocol design for IDN.

freedom to choose its acquaintances based on their trustworthiness. The commu-
nication between collaborating nodes consists of intrusion evaluation requests and
corresponding feedback. There are two types of requests: intrusion consultation re-
quests and test messages. The architecture of the IDN is shown in Figure 4.3. It is
composed of seven components, namely the intrusion detection system, communi-
cation overlay, trust management, acquaintance management, resource management,
feedback aggregation, and mediator. In the following subsections we first describe
the IDN network join process for each user and then introduce the consultation and
test messages initiated after the join process. Finally we describe the functionality of
each component in the architecture.

4.2.1 Network Join Process
To join the IDN, a user needs to register to a trusted digital certificate authority (Fig-
ure 4.2) and get a public and private key pair that uniquely identifies the machine.
Note that we identify the (machine, user) tuple. This is because a different machine
means a different IDS instance. However, the network allows only one user on the
same machine in the IDN at a time, for the purpose of preventing attackers from influ-
encing the IDN operation using a large number of pseudonym nodes (Sybil attack).
However, multiple users can be registered on the same machine becuse a different
user of the same machine may have a different configuration of its IDS. After a node

Collaborative Intrusion Detection Networks Architecture Design � 45

Trust

Management

Communication Overlay

Resource Management Feedback

Aggregation
Test message

(to others)
Intrusion

Consultation

(to others)

Feedback

(from others)Feedback

(from others)

Alarm

Collaboration Network

Mediator

IDS

Feedback (from others)

Consultation

(from others)

Feedback

(to others)

Acquaintance

Management

Figure 4.3: Architecture design of an IDN.

joins the IDN, it is provided with a preliminary acquaintance list. This list is cus-
tomizable and contains identities (or public keys) of other nodes within the network
along with their trust values and serves as the contact list for collaboration.

4.2.2 Consultation Requests
After joining in the IDS network, when an IDS detects a suspicious activity but is
unable to make a decision as to whether or not it should raise an alarm, it sends con-
sultation requests to its acquaintances for diagnosis. Feedback from acquaintances
is aggregated and a final intrusion detection decision is made based on the aggre-
gated results. The amount of information in the consultation request depends on the
trust level of each acquaintance. For example, a node may want to share all alert in-
formation, including data payload, with the nodes inside its local area network, and
digest or even remove some some alert information when sent to acquaintances in
the broader Internet.

46 � Intrusion Detection Networks: A Key to Collaborative Security

4.2.3 Test Messages
In order for the nodes in the IDN to gain experience with each other, IDSs use test
messages to evaluate the trustworthiness of others. Test messages are “bogus” con-
sultation requests that are sent to measure the trustworthiness of another node in the
acquaintance list. They are sent out in a way that makes them difficult to distinguish
from a real consultation request. The testing node knows the true diagnosis result of
the test message and uses the received feedback to derive a trust value for the tested
node. This technique can discover inexperienced and/or malicious nodes within the
collaborative network. A test message can be a previous consultation message with
which the ground truth has been verified, or a random pick taken from its knowledge
base.

4.2.4 Communication Overlay
The communication overlay is the component that handles all the communications
with other peers in the collaborative network. The messages passing through the
communication overlay include test messages from the host node to its acquain-
tances, intrusion consultations from the host node to its acquaintances, feedback from
acquaintances; consultation requests from acquaintances, and feedback to acquain-
tances. The communication overlay dispatches incoming requests and messages to
corresponding components in the system and routes outgoing requests and messages
to their destinations. For example, when the communication overlay component re-
ceives a consultation request, it calls the local IDS component for diagnosis and
returns the received feedback (diagnosis result) back to the sender.

4.2.5 Mediator
The mediator is the component that helps heterogeneous IDSs communicate with
each other. It translates consultation requests and consultation feedback into a com-
mon protocol (such as IDMEF [15]) and data format understood by different IDSs.

4.2.6 Trust Management
The trust management component allows IDSs in the IDN to evaluate the trustwor-
thiness of others based on previous experience with them. The host node can use test
messages to gain experience quickly. Indeed, the verified consultation results can
also be used as experience. In our IDN design, we have used a Dirichlet-based trust
management model (Chapter 5) to evaluate the trustworthiness of IDSs. In this trust
model, IDSs evaluate the trustworthiness of others based on the quality of their feed-
back. The confidence of trust estimation is modeled using Bayesian statistics, and
the results show that the frequency of test messages is proportional to the confidence
level of trust estimation. The trust management model is closely connected to the
resource management and acquaintance management models, as the trust values of
the collaborators are essential inputs for the latter models.

Collaborative Intrusion Detection Networks Architecture Design � 47

4.2.7 Acquaintance Management
It is intuitive that when an IDS consults more acquaintances, it achieves higher ac-
curacy and confidence in intrusion detection. However, more acquaintances results
in a higher maintenance cost, because the IDS needs to allocate resources for each
acquaintance as sending and receiving test messages to those acquaintances is a nec-
essary resource expenditure, and it is needed to maintain the confidence of trust eval-
uation and to maintain the collaboration connection. Acquaintance management is re-
sponsible for selecting and maintaining collaborators for each participant. In addition
to the acquaintances list, our system also maintains a consultation list. The nodes on
the consultation list are randomly selected from the acquaintances that have passed
the probation period. Test messages are sent to all acquaintances, while consultation
requests are only sent to the nodes in the consultation list. The acquaintance list is
updated on a regular basis to recruit new nodes or remove unwanted ones. A dynamic
acquaintance management system (Chapter 8) can be used to recruit higher-quality
peers and remove less-helpful peers based on their trustworthiness and expertise in
intrusion detection.

4.2.8 Resource Management
In an IDN, malicious or compromised peers can launch a denial-of-service attack by
sending a large number of consultation messages to overwhelm the targeted IDSs.
Some peers may also free-ride the system by only receiving help from others without
contributing to the collaboration network. To address the above problems, a resource
management system is required to decide whether the host should allocate resources
to respond to a given consultation request. An incentive-compatible resource man-
agement can assist IDSs to allocate resources to their acquaintances so that other
IDSs are fairly treated based on their past assistance to the host IDS. Therefore, an
IDS that abusively uses the collaboration resource will be penalized by receiving
fewer responses from others. The resource allocation system also decides how often
the host should send test messages to its acquaintances, protecting the system from
being overloaded. An incentive-compatible resource allocation system is described
in Chapter 7 leveraging a multi-player noncooperative game design for IDSs in the
IDN.

4.2.9 Feedback Aggregation
When the IDS of the host node cannot make a confident intrusion diagnosis for a sus-
picious event, the host node may consult the other IDSs in the collaboration network
for opinions/diagnosis. The received feedback is then used to make a decision as to
whether or not the host IDS should raise an alarm to its administrator. The feedback
aggregation component is responsible for making a decision based on the feedback.
It decides not only on which criteria to use to measure the quality of decisions, but
also on how to reach a decision in an efficient way. This component is one of the
most important, because it has a direct impact on the accuracy of the collaborative
intrusion detection. If an alarm is raised, the suspicious intrusion flow will be sus-

48 � Intrusion Detection Networks: A Key to Collaborative Security

pended and the system administrator investigates the intrusion immediately. On one
hand, false alarms may waste human resources. On the other hand, undetected in-
trusions may cause damage. To leverage the false positive and false negative rate, a
Bayesian approach (Chapter 6) can be used to measure the rate of false alarms, that
is, false positive (FP) rate, and the rate of missing intrusions, that is, false negative
(FN) rate, of participating IDSs based on collected experience with them in the past.
The cost of collaborative decision-making can be modeled using false positive cost
and false negative cost. A hypothesis testing model is used to find a decision that
leads to minimum overall cost.

In the following chapters we focus on four major components of the IDN archi-
tecture: trust management, acquaintance management, resource management, and
feedback aggregation. For each component, we provide the underlying model and al-
gorithms, and evaluate their efficiency against several metrics, including robustness,
scalability, efficiency, fairness, and incentive compatibility.

4.3 Discussion
In the previous sections we discussed the topology, communication protocol, and
architecture design of an efficient, robust, and scalable intrusion detection network.
In this section we discuss how privacy issues and malicious insiders problems are
handled in the IDN.

4.3.1 Privacy Issues
One concern for collaboration networks is privacy issues. When an IDS chooses to
send a consultation request to its collaborators for opinions, the request may contain
some private information of the sender. For example, when an IDS receives a file
scanning request from its collaborator, some information about the collaborator, such
as which file it has downloaded recently or whether someone is using the computer
at the moment, may be observed by the request receiver. We call this a receiver
speculation attack. In addition, a man-in-the-middle attack may also occur, where an
adversary can eavesdrop and interpret the messages exchanged between IDSs.

To prevent a man-in-the-middle attack, the exchanged information among IDSs
is encrypted. To prevent a receiver speculation attack, the use of test messages can
effectively cloak the consultation messages so it is hard for the receiver to distinguish
consultation messages from test messages. Therefore, the message receiver cannot
speculate if the files received are the new files downloaded by the sender or they are
only test messages.

4.3.2 Insider Attacks
Insider attacks can be a serious problem to an intrusion detection network because
adversaries may be able to disguise as a legitimate IDS and join the IDN. We show a
few common attacks against IDNs and how the IDN design can defend against those
insider attacks.

Collaborative Intrusion Detection Networks Architecture Design � 49

Sybil attacks occur when a malicious peer in the system creates a large amount
of pseudonyms (fake identities) [58]. Such a malicious peer uses fake identities to
gain larger influence in the network and use it in false ranking of alerts. Our defense
against sybil attacks relies on the authentication mechanism in place and our acquain-
tance management system. Authentication makes registering fake identities difficult.
Our model can use a certificate issuing authority that only allows one identity per
(user, machine) tuple. In addition, our trust management model requires IDSs to first
build up their trust before they can affect the decision of others, which is costly to do
with many fake identities. This way, our security and trust mechanisms protect our
collaborative network from sybil attacks.

Identity cloning attacks occur when a malicious node steals some node’s identity
and tries to communicate with others on its behalf. Our communication model is
based on asymmetric cryptography, where each node has a pair of public and private
keys. The certificate authority certifies the ownership of key pairs and in this way
protects the authenticity of node identities.

Dishonest insiders attacks occurs when dishonest nodes join the IDN and behave
dishonestly about the consultations. For example, the dishonest nodes may send ran-
dom results or even false consultation results in order to save resources or degrade
the IDN. Our system design incorporates a trust management component that can
distinguish dishonest insiders from others. Our detailed design of trust component is
described in Chapter 5.

Insider flooding attacks occur when insider nodes send excessive consultation
requests/test messages to other nodes in the network for the purpose of benefiting
themselves or overwhelming the other nodes in the network. Our IDN design can
effectively prevent this attack by using fair, incentive-compatible resource allocation
mechanism 7 and automatic acquaintance management 8. The amount of requests
a node sends to others needs to be negotiated beforehand. Nodes sending excessive
consultation messages will be identified as malicious and therefore be removed from
the acquaintance list of others.

4.4 Summary
In this chapter we introduced the topology design and architecture design of a
consultation-based intrusion detection network. The system consists of several com-
ponents and each has its distinct functionalities to contribute to the structure of an
efficient, scalable, robust, and incentive-compatible intrusion detection network. We
also discussed some potential challenges and attacks that may occur in an intrusion
detection network. In the next a few chapters, we particularly focus on the detailed
design of a few essential components, namely trust management, collaborative deci-
sion making, resource allocation, and acquaintance management.

This page intentionally left blankThis page intentionally left blank

Chapter 5

Trust Management

CONTENTS
5.1 Introduction . 52
5.2 Background . 53
5.3 Trust Management Model . 54

5.3.1 Satisfaction Mapping . 55
5.3.2 Dirichlet-Based Model . 56
5.3.3 Evaluating the Trustworthiness of a Peer 57

5.4 Test Message Exchange Rate and Scalability of Our System 59
5.5 Robustness against Common Threats . 60

5.5.1 Newcomer Attacks . 60
5.5.2 Betrayal Attacks . 60
5.5.3 Collusion Attacks . 60
5.5.4 Inconsistency Attacks . 61

5.6 Simulations and Experimental Results . 61
5.6.1 Simulation Setting . 61
5.6.2 Modeling the Expertise Level of a Peer . 61
5.6.3 Deception Models . 63
5.6.4 Trust Values and Confidence Levels for Honest Peers 63
5.6.5 Trust Values for Dishonest Peers . 64
5.6.6 Robustness of Our Trust Model . 66
5.6.7 Scalability of Our Trust Model . 68
5.6.8 Efficiency of Our Trust Model . 69

5.7 Conclusions and Future Work . 71

51

52 � Intrusion Detection Networks: A Key to Collaborative Security

5.1 Introduction
In the previous chapter we presented the architecture design of a peer-to-peer-based
intrusion detection network. In this chapter we focus on the trust component design.
Trust management is critical because it is used to distinguish malicious peers from
honest ones and improve intrusion detection accuracy. It is a central component in the
IDN architecture because most other components, including resource management,
acquaintance management, and collaborative intrusion components, rely on its input.
In an IDN, a malicious (or malfunctioning) IDS can send false intrusion assessments
or useless information to degrade the performance of other IDSs in the collaboration
network. If some nodes are controlled by the same adversaries, they can easily col-
lude and send false intrusion assessments. Moreover, IDSs may have different levels
of expertise in intrusion assessment so that the quality of their information varies. To
protect an IDN from malicious attacks as well as find expert IDSs to consult for intru-
sion assessment, it is important to evaluate the trustworthiness of participating IDSs.
Because the trust model itself may also be the target of malicious attacks, robust-
ness is a desired feature of the trust management scheme in collaborative intrusion
detection networks.

In this chapter we discuss the design of a Bayesian trust management model
that is robust, scalable, and suitable for distributed IDS collaboration. The Dirichlet
family of probability density functions is adopted in this trust management model for
estimating the likely future behavior of an IDS based on its past history. We show in
this chapter that this model cannot only compute trust values of IDSs efficiently, but
can also track the uncertainty in estimating the trustworthiness of the IDS. The trust
model can be used to deploy a secure and scalable IDN where effective collaboration
can be established between IDSs.

To demonstrate the effectiveness of the trust management design, it is impor-
tant to evaluate the effectiveness of the model. In Section 5.6 we use a simulated
collaborative IDS network to evaluate the trust model. In the simulated IDN, IDSs
are distributed and may have different expertise levels in detecting intrusions. An
IDS may also turn malicious due to runtime bugs, having been compromised, hav-
ing been updated with a faulty new configuration, or having been deliberately made
malicious. Several potential threats are also simulated; for example, betrayal attacks
where malicious IDSs masquerade as honest ones to gain trust, and then suddenly act
dishonestly. The experimental results demonstrate that the trust management model
yields a significant improvement in detecting intrusions, is robust against various
attacks, and improves the scalability of the system, as compared to existing collabo-
rative IDS systems.

The remainder of this chapter is organized as follows. In Section 5.2 we overview
existing trust models in intrusion detection networks and other related areas. In Sec-
tion 5.3 we present the Dirichlet trust management model design. A dynamic test
message mechanism is presented in Section 5.4 to improve the scalability of the trust
system, where the test message rate is adaptive to the test levels of the collaborator.
To demonstrate robustness of the trust model, several insider attack models against
the trust model are presented, and corresponding defence mechanisms are discussed

Trust Management � 53

in Section 5.5. The evaluation of the trust model is presented in Section 5.6. Finally,
Section 5.7 concludes the chapter and identifies directions for future research.

5.2 Background
Most of the existing work on distributed collaborative intrusion detection relies on
the assumption that all IDSs are trustworthy and faithfully report intrusion events.
The Indra system [84] distributes among peers information about attack attempts on
different machines so as to proactively react and increase the chance of detecting
an attack. This system also allows peer neighbors to share information about intru-
sion attempts in order to enhance the overall system security. Another example is
the distributed intrusion alert fusion system called Cyber Disease Distributed Hash
Table (CDDHT) [95]. The CDDHT system provides several load-balancing schemes
to evenly distribute intrusion alarms among the sensor fusion centers in order to in-
crease the scalability, fault-tolerance, and robustness of the system. However, the sys-
tems mentioned above are all vulnerable to malicious IDS attacks. False information
about intrusion events sent by malicious IDSs may heavily degrade the performance
of these IDNs.

To protect an IDN, it is important to evaluate the trustworthiness of participat-
ing IDSs. ABDIAS [77] is a community-based IDN where IDSs are organized into
groups and exchange intrusion information to gain better intrusion detection accu-
racy. A simple majority-based voting system was proposed to detect compromised
nodes. However, such a system is vulnerable to colluded voting. Duma et al. [59]
propose to address possibly malicious IDSs (peers) by introducing a trust-aware col-
laboration engine for correlating intrusion alerts. Their trust management scheme
uses each peer’s past experience to predict others’ trustworthiness. However, their
trust model is simplistic and does not address security issues within the collabora-
tive network. For instance, in their system, the peer’s past experience has the same
impact on the final trust values of others, and therefore is vulnerable to betrayal at-
tacks where compromised peers suddenly change their behavior. In our model, we
use a forgetting factor when calculating trust in order to rely more on the peer’s re-
cent experience and be robust to the changes of other peers’ behavior. Our previous
work [72] proposed a robust trust management model that uses test messages to gain
personal experience and a forgetting factor to emphasize most recent experiences.
However, this model needs to repeatedly aggregate all past experience with a peer
when updating its trust, which makes it not scalable over time. It uses a linear model
to calculate the average satisfaction levels of past interactions and lacks a theoretical
foundation. Also, this approach does not capture trust modeling uncertainties or pro-
vide statistical confidence information on intrusion decisions. Our new model uses
Dirichlet distributions to model peer trustworthiness. It makes use of dynamic test
message rates in order to allow for better scalability. Also, our new model further
improves robustness over our previous one through the use of flexible test message
rates.

Researchers in multi-agent systems have also been developing trust models to

54 � Intrusion Detection Networks: A Key to Collaborative Security

evaluate the trustworthiness of buying and selling agents in e-marketplaces [152].
One of the earliest trust models developed by Marsh [101] computes the trustwor-
thiness of selling agents by taking into account direct interactions between buying
and selling agents. The trust-oriented learning strategy proposed by Tran and Co-
hen [134] uses reinforcement learning to determine the trustworthiness of selling
agents, after the true value of delivered goods is evaluated and compared to the buy-
ing agent’s expected value for the goods. Selling agents can be classified as untrust-
worthy if their trust values fall below a certain threshold, and buying agents try to
select the trustworthy selling agent with the highest expected value for the goods.
The Beta Reputation System (BRS) of Whitby et al. [144] and the TRAVOS model
of Teacy et al. [133] estimate the trustworthiness of a selling agent by employing a
Beta probability density function representing a probability distribution of a continu-
ous variable. The work of Zhang and Cohen [152] focuses on coping with inaccurate
reputation information about selling agents shared by malicious buying agents in e-
marketplaces. The REGRET model of Sabater et al. [121] offers a multi-dimensional
view of trust that includes a social dimension taking into consideration the social
relationships among agents. However, it is difficult to clearly determine social rela-
tionships among IDSs in IDNs.

The Dirichlet trust model we present in this chapter is different from the above
trust models in several aspects. First, the Dirichlet model is focused on long-term
collaboration trust. Repetitive direct interactions between two agents are common in
an IDN environment. Second, the cost of experience in IDN is much lower than in
e-commerce and it allows IDSs to send test messages to better establish trust rela-
tionships with others. Third, the Dirichlet model uses fine-grained experience quality
rather than a binary measurement such as “good” or “bad.” Instead, it is categorized
into multiple levels. Finally, this model uses direct trust modeling rather than repu-
tation models. It is because the reputation model may suffer from collusion attacks
where a group of malicious IDSs cooperate together by providing false reputation
information about some IDSs to bad-mouth these targets, for example.

Different reputation models were proposed in distributed systems [86, 132].
These reputation models allow peers to get advice when evaluating the trustworthi-
ness of other peers. For example, [86] uses global reputation management to evaluate
distributed trust by aggregating votes from all peers in the network. Sun et al. [132]
propose for the communication in distributed networks an entropy-based model and
a probability-based one. The models are used to calculate indirect trust, propagation
trust, and multi-path trust. They, however, involve a lot of overhead, which limits
their scalability. Another important concern is that IDSs can be easily compromised
and become deceptive when reporting the trustworthiness of others. The reputation
models for peer-to-peer networks, such as PowerTrust [116], TrustGuard [130], Ma-
licious detector [103], and Fine-Grained reputation [153] are capable of detecting
malicious peers. However, they are purposed to detect deceiving nodes in a P2P net-
work and cannot be directly used in IDNs to improve the intrusion detection accuracy.
A trust model in IDN should not only detect malicious nodes, but also improve the
overall intrusion detection accuracy and offer robustness and scalability.

Trust Management � 55

5.3 Trust Management Model
In this section we describe a robust and scalable trust model that uses a Bayesian
approach to evaluate the trustworthiness between each pair of IDSs. Specifically, we
use a Dirichlet family of probability density functions to estimate the likely future
behavior of an IDS based on its past history. A weighted majority method is used to
aggregate feedback to make intrusion decisions.

5.3.1 Satisfaction Mapping
In this model, an IDS sends requests to its peers and evaluates the satisfaction level
of received feedback. Note that the request can be a test message or a real request.
The true answer of a test message is known beforehand, while that of a real request
is verified by administrators after some delay through the observed impact of the
corresponding alert.

IDSs may have different metrics to rank alerts. Snort [24], for example, uses
three levels (low, medium, high), while Bro [7] allows up to 100 different levels.
We assume the existence of a function H, which maps an IDS alert ranking onto the
[0,1] interval, where 0 denotes benign traffic and 1 highly dangerous intrusions. H
preserves the “more severe than” partial order relationship. That is, if alert a j is more
severe than alert ai, then H preserves that relationship by having H(a j)> H(ai).

The satisfaction level of feedback is determined by three factors: the expected
answer (r ∈ [0,1]), the received answer (a ∈ [0,1]), and the difficulty level of the test
message (d ∈ [0,1]). The larger is d, the more difficult it is to correctly answer the
request. Note that the difficulty of the test message can be roughly estimated by the
age of the corresponding signatures or knowledge. For example, the difficulty level
is low for test messages generated from old signatures; medium difficulty is for test
messages generated from new signatures; high difficulty for malicious traffic taken
from honeypots and no local signature is able to detect it.

To quantitively measure the quality of feedback, we use a function Sat(r,a,d)
(∈ [0,1]) to represent the level of satisfaction of the received answer based on its
distance to the expected answer and the difficulty of the test message, as follows:

Sat(r,a,d) =

1−
(

a−r
max(c1r,1−r)

)d/c2
a > r

1−
(

c1(r−a)
max(c1r,1−r)

)d/c2
a≤ r

(5.1)

where c1 controls the extent of penalty for wrong estimates. It is set > 1 to reflect that
estimates lower than the exact answer get stronger penalty than those that are higher.
Parameter c2 ∈ R+ controls satisfaction sensitivity, with larger values reflecting more
sensitivity to the distance between the correct and received answers. The equation
also ensures that low difficulty level tests are more severe in their penalty to incorrect
answers. The shape of the satisfaction function is depicted in Figure 5.1.

56 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
a
ti
s
fa

c
ti
o
n
 L

e
v
e
l

Risk Level (Feedback)

d=0.1

d=0.5

d=0.9

Figure 5.1: Satisfaction level for feedback (r = 0.5, c1 = 2, c2 = 1).

5.3.2 Dirichlet-Based Model
Bayesian statistics provide a theoretical foundation for measuring the uncertainty in a
decision that is based on a collection of observations. We demonstrate the distribution
of satisfaction levels of the answers from each peer IDS and, particularly, use this
information to estimate the satisfaction level of future consultations. For the case
of a binary satisfaction level {satisfied,¬satisfied}, a Beta distribution can be used
as appeared in [152]. For multi-valued satisfaction levels, Dirichlet distributions are
more appropriate.

A Dirichlet distribution [120] is based on initial beliefs about an unknown event
represented by a prior distribution. The initial beliefs combined with collected sample
data can be represented by a posterior distribution. The posterior distribution well
suits our trust management model because the trust is updated based on the history
of interactions.

Let X be the discrete random variable denoting the satisfaction level of the feed-
back from a peer IDS. X takes values in the set X = {x1,x2, ...,xk} (xi ∈ [0,1],
xi+1 > xi) of the supported levels of satisfaction. Let ~p = {p1, p2, ..., pk} (∑k

i=1 pi =
1) be the probability distribution vector of X , that is, P{X = xi} = pi. Also, let
~γ = {γ1,γ2, ...,γk} denote the vector of cumulative observations and initial beliefs
of X . Then we can model ~p using a posterior Dirichlet distribution as follows:

f (~p|ξ) = Dir(~p|~γ) = Γ(∑k
i=1 γi)

∏
k
i=1 Γ(γi)

k

∏
i=1

pi
γi−1 (5.2)

where ξ denotes the background knowledge, which in here is summarized by~γ .

Trust Management � 57

Let

γ0 =
k

∑
i=1

γi (5.3)

The expected value of the probability of X to be xi given the history of observations
~γ is given by:

E(pi|~γ) =
γi

γ0
(5.4)

In order to give more weight to recent observations over old ones, we embed a
forgetting factor λ in the Dirichlet background knowledge vector~γ as follows:

~γ(n) =
n

∑
i=1

λ
ti ×~Si + c0λ

t0~S0 (5.5)

where n is the number of observations; ~S0 is the initial beliefs vector. If no additional
information is available, all outcomes have an equal probability making S0

j = 1/k for
all j ∈ {1, ..,k}. Parameter c0 > 0 is a priori constant, which puts a weight on the ini-
tial beliefs. Vector ~Si denotes the satisfaction level of the ith evidence, which is a tuple
containing k−1 elements set to zero and only one element set to 1, corresponding to
the selected satisfaction level for that evidence. Parameter λ ∈ [0,1] is the forgetting
factor. A small λ makes old observations quickly forgettable. Parameter ti denotes
the time elapsed (age) since the ith evidence ~Si was observed. Let ∆ti = ti − ti+1.
For the purpose of scalability, the ~γ(n) in Equation (5.5) can be rewritten in terms of
~γ(n−1), ~Sn and ∆tn as follows:

~γ(n) =

{
c0
~S0 n = 0

λ ∆tn ×~γ(n−1)+~Sn n > 0
(5.6)

5.3.3 Evaluating the Trustworthiness of a Peer
After a peer receives the feedback for an alert evaluation, it assigns a satisfaction
value to the feedback according to Equation (5.1). This satisfaction value is assigned
with one of the satisfaction levels in the set X = {x1,x2, ...,xk} that has the closest
value. Each satisfaction level xi also has a weight wi.

Let puv
i denote the probability that peer v provides answers to the requests sent by

peer u with satisfaction level xi. Let ~puv = (puv
i)i=1...k |∑k

i=1 puv
i = 1. We model ~puv

using Equation (5.2). Let Y uv be the random variable denoting the weighted average
of the probability of each satisfaction level in ~puv.

Y uv =
k

∑
i=1

puv
i wi (5.7)

The trustworthiness of peer v as noticed by peer u is then calculated as

58 � Intrusion Detection Networks: A Key to Collaborative Security

T uv = E[Y uv] =
k

∑
i=1

wiE[puv
i] =

1
γuv

0

k

∑
i=1

wiγ
uv
i (5.8)

where γuv
i is the cumulated evidence that v has replied to u with satisfaction level xi.

The variance of Y uv is equal to (superscript uv is omitted for clarity)

σ
2[Y] =

k

∑
i=1

k

∑
j=1

wiw jcov[pi, p j] (5.9)

Knowing that the covariance of pi and p j (i 6= j) is given by

cov(pi, p j) =
−γiγ j

γ2
0 (γ0 +1)

(5.10)

We get

σ
2[Y] =

k

∑
i=1

w2
i σ

2[pi]+2
k

∑
i=1

k

∑
j=i+1

wiw jcov[pi, p j]

=
k

∑
i=1

w2
i

γi(γ0− γi)

γ2
0 (γ0 +1)

+2
k

∑
i=1

k

∑
j=i+1

wiw j
−γiγ j

γ2
0 (γ0 +1)

=
1

γ3
0 + γ2

0

k

∑
i=1

wiγi

(
wi(γ0− γi)−2

k

∑
j=i+1

w jγ j

)
(5.11)

Let Cuv ∈ (−1,1] be the confidence level for the value of T uv, and we describe it as

Cuv = 1−4σ [Y uv] (5.12)

where 4σ [Y uv] is roughly the 95% confidence interval.

Lemma 5.1
The confidence level Cuv formulated by Equation (5.12) lies in bound (−1, 1].

Proof 5.1
From Equation (5.12) and Equation (5.11), we have

Cuv = 1− 4√
1+ γ0

√√√√ k

∑
i=1

w2
i

γi

γ0
− (

k

∑
i=1

wi
γi

γ0
)2 (5.13)

where wi ∈ [0,1],∀i is the weight of the satisfaction level i, and γ0 = ∑
k
i=1 γi >

Trust Management � 59

0. To prove the boundary of Cuv, we construct a discrete random variable Z ∈
{w1,w2, ...,wk}, where w1 ≤ w2 ≤ ...≤ wk and P[Z = wi] =

γi
γ0
,∀i. Then we have

σ
2[Z] = E(Z2)−E2(Z) =

k

∑
i=1

w2
i

γi

γ0
− (

k

∑
i=1

wi
γi

γ0
)2 (5.14)

We can see that the variation of Z is the major component of Cuv. It is not diffi-
cult to see that σ2[Z] reaches its maximum when P[Z = w1] = P[Z = wk] = 0.5 and
P[Z = w j] = 0,∀ j(1 < j < k). Therefore, we have 0 ≤ σ2[Z] ≤ 1

4 . After replacing
Equation (5.14) back into Equation (5.13), we have −1 <Cuv ≤ 1.

5.4 Test Message Exchange Rate and Scalability of Our
System

Each IDS u in our system maintains an acquaintance list and a probation list with
maximum length lu

max. This length can be fixed according to the resource capacity
of node u or slightly updated with the changes in IDN size. However, it is always
set to a value small enough to account for scalability. Equation (5.6) ensures that the
process of updating the trustworthiness of a peer after the reception of a response is
performed with only three operations, making it linear with respect to the number of
answers.

There is a trade-off to be resolved in order to account for scalability in the num-
ber of messages exchanged in the IDN. On one hand, the forgetting factor in Equa-
tion (5.6) decays the importance given to existing highly trusted peers. This implies
that their corresponding test message rates need to be above a certain minimal value.
On the other hand, sending too many requests to other peers may compromise scal-
ability. To solve this issue, we adapt the rate of test messages to a given peer ac-
cording to its estimated trustworthiness. The adaptation policy is provided in Table
5.1, where acquaintances are categorized into highly trustworthy, trustworthy, un-
trustworthy, and highly untrustworthy. There are three levels of test message rates:
Rl < Rm < Rh. We can see in Table 5.1 that the test message rate to highly trustwor-
thy or highly untrustworthy peers is low. This is because we are confident about our
decision of including or not their feedback into the aggregation. A higher test mes-
sage rate is assigned to trustworthy or untrustworthy peers because their trust values
are close to the threshold and hence need to be kept under close surveillance.

Each peer in the system needs to actively respond to others’ requests in order to
keep up its trustworthiness and be able to receive prompt help when needed. How-
ever, actively responding to every other peer may cause bandwidth and/or CPU over-
loading. Therefore, as a consultant to others, a peer would like to limit the rate of
answers it provides. In this regard, each peer in our system would respond to re-
quests with a priority proportional to the amount of trust it places on the source of
the request [163]. It will give higher priority to highly trusted friends. This obeys the

60 � Intrusion Detection Networks: A Key to Collaborative Security

Table 5.1: Acquaintance Categorization

Peer Category Criterion Rate

Highly Trustworthy 0 <th≤ Tl Rl
Trustworthy Tl <th≤ T Rh
Untrustworthy T <th≤ Th Rm
Highly Untrustworthy Th <th≤ 1 Rl

social norm: “Be nice to others who are nice to you”, and also provides incentives for
encouraging peers to act honestly in order to receive prompt help in times of need.

5.5 Robustness against Common Threats
Trust management can effectively improve network collaboration and detect mali-
cious peers. However, the trust management system itself may become the target of
attacks and be compromised. In this section we describe common attacks and provide
defense mechanisms against them.

5.5.1 Newcomer Attacks
Newcomer attacks occur when a malicious peer can easily register as a new user
[118]. Such a malicious peer creates a new ID for the purpose of erasing its bad
history with other peers in the network and create immediate damage. Our model
handles this type of attack by assigning low trust values to all newcomers and en-
forcing the probation period for each new node. In this way, their feedback on the
alerts is simply not considered by other peers during the aggregation process. New-
comers may gain more trust over time and eventually move to acquaintance list if
they behave consistently well.

5.5.2 Betrayal Attacks
Betrayal attacks occur when a trusted peer suddenly turns into a malicious one and
starts sending false feedbacks. A trust management system can be degraded dramati-
cally because of this type of attack. We employ a mechanism which is inspired by the
social norm: “It takes a long-time interaction and consistent good behavior to build
up a high trust, while only a few bad actions to ruin it.” When a trustworthy peer
acts dishonestly, the forgetting factor (Equation (5.6)) causes its trust value to drop
down quickly, hence making it difficult for this peer to deceive others or gain back
its previous trust within a short time.

Trust Management � 61

5.5.3 Collusion Attacks
Collusion attacks happen when a group of malicious peers cooperate together by pro-
viding false alert rankings in order to compromise the network. In our system, peers
will not be adversely affected by collusion attacks. In our trust model, each peer re-
lies on its own knowledge to detect dishonest peers. In addition, we use test messages
to uncover malicious peers. Because the test messages are sent in a random manner,
it will be difficult for malicious peers to distinguish them from actual requests.

5.5.4 Inconsistency Attacks
Inconsistency attacks happen when a malicious peer repeatedly changes its behavior
from honest to dishonest in order to degrade the efficiency of the IDN. Inconsistency
attacks are harder to succeed in the Dirichlet-based model because of the use of the
forgetting factor and the dynamic test message rate, which make trust values easy
to lose and hard to gain. This ensures that the trust values of peers with inconsistent
behavior remain low and hence have little impact.

5.6 Simulations and Experimental Results
To demonstrate the effectiveness of the trust management design, it is important to
evaluate the effectiveness of the model. In this section we present a set of experi-
ments that are used to evaluate the efficiency, scalability and robustness of our trust
management model in comparison with existing ones [59, 72]. The simulation pro-
gram is written in Java programming language and it adopts discrete event simulation
to simulate the communication between IDSs. Each experimental result presented in
this section is derived from the average of a large number of replications with an
overall negligible confidence interval.

5.6.1 Simulation Setting
In the simulation, an IDN environment is established with n IDS peers randomly
distributed over an s×s grid region. The proximity distance is given by the minimum
number of square steps between each two peers. The expertise level of a peer can be
low (0.05), medium (0.5), or high (0.95). In the beginning, each peer receives an
initial acquaintance list containing neighbor nodes based on proximity. The initial
trust value of every peer in the acquaintance list is 0.5. To test the trustworthiness of
acquaintances, each peer sends out test messages following a Poisson process with
rates according to Table 5.1. The parameters we used are shown in Table 5.2.

62 � Intrusion Detection Networks: A Key to Collaborative Security

Table 5.2: Simulation Parameters

Parameter Value Description

Rl 2/day Low test message rate
Rm 10/day Medium test message rate
Rh 20/day High test message rate
λ 0.9 Forgetting factor
th 0.8 Trust threshold for aggregation
c0 10 Priori constant
c1 1.5 Cost rate of low estimate to high estimate
c2 1 Satisfaction sensitivity factor
s 4 Size of grid region
k 10 Number of satisfaction levels

5.6.2 Modeling the Expertise Level of a Peer
To reflect the expertise level of each peer, a Beta distribution is used to simulate the
decision model of answering requests. A Beta density function is given by

f (p|α,β) =
1

B(α,β)
pα−1(1− p)β−1

B(α,β) =
∫ 1

0
tα−1(1− t)β−1dt (5.15)

where f (p|α,β) is the probability that a peer with expertise level l answers with a
value of p ∈ [0,1] to an alert of difficulty level d ∈ [0,1]. Higher values for d are as-
sociated to attacks that are difficult to detect, that is, many peers fail to identify them.
Higher values of l imply a higher probability of producing correct alert rankings.

Let r be the expected ranking of an alert. We define α and β as follows:

α = 1+
l(1−d)
d(1− l)

√
r

1− r

√
2
l
−1

β = 1+
l(1−d)
d(1− l)

√
1− r

r

√
2
l
−1 (5.16)

For a fixed difficulty level, the above model has the property of assigning higher
probabilities of producing correct rankings to peers with higher levels of expertise. A
peer with expertise level l has a lower probability of producing correct rankings for
alerts of higher difficulty (d > l). l = 1 or d = 0 represent the extreme cases where
the peer can always accurately rank the alert. This is reflected in the Beta distribution
by α,β → ∞. Figure 5.2 shows the feedback probability distribution for peers with
different expertise levels, where we fix the expected risk level to 0.6 and the difficulty
level of test messages to 0.5.

Trust Management � 63

 0

 1

 2

 3

 4

 5

 6

τp=0.5

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Intrusion Access Result

Expertise Level = 0.2
Expertise Level = 0.5
Expertise Level = 0.8

Figure 5.2: Decision density function for expertise levels.

5.6.3 Deception Models
A dishonest peer may adopt one of four deception models: complementary, exagger-
ate positive, exaggerate negative, or maximal harm. The first three deception models
are described in [150], where an adversary may choose to send feedback about the
risk level of an alert that is respectively opposite to, higher, or lower than the true
risk level. In a maximal harm model, an adversary always chooses to report false
feedback with the intention to bring the most negative impact to the request sender.
Figure 5.3 shows the feedback curve for the different deception strategies. For in-
stance, when a deceptive peer using the maximal harm strategy receives a ranking
request and detects that the risk level of the request is “medium,” it sends feedback
“no risk” because this feedback can maximally deviate the aggregated result at the
sender side.

5.6.4 Trust Values and Confidence Levels for Honest Peers
We first evaluate the effectiveness of the collaboration and the importance of our trust
management. In this experiment, all peers are honest. We simulate the scenario where
each peer u has a fixed size Nu of its acquaintance list. The peers are divided into
three equally sized groups of low, medium, and high expertise levels, respectively.
The first phase of the simulation is a learning period (50 days), during which peers
learn about each other’s expertise levels by sending out test messages. Figure 5.4
shows the resulting average trust values of the 30 acquaintances of peer u. The trust

64 � Intrusion Detection Networks: A Key to Collaborative Security

No

Low

Med

High

No risk Low risk Med risk High risk

F
e
e
d
b
a
c
k

Known Risk Level

Normal

Complementary

Exaggerate Positive

Exaggerate Negative

Maximal Harm

Figure 5.3: Feedback curves for different deception strategies.

values converge after 30 days of simulation and the actual expertise levels of the
peers are able to be effectively identified by our trust model.

To study the impact of different test message rates on the confidence level of
trust estimation (Equation (5.12)), we conduct a second experiment to let u use a
fixed test message rate in every simulation round. The rate of sending test messages
starts with one message per day and increases by five for every simulation round. We
plot the confidence level of trust evaluation for each test message rate in Figure 5.5.
We can observe that the confidence level increases with the increase of the test mes-
sage rate. This confirms our argument that sending more test messages improves the
confidence of trust estimation. We also observe that the confidence levels increase
with the expertise levels. This is because peers with higher expertise levels tend to
perform more consistently.

5.6.5 Trust Values for Dishonest Peers
The purpose of this experiment is to study the impact of dishonest peers using the
four different deception strategies described in Section 5.6.3. To study the maximum
impact of these deception strategies, we only use peers with a high expertise level as
deceptive adversaries because they are more likely to know the true answers and can
perform the deception strategies more accurately.

In this experiment we let peer u have an acquaintance list of 40 dishonest peers
divided into four groups. Each group uses one of the four deception models: com-
plementary, exaggerate positive, exaggerate negative, and maximal harm. We use a

Trust Management � 65

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

T
ru

s
t
V

a
lu

e

Days

High Expertise

Medium Expertise

Low Expertise

Figure 5.4: Convergence of trust values for different expertise levels.

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35

C
o
n
fi
d
e
n
c
e
 L

e
v
e
l

Test Messages/Day

High Expertise

Medium Expertise

Low Expertise

Figure 5.5: Confidence levels of estimation for different test message rates.

66 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30 35 40 45 50

T
ru

s
t
V

a
lu

e

Days

Complementary

Exaggerated positive

Exaggerated negative

Maximum harm

Figure 5.6: Trust values of deceptive peers with different deception strategies.

dynamic test message rate and observe the convergence curve of the average trust
value for each group of deceptive peers. Results are plotted in Figure 5.6.

We notice that the trust values of all adversary peers converge to stable values
after 30 days of the learning phase. It is not surprising that adversary peers using
the maximal harm strategy have the lowest trust values, while adversary peers us-
ing the complementary strategy have the second lowest ones. The converged trust
values of adversary peers using exaggerate positives are higher than those using ex-
aggerate negatives. This is because we use an asymmetric penalization mechanism
for inaccurate replies (c1 > 1 in Equation (5.1)). We penalize more heavily peers that
untruthfully report lower risks than those that untruthfully report higher risks.

5.6.6 Robustness of Our Trust Model
The goal of this experiment is to study the robustness of our trust model against var-
ious insider attacks. For the newcomer attack, malicious peers whitewash their bad
history and re-register as new users to the system. If the trust value of a newcomer
can increase quickly based on its short-term good behavior, the system is then vul-
nerable to newcomer attacks. However, a newcomer attack is difficult to succeed in
our model. In our model, we use parameter c0 in Equation (5.6) to control the trust
value increasing rate. When c0 is larger, it takes longer for a newcomer to gain a trust
value above the trust threshold.

We compare our Dirichlet-based model with our previous model [72] and the
model of Duma et al. [59] in Figure 5.7. We observe that in the Duma et al. model, the

Trust Management � 67

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

T
ru

s
t
V

a
lu

e

Days

Duma et al.

DSOM(previous)

Dirichlet-based c=10

Dirichlet-based c=15

Figure 5.7: Trust values of newcomers under different trust models.

trust values of new users increase very fast and reach the aggregation trust threshold
(0.8) on the first day, which reveals a high vulnerability to newcomer attacks. The
reason for this is that their model does not have an initial trust to new peers and
therefore their trust values change fast in the beginning. In the model we developed
in [72], the trust values increase in a slower manner and reach the trust threshold
after 3 days. However, that model is not flexible in that it does not offer control
over the trust increase speed. In the Dirichlet-based model, the trust increase speed
is controlled by the priori constant c0. For c0 = 10, it takes a newcomer 4 to 5 days
of consistent good behavior to reach the same trust value. Larger values of c0 make it
even slower to reach high trust, hence offering robustness against newcomer attacks.

The second possible threat is the betrayal attack, where a malicious peer first
gains a high trust value and then suddenly starts to act dishonestly. This scenario can
happen, for example, when a peer is compromised. To demonstrate the robustness of
our model against this attack type, we set up a scenario where u has seven peers in
its acquaintance list, of which six are honest with an expertise level evenly divided
between low, medium, and high. The malicious one has high expertise and behaves
honestly in the first 50 days. After that, it launches a betrayal attack by adopting a
maximal harm deceptive strategy. We observe the trust value of the betraying peer
and the satisfaction levels of aggregated feedback in each day with respect to u.

Figure 5.8 shows the trust value of the betraying peer before and after the launch-
ing of the betrayal attack when respectively using Duma et al., our previous, and our
current trust models. For the Duma et al. model, the trust value of the malicious peer
slowly drops after the betrayal attack. This is because their model does not use a for-

68 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

T
ru

s
t
V

a
lu

e

Days

Duma et al.

DSOM(previous)

Dirichlet-based

Figure 5.8: Trust of malicious peers under betrayal attack.

getting factor, hence providing the previous honest behavior of a malicious peer with
a heavy impact on the trust calculation for a considerable amount of time. The trust
value of the betraying peer drops much faster using our previous model, while the
fastest rate is observed when using our Dirichlet-based model. This is because both
models use a forgetting factor to pay more attention to the more recent behavior of
peers.

We also notice that the Dirichlet-based model has a slight improvement over our
previous model. The Dirichlet-based model adopts the dynamic test message rate and
can react more swiftly. The rate of sending messages to malicious peers increases as
soon as they start behaving dishonestly. Higher rates of test messages help in faster
detection of dishonest behavior. However, in our previous model, the test message
rate remains the same. This phenomenon can be further observed in Figure 5.10.

The results for the satisfaction levels of aggregated feedback with respect to u
before and after the betrayal attack are shown in Figure 5.9. We notice that the satis-
faction level of u for the aggregated feedback drops down drastically on the first day
following the learning period and recovers after that in all three models. The recov-
ery period is however much shorter for the Dirichlet-based and our previous models.
This is again attributed to the use of the forgetting factor. The Dirichlet-based model
has a slight improvement in the recovering speed over our previous model. This is
because in the Dirichlet-based model, the trust values of betraying peers drop under
the aggregation threshold faster than our previous model. Therefore, the impact of
betraying peers is eliminated earlier than that in the previous model.

Trust Management � 69

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

S
a
ti
s
fa

c
ti
o
n
 L

e
v
e
l

Days

Duma et al.

DSOM(previous)

Dirichlet-based

Figure 5.9: Impact on accuracy of betrayal attack.

5.6.7 Scalability of Our Trust Model
The result of test message rates under betrayal attack is shown in Figure 5.10. We
notice that in our Dirichlet-based model, the average test message rates for highly
trustworthy as well as highly untrustworthy peers are the lowest. The average test
message sending rate to peers with the medium expertise level is higher but still
below the medium rate (Rm). Compared to our previous model, the average mes-
sage sending rate is much lower, which demonstrates the improved scalability of our
Dirichlet-based model. Note that the spike from the betraying group on around day
50 is caused by the drastic increment of the test message rate. The sudden change
of a highly trusted peer behavior will cause the trust confidence level to drop down
quickly. The rate of sending messages to this peer then switches to Rh accordingly.

5.6.8 Efficiency of Our Trust Model
To demonstrate the efficiency of our Dirichlet-based trust model, we conduct another
experiment to evaluate the intrusion detection accuracy. In this experiment, we let
peer u have 15 acquaintances, which are evenly divided into low, medium, and high
expertise groups. Among the expert peers, some are malicious and launch inconsis-
tency attacks synchronously to degrade the efficiency of the IDN. More specifically,
in each round of behavior changing, these malicious peers adopt the maximal harm
deception strategy for 2 days, followed by 6 days of honest behavior.

In Figure 5.11 we vary the percentages of malicious peers from 0% to 80%. We
inject daily intrusions to peer u with medium difficulty (0.5) and random risk levels.

70 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50 60 70 80 90 100

T
e
s
t
M

e
s
s
a
g
e
s
/d

a
y

Days

DSOM(previous)/all
Dirichlet-based/low expertise

Dirichlet-based/med expertise
Dirichlet-based/high expertise

Dirichlet-based/betrayal

Figure 5.10: Comparison of average test message rates under different models.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80

S
a
ti
s
fa

c
ti
o
n
 L

e
v
e
l

Percentage of Malicious Peers (%)

Duma et al.

DSOM (previous)

Dirichlet-based

Figure 5.11: Aggregated feedback under inconsistency attack.

Trust Management � 71

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 20 40 60 80

In
tr

u
s
io

n
 D

e
te

c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

Percentage of Malicious Peers (%)

Duma et al.

DSOM (previous)

Dirichlet-based

Figure 5.12: Intrusion detection success rate under inconsistency attack.

We then plot the average satisfaction level for the aggregated feedback. We observe
that our Dirichlet-based model outperforms the others. This is because the dynamic
test message rate in Dirichlet-based model causes the trust of malicious peers to drop
faster and increase more slowly, hence minimizing the impact of dishonest behavior.
Among the three models, Duma et al. has the least satisfaction level because of its
slow response to sudden changes in peer behavior and its aggregation of all feedback
from even untrustworthy peers.

Figure 5.12 shows the success rate of peer u in detecting intrusions. We notice
that both our previous model and the Duma et al. model cannot effectively detect in-
trusions when the majority of peers are malicious. Our Dirichlet-based model shows
excellent efficiency in intrusion detection even in the situation of a dishonest major-
ity.

5.7 Conclusions and Future Work
In this chapter we described a trust management model for evaluating trustworthi-
ness of intrusion detection systems in a collaborative intrusion detection network.
The trust management uses Dirichlet density functions as its foundation, and is ac-
cordingly able to measure the uncertainty in estimating the likely future behavior of
IDSs. The measured uncertainty allows the trust management to employ an adap-
tive message exchange rate, resulting in good scalability. Equipped with a forgetting
factor, it is also robust against some common threats. The effectiveness, robustness,

72 � Intrusion Detection Networks: A Key to Collaborative Security

and scalability of our trust management have been further validated through exper-
iments carried out in a simulated collaborative intrusion detection network. IDSs in
the conducted experiments have different levels of expertise in detecting intrusions
and adopt different deception strategies. The results show that the trust management
is more effective compared to existing trust models. This is an important step forward
because effective trust management is essential for the deployment of a secure IDN.

One possible direction for future work here is to incorporate a reputation model in
our trust management. This will require addressing the important issues of inaccurate
reputation information, scalability, and collusion attacks.

Chapter 6

Collaborative Decision

CONTENTS
6.1 Introduction . 74
6.2 Background . 74
6.3 Collaborative Decision Model . 75

6.3.1 Modeling of Acquaintances . 77
6.3.2 Collaborative Decision . 79

6.4 Sequential Hypothesis Testing . 80
6.4.1 Threshold Approximation . 83

6.5 Performance Evaluation . 84
6.5.1 Simulation Setting . 85

6.5.1.1 Simple Average Model . 85
6.5.1.2 Weighted Average Model . 86
6.5.1.3 Bayesian Decision Model . 86

6.5.2 Modeling of a Single IDS . 86
6.5.3 Detection Accuracy and Cost . 88

6.5.3.1 Cost under Homogeneous Environment 88
6.5.3.2 Cost under Heterogeneous Environment 89
6.5.3.3 Cost and the Number of Acquaintances 90

6.5.4 Sequential Consultation . 92
6.5.5 Robustness and Scalability of the System 95

6.6 Conclusion . 95

73

74 � Intrusion Detection Networks: A Key to Collaborative Security

6.1 Introduction
In the previous chapter we discussed the design of a robust, scalable, and efficient
trust management for an IDN. An important function of trust evaluation is to find the
expertise level of participant IDSs in order to improve the accuracy of collaborative
intrusion detection. In this chapter we focus on the design of efficient and trustworthy
collaborative intrusion decision, also referred to as feedback aggregation. Efficient
and trustworthy feedback aggregation is a critical component in the design of IDNs
because it has direct impact on the intrusion detection accuracy. In the IDN, each IDS
evaluates its peer collaborators based on their false positive and false negative rates,
which can be estimated from historical data and test messages. Accordingly assess-
ments received from an incompetent or malicious insider will have less weight in the
final decisions. This decision model is based on data analysis and hypothesis testing
methods. Specifically, we design optimal decision rules that minimize Bayesian risks
of IDSs in the network. In addition, for real-time applications, an IDS only needs to
consult a subset of its acquaintances until desired levels of performance, such as
probabilities of detection and false alarm, are achieved. In other words, this decision
model provides a data-driven efficiently distributed sequential algorithm for IDSs to
make decisions based on feedback from a subset of their collaborators. The goal is to
reduce communication overhead and the computational resources needed to achieve
a satisfactory feedback aggregation result when the number of acquaintances of an
IDS is large.

In the model, we consider four possible outcomes of a decision: false positive
(FP), false negative (FN), true positive (TP), and true negative (TN). Each outcome
is associated with a cost. A sequential hypothesis testing-based collaborative deci-
sion model is used to improve the cost efficiency. Communication overhead is also
improved because the IDS aggregates feedback until a predefined FP and TP goal is
reached. An analytical model is used to estimate the number of acquaintances needed
for an IDS to reach its predefined intrusion detection goal. Such a result is crucial to
the design of an IDS acquaintance list in our IDN.

The highlight of this chapter can be summarized as follows: (1) a Beta distri-
bution is used to model the false positive rate and true positive rate of each IDS;
(2) a Bayesian approach to devise a decentralized feedback optimal-cost aggrega-
tion mechanism for each peer in the IDN; and (3) a sequential hypothesis model for
each IDS to find the minimal number of collaborators to consult before a confident
decision is made.

The remainder of this chapter is organized as follows. In Section 9.2 we survey
some existing collaborative decision techniques for IDNs. The decision problem is
formulated in Section 6.3, where we use hypothesis testing to minimize the cost of
decisions, and sequential hypothesis testing to form consultation termination policy
for predefined goals is described in Section 6.4. In Section 10.5 we use simulations
to evaluate the effectiveness of the decision model and validate the analytical model.
Section 6.6 concludes the chapter and identifies directions for future research.

Collaborative Decision � 75

6.2 Background
Recent studies on IDNs [72, 74, 77] have proposed the use of trust models to iden-
tify dishonest peers. Intrusion assessments from nodes with different trust values
are assigned with different weights to improve intrusion detection accuracy. AB-
DIAS [77] is a community-based IDN where IDSs are organized into groups and
exchange intrusion information in order to gain better intrusion detection accuracy.
A simple majority-based voting system is used to detect compromised nodes. How-
ever, this voting-based system is vulnerable to colluded voting. Another solution to
detect compromised nodes is a trust management system where peers build trust with
each other based on personal experience. Existing trust management models for IDN
include the linear model [59, 72] and the Bayesian model [69, 74]. However, all these
works used heuristic approaches to aggregate consultation results from other collab-
orators. In this chapter we present a Bayesian aggregation model that aims at finding
optimal decisions based on collected information.

Bayesian approaches have been used in distributed detection in the past. Exist-
ing works, including [135] and [112], use Bayesian hypothesis testing methods to
aggregate at a central data fusion center feedback from sensors distributed in a lo-
cal area network. However, these methods require all participants to engage in every
detection case, whereas in our context, IDSs may not be involved in all intrusion de-
tections and the collected responses may come from different groups of IDSs each
time.

The trustworthiness of IDNs has been ensured at various levels of the system ar-
chitecture. In [162] and [163], a communication protocol with the property of recip-
rocal incentive compatibility has been used to provide IDS nodes incentives to send
feedback to their peers, and hence to prevent malicious free-riders, denial-of-service
attacks, and dishonest insiders. However, this approach only ensures the reliability
and trustworthiness at the communication overlay of the IDN, and does not directly
deal with the content of the feedback. In [161] and [68], a knowledge-sharing mech-
anism has been proposed to allow expert nodes to disseminate knowledge within the
IDN to prevent zero-day attacks. The communication protocols in [161] are imple-
mented at the higher application layers of the collaborative network.

6.3 Collaborative Decision Model
Consider a set of N nodes, N := {1,2, · · · ,N}, connected in a network, that can be
represented by a graph G = (N ,E). The set E contains the undirected links between
nodes, indicating the acquaintances of IDSs in the network. An IDS node i ∈N has
a set of ni acquaintances, denoted by Ni ⊆N , with ni = |Ni|. When node i observes
suspicious activities and does not have enough experience to make an accurate eval-
uation of potential intrusions, it can send out its observed intrusion information to its
acquaintances to ask for diagnosis. The feedback from its acquaintances can be used
to make a final decision. The input to the IDS is the past history of each acquaintance

76 � Intrusion Detection Networks: A Key to Collaborative Security

Table 6.1: Summary of Notations

Symbol Meaning

N Set of IDSs in the collaborative network
Ni Set of acquaintances of IDS i, i ∈N
ni Number of acquaintances of IDS i, i ∈N
Y i

j , Reported decisions from IDS j to IDS i, i ∈N , j ∈Ni

Yi Vector of complete feedback from IDS i’s acquaintances
H0 Hypothesis that there is no intrusion
H1 Hypothesis that there is an intrusion
ri

j,F,k The diagnosis result at time k from acquaintance j to IDS i
given that there is no intrusion

ri
j,D,k The diagnosis result at time k from acquaintance j to IDS j

given that there is an intrusion
π i

0,π
i
1 Prior probability of no-attack and under-attack

τ̄ i Probability threshold for final decision
Li Likelihood ratio for IDS i’s decision
Li

n Likelihood ratio for IDS i’s sequential decision at stage n
Ri Bayesian risk of IDS i
δ i Aggregation decision rule of IDS i
φ i Stopping decision rule of IDS i
DKL(p1||p2) Kullback-Leibler divergence between distributions p1 and p2
Ci

10,C
i
01 Cost of making false positive and false negative decisions for IDS i

Ci
00,C

i
11 Cost of making correct decisions for IDS i

regarding their detection accuracy, as well as their current feedbacks. The output is a
decision on whether or not to raise an alarm.

Let Y i
j , j ∈Ni, be a random variable denoting the decision of peer IDS j, j ∈Ni,

on its acquaintance list Ni of node i. The random variable Y i
j takes binary values in

Y := {0,1} for all j ∈Ni, i ∈N . In the intrusion detection setting, Y i
j = 0 means

that IDS j decides and reports to IDS i that there is no intrusion, while Y i
j = 1 means

that IDS j raises an alarm of possible detection of intrusion to IDS i. Each IDS
makes its decision based upon its own experience of the previous attacks and its own
sophistication of detection. We let pi

j as the probability mass function defined on Y

such that pi
j(Y

i
j = 0) and pi

j(Y
i
j = 1) denotes the probability of reporting no intrusion

and the probability of reporting intrusion from IDS j to IDS i, respectively.
We let Yi := [Y i

j] j∈Ni ∈Y ni be an observation vector of IDS i that contains feed-
backs from its peers in the acquaintance list. Each IDS has two hypotheses H0 and
H1. H0 hypothesizes that no intrusion is detected, whereas H1 forwards a hypothesis
that intrusion is detected and alarm needs to be raised. Note that we intentionally
drop the superscript i on H0 and H1 because we assume that each IDS attempts

Collaborative Decision � 77

to make the same type of decisions. Denote by π i
0,π

i
1 the apriori probabilities on

each hypothesis such that π i
0 = P[H0],π

i
1 = P[H1] and π i

0 + π i
1 = 1, for all i ∈N .

Let pi be the probability measure on Y ni , for all i ∈N . The conditional probabil-
ities pi(Yi = yi|Hl), l = 0,1, denotes the probabilities of a complete feedback being
yi ∈ Y ni given the hypothesis H0,H1, respectively. Assuming that peers make deci-
sions independently (this is reasonable if acquaintances are appropriately selected),
we can rewrite the conditional probability as

pi(Yi = yi|Hl) = ∏
j∈Ni

pi
j(Y

i
j = yi

j|Hl), i ∈N , l = 0,1 (6.1)

Our goal is to decide whether the system should raise an alarm to the system
administrator based on the current received feedbacks. We need to point out that the
decision model does not exclude the local diagnosis of the IDS itself. If an IDS is
capable of making its own diagnosis, this one is aggregated with the feedbacks from
its peers in the acquaintances. Table 10.1 summarizes the notations we use in this
section.

In the following subsections we first model the past behavior of acquaintances
and then model the decision problem using Bayesian risk function.

6.3.1 Modeling of Acquaintances
The conditional probabilities pi

j(Y
i
j |Hl), i∈N , j ∈Ni, l ∈ {0,1}, are often unknown

to IDS nodes and they need to be learned from previous data. In this section we
use the Beta distribution and its Gaussian approximation to find these probabilities.
We let pi

j,M := pi
j(Y

i
j = 0|H1) be the probability of miss of an IDS j’s diagnosis to

node i’s request, also known as the false negative (FN) rate; and let pi
j,F := pi

j(Y
i
j =

1|H0) be the probability of false alarm or false positive (FP) rate. The probability of
detection, or true positive (TP) rate, can be expressed as pi

j,D = 1− pi
j,M .

Each IDS in the network maintains a history of data containing the diagnosis
data from past consultations. The accuracy of peer diagnosis will be revealed after
an intrusion happens. As mentioned in Section 4.2, test messages can also be used to
assess the effectiveness of IDSs even though no intrusion history has been collected.
IDS i can use these collected data from its peers to assess the distributions over its
peer IDS j’s probabilities of detection and false alarm using Beta functions, denoted
by pi

j,D and pi
j,F , respectively. The total reported diagnosis data from peer IDS j, j ∈

Ni, to IDS i is denoted by the set M i
j , and they are classified into two groups: one is

where the result is either false positive or true negative under no intrusion, denoted
by the set M i

j,0; and the other is where the result is either false negative or true
positive under intrusion, denoted by the set M i

j,1. Both sets are disjoint satisfying
M i

j,0∪M i
j,1 = M i

j and M i
j,0∩M i

j,1 = /0.
We let the random variables pi

j,F and pi
j,D take the form of Beta distributions as

78 � Intrusion Detection Networks: A Key to Collaborative Security

follows:

pi
j,F ∼ Beta(xi

j|α i
j,F ,β

i
j,F) =

Γ(α i
j,F+β i

j,F)

Γ(α i
j,F)Γ(β

i
j,F)

(xi
j)

α i
j,F−1(1− xi

j)
β i

j,F−1, (6.2)

pi
j,D ∼ Beta(yi

j|α i
j,D,β

i
j,D) =

Γ(α i
j,D+β i

j,D)

Γ(α i
j,D)Γ(β

i
j,D)

(yi
j)

α i
j,D−1(1− yi

j)
β i

j,D−1, (6.3)

where Γ(·) is the Gamma function; xi
j,y

i
j ∈ [0,1]; α i

j,F ,α
i
j,D and β i

j,F ,β
i
j,F are Beta

function parameters that are updated according to historical data as follows.

α
i
j,F = ∑

k∈M i
j,0

(λ i
F)

t i
j,k ri

j,F,k, β i
j,F = ∑k∈M i

j,0
(λ i

F)
t i
j,k(1− ri

j,F,k); (6.4)

α
i
j,D = ∑

k∈M i
j,1

(λ i
D)

t i
j,k ri

j,D,k, β i
j,D = ∑k∈M i

j,1
(λ i

D)
t i
j,k(1− ri

j,D,k). (6.5)

The introduction of the discount factors λ i
F ,λ

i
D ∈ [0,1] above allows more

weights on recent data from IDSs while less on the old ones. The discount factors
on the data can be different for false negative and false positive rates. The parame-
ter t i

j,k denotes the time when k-th diagnosis data generated by IDS j, j ∈Ni, to its
peer IDS i. The parameter ri

j,F,k,r
i
j,M,k ∈ {0,1} are the revealed results of the k-th

diagnosis data: ri
j,F,k = 1 suggests that the k-th diagnosis data from peer j yields an

undetected intrusion while ri
j,F,k = 0 means otherwise; similarly, ri

j,D,k = 1 indicates
the data from the peer j results in a correct detection under intrusion, and ri

j,D,k = 0
means otherwise.

The parameters α i
j,F ,β

i
j,F ,α

i
j,D,β

i
j,D in the distribution above also provide an em-

pirical assessment of the trustworthiness of each peer of IDS i. They can be also seen
as the trust values of the collaborators. A peer who is either malicious or incompe-
tent will result in low values of α i

j,D and higher values α i
j,D. To make the parametric

updates scalable to data storage and memory, we can use the following recursive
formulae to update these parameters as follows:

α
i
j,e,k = (λ i

e)
t i
j,k−t i

j,k−1α
i
j,e,k−1 + ri

j,e,k, k ≥ 1, (6.6)

β
i
j,e,k = (λ i

e)
t i
j,k−t i

j,k−1β
i
j,e,k−1 + ri

j,e,k, k ≥ 1, (6.7)

where e∈ {F,D}; α i
j,D,k,β

i
j,D,k, are parameter values up to the k-th data point in their

corresponding data set and M i
j,1; α i

j,F,k,β
i
j,F,k, are parameter values up to the k-th

data point in their corresponding data set M i
j,0. We can see that when λ i

e = 0, the
system becomes memoryless; and when λ i

e = 1, all past experiences are taken into
account on an equal basis. The online iterative calculations also provide a method to
assess the trust values with real-time data.

When parameters of the Beta functions α and β in Equation (6.2) are sufficiently
large, that is, enough data are collected, the Beta distribution can be approximated

Collaborative Decision � 79

by a Gaussian distribution as follows:

Beta(α,β)≈ G

(
α

α +β
,

√
αβ

(α +β)2(α +β +1)

)
, (6.8)

where the arguments of G(·, ·) are the mean value and the standard deviation, respec-
tively. Note that we have dropped the superscripts and subscripts in Equation (6.8)
for generality as it can be applied to all i and j in Equation (6.2). Hence, using the
Gaussian approximation and Equation (6.4), the expected values for pi

j,D and pi
j,M

are given by

E[pi
j,F] =

α i
j,F

α i
j,F +β i

j,F
, E[pi

j,D] =
α i

j,D

α i
j,D +β i

j,D
. (6.9)

The mean values in Equation (6.9) under large data can be intuitively interpreted
as the proportion of results of false alarm and detection in the set M i

j,0 and M i
j,1,

respectively. They can thus be used in Equation (6.1) as the assessment of the condi-
tional probabilities.

6.3.2 Collaborative Decision
The collaborative decision problem of IDS i can be seen as a hypothesis testing
problem in which one finds a decision function δ i(Yi) : Y ni → {0,1} to minimize
the Bayes risk of IDS i

Ri(δ i) = Ri
0(δ

i|H0)π
i
0 +Ri

1(δ
i|H1)π

i
1, (6.10)

where Ri(δ i|H0) is the cost of false alarm and Ri(δ i|H1) is the cost of missed de-
tection. An optimal decision function partitions the observation space Y ni into two
disjoint sets Y i

0 and Y i
1 , where Y i

0 = {yi : δ i(yi) = 0} and Y i
1 = {yi : δ i(yi) = 1}.

To find an optimal decision function according to some criterion, we introduce
the cost function Ci

ll′ , l, l
′ = 0,1, which represents IDS i’s cost of deciding that Hl

is true when Hl′ holds. More specifically, Ci
01 is the cost associated with a missed

intrusion or attack, and Ci
10 refers to the cost of false alarm, while Ci

00,C
i
11 are the

incurred costs when the decision meets the true situation. Let

Ri
0(δ

i|H0) = Ci
10 pi[δ i = 1|H0]+Ci

00 pi[δ i = 0|H0], (6.11)
Ri

1(δ
i|H0) = Ci

01 pi[δ i = 0|H1]+Ci
11 pi[δ i = 1|H1]. (6.12)

It can be shown that decision functions can be picked as a function of the likelihood
ratio given by Li(yi) = pi(yi|H1)

pi(yi|H0)
(see [112, 135]).

A threshold Bayesian decision rule is expressed in terms of the likelihood ratio
and is given by

δ
i
B(y

i) =

{
1 if Li(yi)≥ τ i

0 if Li(yi)< τ i , (6.13)

80 � Intrusion Detection Networks: A Key to Collaborative Security

where the threshold τ i is defined by

τ
i =

(Ci
10−Ci

00)π
i
0

(Ci
01−Ci

11)π
i
1
. (6.14)

If the costs are symmetric and the two hypothesis are equal likely, then the rule
in Equation (6.13) reduces to the maximum likelihood (ML) decision rule

δ
i
ML(y) =

{
1 if pi(yi|H1)≥ pi(yi|H0)
0 if pi(yi|H1)< pi(yi|H0)

, (6.15)

Assume that Ci
00,C

i
11 = 0. Using the results in Section 6.3.1, we can obtain the

following decision rule for each IDS. The application of the optimal decision rules is
summarized in Algorithm 6.1.

Proposition 6.3.1 Let τ̄ i := Ci
10

Ci
10+Ci

01
and assume that historical data is relatively

large. The optimal decision rule of IDS i, i ∈N , is

δ
i =

1 (Alarm) if P̄i ≥ τ̄ i,

0 (No alarm) otherwise,
(6.16)

where P̄i can be obtained by Gaussian approximation as follows:

P̄i ≈ 1

1+ π i
0

π i
1

∏
ni
j=1

α i
j,D+β i

j,D

α i
j,F+β i

j,F
(

α i
j,F

α i
j,D
)yi

j(
β i

j,F

β i
j,D
)1−yi

j

.

The corresponding Bayes risk for the optimal decision is

Ri(δ i) =

Ci

10(1− P̄i) if P̄i ≥ τ̄ i,

Ci
01P̄i otherwise.

(6.17)

Proof 6.1 The result follows directly from the applications of likelihood ratio test
and the Gaussian approximations of Beta distributions under the assumption of large
data sets.

6.4 Sequential Hypothesis Testing
The optimal decision rule in Section 6.3 requires each IDS to send requests to all the
acquaintances. As the number of collaborators increases, it creates a lot of communi-
cation overhead and consumes a large amount of computational power to implement

Collaborative Decision � 81

Algorithm 6.1 Optimal Decision Rule for an IDS i
Step 1: Send out requests to all acquaintances of IDS i and collect their feedback
results.
Step 2: Use Equation (6.16) to decide whether or not an intrusion occurs, and take
corresponding actions.
Step 3: Update the data sets M i

j,0, M i
j,1, with the diagnosis results of each peer

j, j ∈Ni when the fact has been revealed a posteriori.
Step 4: Calculate Beta function parameters α i

j,F ,α
i
j,D and β i

j,F ,β
i
j,F using iterative

schemes (6.6) and (6.7).
Step 5: Go to Step 1 when new decisions needs to be made or the trustworthiness of
new acquaintances needs to be evaluated using test messages.

Algorithm 6.1. Instead, it is desirable that IDSs can choose a sufficient number of
acquaintances to guarantee a certain level of confidence in the final feedback aggre-
gation. In this section we use sequential hypothesis testing to make decisions with
a minimum number of feedbacks from peer IDSs [93, 142]. An IDS asks for feed-
back from its acquaintances until a sufficient number of answers are collected. Let
Ωi denote all possible collections of feedback from the acquaintance list of IDS i and
ω i ∈Ωi denotes a particular collection of feedback. Let Ni(ω i) be a random variable
denoting the number of feedbacks used until a decision is made. A sequential deci-
sion rule is formed by a pair (φ ,δ), where φ i = {φ i

n,n ∈ N} is a stopping rule and
δ i = {δ i

n,n ∈ N} is the terminal decision rule. Introduce a stopping rule with n feed-
back, φ i

n : Y i
n := ∏ j∈Ni,n Y → {0,1}, where Ni,n is the set of nodes an IDS i asks

up to time n. φ i
n = 0 indicates that IDS i needs to take more samples after n rounds

whereas φ i
n = 1 means to stop asking for feedback and a decision can be made by the

rule δ i
n. The minimum number of feedbacks is given by

Ni(ω i) = min{n : φ
i
n = 1,n ∈ N}. (6.18)

Note that Ni(ω i) is the stopping time of the decision rule. The decision rule δ i is not
used until N. We assume that no cost has been incurred when a correct decision is
made, while the cost of a missed intrusion is denoted by Ci

01 and the cost of a false
alarm is denoted by Ci

10. In addition, we assume each feedback incurs a cost Di. We
introduce an optimal sequential rule that minimizes Bayes risk given by

Ri(φ i,δ i) = R(φ i,δ i|H0)π
i
0 +R(φ i,δ i|H1)π

i
1, (6.19)

where R(φ i,δ i|Hl), l = 0,1, are the Bayes risks under hypotheses H0 and H1, respec-
tively:

Ri(φ i,δ i|H0) =Ci
10 pi[δN(Y i

j , j ∈Ni,N) = 1|H0]+DiE[N|H0],

Ri(φ i,δ i|H1) =Ci
01 pi[δN(Y i

j , j ∈Ni,N) = 0|H1]+DiE[N|H1].

82 � Intrusion Detection Networks: A Key to Collaborative Security

Let V i(π i
0) = minφ i,δ i Ri(φ i,δ i) be the optimal value function. It is clear that when

no feedback is obtained from the peers, the Bayes risks reduce to

Ri(φ i
0 = 1,δ i

0 = 1) = Ci
10π

i
0, (6.20)

Ri(φ i
0 = 1,δ i

0 = 0) = Ci
01π

i
1. (6.21)

Hence, H1 is chosen when Ci
10π i

0 < Ci
01π i

1 or π i
0 <

Ci
01

Ci
10+Ci

01
, and H0 is chosen other-

wise. The minimum Bayes risk under no feedback is thus obtained as a function of
π i

0 and is denoted by

T i(π i
0) =

{
Ci

10π i
0 if π0 <

Ci
01

Ci
10+Ci

01
,

Ci
01(1−π i

0) otherwise.
(6.22)

The minimum cost function (6.22) is a piecewise linear function. For φ i such that
φ i

0 = 0, that is, at least one feedback is obtained, let the minimum Bayes risk be
denoted by Ji(π i

0) = min{(φ i,δ i):φ i
0=0}Ri(φ i,δ i). Hence, the optimal Bayes risk needs

to satisfy
V i(π i

0) = min{T i(π i
0),J

i(π i
0)}. (6.23)

Note that Ji(π i
0) must be greater than the cost of one sample Di as a sample request

incurs Di and Ji(π i
0) is concave in π i

0 as a consequence of minimizing the linear
Bayes risk (6.19). If the cost Di is high enough so that Ji(π i

0) > T i(π i
0) for all π i

0,
then no feedback will be requested. In this case, V i(π i

0) = T i(π i
0), and the terminal

rule is described in Equation (6.22). For other values of Di > 0, due to the piecewise
linearity of T i(π i

0) and concavity of Ji(π i
0), we can see that Ji(π i

0) and T i(π i
0) have

two intersection points π i
L and π i

H such that π i
L ≤ π i

H . It can be shown that for some
reasonably low cost Di and π i

0 such that π i
L < π i

0 < π i
H , an IDS optimizes its risk

by requesting another feedback; otherwise, an IDS should choose to raise an alarm
when π i

0 ≤ π i
L and report no intrusion when π i

0 ≤ π i
L.

Assuming that it takes the same cost Di for IDS i to acquire a feedback, the
problem has the same form after obtaining a feedback from a peer. IDS i can use the
feedback to update its a priori probability. After n feedbacks are obtained, π i

0 can be
updated as follows:

π
i
0(n) =

π i
0

π i
0 +(1−π i

0)L
i
n

; (6.24)

where Li
n := ∏ j∈Ni,n

pi(yi
j |H1)

p(yi
j |H0)

. We can thus obtain the optimum Bayesian rule cap-

tured by Algorithm 1 below, known as the sequential probability ratio test (SPRT)
for a reasonable cost Di. The SPRT Algorithm 6.2 can be used to replace Step 2 in
Algorithm 6.1. It is important to note that the choice between Algorithm 6.2 and Al-
gorithm 6.1 depends on the number of acquaintances of an IDS and its computational
and memory resources. For smaller scale IDS networks or new members of the IDN,
Algorithm 6.2 is more desirable because it allows IDSs to collect more data and learn

Collaborative Decision � 83

the level of expertise and trustworthiness of their peers. However, Algorithm 6.2 be-
comes more efficient when an IDS has a large number of collaborators and limited
resources.

Algorithm 6.2 SPRT Rule for an IDS i
Step 1: Start with n = 0. Use Equation (6.25) as a stopping rule until φ i

n = 1 for some
n≥ 0.

φ
i
n =

{
0 if π i

L < π i
0(n)< π i

H ,
1 otherwise. (6.25)

or in terms of the likelihood ratio Li
n, we can use

φ
i
n =

{
0 if Ai < Li

n < Bi

1 otherwise ,

where Ai =
π i

0(1−π i
H)

(1−π i
0)π

i
H

and Bi =
π i

0(1−π i
L)

(1−π i
0)π

i
L

.

Step 2: Go to Step 3 if φ i
n = 1 or n = |Ni|; otherwise, choose a new peer from the

acquaintance list to request a diagnosis and go to Step 2 with n = n+1.
Step 3: Apply the terminal decision rule as follows to determine whether or not
there is an intrusion.

δ i
n =

{
1 if π i

0(n)≤ π i
L

0 if π i
0(n)> π i

H
or δ i

n =

{
1 if Li

n ≤ Ai

0 if Li
n > Bi

6.4.1 Threshold Approximation
In the likelihood sequential ratio test of Algorithm 6.2, the threshold values A and B
need to be calculated by finding π i

L and π i
H from Ji(π i

0) and T i(π i
0) in Equation (6.23).

The search for these values can be quite involved using dynamic programming. How-
ever, in this subsection we introduce an approximation method to find the thresholds.
The approximation is based on theoretical studies made in [142] and [93], where a
random walk or martingale model is used to yield a relation between thresholds and
false positive and false negative rates. Let Pi

D,P
i
F be the probability of detection and

the probability of false alarm of an IDS i after applying the sequential hypothesis
testing for feedback aggregation. We need to point out that these probabilities are
different from the probabilities pi

D, pi
F discussed in the previous subsection, which

are the raw detection probabilities without feedback in the collaborative network. Let
P̄i

D and P̄i
F be reasonable desired performance bounds such that Pi

F ≤ P̄i
F , Pi

D ≥ P̄i
D.

Then, the thresholds can be chosen such that Ai =
1−P̄i

D
1−P̄F

i
, Bi =

P̄i
D

P̄i
F
.

The next proposition gives a result on the bound of the users that need to be on
the acquaintance list to achieve the desired performances.

84 � Intrusion Detection Networks: A Key to Collaborative Security

Proposition 6.4.1 Assume that each IDS makes independent diagnosis on its peers’
requests and each has the same distribution pi

0 = p̄0 := p̄(·|H0), pi
1 = p̄1 := p̄(·|H1),

p̄0(yi = 0) = θ0, p̄1(yi = 0) = θ1, for all i ∈N .
Let DKL(p̄0||p̄1) be the Kullback-Leibler (KL) divergence defined as follows.

DKL(p̄0||p̄1) =
1

∑
k=0

p̄0(k) ln
p̄0(k)
p̄1(k)

(6.26)

= θ0 ln
θ0

θ1
+(1−θ0) ln

1−θ0

1−θ1
, (6.27)

and likewise introduce the K-L divergence DKL(p̄1||p̄0). Then, on average, an IDS
needs Ni acquaintances such that

Ni ≥max
(⌈
− Di

M
DKL(p̄0||p̄1)

⌉
,

⌈
Di

F
DKL(p̄1||p̄0)

⌉)
, (6.28)

where Di
M = PF ln

(
Pi

D
Pi

F

)
+ PD ln

(
1−Pi

D
1−Pi

F

)
and Di

F = Pi
F ln
(

1−Pi
D

1−Pi
F

)
+ Pi

D ln
(

Pi
D

Pi
F

)
. If

Pi
F � 1 and Pi

M � 1, we need approximately Ni acquaitances such that

Ni ≥max
(⌈

Pi
D−1

DKL(p̄0||p̄1)

⌉
,

⌈
− Pi

F
DKL(p̄1||p̄0)

⌉)
. (6.29)

Proof 6.2 The conditional expected number of feedback needed to reach a decision
on the hypothesis in SPRT can be expressed in terms of PF and PD, [93], [142].

E[N|H0] =
1

−DKL(p̄0||p̄1)

[
Pi

F ln
(

Pi
D

Pi
F

)
+Pi

D ln
(

1−Pi
D

1−Pi
F

)]
,

E[N|H1] =
1

DKL(p̄1||p̄0)

[
Pi

F ln
(

1−Pi
D

1−Pi
F

)
+Pi

D ln
(

Pi
D

Pi
F

)]
.

Hence, to reach a decision we need to have at least max{E[N|H0],E[N|H1]} inde-
pendent acquaintances. Under the assumption that both PF and Pi

M are much less than
1, we can further approximate

E[N|H0]∼−
1−Pi

D
DKL(p̄0||p̄1)

,E[N|H1]∼−
Pi

F
DKL(p̄1||p̄0)

.

These lead us to inequalities (6.28) and (6.29).

6.5 Performance Evaluation
In this section we use a simulation approach to evaluate the efficiency of the collab-
orative decision scheme and compare it with other heuristic approaches, such as the

Collaborative Decision � 85

Table 6.2: Simulation Parameters

Parameter Value Meaning

τSA 0.5 Decision threshold of the simple average model
τWA 0.5 Decision threshold of the weighted average model

n 10 Number of IDSs in the network
d 0.5 Difficulty levels of intrusions and test messages
λ 0.9 Forgetting factor

π0,π1 0.5 Probability of no-attack and under-attack
C00,C11 0 Cost of correct decisions

simple average aggregation and the weighted average aggregation (to be explained
in more detail in this section).

We conduct a set of experiments to evaluate the average cost of the collabora-
tive detection using the collaborative decision model in comparison with the simple
average and the weighted average models. We validate and confirm our theoretical
results on the number of acquaintances needed for consultation. Each experimental
result presented in this section is derived from the average of a large number of repli-
cations with an overall negligible confidence interval. The parameters we use are
shown in Table 6.2.

6.5.1 Simulation Setting
The simulation environment uses an IDN of n peers. Each IDS is represented by two
parameters: expertise level l and decision threshold τp. Expertise level l represents
the ability of the IDS to catch suspicious traces from a given observation, and τp
represents the sensitivity of the IDS (to be elaborated more in Section 6.5.2). At
the beginning, each peer receives an initial acquaintance list containing all the other
neighbor nodes. In the process of the collaborative intrusion detection, a node sends
out intrusion information to its acquaintances to request an intrusion assessment. The
feedbacks collected from others are used to make a final decision, that is, whether or
not to raise an alarm. Different collaborative decision schemes can be used to make
such decisions. We implement three different feedback mechanisms, namely simple
average aggregation, weighted average aggregation, and our aggregation model. We
compare their efficiency by the average cost of false decisions.

6.5.1.1 Simple Average Model

If the average of all feedbacks is larger than a threshold, then raise an alarm.

86 � Intrusion Detection Networks: A Key to Collaborative Security

δSA =

1 (Alarm) if ∑

n
k=1 yk

n ≥ τSA,

0 (No alarm) otherwise,

(6.30)

where τSA is the decision threshold for the simple average algorithm. It is set to be
0.5 if no cost is considered for making false decisions.

6.5.1.2 Weighted Average Model

Weights are assigned to feedbacks from different acquaintances to distinguish their
detection capability. For example, high-expertise IDSs are signed with larger weight
compared to low-expertise IDSs. In [59], [72], and [74], the weights are the trust
values of IDSs:

δWA =

1 (Alarm) if ∑

n
k=1 wkyk
∑

n
k=1 wk

≥ τWA,

0 (No alarm) otherwise,

(6.31)

where wk is the weight of the feedback from acquaintance k, which is the trust
value of acquaintance k in [59], [72], and [74]. τWA is the decision threshold for
the weighted average algorithm. It is fixed at 0.5 because no cost is considered for
FP and FN. In this simulation, we adopt trust values from [74] to be the weights of
feedbacks.

6.5.1.3 Bayesian Decision Model

As described in section 6.3.2, our feedback aggregation models each IDS with two
parameters (FP and TP) instead of a single trust value. It also considers the costs of
false positive and false negative decisions. This decision model investigates the cost
of all possible decisions and chooses a decision that leads to a minimal expected cost.

6.5.2 Modeling of a Single IDS
To reflect the intrusion detection capability of each peer, we use a Beta distribution
to simulate the decision model of an IDS. A Beta density function is given by

f (p̄|ᾱ, β̄) =
1

B(ᾱ, β̄)
p̄ᾱ−1(1− p̄)β̄−1,

B(ᾱ, β̄) =
∫ 1

0
tᾱ−1(1− t)β̄−1dt, (6.32)

Collaborative Decision � 87

where ᾱ and β̄ are defined as follows:

ᾱ = 1+
l(1−d)
d(1− l)

r,

β̄ = 1+
l(1−d)
d(1− l)

(1− r). (6.33)

where p̄ ∈ [0,1] is the assessment result from the IDS about the probability of in-
trusion, and f (p̄|ᾱ, β̄) is the distribution of assessment p̄ from a peer with expertise
level l to an intrusion with difficulty level d ∈ [0,1]. Higher values of d are associ-
ated with attacks that are difficult to detect, that is, many peers may fail to identify
them. Higher values of l imply a higher probability of producing correct intrusion
assessment. r ∈ {0,1} is the expected result of detection. r = 1 indicates that there is
an intrusion, and r = 0 indicates that there is no intrusion.

For a fixed difficulty level, the above model has the property of assigning higher
probabilities of producing correct rankings to peers with higher levels of expertise. A
peer with expertise level l has a lower probability of producing correct rankings for
alerts of higher difficulty (d > l). l = 1 or d = 0 represent the extreme cases where
the peer can always accurately rank the alert. This is reflected in the Beta distribution
by α,β → ∞. Figure 6.1 shows the feedback probability distribution for peers with
different expertise levels, where we fix r = 1 and the difficulty level of test messages
at 0.5.

τp is the decision threshold of p̄. If p̄ > τp, a peer sends feedback 1 (i.e., under-
attack); otherwise, feedback 0 (i.e., no-attack) is generated. τp indicates the sensitiv-
ity of an IDS detector, lower τ value implies a more sensitive detector. That is, the

 0

 1

 2

 3

 4

 5

 6

τp=0.5

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Intrusion Access Result

Expertise Level = 0.2
Expertise Level = 0.5
Expertise Level = 0.8

Figure 6.1: Expertise level and detection rate.

88 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

R
a

te

Expertise

FP

FN

Figure 6.2: FP and FN versus expertise level l.

IDS is more likely to raise alert when suspicious trace is noticed. For a fixed difficulty
level, the preceding model assigns higher probabilities of producing correct intrusion
diagnosis to peers with a higher level of expertise. A peer with expertise level l has
a lower probability of producing correct intrusion diagnosis for intrusions of higher
detection difficulty (d > l). l = 1 and d = 0 represent extreme cases where the peer
can always accurately detect the intrusion. This is reflected in the Beta distribution
by ᾱ, β̄ → ∞.

Figure 6.2 shows that both the FP and FN decrease when the expertise level of an
IDS increases. We notice that the curves of FP and FN overlap. This is because the
IDS detection density distributions are symmetric under r = 0 and r = 1. Figure 6.3
shows that the FP decreases with the decision threshold while the FN increases with
the decision threshold. When the decision threshold is 0, all feedbacks are positive;
when the decision threshold is 1, all feedbacks are negative.

6.5.3 Detection Accuracy and Cost
One of the most important metrics to evaluate the efficiency of a decision model is
the average cost of incorrect decisions. We take into consideration the fact that the
costs of FP decisions and FN decisions are different. In the following subsections we
evaluate the cost efficiency of the aggregation algorithm compared with other models
under homogeneous and heterogeneous network settings. Then we study the relation
between decision cost and the consulted number of acquaintances.

Collaborative Decision � 89

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
a

te

Threshold

FP

FN

Figure 6.3: FP and FN versus threshold τp.

6.5.3.1 Cost under Homogeneous Environment

In this experiment we study the efficiency of the three aggregation models under
a homogeneous network setting, that is, all acquaintances have the same parame-
ters. We fix the expertise levels of all nodes at 0.5 (i.e., medium expertise) and set
C01 = C10 = 1 for the fairness of comparison, because the simple average and the
weighted average models do not account for the cost difference between FP and FN.
We fix the decision threshold for each IDS (τp) to 0.1 for the first batch run and then
increase it by 0.1 in each following batch run until it reaches 1.0. We measure the av-
erage cost of the three aggregation models. As shown in Figure 6.4, the average costs
of false decisions yielded by our model remains the lowest among the three under all
threshold settings. The costs of the weighted average aggregation and the simple av-
erage aggregation are close to each other. This is because under such a homogeneous
environment, the weights of all IDSs are the same. Therefore, the difference between
the weighted average and the simple average is not substantial. We also observe that
changing the threshold has a big impact on the costs of the weighted average model
and the simple average model, while the cost of the our model changes only slightly
with the threshold. All costs reach a minimum when the threshold is 0.5 and increase
when it deviates from 0.5.

6.5.3.2 Cost under Heterogeneous Environment

In this experiment we fix the expertise level of all peers at 0.5 and assign decision
thresholds ranging from 0.1 to 0.9 to nodes 1 to 9, respectively, with an increment
of 0.1. We set false positive cost C10 = 1 and false negative cost C01 = 5 to reflect
the cost difference between FP and FN. We observe the detection accuracy in terms

90 � Intrusion Detection Networks: A Key to Collaborative Security

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
o

s
t

Threshold

Simple

Weighted

FADEX

Figure 6.4: Average cost versus threshold τp.

of FP and FN rates and the average costs of false decisions at node 0 when three
different collaborative decision models are used.

Figure 6.5 shows that the average costs of the three different models converge
after a few days of the learning process. The cost of this model starts with a high
value and drops drastically in the first 10 days, and finally converges to a stable value
on day 30. We then plot in Figure 6.6 the steady-state FP, FN, and the cost. We
observe that the weighted average model shows significant improvement in the FP
and FN rates and cost compared to the simple average model. The decision model
has a higher FP rate and a lower FN rate compared to the other two models. However,
its cost is the lowest among the three. This is because the decision model trades some
FP with FN to reduce the overall cost of false decisions.

6.5.3.3 Cost and the Number of Acquaintances

In this experiment we study the relation between average cost due to false decisions
and the number of acquaintances that the IDS consults. We fix the expertise level
of all IDSs in the network to 0.3,0.5,0.7,0.8, respectively, for different batch runs.
Every IDS decision threshold is fixed at τp = 0.5 in all cases. We observe in Fig-
ure 6.7 that, under all cases, the average cost decreases when more acquaintances
are consulted. We also notice that for higher expertise acquaintances, fewer consul-
tations are needed to reach the cost goal. For instance, in our experiments, the IDS
only needs to consult 2 acquaintances, on average, to reach a cost of 0.1, under the
case where all acquaintances are with high expertise level 0.8. Correspondingly, the
number of acquaintances needed are 4 and 15, on average, when the acquaintance
expertise levels are 0.7 and 0.5, respectively. In the case that all acquaintances are

Collaborative Decision � 91

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

C
o

s
t

Days

Simple

Weighted

FADEX

Figure 6.5: Average costs for three different aggregation models.

 0

 0.2

 0.4

 0.6

 0.8

 1

FP FN Cost

R
a

te
/C

o
s
t

Simple

Weighted

FADEX

Figure 6.6: Comparison of three aggregation models.

92 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

Ug

C
o

s
t

Number of Acquaintances

Exp=0.3

Exp=0.5

Exp=0.7

Exp=0.8

Figure 6.7: Average cost versus number of acquaintances consulted (Ug is the cost
goal).

0.3 (i.e., of low expertise), the utility goal cannot be reached after consulting a small
number (i.e., < 20) of acquaintances.

In the next experiment, the expertise levels of all nodes remain at 0.5 and their
decision thresholds vary from 0.1 to 0.9. We set C10 =C01 = 1 in the first batch run
and increase C01 by 1 in every subsequent batch run. We observe the costs under
three different models. Figure 6.8 shows that the costs of the simple average model
and the weighted average model increase linearly with C01, while the cost of the
hypothesis testing model grows the slowest among the three. This is because the
hypothesis testing model has a flexible threshold to optimize its cost. The hypothesis
testing model has superiority when the cost difference between FP and FN is large.

6.5.4 Sequential Consultation
In this experiment we study the number of acquaintances needed for consultation
to reach a predefined goal. Suppose the TP lower-bound P̄D = 0.95 and FP upper-
bound P̄F = 0.1. We observe the change of FP rate and TP rate with the number of
acquaintances consulted (n). Figure 6.9 shows that the FP rate decreases and the TP
rate increases with n. Consulting higher expertise nodes leads to a higher TP rate
and a lower FP rate. In the next experiment we implement Algorithm 1 on each node
and measure the average number of acquaintances needed to reach the predefined TP
lower-bound and the FP upper-bound. Figure 6.10 compares the simulation results
with the theoretical results (see Equation (6.29)), where the former confirms the lat-
ter. In both cases, the number of consultations decreases quickly with the expertise
levels of acquaintances. For example, the IDS needs to consult around 50 acquain-
tances of expertise 0.2, while only 3 acquaintances of expertise 0.7 are needed for

Collaborative Decision � 93

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5

C
o

s
t

False Negative Cost (C01)

Simple

Weighted

FADEX

Figure 6.8: Cost versus C01 for the three models.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

PF

PD

R
a

te

Number of Acquaintances

Exp=0.4

Exp=0.6

Exp=0.8

FP Rate

TP Rate

Figure 6.9: FP, TP versus number of acquaintances.

94 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u

m
 o

f
A

c
q

u
a

in
ta

n
c
e

s

Expertise

Simulation Result

Theoretical Result

Figure 6.10: Number of acquaintances versus expertise.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

F
a

ls
e

/T
ru

e
 P

o
s
it
iv

e

Days

Normal node FP

Normal node TP

Betrayal node FP

Betrayal node TP

Figure 6.11: False positive and true positive of single IDS under betrayal attack.

Collaborative Decision � 95

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

C
o

s
t

Days

Simple

Weighted

FADEX

Figure 6.12: False decision cost under betrayal attack.

the same purpose. This is partly because low expertise nodes are more likely to make
conflicting feedbacks and consequently increase the number of consultations. The
analytical results can be useful for IDSs to design the size of their acquaintance lists.

6.5.5 Robustness and Scalability of the System
Robustness and scalability are two important features of an IDN. The collaborative
decision model presented in this chapter is robust to malicious insiders because it
has an inherent robust trust management model from [74] where malicious insiders
can be quickly discovered and removed from the acquaintance list. To verify this, we
simulate the scenario of a betrayal attack under a homogeneous environment. We fix
all 10 IDSs with l = 0.5 and τp = 0.5. We let one IDS turn malicious at day 20 and
start to give opposite diagnosis. We observe the FP and TP rate of a malicious node
and its impact on the decision of other nodes. From Figure 6.11 we can see that the
FP rate and TP rate of the malicious node raise/drop quickly after day 20. Figure 6.12
shows that the cost of false decision of other normal nodes rises quickly at day 20
and drop back to normal after a few days. Compared with the other two aggregation
models, the model receives the least impact from the malicious node.

This IDN is scalable because the number of acquaintances needed for consulta-
tion only depends on the expertise level of those acquaintances rather than the size
of the network. Hence, the message rate from/to each IDS does not grow with the
number of nodes in the network. Furthermore, the dynamic consultation algorithm
reduces the number of consultation messages needed for collaborative intrusion de-
tections.

96 � Intrusion Detection Networks: A Key to Collaborative Security

6.6 Conclusion
In this chapter we presented a trustworthy and efficient collaborative decision model.
We obtained optimal decision rules that minimize Bayes risks using hypothesis test-
ing methods, and provided a data-driven mechanism for real-time efficient, dis-
tributed and sequential feedback aggregations. In this model, an IDS consults se-
quentially for peer diagnoses until it is capable of making an aggregated decision
that meets Bayes optimality. The decision is made based on a threshold rule lever-
aging the likelihood ratio approximated by Beta distribution and thresholds by target
rates. Our simulation results have shown that the decision model is superior to other
models in the literature in terms of cost efficiency. Our simulation results have also
corroborated our theoretical results on the average number of acquaintances needed
to reach the predefined false positive upper-bound and true positive lower-bound.
As future work, we want to investigate large-scale collaborative networks and their
topological impact. Another possible research direction is to integrate our model with
communication networks, and design defense mechanisms against different cyber at-
tacks such as denial-of-service, man-in-the-middle, and insider attacks. Finally, our
results can be extended to deal with the case of correlated feedbacks.

Chapter 7

Resource Management

CONTENTS
7.1 Introduction . 97
7.2 Background . 98
7.3 Resource Management and Incentive Design . 100

7.3.1 Modeling of Resource Allocation . 100
7.3.2 Characterization of Nash Equilibrium . 103
7.3.3 Incentive Properties . 105

7.4 Primal / Dual Iterative Algorithm . 107
7.5 Experiments and Evaluation . 110

7.5.1 Nash Equilibrium Computation . 110
7.5.2 Nash Equilibrium Using Distributed Computation 111
7.5.3 Robustness Evaluation . 114

7.5.3.1 Free-Riding . 114
7.5.3.2 Denial-of-Service (DoS) Attacks 115
7.5.3.3 Dishonest Insiders . 115

7.5.4 Large-Scale Simulation . 117
7.6 Conclusion . 117

7.1 Introduction
As discussed in the previous chapters, collaborative intrusion detection networks
can improve the intrusion detection accuracy of participating IDSs. However, ma-
licious insiders in an IDN may compromise the system by providing false informa-
tion/feedback or overloading the system with spam. Also, “free-riders” [88] can ex-
ploit the system by benefiting from others without contributing themselves. This can

97

98 � Intrusion Detection Networks: A Key to Collaborative Security

discourage IDN participants and eventually degrade the overall performance of the
collaboration system. To solve the problems of malicious insiders and free-riders,
trust management is necessary to distinguish dishonest or malicious insiders, and
an incentive-compatible resource allocation mechanism can help participating IDSs
contribute helping resources to collaborators in a fair manner (i.e., more active con-
tributors should receive more helping resources). The resource allocation mechanism
itself should be robust against various insider attacks.

In this chapter we present a resource allocation mechanism, based on recipro-
cal incentive design and trust management, where the amount of resources that each
IDS allocates to assist its neighbors is proportional to the trustworthiness and the
amount of resources allocated by its neighbors to help this IDS. The motivation for
reciprocal incentive design is to encourage participants to contribute more in collab-
oration so as to keep their IDS knowledge up-to-date. This exchange of knowledge
is particularly important in order for IDSs to protect the system from new or zero-
day attacks. We formulate an N-person (or peer) noncooperative continuous-kernel
game model to investigate incentive compatibility of the IDS collaboration system.
In our design, each IDS finds an optimal resource allocation to maximize the ag-
gregated satisfaction levels of its neighbors. We show that under certain controllable
system conditions, there exists a unique Nash equilibrium. Our experimental results
demonstrate that an iterative algorithm that we introduce converges geometrically to
the Nash equilibrium, and that the amount of helping resources an IDS receives is
proportional to its helpfulness to others. We also demonstrate security features of the
system against free-riders, dishonest insiders, and DoS attacks.

The highlight of this chapter can be summarized as follows: (1) A mechanism
for optimal resource allocation for each peer to maximize its social welfare with a
convex utility function; (2) an N-person noncooperative game model and an iterative
primal/dual algorithm to reach the Nash equilibrium; and (3) incentive compatibility
and robustness that is derived from the resource allocation scheme to tackle the “free-
riders,” dishonest insiders, and DoS attacks.

The rest of the chapter is organized as follows: Section 7.2 presents a brief
overview of related work of resource allocation and game theory from different ar-
eas. In Section 7.3, we describe our incentive-based resource allocation scheme for
resource management in the IDN. In Section 7.4 we devise a primal/dual algorithm
to compute the Nash equilibrium, and in Section 7.5 we evaluate the convergence
and incentives of the resource allocation design. Finally, Section 7.6 concludes the
chapter. A list of symbols and notations, as well as their information patterns, is given
in Table 7.1 for readers’ convenience.

7.2 Background
Many IDS collaboration systems have been proposed in the literature, such as [146],
[149], and [157]. They all assume that IDSs cooperate honestly and unselfishly. The
lack of a trust infrastructure leaves the systems vulnerable to malicious peers.

A few trust-based collaboration systems (e.g., [72] and [124]) and distributed

Resource Management � 99

trust management models (e.g., [59], [72], and [74]) have been proposed for effective
IDS collaboration. However, none of these proposed models studied incentives for
IDS collaboration. Our previous work proposed a trust management system where
IDSs exchange test messages to build trust among themselves. The feedback from
collaborators is evaluated and a numerical trust value is assigned to reflect the level
of truthfulness of collaborators. [72] uses a simple weighted average model to predict
the trust value while [74] uses a Bayesian statistics model to estimate the trust value
as well as the confidence level of the trust estimation.

A variety of game-theoretic approaches have been applied to network resource
allocation in traditional routing networks and peer-to-peer (P2P) networks. In tradi-
tional routing networks, noncooperative game models such as in [81] and [91] have
been used in a dynamic resource allocation context; authors of these reference works
have considered a network with a general topology where each source has a window-
based end-to-end flow control. The available information for a user is the number of
packets within the network not yet acknowledged. Each user aims to maximize his
own throughput, with bounded delay, and hence faces a constrained optimization
problem. The equilibrium obtained is decentralized because each user has only local
information on his own unacknowledged packets. The focus has been on the max-
imal network performance with a given resource instead of incentive mechanisms.
In peer-to-peer networks, Ma et al. [99] have used a game-theoretical approach to
achieve differentiated services allocation based on the peer’s contribution to the com-
munity. Yan et al. [148] have proposed an optimal resource allocation scheme for file
providers. A max-min optimization problem has been constructed to find the opti-
mal solution that achieves fairness in the resource allocation. Both works rely on an
independent central reputation system. Reciprocity has not been incorporated. Also,
the resilience and robustness of the system have not been their focus. Grothoff [79]
has proposed a resource allocation economic model to deal with malicious nodes
in peer-to-peer networks. It depends solely on the trust values of the peer nodes,
and the resource allocation is priority based on the trust value of the request sender.
Grothoff’s model can effectively prevent malicious nodes from overusing the net-
work resource because their requests will be dropped due to their low trust. It is also
reciprocal-altruistic. However, this model may result in unfairness because nodes
with the highest trust may take the entire resource. Our model differs from the above
ones in that we have made use of the pair-wise nature of the network for designing
scalable network algorithms, ensuring secure and resilient properties of the solution,
and providing fairness and reciprocal incentive compatibility in resource allocation.

Recently, game-theoretical methods have been used for intrusion detection where
in a two-player context, the attacker (intruder) is one player and the intrusion de-
tection system (IDS) is the other player. In [158], and [161], noncooperative game
frameworks have been used to address different aspects of intrusion detection. In
[147], Liu et al. use a Bayesian game approach for intrusion detection in ad-hoc net-
works; a two-person non-zero-sum incomplete information game is formulated to
provide a framework for an IDS to minimize its loss based on its own belief. Our
previous work [163] provides a game-theoretical model for IDSs to allocate collab-
oration resources to achieve the goal of fairness and incentive compatibility. This

100 � Intrusion Detection Networks: A Key to Collaborative Security

Table 7.1: Summary of Notations

Symbol Meaning Information Private to

T u
v Trust value of v perceived by u u

puv Frequency of help response from u to v u,v
rvu Desired reply rate request of v to u u,v
mvu Minimum reply rate request of v to u u,v
Cu Resource capacity of u u
Su,v Satisfaction level of node u in response to v u,v

chapter extends our previous work by integrating a complete IDN framework and a
robustness evaluation.

7.3 Resource Management and Incentive Design
In this section we first mathematically model resource allocation in an IDN envi-
ronment as individual optimization problems for its member peers. A game problem
(GP) can then be introduced for each peer. We employ a Lagrangian approach to find
the Nash equilibrium of the constrained game. Finally, we show that there exists a
unique Nash equilibrium in the game and characterize the equilibrium solution in
closed form.

7.3.1 Modeling of Resource Allocation
We consider a collaborative intrusion detection network (IDN) with N peers or nodes
where all the nodes adopt the same resource allocation scheme. Each IDS user can
distribute information to other IDS users in the form of messages (in bytes). We
denote the set of nodes by N = {1,2, · · · ,N}. The set of neighbor nodes of peer
u is denoted by Nu. The communications between IDSs become constrained when
the network size is large and the number of collaborators |Nu| grows. Note that
information in the network is symmetric. If u is a neighbor of v, then v is also a
neighbor of u. We can represent the topology of an IDN by a graph G := (N ,E),
where E is the set of (u,v) pairs in the network. We use rvu to denote the units of
resource that node u should allocate in order to serve v with full satisfaction. The
minimum acceptable resource from u to v is mvu. Note that rvu,mvu are chosen by
node v and informed to node u during negotiation. Let puv ∈ R+ be the resource that
u allocates to v, for every u,v ∈N . The parameter puv is a decision variable of peer
u and is private information between peer u and peer v. To satisfy neighbor v, node u
should allocate resources to v over the interval [mvu,rvu].

In this model we assume that each node has its own mechanism to evaluate the

Resource Management � 101

trust of its neighbors, and the trust values have already been determined. The trust
evaluation mechanism has been discussed in Chapter 5. Let T u

v ∈ [0,1] be the trust
value of peer v assessed by peer u, representing how much peer u trusts peer v.
The allocated resource puv from peer u to v is closely related to the trust value T u

v
perceived by u.

Each peer maximizes its effort to help its neighbor nodes under its capacity con-
straint Cu, which is dependent on its own resource capacity such as bandwidth, CPU,
memory, etc. Then, resource allocation should satisfy the following capacity con-
straint:

∑
v∈Nu

puv ≤Cu, for all u ∈N . (7.1)

Our system introduces a utility function for each peer to model the satisfaction
level of its neighbors. The utility function Suv is given by

Suv =
ln
(

α
puv−mvu
rvu−mvu

+1
)

ln(α +1)
, (7.2)

where α ∈ (0,∞) is a system parameter that controls the satisfaction curve, and the
term ln(α + 1) in the denominator is the normalization factor. The function Suv is a
concave function on its domain under the condition α > 1. The choice of logarithmic
functions is motivated by the proportional fairness properties as in [106, 129] and
has been used in the literature on power control, congestion control, and rate control
in communication networks [129, 160, 164].

Let Uu : RL(u)
+ → R+ be the peer u’s aggregated altruistic utility, where L(u) =

card(Nu), the cardinality of the set Nu. Let the payoff function, Uu, for u be given
by

Uu = ∑
v∈Nu

wuvSuv, wuv = T u
v pvu, (7.3)

where wuv is the weight on peer v’s satisfaction level Suv, which is the product of peer
v’s trust value and the amount of helping resources allocated to u. A higher weight is
applied on peer v’s satisfaction level Suv if peer v is better trusted and more generous
to provide help to u. In this system, each peer u∈N in the IDN intends to maximize
Uu within its resource capacity. A general optimization problem (OP) can then be
formulated as follows:

max{puv,v∈Nu} ∑v∈Nu wuvSuv (7.4)
s.t. ∑v∈Nu puv ≤Cu

mvu ≤ puv ≤ rvu,∀v ∈Nu,

where Suv and wuv are given by Equations (7.2) and (7.3), respectively. The upper and
lower bounds on resources are imposed by the collaborators. The design of the utility
function in OP is built upon the intuition behind how people form collaborations in
social networks. With the freedom to choose and design collaborative schemes, we

102 � Intrusion Detection Networks: A Key to Collaborative Security

assume that all legitimate agents in the network start with an intent to form collabo-
rations with each other.

Every peer in the network is faced with an optimization problem (OP) to solve.
(OP) is a concave problem in which the objective function is a concave function in
puv and the constraint set is an L(u)-dimensional simplex, where L(u) = card(Nu),
the cardinality of the set Nu. Under the assumptions that the size of the network
is large and peers can only communicate locally within a distance d, we have N
individual optimization problems in the form of (OP) for each node. Hence, we can
introduce a corresponding game (GP) by the triplet 〈N ,Au,Uu〉, where N is the set
of players or peers, Au,u ∈N , is the action set of each peer, and Uu is the payoff
function of peer u, defined in Equation (7.3). An action of a peer here is a decision
on the resource allocated to a neighbor peer. The action set of each peer Au is given
by Au = A1

u
⋂

A2
u, where A1

u = {pu ∈ RL(u)
+ | ∑v∈Nu puv ≤Cu} and A2

u = {pu ∈ RL(u)
+ |

mvu ≤ puv ≤ rvu,v ∈Nu}. It is not difficult to prove that under the condition Cu ≥
∑v∈Nu mvu, the action set is nonempty.

We note that the decision variable of each peer is a vector pu and the action
sets of players are not coupled. We thus can use Lagrangian relaxation to penalize
the constraints to solve for the Nash equilibrium. Let Lu(pu,σu,µu,λu) as follows
denote the Lagrangian of peer u’s optimization problem:

Lu = ∑
v∈Nu

T u
v pvuSuv− ∑

v∈Nu

µuv(puv− rvu)

+ ∑
v∈Nu

σuv(puv−mvu)−λu

(
∑

v∈Nu

puv−Cu

)
, (7.5)

where µuv,σuv,λu ∈ R+ are the Lagrange multipliers. Using Lagrangian relaxation,
we can transform the game problem to its relaxed counterpart (RGP), where the
abbreviation “R” is short for “Relaxed.” The triplet of RGP is given by 〈N , Āu,Lu〉,
where Āu is the action set described by the base constraint puv ≥ 0, that is, Āu = {pu |
puv ≥ 0,v ∈ Nu}; and the payoff function is replaced by the relaxed Lagrangian
function Lu. 1

By formulating the collaborative problem as a game, we use a noncooperative
approach to model altruistic behavior among peers. The noncooperativeness is ap-
propriate here because there is no centralized control agent in the network, and com-
munications between peers are local and symmetric. The aggregated utility comes
from peers’ general intention to help other peers. We assume that peers intend to be
altruistic when they are introduced into the network. Free-riding peers are penalized
via the weighting of the aggregation function. When one peer appears to refuse to
help other peers, the other peers will correspondingly decline to assist in return, and
as a result free-riding is avoided.

The framework described in this subsection can be potentially applied to a wide

1In the definition of the relaxed game (RGP), we have chosen to relax simultaneously the two sets of
constraints: capacity constraint and range constraints. Instead, we could have relaxed only the capacity
constraint. In that case, the action set Āu in the relaxed game would include a range constraint, that is,
Āu = {pu | mvu ≤ puv ≤ rvu,v ∈Nu} .

Resource Management � 103

range of collaborative networks where reciprocal altruism is desirable. However,
many distinct features of IDS networks have been incorporated into the design. First,
an attacker can compromise nodes in the network and then start to spread malware
to degrade the level of protection provided by the collaborative network. The special
structure of the utility function together with the trust values have been used in the
model to mitigate malicious and dishonest behaviors of compromised nodes. Sec-
ond, insider threats in IDS networks have been considered by imposing upper and
lower bounds on puv, which can be used to prevent denial-of-service attacks from the
insiders.

Remark 7.3.1 The choice of using the term collaborative networks is to distinguish
this approach from its cooperative counterpart. Cooperative networks often refer to
a network of nodes that are able to act as a team and then split the team utility among
the members. This will require global communications, coordination, and bargain-
ing. This appears to be unrealistic for IDN systems. In collaborative networks, nodes
behave strategically, not because they are selfish agents but because they are unable
to coordinate or act as a team. Our work is essentially different from noncooperative
network formation problems, where all agents act selfishly to achieve their individual
goals, which can be misaligned with each other. In our IDN design, the players have
their goals aligned in a certain way to achieve efficient exchange of knowledge with
each other. This is similar to classical strategic games such as Battle of the Sexes and
the Bach and Stravinsky game [125]. However, the goals become less aligned when
agents have low trust values. This flexibility in the model essentially attributes to the
reciprocal altruism.

7.3.2 Characterization of Nash Equilibrium
In this subsection we solve the GP for its Nash equilibrium. Each peer u has a concave
optimization problem as in Equation (7.4). Applying the first-order KKT condition
as in [40] and [42] to each peer’s concave problem in OP, ∂Lu

∂ puv
= 0,∀v ∈Nu,u ∈N ,

we find
δuvT u

v pvu

1+α ′uv puv−α ′uvmvu
= ξuv,∀v ∈Nu,u ∈N , (7.6)

where δuv =
α ′uv

ln(1+α) ; ξuv = −σuv + µuv +λu, and α ′uv =
α

rvu−mvu
. In addition, from

the feasibility condition, it is required that an optimal solution satisfies the base con-
straints in Āu and the complimentary slackness conditions for every u ∈N :

λu

(
∑

v∈Nu

puv−Cu

)
= 0. (7.7)

σuv(puv−mvu) = 0,∀v ∈Nu, (7.8)

µuv (puv− rvu) = 0,∀v ∈Nu . (7.9)

104 � Intrusion Detection Networks: A Key to Collaborative Security

The variable ξuv is composed of three Lagrange multipliers. If ξuv 6= 0, we can
further simplify the first-order condition to

puv−
T u

v pvu

ξuv ln(1+α)
=

(
1+

1
α

)
mvu−

1
α

rvu. (7.10)

Definition 7.3.2 (Başar and Olsder, [37]) A Nash equilibrium p∗uv,u,v ∈N for the
game (GP) is a point that satisfies Lu(p∗u,p∗−u) ≥Lu(pu,p∗−u), ∀pu ∈ Au,u ∈N ,
and puv = pvu = 0, for v ∈Nu\Nu and u ∈N , where the vector p−u = {pi : i 6=
u, i ∈N } is comprised of decision vectors of other peers.

Proposition 7.3.3 The game (GP) admits a Nash equilibrium in pure strategies.

Proof 7.1 The action set Au is a closed and bounded simplex and Uu is continuous
in puv for all u ∈N ,v ∈Nu and concave in pu. By Theorem 4.4 in [37], there exists
a Nash equilibrium to (GP).

With the existence of a Nash equilibrium at hand, we can further investigate the
solutions to the relaxed game by looking at a pair of nodes u and v. Node u has its
decision vector pu satisfying Equation (7.10) and similarly, node v has its decision
vector pv satisfying Equation (7.10) by interchanging indices u and v. Hence, we
obtain a pair of equations involving puv and pvu and they are described by[

1 −T u
v

ξuv(ln(1+α))
−T v

u
ξvu(ln(1+α))

1

][
puv
pvu

]
=

[(
1+ 1

α

)
mvu− rvu

α(
1+ 1

α

)
muv− ruv

α

]
,

or in the matrix form, Muvquv = buv, where quv = [puv, pvu]
T , and buv is the right-

hand side vector and Muv is the incident matrix.

Definition 7.3.4 (M-matrix, [39]) An N by N real matrix A = [Ai j] is called an M-
matrix if it is of the form A = θI−P, where P is entrywise nonnegative and θ is
larger than the spectral radius of P, that is, θ > ρ(P). An M-matrix A has two key
features:

(F1) the sign patterns aii > 0, i = 1, ...,N, and ai j ≤ 0, i 6= j,

(F2) the eigenvalues of A have all positive real parts.

Theorem 7.3.5 (Berman and Plemmons, [39]) If A is an M-matrix, then A−1 > 0,
that is, all of its entries are positive.

Using Theorem 7.3.5, we next state a result on the uniqueness of a Nash equilib-
rium for a sufficiently large system parameter α .

Theorem 7.3.6 Suppose that only capacity constraints are active and α >

max
u,v
{e

T u
v

ξuv , rvu
mvu
}− 1. Then, the game admits a unique Nash equilibrium. For each

pair of peers u and v, the equilibrium is given by q∗uv = M−1
uv buv,∀u,v ∈N .

Resource Management � 105

Proof 7.2 Under the condition that the capacity constraints are active, ξuv = kvλu >
0, because the objective function is an increasing function. First, we show that pro-

vided that α > e
T u
v

ξuv −1, we have the inequality 1 >
T u

v
ξuv ln(1+α)

. For each pair of nodes
u and v, matrix Muv is an M−matrix in Equation (7.10); hence, Muv are strictly di-
agonally dominant and thus nonsingular; and by Theorem 7.3.5, the entries of the
inverse matrix M−1

uv are strictly positive.
Second, provided that α > ruv

mvu
− 1, the vector buv is positive, that is,(

1+ 1
α

)
mvu > 1

α
ruv. Thus, we arrive at a unique solution q∗uv, whose entries are

all positive, residing in the base constraint action set Āu for all u. Because Equa-
tion (7.10) holds for any interactive pair, the game admits a unique Nash equilibrium
under conditions in Theorem 7.3.6.

Note that Theorem 7.3.6 provides a condition to choose the system parameter α .
Because the system can determine the value of α , the condition can be met easily.

Remark 7.3.7 Under general conditions, to have ξuv > 0 requires multipliers µuv,
λu, σuv to satisfy µuv +λukv > σuv. Because the payoff function Uu is increasing in
puv, λu > 0 and only µuv and σuv can be zero. To ensure ξuv > 0, we can separate
into three cases for general discussion: (1) when σuv = 0, µuv 6= 0, we require
µuv +λukv > 0; (2) when σuv = 0, µuv = 0, we require λukv > 0; (3) when σuv 6=
0, µuv = 0, we require λukv > σuv. With an assumption as in Theorem 7.3.6 that only
capacity constraint is active, it simply leads to ξuv > 0 itself.

7.3.3 Incentive Properties
We call a network design reciprocal incentive compatible when at the steady state,
the helping resource puv from peer u to v increases as the helping resource pvu from
peer v to u also increases. In addition, it is also desirable to have puv be proportional
to the trust value of v, that is, the more peer u trusts peer v, the more help u is willing
to give. We can further study these properties of the solution obtained in Theorem
7.3.6.

Proposition 7.3.8 Under the conditions of Theorem 7.3.6, the Nash equilibrium so-
lution of the game (GP) is reciprocal incentive compatible, that is,

1. The helping resource puv from u to v increases with helping resource pvu from
v to u;

2. When the system parameter α increases, the marginal helping resource from
u to v decreases for all u and v;

3. When peer u trusts v more, that is, T u
v increases, the marginal helping resource

from u to v increases.

106 � Intrusion Detection Networks: A Key to Collaborative Security

Proof 7.3 Using Equation (7.6), we take the derivative with respect to pvu and let
∂ puv/∂ pvu denote the marginal helping rate from u to v.

Because T u
v > 0, ξuv > 0, under the conditions in Theorem 7.3.6, we have

∂ puv/∂ pvu > 0, and thus puv is increasing with pvu at the Nash equilibrium. The
incentive compatibility results follow.

In the following, we study the incentives of nodes that decide on the lower and
upper bounds on desired reply rates. We assume that the lower bound on reply rates
are uniformly determined by the system once they join the network, that is, mvu = m̄
for all v ∈N ,u ∈Nv.

Lemma 7.3.9 Nodes do not have incentives to overstate their upper bound on the
reply rate rvu,v ∈N ,u ∈Nv.

Proof 7.4 From Equation (7.6) we can observe that ∂ puv
∂ rvu

= −1/α < 0. Hence, a
higher level of request results in a lower value of puv.

Lemma 7.3.9 admits an intuitive interpretation. When a request level is high, it be-
comes harder for a node to satisfy it and the node will allocate resources to satisfy
other ones with lower request levels first. Hence, a higher level of request will result
in lower reply rates.

In the following we study the effect of understating the upper bound. We first
introduce the notion of ε-resilience and then derive a condition for achieving it.

Definition 7.3.10 The Nash equilibrium p∗uv under truthful r∗vu is ε-resilient if a de-
viation rvu from r∗vu results in an equilibrium puv such that ‖p∗uv− puv‖ ≤ ε‖r∗vu−rvu‖
for all pairs of (u,v) ∈ E .

Proposition 7.3.11 Suppose m̄ is sufficiently small and only capacity con-
straints are active. The Nash equilibrium, if it exists, is ε-resilient if α ≥
1
ε

max(u,v)∈E
∣∣∣ T u

v pvu
∑v∈Nu pvuT u

v
−1
∣∣∣ .

Proof 7.5 Let r∗vu be the true upper bound, under which the reply rates are p̂∗uv =
min{max{m̄, p∗uv},r∗vu} ≤ r∗vu, where

p∗uv =

(
1+

1
α

)
m̄− 1

α
r∗vu +

T u
v pvu

ξ ∗uv ln(1+α)
.

For any other rvu < r∗vu, the allocated resource is p̂uv = min{max{m̄, puv},rvu} ≤
ruv < r∗vu, where

puv =

(
1+

1
α

)
m̄− 1

α
rvu +

T u
v pvu

ξuv ln(1+α)
.

Resource Management � 107

Suppose that m̄ is sufficiently small. Due to the assumption that only capacity con-
straints are active, we only need to study the case where puv ≤ rvu. Then, from
Lemma 7.3.9, we obtain puv > p∗uv because rvu < r∗vu, and hence p∗uv < puv≤ rvu < r∗vu.
Therefore, ‖p̂uv− p̂∗uv‖= ‖puv− p∗uv‖ and we have

‖puv− p∗uv‖ ≤
∥∥∥∥− 1

α
(rvu− r∗vu)+

T u
v pvu

ln(1+α)

[
1

ξuv
− 1

ξ ∗uv

]∥∥∥∥ .
Under the relaxed conditions, we can use the closed form expression of the La-
grangian multiplier (7.16), which is derived later in Section 7.4, to obtain 1

ξuv
− 1

ξ ∗uv
=

1
λu
− 1

λ ∗u
= ln(1+α)

αPT
(rvu− r∗vu). Hence, combining with the result above, we arrive at

‖puv− p∗uv‖ ≤
1
α

∥∥∥∥T u
v pvu

PT
−1
∥∥∥∥‖rvu− r∗vu‖.

Therefore, to ensure ε-resiliency, we need ‖puv−p∗uv‖
‖rvu−r∗vu‖

≤ 1
α

∥∥∥T u
v pvu
PT
−1
∥∥∥ ≤ ε, which

leads to the result.

7.4 Primal / Dual Iterative Algorithm
In this section we introduce a dynamic algorithm to compute the unique Nash equi-
librium. Let puv(t) be the resource from peer u to v at step t. Consider the algorithm{

puv(t +1) = suv + tuv pvu(t)
pvu(t +1) = svu + tvu puv(t)

, (7.11)

where suv =
(
1+ 1

α

)
mvu − 1

α
rvu, tuv =

T u
v

ξuv(ln(1+α))
, and svu, tvu are defined

similarly by interchanging indices u and v, with initial conditions puv(0) =

min
{

Cu
Nu

,ruv.
}
,∀u,v ∈N .

Proposition 7.4.1 Suppose that capacity constraints are active, and rvu and muv
are chosen such that the associated constraints become inactive constraints, that
is, σuv = 0,µuv = 0 in Equations (7.8) and (7.9). Given a Lagrange multiplier λ ∗u 6= 0

and provided that α > e
T u
v

λu −1, the algorithm in (7.11) converges to the unique Nash
equilibrium in Theorem 7.3.6 at dual optimal λ ∗u .

The algorithm described in (7.11) depends on the Lagrange multiplier λu. We
can exploit duality to devise an iterative algorithm for the Lagrange multiplier. Let
Du(λu) be the dual functional given by Du(λu) = maxpu Lu(pu,λu). The dual func-
tion Du(λu) is a convex function, and a dual optimal λ ∗u solves the dual optimization

108 � Intrusion Detection Networks: A Key to Collaborative Security

problem (DOP)2

min
λu>0

Du(λu). (7.12)

Using the solution from Theorem 7.3.6, we can obtain Du(λu) as follows:

Du = λu

(
Cu +

KR

α
+

(
1+

1
α

)
KM

)
+

PT −PT

ln(α +1)
,

and its first-order derivative as follows:

D′u =Cu−
∑v∈Nu pvuT u

v

λu ln(1+α)
+

1
α

∑
v∈Nu

rvu−
α +1

α
∑

v∈Nu

mvu,

where PT = ∑v∈Nu pvuT u
v is the sum of the weights; KM = ∑v∈Nu mvu; KR =

∑v∈Nu rvu. KM and KR can be interpreted as the total request weighted by marginal
costs; and

PT = ∑
v∈Nu

pvuT u
v ln

(
α

ln(α +1)
pvuT u

v

λu(rvu−mvu)

)
. (7.13)

The gradient of the dual function is dependent on the local capacity of node u and
the information sent by the neighbor node v of peer u such as the helping resource
pvu, and the maximum (minimum) requested resources rvu (mvu) from v. All the
information is available to peer u to calculate the gradient locally at each λu.

By taking the second-order derivative of the dual function, we obtain

D′′u(λu) =
∑v∈Nu pvuT u

v

λ 2
u ln(1+α)

. (7.14)

The dual function in Equaton (7.12) is not only a convex function but also a strong
convex function, whose Hessian is bounded uniformly as in L1≤∇2Du(λu), for some
L1 [42]. In addition, provided that the sum of weights wuv is bounded from above,
that is,

∑
v∈Nu

pvuT u
v ≤M, (7.15)

for some M ∈ R++, then ∇2Du(λu)≤ L2, for some constant L2.

Proposition 7.4.2 Suppose that the sum of weights is bounded as in (7.15). The dual
function Du is strongly convex and its Hessian is bounded from above and below
uniformly.

Proof 7.6 First, λu is bounded from above by some constant λ̄u because the
dual problem is feasible. Thus, ε1 ≤ λu ≤ λ̄u,ε1 > 0. In addition, ∑v∈Nu wuv 6= 0;

2Peer u’s dual function is expressed in terms of λu and p−u, and the decision variable for peer u
changes from a multidimensional vector pu to a scalar variable λu. Using the dual function, we can reduce
the dimension of the game and turn a constrained game into an unconstrained one.

Resource Management � 109

otherwise, the primal problem is trivial because wuv = 0, for all v. Therefore,
ε2 ≤ ∑v∈Nu wuv ≤M,ε2 > 0. Hence, the statement is true.

Strong duality ensures a unique optimal solution. The unique dual optimal λ ∗u
can be found explicitly by applying the unconstrained optimality condition, that is,
D′u(λu) = 0. As a result, we obtain

λ
∗
u =

PT(
Cu−KM + 1

α
(KR−KM)

)
ln(1+α)

. (7.16)

To find the dual optimal, we can also devise a dynamic algorithm that can be
used in conjunction with algorithm (7.11). An iterative algorithm based on gradient
methods to find λu is given by

λu(t +1) = λu(t)−βuD′u(λu(t)),∀u ∈N , (7.17)

where βu ∈ (0,1) is the step size. The gradient algorithm in (7.17) is distributed
over the network. Each peer needs to collect openly accessible information from its
neighboring peers to evaluate KM , KR, and PT . With the property of strong convexity,
we can show in the following the fast convergence of the algorithm to (7.16).

Proposition 7.4.3 Suppose that D′u(λu) is Lipschitz with Lipschitz constant L3 and
Du(λu) is strongly convex with D′′u(λu) ≥ L1. The dual algorithm (7.17) converges
geometrically to dual optimal λ ∗u in (7.16) with step size βu <

min(2,L1)
L3

.

Proof 7.7 We can use the technique in [42] to prove the proposition. Using the
property of strong convexity and the Lipschitz property, we obtain

‖λu(t +1)−λ
∗
u ‖2

= ‖λu(t)−λ
∗
u ‖2−2βuD′u(λu(t))(λu(t)−λ

∗
u)

+β
2
u ‖D′u(λu(t))‖2

≤ ‖λu(t)−λ
∗
u ‖2−2βu(Du(λu(t))−Du(λ

∗
u))

+β
2
u L3‖λu(t)−λ

∗
u ‖2

≤ ‖λu(t)−λ
∗
u ‖2−βuL1‖λu(t)−λ

∗
u ‖2

+β
2
u L3‖λu(t)−λ

∗
u ‖2

= (1−βuL1 +β
2
u L3)‖λu(t)−λ

∗
u ‖2.

Hence, when βu <
min(2,L1)

L3
, we have a contraction. In addition, ‖λu(t +1)−λ ∗u ‖2 ≤

(1−βuL1 +β 2
u L3)

t+1‖λu(0)−λ ∗u ‖2. Hence, the convergence rate is geometric.

Note that the condition of strong convexity can be easily satisfied from Equation
(7.14) if we eliminate trivial cases that all trust values of neighbors or pvu are zeros.

110 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

H
e

lp
in

g
 R

e
s
o

u
rc

e

Iteration

Peer1 (Trust=1.0)
Peer2 (Trust=0.6)
Peer3 (Trust=0.2)

Figure 7.1: Helping resources versus time—first approach.

7.5 Experiments and Evaluation
In this section we perform numerical experiments and evaluate the trust and resource
management capabilities of the resource allocation system as described in Sections
7.3 and 7.4. We follow two different approaches to evaluate the Nash equilibrium
of the collaborative system. In the first experiment, we implement the dynamic al-
gorithm in Section 7.4 to find the Nash equilibrium. We show that the algorithm
yields the Nash equilibrium of the game at the steady state and the system is incen-
tive compatible under the equilibrium. In the second experiment, we use a stochastic
discrete-event-based simulation to model an IDS network. In the simulation, peers
estimate the resources received from the other peers and adjust their allocations of
resources to the others accordingly. We are interested in finding the Nash equilibrium
and verifying the incentives in the collaborative system at the equilibrium.

7.5.1 Nash Equilibrium Computation
In this section we implement the dynamic algorithm described in Section 7.4 to cal-
culate the Nash equilibrium centrally. We simulate a three-node network with initial
trust values 0.2,0.6,1.0, respectively. For ease of demonstration, we assume that the
trust between peer nodes is homogeneous. that is, the trust value of node i is the same
to all other nodes. We set the minimum demand of resource to 1 unit and the maxi-
mum to 20 units for all nodes. Every node has an equal capacity of 20 units and the
system parameter α = 100. We find that if all peers have the same trust values, then
the resource is fairly and evenly distributed among all peers. When the trust values
are different, peers with higher trust values receive more resources. Figure 7.1 shows

Resource Management � 111

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

H
e
lp

in
g
 R

e
s
o
u
rc

e

Trust Value

α=10

α=20

α=100

Figure 7.2: Helping resource received varies with trust value—first approach.

that the resources received by three peers with different trust values converge fast
within two or three iterations. A peer with a higher trust value receives more help
than a peer with a lower trust value.

Fixing the resource capacity of all peers to 20 units and the trust values of two of
the nodes to 0.5, we vary the trust value of the third peer from 0.1 to 1.0. In Figure
7.2 we observe that the resource received by the third peer increases with its trust
value under different α values. We also see that all curves cross at trust value 0.5
and resource 20 units. This is because all peers should receive an equal amount of
resources when they are identically configured, regardless of the α value we choose.
By fixing the trust values of all nodes to 1.0 and varying the resource capacity of the
third peer from 3 to 30, we observe in Figure 7.3 that the amount of resources a peer
receives is roughly linearly proportional to the resources it provides to the others.
Similarly, all curves intersect at capacity 20 and resource 20. These results further
confirm our theoretical analysis in Section 7.3. Figures 7.2 and 7.3 also reveal that a
larger α value leads to a lower marginal helping resource. A smaller α value provides
stronger incentive to the participants.

7.5.2 Nash Equilibrium Using Distributed Computation
In this experiment we use a stochastic discrete-event based simulation to model the
IDN. Discrete-event simulation is commonly used to aid strategic decision making
because it has the capability of emulating complex real-world problems. It concerns
the modeling of a system as it evolves over time by representing the changes as
separate events. It bridges over our model and a real-life IDS network. In this simu-
lation, each node collaborates with others by sending out requests and waits for their

112 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

H
e
lp

in
g
 R

e
s
o
u
rc

e

Capacity

α=10

α=20

α=100

Figure 7.3: Helping resource received varies with resource contribution—first ap-
proach.

responses. At the beginning of each day, nodes send resource upper-bound/lower-
bound to all their neighbors and wait for the resource quota from them. The resource
quota allocation is determined by optimizing Equation (7.4). The consultation re-
quests are generated randomly following a Poisson process with an average arrival
rate equal to the resource quota they receive. Upon the arrival of a request at its des-
tination queue, it will be replied by the corresponding peer on a first-come-first-serve
basis. Each peer estimates the resource it receives from other peers by calculating the
average number of consultation requests answered by each peer. In this experiment,
all peers initialize with an unbiased allocation and then apply the resource allocation
scheme.

For the purpose of comparing with the numerical experiment, we use the same
experiment configuration as in Section 7.5.1, that is, we simulate a network of 3
nodes; we set the minimum resource requirement to 1 request/day and the maximum
to 20 requests/day for all peers; each peer has a capacity of 20 requests; we set
α = 100 and the trust values of nodes to be 0.2, 0.6, and 1.0, respectively.

Figure 7.4 illustrates the received resources for all three nodes with respect to
time. We note that the helping resource converges to the Nash equilibrium at steady
state, and nodes with higher trust values obtain more resources. This confirms that
our resource allocation scheme provides incentives in the collaborative network.

By fixing the resource capacity of all peers to 20, the trust values of two of the
peers to 0.5, and varying the trust values of the third peer from 0.1 to 1.0, we obtain
in Figure 7.5 that the received resource of the third peer increases with its trust value
under different α values. Fixing the resource capacity of the first two peers to 20
requests/day and trust values to 1.0 for all peers, we vary the capacity of the third
peer from 3 requests/day to 30 requests/day and observe that the resource received

Resource Management � 113

 0

 5

 10

 15

 20

 25

 30

 35

 40

 60 80 100 120 140 160 180 200

H
e
lp

in
g
 R

e
s
o
u
rc

e

Days

Peer1 (trust=1.0)

Peer2 (trust=0.6)

Peer3 (trust=0.2)

Figure 7.4: Helping resources versus time—second approach.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

H
e
lp

in
g
 R

e
s
o
u
rc

e
 R

e
c
e
iv

e
d

Trust Value

α=10

α=20

α=100

Figure 7.5: Helping resource received varies with trust value—second approach.

114 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

H
e
lp

in
g
 R

e
s
o
u
rc

e
 R

e
c
e
iv

e
d

Capacity

α=10

α=20

α=100

Figure 7.6: Helping resource received varies with resource contribution—second ap-
proach.

by the third node also increases with its resource capacity under different α values, as
shown in Figure 7.6. The simulation results are consistent with the theoretical results
obtained in Section 7.3 and the ones in Section 7.5.1.

7.5.3 Robustness Evaluation
Robustness is a required and important feature for the design of an IDN. In this sub-
section we discuss a few common insider threats against the incentive-based resource
allocation mechanism, and we show how our design is robust to these attacks. Note
that all participants in the IDN have to abide by the protocols with a given flexibility
in parameter tuning. However, due to the reciprocity of the mechanism, IDSs with
selfish or dishonest behaviors will be penalized and eventually removed from the
network. This execution process is an integrated part of the IDN.

7.5.3.1 Free-Riding

Free-riders are nodes that enjoy resources from others while not contributing them-
selves [62, 78]. A free-rider in the IDN may collaborate with a large number of IDSs,
aiming at receiving a good amount of accumulated resources m̄ from the large num-
ber of collaborators. However, our IDN design is not beneficial to free-riders. First,
the amount of help that a node receives is proportional to the resources it allocates to
others. Second, the larger the number of collaborators a node has, the more demand-
ing it is for the node to maintain the collaboration because each collaborator needs
minimum resource m̄ to be satisfied. Therefore, a node that does not contribute to
the collaboration will end up receiving a bare minimum of helping resources from

Resource Management � 115

 0

 5

 10

 15

 20

 25

 10 15 20 25 30

R
e
c
e
iv

e
d
 H

e
lp

in
g
 R

e
s
o
u
rc

e

Exchanged Upper-Bound

True upper-bound

α=10

α=20

α=100

Figure 7.7: Resource received versus exchanged upper-bound.

others. We simulate a scenario where a free-rider with initial trust value 1.0 switches
to a free riding mode at day 200 (Figure 7.8). We notice that the amount of helping
resources received by the free-rider drops quickly and converges to a low level. This
is because the collaborators of the free-rider can notice the drop of contributed re-
sources from the free-rider and adjust their resource allocation according to Equation
(7.4). The result corroborates that free-riding is not practical in the IDN with such a
resource allocation design.

7.5.3.2 Denial-of-Service (DoS) Attacks

DoS attacks happen when malicious nodes send a large amount of information to
overload the victim [107]. In our IDN, the amount of information exchanged be-
tween participant nodes is negotiated beforehand. A quota is calculated and sent to
all nodes. If a node sends more data than the given quota, then it is considered mali-
cious, and hence will be removed from the collaboration network.

7.5.3.3 Dishonest Insiders

In the IDN, dishonest nodes can report false information to gain advantages. For
example, a dishonest node can misinform about its upper-bound and lower-bound
requests for gaining more resources from its collaborators. We imposed a maximum
lower-bound m̄ for all nodes. In addition, experimental results in Figure 7.7 show
that claiming a higher upper-bound than the true value lowers the received resource,
while claiming a lower upper-bound may lead to a bounded gain that is controllable
by system parameter α . A lower upper-bound will not lead to full satisfaction of the
node when resource constraints are inactive.

116 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 5

 10

 15

 20

 25

 30

 190 195 200 205 210 215 220 225 230

H
e
lp

in
g
 R

e
s
o
u
rc

e

Days

Peer1 (Free Rider)

Peer2 (trust=1.0)

Peer3 (trust=1.0)

Figure 7.8: Resource received after free-riding attack.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1

H
e
lp

in
g
 R

e
s
o
u
rc

e
 R

e
c
e
iv

e
d

Trust Value

cap=40

cap=20

Figure 7.9: Resource received for peers with different trust values.

Resource Management � 117

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

H
e
lp

in
g
 R

e
s
o
u
rc

e
 R

e
c
e
iv

e
d

Resource Capacity

Figure 7.10: Resource received for peers with different resource capacities.

7.5.4 Large-Scale Simulation
Previous experiments were based on a small-scale network. In this subsection we de-
sign numerical experiments to study the resource allocation in a large-scale intrusion
detection network. We set up a network of 100 nodes, which are randomly scattered
in a 100× 100 square. Each node shares its resources with the other nodes in the
vicinity at a distance of 5. The trust values are generated according to a uniform dis-
tribution from 0 to 1.0. The lower-bound and the upper-bound on the requests are 1
and 20, respectively, for each node. We separate nodes into two groups: one group
with a capacity of 20 units and the other with 40. In Figure 7.9 we can see that, in
both groups, nodes with higher trust values tend to receive more assistance. The re-
sponse to trust value appears to be more prominent for the group with capacity of 40
units. It can be explained by the fact that when the resource capacity is low, most of
the resource is used to satisfy the lower-bound of all the neighbors and little is left
to allocate based on incentives. In the second experiment, we fix trust values of all
nodes to 1.0 and randomly choose the resource capacity of each node between 0 and
30. Figure 7.10 shows the resource received by nodes with different resource capaci-
ties. We note that, on the average, nodes with higher resource capacities receive more
resources. This confirms the incentives under a large collaboration group.

7.6 Conclusion
In this chapter we presented incentive-based resource allocation mechanism based on
trust management in the context of an IDN. By formulating an associated continuous-
kernel noncooperative game, we have shown that a Nash equilibrium exists and is

118 � Intrusion Detection Networks: A Key to Collaborative Security

unique under certain system conditions. We have also shown that the unique Nash
equilibrium possesses features that allow peers to communicate in a conducive en-
vironment in which peers endeavor to contribute knowledge and resources to assist
neighbor nodes. Any selfish or free-riding behavior will receive a tit-for-tat response
from the neighbors as a consequence. A dynamic algorithm is used to compute the
Nash equilibrium. Experimental results showed that the algorithm converges to the
Nash equilibrium at a geometric rate, further corroborating the theoretical results.
We have also discussed the resistance of our IDN design to common insider attacks,
such as free-riding, dishonest insiders, and DoS attacks. As future work, one can
study other potential attacks to the IDN system, for example, the collusion attacks.

Chapter 8

Collaborators Selection
and Management

CONTENTS
8.1 Introduction . 120
8.2 Background . 121
8.3 IDS Identification and Feedback Aggregation . 122

8.3.1 Detection Accuracy for a Single IDS . 123
8.3.2 Feedback Aggregation . 124

8.4 Acquaintance Management . 126
8.4.1 Problem Statement . 126
8.4.2 Acquaintance Selection Algorithm . 128
8.4.3 Acquaintance Management Algorithm . 130

8.5 Evaluation . 132
8.5.1 Simulation Setting . 132
8.5.2 Determining the Test Message Rate . 132
8.5.3 Efficiency of Our Feedback Aggregation 134
8.5.4 Cost and the Number of Collaborators . 135
8.5.5 Efficiency of Acquaintance Selection Algorithms 136
8.5.6 Evaluation of Acquaintance Management Algorithm 137

8.5.6.1 Convergence . 137
8.5.6.2 Stability . 139
8.5.6.3 Incentive Compatibility . 141
8.5.6.4 Robustness . 141

8.6 Conclusion and Future Work . 142

119

120 � Intrusion Detection Networks: A Key to Collaborative Security

8.1 Introduction
As discussed in the precious chapters, malicious insiders in an IDN may send false
information to mislead other IDSs into making incorrect intrusion decisions. This
may render the collaboration system ineffective. Furthermore, IDSs in the collabora-
tion network may have different intrusion detection expertise levels and capabilities.
An effective trust management model should be capable of distinguishing honest
participants from malicious ones, and low-expertise IDSs from high-expertise IDSs.
Chapter 5 describes a Bayesian learning model for IDSs to evaluate the trustworthi-
ness of their collaborators. However, a collaboration relationship is a mutual agree-
ment between both participants, and it should only occur when both parties agree
to collaborate with each other. As we discussed in Chapter 6, the expected cost of
false decisions decreases when receiving feedback from more collaborators. How-
ever, it takes more computing resources to maintain a collaboration relationship; for
example, sending test messages and responding to consultation requests from other
collaborators requires CPU/memory and bandwidth to proceed. The extra cost of
recruiting a new collaborator may exceed the benefit from that collaborator. How
IDSs select collaborators to achieve optimal cost efficiency is an important prob-
lem to solve for an IDN. We define IDN acquaintance management as the process
of identifying, selecting, and maintaining collaborators for each IDS. An effective
acquaintance management model is crucial to the design of an IDN.

In this chapter we focus on the design of an effective acquaintance management
mechanism with which IDSs can selectively recruit collaborators that can bring max-
imal benefit, taking into account both the false decision cost and maintenance cost.
Acquaintance management can be divided into three parts: IDS identification, col-
laborator selection, and collaborator maintenance.

IDS identification is the process of learning the qualification of candidate collab-
orators based on past experience with them. A Bayesian learning model is used to
help each IDS identify the quality and honesty of its candidate acquaintances, specif-
ically the false positive (FP) rate and false negative (FN) rate of each collaborator.
Dishonest collaborators can be identified and removed from the acquaintance list.
We define feedback aggregation in IDNs as the decision-making process resulting
in whether or not to raise an alarm based on the collected opinions (feedback) from
collaborator IDSs. A Bayesian decision model is used for feedback aggregation, and
Bayes theorem is used to estimate the conditional probability of intrusions based on
feedback from collaborators. A false decision cost function is modeled to include
both the false positive decision cost and the false negative decision cost. A decision
as to whether or not to raise an alarm is made in order to achieve the minimum cost
of false decisions.

For collaborator selection, an IDS may add all honest IDSs to its collaborator
list to achieve maximal detection accuracy. However, including a large list of col-
laborators may result in a high maintenance cost because collaborating with them
requires computer resource (e.g., CPU, memory, and network bandwidth) to process
their consultation requests and to respond with consultation feedback. The overall
cost includes both the false decision cost and the maintenance cost. We define the

Collaborators Selection and Management � 121

acquaintance selection in IDNs as the process of finding the optimal list of collabora-
tors to minimize the overall cost. Existing approaches for acquaintance management
often set a fixed number of collaborators [150] or a fixed accuracy threshold to filter
out less honest or low-expertise collaborators [69, 74, 152]. These static approaches
lack flexibility, and the fixed acquaintance length or accuracy threshold may not be
optimal when the context changes (e.g., some nodes leave the network and some
new nodes join the network). The acquaintance management mechanism presented
in this chapter can dynamically select collaborators in any context setting to obtain
high efficiency at minimum cost.

For collaborator maintenance, the IDSs in our system periodically update their
collaborator lists to guarantee an optimal cost. A probation list is used to explore
and allow sufficient time to learn the quality of new potential collaborators. New
collaborators stay on the probation list for a certain period (probation period) before
their feedback is considered for intrusion decision.

A simulated collaboration network using a Java-based discrete-event simulation
framework is used to evaluate the effectiveness of the acquaintance management
mechanism. The results show that this dynamic acquaintance management algorithm
outperforms the static approaches of setting a fixed acquaintance length or accuracy
threshold. Finally, this mechanism also achieves several desired properties for IDN,
such as efficiency, stability, robustness, and incentive compatibility.

The highlights of this chapter can be summarized as follows:

1. A dynamic acquaintance selection algorithm that automatically selects col-
laborators, leading to minimal overall cost, including false decision cost and
maintenance cost;

2. A dynamic acquaintance management algorithm to integrate the concept of
probation period and consensus negotiation.

The rest of the chapter is organized as follows. In Section 8.2 we discuss the
background of IDS identification, collaborative decision, and acquaintance manage-
ment; Section 8.3 describes the formalization of our IDS learning model and feed-
back aggregation. Acquaintance selection and management algorithms are presented
in Section 8.4. We then present evaluation results demonstrating the effectiveness of
the acquaintance management and its desired properties in Section 8.5. We conclude
this chapter in Section 8.6.

8.2 Background
Various approaches have been proposed to evaluate the qualification of IDSs as in-
put contributors to the feedback aggregation mechanism. However, all of them have
used a single trust value to decide whether an IDS will provide good feedback about
intrusions based on past experience with that IDS. For example, Duma et al. [59]
introduced a trust-aware collaboration engine for correlating intrusion alerts. Their

122 � Intrusion Detection Networks: A Key to Collaborative Security

trust management scheme uses each peer’s past experience to predict others’ trust-
worthiness. In Chapter 5 we showed how a Dirichlet distribution can be used to
model trust in peer IDSs based on past experience with them. The trust value is ex-
pressed using the trust value as well as confidence of estimation. However, these
approaches do not reflect conditional detection accuracy such as false positives and
false negatives. Conditional detection accuracy is necessary because the impacts of
false positive decision and false negative decision may be different. Therefore, a sin-
gle trust value may not be sufficient as an input to feedback aggregation. In this
chapter we show how false positive (FP) and false negative (FN) rates can be de-
termined using a Bayesian learning model and used simultaneously to represent the
detection accuracy of an IDS. In this case both the FP and TP are used as inputs to
the feedback aggregation process.

In terms of collaborative decision, the methods provided by Duma et al. [59] and
Fung et al. [74, 69] are both simplistic and use a heuristic approach. They both use a
weighted average approach to aggregate feedback, which does not capture the false
decision cost. Another broadly accepted decision model in IDNs is the threshold-
based decision method, which is adopted by CloudAV [114]. In this model, when the
total number of antiviruses raising alarms exceeds a fixed threshold, an global alarm
will be raised. However, this model not only lacks the awareness of false decision
cost, but also does not consider the expertise difference of participating antiviruses.
In this chapter we model the decision problem into a cost optimization problem and
apply the well-established Bayes’ theorem for feedback aggregation which achieves
the least cost. This chapter focuses on the optimal collaboration decision and optimal
acquaintance selection.

In terms of the acquaintance selection methods, most previous approaches set a
fixed length on the acquaintance list, such as the model presented in [150]. Some
others use a trust threshold to filter out less honest acquaintances [74, 152]. The ad-
vantage of the threshold based decision is its simplicity and ease of implementation.
However, it is only effective in a static environment where participating nodes do not
change, for example, the context that presented in [114]. In a dynamic environment,
nodes join and leave the network and the acquaintance list changes over time. There-
fore, finding an optimal threshold is a difficult task. Our Bayesian decision model is
efficient and flexible. It can be used in both static and dynamic collaboration envi-
ronments. Equipped with this Bayesian decision model, our acquaintance selection
algorithm can find the smallest set of best acquaintances that can maximize the accu-
racy of intrusion detection. Based on this acquaintance selection algorithm, our ac-
quaintance management method uses a probation list to explore potential candidates
for acquaintances and balances the cost of exploration and the speed of updating the
acquaintance list.

8.3 IDS Identification and Feedback Aggregation
Before aggregating the feedback from an acquaintance, an IDS should first learn the
qualification of all candidate IDSs. In this section, a Bayesian learning model is used

Collaborators Selection and Management � 123

Table 8.1: Summary of Notations

Symbol Meaning

X ∈ {0,1} Random variable denoting whether or not there is an attack
Y ∈ {0,1} Random variable of positive or negative diagnosis from an IDS
y A feedback instance vector from acquaintances
Y Feedback vector from acquaintances
C Set of acquaintance candidates
A Set of acquaintances
l The acquaintance list length
δ The decision of raising alarm or not
R(.) The risk cost of false alarms and miss intrusions
M(.) The maintenance cost of acquaintances
C f p,C f n Unit cost of false alarm and miss intrusion
Ca Unit cost of maintaining each acquaintance
π0,π1 Priory probability of no-intrusion and with-intrusion
Ti,Fi True positive rate and false positive rate of IDS i
λ Forgetting factor of the past experience

to evaluate the detection accuracy including false positive (FP) rate and true positive
(TP) rate of the candidates (IDS identification). A Bayesian decision model is then
used to optimally aggregate feedback from acquaintances, which minimizes the cost
of false decisions.

8.3.1 Detection Accuracy for a Single IDS
To better capture the qualification of an IDS, we use both false positive (FP) and true
positive (TP) rates to represent the detection accuracy of an IDS. Let A denote the
set of acquaintances and random variables Fk and Tk denote the FP and TP rates of
acquaintance k ∈A , respectively. FP is the probability that the IDS gives a positive
diagnosis (under-attack) under the condition of no-attack, and TP is the probability
that the IDS gives a correct positive diagnosis under the condition of under-attack.
Let random variable X ∈ {0,1} represent the random event on whether or not there
is an attack, and let random variable Y ∈ {0,1} denote whether or not the IDS makes
a positive diagnosis. Then FP and TP can be written as P[Y = 1|X = 0] and P[Y =
1|X = 1], respectively. The list of notations is summarized in Table 8.1.

Let Fk and Tk be the probability density functions of Fk and Tk whose support
is [0,1]. We use the notation Z0 : Yk = 1|X = 0 and Z1 : Yk = 1|X = 1 to represent the
conditional variables that acquaintance k gives positive decision under the conditions
where there is no attack and there is an attack, respectively. They can be seen as
two independent random variables satisfying a Bernoulli distribution with successful
rates Fk and Tk, respectively. The past experience with acquaintance k can be seen as

124 � Intrusion Detection Networks: A Key to Collaborative Security

the samples from the Bernoulli distributions. According to the Bayesian probability
theory [76], the posterior distribution of Fk and Tk given a set of observed samples
can be represented using a Beta function, written as follows:

Fk ∼ Beta(xk|α0
k ,β

0
k) =

Γ(α0
k +β 0

k)

Γ(α0
k)Γ(β

0
i)

x
α0

k−1
k (1− xk)

β 0
k −1, (8.1)

Tk ∼ Beta(yk|α1
k ,β

1
k) =

Γ(α1
k +β 1

k)

Γ(α1
k)Γ(β

1
i)

y
α1

k−1
k (1− yk)

β 1
k −1, (8.2)

where Γ(·) is the gamma function [87], and its parameters α0
k , α1

k and β 0
k , β 1

k are
given by

α0
k =

u

∑
j=1

λ
t0
k, j r0

k, j β
0
k =

u

∑
j=1

λ
t0
k, j(1− r0

k, j);

α1
k =

v

∑
j=1

λ
t1
k, j r1

k, j β
1
k =

v

∑
j=1

λ
t1
k, j(1− r1

k, j), (8.3)

where α0
k ,β

0
k ,α

1
k ,β

1
k are the cumulated instances of false positive, true negative, true

positive, and false negative, respectively, from acquaintance k. r0
k, j ∈ {0,1} is the j-th

diagnosis result from acquaintance k under no-attack. r0
k, j = 1 means the diagnosis

from k is positive while there is actually no attack happening; r0
k, j = 0 means oth-

erwise. Similarly, r1
k, j ∈ {0,1} is the j-th diagnosis data from acquaintance k under

attack, where r1
k,0 = 1 means that the diagnosis from k is positive under attack, and

r1
k,0 = 0 means otherwise. Parameters t0

k, j and t1
k, j denote the time elapsed since the

j-th feedback is received. λ ∈ [0,1] is the forgetting factor on the past experience.
A small λ makes old observations quickly forgettable. We use exponential moving
average to accumulate past experience so that old experience takes less weight than
new experience. u is the total number of no-attack cases among the past records and
v is the total number of attack cases.

To make the parametric updates scalable to data storage and memory, we can use
the following recursive formula to update α0

k ,α
1
k and β 0

k ,β
1
k :

α
m
k (t j) = λ

(tm
k, j−tm

k, j−1)α
m
k (t

m
k, j−1)+ rm

k, j;

β
m
k (t j) = λ

(tm
k, j−tm

k, j−1)β
m
k (tm

k, j−1)+ rm
k, j, (8.4)

where l = 0,1 and j− 1 indexes the previous data point used for updating αm
k or

β m
k . Through this way, only the previous state and the current state are required to

be recorded, which is efficient in terms of storage compared to when all states are
recorded in Equation (8.3).

8.3.2 Feedback Aggregation
When an IDS detects suspicious activities and is not confident about its decision, it
sends out the description of the suspicious activities or the related executable files to

Collaborators Selection and Management � 125

its collaborators for consultation. The node receives diagnosis results from its collab-
orators, denoted by vector y= {y1,y2, ...,y|A |}, where yi ∈ {0,1}, for 0< i< |A |, is
the feedback from acquaintance i. We use X ∈ {0,1} to denote the scenario of “no-
attack” or “under-attack,” and Y ∈ {0,1}|A | to denote all possible feedback from
acquaintances. The conditional probability of an IDS being “under-attack” given the
diagnosis results from all acquaintances can be written as P[X = 1|Y = y]. Using
Bayes’ Theorem [120] and assuming that the acquaintances provide diagnoses inde-
pendently and their FP rate and TP rate are known, we have

P[X = 1|Y = y]

=
P[Y = y|X = 1]P[X = 1]

P[Y = y|X = 1]P[X = 1]+P[Y = y|X = 0]P[X = 0]

=
π1 ∏

|A |
k=1 T yk

k (1−Tk)
1−yk

π1 ∏
|A |
k=1 T yk

k (1−Tk)1−yk +π0 ∏
|A |
k=1 Fyk

k (1−Fk)1−yk
, (8.5)

where π0 = P[X = 0] and π1 = P[X = 1], such that π0 +π1 = 1, are the prior prob-
abilities of the scenarios of “no-attack” and “under-attack,” respectively. yk ∈ {0,1}
is the k-th element of vector y.

Becaue Tk and Fk are both random variables with distributions as in Equations
(8.1) and (8.2), we can see that the conditional probability P[X = 1|Y = y] is also
a random variable. We use a random variable P to denote P[X = 1|Y = y]. Then P
takes a continuous value over domain [0,1]. We use fP(p) to denote the probability
density function of P.

When α and β are sufficiently large, a Beta distribution can be approximated by

Gaussian distribution according to Beta(α,β) ≈ N
(

α

α+β
,
√

αβ

(α+β)2(α+β+1)

)
. Then

the density function of P can be also approximated using Gaussian distribution. By
Gauss’s approximation formula, we have

E[P] ≈ 1

1+ π0 ∏
|A |
k=1 E[Fk]

yk (1−E[Fk])
1−yk

π1 ∏
|A |
k=1 E[Tk]

yk (1−E[Tk])
1−yk

=
1

1+ π0
π1

∏
|A |
k=1

α1
k +β 1

k
α0

k +β 0
k
(

α0
k

α1
k
)yk(

β 0
k

β 1
k
)1−yk

. (8.6)

Let C f p and C f n denote the marginal cost of an FP decision and an FN decision.
We assume there is no cost when a correct decision is made. We use marginal cost
because the cost of an FP may change in time depending on the current state. C f n
largely depends on the potential damage level of the attack. For example, an intruder
intending to track a user’s browsing history may have lower C f n than an intruder
intending to modify a system file. We define a decision function δ (y)∈ {0,1}, where
δ = 1 means raising an alarm and δ = 0 means no alarm. Then, the Bayes risk can

126 � Intrusion Detection Networks: A Key to Collaborative Security

be written as

R(δ) =
∫ 1

0
(C f p(1− x)δ +C f nx(1−δ)) fP(x)dx

= δC f p

∫ 1

0
(1− p) fP(p)d p+(1−δ)C f n

∫ 1

0
p fP(p)d p

=
∫ 1

0
C f nx fP(x)dx+δ

(
C f p− (C f p +C f n)

∫ 1

0
x fP(x)dx

)
= C f nE[P]+δ (C f p− (C f p +C f n)E[P]), (8.7)

where fP(p) is the density function of P. To minimize the risk R(δ), we need to
minimize δ (C f p− (C f p +C f n)E[P]). Therefore, we raise an alarm (i.e., δ = 1) if

E[P]≥
C f p

C f p +C f n
. (8.8)

Let τ =
C f p

C f p+C f n
be the threshold. If E[P]≥ τ , we raise an alarm; otherwise no alarm

is raised. The corresponding Bayes risk for the optimal decision is

R(δ) =

C f p(1−E[P]) if E[P]≥ τ,

C f nE[P] otherwise.
(8.9)

An example of the Bayes risk for optimal decisions when C f p = 1 and C f n = 5 is
illustrated in Figure 8.1.

8.4 Acquaintance Management
Intuitively when an IDS consults a larger number of acquaintances, it can achieve
higher detection accuracy and lower risk of being compromised. However, having
more acquaintances causes higher maintenance cost because the IDS needs to allo-
cate resources for each node in its acquaintance list. When an IDS makes a decision
about how many acquaintances to recruit, both the intrusion risk cost and the main-
tenance cost should be taken into account. When adding a node as an acquaintance
does not lower the total cost, then the node shall not be added to the acquaintance
list. However, how to select acquaintances and how many acquaintances to include
are crucial to building an efficient IDN. In this section we first define the acquain-
tance selection problem, and then a corresponding solution is devised to find the op-
timal set of acquaintances. Finally, we use an acquaintance management algorithm
for IDSs to learn, recruit, update, or remove their acquaintances dynamically.

8.4.1 Problem Statement
Let Ai denote the set of acquaintances of IDS i. Let Mi(Ai) be the cost for IDS i to
maintain the acquaintance set Ai. We use Ri(Ai) to denote the risk cost of missing

Collaborators Selection and Management � 127

 0

 0.2

 0.4

 0.6

 0.8

 1

τ

R
[δ

]

E[P]

δ=0 δ=1

Parameters:

Cfp=1, Cfn=5

Figure 8.1: Bayes risk for optimal decisions when C f p = 1 and C f n = 5.

intrusions and/or false alarms for IDS i, given the feedback of acquaintance set Ai.
In the rest of this section, we drop subscript i from our notations for the convenience
of presentation.

Our goal is to select a set of acquaintances from a list of candidates so that the
overall cost R(A)+M(A) is minimized. We define the problem as follows:

Given a list of acquaintance candidates C , we need to find a subset of acquain-
tances A ⊆ C , such that the overall cost R(A)+M(A) is minimized.

In practice, the maintenance cost of acquaintances may not be negligible because
acquaintances send test messages/consultations periodically to ask for diagnosis. It
takes resources (CPU and memory) for the IDS to receive, analyze the requests, and
reply with corresponding answers. The selection of Mi(.) can be user defined on
each host. For example, a simple maximum acquaintance length restriction can be
mapped to M(A) = C max(|A | −L,0), where L ∈N + is the acquaintance length
upper-bound and C ∈ [0,∞) is the penalty of exceeding the bound.

The risk cost can be expressed as

R(A) =C f nP[δ = 0|X = 1]P[X = 1]
+C f pP[δ = 1|X = 0]P[X = 0],

where C f n, C f p denote the marginal cost of missing an intrusion and raising a false
alarm, respectively. P[X = 1] = π1,P[X = 0] = π0 are the prior probabilities of under-
attack and no-attack, where π0+π1 = 1. Note that in practice, π1 can be learned from
the history and be updated whenever a new threat is found. A moving average method
can be used to update the estimated value.

128 � Intrusion Detection Networks: A Key to Collaborative Security

The above equation can be further written as

R(A) =C f nπ1 ∑
∀y∈{0,1}|A ||δ (y)=0

P[Y = y|X = 1] (8.10)

+C f pπ0 ∑
∀y∈{0,1}|A ||δ (y)=1

P[Y = y|X = 0]

=C f nπ1 ∑
∀y∈{0,1}|A ||δ (y)=0

|A |

∏
i=1

(Ti)
yi(1−Ti)

1−yi

+C f pπ0 ∑
∀y∈{0,1}|A ||δ (y)=1

|A |

∏
i=1

(Fi)
yi(1−Fi)

1−yi

=C f nπ1 ∑
∀y∈{0,1}|A || f (y)<1

|A |

∏
i=1

(Ti)
yi(1−Ti)

1−yi

+C f pπ0 ∑
∀y∈{0,1}|A || f (y)≥1

|A |

∏
i=1

(Fi)
yi(1−Fi)

1−yi

= ∑
y∈{0,1}|A |

min{C f nπ1 ∏
i

T yi
i (1−Ti)

1−yi ,

C f pπ0 ∏
i

Fyi
i (1−Fi)

1−yi}

where Ti,Fi are the TP rate and FP rate of acquaintance i, respectively.

f (y) =
C f nπ1 ∏

|A |
i=1 (Ti)

yi(1−Ti)
1−yi

C f pπ0 ∏
|A |
i=1 (Fi)yi(1−Fi)1−yi

.

∀y ∈ {0,1}l |δ (y) = 1 refers to the combination of decisions that causes the system
to raise an alarm, and vice versa.

8.4.2 Acquaintance Selection Algorithm
To solve such a subset optimization problem, the brute-force method is to examine
all possible combinations of acquaintances and select the one that has the least over-
all cost. However, the computation complexity is O(2n). It is not hard to see that the
order of selecting acquaintances does not affect the overall cost. We use an acquain-
tance selection algorithm based on a heuristic approach to find an acquaintance set
that achieves satisfactory overall cost. In this algorithm, the system always selects
the nodes that bring the lowest overall cost.

For ease of demonstration, we assume the maintenance cost can be written as
follows:

M(A) =Cal =Ca|A |, (8.11)

Collaborators Selection and Management � 129

where Ca is the unit maintenance cost of each acquaintance, which includes the cost
of communication, detection assistance, and test messages. Note that any other form
of maintenance cost can be easily included in the algorithm.

Algorithm 8.1 Acquaintance Selection (C ,Lmin,Lmax)
Require: A set of acquaintance candidates C
Ensure: A set of selected acquaintances A with minimum length Lmin and max

length Lmax that brings the minimum overall cost
1: Quit = f alse //quit the loop if Quit = true
2: A ⇐ /0
3: U = min(π0C f p,π1C f n) //initialize the overall cost while there is no acquain-

tance. min(π0C f p,π1C f n) is the cost when a node makes a decision without feed-
back from collaborators

4: while Quit = f alse do
5: //select the node that reduces cost most in each iteration
6: Dmax = −MAXNUM //initialize the maximum cost reduction to the lowest

possible
7: for all e ∈ C do
8: A = A ∪ e
9: if U−R(A)−M(A)> Dmax //see Equation (8.10) and Equation (8.11) for

R(A) and M(A) then
10: Dmax =U−R(A)−M(A)
11: emax = e
12: end if
13: A = A \ e //remove e from A
14: end for
15: if (Dmax > 0 and |A |< Lmax) or |A |< Lmin then
16: A = A ∪ emax
17: C = C \ emax //remove emax from C
18: U =U−Dmax
19: else
20: Quit = true
21: end if
22: end while

As shown in Algorithm 6.1, in the beginning, the acquaintance list is empty. The
initial cost is the minimum cost of the decision based only on the prior information
(line 3). For each loop, the system selects a node from the acquaintance candidate
list that brings the lowest overall cost and stores it into emax (lines 7–14), where U−
R(A)−M(A) is the amount of cost reduced by adding a node to the acquaintance
list. When such a node is found, it is then moved to the acquaintance list if the current
acquaintance length is less than Lmin or the cost is reduced by adding the new node

130 � Intrusion Detection Networks: A Key to Collaborative Security

and the acquaintance length does not exceed Lmax. The loop stops when no node can
be added into A any further.

8.4.3 Acquaintance Management Algorithm
In the previous section we devised an algorithm to select acquaintances from a list of
candidates. However, collaboration is usually based on mutual consensus. If node A
selects B as an acquaintance but B does not select A (nonsymmetric selection), then
the collaboration is not established.

We employ a distributed approach for an IDS in the IDN to select and manage
acquaintances and a consensus protocol to allow an IDS to deal with the nonsym-
metric selection problem. To improve the stability of the acquaintance list, we use a
probation period on each new IDS collaborator so that IDSs have time to learn about
any new candidates before considering it as an acquaintance. For this purpose, each
IDS maintains a probation list, where all new nodes remain during their probation
periods. A node also communicates periodically with nodes in its probation list to
evaluate their detection accuracy. The purpose of the probation list is thus to explore
potential collaborators and keep introducing new qualified nodes to the acquaintance
list.

Suppose that node i has two sets Ai and Pi, which are the acquaintance list
and the probation list, respectively. The corresponding false positive rate and true
positive rate of both sets are FA

i ,T A
i and FP

i ,T P
i . To keep learning the detection

accuracy of the acquaintances, a node sends test messages to nodes periodically in
both the acquaintance list and the probation list, and keeps updating their estimated
false positive rates and true positive rates. Let lmax be the maximum number of IDSs
in both the acquaintance and the probation list. We set this upper-bound because the
amount of resources used for collaboration is proportional to the number of acquain-
tances it manages. lmax is determined by the resource capacity of each IDS. Let lmin

be the minimum length of a probation list and q be the parameter that controls the
length of the probation list lp compared to the length of acquaintance list la, such that
lmin ≤ lp ≤ qla. The parameters lmin and q are used to tune the trade-off between the
adaptability to the situation where nodes join or leave the network frequently (“high
churn rate”), and the overhead of resources used for testing new nodes.

The acquaintance management procedure for each node is shown in Algorithm
6.2. The acquaintance list A is initially empty and the probation list P is filled by
lini random nodes to utilize the resources in exploring new nodes. An acquaintance
list updating event is triggered every tu time units. A is updated by including new
trusted nodes from P . A node that stays at least tp time units in probation is called
a mature node. Only mature nodes are allowed to join the acquaintance list (lines
15–21). Mature nodes with bad qualification will be abandoned right away. After
that, the acquaintance selection algorithm is used to find the optimal candidate list.
Collaboration requests are sent out for nodes that are selected in the optimal list. If
an acceptance is received before the expiration time, then the collaboration is con-
firmed; otherwise the node is abandoned (lines 22–26). Then P is refilled with new
randomly chosen nodes (lines 28–31).

Collaborators Selection and Management � 131

Algorithm 8.2 Managing Acquaintance and Probation Lists
1: Initialization :
2: A ⇐ /0 //Acquaintance list.
3: P ⇐ /0 //Probation list.
4: lp = lini //initial Probation length
5: //Fill P with randomly selected nodes
6: while |P|< lp do
7: e⇐ select a random node
8: P ⇐P ∪ e
9: end while

10: set new timer event(tu, “SpUpdate”)
11: Periodic Maintenance:
12: at timer event ev of type “SpUpdate” do
13: //Merge the first mature node into the acquaintance list.
14: e⇐ selectOldestNode(P)
15: C ⇐A //C is the temporary candidate list
16: if te > tp //te is the age of node e in the probation list then
17: P ⇐P \ e
18: if Te >Tmin and Fe <Fmax //Te and Fe are the true positive rate and false positive

rates of the node e then
19: C ⇐ C ∪ e
20: end if
21: end if
22: //Consensus protocol
23: S =Acquaintance Selection(C , lmin,max(lmin, q

q+1 lmax))
24: //Send requests for collaboration and receive responses
25: Saccp⇐ RequestandReceiveCollaboration(S, ttimeout)
26: A ⇐ Saccp //Only nodes that accept the collaboration invitations are moved into

the acquaintance list
27: //Refill P with randomly selected nodes
28: while |P|< max(q|A |, lmin) do
29: e⇐ Select a random node not in A
30: P ⇐P ∪ e
31: end while
32: set new timer event(tu, “SpUpdate”)
33: end timer event

132 � Intrusion Detection Networks: A Key to Collaborative Security

Several properties are desirable for an effective acquaintance management algo-
rithm, including convergence, stability, robustness, and incentive compatibility for
collaboration. When our acquaintance management is in place, we are interested to
know with whom the IDS nodes end up collaborating and how often they change
their collaborators.

In Section 8.5 we evaluate our acquaintance management algorithm to determine
whether or not it achieves the above properties.

8.5 Evaluation
In this section we describe the conducted simulation to demonstrate the desirable
properties of our acquaintance management algorithm. We evaluate the cost effi-
ciency of our Bayesian decision model, cost and time efficiency of the acquaintance
selection algorithm, and several desired properties of the acquaintance management
algorithm. Each simulation result presented in this section is derived from the aver-
age of a large number of replications with an overall negligible confidence interval.

8.5.1 Simulation Setting
We simulate an environment of n IDS peers collaborating together by adding each
other as acquaintances. We adopt two parameters to model the detection accuracy
of each IDS, namely false positive rate (FP) and false negative rate (FN). Notice
that in reality most IDSs have low FP (< 0.1) and FN is normally in the range of
[0.1,0.5] [114]. This is because false positives can severely damage the reputation
of the product, so vendors strive to maintain their FP rate at a low level. In our ex-
periment, we select parameters that reflect real-world properties. To test the detection
accuracy of acquaintances, each peer sends test messages where their correct answers
are known beforehand. Test messages are sent following a Poisson process with av-
erage arrival rate R. R will be determined in the next subsection. We use a simulation
day as the time unit in our experiments. The diagnosis results given by an IDS are
simulated following a Bernoulli random process. If a test message represents a be-
nign activity, the IDS i raises an alarm with a probability of FPi. Similarly, if the test
message represents intrusions, an alarm will be raised with a probability of 1−FNi.
All parameter settings are summarized in Table 8.2.

8.5.2 Determining the Test Message Rate
The goal of our first experiment is to study the relationship between test message
rates and FP, FN learning speed. We simulate two IDSs A and B. A sends B test
messages to ask for diagnosis, and learns the FP and FN of B based on the quality of
B’s feedback. The learning procedure follows Equations (8.1), (8.2), and (8.3). We
fix the FN of B to 0.1, 0.2, and 0.3 respectively. Under each case, we run the learning
process under different test message rates, 2/day, 10/day, and 50/day, respectively.

Collaborators Selection and Management � 133

Table 8.2: Simulation Parameters

Parameter Value Description

R 10/day Test message rate
λ 0.95 Forgetting factor

C f p/C f n 20/100 Unit cost of false positive/negative decisions
Ca 0.01 Maintenance cost of one acquaintance
tp 10 days Probation period
tu 1 day Acquaintance list update interval
lini 10 Initial probation length
lmax 20 Maximum total number of acquaintances
lmin 2 Minimum probation list length
T min 0.5 Minimum acceptable true positive rate
Fmax 0.2 Maximum acceptable false positive rate

q 0.5 Length ratio of probation to acquaintance list
π1 0.1 Prior probability of intrusions

We observe the change in estimated FN over time, plotted in Figure 8.2. We see that
when R is 2/day, the estimated FN converges after around 30 days in the case of FN
= 0.2. The converging time is slightly longer and shorter in the cases of FN = 0.3 and
FN = 0.1, respectively. When R is increased to 10/day, the converging time decreases
to around 10 days. In the case of R = 50/day, the corresponding converging time
is the shortest (around 3 days) among the three cases. Increasing the test message

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50

E
s
ti
m

a
te

d
 F

N
 R

a
te

Days

FN=0.1

FN=0.2

FN=0.3

R=2/day

R=10/day

R=50/day

Figure 8.2: The convergence of learning speed and the test message rate.

134 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
s
ti
m

a
te

d
 F

N
 R

a
te

Actual FN Rate

Figure 8.3: The distribution of estimated FN rate (R = 10/day).

rate R to 50/day does not reduce much learning process time. Based on the above
observation, we choose R = 10/day and the probation period tp to be 10 days as our
system parameters. In this way, the test message rate is kept low and the learned FN
and FP values converge after the probation period.

The second experiment is to study the efficiency of learning results after our
chosen probation period. We fix R = 10/day, tp = 10/day, and randomly choose FN
of node B uniformly among [0, 1]. We repeat the experiments 100 times with different
FNs. The FNs estimated using our learning process until the end of probation period
are plotted in Figure 8.3. We can see that in all different settings of FNs, the estimated
FN rates are close to the actual FN rates after the probation period.

8.5.3 Efficiency of Our Feedback Aggregation
In this experiment, we evaluate the effectiveness of our Bayesian decision based
feedback aggregation by comparing it with a threshold based aggregation. We have
described our Bayesian decision model in Section 8.3.2. In a simple threshold based
feedback aggregation method, if the number of IDSs reporting intrusions is larger
than a predefined threshold, then the system raises an alarm. The threshold-based
decision is used in N-version cloud antivirus systems [114].

We set up eight IDSs {IDS0, IDS1, ..., IDS7}with their FP and FN rates randomly
chosen from the range [0.1, 0.5]. IDS0 sends consultations to all other IDSs, collects
and aggregates feedback to make intrusion decisions. The costs of false positive and
false negative decisions are C f p=20 and C f n=100 respectively. We compare the aver-
age false detection cost using the Bayesian decision model and the simple threshold-
based approach. Figure 8.4 shows that the cost of threshold decision largely depends

Collaborators Selection and Management � 135

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

C
o
s
t
o
f
F

a
ls

e
 D

e
c
is

io
n
s

Threshold

Bayesian

Threshold

Figure 8.4: Comparison of cost using threshold decision and Bayesian decision.

on the chosen threshold value. An appropriate threshold can significantly decrease
the cost of false decisions. In contrast, the Bayesian decision model does not depend
on any threshold setting and prevails over the threshold decision under all threshold
settings. This is because the threshold decision treats all participants equally, while
the Bayesian decision method recognizes different detection capabilities of IDSs and
takes them into account in the decision process. For example, if an IDS asserts that
there is intrusion, our Bayesian model may raise an alarm if the IDS has a low FP rate
and ignores the warning if the IDS has a high FP rate. However, the threshold-based
decision model will either raise an alarm or not based on the total number of IDSs
that raise warnings and compare it with a predefined threshold, irrespective of the
individual that issued the warning.

8.5.4 Cost and the Number of Collaborators
We define risk cost to be the expected cost from false decisions such as raising false
alarms (FP) and missing the detection of an intrusion (FN). We show that introducing
more collaborators can decrease the risk cost. In this experiment we study the impact
of the number of collaborators on the risk cost. We set up four groups with an equal
number of IDSs. Nodes in all groups have the same FP rate of 0.03, but their FN
rates vary from 0.1 to 0.4, depending on the group they are in. Inside each group,
every node collaborates with every other node. We are interested in the risk cost as
well as the maintenance cost. The maintenance cost is the cost associated with the
amount of resource that is used to maintain the collaboration with other nodes, such
as answering diagnosis requests from other IDSs. Because our purpose is to capture
the concept of maintenance cost but not to study how much it is, we assume the

136 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14

O
v
e
ra

ll
 C

o
s
t

Number of Collaborators

FN=0.1

FN=0.2

FN=0.3

FN=0.4

optimal

Figure 8.5: The average cost under different collaborator quality.

maintenance cost to be linearly proportional to the number of collaborators with a
unit rate Ca = 0.01 (see Table 8.2).

We increase the size of all groups and observe the average cost of nodes in each
group. From Figure 8.5 we can see that in all groups, the costs drop down fast in
the beginning and slow down as the groups’ sizes increase. After an optimal point
(marked by large solid circles), the costs slowly increase. This is because when the
number of collaborators is large enough, the cost saving by adding more collabora-
tors becomes small, and the increment of maintenance cost becomes significant. We
find that groups with higher detection accuracy have lower optimal costs. Also, they
need a smaller number of collaborators to reach the optimal costs. For example, in
the case of FN = 0.4, 13 collaborators are needed to reach the optimal cost, while
the number of collaborators required is 5 in the case of FN = 0.1.

8.5.5 Efficiency of Acquaintance Selection Algorithms
We learned in the previous section that when the number of collaborators is large
enough, adding more collaborators does not decrease the overall cost because of
the associated maintenance cost. An acquaintance selection algorithm is described in
Algorithm 3. In this section 10.2 we compare the efficiency of acquaintance selection
using the brute-force algorithm and our acquaintance selection algorithm. We create
15 IDSs as candidate acquaintances with FP and FN rates randomly chosen from
intervals [0.01,0.1] and [0.1,0.5], respectively. Both algorithms are implemented in
Java and run on a PC with AMD Athlon dual core processor 2.61 GHz, and with 1.93

Collaborators Selection and Management � 137

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8 10 12 14

C
o
s
t

Length of Candidates

Greedy

Brute Force

Figure 8.6: The cost using different acquaintance selection algorithms.

GB RAM. We start the candidate set size from 1 and gradually increase the size. We
observe the cost efficiency and running time efficiency of both algorithms.

Figure 8.6 shows that the brute-force algorithm performs slightly better with re-
spect to acquaintance list quality because the overall cost using its selected list is
slightly lower. However, Figure 8.7 shows that the running time of the brute-force
method increases significantly when the candidate set size exceeds 11, and contin-
ues to increase exponentially, while our algorithm shows much better running time
efficiency. These experiments suggest to use the brute-force method only when the
size of candidates list is small (≤ 11). When the candidates list is large, our greedy
algorithm should be used to select acquaintances.

8.5.6 Evaluation of Acquaintance Management Algorithm
In this experiment we study the effectiveness of our acquaintance management al-
gorithm (Algorithm 4). We set up a simulation environment of 100 nodes. For the
convenience of observation, all nodes have a fixed FP rate of 0.1 and their FN rates
are uniformly distributed in the range of [0.1,0.5]. All nodes update their acquain-
tance list once a day (tu=1). We observe several properties: convergence, stability,
robustness, and incentive compatibility.

8.5.6.1 Convergence

Our first finding about our acquaintance management algorithm is that IDSs converge
to collaborating with other IDSs with similar detection accuracy levels. We observed
through experiments that IDSs collaborate with random other nodes in the network
in the beginning (Figure 8.8). After a longer period of time (200 days), all IDSs col-

138 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14

R
u
n
n
in

g
 t
im

e
 (

m
il
li
s
e
c
o
n
d
s
)

Length of Candidates

Greedy

Brute Force

Figure 8.7: The running time using different acquaintance selection algorithms.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

F
N

 R
a
te

 o
f
A

c
q
u
a
in

ta
n
c
e
s

FN Rate

Figure 8.8: Acquaintances distribution on day 25.

Collaborators Selection and Management � 139

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

F
N

 R
a
te

 o
f
A

c
q
u
a
in

ta
n
c
e
s

FN Rate

Figure 8.9: Acquaintances distribution on day 200.

laborate with others with similar detection accuracy, as shown in Figure 8.9. Our
explanation is that the collaboration between pairs with high qualification discrep-
ancy is relatively not stable because our collaboration algorithm is based on mutual
consensus and consensus is hard to reach between those pairs.

Figure 8.10 plots the average overall cost in the first 365 days of collaboration
for three nodes with FN values 0.1,0.3, and 0.5, respectively. In the first 10 days, the
costs for all nodes are high. This is because all collaborators are still in the probation
period. After day 10, all cost values drop down significantly. This is because collab-
orators pass the probation period and start to contribute to intrusion decisions. The
cost for high expertise nodes continues to drop while the cost for low expertise nodes
increases partially after around day 20, and stabilizes after day 50. This is because
the acquaintance management algorithm selects better collaborators to replace the
initial random ones. We can see that the collaboration cost of nodes converges with
time and becomes stable after the initial phase.

8.5.6.2 Stability

Collaboration stability is an important property because the collaboration between
IDSs is expected to be long term. Frequently changing collaborators is costly because
IDSs need to spend a considerable amount of time learning about new collaborators.
In this experiment, we record the average time span of all acquaintances from the
time they pass the probation period until they are replaced by other acquaintances.
The result is shown in Figure 8.11, where the average collaboration time spans for
three selected nodes are shown with different point shapes. We can see that collab-
oration among nodes with similar expertise levels is more stable than that between
nodes with different expertise levels. For example, nodes with low FN = 0.1 form

140 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350

C
o
s
t

Days

FN=0.1

FN=0.3

FN=0.5

Figure 8.10: The average cost for collaboration.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
o
ll
a
b
o
ra

ti
o
n
 P

e
ri
o
d
 (

d
a
y
)

FN Rate of Acquaintances

FN=0.1

FN=0.3

FN=0.5

Figure 8.11: The collaboration time span.

Collaborators Selection and Management � 141

 0

 1

 2

 3

 4

 5

 6

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
o
s
t

FN Rate of Nodes

No Collaborition
Fixed Collaborators

Dynamic Collaborators

Figure 8.12: The converged cost distribution.

stable collaboration connections with other nodes with low FN (around 180 days in
average), while the collaboration with IDSs with high FN is short (close to 0 day in
average).

8.5.6.3 Incentive Compatibility

Collaboration among IDSs is expected to be a long-term relationship. Incentive is
important for the long-term sustainability of collaborations because it provides mo-
tivation for peers to contribute [51, 61]. We compare the average overall cost of all
nodes with different FN rates under three different conditions, namely no collab-
oration, fixed acquaintances collaboration (acquaintance length = 8), and dynamic
acquaintance management collaboration. Figure 8.12 shows the distribution of the
converged cost of all nodes. We can observe that the costs of all IDSs is much higher
when no collaboration is performed in the network. On the other hand, collaborating
with random fixed acquaintances can significantly reduce the cost of false decisions,
however, the cost of high expertise nodes and low expertise nodes are very close.
With our dynamic acquaintance management, high expertise nodes achieve much
lower cost than nodes with low expertise, which reflects an incentive design of the
collaboration system. Therefore, the system provides motivation for nodes to update
their knowledge base and behave truthfully in cooperation.

8.5.6.4 Robustness

Robustness is a desired property of an IDN because malicious users may try to at-
tack the collaboration mechanism to render it ineffective. We focus on the betrayal
attack in this experiment. To study the impact from one malicious node, we set up

142 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
a
ls

e
 D

ia
g
n
o
s
is

 P
ro

b
a
b
il
it
y

Days

 FP

 FN

Figure 8.13: The FP and FN of betrayal node.

a collaboration scenario where IDS0 is collaborating with a group of other IDSs
with FP = 0.1 and FN = 0.2. Among the group, one IDS turns to be dishonest af-
ter day 50 and gives false diagnoses. We observe the FP rate and FN rates of this
malicious node perceived by IDS0, and the impact on the risk cost of IDS0 un-
der various collaborator group sizes. Figure 8.13 shows the perceived FP and FN
rates of the malicious node during each simulation day. We can see that the per-
ceived FP and FN increase rapidly after day 50. The malicious node is then removed
from the acquaintance list of IDS0 when its perceived FP and FN are higher than a
predefined threshold. The cost of IDS0 under a betrayal attack is depicted by Fig-
ure 8.14; we notice that the betrayal behavior introduces a spike of cost increment
under all group sizes, but the magnitude of the increment decreases when the number
of collaborators increases. However, the system can efficiently learn the malicious
behavior and recover to normal by excluding malicious nodes from the acquaintance
list.

8.6 Conclusion and Future Work
In this chapter we presented a statistical model to evaluate the trade-off between the
maintenance cost and the intrusion cost, and an effective acquaintance management
method to minimize the overall cost for each IDS in an IDN. Specifically, we adopted
a Bayesian learning approach to evaluate the accuracy of each IDS in terms of its
false positive and true positive rates in detecting intrusions. The Bayes’ Theorem is
applied for the aggregation of feedback provided by the collaborating IDSs. Our ac-

Collaborators Selection and Management � 143

 0

 1

 2

 3

 4

 5

 30 40 50 60 70 80

C
o
s
t

Days

acqlen=4

acqlen=6

acqlen=8

Figure 8.14: The cost of an IDS under a betrayal attack.

quaintance management explores a list of candidate IDSs and selects acquaintances
using an acquaintance selection algorithm. This algorithm is based on a greedy ap-
proach to find the smallest number of best acquaintances and minimize the cost of
false intrusion decisions and maintenance. The acquaintances list is updated period-
ically by introducing new candidates that pass the probation period.

Through a simulated IDN environment, we evaluated our Bayesian decision
model against threshold-based decision models, and acquaintance selection algo-
rithm against a brute-force approach. Compared to the threshold-based model, our
Bayesian decision model performs better in terms of the cost of false decisions. Com-
pared to the brute-force approach, our algorithm achieves similar performance but
requires much less computation time. Our acquaintance management is also shown
to achieve the desirable properties of convergence, stability, robustness, and incentive
compatibility.

As future work, we plan to investigate other, more sophisticated attack models
on the collaboration mechanism and integrate corresponding defense techniques. Ro-
bustness of the acquaintance management system is particularly critical if extended
to support IDS peer recommendations. In this case, malicious IDSs may provide
untruthful recommendations about other IDSs [104, 140, 152], or worse, collide to
collaboratively bring down the system.

This page intentionally left blankThis page intentionally left blank

OTHER TYPES OF
IDN DESIGN

IV

This page intentionally left blankThis page intentionally left blank

Chapter 9

Knowledge-Based
Intrusion Detection
Networks and Knowledge
Propagation

CONTENTS
9.1 Introduction . 148
9.2 Background . 150
9.3 Knowledge Sharing IDN Architecture . 151

9.3.1 Network Topology . 151
9.3.2 Communication Framework . 151
9.3.3 Snort Rules . 152
9.3.4 Authenticated Network Join Operation . 154
9.3.5 Feedback Collector . 154
9.3.6 Trust Evaluation and Acquaintance Management 155
9.3.7 Knowledge Propagation Control . 156
9.3.8 An Example . 157

9.4 Knowledge Sharing and Propagation Model . 157
9.4.1 Lower Level – Public Utility Optimization 159
9.4.2 Upper Level – Private Utility Optimization 161
9.4.3 Tuning Parameter Ri j . 162
9.4.4 Nash Equilibrium . 164
9.4.5 Price of Anarchy Analysis . 165

147

148 � Intrusion Detection Networks: A Key to Collaborative Security

9.4.6 Knowledge Propagation . 166
9.5 Bayesian Learning and Dynamic Algorithms . 167

9.5.1 Bayesian Learning Model for Trust . 168
9.5.1.1 Dirichlet Learning Model for Knowledge

Quality . 168
9.5.1.2 Credible-Bound Estimation of Trust 168

9.5.2 Dynamic Algorithm to Find the Prime NE at Node 169
9.6 Evaluation . 171

9.6.1 Simulation Setup . 172
9.6.2 Trust Value Learning . 172
9.6.3 Convergence of Distributed Dynamic Algorithm 176
9.6.4 Scalability and Quality of Information (QoI) 176
9.6.5 Incentive Compatibility and Fairness . 177
9.6.6 Robustness of the System . 179

9.7 Conclusion . 180

9.1 Introduction
So far in this book we have focused on the design of consultation-based intrusion de-
tection networks, where IDSs send consultation requests to collaborators when they
observe suspicious activities. However, sending consultation requests may not be fa-
vorable to all users because the information about suspicious observations may con-
tain confidential content that users do not want to share with others. Indeed, privacy
breaches might be a concern for some users in a consultation-based IDN. In turn,
knowledge-based IDNs do not have this problem and can be an alternative choice for
IDS collaboration. A knowledge-based IDN can be defined as an overlay network
that allows IDSs to share intrusion detection knowledge, such as blacklists, mal-
ware signatures, or intrusion detection rules, with others. However, how to propagate
knowledge to the right recipients without excessive communication overhead is a
challenging problem. Furthermore, an effective knowledge propagation mechanism
should also be incentive compatible, which encourages participants to share knowl-
edge actively and honestly, and robust to minimize the negative impact of malicious
insiders. This chapter discusses an incentive-compatible knowledge-based intrusion
detection networks, particularly emphasizing the propagation mechanism design.

How to protect computers and devices from cyber attacks has been an active
research topic since the1980s. However, defencs against attackers has always been
a challenging problem because a defender has to know all the possible attacks to
ensure network security, whereas an attacker only needs to know a few attack tech-
niques to succeed. Traditional IDSs work independently of each other and rely on
downloading intrusion detection knowledge from their corresponding security ven-
dors. However, one vendor often has incomplete knowledge of all attack techniques
and consequently systems can be easily compromised by zero-day attacks unknown
to their IDS vendors. A knowledge-based intrusion detection network allows IDSs
to utilize collective knowledge from others for more effective intrusion detection.

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 149

The knowledge exchanged in IDNs can be from security vendors such as intrusion
detection rules and malware signatures. It can also be generated at the edge of the
network such as intrusion alerts, firewall logs, and blacklists. An effective knowledge
exchange mechanism must propagate knowledge in such a way to improve intrusion
detection efficiency overall. However, knowledge propagation itself can be the target
of malicious attacks and can also be taken advantage of by free-riders. For example,
compromised insiders can propagate a large amount of futile information to over-
whelm a target IDS, or benefit from peers’ intrusion knowledge without contributing
to the collaboration network. Therefore, robustness to various attacks and incentive
compatibility among peer IDSs are desirable properties of an effective IDN knowl-
edge sharing network.

However, existing IDNs often assume that all nodes are honest and altruistic.
Consequently, they are vulnerable to dishonest and opportunistic insiders. In this
chapter we address this challenge and presents a robust and incentive-compatible
IDN framework. The framework is based on a collaborative peer-to-peer network
structure, where IDSs share knowledge about currently prevailing attacks with others
in the network by means of pair-wise information exchange. We analyze the macro-
scopic propagation of intrusion detection knowledge in the network. A Bayesian
learning model is used for each IDS to evaluate the helpfulness of other IDSs and
identify spammers and malicious insiders. Each IDS determines the knowledge prop-
agation rate to others following a two-level game model that provides incentive com-
patibility and fairness to all participants. We develop a distributed dynamic algo-
rithms for each IDS to compute the optimal knowledge sharing rate, which converges
to a Nash equilibrium. Our simulation results demonstrate that our knowledge shar-
ing system has some desirable features for IDNs.

The highlights of this chapter are as follows: (1) A knowledge-based IDN and
design an automatic knowledge sharing mechanism. The latter is based on a de-
centralized two-level optimization framework to determine information propagation
rates among collaborators. An optimal knowledge sharing policy is used for each
node and we show the existence of a prime Nash equilibrium in the model and study
the knowledge propagation at the equilibrium. (2) Bayesian learning is employed for
each node to estimate the trust values of others based on the empirical data collected
by the node. A distributed dynamic algorithms is used to find the Nash equilibrium
and perform comprehensive simulations to demonstrate the efficiency, robustness,
incentive compatibility, fairness, and scalability of the knowledge sharing system.

The rest of the chapter is organized as follows. Section 9.2 provides an overview
of collaborative intrusion detection systems and information sharing paradigms. Sec-
tion 9.3 describes the knowledge sharing system framework. The system modeling
and analysis are elaborated in Section 9.4. We discuss the Bayesian learning of trust
values and the dynamic algorithms to find Nash equilibrium in Section 9.5. We eval-
uate the system using extensive simulations in Section 9.5. Finally, we conclude the
chapter in Section 9.7.

150 � Intrusion Detection Networks: A Key to Collaborative Security

9.2 Background
IDS collaboration networks utilize the collective intrusion information and knowl-
edge from other IDSs to improve accuracy in intrusion detection. Existing IDNs can
be categorized as knowledge-based and consultation-based. In a knowledge-based
IDN, IDSs share intrusion knowledge such as intrusion alerts, intrusion detection
rules, malware signatures, and blacklists with other nodes to improve overall intru-
sion detection efficiency for the whole network. Most works proposed in the past
few years are knowledge-based IDNs, such as [36, 44, 137, 149, 157]. They are
particularly effective in detecting epidemic worms and attacks, and new vulnera-
bility exploitations. In a consultation-based IDN, suspicious data samples are sent
to expert collaborators for diagnosis. Feedbacks from the collaborators are then ag-
gregated to help the sender IDS detect intrusions. Examples of such IDNs include
those described in [59, 72, 74], and [114]. Consultation-based IDNs are designed for
collaboration among different security vendors and are effective in detecting some
intrusion types such as malware and spam.

Information sharing among IDNs can be either centralized or decentralized. In
centralized sharing, such as [137], nodes collect intrusion data and send them to a
central node for analysis. In decentralized sharing, the workload of data analysis is
distributed. Information routing in IDNs can follow a hierarchical structure [149]
where data is passed up to parent nodes, a structured P2P network [44] where data
is passed to a responsible node determined by hash mapping, or an unstructured P2P
network [46, 72] where data is passed to neighboring nodes. Our system is designed
based on an unstructured P2P network, where IDSs of similar interests and configu-
rations collaborate with each other.

Information and knowledge propagation in a community can be realized through
gossiping. Gossiping is a communication paradigm where information is propagated
through multi-hop pair-wise communication. Gossiping has been used to exchange
information in distributed collaborative intrusion detection, such as local gossip-
ing [52], and global gossiping [151]. Sharing observations from distributed nodes
is useful to detect and throttle fast-spreading computer worms. It is effective for
communications in ad hoc or random networks, where a structured communication
is difficult to establish. However, traditional gossiping relies on random pair-wise
communication and information flooding. Therefore, it is not suitable when the net-
work is large and the messages are only intended to be delivered to a small set of
nodes. Mailing list broadcasting can be seen as a special type of gossiping where one
node communicates with every other node in the network to deliver messages. Ran-
dom walk [46] can also be used to propagate intrusion alerts within an IDN, where
intrusion alerts start from a set of initial nodes and each node passes the information
received to a randomly chosen neighbor unless the received information is a dupli-
cate. However, random walk mechanisms are relatively slow in terms of propagation
speed, and the source node has no control over the number of receivers.

Publish-subscribe systems can also be used for information delivery among IDSs,
such as [44, 157]. Compared to gossiping, publish-subscribe systems allow cus-
tomized information delivery. They can be either topic-based [117], or content-based,

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 151

such as [44, 157]. In a topic-based system, publishers and subscribers are connected
by predefined topics; content is published on well-advertised topics to which users
can subscribe based on their interests. In a content-based system, users’ interests
are expressed through queries, and a content filtering technique is used to match the
publishers’ content to the subscriber. However, a simple publish-subscribe system
does not take the quality of the information into consideration. It also does not pro-
vide incentives for IDSs to contribute to the collaboration network. Our system not
only measures the trust of nodes, but also ensures incentive-compatible knowledge
sharing.

9.3 Knowledge Sharing IDN Architecture
This section describes the architecture design of a knowledge-based IDN, including
the IDN topology, network operation, and knowledge propagation protocol.

9.3.1 Network Topology
In our knowledge-based IDN, nodes are organized into a collaborative peer-to-peer
network (Figure 9.1). Each node maintains a list of collaborators to communicate
and exchange intrusion detection knowledge with. We call such a list an acquain-
tance list. The acquaintance list contains the collaborators’ IDs, IP addresses, public
keys, and trust values. Note that the acquaintance relationship is symmetric, that is,
if node i is on node j’s acquaintance list, then node j is on node i’s acquaintance
list. Intrusion detection knowledge is propagated from a node to its acquaintances in
a pair-wise manner. The knowledge will be further propagated once it is proven to
be effective on the receiver side, for example, resulting in high detection rates. Ef-
fective knowledge can be propagated to a large number of nodes through multi-hop
peer-to-peer network communications.

To illustrate, we will focus in the remainder of this chapter on a collaborative
IDN facilitating Snort rules sharing between Snort IDSs. Snort is an open-source
network-based intrusion detection system (NIDS). An isolated Snort NIDS relies on
downloading intrusion detection rules from a central server to keep its knowledge
up to date. End users can also contribute Snort rules, such as rules against zero-day
attacks, and update the new rules to the central server for verification. The central
server verifies the new rules and pushes the useful ones to end users. However, in
this centralized rule sharing system, the large number of end user contributed rules
may be more than the central authority can handle and consequently cause a number
of useful zero-day attack rules not being verified in time to benefit other users. The
rest of this chapter discusses an architecture design of peer-to-peer (P2P) automatic
Snort rule sharing systems and P2P rule propagation mechanism design.

152 � Intrusion Detection Networks: A Key to Collaborative Security

M
alw

are identification

Blacklist

Bla
ckl

ist

Figure 9.1: Topology of a knowledge-based intrusion detection network, where IDSs
are connected to a peer-to-peer network and share intrusion detection knowledge
with others.

9.3.2 Communication Framework
The communication framework is built on a Chord [131] peer-to-peer (P2P) com-
munication overlay. Each node is assigned a key and maintains a finger table that
contains a list of other nodes for key search (e.g., routing) in the Chord ring. Each
node may have a long list of acquaintances and each acquaintance j has a certain
probability pi j ∈ (0,1] to be chosen to receive knowledge from the sender node i.
A user on the receiver side evaluates knowledge (such as Snort rules) sent from its
neighbors and may choose to “accept” or “reject” the rule. The decision is then
recorded by a Bayesian learning algorithm to update the compatibility ratio of the
sender. The compatibility ratio from i to j is the probability that the rules from the
sender i are accepted by the receiver j. The higher a collaborator’s compatibility,
the more helpful it is in collaboration. The decision is also sent to a corresponding
knowledge feedback collector. The feedback collector is a random node in the P2P
network, determined by a key mapping function of the rule ID and the sender ID. The
corresponding node holding the key will host the feedback of the rule. Inexperienced
users can check feedback from others before they make their own decision whether
or not to accept the rule. Users can also report false positives and true positives about
the rule, so that the rule creator can collect feedback and make updates accordingly.
More details about the feedback collector are provided in Section 9.3.5.

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 153

3

8

7

6

1

4

2

5

M
a
p
p
in

g
(1

,
x
)

(R
u
le

 x
)K

d
1

(R
ule x)K

d1

(F
e
e
d
b
a
c
k
 x

)
K

d
7 (L

ist o
f F

eedback x
)K d6

Acquaintances: 3, 7, 8

Finger map: 2, 3, 5

Feedback

collector

Receiver

Receiver

Figure 9.2: SMURFEN design of eight nodes on a Chord ring.

9.3.3 Snort Rules
Many intrusion detection systems, such as Snort, allow users to create and edit their
own detection rules in their rule base. Snort rules are certified by the Vulnerability
Research Team (Sourcefire), after being tested by security experts. Snort rules are
vulnerability-based and written in plain text, hence can be easily interpreted and
edited by users. Snort rules obtained from third parties can be adopted directly or
indirectly with some changes. Snort rules can be independent or can be grouped
together into rule units. The basic rule structure includes two logical sections: the
header section and the option section. The rule header contains the rule’s action,
protocol, source and destination IP addresses and network masks, and the source and
destination ports information. The rule option section contains alert messages and
information on which parts of the packet should be inspected to determine whether
the rule action should be taken [119]. Figure 9.3 illustrates a simple Snort rule. When
a TCP packet with the destination IP and port number matching the specified pattern
and data payload containing the specified binary content is detected, a “mounted
access” alert is raised.

Sometimes the rules can be interdependent of each other; then the dependent
rules shall be binded and shared as one unit. An example of interdependent rules is

154 � Intrusion Detection Networks: A Key to Collaborative Security

Figure 9.3: An example Snort rule. (Adapted from [119].)

shown in Figure 9.4, where the second rule is triggered to record 50 packets after the
first rule is triggered.

9.3.4 Authenticated Network Join Operation
We can assume that there exists a traditional central authority (CA) from which all
nodes can obtain a public and private key pair. We enforce all knowledge exchanged
in the network to be encrypted by the receiver’s public key and signed by the sender’s
private key. Receivers can verify the sender of the knowledge by its signature.

When a new node attempts to join the network, it first contacts the CA to obtain
an ID and public/private keys, as well as a list of bootstrap nodes to join the collab-
oration network. Then, the new node contacts the bootstrap nodes to obtain initial
candidates for the acquaintance list.

When a node leaves the network temporarily, it can simply go offline. If a node
leaves the network permanently, it can notify the CA and its collaborators to remove
the node from their acquaintance lists. If a node goes offline or remains inactive for
a long time, its entry in its collaborators’ acquaintance lists may expire, and if so, it
has to renew its membership by initiating a new operation to join the network.

9.3.5 Feedback Collector
When a user receives new rules from the community, she/he may evaluate the rules
and determine whether or not to adopt the rule. A feedback collector is used to record
the feedback on the rules from users. Less experienced users may check the feedback
from others before making their decisions. As shown in Figure 9.5, rule author “A”

Figure 9.4: An example of dependent Snort rules. The first rule triggers the alert
and activates the second rule; The second rule records 50 packets after the first rule
is triggered. (Adapted from [119].)

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 155

CA

R1

R2

C

M

A transfers the bloom filter of
its acquaintance list to C

C and its replicas are
chosen by H(IDA,IDrule)

Send feedback
of rule i

Retrieve feedback of rule i

Malicious
feedbackrule i

rule i

Figure 9.5: Feedback collection in SMURFEN. The malicious node M tries to leave
fraudulent feedback but was blocked because it does not match the bloom filter on
the feedback collector.

propagates a new rule i to its acquaintances R1 and R2. Both rule receivers can re-
trieve and send feedback from/to the feedback collector C, which is a random node
in the P2P network determined by the key mapping of the creator and the rule ID.
Replicas collectors can be used to improve the availability of the feedback collector
service. All feedbacks are signed by their authors to prevent malicious tampering.

Moreover, to avoid feedback fraudulence, each feedback collector maintains a
bloom filter [43] of the authorized nodes list. The rule author hashes all of its ac-
quaintances into a bloom filter and passes it to the feedback collector. Only nodes
with hashed IDs matching the bloom filter are allowed to leave feedback on the
collector. The use of a bloom filter not only reduces the communication overhead
to transfer long acquaintance lists, but also avoids unnecessary information leaking
from the rule author.

9.3.6 Trust Evaluation and Acquaintance Management
Each node in the network shares its intrusion detection rules with their collaborators.
However, trust evaluation is necessary to distinguish good/bad nodes in the network.
For example, a malicious user may broadcast a large number of spam rules to others.
To distinguish malicious collaborators, each IDS evaluates the trust values of others
by rating the quality of the rules received from them. If a correct intrusion detection
is made according to the received knowledge, it is labeled “effective detection.” If
a false alarm is made, then it is labeled as “false detection.” If a knowledge results
in no detection after a certain period, then it is labeled “no detection.” A Bayesian
learning algorithm (Section 9.5) is then used to update the trust value of the sender
based on the aggregated quality of the knowledge received. An effective detection

156 � Intrusion Detection Networks: A Key to Collaborative Security

will increase the trust value of the sender and a false alarm will penalize it. The trust
value of node i perceived by node j can be seen as the level of helpfulness that node
i provides to the receiver node j. The more helpful a collaborator is, the higher its
trust value.

The collaboration relationship is based on mutual consent. Every new collabo-
rator candidate is assigned a low trust value at the beginning and needs to pass a
probation period before becoming a collaborator. During the probation period, the
trust value of the new candidate will be evaluated by its peers. When the probation
period expires, new candidates gaining high trust values will replace collaborators
with low trust values in the acquaintance list. Collaborators with trust lower than a
certain threshold will be removed and new ones will be recruited periodically.

9.3.7 Knowledge Propagation Control
Each IDS can share its intrusion detection rules with its collaborators. In our propa-
gation system, nodes propagate rules to receivers directly, and the receivers rank the
trust values of the senders based on the quality of the received knowledge. Knowl-
edge that contributes to “effective detection” can be further propagated to the col-
laborators of the receiving node (see Figure 9.6). Otherwise, it will not be further
propagated.

However, in such a network, free-riders may benefit from the collective knowl-
edge without contributing to the network. In addition, malicious insiders may send
excessive amounts of spam to others to downgrade the performance of a collaboration
network. To cope with these problems, nodes in our system propagate knowledge to
their collaborators at rates proportional to their trust values as well as their demand-
ing rates (requested sending rate). Each node sets its demanding rate to collaborators
based on its receiving capacity and the trust values of the collaborators. A decen-
tralized two-level game framework is designed to optimize independently the node’s

1

2

3

4
5

6

7

8

9

10

11

12

Round1

Round2

Figure 9.6: An example of knowledge propagation path.

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 157

public utilities and private utility (see Section 9.4 for a detailed description). This
knowledge propagation scheme is incentive compatible and is robust to DoS attacks
from insiders.

9.3.8 An Example
For a better understanding of the rule sharing framework, we illustrate the mechanism
with an example (see Figure 9.2). Assume that user 1 (on node 1) detects a new
software vulnerability and creates a new Snort rule x to protect the system before the
official release from the VRT. User 1 is part of the rule sharing network. The new
rule is automatically propagated to its acquaintances through a propagation process
(described in Section 9.4). User 3 and user 7 receive rule x from user 1. The user
7 finds rule x to be useful to her/his network and can choose to accept or reject it.
The decision is then notified to a feedback collector on node 6. If the rule is adopted
and alerts are triggered by rule x, the decision of whether it is a true or false alarm
is also forwarded to node 6. Users can reject a formally accepted rule any time when
it causes large false positives or does not detect any attack after a certain amount
of time. Rule x is also propagated to node 3. If user 3 finds that the rule covers
vulnerabilities but does not have enough experience to judge the quality of the rule,
then she/he chooses to inspect the feedback from other users about the rule from the
feedback collector. The decision of acceptance or rejection can be delayed to allow
enough time for observation.

9.4 Knowledge Sharing and Propagation Model
As previously mentioned, in a gossiping-based information propagation model, in-
formation is disseminated in a pair-wise and multi-hop fashion. However, existing
gossip models are simplistic and either choose to propagate to all neighbors in turn
or randomly choose nodes in the network to propagate to. They do not capture the
quality of the information sender or the preference of the receiver. This section dis-
cusses the knowledge sharing control model used to decide how often an IDS should
propagate snort rules to its acquaintances, based on the quality of the sender and the
preference of the receiver, which are learned from previous interactions.

We model the rule sharing network into a set of n IDSs, denoted by N . In the net-
work, IDSs contribute and share intrusion detection knowledge with others. A node
i propagates knowledge to its collaborators, denoted by Ni, with a knowledge prop-
agation rate ri j, j ∈Ni, to achieve an optimal impact. We use a vector~ri to represent
the knowledge propagation rate from node i to its collaborators. To avoid denial-
of-service attacks from malicious collaborators, node j sets a maximum sending rate
from each of its collaborators. We denote by Ri j, i, j ∈N , the requested sending rate
from i to j. Note that Ri j is controlled by node j and informed to node i. We use ~R j to
denote the requested sending rates node j imposes on all its collaborators. Our sys-
tem requires each node to control its sending rate under the requested sending rate,

158 � Intrusion Detection Networks: A Key to Collaborative Security

that is, ri j ≤ Ri j,∀i, j ∈N . To control the communication overhead, a node i sets
the upper-bound Mi ∈ R++ on the total outbound knowledge propagation rate, that
is, ∑ j∈Ni ri j ≤Mi. We assume that each node contributes new detection knowledge
and share it with its collaborators. Denote by r̄i the knowledge contribution rate from
node i. Note that the contributed knowledge can be created by the sender or effective
knowledge received by the sender from others. The knowledge propagation rate from
the sender node i to others shall not exceed the knowledge contribution rate of node
i, as the maximum knowledge propagation rate is to propagate all the knowledge it
has.

Not all propagated knowledge is useful to the recipients. To capture the metric of
relationship on helpfulness, we use a matrix T = [Ti j]i, j∈N to denote the trust value
of node i perceived by node j, where Ti j ∈ [0,1],∀i, j ∈ N , which represents the
level of helpfulness of node i to node j. Note that the compatibility matrix can be
asymmetric, that is, Ti j 6= Tji.

Our goal is to devise a system-wide knowledge propagation protocol such that
the knowledge contributed by all contributors is fairly distributed to other nodes to
optimize their impact on the system. To achieve this goal, we model our system based
on a two-level optimization problem formulation. At the lower level, an IDS i solves
the optimization problem (PPi) where it chooses its propagation rate~ri to optimize
its public utility function. At the upper level, an IDS i determines the request rate to
all acquaintances ~Ri from a private optimization problem (Pi). The choice of R ji at
the upper level influences the decision-making at the lower public optimization level.
We summarize the notations used in this section in Table 9.1.

Figure 9.7 is an illustration of the rule propagation protocol between IDS i and
IDS j. Each IDS has a two-level decision process. IDS i optimizes the propagation
rate ri j based on an altruistic or public optimization (PPi) and uses a private optimiza-
tion problem (Pi) to determine the requested sending rate R ji, which will be passed
to IDS j for its propagation decisions. It can be seen that the (PP j) decision of IDS j
depends on the decision from (Pi) of IDS i. The interdependence of the agents leads
to a Nash equilibrium.

Table 9.1: Summary of Notations

Symbol Meaning

ri j The rule propagating rate from node i to node j
qi j Greed factor (the return ratio node j asks from

node i)
Ri j Requested sending rate from i to j (set by node j)
Mi Sending resource capacity of node i
Ri Receiving resource capacity of node i
Ti j Compatibility from i to j
ri The rule generating rate from node i

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 159

(Pi) max Ui
b

(PPi) max Ui
r

(Pi) max Uj
b

(PPi) max Uj
r

Rij=qij rjiRji=qji rij

IDS i IDS j

rij

rji

Figure 9.7: An illustration of the rule propagation protocol.

9.4.1 Lower Level – Public Utility Optimization
In this subsection we formulate an optimization framework for each node to decide
on the propagation rate to all its collaborators to maximize its utility. The utility of
each node Ui has two components: a public utility function U p

i and a private utility
function U r

i . The utility U p
i measures the aggregated satisfaction level experienced

by node i’s collaborators weighted by their trust values. It allows a node to provide
more help to those with whom there was more helpful interaction in the past. On the
other hand, U r

i measures the satisfaction level of a node with respect to the amount
of help it receives from its collaborators.

The basic argument for this algorithm is to tune the utility function so that we
balance the weight of two purposes of rule propagation: send rules to whom need
it most or to whom helped back most? In a need-based society where nodes put
others’ needs as the sole factor should result in a maximum utilization of rules created
in the whole society, where the social warefare function is the total benefit of all
members. However, this community creates no incentives for nodes to contribute
to the collaboration as increasing their rule creation rate does not result in better
payback. In a long run, the total warefare may decrease as a result of not enough
contributors. The return-based warefare model sends rules to those who helped back
most. This may result in a strong incentive for creating new rules to share with others
because to return is proportional to the amount of contribution to others. However,
under such a paradigm, nodes that create no rules will result in no help received.

160 � Intrusion Detection Networks: A Key to Collaborative Security

The public optimization problem (PPi) seen by each node i, i ∈N , is given by

(PPi) max
~ri∈Rni

U p
i (~ri) := ∑

j∈Ni

TjiSi j(ri j) (9.1)

∑
j∈Ni

ri j ≤ Mi, (9.2)

ri j ≤ Ri j, (9.3)
0 ≤ ri j ≤ r̄i, (9.4)

where Si j : R→ R is the satisfaction level of node j in response to the propagation
rate ri j of node i. We let Si j take the following form:

Si j(ri j) := Ti j log
(

1+
ri j

Ri j

)
. (9.5)

The concavity and monotonicity of the satisfaction level indicate that a recipient
becomes increasingly pleased when more knowledge is received but the marginal
satisfaction decreases as the amount of knowledge increases. The parameter Ti j in
(9.5) suggests that a node j is more content when the sender i is more trustable.

The objective function U p
i : Rni → R in (9.1) aggregates the satisfaction level Si j

of node j by the compatibility factor Tji. The utility U p
i can be viewed as a public

altruistic utility in that a node i seeks to satisfy its collaborators by choosing knowl-
edge propagation rates~ri. The problem (PPi) is constrained by (9.2) in that the total
sending rate of a node i is upper bounded by its communication capacity. Constraint
(9.3) says that the propagation rate from i to j shall not exceed the requested sending
rate from the recipient j. The additional constraint (9.4) ensures that the propagation
rate does not exceed its knowledge contribution rate r̄i. Note that the constraint (9.3)
is imposed by its recipient j while constraint (9.4) is set by node i itself.

Because the utility function (9.1) is strictly convex in ~ri and the feasible set is
convex, the optimization problem (PPi) is in the form of convex programming and
admits a unique solution.

It can be seen that when Mi is sufficiently large and (9.2) is an inactive constraint,
the solution to (PPi) becomes trivial and ri j =min(Ri j, r̄i) for all j∈Ni. The situation
becomes more interesting when (9.2) is an active constraint. Assuming that Ri j has
been appropriately set by node j, we form the Lagrangian functional L i : Rni×R×
Rni → R

L i(~ri,µi,δi j) := ∑
j∈Ni

TjiTi j log
(

1+
ri j

Ri j

)

−µi

(
∑

j∈Ni

ri j−Mi

)
− ∑

j∈Ni

δi j(ri j− r̄i j),

where µi,δi j ∈ R+ satisfy the complementarity conditions µi
(
∑ j∈Ni ri j−Mi

)
= 0,

and δi j(ri j− r̄i j) = 0,∀ j ∈Ni, where r̄i j :=min(Ri j, r̄i). We minimize the Lagrangian
with respect to~ri ∈ Rni

+ and obtain the first-order Kuhn-Tucker condition: Ti jTji
ri j+Ri j

=

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 161

µi +δi j, ∀ j ∈Ni. When (9.2) is active but (9.3) and (9.4) are inactive, we can find
an explicit solution supplied with the equality condition

∑
j∈Ni

ri j = Mi, (9.6)

and consequently, we obtain the optimal solution

r?i j :=
Ti jTji

∑u∈Ni TiuTui

(
Mi + ∑

v∈Ni

Riv

)
−Ri j. (9.7)

When either one of the constraints (9.3) and (9.4) is active, the optimal solution is
attained at the boundary. Because the log function has the fairness property, the op-
timal solution r?i j has non-zero entries when the resource budget Mi > 0. In addition,
due to the monotonicity of the objective function, the optimal solution r?i j is attained
when all resource budgets are allocated, that is, constraint (9.2) is active.

Remark 9.4.1 We can interpret (9.7) as follows. The solution r?i j is composed of
two components. The first part is a proportional division of the resource capacity
Mi among |Ni| collaborators according to their compatibilities. The second part is
a linear correction on the proportional division by balancing the requested sending
rate Ri j. It is also important to notice that by differentiating r?i j with respect to Ri j,

we obtain
∂ r?i j
∂Ri j

= (
Ti jTji

∑u∈Ni TiuTui
− 1) < 0, suggesting that at the optimal solution, the

propagation rate decreases as the recipient sets a higher requested sending rate. If
a node wishes to receive a higher propagation rate from its collaborators, it has no
incentive to overstate its level of request. Rather, a node j has the incentive to under-
state its request level to increase r?i j. However, the optimal solution is upper bounded
by min(r̄i,Ri j). Hence, by understating its request Ri j, the optimal propagation rate
is achieved at min(r̄i,Ri j).

9.4.2 Upper Level – Private Utility Optimization
An IDS i has another degree of freedom to choose its level of requested sending rate
R ji of its collaborators. R ji states the maximum knowledge propagation rate from
node j to i that node i can accept. In contrast to the public utility optimization, the
optimization at this level is inherently nonaltruistic or private. The objective of an
IDS i is to choose ~Ri so that its private utility U r

i : Rni
+→ R is maximized, that is,

(Pi) max
~Ri∈R

ni
+

U r
i (~Ri), (9.8)

subject to the following constraint from the total receiving capacity R̄i, that is,

∑
j∈Ni

R ji ≤ R̄i. (9.9)

162 � Intrusion Detection Networks: A Key to Collaborative Security

Let U r
i take the form of U r

i := ∑ j∈Ni Tji log(1+ r?ji/R̄i), where r?ji is the optimal
solution attained at (PPi). The log function indicates that an IDS intends to maximize
its own level of satisfaction by choosing an appropriate level of request. The request
capacity is imposed to prevent excessive incoming traffic as a result of a high level
of requests. We assume that the capacity is sufficiently large so that the constraint is
inactive. Therefore, the decision variable R ji is uncoupled and the problem (Pi) can
be equivalently separated into |Ni| optimization problems with respect to each j, that
is, for every j ∈Ni,

(Pi j) max
R ji∈R+

log
(

1+
r?ji
R̄i

)
. (9.10)

As a recipient, node i needs to ensure that the receiving traffic does not exceed a
level of Ri. Hence, the private utility optimization problem faced by node i is given
by

(Pi)max
qi j

Ub
i (9.11)

∑
j∈Ni

r ji ≤ Ri (9.12)

The properties of the solutions to (Pi) and (PPi) are illustrated in Figure 9.8 for
an IDS i and its two neighboring peers. In this illustrative example, we look at the
optimal propagation rule for node i to communicate with node 1 and 2. Node i solves
(PPi) with constraints (1) ri1 + ri2 ≤Mi, (2) ri1 ≤ Ri1, and (3) ri2 ≤ Ri2. The shaded
region is the feasible set of the optimization problem. The optimal allocation can be
points on the face of ri1 + ri2 = Mi of the feasible set. Given the request rates Ri1
and Ri2, suppose the optimal allocation is found at the red point. At the higher level,
nodes 1 and 2 need to solve the optimization problems (P1i) and (P2i), respectively.
They have incentives to understate their requests. For example, node 1 can request a
lower rate until it hits R∗i1 and the optimal allocation will increase until it reaches R∗i1.
This fact leads to the green point, which is the optimal solution to (PPi) found on the
vertex of its feasible set given that ri1 ≤ R∗i1. Node 2 makes the same decision and
results in R∗i2.

9.4.3 Tuning Parameter Ri j

We have obtained Nash Equilibrium under the condition that the receiver does not
have constraints of the total number of rules it receives per unit time, that is, ri j =

Ti jTjiMi
∑u∈Ni TiuTui

. However, in practice, users prefer to set a limit on the number of rules it
receives per day. The reasons are twofold: first, users can only investigate a limited
number of rules per unit time due to their individual capabilities. Too many rules with
average low quality can bring high false positives. Second, without setting a sending
limit to senders, malicious nodes can flood with a large number of invalid rules (DoS)
to slow down the efficiency of the intrusion detection on the receiver side.

Let parameter R ji denote the sending limit node i set for node j so that node j

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 163

Mi

(0,0)

ri1

Mi

ri2

ri1

ri2

Ri1 Ri1

Ri1

Ri2

*

Figure 9.8: An illustrative example of a three-person system involving the set of
nodes {i,1,2}. Node i solves (PPi) while nodes 1 and 2 solve (P1i) and (P2i), respec-
tively.

shall not send rules to i with a rate higher than R ji. We can prove that under the con-
dition ∑

u∈Ni

rui = ∑
u∈Ni

TiuTuiMu
∑v∈Nu CuvCvu

< Ri,∀i, the optimal solution is the unconstrained

Nash solution. Under the condition that the sending resource is higher than receiving
resource, the constraint of sending limit can be relaxed. Then we have ri j =

Ti jR j
∑i∈N j Ti j

Theorem 9.1
Removing constraint (9.3) does not change the solutions to the optimization problem
(9.1)

Proof 9.1
Suppose the optimal solution set is ~ru

∗. Among the solution set, at least one value
exceeds the upper-bound constraint, say r∗i j > Ri j. Then we can find a corresponding

164 � Intrusion Detection Networks: A Key to Collaborative Security

solution r
′
i j = 2Ri j− r∗i j. The new solution is r

′
i j < r∗i j, but it provides the same level

of satisfaction to v, that is, S(r
′
i j) = S(r∗i j) (from (9.5)).

Now if we replace r∗i j into r
′
i j in the solution set ~ru

∗, then we have some spare
resource r∗i j − r

′
i j. We use the spare resource on R ji and we can achieve improved

utility Up and therefore improved total utility (9.1). This contradicts the assump-
tion that ~r∗u is an optimal solution. Therefore, all optimal solutions should satisfy the
upper-bound constraint.

Remark 9.4.2 From Remark 9.4.1, we know the optimal strategy for node i is to
understate R ji until r?ji hits the boundary min(r̄ j,R ji). We define the optimal response
R?

ji to be the lowest possible R ji that achieves the highest r?ji. From (9.7) we have

R?
ji = r?ji =

1
2

Ti jTji

∑u∈N j TjuTu j

(
M j + ∑

v∈N j

R jv

)
. (9.13)

9.4.4 Nash Equilibrium
In a collaboration network, each node responds to other nodes by choosing opti-
mal propagation rates and requested sending rates. The two-level optimization prob-
lem leads to two game structures of interest. Let G1 := 〈N ,{~ri}i∈N ,{U p

i }i∈N 〉
be the game that corresponds to optimization problem (PPi) in which each node
chooses its propagation rates given requested sending rates from its collaborators.
Hence, the utilities of the users in (9.5) reduce to mere functions of ri j. Denote by
G2 := 〈N ,{~ri,~Ri}i∈N ,{U p

i ,U
r
i }i∈N 〉 the game that corresponds to the two-level

optimization problem (PPi) together with (Pi). In G2, each node i chooses its prop-
agation rates as well as its request rates. We study the existence and uniqueness
properties of the Nash equilibrium (NE) of these two games as follows. The proofs
can be found in the Appendix B.

Proposition 9.4.3 Each of the games for G1 and G2 admits a Nash equilibrium
(NE).

Theorem 9.2
In G2, there exists an NE such that ri j = Ri j, ∀i, j ∈N .

The equilibrium that satisfies the conditions described in Theorem 9.2 is called a
prime NE. In the following, we provide two results on the uniqueness of NE in G1
and G2.

Proposition 9.4.4 Assume that only (9.2) is an active constraint in the optimization
problem (Pi) of each node i in G1. Let λi j =

Ti jTji
∑u∈Ni TiuTui

. Let qi j =
Ri j
r ji

be the greed

factor of i over j. Then there exists a unique NE for G1 if qi jq ji 6= 1
(1−λi j)(1−λ ji)

for
each pair of neighbor nodes i, j.

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 165

Proposition 9.4.5 Assume that r̄i is sufficiently large. Let ni = |Ni|. Then there exists
a unique NE for G2 if niλi j < 2 for every pair of neighbor nodes i and j.

The following proposition characterizes the optimal solution of G2 under special
conditions.

Proposition 9.4.6 Assume that r̄i and R̄i are sufficiently large so that the constraints
(9.4) and (9.9) are inactive. Then, the unique NE solution of G2 is given by

r∗i j = R∗i j =
Ti jTji

∑u∈Ni TiuTui
Mi. (9.14)

9.4.5 Price of Anarchy Analysis
In the following we study the system efficiency at the prime Nash equilibrium com-
pared with the social welfare solution. We use the price of anarchy as a metric to
quantify the loss of efficiency as a result of decentralization. Let US be the so-
cial welfare of the network as the sum of the public utilities, that is, US(r,R) =

∑i∈N ∑ j∈Ni Ti jTji ln
(

1+ ri j
Ri j

)
, where r = {~ri}i∈N ,R = {~Ri}i∈N . A network plan-

ner optimizes the social welfare problem (SWP) as follows:

(SWP) max
r,R

US(r,R)

s. t. ∑ j∈Ni ri j ≤Mi, ri j ≤ Ri j, 0 ≤ ri j ≤ r̄i.

Let (r◦,R◦) := {~r◦i ,~R◦i }i∈N be the optimal solution to the optimization problem
(SWP) and the corresponding value is denoted as U◦S .

Definition 9.1 Let (r∗,R∗) := {~r∗i ,~R∗i }i∈N be a prime Nash equilibrium of the
game G2, and EP be the set of such a prime NE. Let U∗S be the social welfare achieved
under a prime NE (r∗,R∗) ∈ EP. The price of anarchy ρP of a prime NE is ρP =

max(r∗,R∗)∈EP

U∗S
U◦S

In the following theorem we show that prime NEs are efficient and the loss of
efficiency is 0.

Theorem 9.3
The price of anarchy of a prime NE is 1.

Proof 9.2 The optimal value of Social Welfare Policy (SWP) is given by U◦S =

∑i∈N ∑ j∈Ni Ti jTji ln2, and it is achieved when ri j = Ri j for all i ∈ N , j ∈ Ni. In
addition, the property that ri j = Ri j of prime NE yields the same utility.

166 � Intrusion Detection Networks: A Key to Collaborative Security

9.4.6 Knowledge Propagation
In this subsection we investigate from a macroscopic perspective the knowledge
propagation over the collaborative intrusion detection network. Let ni = |Ni| be
the number of neighbors of node i, which is also referred to as the connectiv-
ity or degree. In general, the connectivity is different for every node. The net-
work represented by the graph G can be characterized by the degree distribution
PG(k),k = 0,1,2, · · · ,n− 1, defined by pk = PG(k) = 1

n |{i ∈ N ,s. t. ni = k}|. A
network is called an exponential network if its connectivity is distributed accord-
ing to an exponential function (i.e., PG(k) ∼ e−k). A scale-free network exhibits
a power-law connectivity distribution (i. e., P(k) ∼ kγ ,γ ∈ (2,3)). To study the
property of knowledge propagation, we assume that G is a realization of a large
random network, whose degree distribution is given by PG(k),k = 0,1, · · · , and
∑

∞
k=0 PG(k) = 1. For convenience, we define the generating function of the distri-

bution PG(k) as Φ0(z) = ∑
∞
k=1 pkzk, where 0 ≤ z ≤ 1. It is easy to verify the proper-

ties that Φ′0(z)> 0,Φ′′0(z)> 0 and pk =
Φ
(k)
0
k! ,k = 0,1,2, · · · . The mean degree of the

network is k̄ = ∑
∞
k=1 kpk = Φ′0(1).

When a piece of knowledge is created at a node of degree k in the network, it
starts to propagate to every individual to whom it is connected at the mean equilib-
rium rate r̃m once, which is the average propagation rate in the network at the equi-
librium, that is, r̃m = 1

n ∑
n
i=1 ∑

n
j=1

1
ni

r?i j. Let Qk
m = {qk

m,0≤ m≤ k,k = 0,1,2, · · ·} be
the distribution of the number of nodes connected to a node of degree k that receive
the new knowledge. The probability of m≤ k nodes to receive new knowledge from a
node of degree k is given by qk

m =
(k

m

)
(r̃m)

m(1− r̃m)
k−m. Let Qm = {qm,m= 0,1, · · ·}

be the distribution of the number of nodes who receive the knowledge in the net-
work and qm be the probability that m nodes receive the knowledge from a ran-
dom node, which is given by qm = ∑

∞
k=m pkqk

m = ∑
∞
k=m pk

(k
m

)
(r̃m)

m(1− r̃m)
k−m.

Let the generating function for the distribution Qk,m be Γ0(z,r∗) = ∑
∞
k=0 qmzm =

∑
∞
k=0 pk[zr̃m +(1− r̃m)]

k = Φ0(1+(z−1)r̃m).
In the next round of propagation, as the new knowledge follows the connection

between two nodes and reaches a new node, the connectivity of the node for further
propagation or the excess degree of the node is one less. Assume that the probability
of reaching a node of degree k is proportional to k. Then, the distribution of the
number of nodes receiving the new knowledge is Q2

m = {qe
m,m = 0,1, · · ·}, where qe

m
is the probability that m nodes receive the knowledge in the second round, given by
qe

m = ∑
∞
k=m

kpk
k̄ qk

m. Hence, the corresponding generating function can be obtained as
Γ1(z, r̃m) = ∑

∞
k=0 qe

mzm = Φ1(1+(z−1)r̃m), where Φ1(z) is the generating function
of the distribution { kpk

k̄ ,k = 1,2, · · ·}, i.e., Φ1(z) = ∑
∞
k=1

kpk
k̄ = 1

k̄ Φ′0(z). Let the mean
excess degree in the second round of propagation be De

1 := Γ′1(1, r̃m) = r̃mΦ′1(1) =
r̃m
k̄ Φ′′0(1).

In the following we study the probability of persistence and extinction of new
knowledge as a result of propagation in the network. We let zt , t = 0,1,2, · · · , denote
the probability that a piece of knowledge will die out within the next t rounds of
propagation. Suppose that a node i of degree k propagates information to a node j of
degree k′. For the knowledge to die out in round t, the following round of propagation

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 167

must die out at round t − 1. Note that the probability that the ensuing propagation
from node i to j to die out is qe

k′z
k′
t−1. Hence, the probability of the knowledge to die

out in t rounds is the sum over all the possible degrees k′, that is,

zt =
∞

∑
k′=0

qe
k′z

k′
t−1 = Φ1(1+(zt−1−1)r̃m), (9.15)

and the initial condition z0 = 0. Because Φ1(z) is an increasing function and z∈ [0,1],
the sequence {zt , t = 0,1, · · ·} is an increasing sequence and has a limit z∗, and z∗ is
the solution to the algebraic equation z∗ = Φ1(1+(z∗−1)r̃m).

Theorem 9.4
If De

1 < 1, the knowledge will die out with probability 1. If De
1 > 1, everyone in the

network will receive the knowledge with probability 1.

Corollary 9.4.7 There exists a threshold mean propagation rate rc such that for r̃m >
rc, the knowledge will persist in the network with probability 1; for r̃m < rc, the
knowledge will die out with probability 1; and rc satisfies the relation rcΦ′1(1) = 1.

Remark 9.4.8 We can consider a random network distributed according to a Pois-
son distribution, that is, pk =

e−λ λ k

k! , for λ ∈ R++. The corresponding generating
function is Φ0(z) = eλ (z−1) and Γ′0(z) = λeλ (z−1), Γ′0(1) = λ . The generating func-
tion Φ0(z) = Φ1(z) and De

1 = λ rc. Hence, the threshold is rc =
1
λ

.

Remark 9.4.9 Consider a power-law distributed network with pk = kα/ζ (α),
known as a zeta distribution or discrete Pareto distribution [48, 111], where α > 1
and ζ (α) = ∑

∞
k=1 k−α is the Riemann zeta function. The power-law distribution

has a finite mean k̄ = ζ (α−1)
ζ (α)

for α > 2 and a finite variance for α > 3. The gen-
erating function Φ0(z) = Liα(z)/ζ (α), where Liα(z) is the polylogarithm func-
tion, also known as Jonquière’s function, defined by Liα(z) = ∑

∞
k=1

zk

kn . Note that
Liα(1) = ζ (α). Suppose that α > 3. The mean excess degree can be obtained as
De

1 =
r̃m

ζ (α−1) (ζ (α−2)−ζ (α−1)) and the threshold as rc =
ζ (α−1)

ζ (α−2)−ζ (α−1) .

Remark 9.4.10 Note that the mean propagation rate r̃m is dependent on the trust
values T. In general, higher trust values lead to higher mean propagation rates.
Therefore, the threshold value rc can be seen as a threshold on the trust values.

9.5 Bayesian Learning and Dynamic Algorithms
In this section we describe a Bayesian learning approach to estimate the trust val-
ues used in Section 9.4 and establish a dynamic algorithm to find the prime Nash
equilibrium that has been shown to exist in Theorem 9.2.

168 � Intrusion Detection Networks: A Key to Collaborative Security

9.5.1 Bayesian Learning Model for Trust
In our P2P IDN context, the collaboration among IDSs tends to be long-term oriented
compared to traditional file sharing P2P networks. This makes the evaluation of the
trust values of collaborators based on personal experience suitable. In Section 9.4
we assumed that the trust values of all collaborators are given. In practice, they can
be learned from past experience. In this section we introduce a Bayesian learning
module for nodes to learn the trust of acquaintances. The learned trust value can
be used for finding the equilibrium in Section 9.4 as well as for other applications
and services in IDNs. This model extends our Dirichlet model for trust management
[69, 74] with additional credible bound trust estimation.

9.5.1.1 Dirichlet Learning Model for Knowledge Quality

The quality of the knowledge propagated from IDS i to IDS j can be evaluated by
node j after a certain time period. The quality assessment of a piece of knowledge
results in classifying the knowledge into three categories: a) effective detection, x1;
b) false alarm, x2; and c) no detection, x3. Define the set of possible outcomes
X = {x1,x2,x3} and let X be the random variable described by the state space
X . Denote by ~p = {p1, p2, p3} the vector whose components pl , l = 1,2,3, satisfy
∑

3
l=1 pl = 1, each indicating the probability that the knowledge from IDS i to IDS j

is classified in one of the categories xl , that is, P{X = xl} = pl . Note that we have
dropped the indices i and j in the notations for convenience in presentation. We use
the vector of cumulative observations up to time n, ~γ(n) = {γ(n)1 ,γ

(n)
2 ,γ

(n)
3 }, together

with the initial beliefs of X to model ~p using a posterior Dirichlet distribution, that

is, Dir(~p|~γ) = Γ(∑3
l=1 γ

(n)
l)

∏
3
l=1 Γ(γ

(n)
l)

∏
3
l=1 pl

γ
(n)
l −1, where Γ(·) is the gamma function. In order

to give more weight to recent observations over old ones,~γ(n) is updated according to
~γ(n) = ∑

n
l′=1 λ tl′ ~Sl′+c0λ t0~S0, where n is the number of observations; tl′ , l′ = 1, · · · ,n,

is the time elapsed (age) since the l′-th outcome ~Si was collected. ~S0 is the initial
beliefs vector; c0 > 0 is a priori constant, which puts a weight on the initial beliefs.
Vector ~Sl′ denotes the outcome of the knowledge at time tl′ > 0, which is a 3-tuple
with one entry set to 1 corresponding to the selected category for that knowledge
and the others being zero. Parameter λ ∈ [0,1] is the forgetting or discount factor. A
small λ makes old observations quickly forgettable.

9.5.1.2 Credible-Bound Estimation of Trust

Let the random variable Y = ∑
3
l=1 plwl be the expected knowledge quality from a

sender, where wl , l = 1,2,3, is the quality weight on knowledge in category xl . The
mean and the variance of Y can be obtained as E[Y] = ∑

3
l=1 wlE[pl] =

1
γ0

∑
3
l=1 wlγl

and σ2[Y] = 1
γ3

0+γ2
0

∑
3
k=1 wkγk(wk(γ0− γk)−2∑

3
l=k+1 wlγl), where γ0 = ∑

3
l=1 γl . The

trust values can be estimated through the credible-bound trust defined by T =
E[Y]− 2σ [Y]. It has several properties, as follows. (P1) For each node i, increasing
the knowledge sharing rate increases its trust value with others. (P2) When γ1,γ2,γ3

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 169

are sufficiently large, Y can be approximated by a Gaussian distribution. Then T is
approximately the 95% credential lower bound of Y .

9.5.2 Dynamic Algorithm to Find the Prime NE at Node

Algorithm 9.1 Dynamic Algorithm to Find the Prime NE at Node i
1: Initialization :
2: ~Rin⇐{ε,ε, ...,ε} // Small request rates for new collaborators.
3: ~Rout ⇐ SendReceive(~Rin) // Exchange requested sending rates with collabora-

tors.
4: set new timer event(tu, “SpUpdate”) // Update sending rates and request rates

periodically.
5: Periodic update:
6: at timer event ev of type “SpUpdate” do
7: // Update the sending rate and the requested sending rates.
8: for k = 0 to B do
9: ~rout ⇐OptimizeSending(T,~Rout ,M, r̄) // (PPi) optimization.

10: ~rin⇐ SendReceive(~rout) // Exchange sending rate with collaborators.
11: ~Rin⇐OptimizeRequest(T,~rin, R̄) // (Pi) optimization.
12: ~Rout ⇐ SendReceive(~Rin)
13: end for
14: set new timer event(tu, “SpUpdate”)
15: end timer event

In this subsection we describe a distributed algorithm (Algorithm) for each node
to determine its knowledge propagation rates to collaborators. The subscript i is
removed for the convenience of presentation. The goal of the algorithm is to lead
the system to converge to a prime NE that we introduced previously. In the begin-
ning, nodes set a small requested sending rate for all new collaborators (line 2).
An update process is triggered periodically where function OptimizeSending is used
for the nodes to find their optimal sending rates ~rout based on the trust matrix T
and requested sending rate ~Rout , which is informed by the collaborators in process
SendReceive (line 3). M and r̄ are the sending capacity and knowledge contribu-
tion rate of i, respectively. Function OptimizeRequest is for the node to find optimal
~Rin (G2), which gives the maximal private utility, given T, the incoming sending rate
~rin, and r̄. The update process is repeated B rounds to yield convergence.

The purpose of Algorithm 10.2 is to find the optimal numerical solution for
(PPi) under general conditions. This algorithm is based on the fact that the marginal
weighted satisfactions from all collaborators are continuous and monotonically de-
creasing, that is, (TjiS′′i j) < 0,∀i, j. S contains the sorted marginal weighted satis-
factions of all collaborators at their boundaries {0,min(r̄i,Ri j)}. The idea is to find

170 � Intrusion Detection Networks: A Key to Collaborative Security

Algorithm 9.2 Function OptimizeSending(T, ~Rout , M, r̄)
1: // Add to S the marginal satisfaction at lower bound and upper bound of all

collaborators N .
2: AddMarginalSatisfactions(N ,S) // S in descedant order.
3: SH = /0, SM = /0, SL =N // Sets containing collaborators taking upper-bound,

medium value, and lower-bound at optimal.
4: for each V ∈S do
5: NextCutOff←GetSat(V) // Get marginal satisfaction.
6: if Resource(SL,SM,SH ,NextCutOff)< M then
7: if IsLowerBoundSat(V) then
8: move the associated collaborator of V from SL to SM
9: else

10: move the associated collaborator of V from SM to SH
11: end if
12: else
13: go to FinalStep: // Determine the optimal cutoff marginal.
14: end if
15: end for
16: FinalStep: // Assign sending rates to all collaborators.
17: for j = 0 to |N | do
18: if N j ∈SH then
19: ~r j = min(r̄,~Rout

j) // Nodes take upper-bounds.
20: else if N j ∈SL then
21: ~r j = 0 // Nodes take lower-bounds.
22: else
23: // Use Kuhn-Tucker condition to find inner solutions.
24: ~r j =

T j(M−∑k∈SH min(r̄,~Rout
k)+∑k∈SM

~Rout
k)

∑k∈SM Tk
−~Rout

j

25: end if
26: end for
27: return~r

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 171

the “cutoff” marginal satisfaction, where collaborators with both marginals higher
than the “cutoff” take their upper-bounds, collaborators with both marginals lower
than the “cutoff” take their lower-bounds, and others take inner solutions with their
marginals equal to the “cutoff.” We start “cutoff” low, increase it step by step, and
move nodes to SH and SM accordingly until the sending resource exceeds its capac-
ity. The computational complexity of Algorithm 10.2 is O(|N |).

Algorithm 9.3 Function OptimizeRequest(T,~rin, ~Rin, R̄)
1: for i = 0 to |N | do
2: if~rin

i = 0 then
3: ~Rin

i ⇐ ~Rin
i /2 // Request to i is too high, cut in half.

4: else if~rin
i < ~Rin

i then
5: ~Rin

i ⇐~rin
i // Tune down request to approach Prime NE.

6: else
7: S ⇐S ∪{Ti,Ni} // S is sorted descending by Ti.
8: end if
9: end for

10: // Increase the requested sending rate of the half collaborators with higher com-
patibility by a small amount.

11: for j ∈ TopHalf(S) do
12: ~Rin

j ⇐ ~Rin
j +∆ // Increase the request rate by a small amount.

13: end for
14: U = ∑k∈|N |~Rin

k // Total request rate.
15: if U > R̄ then
16: ~Rin⇐ R̄

U
~Rin // Normalize into constraint R̄.

17: end if
18: return ~Rin

Algorithm 9.3 is used to adjust the requested sending rate of all collaborators
according to their last status. We use a fast decrease and linear increase strategy
for request adjustment. If the requested sending rate from the last cycle is not fully
claimed, then the next request is adjusted to be the claimed amount; otherwise, in-
crease the request by a small amount. The computational complexity of Algorithm
9.3 is O(|N |).

9.6 Evaluation
In this section we use a simulation network to demonstrate the appealing properties
of the knowledge sharing system. All our experiments are based on the average of
a large number of experiment replications with different random seeds. Confidence
intervals are small enough to be neglected.

172 � Intrusion Detection Networks: A Key to Collaborative Security

Table 9.2: Simulation Parameters

Parameter Value Description

Mi 10, 100 The propagation sending capacity of node i
R̄i 10, 100 The receiving capacity of node i
r̄i 1, 10 The rule contribution rate of node i
λ 0.97 Forgetting factor for Bayesian Trust hearing (Section 9.5.1)
B 10 Computation rounds for Algorithm 10.1

9.6.1 Simulation Setup
We simulate a network of n nodes. Each node i ∈ {1,2, · · · ,n} contributes intrusion
detection knowledge to the network following a Poisson distribution with an average
arrival rate r̄i. Trust values are learned through past experiences using the credible-
bound estimation method described in Section 9.5.1.2. The knowledge sending rate
follows the two-level game design described in Section 9.4. The sending capacity
Mi and receiving capacity R̄i for each node values are specified in each experiment.
The weight vector w is {1,−0.5,0} (see Section 9.5.1.1). Forgetting factor λ is set to
be 0.7. We evaluate the properties of scalability, efficiency, incentive compatibility,
fairness, and robustness of the knowledge sharing system.

The parameters we used in our experiments are shown in Table 9.2.

9.6.2 Trust Value Learning
In this experiment we compare the credible-bound (CR) method with other com-
monly used learning methods such as simple average (SA) where a node takes the
simple weighted average of past experiences, and moving average (MA) where the
weights on past experiences discount exponentially with time.

We simulate a simple network of two nodes. Node 0 propagates knowledge
to node 1 following a Poisson process with average rate r01 = 10 messages/day.
The quality of the messages is randomly chosen from {“effective detection,” “false
alarm,” “no detection”} with probability ~p = (0.5,0,0.5), respectively. At the begin-
ning of day 50, node 0 turns dishonest and starts spamming node 1 with all false
positive messages, that is, ~p = (0,1,0). Node 1 evaluates and compares T01 using
three different methods.

Figure 9.13 shows that the trust value T01 converges after a few days and the CR
method yields slightly lower value compared to the other two methods. From the 50-
th day on, all methods observe a fast drop in T01. However, the learning speeds of the
MA and CR methods are faster than SA. This is due to the forgetting factor, which
puts higher weights on new experiences. We then change r01 from 1 to 19 and observe
T01 at the 50-th day using these three methods. From Figure 9.14 we see that T01
increases and approaches 0.5 asymptotically under the CR method, while T01 from
the two other methods mostly stay at 0.5. Therefore, nodes with higher contributions

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 173

 0

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 120

P
e
rc

e
n
ta

g
e
 o

f
U

s
e
fu

l
R

u
le

s
 (

%
)

Network Size (Nodes)

Mailing List

Random Walk

Our System-low expertise

Our System- high expertise

Figure 9.9: The comparison of information quality.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
tu

rn
 B

e
n
e
fi
t

Expertise Level

Our System

Uniform Gossiping

Best Neighbors

Figure 9.10: Incentive on expertise level.

174 � Intrusion Detection Networks: A Key to Collaborative Security

 25

 30

 35

 40

 45

 50

 55

 0 5 10 15 20

R
e
tu

rn
 B

e
n
e
fi
t

Contribution Rate

Expertise=0.8

Expertise=0.5

Expertise=0.2

Figure 9.11: Incentive of contribution rate.

 0

 20

 40

 60

 80

 100

 25 30 35 40 45 50

S
p
a
m

in
g
 R

a
te

Days

No Trust

Simple Average

Moving Average

Credit Bound

Figure 9.12: The influence from a betrayal attack.

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 175

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60

T
ru

s
t
V

a
lu

e

Day

Simple Average

Moving Average

Credible Bound

Figure 9.13: Compatibility under different learning methods.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 5 10 15 20

T
ru

s
t
V

a
lu

e

Rule Propagation Rate

Simple Average

Moving Average

Credible Bound

Figure 9.14: The credible-bound compatibility versus sample rate.

176 � Intrusion Detection Networks: A Key to Collaborative Security

to the collaboration network have higher trust values when the CR method is used.
Free-riders in this case will have low trust values because their contribution rate is
low.

9.6.3 Convergence of Distributed Dynamic Algorithm
In this experiment, we evaluate the convergence speed of the dynamic algorithm
(Algorithm 10.1) for the participants to achieve the prime equilibrium. We configure
a network of four nodes sharing common interests in intrusion detection; the trust
values of the four nodes to the others are 0.9,0.8,0.7, and 0.5, respectively. We set
Mi = 10 messages/day, R̄i = 100 messages/day, and r̄i = 10 messages/day for all i. All
nodes start with small sending rates and small request rates to all collaborators, and
adjust them following Algorithm 10.1. The number of updating and exchanging is
controlled by parameter B. To make an appropriate parameter choice, we try different
values of B and observe the sending rate from node 0 to other nodes after B rounds
of optimal adjustment and information exchange. The result is shown in Figure 9.15.
We can see that the sending rates have a fast convergence speed. Similar results occur
under other parameter settings. We fix B = 10 in the remaining of the experiments.

9.6.4 Scalability and Quality of Information (QoI)
In this experiment we compare the scalability and QoI using our knowledge shar-
ing and propagation system with (1) the traditional mailing list mechanism, where

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14

S
e
n
d
in

g
 R

a
te

Round (B)

r01
r02
r03

Figure 9.15: The convergence of dynamic algorithm.

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 177

detection knowledge is broadcast to all the other nodes in the system; and (2) with
the random walk mechanism, where knowledge starts from a small set of nodes and
each node randomly selects one neighbor to propagate the knowledge to unless the
knowledge has been received before. We simulate a network with size starting from
10 nodes and we increase it by 30 nodes each round up to 130. Among all the nodes,
20% of them have high trust values of 0.9 and the remaining 80% nodes have low
trust values of 0.1. All nodes have the same configuration, that is, Mi = M := 20
messages/day, R̄i = R̄ := 20 messages/day, and r̄i = r̄ := 1 messages/day for every
i ∈N . The random walk mechanism starts with three initial nodes.

Figure 9.16 shows the average number of messages a node receives each day.
We can see that when using the mailing list propagation, the receiving rate increases
linearly with the network size. Assuming that the receivers can tolerate up to 30 mes-
sages/day, then the system is not scalable beyond 30 nodes because a large number of
messages overwhelms the receivers. Under the random walk mechanism, the number
of nodes receiving the messages increases slowly with network size so it is scalable
up to around 200 nodes. Our system allows nodes to configure a receiving capacity
R̄, which ensures the received messages rate to be below R̄ under all network sizes.
Therefore, our system is scalable under any network size.

The quality of information (QoI) for all methods is plotted in Figure 9.9. We
define QoI as the percentage of effective knowledge that nodes receive. We see that
our system leads to significant improvements in QoI received by both the low-trust
and the high-trust nodes in comparison to the mailing list method and the random
walk method. This is because our system allows nodes to track the trust values of
others, and therefore nodes only request knowledge from good ones. In addition, the
high-trust nodes receive higher quality intrusion detection information than low-trust
nodes, which also reflects the incentive compatibility of the system.

9.6.5 Incentive Compatibility and Fairness
Incentive compatibility is an important feature for a collaboration network because it
determines the long-term sustainability of the system. In this experiment we vary the
trust values and knowledge contribution rate of a participating node, and observe the
output of its return benefit, which is the expected number of useful messages a node
receives per day.

We configure a network with 30 nodes with random trust values uniformly cho-
sen from [0,1], and we set M = R̄ = 100 messages/day and r̄ = 10 messages/day for
all nodes. We change the trust value of node 0 from 0.1 to 1.0 and observe its return
benefit. We compare our results with two other information propagation methods,
namely uniform gossiping and best neighbor mechanism. In the uniform gossiping
mechanism, knowledge is propagated uniformly to randomly selected nodes in the
neighborhood. The receiver drops messages from less trustable collaborators when
the total receiving rate hits its limit. In the best neighbor mechanism, messages are al-
ways propagated to a small number of fixed (most trusted) collaborators. The sending
capacity and receiving capacity also apply to the uniform gossiping and best neigh-

178 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 50

 100

 150

 200

 250

10 40 70 100 130 160 190 220 250

M
e
s
s
a
g
e
s
/d

a
y

Network Size (Nodes)

Mailing List

Random Walk

Our System

Figure 9.16: The comparison of scalability.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20

In
fl
u
e
n
c
e

Contrubution Rate

Expertise=1.0

Expertise=0.6

Expertise=0.2

Figure 9.17: The influence versus sending rate.

Knowledge-Based Intrusion Detection Networks and Knowledge Propagation � 179

bor propagation. Hence, we also configure their sending and receiving capacities to
be 100 messages/day.

Figure 9.10 shows that uniform gossiping provides no incentive to nodes with
higher trust values, while the best neighbor propagation scheme provides incentives
but lacks fairness. It is easy to observe that even though nodes share the same trust
values, they may end up with very different return benefits just because they may
be involved in different groups. In comparison, our propagation mechanism is built
upon an optimization framework with a continuous concave logarithmic utility on the
return benefit with trust values taken into account. Hence, it leads to incentive com-
patibility as well as fairness. In Figure 9.11, we also change the knowledge contribu-
tion rate r̄0 of node 0 and observe the return benefits. We can observe that the benefit
of collaboration increases with knowledge contribution rate. Contributing more to
the collaboration network brings a higher return benefit. Our propagation system is
incentive compatible for both contributions in quality and quantity.

9.6.6 Robustness of the System
The purpose of this experiment is to demonstrate the robustness of the system in
the face of malicious attacks such as betrayal attacks and denial-of-service (DoS)
attacks. Note that the DoS attack here means that the malicious node tries to send
a large amount of spam messages to slow down the processing speed of the IDS
or create a large number of false positives. It may create frustration for the users.
To simulate a betrayal attack, we let an expert node (node 0) behave well in the
beginning to gain high trust values and then start to propagate spam messages at day
30. We fix R̄ = 100 messages/day and r̄ = 10 messages/day for all nodes. We observe
the number of spam messages that the malicious node is allowed to send in each day.
In Figure 9.12, we can see that the number of spam messages sent by the malicious
node increases quickly in the first day. However, under our system, the spam rate
drops down quickly and approaches 0 after a short period of time. This is because
the collaborators have perceived the spam messages and have lowered the requested
sending rates to the malicious node. We compare the efficiency among different trust
learning models, including our Bayesian credit bound model (CR). We can see that
our CR model demonstrates the fastest reaction speed to the betrayal attack.

To simulate a DoS attack, we let the malicious node 0 increase its contribution
rate r̄0 from 1 to 20 with an unlimited outbound sending rate, which is a typical
strategy of a spammer. We observe the influence of the spammer node on all the
other nodes, which is defined by the total number of spam messages received from
the spammer node per day. The larger the influence of a node, the higher the potential
of damage the node can cause when it turns into a malicious one. We can see from
Figure 9.17 that the influence of a node is bounded in the system. This is because
our system enforces propagation agreements between each pair of nodes. Each node
sets a knowledge propagation constraint on all its collaborators in the two-level game
framework (see Section 9.4). Therefore, when a node intends to launch a DoS attack,
the amount of messages it is allowed to send to others is upper bounded by R̄ set by
its collaborators. Nodes sending message rate higher than what was mutually agreed

180 � Intrusion Detection Networks: A Key to Collaborative Security

upon can be considered malicious, and thus removed from the acquaintance lists of
others.

9.7 Conclusion
This chapter presented the framework design of knowledge-based intrusion detection
networks using P2P communications. In particular, we focused on the knowledge
propagation mechanism design. We established a two-level game-theoretic model
for nodes to control knowledge propagation rates to their collaborators. We have
shown that the system possesses a prime Nash equilibrium, which is demonstrated to
have the properties of incentive, fairness, and robustness to malicious attacks such as
betrayal DoS attacks. Moreover, the system has also been shown to be scalable and
inherently efficient in comparison to random gossiping and fixed neighbor sharing
schemes. We also analyzed the macroscopic properties of knowledge propagation in
a large IDN network at the Nash equilibrium of the system.

In addition, we have used the Bayesian learning approach to estimate the trust
values between nodes based on empirical data. Using simulations, we have corrob-
orated the important properties of the IDN. A possible extension of this work is to
study the system robustness to other types of attacks, such as collusion attacks, sybil
attacks, and newcomer attacks. In addition, a further study of the macroscopic behav-
ior of this system arising from multi-hop rule propagations and analyzing the time
evolution of the rule propagation at the system level may also be a possible extension.

Chapter 10

Collaborative Malware
Detection Networks

CONTENTS
10.1 Introduction . 182
10.2 Background . 184

10.2.1 Collaborative Malware Detection . 184
10.2.2 Decision Models for Collaborative Malware Detection 184

10.2.2.1 Static Threshold . 185
10.2.2.2 Weighted Average . 185
10.2.2.3 Decision Tree . 185
10.2.2.4 Bayesian Decision . 185

10.3 Collaboration Framework . 185
10.3.1 Architecture Design . 187
10.3.2 Communication Overhead and Privacy Issue 188
10.3.3 Adversaries and Free-Riding . 189

10.4 Collaborative Decision Model . 189
10.4.1 Problem Statement and RevMatch Model 189
10.4.2 Feedback Relaxation . 192
10.4.3 Labeled History Update . 193

10.5 Evaluation . 194
10.5.1 Data Sets . 194
10.5.2 Experiment Setting . 196
10.5.3 Ranking of AVs . 196
10.5.4 Static Threshold . 196
10.5.5 Weighted Average . 197

181

182 � Intrusion Detection Networks: A Key to Collaborative Security

10.5.6 Decision Tree . 197
10.5.7 Bayesian Decision . 200
10.5.8 RevMatch . 200
10.5.9 Comparison between Different Decision Models 201
10.5.10 Robustness against Insider Attacks . 203
10.5.11 Acquaintance List Length and Efficiency 205

10.6 Discussion . 206
10.6.1 Runtime Efficiency on Decision . 206
10.6.2 Partial Feedback . 206
10.6.3 Tuning Flexibility . 206
10.6.4 Comparison . 207
10.6.5 Zero-Day Malware Detection . 207
10.6.6 Historical Data Poisoning Attack . 207

10.7 Conclusion and Future Work . 207

10.1 Introduction
In previous chapters we discussed the architecture and components design of efficient
and trustworthy consultation-based intrusion detection networks. In this chapter we
discuss a case study dedicated to a consultation-based malware detection IDN re-
ferred to in the following as CMDN (Collaborative Malware Detection Network). In
CMDN, different antivirus software exchange expertise to help each other in mal-
ware detection. We will focus our discussion on the design of such a network so
that the collaboration can be effective, privacy preserving, and robust to malicious
insiders.

Undoubtedly, cyber intrusions have become a global problem. Attackers not only
harvest private information from the compromised nodes, but also use the nodes
to attack others. Cyber intrusions are typically accomplished with the assistance
of malware (a.k.a. malicious code). Malware is a piece of software that is used to
gather confidential information, exploit computing resources, or cause damage with-
out the user’s consent. Typical examples of malware include worms, viruses, trojan
horses, spyware, and rootkits. Malware can spread through various routes, for exam-
ple, email attachments, Internet downloads, worms, or removable media.

Millions of new malware instances appear every year [66] and the number has
been growing at an exponential rate. Malware is used to not only to harvest private
information from compromised hosts, but also to organize such compromised hosts
to form botnets [5]. Many million-node botnets have been discovered in the past
few years, such as BredoLab [6] and Conficker [21]. Bots can be used to attack
other hosts, such as distributed-denial-of-services (DDoS) attacks. A DDoS attack
in March 2013 targeting the largest spam filtering system, Spamhaus was one of the
largest DDoS attacks in history [11]. The massive attacks generated traffic of 300
Gbps and slowed down the Internet globally for a week.

To protect computers against malware, antivirus systems (AVs) are used to detect,
block, and remove malware from hosts. Two typical metrics are used to measure the

Collaborative Malware Detection Networks � 183

quality of an AV: the true positive rate (TP) and the false positive rate (FP). The for-
mer means an AV raises an alarm when there is a real threat; while the latter means
an AV raises a false alarm for benign software. The goal of an AV is to maximize
the TP while minimizing the FP. The most common technique to detect malware
is signature-based detection, which involves searching for known malicious patterns
within suspicious files. Signature-based detection performs fast and usually has a low
FP. However, it may not be able to detect new threats, for example, zero-day attacks.
To mitigate such limitation, behavior-based detection [67, 89], heuristics-based de-
tection [85, 90] and reputation-based detection [2] are employed to improve mal-
ware detection efficiency. The behavior approach analyzes a behavior log/graph of
a suspicious file, such as a sequence of system calls, and matches them with known
malware behavior patterns. The heuristic approach analyzes malware and seeks sim-
ilar patterns with known malicious code. The reputation-based approach evaluates
the reputation of each file based on several attributes, such as file publisher, pop-
ularity, age, and reputation of host machines [45]. All three approaches are consid-
ered a promising direction to detect new threats; however, heuristic matching without
enough evidence of maliciousness can cause a high FP.

Although the primary goal of an AV is to detect and remove malware, it is also
important that malware detection system is able to correctly classify benign files.
AVs with low TP may not effectively protect hosts from malware, while the conse-
quences of false positives can be disastrous. For example, a security vendor released
a flawed signature database update in 2010 that removed a critical system file from
Windows XP machines, causing the affected machines to be unable to boot up after-
ward. [16]. In a similar instance, TrendMicro spent $8 million reimbursing customers
for reparation expenses [28].

Security vendors may not exchange information, for example, malware samples
reported from their customers, with other vendors because of privacy issues and com-
petition. Providing prompt signature update against the latest threats is important for
dominating a market. A single AV vendor may not be able to obtain malware samples
of zero-day threats to be analyzed in time, so that they may fail to protect their cus-
tomers. However, if diverse security vendors collaborate with each other, by means of
providing feedback regarding the legacy of suspicious files, they may achieve better
malware detection accuracy and, in turn, better satisfy customers.

In this chapter we present a fully distributed collaborative malware detection net-
work (CMDN) for AVs to exchange expertise; for example, AVs send suspicious
files (original binaries or fingerprints) or their behavior logs to other AVs for scan-
ning and decide whether or not to raise an alarm based on feedback from other AVs.
This chapter focuses on the collaborative decision component design, for which our
goal is to make accurate collaborative malware detection, that has acceptable runtime
efficiency and is resistant to malicious insiders. We present a collaborative detection
model named RevMatch, where the final malware decision is made based on looking
up history with the same feedback combination. When such a match is not found
or the number of matches is too small for a confident decision, then partial match-
ing is sought instead. Our evaluation results, based on real-world malware data sets,
demonstrate that our algorithm effectively improves the detection accuracy compared

184 � Intrusion Detection Networks: A Key to Collaborative Security

to other decision algorithms in the literature, while it also performs well in runtime
efficiency and is robust to malicious insiders. Although our framework is designed
for AV collaborations, it can be also used for collaboration between intrusion detec-
tion systems.

The highlights of this chapter can be summarized as follows: (1) a distributed
framework design and architecture design for CMDN, where AVs consult each other
to improve their malware detection efficiency; (2) a novel robust and efficient col-
laborative decision algorithm, named RevMatch, and compare it with other existing
approaches based on real-world malware samples. The results reveal the limitation
of the current method of using AVs and the importance of AV collaboration; and (3)
our collected evaluation data can be used as a benchmark by other researchers in the
collaborative malware detection domain.

This chapter is organized as follows. Section 10.2 discusses some existing col-
laborative malware detection systems and collaborative malware/intrusion detection
decision methods. Section 10.3 discusses CMDN architecture design. The detailed
design of collaborative decision model is described in Section 10.4. We present the
evaluation results in Section 10.5 and further discuss the results in Section 10.6. Fi-
nally, we conclude this chapter in Section 10.7.

10.2 Background
10.2.1 Collaborative Malware Detection
Using a collaborative approach for malware detection was previously discussed in the
literature. Oberheide et al. proposed CloudAV, a system [114] where end hosts send
suspicious files to a central cloud-based antivirus service for scanning malware with
a number of different AVs. A threshold approach is used to aggregate feedback from
multiple AVs. An implementation of CloudAV is described in [102]. RAVE [127] is
another centralized collaborative malware scanning system where emails are sent to
several “replicas” for malware scanning. A replica consists of a payload, which is
running on one version of an AV for malware scanning, and a wormhole, which is
used for collecting scanning results from a payload and commuting between different
replicas for decision making. A simple voting-based mechanism is employed to make
final decisions.

Peer-to-peer communication overlay is also used for collaborative malware de-
tection or intrusion detection [44, 73, 100]. Decentralized network architectures al-
low participants to share workload with others and thus avoid bottlenecks and single
points of failure, which are common weaknesses of centralized systems.

10.2.2 Decision Models for Collaborative Malware Detection
Several different models of collaborative decision for malware/intrusion detection
have been proposed in the literature. We list a few that can be easily adapted to
CMDN.

Collaborative Malware Detection Networks � 185

10.2.2.1 Static Threshold

The static threshold (ST) model [114] raises an alarm if the total number of malware
diagnoses in the result set is higher than a defined threshold. This model is straight-
forward and easy to implement. The tunable threshold can be used to decide the
sensitivity in intrusion detection. However, the ST model considers the quality of all
AVs equally, making the system vulnerable to attacks by colluded malicious insiders.

10.2.2.2 Weighted Average

The weighted average (WA) model [69, 105] takes the weighted average of all feed-
back from AVs. If the weighted average is larger than the threshold, then the system
raises an alarm. The weight of each AV can be the trust value or quality score of
the AV. The impact from high-quality AVs is larger than from low-quality AVs. The
weighted average model also provides a tunable threshold for the sensitivity of de-
tection.

10.2.2.3 Decision Tree

The decision tree (DT) model [60] uses a machine-learning approach to produce a
decision tree, in order to maximize decision accuracy. The decision tree approach can
provide a fast, accurate, and easy-to-implement solution to the collaborative malware
detection problem. The training data with labeled samples is used to generate a bi-
nary tree and decisions are made based upon the tree. However, the decision tree
approach does not work well with partial feedback, that is, when not all participants
give feedback. It is also not flexible (no easy way to tune the sensitivity of detection)
as decision trees are usually precomputed.

10.2.2.4 Bayesian Decision

The Bayesian decision (BD) model [75] is another approach for feedback aggrega-
tion in intrusion detection (or malware detection). In this approach, the conditional
probability of malware/goodware given a set of feedback is computed using Bayes’
Theorem and the decision with the least risk cost is always chosen. The BD model is
based on the assumption that feedbacks from collaborators are independent, which
is usually not the case.

10.3 Collaboration Framework
In this section we present CMDN, a framework for AVs to perform collaborative
malware detection. We also present the architecture design of CMDN and describe
its building blocks. Finally, we discuss some potential challenges such a system may
encounter.

The topology of CMDN is shown in Figure 10.1, where computers with malware
detection capabilities are logically connected, forming a peer-to-peer network. Each

186
�

Intrusion
D

etection
N

etw
orks:A

K
ey

to
C

ollaborative
Security

`

AV1

AV2

AV4
AV5

AV1

AV6

Cloud 1

Acquaintances

of AV5:

Malware Online

Scanning Service

Cloud 1

`

`

AV3

Internet

`

AV6

`

Trusted zone
`

Figure 10.1: Topology design of collaborative malware detection network.

Collaborative Malware Detection Networks � 187

node maintains a list of collaborators to communicate with. We call the list of col-
laborators the acquaintance list. There are two different types of participating nodes
in CMDNs: pure service nodes and trader nodes. Pure service nodes (e.g., cloud 1 in
Figure 10.1) only provide malware scanning services for others and do not request
service from others. A pure service node may be an online malware scanning ser-
vice provided by some security vendor or a system similar to CloudAV [114]. Trader
nodes (e.g., AV5 in Figure 10.1), on the other hand, request services from other nodes
and can also provide services in exchange if needed. Trader nodes allow participants
to benefit each other by exchanging malware scanning services with each other.

The CMDN described above requires participating nodes to have malware scan-
ning capabilities. When a node in the CMDN has a suspicious file detected by a
heuristic or anomaly detector, but cannot make a confident decision about whether
the file is malicious (e.g., no matching malware signature is found), it may send
the file or its fingerprint to its acquaintances for scanning. For acquaintances with
behavior-based detection ability, the behavior log of the suspicious file can also be
sent for consultation. When an acquaintance AV receives a malware scanning or be-
havior consultation request, it either searches its signature base to seek the matching
records, or analyzes the behavior log using its behavior analysis engine, and replies
with a feedback (malware or goodware) to the requester. Upon receiving feedbacks
from its acquaintances, the requester AV needs to decide whether or not to raise a
malware alarm based on the received feedbacks (Section 10.4).

10.3.1 Architecture Design
The architecture design of CMDN is illustrated in Figure 10.2. Each node is com-
posed of six components used for collaboration activities, namely, AV scanner, col-
laborative decision, communication overlay, resource control, trust evaluation, and
acquaintance management.

The Communication Overlay is the component that handles all the communica-
tions between the host node and other peers in the network. The messages passing
through the communication overlay include test files from the host node to its ac-
quaintances, malware consultation requests from the host node to its acquaintances,
feedback from acquaintances; malware consultation requests from acquaintances;
and feedback to acquaintances.

The Collaborators Trust Evaluation component allows AVs in the CMDN to
evaluate the quality and trustworthiness of others. The host node can use test files
to gain experience quickly. Indeed, the verified consultation results can also be used
as experience.

The Acquaintance Management component decides who to collaborate with and
manages different privileges for nodes with different trust levels. For example, nodes
can send original files to trusted collaborators for scanning.

The Resource Control component is used to decide how much a host allocates
resources to respond to the consultation requests from each of its acquaintances. An
incentive-compatible resource management model can assist a node with an AV ser-
vice to allocate resources to acquaintances in a fair manner. A node that abusively

188 � Intrusion Detection Networks: A Key to Collaborative Security

Collaborators

Trust Evaluation

Communication Overlay

Resource Control Collaborative

Decision

Testing files
(to others)

Suspicious files

Scanning

results

Malware

Alarm

CMDN Network

Local AV

Scanner

Scanning results

Scanning

request for

suspicious

files (to others)

Acquaintances Management

Scanning

results

Scanning

request
(from others)

Scanning

result

Figure 10.2: Architecture desgin of a trader node in CMDN.

uses the resources of others will be penalized by being removed from the acquain-
tance lists of other nodes.

The Collaborative Decision component has a direct impact on the accuracy of the
collaborative malware detection. After the host node sends out consultation requests
to its acquaintances, the collected scanning results are used to decide whether the
host should raise an alarm or not. Both false positive and false negative decisions
bring costs to the host node. In the next section we discuss a decision model that can
effectively improve collaborative detection accuracy.

10.3.2 Communication Overhead and Privacy Issue
To reduce the communication overhead in CMDNs, nodes may send the digest (fin-
gerprint) of suspicious files first. If collaborator AVs find the digest in their black-
list/whitelist, then they return the corresponding result. Otherwise, they can request
the sender to forward the original file. For AVs with behavior-based malware detec-
tion capability, the behavior log can be sent to them for analysis.

When a host sends a file to its collaborators for scanning, the file receiver may

Collaborative Malware Detection Networks � 189

hold the record and turn it against the sender. To reduce this privacy concern, orig-
inal files are only sent to trusted peers for scanning in the CMDN. To avoid man-
in-the-middle attacks, all communications among connected nodes in a CMDN are
encrypted to prevent eavesdropping.

The system also uses “test files” to evaluate the quality of collaborators and to
guard against dishonest/malicious collaborators in the CMDN. The real scanning
files and test files are sent randomly and it should be difficult for recipients to distin-
guish test files from real files.

10.3.3 Adversaries and Free-Riding
Malicious insiders can be another issue in a CMDN because adversaries may dis-
guise as an active CMDN participant and attack the CMDN. For example, adver-
saries may send false scanning/consultation results to other nodes or send excessive
scanning/consultation requests to others to overload the system. CMDNs can handle
these problems by means of admission control and trust management. Trust man-
agement evaluates the expertise level and the honesty of nodes. Admission control
restricts the amount of requests from participating nodes. Some trust models for in-
trusion detection networks have been discussed in [59, 69].

Free-riding is another potential problem in CMDN because it discourages nodes
from contributing to the network. An incentive-compatible resource management
encourages active contributors and discourages free-riding. Nodes that do not con-
tribute to a CMDN refrain from benefiting from other nodes in the network. A re-
source management model for intrusion detection networks was discussed in Chap-
ter 7.

10.4 Collaborative Decision Model
In a CMDN, a collaborative malware detection decision model based on feedback
is key to obtaining high detection accuracy. Robustness is highly important for such
a decision model because adversaries have strong motivation to evade or compro-
mise the system. However, robustness is not the focus of most machine-learning
approaches. We present the design of a robust and efficient collaborative decision
model named RevMatch, which can make accurate collaborative malware detection
decisions based on the feedback from acquaintances, and is robust to malicious in-
siders. In this section we first formulate the collaborative decision problem and then
discuss the corresponding solution.

10.4.1 Problem Statement and RevMatch Model
We formulate the decision problem as follows:

Given labeled history consisting of the feedback of n AVs on m files whose ground
truth are known (malware or goodware), we decide whether a suspicious file is mal-
ware based on the feedback set y from a subset of the AVs.

190 � Intrusion Detection Networks: A Key to Collaborative Security

Table 10.1: Summary of Notations

Symbol Meaning

N Set of AVs in the CMDN
n Total number of AVs in the network
AVi Antivirus i
Ni Set of acquaintances of AVi
|Ni| The number of acquaintances of AVi
M,G Total number of malware and goodware in the labeled

records database
PM,PG Prior probability of malware and goodware in the real

world
m Total number of samples used for evaluation
Qi Quality score of AVi
yk Scanning results (feedback) from acquaintance AVk
τs The threshold for the static threshold method
τw The threshold for the weighted average method
τc Observation threshold for the RevMatch method
M(y),G(y) The number of malware and goodware in records with

matching feedback set y
FP, FN The false positive and the false negative
C f p,C f n Cost of false positive and false negative decisions
∆t Minimum time gap for two adjacent updates on the same

feedback
α Discount factor
β Weight on priors of malware and goodware

To solve this problem, we model the decision problem as follows: suppose a sce-
nario where a set of AVs N are consulting each other for malware assessment. AVi
(i ∈N) sends a suspicious file to other AVs in its acquaintance list Ni for consul-
tation. Let random variable Yi := [Yj] j∈Ni denote the feedback vector that contains
the scanning results from its acquaintances. Note that Yj ∈ {0,1}, and Yj = 1 and
Yj = 0 indicate the suspicious file is malware or goodware, respectively1. Suppose
AVi sends a suspicious file to its acquaintances for consultation and receives a feed-
back set y = {y1, ...,y|Ni|} from its acquaintances, where y j ∈ {0,1} is the feedback
from acquaintance j. AVi needs to decide whether or not the suspicious file is mal-
ware based on the feedback y. Table 10.1 summarizes the notations we use in this
section for the readers’ convenience.

We model the above decision problem as a utility optimization problem. Let ran-
dom variable X ∈ {0,1} denote the outcomes of “goodware” and “malware.” Let
PM(y) denote the probability of being “malware” given the feedbacks y from all ac-
quaintance AVs. PM(y) can be written as PM(y) = P[X = 1|Y = y]. Let C f p and C f n

1For the convenience of presentation, we drop the subscript i in the notations appearing later in this
chapter.

Collaborative Malware Detection Networks � 191

denote the average cost of a FP decision and a FN decision. We assume that there is
no cost when a correct decision is made. We define a decision function δ (y)∈ {0,1},
where δ = 1 means raising a malware alarm and δ = 0 means no alarm. The risk of
decision R(δ) can be written as

R(δ) =C f nPM(y)(1−δ)+C f p(1−PM(y))δ
= (C f p− (C f p +C f n)PM(y))δ +C f nPM(y)

To minimize the risk R(δ), we need to minimize (C f p−(C f p+C f n)PM(y))δ . There-
fore, the AV raises malware alarm (i.e., δ = 1) if

PM(y)≥
C f p

C f p +C f n
. (10.1)

To make the optimal decision, the key step is estimating PM(y). Our solution
(RevMatch) is to search in the labeled history for records that have the same feed-
back set as y. Let M(y) and G(y) denote the number of malware and goodware in
the labeled records with matching feedback set y. If the number of observed match-
ing records in history is larger than a threshold, that is, M(y)+G(y) ≥ τc > 0, then
PM(y) can be estimated using

PM(y) = P[X = 1|Y = y] =
P[Y = y|X = 1]P[X = 1]

P[Y = y]

=
P[Y = y|X = 1]P[X = 1]

P[Y = y|X = 1]P[X = 1]+P[Y = y|X = 0]P[X = 0]

=
P[Y = y|X = 1]PM

P[Y = y|X = 1]PM +P[Y = y|X = 0]PG

=
1

1+ P[Y=y|X=0]PG
P[Y=y|X=1]PM

' 1

1+ G(y)MPG
M(y)GPM

(10.2)

where P[Y = y|X = 1] is the probability that a feedback set y is received when the
file is malware; and P[Y = y|X = 0] is the probability that diagnosis y is received
when the file is goodware. PM is the prior probability of malware; PG is the prior
probability of goodware. M,G are the numbers of malware and goodware samples
in the labeled history.

We use a simple example in Figure 10.3 to illustrate a use case of this decision
model. When AV0 receives a suspicious file s and cannot make a confident decision,
it sends the file to its acquaintances AV1,AV2,AV3 for scanning. The feedback set
returned is {1,1,0}. AV0 searches its labeled records database and finds two matches.
Both matches are malware. If τc = 2, AV0 decides that file s is malware using the
decision formula described in Equation (10.2).

192 � Intrusion Detection Networks: A Key to Collaborative Security

AV1 AV2 AV3 Ground Truth

df73 1 1 1 malware

48c2 1 1 0 malware

3a4c 1 0 0 goodware

cc0e 0 0 0 goodware

3473 0 0 1 goodware

9faf 1 1 0 malware

`

AV1

AV2

AV3

1

1

0

History

lookup

Malware

Suspicious file

`

`

Digest

Feedback Set

Decision

Labeled Records for AV0

AV0

s

Figure 10.3: An example of the RevMatch decision algorithm for CMDNs.

10.4.2 Feedback Relaxation
The previous results are based on the condition that M(y)+G(y)≥ τc, where τc > 0
is a system parameter to specify the minimum number of matches in order to reach
some “confidence” in decision making using Equation (10.2). In this subsection, we
discuss how to deal with the case of M(y)+G(y)< τc.

M(y)+G(y) < τc indicates there are not enough matches and thus no confident
decision can be made. The RevMatch model handles this problem using feedback
relaxation. That is, it ignores feedbacks from some acquaintances, intending to in-
crease the number of matches by partial matching. The RevMatch model chooses to
ignore the feedback from the least competent AV, as removing incompetent nodes
can effectively increase the matching cases number while keeping valuable feedback
from high-quality AVs. The competence level of an AV can be its trust value or qual-
ity score.

Algorithm 10.1 describes the process of removing incompetent AVs from the
feedback set one by one until the number of matching samples exceeds the threshold
τc. Then, a decision is made based on the remaining feedback set. Upon receiving
a diagnosis set y, it first checks if the number of matching cases in the records ex-
ceeds the threshold τc. If it does, it makes a decision based on the collected matches.

Collaborative Malware Detection Networks � 193

Otherwise, the least competent AV is removed from the feedback set in each round
until the number of matching samples exceeds the threshold. After that, it returns the
corresponding decision and the remaining feedback set.

Algorithm 10.1 Relaxation(y, la)
//This algorithm removes feedback from the least competent AVs from the ac-
quaintances list until the number of matches reaches the threshold τc. It has two
parameters, the feedback vector y and an ordered list of AVs la, which is sorted by
the competence levels of AVs in ascending order.
(M(y),G(y))⇐ find matches for y
if M(y)+G(y)≥ τc then

δ ⇐ max
δ∈{0,1}

R(δ)

return (y,δ)
end if
//Feedback relaxation
for each a in la do

y⇐ y removes feedback of AV a
(M(y),G(y))⇐ find matches for y
if M(y)+G(y)≥ τc then

δ ⇐ max
δ∈{0,1}

R(δ)

return (y,δ)
end if

end for

10.4.3 Labeled History Update
The labeled history (ground truth set) is highly important because all decisions are
based on the ground truth (GT) search for matches. As previously mentioned, AVs
in CMDN collect labeled history by sending test files to acquaintances and recording
their feedbacks and GT. Real consultation files can also be used when their GT are
revealed afterward.

The GT set T is a collection of feedback records labeled with their GT (malware
or goodware) as shown in Figure 10.3. To increase storage efficiency, a GT entry Ti
can be represented with attributes {Fi,ai,bi, ti}. Fi is the binary set representing the
feedbacks from acquaintances, ai and bi are the number of malware and goodware
in history with feedback Fi. ti is the timestamp of the last GT sample recorded with
feedback Fi. The purpose of recording the timestamp is to prevent history poison
flooding attacks, where a malicious insider (probably a malware producer) accumu-
lates credibility quickly by releasing a large number of zero-day malware that other

194 � Intrusion Detection Networks: A Key to Collaborative Security

AVs may not be able to detect in the beginning, and then raises alarms on goodware
to mislead others (see Section 10.6.6).

The labeled history update process is described in Algorithm 10.2. When a node
has a new test file with GT ḡ ∈ {0,1}, it sends the file to all collaborators for consul-
tation and receives feedback F̄ . Suppose there exists an entry Fj = F̄ in the labeled
history and t j < currentTime()−∆t, then update a j =αa j+ ḡ and b j =αb j+(1− ḡ),
and also reset t j; otherwise if there is no entry with feedback F̄ , then create a new
entry {Fnew,anew,bnew, tnew}. ∆t is the minimum time gap that two adjacent updates
have the same feedback. α is the discount factor on older data, and β is the weight
on priors. PM,PG are the priors for malware and goodware, respectively.

Algorithm 10.2 Ground Truth Update(T, F̄ , ḡ)
1: //This algorithm updates the ground truth set T when a new ground truth ḡ with

scanning feedback F̄ arrives.
2: j⇐ search records in T with feedback F̄
3: if j ≥ 0 and t j < currentTime()−∆t then
4: a j⇐ αa j + ḡ // update the number of malware
5: b j⇐ αb j +(1− ḡ) // update the number of goodware
6: else if j is not found then
7: Fnew = F̄ // create a new entry Fnew = F̄
8: anew⇐ βPM + ḡ
9: bnew⇐ βPG +(1− ḡ)

10: T⇐ T∪{Fnew,anew,bnew,currentTime()}
11: end if

10.5 Evaluation
In this section we use real data to evaluate the performance of the RevMatch model
and compare it with four other decision models, namely, ST, WA, DT, and BD (de-
scribed in Section 10.2). The metrics we use for the evaluation include detection ac-
curacy, running time efficiency, and robustness against insider attacks. We use quality
score, which is the combination of FP and FN, to measure detection accuracy; run-
ning time efficiency is the average running time for making a decision; robustness is
the level of resistance to malicious insider attacks. We evaluate the performance of
RevMatch and draw comparisons among different collaborative decision algorithms.

10.5.1 Data Sets
In order to evaluate the accuracies of the decision algorithms, we collected real-world
malware and goodware samples. Our malware data sets were collected from Mal-

Collaborative Malware Detection Networks � 195

Table 10.2: Data Sets
Dataset Data Set Description Samples Year Malware
ID Alarm Rate

S1 Old malware 58,730 2008–2009 84.8%
S2 New malware 29,413 2011–2012 59.5%
S3 Hybrid malware 50,000 2009–2012 69.7%
S4 Goodware (SourceForge) 56,023 2012 0.3%
S5 Goodware (Manual) 944 2012 7.9%
S6 Hybrid goodware 5,000 2012 1.6%

ware Analysis System (formerly CW-Sandbox)2, Offensive Computing3, and other
antivirus vendors. In terms of the collection time, our malware data sets are divided
into two groups: old malware data set (S1) collected in 2008–2009 and new malware
data set (S2) collected in 2011–2012. We also mixed the two data sets and selected
50,000 of them to form a hybrid malware data set (S3).

In our evaluation, we also included goodware to measure false positive rates of
the decision algorithms. We crawled the top 10,000 projects in SourceForge4 and
extracted PE (Portable Executable) binary files as goodware samples (S4). We also
collected binary files (S5) manually as false positive samples, such as some driver
files and computer games from reputable producers from various sources. We also
selected a mixed combination of goodware samples to form a hybrid goodware data
set (S6). Table 10.2 shows the size of each data set.

We used VirusTotal5 to obtain scanning results from a variety of antivirus tools.
Using the VirusTotal API, we uploaded our entire malware and goodware data sets
and acquired scanning logs of forty different antivirus tools. Figure 10.4 shows both
the TP and FP of each antivirus engine based on hybrid data sets S3 and S6. One
caveat is that we do not intend to compare different AV engines’ detection rates be-
cause VirusTotal is not designed for performance comparisons. VirusTotal’s scanning
results are based upon command-line versions of AV engines that may not be armed
with more sophisticated techniques, for example, behavioral analysis. We replace
the names of AVs with indexed labels (e.g., AVi) and the full list of AVs used in our
experiments can be found in alphabetical order in Table 10.3.

We collected the average percentage of AVs raising malware alarms to each data
set based on VirusTotal’s scanning results. We notice a higher percentage of AVs
raise malware alarms on older malware samples than newer ones (see Table 10.2).
The cause of the difference might be that antivirus vendors have more time to analyze
and create more accurate antivirus signatures for older malware samples.

In our setting, we used VirusTotal’s scanning results as domain knowledge or

2https://mwanalysis.org/.
3http://www.offensivecomputing.net/.
4http://sourceforge.net/.
5https://www.virustotal.com.

196 � Intrusion Detection Networks: A Key to Collaborative Security

Table 10.3: Antiviruses Used for Evaluation (presented in alphabetical order)
AhnLab-V3 Comodo Jiangmin Rising
AntiVir DrWeb K7AntiVirus Sophos
Antiy-AVL Emsisoft Kaspersky SUPERAntiSpyware
Avast eSafe McAfee Symantec
AVG eTrust-Vet Microsoft TheHacker
BitDefender Fortinet NOD32Norman TrendMicro
ByteHero F-Prot nProtect VBA32
CAT-QuickHeal F-Secure Panda VIPRE
ClamAV GData PCTools ViRobot
Commtouch Ikarus Prevx VirusBuster

previous observation on binary files. Given the same amount of information about
binary files, our goal is to determine which decision algorithm (1) yields the best
detection rate and (2) provides more resilience against manipulated information.

10.5.2 Experiment Setting
We emulate a CMDN composed of forty AVs from different vendors as trader nodes.
Each node includes all other nodes in its acquaintance list.

The data collected in Section 10.5.1 is partially used for constructing labeled
history for nodes in CMDN. The remaining data is used for testing/evaluation. In
the next subsections, we evaluate and compare the efficiency of several different
collaborative decision models.

10.5.3 Ranking of AVs
Both the WA model and RevMatch model require the ranking of AVs. In this section
we evaluate the TP, FP, and quality scores of AVs based on hybrid data sets S3 and S6.
Moreover, the false negative rate (FN) is the probability that a malware is not detected
and the true negative (TN) is the probability that goodware is correctly classified
as goodware. High TP and low FP reflects high quality on malware detection. We
define quality score of AVi, denoted by Qi, using Qi = 1− (C f nFNi +C f pFPi),∀i ∈
{1,2, ...,n}, where C f n and C f p are the penalization factors on the false negative and
false positive rates, respectively.

The FP, TP, and quality scores for all AVs are plotted in Figure 10.4, where AVs
are sorted by their quality scores (C f n = C f p = 1). Complete data results can be
found in Table 10.4. We can see that TP and FP from different AVs vary greatly, and
high-quality AVs have both high TP and low FP. The highest quality score an AV can
achieve is 0.851. Results also show that all AVs are more effective in detecting old
malware (S1) than new malware (S2).

Collaborative Malware Detection Networks � 197

 0

 0.2

 0.4

 0.6

 0.8

 1

A
V

1
A

V
2

A
V

3
A

V
4

A
V

5
A

V
6

A
V

7
A

V
8

A
V

9
A

V
1
0

A
V

1
1

A
V

1
2

A
V

1
3

A
V

1
4

A
V

1
5

A
V

1
6

A
V

1
7

A
V

1
8

A
V

1
9

A
V

2
0

A
V

2
1

A
V

2
2

A
V

2
3

A
V

2
4

A
V

2
5

A
V

2
6

A
V

2
7

A
V

2
8

A
V

2
9

A
V

3
0

A
V

3
1

A
V

3
2

A
V

3
3

A
V

3
4

A
V

3
5

A
V

3
6

A
V

3
7

A
V

3
8

A
V

3
9

A
V

4
0

R
a

te
/S

c
o

re

True Positive

False Positive

Quality Score

Figure 10.4: True positive rate and false positive rate of AVs.

10.5.4 Static Threshold
The static threshold (ST) model takes the total number of AVs that raises malware
alerts. If the number is larger than a given threshold τs, then it raises a malware alarm.
That is, if ∑ j∈Ni Vj ≥ τs, where Vj ∈ {0,1} is the diagnosis result from AVj, then it
raises a malware alarm.

We implemented the ST model and plot the evaluation results in Figure 10.5. We
can see that FP decreases and FN increases when threshold τs raises. When τs is 0,
ST reports all files to be malware; when τs is 40 (the total number of AVs), ST reports
all files to be goodware. The quality score of ST reaches the highest when τs is 5. In
the rest of this section, we set τs = 5 unless we specify otherwise.

10.5.5 Weighted Average
The weighted average (WA) model takes the weighted average of the decisions from
all AVs and asserts the suspicious file to be malware when the weighted average is
higher than a threshold τw. In our implementation, we use the quality scores com-
puted in Section 10.5.3 as the weight of all AVs. That is, WA only raises a malware
alarm if

∑ j∈Ni Q jV j
|Ni| ≥ τw, where Vj ∈ {0,1}. As shown in Figure 10.6, WA yields op-

timal results when the threshold τw = 4/40. Compared to ST, WA performs slightly
better in malware detection quality. In the rest of the evaluation, we fix τw to 4/40
unless we specify otherwise.

10.5.6 Decision Tree
The decision tree (DT) model uses machine learning to produce a tree-structured
predictive tool to map feedback from different AVs to conclude that a suspicious file

198 � Intrusion Detection Networks: A Key to Collaborative Security

Table 10.4: Quality Ranking for Antiviruses (AV1–AV40 correspond to the AVs
listed in Table 10.3 with assigned nicknames)

Antivirus Detection Detection True Positive False Positive Quality Score
Alias Rate(S1) Rate(S2) (malware S3) (goodware S6) C f n =C f p = 1
AV1 0.951 0.800 0.859 0.008 0.851
AV2 0.944 0.797 0.855 0.006 0.849
AV3 0.925 0.787 0.840 0.007 0.833
AV4 0.961 0.783 0.855 0.024 0.831
AV5 0.939 0.759 0.831 0.005 0.826
AV6 0.939 0.757 0.830 0.007 0.823
AV7 0.940 0.747 0.824 0.011 0.813
AV8 0.946 0.752 0.830 0.017 0.813
AV9 0.952 0.742 0.827 0.014 0.813
AV10 0.932 0.755 0.827 0.016 0.812
AV11 0.936 0.752 0.825 0.013 0.812
AV12 0.914 0.733 0.802 0.002 0.800
AV13 0.931 0.726 0.809 0.009 0.799
AV14 0.947 0.813 0.866 0.070 0.796
AV15 0.863 0.753 0.795 0.010 0.785
AV16 0.935 0.726 0.812 0.027 0.784
AV17 0.931 0.654 0.770 0.006 0.764
AV18 0.908 0.779 0.826 0.062 0.764
AV19 0.911 0.648 0.758 0.005 0.753
AV20 0.891 0.653 0.750 0.002 0.748
AV21 0.890 0.679 0.761 0.024 0.737
AV22 0.927 0.594 0.734 0.008 0.725
AV23 0.938 0.607 0.737 0.017 0.720
AV24 0.929 0.592 0.731 0.013 0.718
AV25 0.903 0.562 0.702 0.007 0.695
AV26 0.907 0.556 0.697 0.005 0.692
AV27 0.897 0.544 0.686 0.009 0.677
AV28 0.849 0.546 0.667 0.005 0.663
AV29 0.882 0.513 0.657 0.007 0.651
AV30 0.861 0.461 0.626 0.016 0.610
AV31 0.755 0.494 0.603 0.000 0.603
AV32 0.771 0.421 0.560 0.014 0.545
AV33 0.814 0.377 0.553 0.072 0.481
AV34 0.746 0.416 0.534 0.069 0.465
AV35 0.525 0.330 0.395 0.008 0.387
AV36 0.754 0.141 0.385 0.005 0.380
AV37 0.474 0.283 0.360 0.007 0.353
AV38 0.473 0.221 0.320 0.025 0.295
AV39 0.204 0.062 0.124 0.009 0.116
AV40 0.022 0.001 0.003 0.002 0.001

Collaborative Malware Detection Networks � 199

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

R
a

te
/S

c
o

re

Threshold

(5, 0.881)

False Negative

False Positive

Quality Score

Figure 10.5: TP, FP, and quality scores of static threshold-based model with different
thresholds (based on data set S3, S6).

 0

 0.2

 0.4

 0.6

 0.8

 1

0
/4

0
1
/4

0
2
/4

0
3
/4

0
4
/4

0
5
/4

0
6
/4

0
7
/4

0
8
/4

0
9
/4

0
1
0
/4

0
1
1
/4

0
1
2
/4

0
1
3
/4

0
1
4
/4

0
1
5
/4

0
1
6
/4

0
1
7
/4

0
1
8
/4

0
1
9
/4

0
2
0
/4

0
2
1
/4

0
2
2
/4

0
2
3
/4

0
2
4
/4

0
2
5
/4

0
2
6
/4

0
2
7
/4

0
2
8
/4

0
2
9
/4

0
3
0
/4

0
3
1
/4

0
3
2
/4

0
3
3
/4

0
3
4
/4

0
3
5
/4

0
3
6
/4

0
3
7
/4

0
3
8
/4

0
3
9
/4

0
4
0
/4

0
R

a
te

/S
c
o

re

Threshold

(4/40, 0.883)

False Negative

False Positive

Quality Score

Figure 10.6: TP, FP, and quality scores of weighted average model with different
thresholds (based on data set S3, S6).

200 � Intrusion Detection Networks: A Key to Collaborative Security

AV1 AV3G

M M

G AV13 AV9G

M M G

AV21 AV24

G MM G

...

MM M

R Root

Figure 10.7: The optimal decision tree generated by Weka J48 Algorithm (top 5
levels).

is malware, or not. We used Weka6, a datamining software, as the machine learning
tool to produce decision trees for evaluation. We chose algorithm J48 for decision
tree generation based on data set S3 and S6. We used 10-fold cross-validation to
avoid overfitting. Figure 10.7 shows the partial outcome of the final decision tree.
The entire decision tree includes twenty-six out of forty AVs in the decision loop.
Our results show that the DT model achieves a high TP 0.956. However, it also
has a higher FP of 0.077, which leads to a moderate quality score of 0.879 (see
Table 10.5). We speculate the reason behind this is that the DT model focuses on
reducing the overall number of false decisions, which does not necessarily produce
optimal quality score when there is large discrepancy in training data set sizes of
malware and goodware.

10.5.7 Bayesian Decision
The Bayesian decision (BD) model uses Bayes’ Theorem to calculate the conditional
probability PM(y). A malware alarm is raised if PM(y)> C f p

C f p+C f n
. However, the BD

model is based on the assumption that all AVs are independent, which is not the case
in reality. We also implemented the BD model and the detection accuracy is shown
in Table 10.5.

10.5.8 RevMatch
The RevMatch model (Section 10.4) takes the feedback and does a history records
lookup for decision. We implemented RevMatch and evaluated it using 10-fold cross-
validation based on data sets S3 and S6. We fix parameters α = 1, β = 0, and PM =
PG = 0.5. In the first experiment, we fix parameters C f p = C f n = 1 and increase

6http://www.cs.waikato.ac.nz/ml/weka/.

Collaborative Malware Detection Networks � 201

 0

 0.02

 0.04

 0.06

 0.08

 1 2 3 4 5

Threshold τc

False Negative

 0

 0.02

 0.04

 0.06

 0.08

 1 2 3 4 5

Threshold τc

False Positive

 0.9

 0.91

 0.92

 0.93

Quality Score

Figure 10.8: The iImpact from τc in RevMatch model.

threshold τc from 1 to 5. As shown in Figure 10.8, a higher τc leads to a slightly
higher FN and lower quality score.

In the next experiment, we fix τc = 1 and set different penalization weights on
false negative rates C f n. Figure 10.9 shows that a higher C f n leads to a higher FP and
a lower FN. We speculate the reason is that RevMatch automatically trades FP for a
lower FN, since the penalization of FN is higher.

10.5.9 Comparison between Different Decision Models
In this experiment, we compare the quality scores of five different decision models:
ST, WA, DT, BD, and RevMatch. The results are based on data set S3 and S6. We
used fixed thresholds 5 for ST and 4/40 for WA. We used 10-fold cross-validation
for both DT and RevMatch models. We set parameter τc = 1 and C f p = C f n = 1.
The results are shown in Table 10.5. We can see that RevMatch outperforms all other
models in terms of overall quality score. Also, all collaborative detection models
have higher quality scores than any single AV.

Next, we increase C f n from 1 to 13 and plot the quality score of all decision mod-
els. The results are shown in Figure 10.10. We can see that RevMatch is superior to
all others in all cases. BD performs the worst on higher C f n. An interesting obser-
vation is that ST starts to perform better than WA when C f n is sufficiently large. We
speculate the reason is that when it is costly to miss malware, then the system con-

202 � Intrusion Detection Networks: A Key to Collaborative Security

 0

 0.02

 0.04

 0.06

 0.08

 2 4 6 8 10 12

Penalization Weight on False Negative Cfn

False Positive

False Negative

 0.4

 0.55

 0.7

 0.85
Quality Score

Figure 10.9: The impact from C f n in RevMatch model.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12

Penalization Weight on FN (Cfn)

Static Threshold
Weighted Average
Bayesian Decision

Decision Tree
RevMatch

Figure 10.10: Quality scores of all models with different C f n.

Collaborative Malware Detection Networks � 203

Table 10.5: Quality Scores among Different Decision Models

Method True Positive False Negative False Positive Quality Score
TP FN FP 1−C f pFP−C f nFN

Static threshold 0.903 0.097 0.022 0.881
Weighted threshold 0.908 0.092 0.025 0.883

Decision tree 0.956 0.044 0.077 0.879
Bayesian decision 0.871 0.129 0.013 0.858

RevMatch 0.927 0.073 0.007 0.920
Best single AV 0.859 0.141 0.008 0.851

siders the opinion from all AVs rather than focusing on some high-quality AVs. Note
that in this experiment, ST and WA both re-select their optimal decision thresholds
for each C f n.

10.5.10 Robustness against Insider Attacks
In an open CMDN, adversaries may join the network and serve as CMDN members
in the beginning and then suddenly turn around and send incorrect feedback. The
tasks of quickly identifying and removing malfunctioning or malicious insiders are
the responsibilities of trust management and acquaintance management. However, in
this subsection, we are interested in knowing the maximal impact malicious nodes
can bring to the system if such a malicious node identification and removal mecha-
nisms do not exist. We evaluate the impact of malicious insiders on the four decision
models by intentionally injecting attacks into the experimental data.

In the first experiment, we start from the lowest ranking AV and replace its feed-
back by a malicious one, and gradually increase the number of malicious attackers
by replacing feedback of other low quality AVs. We emulate three types of attacks,
namely the alarmer attack, the dormant attack, and the random attack. Attackers
launching an alarmer attack always report malware whenever a scanning request is
received; attackers launching a dormant attack always report goodware for all scan-
ning requests; whereas in a random attack, nodes report random decisions (either
malware or goodware). Figure 10.11 shows the impact of these three different at-
tacks on RevMatch model with different numbers of attackers. The alarmer attack
has the highest impact and the dormant attack is the least effective. With the alarmer
attack, the quality score drops down significantly when the number of attackers is
higher than 5.

In another experiment, we investigate the impact of alarmer attacks on different
decision methods. Figure 10.12 shows that the decision tree was least durable to col-
luded alarmer attacks. Its quality score had no change with the first two attackers,
but dropped quickly after the third attacker joined in. We investigated the reason and
found that the first two AVs were not included in the decision tree while the third
attacker AV was. The results also show that ST can endure at most four attackers be-

204 � Intrusion Detection Networks: A Key to Collaborative Security

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6

Number of Attackers

Alarmer Attack

Dormant Attack

Random Attack

Figure 10.11: RevMatch model under three different attacks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

Number of Attackers

Static Threshold

Weighted Average

Decision Tree

Bayesian Decision
RevMatch (τc=1)

RevMatch (τc=5)

Figure 10.12: The quality scores versus the number of attackers.

Collaborative Malware Detection Networks � 205

cause the decision threshold is 5. The RevMatch, BD, and WA models are relatively
more robust to colluded alarmer attacks. We also notice that using a higher decision
threshold τc on RevMatch increases the resistance against attackers while decreasing
the detection quality when there is no insider attack.

10.5.11 Acquaintance List Length and Efficiency
In the previous experiments, we showed that collaboration can effectively improve
the intrusion detection accuracy for all participating IDSs. In this experiment, we
study the impact of collaboration network size on the overall detection quality in
the network. We start with five AVs with the lowest ranking and gradually increase
the network size by adding more competitive AVs until it reaches forty, and we ob-
serve the malware detection quality score with different network sizes. We repeat the
above process by starting from the top ranking AVs and add lower ranking ones in
the second experiment, and by adding randomly picked AVs in the third experiment.
The results (Figure 10.13) show that collaboration significantly improves the detec-
tion accuracy for nodes with low detection capability and nodes with high detection
accuracy also benefit from it. We can see that although the collaboration between the
top five AVs already yields good results, recruiting more AVs with lower ranking can
further improve the overall accuracy. In all cases, a network with twenty-five AVs can
achieve high malware detection quality. The drawback of collaborating with many
AVs is the maintenance overhead because the participating AVs need to allocate re-
sources to assist their collaborators. A host should select an appropriate acquaintance
list size depending on the amount of resources it can reserve for AV collaboration.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40

Number of Acquaintances

From least competitive AVs
From most competitive AVs

Randomly selected AVs

Figure 10.13: The quality scores versus number of collaborators.

206 � Intrusion Detection Networks: A Key to Collaborative Security

Table 10.6: Performance Summary of Collaborative Decision Models
Decision Model Decision Runtime Attacker Partial Flexibility

Quality Tolerance Feedback
Static threshold Medium very fast 4 attackers No Yes
Weighted average Medium very fast 5+ attackers Yes Yes
Decision tree Medium very fast 3 attackers No No
Bayesian decision Low very fast 5+ attackers Yes Yes
RevMatch High fast 5+ attackers Yes Yes

10.6 Discussion
In Section 10.5 we evaluated the performance of the RevMatch model and compared
it with four other collaborative decision models namely, ST, WA, DT and BD. The
criteria we have used for evaluation are quality score and resistance to insider attacks.
Quality score is a combination of FP and FN of the decisions, and the resistance to
insider attacks is the maximum number of alarmer attackers it can endure before the
quality score of the decision model drops significantly. In this section we discuss
other criteria that may be also important for choosing the right decision model for
CMDN. They are runtime efficiency, partial feedback adaption, and tuning flexibility.

10.6.1 Runtime Efficiency on Decision
Runtime efficiency is an important criterion since it may not be acceptable for the
system to take too long to make a decision. We evaluate the running time of all
four decision models on a Ubuntu machine equipped with 2.13 GHz Intel Xeon and
3X4GB RAM. The ST, WA, BD, and DT models all take less than 1 millisecond
in processing the decision algorithm. RevMatch takes less than 15 milliseconds on
average to make a decision.

10.6.2 Partial Feedback
In a CMDN, some collaborators may not respond to scanning requests all the time,
especially when they are overloaded. Therefore, it is important for AVs to be able to
make effective decisions based on the feedback from a subset of collaborators. ST
may not work effectively with partial feedback because the fixed thresholds may be
too high when the number of feedback participants is small. DT also does not work
well with partial feedback, as it requires the inputs that can form a decision path in
the tree. WA, BD, and RevMatch can work well with partial feedback.

Collaborative Malware Detection Networks � 207

10.6.3 Tuning Flexibility
Tuning flexibility allows the system administrator to tune the sensitivity of malware
detection. For example, the system can become more or less sensitive to malware by
changing a parameter. Both ST and WA can be tuned for the sensitivity of the system
by setting their thresholds. DT, however, does not have a parameter that can be tuned
for detection sensitivity. BD has tuning parameters C f p,C f n. RevMatch can be tuned
using the penalization factors (i.e., C f p,C f n) for sensitivity, and τc for the robustness
of the system.

10.6.4 Comparison
Table 10.6 provides a qualitative performance summary of the five collaborative deci-
sion models based on the metrics we selected. We can see that RevMatch is superior
in terms of detection accuracy, flexibility, and adaptability to partial feedback. It also
performs well in terms of runtime efficiency and resistance against insider attacks.
Our results provide a reference for decision makers regarding which collaborative
decision method to employ in their CMDNs.

10.6.5 Zero-Day Malware Detection
In CMDN, behavior-based malware detection techniques might be employed by
some AV vendors. Zero-day malware can be possibly detected by some AVs that
have sophisticated behavior analysis engines. Collaboration makes it possible for
AVs to exchange information on zero-day malware. Our collaborative approach can
provide significant benefit to users of AV products who do not have the capability to
detect zero-day malware.

10.6.6 Historical Data Poisoning Attack
Because RevMatch uses history data for decision, adversaries may try to poison the
history data to benefit themselves. For example, an adversary knows about a type of
zero-day malware (it might release them), so it always identifies this zero-day mal-
ware while the other AV engines miss it. After that, it suddenly reports all goodware
to be malware, intending to cause its collaborators to raise a large number of false
alarms. However, RevMatch is resistant to this type of attack because the ground
truth update mechanism design prevents the adversary from poisoning the history
data quickly, by using the minimum recording time gap ∆t. It is difficult for the ad-
versary to constantly create new types of zero-day malware to boost its credits. Also,
nodes in the network only consult others when the received file is detected as suspi-
cious by the anomaly approach, and goodware usually does not raise any concern by
anomaly detection.

208 � Intrusion Detection Networks: A Key to Collaborative Security

10.7 Conclusion and Future Work
In this chapter we presented a collaborative malware detection framework (CMDN)
and its architecture design. We particularly focused on the design of its collaborative
decision mechanism. We presented a decision model named RevMatch, which makes
collaborative malware detection decisions based on looking up the historical records
with the same feedback set. We discussed several evaluation metrics and compared
the RevMatch model with other decision models in the literature based on real data
sets. Our evaluation results showed that RevMatch outperforms all others in terms
of detection accuracy, flexibility, and tolerance of partial feedbacks, while achieving
satisfactory running time efficiency and robustness to insider attacks. In general, col-
laborative malware detection techniques improve detection quality in comparison to
single AVs. In our future work, we plan to further improve the robustness of the de-
cision system by introducing more sophisticated insider attacks in addition to those
we discussed in this chapter, and devise corresponding defense mechanisms. We also
intend to further improve the efficiency of the decision algorithm by integrating the
confidence level in detection from all participating AVs.

CONCLUSION V

210 � Intrusion Detection Networks: A Key to Collaborative Security

Intrusion detection networks (IDNs) are collaboration networks interconnecting
intrusion detection systems (IDSs) to exchange information, knowledge, and exper-
tise, in order to collectively achieve higher intrusion detection accuracy. However,
building an IDN is a challenging task. Intrusion detection efficiency, robustness
against malicious insiders, incentive compatibility, and scalability are four desired
features of IDNs. This book focused on a distributed consultation-based IDN ar-
chitecture design, where IDSs are connected to their collaborators in a peer-to-peer
overlay, and send consultation messages to their collaborators when they do not have
enough confidence to make an accurate intrusion assessment. The consultation feed-
backs from collaborators are then aggregated to make a final intrusion decision. A
typical IDN architecture includes several components essential for IDS collaboration
(Chapter 3), four of which were discussed extensively throughout this book, namely
trust management, collaborative intrusion decision, resource management, and ac-
quaintance management.

As part of trust management, we discussed in Chapter 4 the design of the trust
component—a Dirichlet-based Bayesian trust learning model used to calculate the
trust values of collaborators based on past experiences. We showed that this model
not only provides an efficient way to estimate trust values, but also provides the
confidence levels in trust estimations. Chapter 5 discussed how the collaborative in-
trusion decision problem can be formulated as a Bayes optimization problem. It also
showed how optimal decision rules that minimize Bayes risks can be obtained us-
ing hypothesis testing methods and real-time efficient, distributed, and sequential
feedback aggregation can be achieved using a data-driven mechanism. As part of re-
source management, a continuous-kernel noncooperative game model was described
in Chapter 6 and used to solve the problem of fair and incentive-compatible resource
allocation. Finally, for acquaintance management, we presented in Chapter 7 a sta-
tistical model to evaluate the trade-off between the maintenance cost and intrusion
cost, and an effective acquaintance management method to minimize the overall cost
for each IDS in the network by appropriately selecting acquaintances.

In addition to consultation-based IDNs discussed in Section II, we also discussed
a different type of IDN design, namely knowledge-based IDNs in Chapter 8, partic-
ularly focusing on its knowledge propagation mechanism design. In Chapter 9 we
described an application of consultation-based IDNs to malware detection, where
antiviruses collaborate together to improve the detection accuracy of the overall net-
work.

We have established a set of metrics to evaluate the performance of collabora-
tive IDNs, namely intrusion detection accuracy, robustness against malicious insid-
ers, incentive compatibility in resource allocation, and scalability in network size.
In addition, a case study of collaborative malware detection using real malware and
goodware data was presented to show antivirus detection rate, malware detection
accuracy, and robustness of decision models.

Overall, the results showed that consultation-based IDN design and IDN archi-
tecture components presented in this book are indeed efficient, incentive compatible,
scalable, and robust. In particular and to evaluate collaborative IDN robustness, we
have considered various attack models and corresponding defense mechanisms.

Conclusion � 211

Finally, it is worth mentioning that, the collaboration management framework for
intrusion detection networks discussed in this book can be useful for other types of
networks with untrusted nodes such as mobile ad hoc networks, sensor networks,
vehicular networks, and social networks.

This page intentionally left blankThis page intentionally left blank

APPENDICES VI

This page intentionally left blankThis page intentionally left blank

Appendix A

Examples of Intrusion
Detection Rules and
Alerts

CONTENTS
A.1 Examples of Snort Rules . 215
A.2 Example of an Intrusion Alert in IDMEF Format . 216

A.1 Examples of Snort Rules
Snort is a network-based intrusion detection system (NIDS). Its detection system is
based on rules that are shared publicly by users and Snort administrators. Snort rule
and updates are open source and free for public use and modification.

Users can configure which interface Snort listens to and what action Snort per-
forms when a packet is detected by Snort rules. Snort rules are statements that define
what to do with the sniffed packets. Each rule should be one single line. A Snort rule
is composed of a Rule Header and Rule Options. The header part identifies the traffic
based on IP address and port and the action to be done; for example, should it be
logged, escalated or ignored? The rule options further narrow down traffic to fit into
some particular event.

Figure A.1 shows the structure of a typical Snort rule. The Rule Header is the
first part of a Snort rule and the rule options is the second part of the rule. The header
contains the following fields: Action field, Protocol field, Source and Destination IP,
Source and Destination Port, Direction. The Rule Options can contain several pairs

215

216 � Intrusion Detection Networks: A Key to Collaborative Security

Figure A.1: Structure of a Snort Rule.

of option fields and value fields. In the example shown in figure A.1, The content
option specifies the signature of an attack and the msg option specifies which message
should be printed out when a suspicious packet is detected.

Snort rules can be customized by users and administrators on top of the base
rules downloaded from the rule deposit center. Effective customized rules can be
shared between Snort communities and adopted by users with similar interests. An
efficient rule-sharing mechanism can effectively distribute Snort rules to peers who
are most likely adopt the rule and therefore improve the intrusion efficiency of the
entire community.

A.2 Example of an Intrusion Alert in IDMEF Format
Figure A.2 shows an example of an intrusion detection alert in IDMEF format.

Examples of Intrusion Detection Rules and Alerts � 217

<?xml version="1.0" encoding="UTF-8"?>

<idmef:IDMEF-Message xmlns:idmef="http://iana.org/idmef"

version="1.0">

 <idmef:Alert messageid="123456789abc">

 <idmef:Analyzer analyzerid="sensor01">

 <idmef:Node category="dns">

 <idmef:name>sensor.abc.com</idmef:name>

 </idmef:Node>

 </idmef:Analyzer>

 <idmef:CreateTime

ntpstamp="0xbc89f6f9.0xef669437">2012-09-09T10:01:25.93464Z</

idmef:CreateTime>

 <idmef:Source ident="a0b2" spoofed="yes">

 <idmef:Node ident="a0b2-1">

 <idmef:Address ident="a1a2-2" category="ipv4-addr">

 <idmef:address>192.0.1.100</idmef:address>

 </idmef:Address>

 </idmef:Node>

 </idmef:Source>

 <idmef:Target ident="b5b6">

 <idmef:Node>

 <idmef:Address ident="b5b6-1" category="ipv4-addr">

 <idmef:address>192.0.1.10</idmef:address>

 </idmef:Address>

 </idmef:Node>

 </idmef:Target>

 <idmef:Target ident="c7c8">

 <idmef:Node ident="c7c8-1" category="nisplus">

 <idmef:name>hipo</idmef:name>

 </idmef:Node>

 </idmef:Target>

 <idmef:Target ident="d1d2">

 <idmef:Node ident="d1d2-1">

 <idmef:location>Waterloo B10</idmef:location>

 <idmef:name>Cisco.router.b10</idmef:name>

 </idmef:Node>

 </idmef:Target>

 <idmef:Classification text="Ping-of-death detected">

 <idmef:Reference origin="cve">

 <idmef:name>CVE-1999-128</idmef:name>

 <idmef:url>http://www.cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-1999-128</idmef:url>

 </idmef:Reference>

 </idmef:Classification>

 </idmef:Alert>

</idmef:IDMEF-Message>

Figure A.2: Example of an intrusion alert in IDMEF format.

This page intentionally left blankThis page intentionally left blank

Appendix B

Proofs of Theorems

CONTENTS
B.1 Proof of Proposition 9.4.3 . 219
B.2 Proof of Theorem 9.2 . 219
B.3 Proof of Proposition 9.4.4 . 221
B.4 Proof of Proposition 9.4.5 . 221
B.5 Proof of Proposition 9.4.6 . 221

B.1 Proof of Proposition 9.4.3

Proof B.1 In G1, for each i ∈N , the feasible set Fi is a closed, bounded, and
convex subset of Rni . The public utility function U r

i is jointly continuous in its argu-
ments and strictly convex in~ri. Hence, using Theorem 4.3 in [38], we can show that
G1 admits a Nash equilibrium in pure strategies.

In G2, without relaxation, the convex program (PPi) admits a solution r̃i j, which
is continuous in ~Ri [165]. The feasible set of (Pi) is compact and convex, and the
Ub

i is jointly continuous in its arguments and strictly convex in ~Ri. Hence, G2 has a
Nash equilibrium at the level of private optimization. We can determine r?i j, which
yields an equilibrium at the level of public optimization. Therefore, G2 admits a
Nash equilibrium in pure strategies of {(~ri,~Ri), i ∈N }.

219

220 � Intrusion Detection Networks: A Key to Collaborative Security

B.2 Proof of Theorem 9.2
We first introduce a few definitions and then prove Proposition B.2.1, which will be
used in the proof of Theorem 9.2.

Definition B.1 Let ~R∗i ,~ri, i ∈N , be an NE. The non-prime degree D of an equi-
librium is the number of distinct pairs {i, j}, j ∈Ni, such that R∗i j 6= r∗i j. Note that a
prime NE has non-prime degree 0.

Proof B.2 In the proof of Theorem 9.2, we show that any non-prime NE can be
reduced to a prime NE with D = 0. From Proposition 9.4.3 we know there exists at
least one NE for G2. Let R∗ = [~R∗i]i∈N and r∗ = [~r∗i]i∈N be a NE. Suppose it is not
a prime NE. Hence, there must exist at least one pair that satisfies r∗uv < R∗uv for some
pair {u,v}. Construct a feasible solution (R′,r∗) from (R∗,r∗) such that R

′
i j = R∗i j,

for every {i, j} ∈
⋃

i6= j, j∈Ni,i∈N {i, j}\{u,v}, and R
′
i j = r∗i j, for {i, j}= {u,v}. From

Proposition B.2.1 we can show that (R′,r∗) also constitutes an NE, whose non-prime
degree becomes D̄i − 1. By an iterative process, a non-prime NE (R∗,r∗) can be
reduced to a prime NE. Hence, there exists a prime NE in G2.

Proposition B.2.1 Let (R∗,r∗) be a NE with D̄ 6= 0 and {u,v} be a pair of nodes
such that r∗uv < R∗uv. Let (R′,r′) be a constructed feasible solution such that r′ = r∗,
R
′
i j = R∗i j, for every {i, j} ∈

⋃
i6= j, j∈Ni,i∈N {i, j}\{u,v}, and R

′
i j = r∗i j, for {i, j} =

{u,v}. Then (R′,r∗) is an NE of G2.

Proof B.3 We need to show that r∗ is an optimal response to R′ , and then nodes
have no incentive to deviate from R′ . For a feasible solution (R,r), we say that ri j
is a boundary allocation if ri j = min(r̄i,Ri j); otherwise, we say that ri j is an internal

allocation. At an NE solution, the marginal gains ∂U p
i

∂ ri j
, j ∈Ni, are equal for internal

allocation points. In addition, the marginal gain of i at boundary allocations is no less
than the marginal gains of i at internal allocations.

Because R∗ is a G2 NE, node v has no incentive to move by changing Ruv. If a
node v decreases its request to u from value R∗uv to value r∗uv, then the allocation from
node u will not increase. This can be easily shown by contradiction as follows.

Suppose the reverse is true; then there must exist an internal allocation rum to m
whose marginal gain is higher than the marginal gain at R

′
uv. However, from (9.2) and

(9.5) we can see that by understating the requests, nodes can increase their marginal
gains. Hence, the marginal gain at r∗um is larger than the marginal gain at r∗uv. There-
fore, we can conclude that r∗ is not an optimal solution of configuration R∗, which
contradicts the property of NE.

We also observe that node v cannot gain from u by either decreasing or increasing
its request at R

′
uv. Decreasing the request results in decreasing the allocation from

u, because the resource is bounded by the request. On the other hand, increasing
the request at R

′
uv shall not increase the allocation from u, because it will otherwise

Proofs � 221

contradict the properties of NE R∗ that nodes v cannot gain better utility by changing
its request at an NE.

Therefore, after the node v decreases R∗uv to R
′
uv = r∗uv, we arrive at r′ = r∗. The

constructed solution R′ and r′ is another NE of G2.

B.3 Proof of Proposition 9.4.4

Proof B.4 For each pair of nodes i, j, we have ri j = Ai jri j + bi j, where ri j =
[ri j,r ji]

T , and

bi j =

[
λi j
(
Mi +∑v6= j,v∈Ni qivrvi

)
λ ji

(
M j +∑v6=i,v∈N j q jvrv j

)]
,

Ai j =

[
0 (λi j−1)qi j

(λ ji−1)q ji 0

]
.

Given the existence of Nash equilibrium and the assumption on qi j and q ji, the
uniqueness of the Nash equilibrium is ensured only when Ai j is nonsingular.

B.4 Proof of Proposition 9.4.5

Proof B.5 From (9.13), we can find that the optimal response R?
i j to other nodes is

given by

R?
i j =

λi j

2−λi j

(
Mi + ∑

u6= j,u∈Ni

Riu

)
.

Because R?
i j is linear in Riu,u ∈ Ni, we can build it into a linear system of equa-

tions with the variables Ri j, i, j ∈N stacked into one vector. The linear system has
a unique solution if the condition of diagonal dominance holds, leading to the condi-
tion.

B.5 Proof of Proposition 9.4.6

Proof B.6 From Remark 9.4.1 we learn that r?i j is a monotonic decreasing function
with respect to Ri j. Because the utility function in (Pi j) is monotonically increasing

222 � Intrusion Detection Networks: A Key to Collaborative Security

with r?ji, increasing R ji will decrease the utility. Hence, IDS i seeks to lower R ji until
the optimal utility is achieved. In other words, an optimal solution R?

ji is achieved at
R?

ji = r?ji = r̄ ji. Assuming that r̄i is sufficiently large, we have r̄ ji = R ji. Under the
NE, we have r∗i j = r?i j = R?

i j = R∗i j, ∀i, j ∈N and i 6= j. Then from (9.13), r∗i j solves

r∗i j = r?i j =
Ti jTji

∑u∈Ni TiuTui

(
Mi + ∑

v∈Ni

r∗iv

)
− r∗i j, (B.1)

which yields (9.14). It is easy to see that any requests 0 < R ji < R∗ji will lower the op-
timal allocation r?i j and hence its utility. For the case where constraint (9.3) becomes
active, the solution (9.15) already satisfies the condition and hence remains optimal.

References

[1] http://news.netcraft.com/archives/2009/06/22/faster actions needed against
phishingconficker domains.html [Last accessed on Feb. 15, 2013].

[2] Antivirus vendors go beyond signature-based antivirus. http://searchsecurity.
techtarget.com/magazineContent/Antivirus-vendors-go-beyond-signature-
based- antivirus [Last accessed on April 5, 2013].

[3] Avast. http://www.avast.com.

[4] Avira. http://www.avira.com [Last accessed on Feb. 15, 2013].

[5] Bots and botnetsa growing threat. http://us.norton.com/botnet/promo [Last
accessed on Feb. 15, 2013].

[6] Bredolab Bot Herder Gets 4 Years for 30 Million Infections. http://www.wired
.com/threatlevel/2012/05/bredolab-botmaster-sentenced [Last accessed on
April 5, 2013].

[7] Bro. http://www.bro-ids.org/ [Last accessed on Feb. 15, 2013].

[8] CAIDA: The Cooperative Association for Internet Data Analysis.
http://www.caida.org [Last accessed on Feb. 15, 2013].

[9] Common intrusion detection signatures standard. http://tools.ietf.org/html/
draft-wierzbicki-cidss-04 [Last accessed on Feb. 15, 2013].

[10] Cyber-attacks batter Web heavyweights. http://archives.cnn.com/2000/TECH/
computing/02/09/cyber.attacks.01/index.html [Last accessed on Feb. 15,
2013].

[11] DDOS attack on Spamhaus: Biggest cyber-attack in history slows down Inter-
net across the world. http://www.mirror.co.uk/news/world-news/ddos-attack-
spamhaus-biggest-cyber-attack-1788942 [Last accessed on April 5, 2013].

223

224 � References

[12] Evolving DDOS Attacks Provide the Driver for Financial Institu-
tions to Enhance Response Capabilities. http://www.alston.com/Files/
Publication/dc282435-c434-42a2-afe7-38af660dc82a/Presentation/
PublicationAttachment/2c3bb5d8-b035-4d03-8e3c-390c2da3751d/Cyber-
Alert-Evolving-DDOS-Attacks.pdf [Last accessed on April 5, 2013].

[13] Fksensor. ”http://www.keyfocus.net/kfsensor/download” [Last accessed on
Feb. 15, 2013].

[14] Honeyd. ”http://www.honeyd.org” [Last accessed on Feb. 15, 2013].

[15] Intrusion detection message exchange format. http://www.ietf.org/rfc/
rfc4765.txt [Last accessed on Feb. 15, 2013].

[16] McAfee antivirus to reimburse consumers for bad update.
http://news.techworld.com/security/3221657/mcafee-antivirus-to-reimburse-
consumers-for-bad-update/ [Last accessed on April 5, 2013].

[17] myNetWatchman. http://www.mynetwatchman.com [Last accessed on Feb.
15, 2013].

[18] National vulnerability Database. http://nvd.nist.gov [Last accessed on Feb. 15,
2013].

[19] OSSEC. http://www.ossec.net/[Last accessed on Feb. 15, 2013].

[20] Protecting against the Rampant Conficker Worm. http://www.pcworld.com/
article/157876/protecting against the rampant conficker worm.html [Last
accessed on Feb. 15, 2013].

[21] Protecting against the Rampant Conficker Worm. http://www.pcworld.com
/article/157876/protecting against the rampant conficker worm.html [Last
accessed on April 5, 2013].

[22] Request for comments. http://newrfc.itms.pl/?mod=yes&range=4765 [Last
accessed on Feb. 15, 2013].

[23] SANS Internet Storm Center (ISC). http://isc.sans.org/ [Last accessed on Feb.
15, 2013].

[24] Snort. http://www.snort.org/[Last accessed in Feb 15, 2013].

[25] Spector. http://www.specter.com [Last accessed on Feb. 15, 2013].

[26] Symantec. http://www.symantec.com/ [Last accessed on Feb. 15, 2013].

[27] The Honeynet Project. http://www.honeynet.org/[Last accessed on Feb. 15,
2013].

[28] Trend glitch costs 8 million. http://news.cnet.com/Trend-glitch-costs-8-
million/2110-1002 3-5789129.html [Last accessed on April 5, 2013].

References � 225

[29] TripWire. http://www.tripwire.com/ [Last accessed on Feb. 15, 2013].

[30] US-CERT. http://www.kb.cert.org [Last accessed on Feb. 15, 2013].

[31] What is SmartScreen Filter? http://www.microsoft.com/security/filters/
smartscreen.aspx [Last accessed on Feb. 15, 2013].

[32] Why 2012 will be cybercrime’s ‘hell year’. http://www.nbcnews.com/
technology/technolog/why-2012-will-be-cybercrimes-hell-year-196836 [Last
accessed on Feb. 15, 2013].

[33] ZDnet. http://www.zdnet.com/blog/security/confickers-estimated-economic-
cost-91-billion/3207 [Last accessed on Feb. 15, 2013].

[34] The honeynet project. know your enemy: Fast-flux service networks, 13 July,
2007. http://www.honeynet.org/book/export/html/130 [Last accessed on Feb.
15, 2013].

[35] Apples app store downloads top three billion, 2010. http://www.apple.com/
pr/library/2010/01/05Apples-App-Store-Downloads-Top-Three-Billion.html
[Last accessed on Feb. 15, 2013].

[36] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D. Keromytis, and
D. Li. A cooperative immunization system for an untrusting Internet. In Net-
works, 2003. ICON2003, The 11th IEEE International Conference on, pages
403–408. IEEE, 2003.

[37] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory. SIAM,
Philadelphia, 2nd edition, 1999.

[38] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory. SIAM
Series in Classics in Applied Mathematics, Philadelphia, 1999.

[39] A. Berman and R. J. Plemmons. Nonnegative Matrices in Mathematical Sci-
ences. SIAM, Philadelphia, 1994.

[40] D. Bertsekas. Network Optimization: Continuous and Discrete Models.
Athena Scientific, Nashua, NH, 1998.

[41] M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2003.

[42] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[43] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A
survey. Internet Mathematics, 1(4):485–509, 2004.

[44] M. Cai, K. Hwang, Y. K. Kwok, S. Song, and Y. Chen. Collaborative Internet
worm containment. IEEE Security & Privacy, 3(3):25–33, 2005.

226 � References

[45] D. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos. Polonium:
Tera-scale graph mining and inference for malware detection. In Proccedings
of SIAM International Conference on Data Mining (SDM) 2011, 2011.

[46] S. Chen, D. Liu, S. Chen, and S. Jajodia. V-cops: A vulnerability-based coop-
erative alert distribution system. In Computer Security Applications Confer-
ence, 2006. ACSAC’06. 22nd Annual, pages 43–56. IEEE, 2006.

[47] R.A. Clarke and R. Knake. Cyber war: The next threat to national security
and what to do about it. Ecco, 2010.

[48] National Research Council Committee on Network Science for Future
Army Applications. Network Science. The National Academies Press, 2005.

[49] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detec-
tion framework. In 2002 IEEE Symposium on Security and Privacy, 2002.
Proceedings, 2002.

[50] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. Hon-
eystat: Local worm detection using honeypots. Lecture Notes in Computer
Science, pages 39–58, 2004.

[51] A. Dal Forno and U. Merlone. Incentives and individual motivation in super-
vised work groups. European Journal of Operational Research, 207(2):878–
885, 2010.

[52] D. Dash, B. Kveton, J. M. Agosta, E. Schooler, J. Chandrashekar,
A. Bachrach, and A. Newman. When gossip is good: Distributed probabilis-
tic inference for detection of slow network intrusions. In Proceedings of the
National Conference on Artificial Intelligence, volume 21, page 1115. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

[53] N. Daswani, C. Kern, and A. Kesavan. Foundations of Security: What Every
Programmer Needs to Know. Dreamtech Press, 2007.

[54] C. Davies. iphone spyware debated as app library phones home, 2009.
http://offerpia.com/won/link/?item no=23887 [Last accessed on Feb. 15,
2013].

[55] H. Debar, M. Becker, and D. Siboni. A neural network component for an in-
trusion detection system. In Research in Security and Privacy, 1992. Proceed-
ings., 1992 IEEE Computer Society Symposium on, pages 240–250. IEEE,
1992.

[56] H. Debar and A. Wespi. Aggregation and correlation of intrusion-detection
alerts. In W. Lee, L. M, and A. Wespi, editors, Recent Advances in Intrusion
Detection, Lecture Notes in Computer Science, pages 85–103. Springer, 2001.

[57] D. E. Denning. An intrusion-detection model. Software Engineering, IEEE
Transactions on, (2):222–232, 1987.

References � 227

[58] J. R. Douceur. The sybil attack. Proceedings of the 1st International Workshop
on Peer-to-Peer Systems (IPTPS ’02), 2002.

[59] C. Duma, M. Karresand, N. Shahmehri, and G. Caronni. A trust-aware,
p2p-based overlay for intrusion detection. In International Conference on
Database and Expert Systems Applications, 2006.

[60] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and C. Glezer. Applying
machine learning techniques for detection of malicious code in network traffic.
KI 2007: Advances in Artificial Intelligence, pages 44–50, 2007.

[61] E. Fehr and H. Gintis. Human motivation and social cooperation: Experimen-
tal and analytical foundations. Annual Reviews in Sociology, 33:43–64, 2007.

[62] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-riding and
whitewashing in peer-to-peer systems. Selected Areas in Communications,
IEEE Journal on, 24(5):1010–1019, 2006.

[63] M. Fitzpatrick. Mobile that allows bosses to snoop on staff developed, 2010.
”http://news.bbc.co.uk/2/hi/8559683.stm” [Last accessed in Feb 15, 2013].

[64] M. Fossi, G. Egan, K. Haley, E. Johnson, T. Mack, T. Adams, J. Blackbird, M.
K. Low, D. Mazurek, D. McKinney, et al. Symantec Internet security threat
report trends for 2010. Volume XVI, 2011.

[65] M. Fossi, E. Johnson, D. Turner, T. Mack, J. Blackbird, D. McKinney, M. K.
Low, T. Adams, M. P. Laucht, and J. Gough. Symantec report on the under-
ground economy: July 2007 to June 2008. Technical report, Technical Report,
Symantec Corporation, 2008.

[66] M. Fossi, D. Turner, E. Johnson, T. Mack, T. Adams, J. Blackbird, S. Entwisle,
B. Graveland, D. McKinney, J. Mulcahy, et al. Symantec global Internet se-
curity threat report. XV, April, 2010.

[67] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan. Synthesizing
near-optimal malware specifications from suspicious behaviors. In Security
and Privacy (S&P), 2010 IEEE Symposium on, pages 45–60. IEEE, 2010.

[68] C. Fung, Q. Zhu, R. Boutabai, and T. Başar. Poster: SMURFEN: A Rule Shar-
ing Collaborative Intrusion Detection Network. In Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS), pages
761–764, 2011.

[69] C. J. Fung, J. Zhang, I. Aib, and R. Boutaba. Dirichlet-based trust management
for effective collaborative intrusion detection networks. Network and Service
Management, IEEE Transactions on, 8(2):79 –91, June 2011.

[70] C. J. Fung, J. Zhang, and R. Boutaba. Effective acquaintance management for
collaborative intrusion detection networks. In 16th International Conference
on Network and Service Management (CNSM 2010), 2010.

228 � References

[71] C. J. Fung, J. Zhang, and R. Boutaba. Effective acquaintance management
based on Bayesian learning for distributed intrusion detection networks. Net-
work and Service Management, IEEE Transactions on, 9(3):320–332, Sept.
2012.

[72] C. J. Fung, O. Baysal, J. Zhang, I. Aib, and R. Boutaba. Trust management for
host-based collaborative intrusion detection. In 19th IFIP/IEEE International
Workshop on Distributed Systems, 2008.

[73] C. J. Fung and R. Boutaba. Design and management of collaborative intrusion
detection networks. In 15th IFIP/IEEE Intl. Symposium on Integrated Network
Management, 2013.

[74] C. J. Fung, J. Zhang, I. Aib, and R. Boutaba. Robust and scalable trust
management for collaborative intrusion detection. In Proceedings of the
Eleventh IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM), 2009.

[75] C. J. Fung, Q. Zhu, R. Boutaba, and T. Barsar. Bayesian decision aggregation
in collaborative intrusion detection networks. In 12th IEEE/IFIP Network
Operations and Management Symposium (NOMS10), 2010.

[76] A. Gelman. Bayesian Data Analysis. CRC Press, Boca Raton, FL, 2004.

[77] A. Ghosh and S. Sen. Agent-based distributed intrusion alert system. In
Proceedings of the 6th International Workshop on Distributed Computing
(IWDC04). Springer, 2004.

[78] S. J. Grossman and O.D. Hart. Takeover bids, the free-rider problem, and the
theory of the corporation. The Bell Journal of Economics, pages 42–64, 1980.

[79] C. Grothoff. An excess-based economic model for resource allocation in peer-
to-peer networks. Wirtschaftsinformatik, 45(3):285–292, 2003.

[80] D. Halder and K. Jaishankar. Cyber Crime and the Victimization of Women:
Laws, Rights and Regulations. Information Science Reference, 2012.

[81] M. T. T. Hsiao and A. A. Lazar. Optimal decentralized flow control of Marko-
vian queueing networks with multiple controllers. Performance Evaluation,
13(3):181–204, 1991.

[82] F. IAO. ”lloveyou” virus lessons learned report. 2003.

[83] Gartner Inc. Gartner survey shows phishing attacks escalated in 2007; more
than 3 billion lost to these attacks. Press release, 2007.

[84] R. W. Janakiraman and M. Q. Zhang. Indra: a peer-to-peer approach to net-
work intrusion detection and prevention. WET ICE 2003. Proceedings of the
12th IEEE International Workshops on Enabling Technologies, 2003.

References � 229

[85] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature hashing malware
for scalable triage and semantic analysis. In Proceedings of the 18th ACM
conference on Computer and communications security, pages 309–320. ACM,
2011.

[86] T. Jiang and J. S. Baras. Trust evaluation in anarchy: A case study on au-
tonomous networks. In INFOCOM. IEEE, 2006.

[87] A. Jøsang and R. Ismail. The Beta Reputation System. In Proceedings of the
Fifteenth Bled Electronic Commerce Conference, 2002.

[88] J. H. Keppler and H. Mountford. Handbook of Incentive Measures for Biodi-
versity: Design and Implementation. OECD, 1999.

[89] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. F.
Wang. Effective and efficient malware detection at the end host. In Proceed-
ings of the 18th Conference on USENIX Security Symposium, pages 351–366.
USENIX Association, 2009.

[90] D. Komashinskiy and I. Kotenko. Malware detection by data mining tech-
niques based on positionally dependent features. In Parallel, Distributed and
Network-Based Processing (PDP), 2010 18th Euromicro International Con-
ference on, pages 617–623. IEEE, 2010.

[91] Y. A. Korilis and A. A. Lazar. On the existence of equilibria in noncooperative
optimal flow control. Journal of the ACM (JACM), 42(3):584–613, 1995.

[92] A. Le, R. Boutaba, and E. Al-Shaer. Correlation-based load balancing for
network intrusion detection and prevention systems. In Proceedings of the
4th International Conference on Security and Privacy in Communication Net-
work. ACM, New York, NY, 2008.

[93] B. C. Levy. Principles of Signal Detection and Parameter Estimation.
Springer-Verlag, 2008.

[94] Z. Li, Y. Chen, and A. Beach. Towards scalable and robust distributed in-
trusion alert fusion with good load balancing. In Proceedings of the 2006
SIGCOMM Workshop on Large-Scale Attack Defense, pages 115–122. ACM
New York, NY, 2006.

[95] Z. Li, Y. Chen, and A. Beach. Towards scalable and robust distributed in-
trusion alert fusion with good load balancing. In Proceedings of the 2006
SIGCOMM Workshop on Large-Scale Attack Defense. ACM, 2006.

[96] W. Lin, L. Xiang, D. Pao, and B. Liu. Collaborative Distributed Intrusion
Detection System. In Future Generation Communication and Networking,
2008. FGCN’08. Second International Conference on, volume 1, 2008.

230 � References

[97] M. E. Locasto, J. J. Parekh, A. D. Keromytis, and S. J. Stolfo. Towards collab-
orative security and P2P intrusion detection. In Information Assurance Work-
shop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC, pages
333–339, 2005.

[98] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley.
The seaview security model. Software Engineering, IEEE Transactions on,
16(6):593–607, 1990.

[99] R. T. B. Ma, S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau. A game theoretic
approach to provide incentive and service differentiation in P2P networks. In
Sigmetrics/Performance, 2004.

[100] M. Marchetti, M. Messori, and M. Colajanni. Peer-to-peer architecture for
collaborative intrusion and malware detection on a large scale. Information
Security, pages 475–490, 2009.

[101] S. Marsh. Formalising Trust as a Computational Concept. Ph.D. thesis, De-
partment of Mathematics and Computer Science, University of Stirling, 1994.

[102] C. A. Martı́nez, G. I. Echeverri, and A. G. Castillo Sanz. Malware detection
based on cloud computing integrating intrusion ontology representation. In
Communications (LATINCOM), 2010 IEEE Latin-American Conference on,
pages 1–6. IEEE, 2010.

[103] L. Mekouar, Y. Iraqi, and R. Boutaba. Peer-to-peers most wanted: Malicious
peers. Computer Networks, 50(4):545–562, 2006.

[104] L. Mekouar, Y. Iraqi, and R. Boutaba. A recommended scheme for [eer-to-
peer systems. In International Symposium on Applications and the Internet
(SAINT). IEEE, 2008.

[105] P. Miller and A. Inoue. Collaborative intrusion detection system. In Fuzzy In-
formation Processing Society, 2003. NAFIPS 2003. 22nd International Con-
ference of the North American, pages 519–524. IEEE, 2003.

[106] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on Networking (ToN), 8(5):556–567, 2000.

[107] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage. Inferring
internet denial-of-service activity. ACM Transactions on Computer Systems
(TOCS), 24(2):115–139, 2006.

[108] D. Moren. Retrievable iphone numbers mean potential privacy issues,
2009. http://www.macworld.com/article/1143047/phone hole.html [Last ac-
cessed on Feb. 15, 2013].

[109] B. Morin and H. Debar. Correlation of intrusion symptoms: An application
of chronicles. In G. Vigna, E. Jonsson, and C. Krgel, Editors, RAID, Lecture
Notes in Computer Science, pages 94–112. Springer, 2003.

References � 231

[110] Atlas Arbor Networks. http://atlas.arbor.net/ [last accessed in feb 15, 2013],
2008.

[111] M. E. J. Newman, A. L. Barabasi, and D. J. Watts. The structure and dynamics
of networks. Princeton Univ Pr, 2006.

[112] K. C. Nguyen, T. Alpcan, and T. Başar. A decentralized Bayesian attack detec-
tion algorithm for network security. In Proceedings of the 23rd International
Information Security Conference, 2005.

[113] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack scenarios through cor-
relation of intrusion alerts. In Vijayalakshmi Atluri, Editor, ACM Conference
on Computer and Communications Security, pages 245–254. ACM, 2002.

[114] J. Oberheide, E. Cooke, and F. Jahanian. CloudAV: N-version antivirus in
the network cloud. In Proceedings of the 17th USENIX Security Symposium,
2008.

[115] Pandalabs. Annual report Panda Labs 2010. http://press.pandasecurity.com/
wp-content/uploads/2010/05/PandaLabs-Annual-Report-2010.pdf.

[116] A. G. P. Rahbar and O. Yang. Powertrust: A robust and scalable reputation
system for trusted peer-to-peer computing. IEEE Transactions on Parallel
and Distributed Systems, 18(4):460–473, 2007.

[117] V. Ramasubramanian, R. Peterson, and E. G. Sirer. Corona: A high perfor-
mance publish-subscribe system for the World Wide Web. In NSDI’06.

[118] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation sys-
tems. Communications of the ACM, 43(12):45–48, 2000.

[119] M. Roesch and C. Green. Snort users manual. Snort Release, 1(1), April 2010.

[120] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Second
Edition, Prentice Hall, Englewood Cliffs, NJ, 2002.

[121] J. Sabater and C. Sierra. Regret: A reputation model for gregarious societies.
In Proceedings of the Fifth International Conference on Autonomous Agents
Workshop on Deception, Fraud and Trust in Agent Societies, 2001.

[122] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A. Yuksel,
S. A. Camtepe, and S. Albayrak. Static analysis of executables for collabora-
tive malware detection on android. In Communications, 2009. ICC’09. IEEE
International Conference on, pages 1–5. IEEE, 2009.

[123] W. Schwartau. Information Warfare: Chaos on the Electronic Superhighway.
Thunder’s Mouth Press, 1994.

232 � References

[124] P. Sen, N. Chaki, and R. Chaki. HIDS: Honesty-rate based collaborative in-
trusion detection system for mobile ad-hoc networks. Computer Information
Systems and Industrial Management Applications. CISIM’08, pages 121–126,
2008.

[125] T.C. Shelling. The Strategy of Conflict. Harvard University Press, 1980.

[126] O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In IEEE Symposium on Security and
Privacy, pages 273–284, 2002.

[127] C. Silva, P. Sousa, and P. Verissimo. RAVE: Replicated antivirus engine. In
Dependable Systems and Networks Workshops (DSN-W), 2010 International
Conference on, pages 170–175. IEEE, 2010.

[128] L. Spitzner. Honeypots: Definitions and value of honeypots. Available from:
www. tracking-hackers. com/papers/honeypots. html, 2003.

[129] R. Srikant. The Mathematics of Internet Congestion Control. Birkhäuser,
2004.

[130] M. Srivatsa, L. Xiong, and L. Liu. TrustGuard: Countering vulnerabilities in
reputation management for decentralized overlay networks. In Proceedings of
the 14th International Conference on World Wide Web, 2005.

[131] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for Internet applications. ACM SIG-
COMM Computer Communication Review, 31(4):149–160, 2001.

[132] Y. L. Sun, Z. Han, W. Yu, and K. J. R. Liu. A trust evaluation framework in
distributed networks: Vulnerability analysis and defense against attacks. In
INFOCOM. IEEE, 2006.

[133] W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. Coping with inaccu-
rate reputation sources: Experimental analysis of a probabilistic trust model.
In Proceedings of Fourth International Autonomous Agents and Multiagent
Systems (AAMAS), 2005.

[134] T. Tran and R. Cohen. Improving user satisfaction in agent-based electronic
marketplaces by reputation modeling and adjustable product quality. In Pro-
ceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2004.

[135] J. N. Tsitsiklis. Decentralized detection. Advances in Statistical Signal Pro-
cessing, pages 297–344, 1993.

[136] D. Turner, M. Fossi, E. Johnson, T. Mack, J. Blackbird, S. Entwisle, M. K.
Low, D. McKinney, and C. Wueest. Symantec global Internet security threat
report–trends for July-December 07. Symantec Enterprise Security, 13:1–36,
2008.

References � 233

[137] J. Ullrich. D. Shield. http://www.dshield.org/indexd.html [Last accessed on
Feb. 15, 2013].

[138] A. Valdes and K. Skinner. Probabilistic alert correlation. In W. Lee, M. Lu-
dovic, and A. Wespi, editors, Recent Advances in Intrusion Detection, volume
2212 of Lecture Notes in Computer Science, pages 54–68. Springer, 2001.

[139] F. Valeur, G. Vigna, C. Krgel, and R. A. Kemmerer. A comprehensive ap-
proach to intrusion detection alert correlation. IEEE Trans. Dependable Secu-
rity Computational, 1(3):146–169, 2004.

[140] P. B. Velloso, R. P. Laufer, D. de O. Cunha, O. C. M. B. Duarte, and G.
Pujolle. Trust Management in Mobile Ad Hoc Networks Using a Scalable
Maturity-Based Model. IEEE Transactions on Network and Service Manage-
ment (TNSM), 7(3):172–185, 2010.

[141] R. Vogt, J. Aycock, and M. Jacobson. Army of botnets. In ISOC Symposium
on Network and Distributed Systems Security, 2007.

[142] A. Wald. Sequential Analysis. John Wiley and Sons, 1947.

[143] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of com-
puter worms. In Proceedings of the 2003 ACM Workshop on Rapid Malcode,
pages 11–18. ACM New York, NY, 2003.

[144] A. Whitby, A. Jøsang, and J. Indulska. Filtering out unfair ratings in bayesian
reputation systems. The Icfain Journal of Management Research, pages 48–
64, February 2005.

[145] P. Wood, M. Nisbet, G. Egan, N. Johnston, K. Haley, B. Krishnappa, T.-K.
Tran, I. Asrar, O. Cox, S. Hittel, et al. Symantec Internet Security Threat
Report Rrends for 2011. Volume XVII, 2012.

[146] Y. S. Wu, B. Foo, Y. Mei, and S. Bagchi. Collaborative intrusion detection
system (CIDS): A framework for accurate and efficient IDS. In Proceeding of
19th Annual Computer Security Applications Conference, 2003.

[147] H. Man Y. Liu, and C. Comaniciu. A Bayesian game approach for intrusion
detection in wireless ad hoc networks. Valuetools, October 2006.

[148] Y. Yan, A. El-Atawy, and E. Al-Shaer. Ranking-based optimal resource allo-
cation in peer-to-peer networks. In Proc. of the 26th Annual IEEE Conference
on Computer Communications (IEEE INFOCOM 2007), May, 2007.

[149] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in the
DOMINO overlay system. In Proceedings of Network and Distributed System
Security Symposium (NDSS04), 2004.

[150] B. Yu and M. P. Singh. Detecting deception in reputation management. Pro-
ceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems, 2003.

234 � References

[151] G. Zhang and M. Parashar. Cooperative detection and protection against net-
work attacks using decentralized information sharing. Cluster Computing,
13(1):67–86, 2010.

[152] J. Zhang and R. Cohen. Trusting advice from other buyers in e-marketplaces:
the problem of unfair ratings. In Proceedings of the 8th International Con-
ference on Electronic Commerce: The new e-commerce: innovations for con-
quering current barriers, obstacles and limitations to conducting successful
business on the internet, 2006.

[153] Y. Zhang and Y. Fang. A fine-grained reputation system for reliable service
selection in peer-to-peer networks. IEEE Transactions on Parallel and Dis-
tributed Systems, pages 1134–1145, 2007.

[154] Z. Zhong, L. Ramaswamy, and K. Li. ALPACAS: A large-scale privacy-aware
collaborative anti-spam system. In Proceedings IEEE INFOCOM, 2008.

[155] C. V. Zhou, C. Leckie, and S. Karunasekera. Collaborative detection of fast
flux phishing domains. Journal of Networks, 4:75–84, February 2009.

[156] C. V. Zhou, C. Leckie, S. Karunasekera, and T. Peng. A self-healing, self-
protecting collaborative intrusion detection architecture to trace-back fast-flux
phishing domains. In The 2nd IEEE Workshop on Autonomic Communication
and Network Management (ACNM 2008), April 2008.

[157] C. V. Zhou, S. Karunasekera, and C. Leckie. A peer-to-peer collaborative
intrusion detection system. In Proceedings of the IEEE International Confer-
ence on Networks, pages 118–123, November 2005.

[158] Q. Zhu and T. Başar. Indices of power in optimal ids default configuration:
theory and examples. In Proc. of 2nd Conference on Decision and Game
Theory for Security (GameSec 2011), College Park, MD, USA., November
2011.

[159] Q. Zhu, C. J. Fung, R. Boutaba, and T. Barsar. A Distributed Sequential Algo-
rithm for Collaborative Intrusion Detection Networks. In IEEE International
Conference on Communications (ICC2010), 2009.

[160] Q. Zhu and L. Pavel. Enabling osnr service differentiation using general-
ized model in optical networks. IEEE Transactions on Communications,
57(9):2570–2575, September 2009.

[161] Q. Zhu, C. Fung, R. Boutaba, and T. Başar. A game-theoretic approach to
knowledge sharing in distributed collaborative intrusion detection networks:
Fairness, incentives and security. In Proc. of the 50th IEEE Conference on
Decision and Control (CDC) and European Control Conference (ECC), Or-
lando, USA, December 2011.

References � 235

[162] Q. Zhu, C. Fung, R. Boutaba, and T. Başar. GUIDEX: A game-theoretic
incentive-based mechanism for intrusion detection networks. IEEE Journal
on Selected Areas in Communications (JSAC) Special Issue on Economics of
Communication Networks & Systems, to appear, 2012.

[163] Q. Zhu, C. Fung, R. Boutaba, and T. Başar. A game-theoretical approach to
incentive design in collaborative intrusion detection networks. In Proceedings
of the International Symposium on Game Theory for Networks (GameNets),
May, 2009.

[164] Q. Zhu and L. Pavel. End-to-end DWDM optical link power-control via a
Stackelberg revenue-maximizing model. Int. J. Netw. Manag., 18(6):505–520,
November 2008.

[165] S. Zlobec. Stable Parametric Programming. Springer, 1st edition, 2001.

This page intentionally left blankThis page intentionally left blank

This page intentionally left blankThis page intentionally left blank

Information Technology / Security & Auditing

The rapidly increasing sophistication of cyber intrusions makes them nearly
impossible to detect without the use of a collaborative intrusion detection network
(IDN). Using overlay networks that allow an intrusion detection system (IDS) to
exchange information, IDNs can dramatically improve your overall intrusion
detection accuracy.

Intrusion Detection Networks: A Key to Collaborative Security focuses on the
design of IDNs and explains how to leverage effective and efficient collaboration
between participant IDSs. Providing a complete introduction to IDSs and IDNs, it
explains the benefits of building IDNs, identifies the challenges underlying their
design, and outlines possible solutions to these problems. It also reviews the full
range of proposed IDN solutions—analyzing their scope, topology, strengths,
weaknesses, and limitations.

•	 Includes a case study that examines the applicability of collaborative
intrusion detection to real-world malware detection scenarios

•	 Illustrates distributed IDN architecture design

•	Considers trust management, intrusion detection decision making,
resource management, and collaborator management

The book provides a complete overview of network intrusions, including their
potential damage and corresponding detection methods. Covering the range of
existing IDN designs, it elaborates on privacy, malicious insiders, scalability, free-
riders, collaboration incentives, and intrusion detection efficiency. It also provides
a collection of problem solutions to key IDN design challenges and shows how you
can use various theoretical tools in this context.

The text outlines comprehensive validation methodologies and metrics to help you
improve efficiency of detection, robustness against malicious insiders, incentive
compatibility for all participants, and scalability in network size. It concludes by
highlighting open issues and future challenges.

ISBN: 978-1-4665-6412-1

9 781466 564121

90000

Intrusion D
etection N

etw
orks

A Key to Collaborative Security

Carol Fung and Raouf Boutaba

Intrusion Detection
Networks

Fung
B

outaba

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

www.auerbach-publications.com

K16024

K16024 cvr mech.indd 1 10/15/13 10:27 AM

	Front Cover
	Contents
	List of Figures
	List of Tables
	Preface
	About the Authors
	SECTION I: INTRODUCTION
	SECTION II: CYBER INTRUSIONS AND INTRUSION DETECTION
	2. Cyber Intrusions
	3. Intrusion Detection

	SECTION III: DESIGN OF AN INTRUSION DETECTION NETWORK
	4. Collaborative Intrusion Detection Networks Architecture Design
	5. Trust Management
	6. Collaborative Decision
	7. Resource Management
	8. Collaborators Selection and Management

	SECTION IV: OTHER TYPES OF IDN DESIGN
	9. Knowledge-Based Intrusion Detection Networks and Knowledge Propagation
	10. Collaborative Malware Detection Networks

	SECTION V: CONCLUSION
	SECTION VI: APPENDICES
	A. Examples of Intrusion Detection Rules and Alerts
	B. Proofs of Theorems

	References

